WorldWideScience

Sample records for atomic energy research

  1. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  2. Atomic Energy Research benchmark activity

    International Nuclear Information System (INIS)

    The test problems utilized in the validation and verification process of computer programs in Atomic Energie Research are collected into one bunch. This is the first step towards issuing a volume in which tests for VVER are collected, along with reference solutions and a number of solutions. The benchmarks do not include the ZR-6 experiments because they have been published along with a number of comparisons in the Final reports of TIC. The present collection focuses on operational and mathematical benchmarks which cover almost the entire range of reaktor calculation. (Author)

  3. Atomic energy

    CERN Multimedia

    1996-01-01

    Interviews following the 1991 co-operation Agreement between the Department of Atomic Energy (DAE) of the Government of India and the European Organization for Nuclear Research (CERN) concerning the participation in the Large Hadron Collider Project (LHC) . With Chidambaram, R, Chairman, Atomic Energy Commission and Secretary, Department of Atomic Energy, Department of Atomic Energy (DAE) of the Government of India and Professor Llewellyn-Smith, Christopher H, Director-General, CERN.

  4. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    The law establishes the Japan Atomic Energy Research Institute in accordance with the Basic Act on Atomic Energy as a government corporation for the purpose of promoting R and D and utilizations of atomic energy (first chapter). The second chapter concerns the directors, advisers and personnel of the institute, namely a chairman of the board of directors, a vice-chairman, directors not more than seven persons, and auditors not more than two persons. The chairman represents and supervises the intitute, whom the prime minister appoints with the agreement of Atomic Energy Commission. The vice-chairman and other directors are nominated by the chairman with the approval of the prime minister, while the auditors are appointed by the prime minister with the advice of the Atomic Energy Commission. Their terms of office are 4 years for directors and 2 years for auditors. The third chapter defines the scope of activities of the institute as follows: basic and applied researches on atomic energy; design, construction and operation of nuclear reactors; training of researchers and technicians; and import, production and distribution of radioisotopes. Those activities should be done in accordance with the basic development and utilization plans of atomic energy established by the prime minister with the determination of Atomic Energy Commission. The fourth chapter provides for the finance and accounting of the institute, and the fifth chapter requires the supervision of the institute by the prime minister. (Matsushima, A.)

  5. The Atomic Energy Control Board's regulatory research and support program

    International Nuclear Information System (INIS)

    The purpose of the Regulatory Research and Support Program is to augment and extend the capability of the Atomic Energy Control Board's (AECB) regulatory program beyond the capability of in-house resources. The overall objective of the program is to produce pertinent and independent scientific and other knowledge and expertise that will assist the AECB in making correct, timely and credible decisions on regulating the development, application and use of atomic energy. The objectives are achieved through contracted research, development, studies, consultant and other kinds of projects administered by the Research and Radiation Protection Branch (RRB) of the AECB

  6. Cooperation in research in the European Atomic Energy Community (EURATOM)

    International Nuclear Information System (INIS)

    This work studies the legal instruments for cooperative research granted to Euratom under the Treaty establishing the European Atomic Energy Community, and the conditions whereby concrete use was made of these instruments. This assessment of Euratom's efforts to launch a community nuclear industry is accompanied by an analysis of the respective roles of the bodies of the Community, the Council and the Commission, as well as of the circumstances which, according to the author, have led to a paralysis of this institution. (NEA)

  7. International human cooperation in Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Rearing of talented persons in the area of nuclear energy is one of the important works in Japan Atomic Energy Research Institute. In this report, the present situations and future schedules of international human cooperation in this area wsere summarized. First, the recent activities of International Nuclear Technology Center were outlined in respect of international human cooperation. A study and training course which was started in cooperation with JICA and IAEA from the middle of eighties and the international nuclear safety seminar aiming at advancing the nuclear safety level of the world are now being put into practice. In addition, a study and training for rearing talented persons was started from 1996 to improve the nuclear safety level of the neighbouring countries. The activities of the nuclear research interchange system by Science and Technology Agency established in 1985 and Bilateral Co-operation Agreement from 1984 were explained and also various difficulties in the international cooperation were pointed out. (M.N.)

  8. Proceedings of the twelfth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 45 papers, presented on the twelfth Symposium of Atomic Energy Research, held in Sunny Beach, Bulgaria, 22-28 September 2002. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Core Monitoring, Surveillance and Testing, Safety Issues, Core Operation and Fuel Management, Spectral and Core Calculation Methods, Spent Fuel Transmutations and Decommissioning, Neutron Kinetics and reactor Dynamics Methods, Poster Session - according to the presentation sequence on the Symposium

  9. Proceedings of the twentieth symposium of atomic energy research

    International Nuclear Information System (INIS)

    The present volume contains 69 papers, presented on the twentieth symposium of atomic energy research, held in Hanasaari, Espoo, Finland, 20-24 September 2010. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation - according to the presentation sequence on the Symposium. (Author)

  10. Proceedings of the eleventh Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 57 papers, presented on the eleventh Symposium of Atomic Energy Research, held in Csopak, Hungary, 24-28 September 2001. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Improvement of Neutron Physical Codes and Methods, Reactor Kinetics and Dynamics, Thermal-Hydraulics, Spent Fuel - Criticality Radiation, Fuel Behaviour, Spent Fuel Transmutation, Evaluation of Reactor Physical Measurements, Core Design-Core Calculations-according to the presentation sequence on the Symposium (Author)

  11. Proceedings of the eighth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    These are the remaining 9 papers, presented on the eighth Symposium of Atomic Energy Research, held in Bystrice nad Perstejnem, Czech Republic, 21-25 September 1998. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Design, Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Neutron Kinetics and reactor Dynamics Methods, Safety Issues and Analysis, Rod Drop Reactivity Measurements, Criticality safety, Spent Fuel and Decommissioning, - according to the presentation sequence on the Symposium

  12. Proceedings of the thirteenth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 58 papers, presented on the thirteenth Symposium of Atomic Energy Research, held in Dresden, Germany, 22-26 September 2003. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Core Monitoring, Surveillance and Testing, Safety Issues, Spectral and Core Calculation Methods, Core Operation and Fuel Management, Spent Fuel Transmutations and Decommissioning, Neutron Kinetics and reactor Dynamics Methods, Poster Session - according to the presentation sequence on the Symposium

  13. Proceedings of the 16. Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 56 papers, presented on the sixteenth Symposium of Atomic Energy Research, held in Bratislava, Slovakia, 25-29 September 2006. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation, Core Operation Experiments and Code Validation, Fuel Management, Core Surveillance and Monitoring, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning, and Radwaste, Actinide Transmutation and Spent Fuel Disposal - according to the presentation sequence on the Symposium (Author)

  14. Proceedings of the fifteenth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 59 papers, presented on the fifteenth Symposium of Atomic Energy Research, held in Znojmo, Czech Republic, 3-7 October 2005. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Design, Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Neutron Kinetics and Reactor Dynamics Methods, Criticality Safety, Spent Fuel, and CFD Codes Application - according to the presentation sequence on the Symposium

  15. Japan Atomic Energy Research Institute in the 21st century

    International Nuclear Information System (INIS)

    Major nuclear research institutes in Japan are the Japan Atomic Energy Research Institute (JAERI), Nuclear Cycle Development Institute (JNC), National Research Institute of Radiological Science (NIRS), and the Institute of Physical and Chemical Research (RIKEN). In the 50s and 60s JAERI concentrated on the introduction of nuclear technology from overseas. Energy security issues led to the development of a strong nuclear power programme in the next two decades resulting in Japan having 50 light water cooled nuclear power plants in operation. Japan also worked on other reactor concepts. The current emphasis of JAERI is on advanced reactors and nuclear fusion. Its budget of 270 million US$ supports five research establishments. JAERI has strong collaboration with industry and university system on nuclear and other advanced research topics (neutron science, photon science). In many areas Japan has strong international links. JAERI has also been transferring know-how on radioisotope and radiation applications to the developing countries particularly through IAEA-RCA mechanisms. (author)

  16. Proceedings of the eighth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 53 papers, presented on the eighth Symposium of Atomic Energy Research, held in Bystrice nad Perstejnem, Czech Republic, 21-25 September 1998. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Design, Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Neutron Kinetics and reactor Dynamics Methods, Safety Issues and Analysis, Rod Drop Reactivity Measurements, Criticality safety, Spent Fuel and Decommissioning, - according to the presentation sequence on the Symposium. At the end of the volume a list of the participants and an alphabetical author index is given as well

  17. Proceedings of the ninth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 57 papers. Most of the papers were presented on the ninth Symposium of Atomic Energy Research, held in Demanovska Dolina, Slovakia, 4-6 October 1999. The rest of the papers (intended to be presented but not presented due to difficulties) is included based on the decision of the organizers. The papers are in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Safety Issues, Neutron Kinetics and Reactor Dynamics, Reactivity Evaluation, High Subcriticality, Critical Safety and Spent Fuel and Spent Fuel Transmutations - according to the presentation sequence on the Symposium. At the end of the volume an alphabetical author index is given

  18. Nuclear Materials Management at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    The procedures for nuclear material control are reviewed, based on the experiences at the Japan Atomic Energy Research Institute. Nuclear materials to be discussed here include: - Both natural and enriched uranium for research; - Imported enriched nuclear fuel elements for JRR-2 (10-MW CP-5), JRR-4 (1-MW swimming pool), JPDR (12.5-MW(e) BWR), and the critical assemblies for JMTR (50-MW light-water moderated) and for the propulsion reactor; - Domestically-fabricated natural uranium fuel elements for JRR-3 (10-MW heavy-water moderated); - Domestically-fabricated fuels for the critical assemblies manufactured from imported enriched uranium oxides; - Domestically-fabricated enriched fuel elements for JPDR and for the propulsion reactor manufactured from imported enriched uranium hexafluoride. Both thorium and plutonium are also under control, but excluded from the present paper. Entire administrative pattern for nuclear material control is first presented. The emphasis is placed on the domestic fabrication of enriched fuel elements from imported enriched uranium, and the details of the control procedures during and after the fabrication process are discussed. The control procedures include the chemical analysis for purity check, isotopic assay by mass spectrometry, physical and mechanical tests of fabricated products, and the careful prevention in the diversion of nuclear materials. Administrative problems being attributed to Japanese domestic situation are presented; for example, the segregation, collection and efficient recovery and practical uses of residual uranium from the fabrication process. Methods for keeping records on the storage and uses of nuclear materials are also discussed. More satisfactory control procedures for other nuclear materials such as thorium and heavy water are under progress. (author)

  19. National Nuclear Research Institute, Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    This annual report covers the research and commercial activities of the National Nuclear Research Institute of the Ghana Atomic Energy Commission for the year 2014. Also listed are the scientific and technical publications issued by staff.

  20. The history for fifty years of Korea Atomic Energy Research Institut

    International Nuclear Information System (INIS)

    This book deals with the history for fifty years of Korea Atomic Energy Research Institute with the title ; rich energy, clean environment and healthy life. It reports the message of publication and congratulatory address, the period of building foundation in 1970s the period of technical independence in 1980s, the period of maturity of technical independence in 1990s the period of advanced technology in 2000s, prospect on research and development on Korea atomic energy, research on atomic reactor for studying, introduction on nuclear reactor for generating energy, safety, radiation, nuclear fuel cycle human resource and international cooperation and general management.

  1. Reports of the research results for the peaceful uses of atomic energy, no. 19

    International Nuclear Information System (INIS)

    Many valuable results have been obtained by the tests and researches concerning the peaceful utilization of atomic energy, and they accomplished major role in the promotion of the peaceful utilization of atomic energy in Japan. In this report, the results of the tests and researches on the peaceful utilization of atomic energy carried out by national research institutes and others in 1978 fiscal year are outlined. It is desirable to deepen understandings further on the recent trend and results of the tests and researches with this book. The report is divided into the following chapters: nuclear fusion, safety research (technological safety research, environmental radioactivity safety research), food irradiation, countermeasures to cancers, agriculture, forestry and fishery (fertilized soil, quality improvement, farm product protection, breeding improvement), medicine (diagnosis and therapy, pharmaceuticals, environmental hygiene, application to living body pathology), mining and industry (radiation chemistry, radiation measurement, process analysis), power utilization (nuclear reactor materials, nuclear ships), civil engineering, radioactivation analysis, and injury prevention research. (Kako, I.)

  2. Report of test and research results on atomic energy obtained in national institutes in fiscal 1982

    International Nuclear Information System (INIS)

    As for the test and research on the utilization of atomic energy by national organizations, the budget was appropriated for the first time in fiscal year 1956. Since then, many valuable results of research have been produced in the diverse fields of nuclear fusion, safety research, food irradiation, medicine and others, in this way, the test and research have played large roles in the promotion of the utilization of atomic energy in Japan. This is the 23rd report, in which the results of the test and research on the utilization of atomic energy carried out in fiscal year 1982 by national organizations are summarized. 5 researches on nuclear fusion, 12 researches on engineering safety, 5 researches on environmental radioactivity safety, 3 researches on food irradiation, 5 researches on the countermeasures to cancer, 8 researches on soil fertilization, 4 researches on quality improvement, 7 researches on crop protection, 5 researches on the improvement of breeding, 8 researches on diagnosis and treatment, 8 researches on pharmaceuticals, 10 researches on the application to pathology, 6 researches on mining and industry, 6 researches on power reactors and nuclear ships, 1 research on underground water, 6 researches on activation analysis and 3 researches on injury prevention are reported. (Kako, I.)

  3. Report of test and research results on atomic energy obtained in national institutes in fiscal 1988

    International Nuclear Information System (INIS)

    The test and research on atomic energy utilization in national institutions were begun in 1956, and valuable results have been produced in the fields of nuclear fusion, safety research, food irradiation, medicine and others, thus those have accomplished great roles for the promotion of atomic energy utilization in Japan. Atomic energy technology synthesizes various advanced technologies over wide technical domains, therefore at the time of its research and development, it is important to place emphasis on the creative and innovative regions which cause large technical innovation and in which the effect spreading to general science and technology can be expected. In addition to the test and research according to such recognition, also the basic technology of atomic energy field has been studied. At present foreign countries request Japan to contribute to the development of the world by creating the new technology and knowledge on atomic energy, and national institutions must meet the request. This is the report No.29, in which the results of the test and research in the fields of nuclear fusion, safety research, food irradiation, the countermeasures to cancer, agriculture, forestry and fishery, medicine, mining and industry, power utilization, construction, radioactivation analysis and advanced basic research, carried out in 1988 are summarized. (K.I.)

  4. Present state of research and development of atomic energy in five Asian countries

    International Nuclear Information System (INIS)

    The survey group for Asian atomic energy cooperation was dispatched by the Japanese government, and toured Philippines, Indonesia, Malaysia, Thailand and Bangladesh from September 7 to 19, 1980. The present state of atomic energy development and the energy situation in respective countries were surveyed through the exchange of opinion and the inspection of related facilities. The Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology was concluded in June, 1972, and 12 countries have participated in it. It was impressive that respective countries have the peculiar energy policies corresponding to their objective conditions. They regard atomic energy as the important substitute energy for petroleum, but the fear about the safety of atomic energy and the movement against nuclear power generation have been growing considerably. The research and development on atomic energy are carried out very actively in respective countries, and the construction of large-scale research centers was commenced in Indonesia, Malaysia and Bangladesh. Research reactors have been operated in Philippines, Indonesia and Thailand since about 20 years ago, and the utilization of radioisotopes and radiation has been studied. The cooperation of Japan with these countries is far behind that of other advanced countries. (Kako, I.)

  5. Annual report of the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    JAERI has conducted nuclear safety research in conformity with the national five year plan for safety research on nuclear installations, radioactive waste management and environmental radiation, and the research on engineering safety and environmental safety is described. In the research on high temperature engineering, the construction of the high temperature test reactor, the research on its fuel and materials, the reactor engineering, high temperature structures, safety and heat transfer, and nuclear heat application are reported. On the research and development of nuclear fusion, core plasma, core engineering technology and so on have been studied, and the engineering design activities for the international thermonuclear experimental reactor are in progress. On the research and development of radiation application, radiation processing, advanced radiation application and radioisotope production have been researched. The experiment on the nuclear ship 'Mutsu' was completed, and the research on the design of improved marine reactors has been advanced. Fundamental and related researches on various subjects are also reported. (K.I.)

  6. Report of test and research results on atomic energy obtained in national institutes in fiscal 1983

    International Nuclear Information System (INIS)

    As for the test and research on the utilization of atomic energy by national organizations, the budget was appropriated for the first time in fiscal year 1956. Since then, many valuable results of research have been produced in the diverse fields of nuclear fusion, safety research, food irradiation, medicine and others, in this way, the test and research have played large roles in the promotion of the utilization of atomic energy in Japan. This is the 24th report, in which the results of the test and research on the utilization of atomic energy carried out in fiscal year 1983 by national organizations are summarized. 5 researches on nuclear fusion, 19 researches on engineering safety and environmental radioactivity safety, 3 researches on food irradiation, 6 researches on the countermeasures to cancer, 19 researches on agriculture, forestry and fishery, 30 researches on medicine, pharmaceuticals and environmental hygiene, 6 researches on mining and industry, 6 researches on power reactors and nuclear ships, 1 research on agricultural water, 7 researches on activation analysis and 4 researches on injury prevention are reported. (Kako, I.)

  7. World nuclear directory. A guide to organizations and research activities in atomic energy. 7th edition

    International Nuclear Information System (INIS)

    This book is an international guide to over 1500 organizations and laboratories which conduct or promote research, development or substantial manufacturing work in the atomic energy field. Subjects covered range from high energy nuclear physics, plasma physics and fusion technology, to radioactive waste management, economics and regulatory developments. Improvements in format have been made and the directory is indexed by title and by subject

  8. History for fifty years of Korea Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    This introduces establishment, foundation, technical independent, puberty and preview of KAERI. It is divided six chapters, which deals with research and development on nuclear fission and nuclear fusion, cycle of nuclear fuel and research of nuclear safety, nuclear business and technical development, activity on nuclear safe regulation like establishment and role module for nuclear safety center and check of the safety of nuclear power plant, study of radio therapeutics and cancer treatment, development of human resources for nuclear power and training, general management about regulations, organization, person, contract, facility and building, welfare and establishment and activity of labor union.

  9. Report of test and research results on atomic energy obtained in national institutes in fiscal 1992

    International Nuclear Information System (INIS)

    The tests and researches on the development and utilization of atomic energy in national laboratories were begun in 1956, and have accomplished the great role for the advance of the development and utilization of atomic energy in Japan by having produced many valuable results so far. Atomic energy has been utilized not only in the field of nuclear power but also in diverse fields, and in national laboratories, the research for expanding the development and utilization of atomic energy in medicine, agriculture, forestry, fishery, radioactivation analysis and others in addition the basic research on nuclear fusion have been advanced. Further expecting the pervasive effect to general science and technology, the development of integrated research are promoted from the viewpoint of new technical innovation and creative technology. The safety research of nuclear facilities have been carried out to keep them high level on the basis of the yearly program enacted by Nuclear Safety Commission. This is the report No. 33, in which the results of the test and research in the fields of nuclear fusion safety research, food irradiation, cancer countermeasures, agriculture, forestry, fishery, medicine, mining and manufacture, power utilization, construction, radioactivation analysis carried on in fiscal 1992 are summarized. (J.P.N.)

  10. Report of test and research results on atomic energy obtained in national institutes in fiscal 1987

    International Nuclear Information System (INIS)

    The test and research regarding the utilization of atomic energy carried out in national institutions have produced many valuable results in diverse fields so far, such as nuclear fusion, safety research, food irradiation and medicine, since the budget had been appropriated for the first time in 1956. It has accomplished large role in the promotion of atomic energy utilization in Japan. This report is volume 28, in which the results of the test and research on atomic energy utilization carried out by national institutions in fiscal year 1987 are summarized. It is hoped that the understanding about the recent trend and the results of the test and research on atomic energy utilization is further promoted by this report. The contents of this report are nuclear fusion; the research on engineering safety and environmental radioactivity safety; food irradiation; the countermeasures against cancer; fertilized soil, the improvement of quality, the protection of plants and the improvement of breeding in agriculture and fishery fields; diagnosis and medical treatment, pharmaceuticals, environmental hygiene and the application to physiology and pathology in medical field; radiation measurement and process analysis in mining and industry fields; nuclear reactor materials and nuclear-powered ships; civil engineering; radioactivation analysis; the research on the prevention of injuries; and the basic researches on materials and acessment and reduction of irradiation risk. (J.P.N.)

  11. Report of test and research results on atomic energy obtained in national institutes in fiscal 1985

    International Nuclear Information System (INIS)

    As for the test and research on the utilization of atomic energy in national institutes, the budget was appropriated for the first time in fiscal year 1956, and since then, the many valuable results of research have been obtained so far in the diversified fields of nuclear fusion, safety research, the irradiation of foods, medicine and others, thus the test and research accomplished the large role for promoting the utilization of atomic energy in Japan. In this report, the gists of the results of the test and research on the utilization of atomic energy carried out by national institutes in fiscal year 1985 are collected. No.1 of this report was published in 1960, and this is No.26. It is desired to increase the understanding about the recent trend and the results of the test and research on atomic energy utilization with this book. The researches on nuclear fusion, engineering safety and environmental radioactivity safety, the irradiation of foods, the countermeasures against cancer, fertilized soil, the quality improvement of brewing and farm products, the protection of farm products and the improvement of breeding, diagnosis and medical treatment, pharmaceuticals, environmental hygiene, the application to physiology and pathology, radiochemistry, radiation measurement, process analysis, nuclear reactor materials, nuclear powered ships, civil engineering, radioactivation analysis and injury prevention are reported. (Kako, I.)

  12. Nuclear data activity at Atomic Energy Research Establishment, Savar, Dhaka

    International Nuclear Information System (INIS)

    The nuclear data activity at AERE, Savar is briefly presented in this paper. Major thrust is on the customization of cross section libraries for general purpose reactor and shielding calculations. The processing codes that are available are NJOY91.91, some AMPX-Modules and the modules in SCALE-PC. Recent measurements on cross section data over the energy range 13-15 MeV at the Institute of Nuclear science and Technology have been reviewed. Measurements and calculations are based on the determination of excitation functions of neutron induced reactions on the elements and isotopes of FRT-relevant structural materials. (author)

  13. Japan Atomic Energy Research Institute, Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities in the Division of Reactor Engineering in fiscal 1980 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  14. Japan Atomic Energy Research Institute, Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities in the Division of Reactor Engineering in fiscal 1978 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committees on Reactor Physics and in Decommissioning of Nuclear Facilities. (author)

  15. Japan Atomic Energy Research Institute, annual report. April 1998 to March 1999

    International Nuclear Information System (INIS)

    As the leading and comprehensive R and D institute in the field of nuclear energy in Japan, the Japan Atomic Energy Research Institute (JAERI) is pursuing the R and D activities set forth in the Atomic Energy Commission's 'Long-term Program for the Development and Utilization of Nuclear Energy', which was adopted in June, 1994. These activities include studies on neutron science, photon science, synchrotron radiation science, advanced computational science, and advanced fundamental science. Engineering safety research for establishing LWR power generation infrastructure, high-temperature engineering experimentation research, nuclear fusion research, radiation utilization research, and other objects striving for nuclear energy breakthroughs are also under their advancements. In addition, JAERI pursues cooperation and provides efficient R and D supports among industries, academia, and governments, both domestic and international. In this annual report from April, 1998 to March, 1999, advanced photons and synchrotron radiation research, neutron science, R and D of radiation applications, computational science and engineering, advanced science research, nuclear fusion R and D, nuclear energy system research, material science, high temperature engineering test research, safety research, health physics, decommissioning and waste management technology, operation management and safety management, production of radioisotopes, international collaboration, joint-use and cooperative research, and so forth are described on their annual activities in each item. (G.K.)

  16. Researches carried out by Japan Atomic Energy Research Institute in the field of environmental protection

    International Nuclear Information System (INIS)

    The results of works, accomplished by the Japanese Atomic Energy Research Institute, related to evaluation of the nuclear facilities effect on the environmental medium, are considered. The analytical results of studies on the environmental radioactivity with an account of meteorological aspects, evaluation of the nuclear facilities impact on the environmental medium are presented. Studies on the radionuclide behavior in the environmental medium cover large range of problems: distribution of natural and artificial radionuclides in the surface medium and their migration; evaluation of the human radiation doses on the account of radionuclides; environmental medium protection and risk evaluation. The method for measuring the 90Sr concentrations with application of ion-exchange tars and a simple method for determining the radon activity with application of liquid scintillators were developed in the process of the study on creation of the environmental medium monitoring. The studies, related to the content and behavior of tritium, Pu, 137Cs, 247Am, as well as mercury and other heavy metals in the environmental medium were carried out. The methods for evaluating the NPPs radiation effect on the population with an account of the radioactive substances releases both by normal operation and in the emergency situations, were developed. Attention is also paid to research programs and developed codes

  17. Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    The Radiological and Medical Sciences Research Institute was established in 2009, as the forth research institute of the Ghana Atomic Energy Commission. This Annual Report provides an overview of the major activities of the Institutes in the year 2014. Major items covered in the report include: Strategic objectives; Collaborations; Personnel and Organisational Structure; Facilities and Technical Services; Summary of Research and Development Projects; Human Resource Development; Publications and Technical Reports.

  18. Current status of research and development at Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    This paper introduces the current state and future prospects of Japan Atomic Energy Agency, with a focus on the main achievements of the research and development as of November FY2014. The items of research and development are as follows; (1) research and development related to measures for the accident of Fukushima Daiichi Nuclear Power Station, (2) technological assistance for ensuring safety in the research and development and utilization of nuclear power, (3) research science related to the research and development and utilization of nuclear power, (4) practical application of FBR cycle, (5) technological development related to back-end measures, (6) research and development of technological system to retrieve nuclear fusion energy, and (7) common projects (computational science / engineering / research, technological development and policy assistance on nuclear non-proliferation and nuclear security, and various activities such as dissemination of the fruits of research and development, human resource development, and technological cooperation). (A.O.)

  19. U.S. Radioecology Research Programs of the Atomic Energy Commission in the 1950s

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, D.E.

    2004-01-12

    This report contains two companion papers about radiological and environmental research that developed out of efforts of the Atomic Energy Commission in the late 1940s and the 1950s. Both papers were written for the Joint U.S.-Russian International Symposium entitled ''History of Atomic Energy Projects in the 1950s--Sociopolitical, Environmental, and Engineering Lessons Learned,'' which was hosted by the International Institute for Applied Systems Analysis in Laxemberg, Austria, in October 1999. Because the proceedings of this symposium were not published, these valuable historic reviews and their references are being documented as a single ORNL report. The first paper, ''U.S. Radioecology Research Programs Initiated in the 1950s,'' written by David Reichle and Stanley Auerbach, deals with the formation of the early radioecological research programs at the U.S. Atomic Energy Commission's nuclear production facilities at the Clinton Engineering Works in Oak Ridge, Tennessee; at the Hanford Plant in Richland, Washington; and at the Savannah River Plant in Georgia. These early radioecology programs were outgrowths of the environmental monitoring programs at each site and eventually developed into the world renowned National Laboratory environmental program sponsored by the Office of Biological and Environmental Research of the U.S. Department of Energy. The original version of the first paper was presented by David Reichle at the symposium. The second paper, ''U.S. Atomic Energy Commission's Environmental Research Programs Established in the 1950s,'' summarizes all the environmental research programs supported by the U.S. Atomic Energy Commission in the 1950s and discusses their present-day legacies. This paper is a modified, expanded version of a paper that was published in September 1997 in a volume commemorating the 50th anniversary symposium of the U.S. Department of Energy's Office of

  20. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Hajime; Kukita; Ohnuki, Akira [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  1. Research and development for construction of 'computational infrastructure in atomic energy research field' based on grid computing technology

    International Nuclear Information System (INIS)

    The Center for Computational Science and e-Systems of the Japan Atomic Energy Agency (CCSE/JAEA) has started a program to construct an international computational infrastructure in atomic energy research field called the AEGIS (Atomic Energy Grid InfraStructure) in April, 2006. The development is based on numerous experiences and technologies acquired from the development of the STA (Seamless Thinking Aid) and the ITBL (Information Technology Based Laboratory) infrastructure software. In this paper, we will introduce two key achievements prior to the AEGIS program: 'Interoperable system between UNICORE in Germany and ITBL' which achieves international sharing of computational resources, and the 'STARPC Plus' which can construct a compact grid system. (author)

  2. Low and medium energy standard X-Ray calibration facility in Bhabha Atomic Research Centre

    International Nuclear Information System (INIS)

    Due to increased use of radioisotopes in medical, industrial, R and D etc., applications, the need of radiation protection level instruments has increased many folds. Type testing of newly developed instruments is essential before their routine use. Depending on intended photon energy range specified by manufacturer, the evaluation of energy response characteristics of the instrument requires International Organization for Standardization (ISO) recommended for low and medium X-ray beam qualities. Also type testing as per international standards provides confidence, traceability in measurements and to ascertain healthy operating condition of these instruments for their intended long time use. Calibration of radiation monitoring instruments at low and medium energy X-ray is presently carried out only at the national apex laboratory (Bhabha Atomic Research Centre in India). The beam qualities and measurement techniques are available as per recommendations of ISO 4037 and International Atomic Energy Agency (IAEA) Safety Report Series 16. Present paper is intended to provide information about the low and medium energy standard X-ray calibration facility available at Radiation Standards Section, Radiological Physics and Advisory Division, Bhabha Atomic Research Centre for radiation field users and instrument manufacturers/developers to avail this facility

  3. Summary and statistical analysis of environmental monitoring data in the Oarai Research Establishment, Japan Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Katsuhiro; Kitano, Kyoshiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sibanuma, Yukio; Takasaki, Koichi; Ohhata, Tsutomu

    1998-03-01

    In the Oarai Research Establishment, Japan Atomic Energy Research Institute (JAERI), the environmental monitoring has been conducted for about 29 years since April 1968. The results are discussed for evaluation of long-term and short-term fluctuation in the radiological conditions in the Oarai area. This report summarises the data of the environmental monitoring in Oarai, and statistical analyses were made of the data collected from 1985 through 1994. (author)

  4. Final results of the fifth three-dimensional dynamic Atomic Energy Research benchmark problem calculations

    International Nuclear Information System (INIS)

    The paper gives a brief survey of the fifth three-dimensional dynamic Atomic Energy Research benchmark calculation results received with the code DYN3D/ATHLET at NRI Rez. This benchmark was defined at the seventh Atomic Energy Research Symposium (Hoernitz near Zittau, 1997). Its initiating event is a symmetrical break of the main steam header at the end of the first fuel cycle and hot shutdown conditions with one stuck out control rod group. The calculations were performed with the externally coupled codes ATHLET Mod.1.1 Cycle C and DYN3DH1.1/M3. The standard WWER-440/213 input deck of ATHLET code was adopted for benchmark purposes and for coupling with the code DYN3D. The first part of paper contains a brief characteristics of NPP input deck and reactor core model. The second part shows the time dependencies of important global and local parameters. In comparison with the results published at the eighth Atomic Energy Research Symposium (Bystrice nad Pernstejnem, 1998), the results published in this paper are based on improved ATHLET descriptions of control and safety systems. (Author)

  5. IAEA workshop on 'Atomic and molecular data for fusion energy research'. Summary report

    International Nuclear Information System (INIS)

    On September 8-12 a workshop on Atomic and Molecular (A+M) Data for Fusion Energy Research was hosted by the International Centre for Theoretical Physics in Trieste Italy. The workshop was attended by twelve students representing eleven Member States. A total of five lecturers, including four external to the Agency, made presentations to the workshop. All lecturers provided advance copies of the lecture materials and all provided written assignments for the students, to provide practical examples of applications of data issues to actual problems related to fusion energy research. All materials were collected on CDs, which were distributed to the students by the conclusion of the workshop. During the course of the workshop the students were given the opportunity to describe their backgrounds and research interests. The workshop did arouse interest in A+M processes related to fusion. The workshop was viewed as successful by the students. (author)

  6. Atomic Energy Authority Bill

    International Nuclear Information System (INIS)

    On the third reading of the Atomic Energy Authority Bill the following matters were discussed: safety research and thermal reactor work - how funded when the Authority is operating on trading fund basis; future financial framework of the Authority; capital investment; loans; effect of change on Authority employees. (U.K.)

  7. Proceedings of the nineteenth symposium of atomic energy research on WWER reactor physics and reactor safety

    International Nuclear Information System (INIS)

    The present volume contains 55 papers, presented on the nineteenth symposium of atomic energy research, held in Varna, Bulgaria, 21-25 September 2009. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation - according to the presentation sequence on the Symposium. (Author)

  8. Proceedings of the seventeenth Symposium of Atomic Energy Research, Vol. I

    International Nuclear Information System (INIS)

    The present volume contains 83 papers, presented on the eleventh Symposium of Atomic Energy Research, held in Yalta, Ukraine, 23-29 September 2007. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation, History of TIC/AER - according to the presentation sequence on the Symposium (Author)

  9. Proceedings of the tenth Symposium of Atomic Energy Research. V. II

    International Nuclear Information System (INIS)

    The present volume contains 80 papers, presented on the tenth Symposium of Atomic Energy Research, held in Moscow, Russia, 18-22 September 2000. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Core Operation, Fuel Management and Design, Spectral and Core Calculation Methods, Spent Fuel, Transmutations, Core Monitoring, Surveillance and Testing, Neutron Kinetics and reactor Dynamics Methods, Safety Issues and Analysis, Rod Drop Reactivity Measurements, according to the presentation sequence on the Symposium

  10. Proceedings of the seventeenth Symposium of Atomic Energy Research, Vol. II

    International Nuclear Information System (INIS)

    The present volume contains 83 papers, presented on the eleventh Symposium of Atomic Energy Research, held in Yalta, Ukraine, 23-29 September 2007. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation, History of TIC/AER - according to the presentation sequence on the Symposium (Author)

  11. Proceedings of the Tenth Symposium of Atomic Energy Research. V. I

    International Nuclear Information System (INIS)

    The present volume contains 80 papers, presented on the tenth Symposium of Atomic Energy Research, held in Moscow, Russia, 18-22 October 2000. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Core Operation, Fuel Management and Design, Spectral and Core Calculation Methods, Spent Fuel, Transmutations, Core Monitoring, Surveillance and Testing, Neutron Kinetics and reactor Dynamics Methods, Safety Issues and Analysis, Rod Drop Reactivity Measurements, according to the presentation sequence on the Symposium

  12. Science Hall of Atomic Energy in Research Reactor Institute, Kyoto University

    International Nuclear Information System (INIS)

    The Science Hall of Atomic Energy was built as a subsidiary facility of the Research Reactor Institute, Kyoto University. The purpose of this facility is to accept outside demands concerning the application of the research reactor. The building is a two story building, and has the floor area of 901.47 m2. There are an exhibition room, a library, and a big lecture room. In the exhibition room, models of the Kyoto University Research Reactor and the Kyoto University Critical Assembly are placed. Various pictures concerning the application of the reactor are on the wall. In the library, people from outside of the Institute can use various books on science. Books for boys and girls are also stocked and used for public use. At the lecture room, various kinds of meeting can be held. (Kato, T.)

  13. Report of results of joint research using facilities in Japan Atomic Energy Research Institute in fiscal year 1987

    International Nuclear Information System (INIS)

    The total themes of the joint research in fiscal year 1987 were 127. These are shown being classified into the general joint research in Tokai and Takasaki, neutron diffraction research and cooperative research. The general joint research is the standard utilization form using research reactors JRR-2 and JRR-4, Co-60 gamma irradiation facilities in Tokai and Takasaki, an electron beam irradiation facility in Takasaki, an electron beam linear accelator and hot laboratories, which are opened for common utilization by Japan Atomic Energy Research Institute. The cooperative research is carried out by concluding research cooperation contracts between the researchers of universities and JAERI. In the general joint research, radioactivation analysis, radiation chemistry, irradiation effect, neutron diffraction and so on are the main themes, and in the cooperative research, reactor technology, reactor materials, nuclear physics measurement and others are the main themes. The total number of visitors was 2629 man-day, and decreased due to the stop of JRR-2. Also other activities are reported. The abstracts of respective reports are collected in this book. (Kako, I.)

  14. Geothermal research and development program of the US Atomic Energy Commission

    Science.gov (United States)

    Werner, L. B.

    1974-01-01

    Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.

  15. Reports of the research results for the peaceful uses of atomic energy

    International Nuclear Information System (INIS)

    Results of the research works done mainly in fiscal 1976 (from April to March) in national institutes across the country under the governmental expenses and subsidies are given in individual brief summaries. Areas covered are : nuclear fusion, safety (engineering, and environmental radioactivity), food irradiation, cancer countermeasures, agriculture and forestry (soil fertilization, quality improvement, crops protection, and breedings improvement), medicine (diagnosis/therapy, pharmaceutics, environmental hygiene, and biological pathology), mining and manufacturing (radiation chemistry, radiation measurements, etc.), nuclear power (reactor materials, and nuclear-powered ship), construction and civil engineering, activation analysis, and injuries prevention. As an appendix, lists of publications in the Japan Atomic Energy Research Institute and the Power Reactor and Nuclear Fuel Development Corporation are given. (Mori, K.)

  16. Atomic Energy Control Act

    International Nuclear Information System (INIS)

    This act provides for the establishment of the Atomic Energy Control Board. The board is responsible for the control and supervision of the development, application and use of atomic energy. The board is also considered necessary to enable Canada to participate effectively in measures of international control of atomic energy

  17. Korea Atomic Energy Research Institute (KAERI) in the 21st century

    International Nuclear Information System (INIS)

    Abstract. KAERI (Korea Atomic Energy Research Institute), a national nuclear research institute in the Republic of Korea, celebrated its fortieth anniversary last April. It has played a key role in the Korean nuclear history such that it: initiated and promoted the peaceful uses of nuclear energy in the Republic of Korea; maintained nuclear expertise on whole spectrum of nuclear field through conducting nuclear R and D programs, operating nuclear research facilities, and training and educating specialized nuclear personnel; founded a cornerstone of Korean nuclear industry by participating in the establishment of a nuclear engineering company and a nuclear fuel company and localizing nuclear fuel and reactor technology; and contributed to nuclear safety regulation by incubating a specialized nuclear regulatory body. Recently, to concentrate on nuclear R and D on advanced technology, KAERI went through management reform such as: the transfer of nuclear engineering divisions responsible for NSSS design and nuclear fuel design to nuclear industry in 1996; and the downsizing of manpower in 1998. Currently KAERI is in the challenging stage in terms of its missions and manpower. In the coming 21st century, KAERI is required to maintain the current R and D momentum and also to conduct priority-based research requiring concentrated effort. (author)

  18. Annual report of the Gama Atomic Energy Research Centre, National Atomic Energy Agency, April 1975-March 1976

    International Nuclear Information System (INIS)

    Contents of this 1975-1976 Annual Report include organization structure personnel, procurement and acquisition of laboratory materials and equipment, maintenance of laboratory equipments, budgeting and financial accounts, preliminary fundamental research on plasma physics and particle physics, development of several prototypes of radiation detectors, construction of prototypes of high voltage tension, research in reactor physics, construction of BATAN Yogyakarta nuclear reactor, development of electronic equipment prototypes for reactor instrumentation, research on radiochemistry and radiation chemistry, preliminary research on uranium extraction using organic solvents, laboratory scale heavy water separation by distillation method, and research publication list. The institute's programmes for 1976-1977 are summarized. (author)

  19. The International Atomic Energy Agency Activities on Plasma Physics and Nuclear Fusion Research

    International Nuclear Information System (INIS)

    As a global facilitator in the nuclear field, the International Atomic Energy Agency (IAEA) encourages and assists research on controlled nuclear fusion in its Member States by fostering the exchange of scientific and technical information and promoting the exchange of scientists and experts. Within the Division of Physical and Chemical Sciences the Physics Section and the Nuclear Data Section work specifically on topics related to controlled nuclear fusion and organize conferences, technical meetings and workshops that promote information dissemination, training and education. International research is supported within Coordinated Research Projects (CRPs) and Technical Cooperation Projects, all open to all laboratories in the Member States. The International Fusion Research Council is the body that provides advice to the IAEA on programmatic orientations and activities with the view of promoting international cooperation in plasma physics and controlled nuclear fusion research and its applications. The IAEA holds one of the world’s leading fusion meetings. The biannual Fusion Energy Conference gathers more than 1000 participants from more than thirty eight countries and accommodates almost 600 scientific contributions covering the newest topics of research. Publication of the results presented is done in cooperation with the Nuclear Fusion Journal jointly published by the IAEA and IOPP. The IAEA Technical Meetings (TMs) are organised by the Agency and partly hosted by Member States to provide an opportunity for discussion on major concepts of fusion such as magnetic, inertial and pinch, and such as, for instance, steady state operation and burning plasma physics. A particular effort is put in the activities accompanying magnetic confinement research where the IAEA TMs bring together specialists to address specific issues that have a major impact on the success of fusion. Emphasis is put on topics with direct relevance to the effective use of fusion as a future

  20. Technical development of high intensity proton accelerators in Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Science and Technology Agency decided 'Options making extra gains of actinides and fission products (OMEGA)' and to promote the related researches. Also in JAERI, the research on the group separation method for separating transuranic elements, strontium and cesium from high level radioactive wastes has been carried out since the beginning of 1970s. Also the concept of the fast reactors using minor actinide mixture fuel is being established, and the accelerator annihilation treatment utilizing the nuclear spallation reaction by high energy protons has been examined. In this report, from the viewpoint of the application of accelerators to atomic energy field, the annihilation treatment method by the nuclear spallation reaction utilizing high intensity proton accelerators, the plan of the various engineering utilization of proton beam, and the development of accelerators in JAERI are described. The way of thinking on the annihilation treatment of radioactive waste, the system using fast neutrons, the way of thinking on the development of high intensity proton accelerator technology, the steps of the development, the research and development for constructing the basic technology accelerator, 2 MeV beam acceleration test, the basic technology accelerator utilization facility and so on are reported. (K.I.)

  1. Integrated library system in the library of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Integrated library system has been developed using a stand-alone mini-computer in the Japan Atomic Energy Research Institute library. This system consists of three subsystems for serials control, books acquisition and circulation control. Serials control subsystem deals with subscription, acquisition, claiming and inquiry of journals. This has been operating since the beginning of 1985. Book acquisition sub-system, which has been started since April 1986, deals with accounting and cataloguing of books. Circulation control sub-system deals with circulation, statistics compilation, book inventory and retrieval, which has been operating since April 1987. This system contributes greatly not only to the reduction of the circulation work load but also to the promotion of the library services. However, the convenience in circulation processing should be improved for materials without catalogue information stored in the computer. The pertinence for maximum number of books retrieved has to be also reconsidered. (author)

  2. The fifth Atomic Energy Research dynamic benchmark calculation with HEXTRAN-SMABRE

    International Nuclear Information System (INIS)

    The fifth Atomic Energy Research dynamic benchmark is the first Atomic Energy Research benchmark for coupling of the thermohydraulic codes and three-dimensional reactor dynamic core models. In VTT HEXTRAN 2.7 is used for the core dynamics and SMABRE 4.6 as a thermohydraulic model for the primary and secondary loops. The plant model for SMABRE is based mainly on two input models. the Loviisa model and standard WWER-440/213 plant model. The primary circuit includes six separate loops, totally 505 nodes and 652 junctions. The reactor pressure vessel is divided into six parallel channels. In HEXTRAN calculation 176 symmetry is used in the core. In the sequence of main steam header break at the hot standby state, the liquid temperature is decreased symmetrically in the core inlet which leads to return to power. In the benchmark, no isolations of the steam generators are assumed and the maximum core power is about 38 % of the nominal power at four minutes after the break opening in the HEXTRAN-SMABRE calculation. Due to boric acid in the high pressure safety injection water, the power finally starts to decrease. The break flow is pure steam in the HEXTRAN-SMABRE calculation during the whole transient even in the swell levels in the steam generators are very high due to flashing. Because of sudden peaks in the preliminary results of the steam generator heat transfer, the SMABRE drift-flux model was modified. The new model is a simplified version of the EPRI correlation based on test data. The modified correlation behaves smoothly. In the calculations nuclear data is based on the ENDF/B-IV library and it has been evaluated with the CASMO-HEX code. The importance of the nuclear data was illustrated by repeating the benchmark calculation with using three different data sets. Optimal extensive data valid from hot to cold conditions were not available for all types of fuel enrichments needed in this benchmark.(Author)

  3. Law on Atomic Energy

    International Nuclear Information System (INIS)

    The Law defines the legislative foundation and concepts for peaceful uses of atomic energy in Vietnam. The Law, including 11 chapters, 93 articles and coming into force on the 1 Jan 2009, regulates utilization of atomic energy and assurance of safety and security. The Law contains issues: general provisions; measures to promote development and application of atomic energy for peaceful purposes; radiation safety, nuclear safety and security of radioactive sources, nuclear material and facilities; exploration, exploitation and processing radioactive ores; transportation, import and export of radioactive materials and nuclear equipment; atomic energy application services; declaration and licensing; response to radiation or nuclear incidents and compensation for damage caused by these incidents. (VAEC)

  4. The gratefulness of the entire nation: Atomic Energy Research Policy in Sweden 1945-1956

    International Nuclear Information System (INIS)

    The dissertation is a study of the Swedish atomic energy research policy since its inception in the mid-1940's until the parliamentary decision in 1956 to launch the massive program of research and technological development which became known as the 'Swedish line'. This program entailed an effort to develop and introduce a nuclear technology based on domestically produced heavy water reactors and domestic energy supplies as a key component in a long-term solution to the nation's energy problem. The analysis is based on a study of government documents, parliamentary materials and public debates as well as extensive studies of the archives of both public agencies such as the Swedish State Power Board, private bodies such as the large-scale corporation ASEA and of the archives of the executive committee of the government party and of then-prime minister Tage Erlander. It has been possible to disaggregate the actual policy process into its constituent parts and, on the basis of such a close examination of the step-by-step process, to give an account which deviates considerably from many of traditional interpretations of both policy processes in general and of this period in modern Swedish political history in particular. Thus neither an exclusively rationalistic account in terms of the publicly stated objectives and reasons nor an account cast in terms of some of the more common metaphors in vogue such as 'iron triangles', 'segments' or 'issue networks' are able to capture the essence of this complex policy process. Rather an image emerges of a process of constant negotiation that takes place in a contested border-line zone between the public and the private sphere. It is also possible to relate this process to over-arching themes in modern Swedish politics such as the debate over rationalization and over the proper role of the state in the economic life of society. (3 p. English summary) (71 refs.)

  5. Nuclear calculation for employing medium enrichment in reactors of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    The fuel used for the research reactors of Japan Atomic Energy Research Institute (JAERI) is presently highly enriched uranium of 93%. However, the U.S. government (the supplier of fuel) is claiming to utilize low or medium enriched uranium from the viewpoint of resistivity to nuclear proliferation, and the availability of highly enriched uranium is becoming hard owing to the required procedure. This report is described on the results of nuclear calculation which is the basis of fuel design in the countermeasures to the reduction of enrichment. The basic conception in the reduction of enrichment is three-fold: to lower the latent potential of nuclear proliferation as far as possible, to hold the present reactor performance as far as possible, and to limit the reduction in the range which is not accompanied by the modification of reactor core construction and cooling system. This time, the increase of the density and thickness of fuel plates and the effect of enrichment change to 45% on reactivity and neutron flux were investigated. The fuel of UAl sub(x) - Al system was assumed, which was produced by powder metallurgical method. The results of investigations on JRR-2 and JMTR reactors revealed that 45% enriched fuel does not affect the performances much. However, deterioration of the performances is not neglegible if further reduction is needed. In future, the influence of the burn-up effect of fuel on the life of reactor cores must be investigated. (Wakatsuki, Y.)

  6. Blasting in the lower shaft station of Atomic Energy of Canada Limited's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Atomic Energy of Canada Limited (AECL) has the responsibility for research, and development of technologies, for the safe and permanent disposal of Canada's nuclear fuel wastes. As part of this comprehensive program, AECL is constructing an Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, to evaluate aspects of the concepts of waste disposal deep in stable geological formations. No nuclear wastes will be used in the URL program. The lower shaft station of the URL was excavated between 1984 December and 1985 February. Substantial effort went into producing good results from the blasting to minimize the blast damage to the rock surrounding the excavation. All headings of the lower shaft station were excavated by the pilot heading and slash method. The blasts for the pilot headings were designed using a combination of Swedish and Canadian blast design methods, with the detailed layout of the blast holes being finalized at the excavation face. By experimenting with the perimeter of the pilot headings, it was possible to finalize the perimeter blast design before starting on the final walls

  7. Description of how the Atomic Energy Control Board research and development program is administered

    International Nuclear Information System (INIS)

    The Regulatory Research Program should be seen as augmenting and extending the capability of in-house resources. The overall objective of the research program is to produce pertinent and independent information that will assist the Board and its staff in making correct, timely and credible decisions on regulating atomic energy. Within the framework of the general objective, the specific objectives are: (i) to verify information, claims or analyses from licensees in support of licensing actions; (ii) to fill gaps in knowledge to enable the Board to contribute to the establishment of health and safety requirements or guidelines or to aid in arriving at licensing decisions; (iii) to stimulate licensees to do more work on certain topics relating to health, safety or security; (iv) to develop information on the regulatory process and the evaluation of the regulatory process; (v) to develop equipment or procedures to enhance health, safety or security in those cases where the industry is not competent or inclined to do so; and (vi) to enhance the competence of the Board and its credibility in the eyes of licensees and the public

  8. Defective transient rod A in NSRR in Tokai Research Establishment, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    In the nuclear safety research reactor (NSRR) with maximum pulse output of 23,000 MW in JAERI, on July 26, 1989, when the criticality point was confirmed prior to the pulse operation for experiment, the reactor did not attain the criticality at the normal position of criticality point. Some defect was expected in the transient rod A. After the reactor was stopped, it was found that the driving shaft of the transient rod A was separated at the intermediate joint. The screw of the intermediate joint separated due to about 140 times of driving because the tightening of the set screw was improper. Also in the other transient rods B and C, the loosening of intermediate joints was found, and the same cause was presumed. As the countermeasures, the set screw at the joint is sufficiently thrusted to ensure its function. The set screw is tightened with sufficient torque, and this is written in the instruction manual. After these countermeasures are taken, the sufficient test of driving is carried out, and the operation of the reactor is resumed. (K.I.)

  9. The atomic energy basic law

    International Nuclear Information System (INIS)

    The law establishes clearly the principles that Japan makes R and D, and utilizations of atomic energy only for the peaceful purposes. All the other laws and regulations concerning atomic energy are based on the law. The first chapter lays down the above mentioned objective of the law, and gives definitions of basic concepts and terms, such as atomic energy, nuclear fuel material, nuclear source material, nuclear reactor and radiation. The second chapter provides for the establishment of Atomic Energy Commission which conducts plannings and investigations, and also makes decisions concerning R and D, and utilizations of atomic energy. The third chapter stipulates for establishment of two government organizations which perform R and D of atomic energy developments including experiments and demonstrations of new types of reactors, namely, Atomic Energy Research Institute and Power Reactor and Nuclear Fuel Development Corporation. Chapters from 4th through 8th provide for the regulations on development and acquisition of the minerals containing nuclear source materials, controls on nuclear fuel materials and nuclear reactors, administrations of the patents and inventions concerning atomic energy, and also prevention of injuries due to radiations. The last 9th chapter requires the government and its appointee to compensate the interested third party for damages in relation to the exploitation of nuclear source materials. (Matsushima, A.)

  10. Atomic Energy Control Board

    International Nuclear Information System (INIS)

    This paper has been prepared to provide an overview of the responsibilities and activities of the Atomic Energy Control Board. It is designed to address questions that are often asked concerning the establishment of the Atomic Energy Control Board, its enabling legislation, licensing and compliance activities, federal-provincial relationships, international obligations, and communications with the public

  11. Technical report on the Piping Reliability Proving Tests at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute (JAERI) conducts Piping Reliability Proving Tests from 1975 to 1992 based upon the contracts between JAERI and Science and Technology Agency of Japan (STA) under the auspices of the special account law for electric power development promotion. The purpose of these tests are to prove the structural reliability of the primary cooling piping constituting a part of the pressure boundary in the light water reactor power plants. The tests with large experimental facilities had ended already in 1990. Presently piping reliability analysis by the probabilistic fracture mechanics method is being done. Until now annual reports concerning the proving tests were produced and submitted to STA, whereas this report summarizes the test results done during these 16 years. Objectives of the piping reliability proving tests are to prove that the primary piping of the light water reactor (1) be reliable throughout the service period, (2) have no possibility of rupture, (3) bring no detrimental influence on the surrounding instrumentations or equipments near the break location even if it ruptured suddenly. To attain these objectives (i) pipe fatigue tests, (ii) unstable pipe fracture tests, (iii) pipe rupture tests and also the analyses by computer codes were done. After carrying out these tests, it is verified that the piping is reliable throughout the service period. The authors of this report are T. Isozaki, K. Shibata, S. Ueda, R. Kurihara, K. Onizawa and A. Kohsaka. The parts they wrote are shown in contents. (author)

  12. Results of the fifth three-dimensional dynamic atomic energy research benchmark problem calculation

    International Nuclear Information System (INIS)

    The pare gives a brief survey of the fifth three-dimensional dynamic atomic energy research benchmark calculation results received with the code DYN3D/ATHLET at NRI Rez. This benchmark was defined at the seventh AER Symposium. Its initiating event is a symmetrical break of the main steam header at the end of the first fuel cycle and hot shutdown conditions with one stuck out control rot group. The calculations were performed with the externally coupled codes ATHLET Mod.1.1 Cycle C and DYN3DH1.1/M3. The Kasseta library was used for the generation of reactor core neutronic parameters. The standard WWER-440/213 input deck of ATHLET code was adopted for benchmark purposes and for coupling with the code DYN3D. The first part of paper contains a brief characteristics of NPP input deck and reactor core model. The second part shows the time dependencies of important global, fuel assembly and loops parameters.(Author)

  13. Annual report April 1974-March 1975 of the Gama Research Centre National Atomic Energy Agency

    International Nuclear Information System (INIS)

    Activities at the Gama Research Centre for the period of April 1974-March 1975, covering works at the Laboratory of Nuclear and Atomic Physics, at the Reactor Laboratory, at the Laboratory of Chemistry, and at the Laboratory of Process Technology, are described. The Center's personnel and financial accounts are also given. (RUW)

  14. Wholesomeness and Public Health Research in the United States Atomic Energy Commission Food Irradiation Programme

    International Nuclear Information System (INIS)

    To assess the biological safety of foods which are of interest to the Atomic Energy Commission's irradiated food program, studies have been sponsored by the Commission's Division of Biology and Medicine since 1961. Wholesomeness, microbiological and biochemical studies have been undertaken with a view to complementing data derived from developmental, economic and technological research studies sponsored by the Commission's Division of Isotopes Development. When these aspects appear feasible for specific low-dose irradiated foods, studies are initiated to provide relevant data required by the United States Food and Drug Administration before final judgements can be made on petitions for unlimited human consumption. Toxicity studies on several species of animals which are fed diets containing up to 35° (dry solids basis) of the irradiated food in question have been included in this program. Investigations of two years duration on animals (rats, dogs and chickens) provide data concerning food consumption, growth rate, enzyme systems, haematology, gross pathology and histopathology. Shorter-term studies of a confirmatory nature on two animal species (rat and dog) are employed in certain cases when the irradiated food in question is sufficiently related to foods which have previously undergone long-term toxicity studies. Results to date of chronic toxicity studies on soft-shell clams and subacute toxicity studies on strawberries, apples, pears, sweet cherries, apricots, plums and onions are discussed. Microbiological studies have been concentrated primarily on potentially pathogenic organisms. Studies have been in progress to evaluate carefully the conditions governing radiation and heat resistance, sporulation, outgrowth and toxin production of Clostridium botulinum Type E. The natural incidence of Type E organisms in certain marine products and ocean environments is being investigated. Findings in the microbiological studies are discussed. Studies to date have

  15. Atomic Energy Commission Act, 2000 (Act 588)

    International Nuclear Information System (INIS)

    Act 588 of the Republic of Ghana entitled, Atomic Energy Commission Act, 2000, amends and consolidates the Atomic Energy Commission Act, 204 of 1963 relating to the establishment of the Atomic Energy Commission. Act 588 makes provision for the Ghana Atomic Energy Commission to establish more institutes for the purpose of research in furtherance of its functions and also promote the commercialization of its research and development results. (E.A.A.)

  16. Development of Air Sampling Technology by the Atomic Energy Research Establishment, Harwell

    International Nuclear Information System (INIS)

    For many years the Health Physics and Medical Division of the Atomic Energy Research Establishment, Harwell, has pursued a vigorous programme of investigation and development in the field of air-sampling technology. The programme has made important contributions to the development of sampling media, the design of sampling equipment, the characterization of environmental airborne contamination and the interpretation of air-sampling data in terms of personal exposure. These developments form the basis for the present operational and research programmes in this field in the United Kingdom Atomic Energy Authority (U.K.A.E.A). . This paper, which summarizes the advances made in the Harwell laboratories in the above fields, is divided into three sections: 1. Sampling techniques. The development and characterization of glass-fibre filter papers (Stevens and Hounam) with improved surface collection properties has simplified counting procedures and has made ' possible detailed autoradiographic examination of the dust collected. The problem of energy degradation of alpha radiation by absorption in particles and paper has been studied (Stevens and Toureau). Development of charcoal-impregnated papers (Stevens and Hounam) has facilitated the detection and measurement of airborne contamination by iodine vapour. The combination of these papers with granular characoal in the May Pack (May) has given a sampling device which is now in common use for the determination and characterization of atmospheric iodine contamination. The concept and development of the personal air sampler (Sherwood and Greenhalgh) led to a better appreciation of the uncertainties of conventional air sampling and to the first quantitative demonstration of the problems of interpreting air samples in terms of personal inhalation exposure. Work on the design of a size selective head for the personal air sampler has not yet resolved the difficulties. The drawbacks of the cascade impactor as a continuous size

  17. Atomic Energy Act 1946

    International Nuclear Information System (INIS)

    This Act provides for the development of atomic energy in the United Kingdom and for its control. It details the duties and powers of the competent Minister, in particular his powers to obtain information on and to inspect materials, plant and processes, to control production and use of atomic energy and publication of information thereon. Also specified is the power to search for and work minerals and to acquire property. (NEA)

  18. Dangerous Energy : Atomic

    International Nuclear Information System (INIS)

    This book describes the disaster in Chernobyl, Russia. Through the accident It reveals the dangerous nuclear energy with a lot of problems on the nuclear power plants which includes four reasons about propelling development of atomic and criticism about that, eight reasons against development of atomic, the problem in 11 -12 nuclear power plant, the movement of antagonism towards nuclear waste in Anmyon island, cases of antinuclear in foreign country and building of new energy system.

  19. Atomic Energy Basics, Understanding the Atom Series.

    Science.gov (United States)

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  20. Proceedings of the twenty-first symposium of atomic energy research on WWER physics and reactor safety

    International Nuclear Information System (INIS)

    The present volume contains 61 papers, presented on the twenty-first symposium of atomic energy research, held in Dresden, Germany, 19-23 September 2011. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Improvement, extension and validation of parameterized few-group libraries for WWER-440 and WWER-1000.

  1. Canada enters the nuclear age: a technical history of Atomic Energy of Canada limited as seen from its research laboratories

    International Nuclear Information System (INIS)

    A technical history of Atomic Energy of Canada Limited written by sixteen of Canada's pioneering nuclear scientists, Canada Enters the Nuclear Age focuses on Canada's nuclear program at AECL's laboratories at Chalk River, Ontario and Whiteshell, Manitoba between the years 1943 and 1985. Topics include the organization and operations of AECL's laboratories, nuclear safety and radiation protection, radioisotopes, basic research, development of the CANDU reactor, and management of radioactive wastes. 7 tabs., 132 figs

  2. Atomic energy review

    International Nuclear Information System (INIS)

    The ATOMIC ENERGY REVIEW (AER), a periodical started in 1963 in accordance with the recommendation made by the Scientific Advisory Committee, is now preparing for its tenth year of publication. The journal appears quarterly (ca 900 pages/year) and occasionally has special issues and supplements. From 1963 to 1971 AER developed into an important international high-standard scientific journal which keeps scientists in Member States informed on progress in various fields of nuclear energy. The Agency's specific role of helping 'developing countries to further their science and education' is reflected in the publication policy of the journal. The subject scope of AER, which was determined at the journal's inception, is very broad. It covers topics in experimental and theoretical physics, nuclear electronics and equipment, physics and technology of reactors and reactor materials and fuels, radio-chemistry, and industrial, medical and other uses of radioisotopes. In other words, almost any subject related to the peaceful application of nuclear energy can qualify for inclusion. Specifically, at any particular time the selection criteria for topics are influenced by the Agency's current programme and interests. AER carries comprehensive review articles, critical state-of-the-art and current awareness surveys, and reports on the important meetings organized or sponsored by the Agency. The following four subsections gradually became necessary to do justice to this variety of material: 'Reviews' proper, 'Current Research and Development', 'Special Item' and 'Conferences and Symposia'. Apart from the conference reports, one hundred and twenty-five reviews, almost all of which were published in English to make them accessible to a wide public, have so far been published

  3. Design of atomic energy information network system

    International Nuclear Information System (INIS)

    As the 21st century is expected to induce a Knowledge based society, responding to this kind of change on our own initiative could be achieved by establishing networks among atomic energy agencies with the Atomic Energy Portal Site in a pivotal role. Thus, enabling the knowledge information from each agency to be easily shared and utilized. Furthermore, it can contribute to further researches by providing accumulated knowledge in the atomic energy, such as research output and past achievements, and by avoiding the repetition of researches on the same subjects. It could also provide remote educational data to researchers and industrial experts in atomic energy, as well as atomic energy information for general public consistently, so that we can promote our confidence in atomic energy

  4. The history for thirty years of Korea Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    This book gives description of history for thirty years of KAERI. It contains five chapters, which reports the process and development of KAERI, embryonic stage with nuclear energy for peace, the process of establishment of KAERI and building of the KAERI in 1960s, period of growth with change of international situation and measurement of KAERI and launching for KAERI in 1970s, period of technical independence for safe regulation and establishment nuclear safe center in 1980s and prospect on technical development of nuclear energy research like basic R and D.

  5. [Atomic Energy Control Board] annual report 1997--1998. Research report number INFO-9999-1

    International Nuclear Information System (INIS)

    The Board's mission is to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment. The annual report of the Board presents information on regulatory requirements; nuclear facilities, from uranium mines to nuclear power plants and related operations; regulation of nuclear materials; radioactive waste management; compliance monitoring; research; non-proliferation, safeguards and security; international activities, and public information. A financial statement is also included

  6. Meteorology and atomic energy

    International Nuclear Information System (INIS)

    The science of meteorology is useful in providing information that will be of assistance in the choice of favorable plant locations and in the evaluation of significant relations between meteorology and the design, construction, and operation of plant and facilities, especially those from which radioactive or toxic products could be released to the atmosphere. Under a continuing contract with the Atomic Energy Commission, the Weather Bureau has carried out this study. Some of the meteorological techniques that are available are summarized, and their applications to the possible atmospheric pollution deriving from the use of atomic energy are described. Methods and suggestions for the collection, analysis, and use of meteorological data are presented. Separate abstracts are included of 12 chapters in this publication for inclusion in the Energy Data Base

  7. Research and development of grid computing technology in center for computational science and e-systems of Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    Center for Computational Science and E-systems of the Japan Atomic Energy Agency (CCSE/JAEA) has carried out R and D of grid computing technology. Since 1995, R and D to realize computational assistance for researchers called Seamless Thinking Aid (STA) and then to share intellectual resources called Information Technology Based Laboratory (ITBL) have been conducted, leading to construct an intelligent infrastructure for the atomic energy research called Atomic Energy Grid InfraStructure (AEGIS) under the Japanese national project 'Development and Applications of Advanced High-Performance Supercomputer'. It aims to enable synchronization of three themes: 1) Computer-Aided Research and Development (CARD) to realize and environment for STA, 2) Computer-Aided Engineering (CAEN) to establish Multi Experimental Tools (MEXT), and 3) Computer Aided Science (CASC) to promote the Atomic Energy Research and Investigation (AERI). This article reviewed achievements in R and D of grid computing technology so far obtained. (T. Tanaka)

  8. Atomic energy utilization

    International Nuclear Information System (INIS)

    As observed worldwide, sufficient consensus has not been obtained on the peaceful utilization of atomic energy, but why has only France showed the relatively smooth advance ? Is it the result of the PR activities by enterprises ? The author visited two French nuclear facilities in June-July, 1990, and experienced the way of acceptance of the peaceful utilization of atomic energy and the action of enterprises in France. The French Electric Power Corp. (EDF) already clarified the guideline to the society about 'How to obtain the trust of public for atomic energy'. The gist of the contents of this EDF guideline is shown. The investigation by the authors can be judged as illustrating concretely the posture of enterprises to endeavor for the realization of this EDF guideline. The serious consideration on communication and community, the opening of information to public and sincere response, the fostering of the expression techniques of those in charge of PR, the immediate notice at the time of accidents, the maintenance of information transmission systems and so on carried out for 30 years contributed to the fostering of trust. The points of social psychology for national consensus and the investigation in the La Hague reprocessing plant and the Super Phenix in Creys Malville are reported. (K.I.)

  9. Atomic Energy Commission Act, 1963

    International Nuclear Information System (INIS)

    Promulgated in 1963, the Atomic Energy Commission Act (204) established and vested in the Ghana Atomic Energy Commission the sole responsibility for all matters relating to the peaceful uses of atomic energy in the country. Embodied in the Act are provisions relating to the powers, duties, rights and liabilities of the Commission. (EAA)

  10. Proposal for a coordination research programme (CRP) of the International Atomic Energy Agency (IAEA) on stable isotope tracer techniques for studies on protein-energy interactions

    International Nuclear Information System (INIS)

    This Report provides a rationale and justification for the initiation of a Coordinated Research programme to support studies using stable isotopic tracer techniques to address priority areas of human protein-energy interactions with special emphasis on the problems of human nutrition in developing countries. The Report suggests a modus for establishing such a practically oriented Coordinated Research Programme under the aegis of the International Atomic Energy Agency with concrete suggestions for its organization and the identification of probable participants in such a programme. The likely sources of additional funding to sustain such an activity viable for a period of 4 to 5 years are also indicated. 8 refs

  11. Annual report of the Japan Atomic Energy Research Institute. April 1992 to March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    JAERI has conducted nuclear safety research in conformity with the national five year plan for safety research on nuclear installations, radioactive waste management and environmental radiation, and the research on engineering safety and environmental safety is described. In the research on high temperature engineering, the construction of the high temperature test reactor, the research on its fuel and materials, the reactor engineering, high temperature structures, safety and heat transfer, and nuclear heat application are reported. On the research and development of nuclear fusion, core plasma, core engineering technology and so on have been studied, and the engineering design activities for the international thermonuclear experimental reactor are in progress. On the research and development of radiation application, radiation processing, advanced radiation application and radioisotope production have been researched. The experiment on the nuclear ship `Mutsu` was completed, and the research on the design of improved marine reactors has been advanced. Fundamental and related researches on various subjects are also reported. (K.I.).

  12. Atomic Energy Act 1953-1966

    International Nuclear Information System (INIS)

    The Atomic Energy Act 1953-1966 establishes the Australian Atomic Energy Commission and lays down its powers, duties, rules of procedure and financing. The members of the Commission are appointed by the Governor-General. It is responsible, inter alia, for all activities covering uranium research, mining and trading as well as for atomic energy development and nuclear plant construction and operation. Its duties also include training of scientific research workers and collection and dissemination of information on atomic energy. For purposes of security, the Act further-more prescribes sanctions in relation to unauthorised acquisition or communication of information on this subject. Finally, the Act repeals the Atomic Energy (Control of Materials) Act 1946 and 1952. (NEA)

  13. The international atomic energy agency's programme on inertial fusion energy

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency has been promoting international activity and collaboration related to the use of inertial fusion confinement schemes for energy production for many years. Thorough review of inertial fusion research and a detailed analysis of future prospects has been conducted. Inertial Fusion Energy is now approaching the turning point in the long history from physics oriented research to fusion energy oriented development. The programme of the International Atomic Energy Agency reflects, to some extent, this development

  14. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 26)

    International Nuclear Information System (INIS)

    The annual research activities of Osaka Laboratory for Radiation Chemistry, JAERI during the fiscal year of 1992 (April 1, 1992 - March 31, 1993) are described. The research activities were conducted under the two research programs: the study on laser-induced organic chemical reactions and the study on basic radiation technology for functional materials. Detailed descriptions of the activities are presented in the following subjects: laser-induced organic synthesis, modification of polymer surface by laser irradiation, radiation-induced polymerization, preparation of fine particles by gamma ray irradiation, and electron beam dosimetry. The operation report of the irradiation facilities is also included. (author)

  15. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (No. 8)

    International Nuclear Information System (INIS)

    This report describes research activities in Osaka Laboratory for Radiation Chemistry, JAERI during the one year period from April 1, 1974 through March 31, 1975. The major research field covers the following subjects: studies related to reactions of carbon monoxide and hydrogen; polymerization studies under the irradiation of high dose rate electron beams; modification of polymers; fundamental studies on polymerization, degradation, crosslinking, and grafting. (auth.)

  16. Materials on atomic energy problems

    International Nuclear Information System (INIS)

    The author cites and comments legal opinions on problems of atomic energy, i.e. the decision of the Federal Constitutional Court concerning Kalkar and the plutonium economy; Judges of the Federal Constitutional Court on technology and hazards; the 'atomic state'; plutonium at Gorleben; a new safety philosophy after Harrisburg; salt domes unsuitable for atomic waste. (HSCH) 891 HP/HSCH 892 MB

  17. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, 21

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1987 through March 31, 1988. Detailed descriptions of the activities are presented in the following subjects: (i) studies on surface phenomena under electron and ion irradiations and (ii) studies on radiation chemistry of high polymers and radiation dosimetry. (J.P.N.)

  18. Ghana Atomic Energy Commission: Annual Report 2001

    International Nuclear Information System (INIS)

    This report covers the activities and research progams of the Ghana Atomic Energy Commission for the year 2001. The research programs and associated publications have been grouped under the three main institutes of the Commission namely National Nuclear Research Institute, Radiation Protection Institute and Biotechnology and Nuclear Agricultre Research Institute

  19. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, 14

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1980 through March 31, 1981. The latest report, for 1980, is JAERI-M 9214. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  20. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, (no. 20)

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1986 through March 31, 1987. The latest report, for 1985, is JAERI-M 87-046. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  1. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (no. 18)

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1984 through March 31, 1985. The latest report, for 1984, is JAERI-M 84-239. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  2. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, No. 10

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1976 through March 31, 1977. The latest report, for 1976, is JAERI-M 6702. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide and hydrogen; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (auth.)

  3. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (no.19)

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1985 through March 31, 1986. The latest report, for 1984, is JAERI-M 86-051. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  4. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, No. 12

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1978 through March 31, 1979. The latest report, for 1978, is JAERI-M 7949. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  5. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute (no. 16)

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1982 through March 31, 1983. The latest report, for 1982, is JAERI-M 82-192. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, water and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  6. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (13)

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1979 through March 31, 1980. The latest report, for 1979, is JAERI-M 8569. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  7. White paper on atomic energy in 1995

    International Nuclear Information System (INIS)

    This is the White Paper on the Atomic Energy, 1995. This was prepared on general trends of the atomic power in Japan for recent one year. This paper is composed of two parts, which are the subjective part and the reference part. In Chapter 1 of the subjective part, summaries on international trend of non-proliferation and national trend focussing to nuclear fuel recycling and an attitude of Japanese government on treatment and disposal of high-level radioactive wastes essential for promoting the nuclear fuel recycling policy were shown. In Chapter 2, some concrete descriptions were shown at center of their recent trends, on establishment of international reliability for non-proliferation of nuclear weapon, safety security of atomic energy, promotion of information opening and peoples' understandings, present status and future trend on nuclear power generation, nuclear power generation due to light water reactor system, research and development of nuclear fuel recycling, back end countermeasure, promotion of diverse development and basic research on nuclear science technology, international cooperation in atomic energy field, promotive base for atomic energy development and utilization, and development and utilization, and development of nuclear industries. Furthermore, in the reference part, some reports were introduced on main decisions in the Atomic Energy Commission, talk of the chief of the Atomic Energy Commission, and governmental estimates and year table relating to the atomic energy, and so forth. (G.K.)

  8. Atomic energy levels and Grotrian diagrams

    CERN Document Server

    Bashkin, Stanley

    1975-01-01

    Atomic Energy Levels and Grotrian Diagrams, Volume I: Hydrogen I - Phosphorus XV presents diagrams of various elements that show their energy level and electronic transitions. The book covers the first 15 elements according to their atomic number. The text will be of great use to researchers and practitioners of fields such as astrophysics that requires pictorial representation of the energy levels and electronic transitions of elements.

  9. Cyclotron laboratory at the nuclear research centre,atomic energy authority

    International Nuclear Information System (INIS)

    Circular-orbit accelerators, which until recently have merely been tools for fundamental research, are now finding ever increasing use in chemistry, biology, medicine and engineering. The demand to establish a cyclotron laboratory in egypt started at the beginning of seventies for scientific research and multidisciplinary applications. During 1988, the A.E.A. Egypt applied for assistance under the IAEA regular programme of the technical co-operation. In 1989, a pre-project mission was provided to appraise the proposal from the N.R.C. The main findings of the mission were that the infrastructure, both technical and manpower, was adequate for the transfer of cyclotron-based technology, and that the proposed programme would be beneficial to the scientific development of egypt. The IAEA input to the project is to make provision in 1991 and future years to purchase a compact cyclotron for light ions acceleration. The national input is that the A.E.A. is responsible for the design and construction of the building, allocating substantial funds to the project and providing related equipment, such as data acquisition systems, induced activity measuring equipment, and a solid-state laboratory. The contract for project was signed on september 27,1991, between the IAEA (supplier) techsnab export, (Russia) (manufacturer) and A.E.A., Egypt (end user). The main features of the cyclotron will be reviewed. The project is high amongst the priorities of the A.E.A. Egypt, and is expected to add an important facility to the infrastructure. The long-term aim is to exploit the considerable benefits for research, training and application in agriculture, ecological studies, industry, nuclear physics, and the production of radioisotopes. 3 tabs

  10. Recent progress on tritium technology research and development for a fusion reactor in Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    JAEA (Japan Atomic Energy Agency) manages 2 tritium handling laboratories: Tritium Processing Laboratory (TPL) in Tokai and DEMO-RD building in Rokkasho. TPL has been accumulating a gram level tritium safety handling experiences without any accidental tritium release to the environment for more than 25 years. Recently, our activities have focused on 3 categories, as follows. First, the development of a detritiation system for ITER. This task is the demonstration test of a wet Scrubber Column (SC) as a pilot scale (a few hundreds m3/h of processing capacity). Secondly, DEMO-RD tasks are focused on investigating the general issues required for DEMO-RD design, such as structural materials like RAFM (Reduced Activity Ferritic/Martensitic steels) and SiC/SiC, functional materials like tritium breeder and neutron multiplier, and tritium. For the last 4 years, we have spent a lot of time and means to the construction of the DEMO-RD facility and to its licensing, so we have just started the actual research program with tritium and other radioisotopes. This tritium task includes tritium accountancy, tritium basic safety research such as tritium interactions with various materials, which will be used for DEMO-RD and durability. The third category is the recovery work from the Great East Japan earthquake (2011 earthquake). It is worth noting that despite the high magnitude of the earthquake, TPL was able to confine tritium properly without any accidental tritium release

  11. Atomic Energy Authority Act 1954

    International Nuclear Information System (INIS)

    This Act provides for the setting up of an Atomic Energy Authority for the United Kingdom. It also makes provision for the Authority's composition, powers, duties, rights and liabilities, and may amend, as a consequence of the establishment of the Authority and in connection therewith, the Atomic Energy Act, 1946, the Radioactive Substances Act 1948 and other relevant enactments. (NEA)

  12. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Applications of synchrotron radiation to research in high-energy atomic physics are summarized. These lie in the areas of photoelectron spectrometry, photon scattering, x-ray absorption spectroscopy, time-resolved measurements, resonance spectroscopy and threshold excitation, and future, yet undefined studies

  13. Establishment of the Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    A goal of the 21. century is for society to pursue 'sustainable economic development and prosperous life by recycling resources', thus rejecting 'development based on the waste of resources'. For Japan, which has limited energy resources, it is important to secure safe, inexpensive, environmentally friendly energy resources having long-term availability. To contribute to long-term energy security and solve global environmental issues, and to create advanced competitive science and technology, the Japan Atomic Energy Agency (JAEA) was established by integrating the Japan Atomic Energy Research Institute (JAERI) and the Japan Nuclear Cycle Development Institute (JNC) in October 2005. JAEA is endeavoring to establish nuclear fuel cycles, to contribute to social improvement through hydrogen production initiated by atomic energy, and to pursue research and development of thermonuclear fusion and quantum beam technology. This paper reviews the main R and D activities of JAEA. The structure of the paper is the following: 1. Introduction; 2. Japan Atomic Energy Agency; 3. Efforts to Commercialize the Fast Reactor Cycle; 4. Monju Progress; 5. Geological Disposal of High-Level Radioactive Waste R and D; 6. High Temperature Gas-Cooled Reactor System R and D; 7. Fusion Research and Development; 8. LWR Spent Fuel Reprocessing Technology; 9. Quantum Beam Technologies; 10. Nuclear Safety Research and Regulatory Applications; 11. Basic Science and Engineering Research; 12. Contribution to the Enhanced International Nonproliferation Regimes; 13. Conclusions. To summarize, JAEA will promote the above R and D activities, addressing the following commitments: - On problems that atomic energy faces, we shall extend technical assistance in response to the government and the industrial sectors. - We shall produce technical options to attain political goals to secure medium to long-term stable energy supplies and to solve global environmental issues. - With the high potentials of atomic

  14. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF2 radicals formed by electron impact dissociation in a CF4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(23S) atoms

  15. Report of evaluation on socio-economic effects of R and D results in Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute (JAERI), as a core organization devoted to comprehensive nuclear energy research, has steadily promoted nuclear energy research aiming at long-term and stable supply of energy supporting the basis of national existence, advanced nuclear science and engineering leading to increase in Japanese industrial competitive power, etc. Through these undertaking, JAERI has produced a lot of remarkable achievements to contribute the national requests mentioned above. In total, about 1.8 trillion-yen of national funds and over 60,000 person · years of researchers and technical staffs have been invested in the R and D's for the past 45 years. Recently it has been argued and recognized to evaluate how the profits of R and D results in public research institutes supported by national funds are returned to the Japanese people as taxpayers and society as part of an administrative and financial reform. Then, seeing its 45th anniversary, JAERI has tried to evaluate the effects of the R and D achievements on the Japanese society and economy apart from the reviews on the management of the organization and research results by the ex-house experts from the viewpoints of specialty and technical aspects. In order to execute the aforementioned evaluation, JAERI established the in-house Ad hoc Committee for Evaluation of R and D Achievements where decision of the evaluation plan is made, in July 2001, and executed the evaluation followed by assembling the necessary database collected from individual branches. Results obtained from these activities were finally summarized in the Ad hoc Committee. Because a methodology for quantitative evaluation of the economical effects, i.e. cost-benefit effects of R and D's was not established yet, the evaluation was prudently carried out with the assistance of three think tanks and under advices by three ex-house experts. R and D's in JAERI are not limited to the ones where benefits corresponding to profits can be

  16. History of the research ad hoc committee on 'dissemination of information' and the special ad hoc committee on 'dissemination of information' of the Atomic Energy Society of Japan

    International Nuclear Information System (INIS)

    The Research ad hoc committee on 'Dissemination of information' of the Atomic Energy Society of Japan was held 15 times from Oct. 1970 to Mar 1973. After that, The Special ad hoc committee on 'Dissemination of information' of the Atomic Energy Society of Japan was held 115 times from Apr. 1973 to Mar 2009. The history of these two committees is described. Activity report is arranged including the information on change of the member and topics of the meeting, and the minutes. Furthermore, the document list on International Nuclear Information System (INIS) from Japan is included. (author)

  17. A History of the Atomic Energy Commission

    Energy Technology Data Exchange (ETDEWEB)

    Buck, A.L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  18. A History of the Atomic Energy Commission

    Science.gov (United States)

    Buck, Alice L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  19. History of the Atomic Energy Commission

    International Nuclear Information System (INIS)

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations

  20. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  1. Atomic data for controlled fusion research

    International Nuclear Information System (INIS)

    Presented is an evaluated graphical and tabular compilation of atomic and molecular cross sections of interest to controlled thermonuclear research. The cross sections are tabulated and graphed as a function of energy for collision processes involving heavy particles, electrons, and photons with atoms and ions. Also included are sections on data for particle penetration through macroscopic matter, particle transport properties, particle interactions with surfaces, and pertinent charged particle nuclear cross sections and reaction rates. In most cases estimates have been made of the data accuracy

  2. The State and atomic energy

    International Nuclear Information System (INIS)

    Illustrous, eloquent, and yet easy to read for the interested layman, the book begins with alleged deplorable conditions at the reprocessing centra La Hague, portrays, amongst other things, the spying on and supervision of persons in the nuclear field and in research, the misuse of fissile material, and threats and blackmail as a consequence thereof, human error as a cause of accidents, and it concludes with a nonviolent new International against the state and atomic energy, against technological tyranny. Titles of chapters: The hard road; radiation feed; the gamblers; homo atomicus; the intimidated; the ''proliferators''; nuclear terrorists; those supervised; the smooth road. It remains an open question whether the book contributes to defusing the nuclear controversy - in the book almost an ideology - and to bringing the two sides closer together. (HP)

  3. Philippine Atomic Energy Commission: Annual report 1983

    International Nuclear Information System (INIS)

    This publication gives the highlights of the research and development projects of the Philippine Atomic Energy Commission in agriculture and food, nuclear fuels and power system technology, medicine, public health and nutrition, environmental surveillance, supportive basic research, social response to nuclear technology, nuclear licensing and safeguards, supportive technology and international and local linkages including manpower development. (ELC)

  4. Danish Atomic Energy Commission 1974/75

    International Nuclear Information System (INIS)

    Activities of the Danish Atomic Energy Commission and the Risoe eesearch Establishment for the period April1, 1974 to March 31, 1975 are summarized. The operations of the various facilities at the Research Establishment are revised. Operating staff levels and financial data are tabulated, a selected list of staff publications is given, and the design data on research facilities are presented. (B.P.)

  5. Philippine Atomic Energy Commission: Annual report 1982

    International Nuclear Information System (INIS)

    This publication enumerates the research and development activities of the Philippine Atomic Energy Commission with priorities geared towards achieving the economic and social upliftment of the Filipinos in the field of agriculture, energy, industry, health and environment. Highlights are summaries of investigations and studies of great importance in crop improvement, animal production, nuclear fuels, nutrition research, not to mention its supportive technology, technical services, nuclear information and public acceptance, and nuclear manpower development. (RTD)

  6. White paper on atomic energy in 1984

    International Nuclear Information System (INIS)

    The annual report on atomic energy in fiscal year 1984 is published. 30 years have elapsed since the first budget related to atomic energy was established in 1954. The research, development and utilization of atomic energy in Japan have been advanced by being strictly limited to the peaceful purpose, and now, more than 20% of the total generated electric power is supplied by nuclear power generation. The state of operation showed very good results practically close to full operation, and rapid development has been observed in the application of radiation to medical treatment, industries, agriculture and other fields. In this way, atomic energy has become indispensable to national life and economical activity. Nuclear power generation has the high stability of energy supply to Japan, therefore, its promotion is positively carried out, and efforts are exerted on the early establishment of nuclear fuel cycle and the development of new type reactors. In addition to the cooperation with advanced countries, the cooperation with developing countries will be promoted hereafter in this field. The trend of the development and utilization of atomic energy, nuclear power generation, nuclear fuel cycle, the ensuring and verification of safety and environment preservation, the development of new power reactors and the utilization of plutonium, the research and development of nuclear fusion, nuclear ships and high temperature gas-cooled reactors, the utilization of radiation and others are reported. (Kako, I.)

  7. Preemption - atomic energy

    International Nuclear Information System (INIS)

    While waiting for the federal government to develop a nuclear waste disposal strategy, California enacted legislation that bans the construction of nuclear reactors until permanent disposal technology for high-level wastes is demonstrated and approved. The US Supreme Court upheld this prohibition in Pacific Gas and Electric Co. v. State Energy Resources Conservation and Development Commission. The Court found that the California law did not attempt to regulate the construction or operation of a nuclear plant nor to infringe on federal regulation of radiation safety and nuclear wastes. The moratorium is a legitimate move by the state to avoid economic uncertainties. Federal preemption of the law would empower utilities to determine state energy needs and programs. 131 references

  8. Evaluation of socio-economic effects of R and D results at Japan Atomic Energy Research Institute. 2. Socio-economic evaluation of the basic research at JAERI

    International Nuclear Information System (INIS)

    The Japan Atomic Energy Research Institute (JAERI), as a core organization devoted to comprehensive nuclear energy research, has steadily promoted various types of research and development (R and D) studies since its establishment in June 1956. Research activities are aimed at performing (1) R and D for nuclear energy, (2) the utilization and application of radiation-based technologies, and (3) the establishment of basic and fundamental research in the nuclear field. Last year, the socio-economic effects on items (1) and (2) were qualitatively and quantitatively evaluated. The quantitative evaluation of item (3) from the viewpoint of a socio-economic effect, however, calls for a different concept and methodology than previously used cost-benefit approach. Achievements obtained from the activities conducted over the last 10 years implied that socio-economics in basic research funded by the public could contribute to the (1) increase in useful intellectual stocks, (2) upbringing of highly skilled college graduates, (3) construction of new scientific facilities and creation of methodologies, (4) stimulation and promotion of social interrelations by networking, (5) increase of one's ability to solve scientific problems, and (6) establishment of venture companies. In this study, we focused on item (4) for the analysis because it assumed that the external economic effect has a link with the socio-economic effects accompanying the networking formation. For the criteria of socio-economic effects we assume that the external effect becomes significant in proportion to the width of networking and/or the magnitude of cooperation measured by numbers of co-writing studies between JAERI and the research bodies, namely private and governmental sectors and universities. Taking these criteria into consideration, the subsequent four items are prepared for quantitative study. They are (1) to clarify the basic research fields where JAERI has been established a significant effort to

  9. Institute of Atomic Energy - Annual Report 1999

    International Nuclear Information System (INIS)

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 1999. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well

  10. Institute of Atomic Energy - Annual Report 1998

    International Nuclear Information System (INIS)

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute in 1998. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well

  11. Atomic Batteries: Energy from Radioactivity

    OpenAIRE

    Kumar, Suhas

    2015-01-01

    With alternate, sustainable, natural sources of energy being sought after, there is new interest in energy from radioactivity, including natural and waste radioactive materials. A study of various atomic batteries is presented with perspectives of development and comparisons of performance parameters and cost. We discuss radioisotope thermal generators, indirect conversion batteries, direct conversion batteries, and direct charge batteries. We qualitatively describe their principles of operat...

  12. Experimental atomic and molecular physics research

    International Nuclear Information System (INIS)

    The Atomic Physics research in the Physics Division consists of five ongoing experimental programs: dissociation and other interactions of energetic molecular ions in solid and gaseous targets; beam-foil research and collision dynamics of heavy ions; photoionization-photoelectron research; spectroscopy of free atoms and molecules, high precision laser-rf double-resonance spectroscopy with atomic and molecular beams; and Moessbauer effect research

  13. Using research metrics to evaluate the International Atomic Energy Agency guidelines on quality assurance for R&D

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.

    1994-06-01

    The objective of the International Atomic Energy Agency (IAEA) Guidelines on Quality Assurance for R&D is to provide guidance for developing quality assurance (QA) programs for R&D work on items, services, and processes important to safety, and to support the siting, design, construction, commissioning, operation, and decommissioning of nuclear facilities. The standard approach to writing papers describing new quality guidelines documents is to present a descriptive overview of the contents of the document. I will depart from this approach. Instead, I will first discuss a conceptual framework of metrics for evaluating and improving basic and applied experimental science as well as the associated role that quality management should play in understanding and implementing these metrics. I will conclude by evaluating how well the IAEA document addresses the metrics from this conceptual framework and the broader principles of quality management.

  14. Atomic energy in Latin America

    International Nuclear Information System (INIS)

    Most countries in Latin America, including all those on the mainland, are Members of the Agency. Interest in the possibilities of nuclear energy has led to considerable activity, much of it in direct collaboration with the IAEA. Member States in the region are: Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama, Paraguay, Peru, Uruguay, Venezuela. Of these, Argentina, Brazil, Colombia and Venezuela are operating, and Mexico and Uruguay are constructing, research reactors, while Chile and Peru are studying proposals. Argentina, Brazil, Mexico and Uruguay have all agreed to accept Agency safeguards for reactors. The possibility of future needs for nuclear power is under examination by several countries, in some cases being related to desalination of water. All atomic work in Latin America is devoted to peaceful uses, and note-worthy progress has been made with proposals for a treaty which would make the whole region a militarily de-nuclearized zone. It is proposed that when this comes into effect the Agency will be asked to apply the controls developed in its safeguards system, and to carry out the inspections necessary to establish that work in progress is solely for peaceful purposes

  15. Viet Nam National Atomic Energy Commission

    International Nuclear Information System (INIS)

    Vietnam National Atomic Energy Commission (VINATOM) is a governmental body in charge of organizing and coordinating activities related to use of nuclear energy for peaceful purpose. VINATOM in structure consists of the Nuclear Research Institute (Dalat), the Institute of Nuclear Science and Technology (Hanoi), the Institute for Technology of Radioactive and Rare Elements (Hanoi), and the Centre for Nuclear Technique Application (Ho Chi Minh City). This catalogue introduces profiles of nuclear R and D activities under management by VINATOM. (N.H.A)

  16. Estimate of atomic nuclear energy related expenses

    International Nuclear Information System (INIS)

    When the increases in world population and energy consumption, limited natural sources, environmental problems on the earth as well as the trends of international society were taken into consideration and the global society in the 21st century was surveyed, it is thought important to steadily progress the development of nuclear energy. Based on these aspects, the nuclear energy development of Japan in 1996 was designed aiming at stable secure of energy and qualitative rising of the standard of life and improvement of welfare in human society on the conditions of sticking to peaceful use and safety secure. The fundamental policies were confirmed as follows: 1) development of nuclear energy policies. 2) establishment of an integrated system for light water reactor typed nuclear power generation. 3) development of recycling system of nuclear fuel. 4) development of atomic energy technology and enforcement of its basic research. Based on these principles, the expenses necessary to perform the above policies were estimated to be ca. 5000 x 108 yen in total. The expenses for major facilities concerned were as follows; Japan Atomic Energy Research Institute 1280 x 108 yen, Power Reactor and Nuclear Fuel Development Corporation 2384 x 108 yen, National Institute of Radiological Science 171 x 108 yen, National Facilities for Developmental Scientific Research 24 x 108 yen and Institute of Physical and Chemical Research 126 x 108 yen. (M.N.)

  17. Atomic Energy (factories) rules: 1988

    International Nuclear Information System (INIS)

    These rules are made by the Central Government under the Factories Act, 1948 and extend to all factories engaged in carrying out the purposes of the Atomic Energy Act, 1962. The rules cover the requirements of inspecting staff, health aspects, personnel safety, personnel welfare, working hours, employment of young persons, special provisions in case of dangerous manufacturing processes or operations, supplemental rules for administrative aspects and special powers of competent authority. (M.G.B.)

  18. Geochemical studies for geologic disposal of high-level radioactive waste. Research activities in Department of Environmental Safety Research, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    The Environmental Geochemistry Laboratory of the Department of Environmental Safety Research of JAERI (EGL/JAERI) is responsible for performing fundamental research to support the geologic disposal of high-level radioactive waste and the performance assessment of the disposal concept. This research includes basic laboratory experiments as well as field studies of natural analogs to understand the geochemical behavior of radionuclides, i.e., the interactions between radionuclides, groundwater and geological materials. This report summarizes background, objectives and recent results of the scientific investigations and emphasizes the significance of these studies in terms of both fundamental research on geochemistry and applied research for performance assessment of the waste disposal concept. The importance of performing fundamental research to radioactive waste disposal is stressed in this report. The report is aimed at both the radioactive waste disposal scientific community and the interdisciplinary sciences that interact with this community. (author)

  19. Solar and Geothermal Energy: New Competition for the Atom

    Science.gov (United States)

    Carter, Luther J.

    1974-01-01

    Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)

  20. Atomic Energy Commission (Amendment) Law, 1993

    International Nuclear Information System (INIS)

    The Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C.L. 308) seeks to amend the Atomic Energy Commission Act of 1963 (Act 204) so as to provide for the establishment of a Radiation Protection Board and other institutes under the Ghana Atomic Energy Commission. The Law further repeats the Atomic Energy Commission (Amendment) Law of 1982 (P.N.D.C.L. 37). (EAA)

  1. Annual Report 2002 of the Institute of Atomic Energy

    International Nuclear Information System (INIS)

    Annual Report of the Institute of Atomic Energy described the results of the research works carried out at the Institute in 2002 year. The Report contains the information on technical and research studies developed by all Institute Departments and Laboratories

  2. European Union Energy Research

    International Nuclear Information System (INIS)

    This article presents an extensive state of the art of the energy research conducted at European Union level between 1984 and 2006, i.e. from the first to the sixth European Community Framework Programmes (FP1-FP6) for Research, Technological Development and Demonstration (RTD and D). The FP is the main legal tool and financial instrument of EU RTD and D policy. It sets the objectives, priorities and budgets for a period of several years. It has been complemented over time with a number of policy oriented initiatives and notably with the launch of the European Research Area. FP7 will cover the period 2007-2013 and will have a total budget of more than euros 50 billion. Energy has been a main research area in Europe since the founding Treaties (European Coal and Steel Community, European Atomic Energy Community-Euratom and European Economic Community), and energy RTD and D has always been a substantial part of common EU research. Nevertheless, when inflation and successive European enlargements are taken into account, over time the RTD and D effort in the field of energy has decreased significantly in relative terms. In nominal terms it has remained relatively stable at about euros 500 million per year. For the next years (FP7), it is expected that energy will still represent about 10 % of total EU research effort but with an annual budget of more than euros 800 million per year. This article presents a detailed review of the thematic areas and budget in both European nuclear energy research (fusion and fission) and non-nuclear energy research (energy efficiency/rational use of energy, fossil fuels, CO2 capture and storage, fuel cells and hydrogen, renewable energy sources, strategic energy research/socio-economy). (authors)

  3. Inquiry relating to safety due to modification of usage of nuclear fuel material (establishment of waste safety testing facility) in Tokai Laboratory, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Application was made to the director of the Science and Technology Agency (STA) for the license relating to the modification of usage of nuclear fuel material (the establishment of waste safety testing facility) from the director of the Japan Atomic Energy Research Institute on November 30, 1978. After passing through the safety evaluation in the Nuclear Safety Bureau of STA, inquiry was conducted to the head of the Atomic Energy Safety Commission (AESC) on June 6, 1979, from the director of the STA. The head of AESC directed to conduct the safety examination to the head of the Nuclear Fuel Safety Examination Specialist Committee on June 7, 1979. The content of the modification of usage of nuclear fuel material is the establishment of waste safety testing facility to study and test the safety relating to the treatment and disposal of high level radioactive liquid wastes due to the reprocessing of spent fuel. As for the results of the safety examination, the siting of the waste safety testing facility which is located in the Tokai Laboratory, Japan Atomic Energy Research Institute (JAERI), and the test plan of the glass solidification of high level radioactive liquid are presented as the outline of the study plan. The building, main equipments including six cells, the isolation room and the glove box, the storage, and the disposal facilities for gas, liquid and solid wastes are explained as the outline of the facilities. Concerning the items from the viewpoint of safety, aseismatic design, slightly vacuum operation, shielding, decay heat removal, fire protection, explosion protection, criticality management, radiation management and environmental effect were evaluated, and the safety was confirmed. (Nakai, Y.)

  4. Atomic Energy Authority Act 1971

    International Nuclear Information System (INIS)

    This Act provides for the transfer of property, rights, liabilities and obligations of parts of the undertaking of the United Kingdom Atomic Energy Autority, to two new Compagnies set up for this purpose: the Bristish Nuclear Fuels Limited, and the Radiochemical Centre Limited. Patents licences and registered designs owned by the Autority at the time of the transfer are not included therein. The Act also includes amendments to the Nuclear Installations Act 1965, notably as regards permits to operate granted to a body corporate. Finally, the Schedule to this Act lays down a certain number of provisions relating to security and the preservation of secrets. (NEA)

  5. Bhabha Atomic Research Centre annual report : 1989

    International Nuclear Information System (INIS)

    The main thrust of the various research and development (R and D) activities of the Bhabha Atomic Research Centre (BARC), Bombay, is towards the implementation of India's nuclear power programme. To that end, its R and D activities cover the entire nuclear fuel cycle, reactor technology; applications of radioisotopes and radiations in agriculture, medicine and industries; and radiation protection in nuclear installations. The report presents in summarised form the R and D activities carried out during 1989 in the chapters entitled: Physical Sciences, Chemical Sciences, Materials and Materials Sciences, Radioisotopes, Reactors, Fuel Cycle, Radiological Safety and Protection, Electronics and Instrumentation, Engineering Services, Life Sciences and General. At the end of each chapter, a list of publications by the staff scientists in the corresponding subject field is given. The list includes published journal articles and technical reports, and papers presented at conferences, symposia etc. The report also covers the R and D activities of the outstation units of BARC, namely, Nuclear Research Laboratory, Srinagar; High Altitude Research Laboratory, Gulmarg; and Variable Energy Cyclotron Centre, Calcutta. BARC is also engaged in basic an applied research in frontier areas of science such as plasma and fusion physics, accelerators and lasers, high temperature superconductivity, condensed matter physics, high pressure physics, high resolution spectroscopy, chemical reaction dynamics and laser induced chemistry, electronics and robotics: radiation biology, and genetic engineering. Report is illustrated with a number of figures, graphs, and coloured pictures. (M.G.B.) figs., refs

  6. Bhabha Atomic Research Centre: annual report 1988

    International Nuclear Information System (INIS)

    The research and development (R and D) work carried out in the Bhabha Atomic Research Centre (BARC), Bombay during 1988 is summarised and presented in the sections entitled Physical Sciences, Chemical Sciences, Materials and Materials Science, Radioisotopes, Reactors, Fuel cycle, Radiological Safety and Protection, Electronics and Instrumentation, Engineering Services, Life Sciences and General. At the end of each section a list of publications is also given. The R and D work of the outstation units of BARC, namely, Nuclear Research Laboratory, Srinagar; High Altitute Research Laboratory, Gulmarg and Variable Energy Cyclotron Centre, Calcutta are also described in this report. Some of the highlights of the work during the year are: (1) Medium Energy Heavy Ion Accelerator (MEHIA) facility set up jointly by BARC and the Tata Institute of Fundamental Research (TIFR) at TIFR premises became fully operational in September 1988. A number of new compositions of high temperature supconducting materials were synthesized. The highest transition temperature achieved was 125 K. Research work to improve the quality of sintered uranium oxide pellets achieved the purpose. Nuclear fuels were fabricated by using sol-gel process. R and D work for 235 MWe and 500 MWe PHWR type reactors is continuing. Conceptual design of the fuel handling system for the prototype fast breeder reactor was finalised. 233U+Al alloy fuel for Kamini reactor was fabricated. Progress has been made in industrial applications of enzymes. Various applications of radioisotopes are being continued. Certain technologies and processes developed in the Centre were transferred to commercial agencies for large scale exploitation. (M.G.B.)

  7. Metrology assurance of atomic energy

    International Nuclear Information System (INIS)

    The metrology assurance of the Kozloduy NPP is at a satisfactory level. The assessment is carried out following the requirements of both the authorized bodies and the recent acting documents. Considering the future development of the nuclear energy and the new demands towards nuclear safety, the metrology assurance of atomic energy needs some improvement. A thorough set of measures should be developed as: preparing of standard documentation, personnel education, purchase of new highly accurate appliances, and providing conditions for the fulfillment of some qualified metrology activities. This will take an extremely difficult and long period of time with respect to the country circumstances, the energy generation and the variety of reorganizations in all management spheres. Prerequisite for this are: the metrologist' desire to fulfill the above tasks, the NPP administration concern and actions to solve the metrology assurance problems, the understanding from the authorized bodies and other scientific institutions and the assistance on the part of some western countries, mainly France. A leading part in fulfilling this problems should be played by the NEC-SA - Kozloduy NPP. (author)

  8. Animals in Atomic Research (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Ricciuti, Edward R. [Bronx Zoo

    1969-01-01

    This booklet explains what use animals are to science and why they are important to the development of nuclear energy for peaceful uses. It contains examples of the roles animals of many kinds play in the development of nuclear science for the well-being of mankind.

  9. AWRE: Atomic Weapons Research Establishment

    International Nuclear Information System (INIS)

    This reviews the work of AWRE at Aldermaston and Foulness. The main programme is nuclear and is concerned with the design and development of warheads for strategic and tactical nuclear weapons for the British nuclear deterrent, including those for the Royal Navy's missile carrying submarine fleet. The work is described grouped as design physics, development and materials. Services to these groups and to the whole establishment are provided by Engineering, Safety and Administration. The work ranges from long-term fundamental research, the development of technology, design, prototype development to the environmental testing of engineered products. In materials research the emphasis is on plutonium, uranium and beryllium, on high explosives and a wide range of inorganic and organic materials. The physics of the earth's crust is studied to aid detection of underground nuclear explosions. Reactor research facilities include the two reactors, Herald and Viper. (U.K.)

  10. The International Atomic Energy Agency (IAEA) research program to improve safety assessment methodologies for near-surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) launched a Coordinated Research Program in November 1997 on Improvement of Safety Assessment Methodologies for Near Surface Radioactive Waste Disposal Facilities (ISAM). The purpose of this paper is to describe the program and its goals, and to describe achievements of the program to date. The main objectives of the ISAM program are outlined. The primary focus of ISAM is on the practical application of safety assessment methodologies. Three kinds of practical situations are being addressed in the program: safety assessments for large vaults typical of those in Western Europe and North America, smaller vaults for medium and industrial wastes typical in eastern Europe and the former Soviet Union, and a proposed borehole technology for disposal of spent sources in low-technology conditions. (author)

  11. The International Atomic Energy Agency

    Science.gov (United States)

    Dufour, Joanne

    2004-01-01

    The dropping of atomic bombs on Hiroshima and Nagasaki in World War II inaugurated a new era in world history, the atomic age. After the war, the Soviet Union, eager to develop the same military capabilities as those demonstrated by the United States, soon rivaled the U.S. as an atomic and nuclear superpower. Faced by the possibility of…

  12. On promotion of base technologies of atomic energy

    International Nuclear Information System (INIS)

    In the long term plan of atomic energy development and utilization decided in June, 1987 by the Atomic Energy Commission, it was recognized that hereafter, the opening-up of the new potential that atomic energy possesses should be aimed at, and the policy was shown so that the research and development hereafter place emphasis on the creative and innovative region which causes large technical innovation, by which the spreading effect to general science and technology can be expected, and the development of the base technologies that connect the basic research and project development is promoted. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the direction of technical development of atomic energy hereafter and the base technologies are discussed. The concept of the technical development of materilas, artificial intelligence, lasers, and the evaluation and reduction of radiation risks used for atomic energy is described. As the development plan of atomic energy base technologies, the subjects of technical development, the future image of technical development, the efficient promotion of the development and so on are shown. (Kato, I.)

  13. Ghana Atomic Energy Commission : at a glance. 3. ed.

    International Nuclear Information System (INIS)

    The brochure provides a brief history of the establishment and functions of the Ghana Atomic Energy Commission. It also provides information on the structure, facilities and activities of existing research institutes and centres

  14. Atomic Energy of Canada Limited annual report 1987-88

    International Nuclear Information System (INIS)

    The annual report of Atomic Energy of Canada Limited for the fiscal year ended March 31, 1988 covers: Research Company; CANDU Operations; Radiochemical Company; Medical Products Division; The Future; Financial Sections; Board of Directors and Officers; and AECL locations

  15. Annual report to the Atomic Energy Control Board on the Regulatory Research and Support Program April 1, 1994 - March 31, 1995

    International Nuclear Information System (INIS)

    The Regulatory Research and Support Program (RSP) is intended to augment and extend activities, undertaken by the Atomic Energy Control Board, beyond what would be possible with in-house resources. The overall objective of the research and support activity is to produce pertinent and independent information that will assist the Board and its staff in making sound, timely and credible decisions for the regulation of nuclear facilities and materials. During Fiscal Year 1994/95, a total of $3.245M was spent of RSP research and support work. The range of activities included projects in the general fields of nuclear reactors, fuel cycle facilities, uranium mines and mills, waste management, dosimetry, health physics, regulations and regulatory process development, and other special support services. Some of this work was organized into sub-program groups, each of which addresses research and support effort in theme-related areas. Five sub-programs were launched during the year bringing to eight the total number of such sub-programs. Areas addressed in the sub-programs are environmental impact assessment and management, safety critical software, seismologic studies, pressure boundary integrity, integrity of containment and safety-related structures, human factors, internal dosimetry, and health effects in human populations. During the year, there were a total of 157 active projects

  16. Atomic energy in India: 50 years

    International Nuclear Information System (INIS)

    This fiftieth year of India's political independence also about coincides with the fiftieth year of the formal organisation of the Atomic Energy Programme in India. While the first Atomic Energy Act was passed in April 1948 - vesting the Government of India with exclusive authority for all activities relating to the development of atomic energy in the country - the first Atomic Energy Commission was constituted on August 10, 1948 as the apex policy making body for the programme. The present monograph is a review to trace the evolution and growth of the programme over the past fifty years

  17. Department of Atomic Energy [India]: Annual report 1979-1980

    International Nuclear Information System (INIS)

    The work of the research establishments, projects undertaken and public sector undertakings of the Department of Atomic Energy during the financial year 1979-80 is surveyed. The research and development activities of the Bhabha Atomic Research Centre at Bombay, the Reactor Research Centre at Kalpakkam, the Tata Institute of Fundamental Research at Bombay, the Saha Institute of Nuclear Physics at Calcutta and the Tata Memorial Centre at Bombay are described. An account of the progress of heavy water production plant projects, the Madras and Narora Atomic Power Projects, the MHD project and the 100 MW thermal research reactor R-5 Project at Trombay is given. Performance of the Tarapur and Rajasthan Atomic Power Stations, Nuclear Fuel Complex at Hyderabad, Atomic Minerals Division, ISOMED (the radiation sterilisation plant for medical products) at Bombay, the Indian Rare Earths Ltd., the Uranium Corporation of India Ltd., and the Electronics Corporation of India Ltd., Hyderabad is reported. (M.G.B.)

  18. White paper on atomic energy in 2004

    International Nuclear Information System (INIS)

    Since the publication of its last White Paper on Nuclear Energy in 2003, the Atomic Energy Commission of Japan (AEC) summarized trends covering all aspects of nuclear energy over the period up to December 2004. This paper is comprised of a main document and supplementary materials. The first chapter of the main document summarizes the current activities toward national and international understanding and trust promotion of nuclear energy divided along the topics of 'Restoring trust', 'Structuring trust toward new enterprise implementation', 'Establishment of understanding and trust of international society', 'AEC's activities toward creation of new Long-Term Program', and 'Establishment of future understanding and trust. 'The second chapter summarized recent trends of national and private activities based on the Long-Term Program created in November 2000, covering the topics 'Nuclear Energy Policy in Japan', 'Harmony between People, Society and Nuclear Energy', 'Nuclear Power Generation and the Nuclear Fuel Cycle', 'Diversified Development of Nuclear Science and Technology', 'Utilization of Radiation Contributing to People's Lives', 'Harmony between International Society and Nuclear Energy', and 'Foundation to Promote Research, Development and Utilization of Nuclear Energy'. The supplementary materials include lists of AEC decisions, nuclear energy budgets, year-by-year data tables, and other such similar materials. (T. Tanaka)

  19. Atomic energy indemnification system in Japan

    International Nuclear Information System (INIS)

    The Japanese legislation on the indemnification by atomic energy enterprisers for atomic energy damages, published in 1961 and enforced in 1962, includes the law concerning indemnification for atomic energy damages and the law concerning atomic energy damage indemnification contracts (hereafter referred to as ''the law concerning indemnification contracts''). While the Japanese laws are same as the foreign legislation in the provisions of the responsibility of atomic energy damages without the error of atomic energy enterprisers, exemption reasons are more important in this respect. When damages are due to exceptionally grave natural disasters or social disturbances, atomic energy enterprisers are exempted from the responsibility. Indemnification amounts are determined, but the Japanese laws do not limit then, different from the foreign regulations. The periods for demanding indemnification are not defined particularly in the law concerning indemnification contracts, and the general basic rules of the civil law are applied. As a result, the demand right terminates in 3 years after the injured persons find damage and offenders, and in 20 years since the unlawful act (Article 724, Civil law). The indemnification liability for atomic energy damages is focused on atomic energy enterprisers concerned in the same way as the foreign laws. The measures for assuring the execution of indemnification responsibility consist in principle of the firm conbination of the liability insurance contracts with private insurance companies and the indemnification contracts for atomic energy damages with the state. The damages of employes suffered in works are excluded from indemnification, which has been the main issue of discussion since the enactment of atomic energy laws. (Okada, K.)

  20. Economic feasibility study to Raise the operational capacity of the Electron Beam Accelerator at the National Centre for Radiation Research and Technology, atomic Energy Authority, Egypt

    International Nuclear Information System (INIS)

    The study aims to investigate the economic feasibility to raise the operational capacity of the accelerator at the National Center for Radiation Research and Technology, Atomic Energy Authority, Egypt, through proposal of additional processing of power cables as it have 4 thousand operating hours per year of total 6 thousand hours per year. The study involved three sections; the first section included the technical aspects and marketing, the second section was concerned with financial analysis, and the third section included the national return of the project. In the first part, the electronic and technical requirements of the accelerator were studied to raise the capacity of the accelerator and to identify the time trend of demand for services in marketing. The second section included the financial feasibility of the project which was carried out through two parts; the first part deal with the analysis of costs of the project including identifying of investment, spending, labor costs, operating expenses, the annual installment of the annual depreciation expense with the total annual costs and operating costs per hour and ton. The second part was carried out to evaluated business profitability of the project, preparation of the annual cash flow, calculation of the internal rate of return, payback period of capital, and the analysis of sensitivity of the project in terms of its ability to achieve profitable business in the event of increasing costs and decreasing revenue. The third section was carried out to raise the operational capacity of the accelerator at the Egyptian Atomic Energy Authority to generate added value for national income, and to study the social rate of return for the project and examine the project's ability to provide new employment opportunities. The study showed the possibility and the importance of the project implemented at the level of private investment and national security.

  1. The industrial development of atomic energy

    International Nuclear Information System (INIS)

    Countries with large stock of fissile material and producing large quantity of nuclear pure 235U and 239Pu are able to allocate part of the stock to non military research. For countries with low stock of fissile material, all the stock is allocated to military research. An economical and technical solution has to be find to dedicate a part of fissile material to non military research and develop the atomic energy industry. It stated the industrial and economical problems and in particular the choice between the use of enriched fuel with high refining cost or depleted fuel with low production cost. It discusses of four possible utilizations of the natural resources: reactors functioning with pure fissile material (235U or 239Pu) or concentrated material (235U mixed with small quantities of 238U after an incomplete isotopic separation), breeder reactors functioning with enriched material mixed with 238U or Thorium placed in an appropriate spatial distribution to allow neutrons beam to activate 238U or Thorium with the regeneration of fissile material in 239Pu, reactors using natural uranium or low enriched uranium can also produce Plutonium with less efficiency than breeder reactors and the last solution being the use of natural uranium with the only scope of energy production and no production of secondary fissile material. The first class using pure fissile material has a low energy efficiency and is used only by large fissile material stock countries to accumulate energy in small size fuel for nuclear engines researches for submarines and warships. The advantage of the second class of reactors, breeder reactors, is that they produce energy and plutonium. Two type of breeder reactor are considered: breeder reactor using pure fissile material and 238U or breeder reactor using the promising mixture of pure fissile material and Thorium. Different projects are in phase of development in United States, England and Scotland. The third class of reactor using natural

  2. Annual reports of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 23, 24, 25)

    International Nuclear Information System (INIS)

    Research activities of Osaka Laboratory for Radiation Chemistry, JAERI during three year period from April 1, 1989 through March 31, 1992 are described. The latest report. for 1988, is JAERI-M 91-054. Detailed descriptions of the activities are presented in the following subjects: laser-induced organic synthesis, modification of polymer surface by laser irradiation, polymerization and modification of polymers by electron beam, and electron beam dosimetry. (author) 77 refs

  3. Summary of the 19th International Atomic Energy Agency Technical Meeting on 'Research Using Small Fusion Devices'

    Science.gov (United States)

    Van Oost, G.; Mank, G.

    2011-08-01

    This paper presents a summary of recent results reported on several topics on magnetic confinement, dense magnetized plasmas, innovative fusion technology and applications, diagnostic systems and control and data acquisition systems. The main topics covered on the magnetic confinement devices, diagnostics and data acquisition concern the tokamak KTM (Kazakhstan Tokamak for Material testing) for materials research and testing, and IAEA Joint Experiments on small tokamaks. For the dense magnetized plasmas results on development and commissioning of plasma focus devices were reported. The plasmatron VISION I for innovative plasma-wall interaction studies, a lithium divertor for KTM and compact fusion reactors as neutron sources were presented.

  4. Thermohydraulic al analysis of the loss of coolant accident at research reactor of Atomic Energy Organization of Iran

    International Nuclear Information System (INIS)

    Hydraulic analyzing of loss of coolant in Tehran University Research Reactor is considered. The water around the reactor core is for biological and thermal shielding. Whenever any accident causing the discharge of water of the pool occurred, the reactor core is exposed to air and the temperature of fuel rods raised due to residual heat; therefore, there is the possibility of melting fuel rods and releasing radioactive materials in air. Evaluating the safety of this research reactor, the failure of coolant system was analyzed. The most probability of occurring the accident of loss of coolant and exposing core to air is related to the rupture of output pipelines at the junction to pool. The failure probability was estimated 2.295*10-6 (fault/year). Then, the maximum inflation of fuel, the maximum fission product I131, at reactor core (1.21*10+5), thermal stress, the possibility of releasing radioactive gases from fuel, radiation effect on mechanical properties of fuel and maximum corrosion of fuel can is investigated. Calculation and investigations show that the probability of releasing radioactive materials due to loss of coolant is 1.974*10-8 (fault/year) which is according to international standards on base of Farmer diagram, acceptable. In the loss of coolant accident, time of discharging the water of pool depends on pump function and the situation of fracture. As less as the time of discharge fuel temperature will raise more. The time of discharging water is calculated

  5. The China Institute of Atomic Energy

    International Nuclear Information System (INIS)

    The China Institute of Atomic Energy (CIAE), established in 1950, carries out multidisciplinary research in nuclear science, technology and engineering. It has three research reactors and ten low energy accelerators. The focus of its nuclear energy related R and D is on reactor engineering and technology. In the area of nuclear techniques for applications, R and D is carried out on accelerators, isotope production, nuclear electronics and utilization of radioisotopes and radiation. There is also a strong programme in basic nuclear physics and radiochemistry. New major facilities under construction in CIAE include China Advanced Research Reactor (flux 8x1014n/cm2/sec) and China Experimental Fast Reactor. China has been successfully using the products of its R and D for a variety of applications in medicine, industry, materials science etc. A dynamic research programme is tuned to attract young talent to CIEA and there is good collaboration with the Beijing University. CIEA has been an active participant of RCA programmes of the IAEA and has been a resource for many developing countries. The management expects the Institute to be a leading multidisciplinary institute in the field of nuclear science, technology and engineering. (author)

  6. Annual report to the Atomic Energy Control Board on the Regulatory Research and Support Program April 1, 1994 - March 31, 1995

    International Nuclear Information System (INIS)

    The Regulatory Research and Support Program (RSP) is intended to augment and extend activities, undertaken by the Atomic Energy Control Board, beyond what would be possible with in-house resources. The overall objective of the research and support activity is to produce pertinent and independent information that will assist the Board and its staff in making sound, timely and credible decisions for the regulation of nuclear facilities and materials. Represented in this report is a cataloging of seven appendices. The membership of active review panels is given in Appendix A. Appendix B contains summary descriptions and information on the status of individual projects. Appendix C presents a list of those projects which were within the overall RSP but were not active during the year. Appendix D lists the projects undergoing review of final report or post-project evaluation. All projects which were worked on during the year are listed in Appendix E. Specific objectives set for the RSP for Fiscal Year 1994/95 and the degree to which the objectives were achieved are outlined in Appendix F. Appendix G lists the INFO-series reports that were published during Fiscal Year 1994/95. 157 tabs

  7. Proposal for a Federal Council decision on stipulating a research and development programme of the European Atomic Energy Community in the field of uranium prospecting

    International Nuclear Information System (INIS)

    The publication deals in detail with the proposal for a Federal Council decision on stipulating a R + D programme of the European Atomic Energy Community in the field of uranium prospecting and mining (as 'Drucksache' 429/77 of the Bundesrat). (HK)

  8. Atomic Energy Amendment Act 1978, No. 31

    International Nuclear Information System (INIS)

    This Act amends certain Sections of the Atomic Energy Act 1953. The principal modifications concern the definitions of atomic energy, prescribed substances, the provision and supply of uranium in relation to the functions of the Atomic Energy Commission, compliance with the agreement with the IAEA on the application of safeguards under the Non-Proliferation Treaty as well as with any agreement with any other international organization or another country. The Act also amends the 1953 Act in respect of the control of prescribed substances and repeals the section concerning jurisdiction of courts. (NEA)

  9. Intergovernmental organisation activities: European Atomic Energy Community, International Atomic Energy Agency, OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    European Atomic Energy Community: Proposed legislative instruments, Adopted legislative instruments, Non-legislative instruments, Other activities (meetings). International Atomic Energy Agency: IAEA Action Plan on Nuclear Safety. OECD Nuclear Energy Agency: The Russian Federation to join the OECD Nuclear Energy Agency; Participation by the regulatory authorities of India and the United Arab Emirates in the Multinational Design Evaluation Programme (MDEP); NEA International Workshop on Crisis Communication, 9-10 May 2012; International School of Nuclear Law: 2013; Next NEA International Nuclear Law Essentials Course

  10. Changes in plan for installation of reactor in No. 1 nuclear ship of Japan Atomic Energy Research Institute (change in description of its cool shutdown state) (report)

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-01

    In response to the request from the Prime Minister, the Nuclear Safety Commission made adequate deliberations on the proposed changes in the plan for the installation of the reactor in the No.1 nuclear ship of the Japan Atomic Energy Research Institute. The subject matter is related with the shift of the reactor from a cool shutdown state to a shutdown state at the Ominato Port. The Nuclear Safety Commission started examinations at the 29th meeting of the Commission held on September 3, 1985, and made a conclusion at its 30th meeting held on September 10 of the same year. It was confirmed that if the reactor is shifted into a hot shutdown state, all control rods will continue to be in the inserted state while the clutch current in the control rod drive system will be cut to maintain the reactor in a subcritical state. It was concluded that the proposed change in the installation plan will not affect the safety of the relevant nuclear reactor facilities and can meet the provisions under Article 24 Paragraph 1 of Law Concerning Regulations on Nuclear Materials, Nuclear Fuel Substances and Nuclear Reactors. The conclusion was reported to the Prime Minister as of September 10, 1987. (Nogami, K.).

  11. The International Atomic Energy Agency's Laboratories Seibersdorf and Vienna. Meeting the challenges of research and international co-operation in the application of nuclear techniques

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency therefore maintains a unique, multidisciplinary, analytical, research and training centre: the IAEA Laboratories, located at Seibersdorf near Vienna and at the Agency's Headquarters in the Vienna International Centre. They are organized in three branches: (i) the FAO/IAEA Agriculture and Biotechnology Laboratory: Soil Science, Plant Breeding, Animal Production and Health, Entomology, Agrochemicals; (ii) the Physics, Chemistry and Instrumentation Laboratory: Chemistry, Instrumentation, Dosimetry, Isotope Hydrology; (iii) the Safeguards Analytical Laboratory: Isotopic Analysis, Chemical Analysis, Clean Laboratory. 'The Mission of the IAEA Laboratories is to contribute to the implementation of the Agency's programmes in food and agriculture, human health, physical and chemical sciences, water resources, industry, environment, radiation protection and safeguards verification'. Together with a General Services and Safety Section, which provides logistics, information, industrial safety and maintenance services and runs a mechanical workshop, the three groups form the 'Seibersdorf Laboratories' and are part of the IAEA Department of Nuclear Sciences and Applications. The Laboratories contribute an important share to projects fostering peaceful applications of radiation and isotopes and radiation protection, and play a significant part in the nuclear verification mechanism. All activities are therefore planned and implemented in close co-operation with relevant divisions and departments of the IAEA. In specific sectors, the Laboratories also operate in conjunction with other organizations in the UN system, such as the Food and Agriculture Organization (FAO), the World Health Organization (WHO) and the World Meteorological Organization (WMO), and with networks of national laboratories in Member States

  12. The Rewards of Fundamental Atomic Spectrometry Research

    Institute of Scientific and Technical Information of China (English)

    Walter Slavin

    2000-01-01

    Atomic spectrometry research is the life-blood of the atomic spectrometry instrument industry.The instrument designer can be expected to innovate in the execution of instrumentation and should be expected to be the expert in optical,electronic and software engineering.Fundamentally new technology has required too long a period of gestation to be compatible with commercial time scales and budgets.But in the past decade,the pressure from stockholders for increased return on investments has put increasingly strong pressure on management to reduce expenses and focus increasingly on projects that guarantee a fast payback.This pressure falls particularly heavily on the larger companies;the same companies that a decade or more ago were the ones that brought the more far-reaching and expensive new concepts to market. Fundamental research in atomic spectrometry has been accomplished in the past several decades mostly in the academic environment and in research institutions that are Federally funded.All of the Federally funded research institutions have been forced to alter their missions to more tangible and immediate goals,and many have also seen severe financial reductions.

  13. Speech by Ichiro Miyanaga, Executive Director, Japan Atomic Energy Research Institute at the 1984 international meeting on Reduced Enrichment for Research and Test Reactors, Argonne National Laboratory, October 17, 1984

    International Nuclear Information System (INIS)

    Full text: It is a great pleasure for me to extend my greetings and best wishes to all of you on this honorable occasion. I would like to take this opportunity to express my appreciation to Argonne National Laboratory for their continued support and cooperation through Joint Study with Japan Atomic Energy Research Institute as well as Kyoto University. Japan Atomic Energy Research Institute has been endeavoring to convert the present HEU fuels of research reactors to MEU fuels, as addressed by Prof. Kanda of Kyoto University in the first session of this meeting. For TRR-2 and JMTR, MEU cores are expected to attain their first criticality early the year 1986. Recognizing the final goal of RERTR program lies in using LEU fuels, we will soon start examinations and tests in JMTR for LEU fuel development according to the current feasibility study. The full core demonstration of JMTR with LEU silicide fuel would be expected in 1990. At the same time, Japan Atomic Energy Research Institute is engaged in-JRR-3M Construction Project. JRR-3M was originally designed to use MEU fuels. However, in consideration of recent progress in LEU fuel-technology, the design was changed to using LEU fuels. JRR-3M is scheduled to begin operation in 1989, which will be one of the first high performance research reactors with LEU fuels in the world. For implementing MEU and LEU Program, we have the so-called Five Agency Committee, the members of which are Science and Technology Agency, Ministry of Foreign Affairs, Ministry of Education, Science and Culture, and the direct implementors, Kyoto University and JAERI. The government members in this committee have played an important role for promoting the Program by review and consultation. Most concern we have now is about the stable supply of MEU for a necessary period and the reprocessing of LEU fuels which are the final goal in our reactors. For this reason, I would like to ask the U.S. Government to meet these requirements for us to perform

  14. Pilot project of atomic energy technology record

    International Nuclear Information System (INIS)

    Project of the Atomic Energy Technology Record is the project that summarizes and records in each category as a whole summary from the background to the performance at all fields of nuclear science technology which researched and developed at KAERI. This project includes Data and Document Management System(DDMS) that will be the system to collect, organize and preserve various records occurred in each research and development process. To achieve these goals, many problems should be solved to establish technology records process, such as issues about investigation status of technology records in KAERI, understanding and collection records, set-up project system and selection target field, definition standards and range of target records. This is a research report on the arrangement of research contents and results about pilot project which records whole nuclear technology researched and developed at KAERI in each category. Section 2 summarizes the overview of this pilot project and the current status of technology records in domestic and overseas, and from Section 3 to Section 6 summarize contents and results which performed in this project. Section 3 summarizes making TOC(Table of Content) and technology records, Section 4 summarizes sectoral templates, Section 5 summarizes writing detailed plan of technology records, and Section 6 summarizes Standard Document Numbering System(SDNS). Conclusions of this report are described in Section 7

  15. Annual report to the Atomic Energy Control Board on the regulatory research and support program April 1, 1995 - March 31, 1996

    International Nuclear Information System (INIS)

    The Regulatory Research and Support Program (RSP) is intended to augment and extend activities, undertaken by the Atomic Energy Control Board, beyond what would be possible with in-house resources. The overall objective of the research and support activity is to produce pertinent and independent information that will assist the Board and its staff in making sound, timely and credible decisions for the regulation of nuclear facilities and materials. During Fiscal Year 1995/96, a total of $3,029M was spent on RSP research and support work. The range of activities included projects in the general fields of nuclear reactors, fuel cycle facilities, uranium mines and mills, waste management, dosimetry, health physics, regulations and regulatory process development, and other special support services. Some of this work was organized into sub-program groups, each of which addresses research and support effort in theme-related areas. Four sub-programs were launched during the year bringing to twelve the total number of such sub-programs. Areas addressed in the sub-programs are environmental impact assessment and management, safety-related computerized systems, seismologic studies, pressure boundary integrity, integrity of containment and safety-related structures, human factors, internal dosimetry, health effects in human populations, physics and fuel studies, probabilistic safety assessment, emergency preparedness, and radiobiology. During the year, there were a total of 118 active projects. This number included projects planned for the year, others which remained incomplete from the previous year and a significant number of projects which were initiated in response to new, high-priority needs. This report presents information on the scope of RSP activities during the year and describes how the program was managed, organized and implemented. Overviews are presented of research and support work undertaken in each field of activity and some highlights of results obtained are

  16. Strengthening operational safety of the 3MW TRIGA MK-II research reactor of Bangladesh Atomic Energy Commission through modification and upgrade of its water system

    International Nuclear Information System (INIS)

    The 3 MW TRIGA MK-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) attained its first criticality on 14 September 1986. Since then it has been operated at different power levels for manpower training, various R and D activities and isotope production. However, operation of the reactor had to be suspended temporarily for a number of times because of different types of problems mainly in the water systems of the reactor. The first problem was encountered in January 1990. It was a leakage problem in the suction line of the emergency core cooling system (ECCS). Then in September 1990 a welding joint of the exi-check valve located at the discharge side of one of the two primary pumps failed. As a result primary water started to leak out of the system at a slow rate. These problems were solved locally. However in July 1997 the 32,000 liter capacity N-16 decay tank (made of Type 6061-T6 aluminium alloy) got damaged due to corrosion. As the tank was found not to be repairable, it was decided to replace it by a new one. It was also strongly felt that the water system of the reactor needed to be upgraded such that operational safety of the reactor is strengthened. Keeping this in mind a contract was signed on 14 Jan. 2000 with the original reactor supplier to supply and install a new decay tank by replacing the old one. Under the contract provisions were also kept to upgrade the cooling system. The upgrading program mainly includes replacement of the fouled tube and shell type heat exchanger by a new plate type one, modification of the layout of the cooling pipes, installation of isolation valves, modification of the old ECCS, etc. It is expected that after completion of all these works by May 2001, operational safety of the BAEC TRIGA research reactor will be strengthened significantly. (author)

  17. The Future of Atomic Energy

    Science.gov (United States)

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  18. Energy Wave Model of Atom

    Institute of Scientific and Technical Information of China (English)

    伍细如

    2015-01-01

    proton emits energy wave, electron could sits any position away from nucleus, but be the most stable just when it sits at the trough of energy wave, and this position accords with Bohr radius and Schr?dinger equation.

  19. Why atomic energy affects Civil Law

    Energy Technology Data Exchange (ETDEWEB)

    Knieper, R.

    1980-01-01

    Based on the decision of July 20, 1979 by the Amtsgericht Stuttgart, which dismissed the complaint filed by the Technische Werke der Stadt Stuttgart (public utility) against electricity boycotters as being unfounded for the time being, the author states that a political function is due to Civil Law. The concrete question is whether political considerations have surpassed the limits of laws and interpretations bound by the basic rights. The relationship between a customer depending on power supply and the supply monopolist exceeds contractual relationship by far since it is a social relationship: it is inescapably embraced by the customer's dependence on power supply and by the customer being subject to research work. Atomic energy is being introduced into law of contract by means of dogmatic crutches - breach of additional obligation under a contract. However, in Civil Law, there are a great number of such means enabling solutions to be corrected which seem to be inadequate.

  20. Annual Report 2003 of the Institute of Atomic Energy

    International Nuclear Information System (INIS)

    Annual report of the Institute of Atomic Energy, Swierk (PL), described the results of the research work carried out at the Institute in 2003 year. The report contains detailed information on technical and research studies developed by all Institute Departments and Laboratories

  1. Atomic Energy of Canada Limited, annual report, 1995-1996

    International Nuclear Information System (INIS)

    The 1996 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of Parliament, Minister of Natural Resources. Included in this report are messages from Marketing and Commercial Operation, Product Development, i e.CANDU and Research Reactors, CANDU research, Waste Management, Environmental Management, Financial Review and also included are copies of the financial statements

  2. Bhabha Atomic Research Centre : annual report 1990

    International Nuclear Information System (INIS)

    Research and development (R and D) activities of the Bhabha Atomic Research Centre (BARC) carried out during 1990 are reported. The main thrust of the R and D activities of BARC is on : (1)providing support to the nuclear power programme, (2)designing, building and utilising research reactors, (3)working in related frontline technologies, and also (4)basic research in frontier areas of science. These activities are described in brief under the chapters entitled : (1)Physical Sciences (2)Chemical Sciences (3)Materials and Material Science (4)Radioisotopes (5)Reactions (6)Fuel Cycle (7)Radiological Safety and Protection (8)Electronics and Instrumentation (9)Engineering Services (10)Life Sciences and (11)General. At the end of each chapter a list of papers and reports published in the subject field indicated by the title of the chapter is given. (N.B.). figs., tabs

  3. Ps-atom scattering at low energies

    CERN Document Server

    Fabrikant, I I

    2015-01-01

    A pseudopotential for positronium-atom interaction, based on electron-atom and positron-atom phase shifts, is constructed, and the phase shifts for Ps-Kr and Ps-Ar scattering are calculated. This approach allows us to extend the Ps-atom cross sections, obtained previously in the impulse approximation [Phys. Rev. Lett. 112, 243201 (2014)], to energies below the Ps ionization threshold. Although experimental data are not available in this low-energy region, our results describe well the tendency of the measured cross sections to drop with decreasing velocity at $v<1$ a.u. Our results show that the effect of the Ps-atom van der Waals interaction is weak compared to the polarization interaction in electron-atom and positron-atom scattering. As a result, the Ps scattering length for both Ar and Kr is positive, and the Ramsauer-Townsend minimum is not observed for Ps scattering from these targets. This makes Ps scattering quite different from electron scattering in the low-energy region, in contrast to the inter...

  4. Israel Atomic Energy Commission 1996 Annual Report

    International Nuclear Information System (INIS)

    Selecting the research efforts to be highlighted in the Israel Atomic Energy Commission's Annual Report from the large body and broad spectrum of ongoing work is not an easy task. The extensive bibliography of published results attached to the report attests to the scope of this difficulty. Of the many worthwhile projects, four were chosen to represent best the current trends in the continuing R and D program at the research centers of the Israel Atomic Energy Commission. One of these trends is the growing cooperation with private industry, in an attempt to gear our R and D programs to respond to market demands. Another feature, noted already several years ago, is the extensive collaboration of our scientists and engineers with colleagues at other institutions, in Israel and abroad. some of the work reported is part of evolving international industrial cooperation projects, illustrating both these trends. Following a trend common to many nuclear research centers around the world, a substantial part of our research effort is non-nuclear in nature. This is illustrated in the first article, which deals with advances in the application of non-linear optics in diverse fields of science and technology. These include state-of-the-art solid-state lasers, rapid modulation of light signals, development and generation of tunable sources of coherent light, optical data storage and the microscopic probing of biological and inorganic samples. The present work reports on a range of R and D, from the fundamentals of non-linear optical materials to proof-of-principle demonstrations of non-linear subwavelength resolution microscopy, to fabrication of prototype commercial tunable laser systems The second report considers the microstrain characteristics in some alloys using X-ray diffraction (XRD). The research utilizes XRD line broadening effects to study the characteristics of alloys from especially prepared surfaces. These characteristics include the homogeneity of alloying

  5. Research with a cold atomic hydrogen maser

    International Nuclear Information System (INIS)

    The frequency stability of the hydrogen maser is limited by thermal noise within the atomic line-width and by additive noise at the receiver. By lowering the maser's temperature its stability can be improved both through reduced thermal noise and more favorable kinetic effects in the storage process. Predicted values of the fractional frequency stability are in the range of 10 to the -17th to 10 to the -18th power for averaging intervals of 100 to 1000 seconds. The wall shift and atomic line of an oscillating maser have been measured at temperatures of 77 to 25 K. Below 50 K this was accomplished by coating the storage bulb with tetrafluoromethane (CF4) applied through the dissociator. The results of these experiments are presented and directions for future research are discussed

  6. Survey report on development and utilization of atomic energy

    International Nuclear Information System (INIS)

    The Atomic Energy Bureau of Science and Technology Agency carried out a ''Survey of Development and Utilization of Atomic Energy'' in April 1985 to investigate the expenses for research and development; the number of researchers and technical workers; and facilities for and achievements of research and development in private firms. This report outlines major results of the survey. The total sales in the atomic power supply industry was 1,755,400 million yen, of which 75.6 percent was accounted for by the sales of nuclear reactors and related apparatus. For expenses for research and development, electric business units spend more money for work entrusted to other firms than for activities by themselves, while the contrary tendency was seen in the atomic power supply industry. It is revealed that Japanese firms concentrate much effort on the development of light water reactors. Firms in the atomic power supply industry spend more money on research and development activities compared to other industries. More than 50 percent of the researchers in the industry are engaged in studies on nuclear reactors and related apparatus. The greatest achievements have been made in the field of research and development of light water reactors and waste processing/disposal. (Nogami, K.)

  7. The Atomization Energy of Mg4

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The atomization energy of Mg4 is determined using the MP2 and CCSD(T) levels of theory. Basis set incompleteness, basis set extrapolation, and core-valence effects are discussed. Our best atomization energy, including the zero-point energy and scalar relativistic effects, is 24.6+/-1.6 kcal per mol. Our computed and extrapolated values are compared with previous results, where it is observed that our extrapolated MP2 value is good agreement with the MP2-R12 value. The CCSD(T) and MP2 core effects are found to have the opposite signs.

  8. Atomic energy to advance human progress

    International Nuclear Information System (INIS)

    Dr Manmohan Singh, the prime minister of India on the occasion of the inaugural ceremony of international conference on peaceful uses of atomic energy said that the return of India to the international nuclear global main streams is of high significance not only for India but for global energy security as well. It is not beyond the imagination of the human mind to devise solutions and strategies that exploit the vast potential of atomic energy to advance human progress, while assuring global peace and security

  9. ATOMIZATION CAUSED BY BOTTOM FLOW ENERGY DISSIPATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Bottom flow energy dissipation is one of the common energydissipation methods for flood-releasing structures with high water head. Measures of this energy dissipation depend mainly on the turbulent action of hydraulic jump.In this paper, the physical process and the calculating methods of the atomization caused by bottom flow energy dissipation were studied, the computation models of atomization quantity for the self-aerated flow in overflow and hydraulic jump regions are presented, and the main results are of theoretical and practical significance for the hydraulic and electric engineering.

  10. The mean excitation energy of atomic ions

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.

    2015-01-01

    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum...

  11. The Harnessed Atom: Nuclear Energy & Electricity.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  12. Systematic Calculations of Total Atomic Binding Energies

    International Nuclear Information System (INIS)

    We have calculated total atomic binding energies of 3- to 91-electron ions of all atoms with Z=3 to 118, in the Dirac-Fock model, for applications to atomic mass determination from highly-charged ions. In this process we have determined the ground-state configuration of many ions for which it was not known. We also provide total electronic correlation including Breit correlation for iso-electronic series of beryllium, neon, magnesium and argon, using the multiconfiguration Dirac-Fock approach.

  13. Basic plan of development and utilization of atomic energy, 1980

    International Nuclear Information System (INIS)

    The stable acquisition of energy is indispensable for the maintenance and improvement of national living standard and the development of social economy. The supply of oil tends to be tight in medium and long term perspective. Japan must acquire oil stably, save oil consumption as far as possible, and develop substitute energy. The development and utilization of atomic energy must be promoted as the most important subject in the energy policy because it is the most promising substitute energy. The nuclear power stations in operation in Japan are 21 plants with 15 million kW capacity, and it is equivalent to 12% of the total power generation. Adding the plants under construction and in preparation, the total becomes 35 plants and 28 million kW, but the construction is behind schedule due to the difficulty in the location of new power stations. As for the research and development on atomic energy, the establishment of nuclear fuel cycle such as the enrichment of uranium, the reprocessing of fuel and the treatment and disposal of radioactive wastes, the development of power reactors of new types, the research on nuclear fusion and so on have been endeavored. The maintenance of health of people and the preservation of environment are the prerequisities to the promotion of atomic energy. Japan contributes to form the new order on the basis of the results of INFCE. The development and utilization of atomic energy in 1980 are forwarded based on the basic policy described. (Kako, I.)

  14. Peaceful uses of atomic energy

    International Nuclear Information System (INIS)

    The IAEA's statutory mandate is to promote all applications of nuclear energy for peaceful purposes. While non-power applications - in agriculture, medicine, industry, etc. - have become widely used and mostly accepted, nuclear power has become more controversial and is facing serious public acceptance problems. Public concern centres on three issues - radioactive wastes, nuclear accidents and the risk of nuclear weapons proliferation. Any discussion of the acceptability or desirability of nuclear power is meaningful only if the alternatives are considered in parallel. The role of nuclear power and other energy sources in electricity generation is discussed and the factors in favour of nuclear energy outlined. Although the Chernobyl accident had strong impact on public opinion in many countries, it has until now had small direct impact on the prospects of nuclear power in the world as a whole. The IAEA's nuclear safety activities and the post-Chernobyl strengthening of international cooperation to minimise nuclear accident consequences are described. The IAEA's safeguards system and its application to Australia's uranium are reviewed. Through this system with its on-site inspections, the IAEA continuously verifies that nuclear materials and nuclear installations submitted to it (some 95% of all fissionable material and of all installations in non-nuclear weapon states) remain in exclusively peaceful use

  15. Atomic energy: a new start

    International Nuclear Information System (INIS)

    Mr. Lilienthal says that nuclear energy for electric power generation is a fact of life and, while political and technological mistakes have been made, the US must explore new technologies and develop a safe and acceptable way to use this energy source and provide the power that can save the world population from poverty and the environment from the hazards of fossil fuels. He feels that the public needs to be better informed about how nuclear power works and the realities of natural radiation. He also feels that the economic justification for light water reactor development should be put aside in favor of safety as the prime criterion for technology choices. The lessons of Three Mile Island, the Tennessee Valley Authority, and the issues of waste management, plant siting, regulation, and proliferation are examined as the learning experiences of a new industry. The former chairman of TVA and first leader of the AEC believes a serious commitment to nuclear energy can free much of the world's nonrenewable resources for distribution elsewhere

  16. Review and prospects of Atomic Energy Law

    International Nuclear Information System (INIS)

    At the 7th German Symposium on Atomic Energy Law which took place on March 16th, 1983 in Goettingen the Undersecretary of State of the Federal Ministery of the Interior, Dr. Guenter Hartkopf, delivered the opening speech. The speech deals with the conditions set by constitutional law and ethics, improvement of nuclear liability, guide line for incident response, participation of the public in licensing procedures under atomic energy law, necessary measures to prevent damage, the concept of waste management. Also in future the safety of the citizens has absolute priority. (orig./HSCH)

  17. Aims and procedures used for the evaluation of research results in the field of nuclear safety with regard to the application of the Atomic Energy Law. Vol. 1

    International Nuclear Information System (INIS)

    The purpose of this review, being executed for the Minister of the Interior of the German Federal Republic is to inform all parties involved in the licensing procedure as well as the consulting councils on the newest nuclear safety research results and the status of their verification in a precise, short manner. In addition experts opinions are given with regard to the relevance of these research results to nuclear rules and guidelines as well as to the execution of the Atomic Law. Each report is a short evaluation of a final research report. These evaluations are executed by specialists, who are acquainted with the technical aspects of the licensing procedure of nuclear power plants in the German Federal Republic. (orig.)

  18. Atomic Energy Bill (second reading)

    International Nuclear Information System (INIS)

    The Bill contains a number of unrelated proposals. The first would increase the financial limit imposed on British Nuclear Fuels plc by Acts of Parliament to Pound 2,000 million in line with current investment plans. The second would enable the Health and Safety Executive to recover the costs of nuclear safety research which it sponsors, from nuclear site licensees and applicants for licences. The next two proposals make minor technical amendments to the rules on insurance cover for meeting third party compensation claims in the event of nuclear incidents. Finally, the Bill would enable the United Kingdom to ratify the International Convention on Assistance in the case of nuclear accident or radiological emergency (mutual assistance convention). The Bill was debated for half an hour and is reported verbatim. In particular the financing of the Thermal Oxide Reprocessing Plant at BNFL's Sellafield site was discussed. Questions on vitrification of radioactive wastes were raised. (U.K.)

  19. A history of the Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Topics covered include the pre-history of the AECB, its creation, early operations and evolution, its relations with nuclear research, the uranium industry, and the nuclear power industry, its involvement with transportation and safeguards, and some current problems. The focus is on the Atomic Energy Control Act and regulations derived from the act

  20. Atomic Energy of Canada Limited annual report 1985-86

    International Nuclear Information System (INIS)

    The annual report of Atomic Energy of Canada Limited for the fiscal year ended March 31, 1986 covers the following subjects: report from the chairman and the president; research company; CANDU operations; radiochemical company; employee performance; nuclear Canada; Financial section; and board of directors and officers

  1. Atomic Energy Act and ordinances. 8. ed.

    International Nuclear Information System (INIS)

    The new issue of the text contains the Atomic Energy Act (AtG) in its new wording of the announcement of 31 Oct 76, the new wording of the ordinances put in effect in 1977: Atomic procedure ordinance (AtVfV), radiation protection ordinance (SSU), and atomic financial security ordinance (AtDeckV); furthermore the x-ray ordinance (RoeV) of 1978 in its wording which has been changed by the radiation protection ordinance. Also printed are the cost ordinance (AtKostV) of 1971, the food irradiation ordinance (LebensmBestrV) in the wording of 1975 and the medicine ordinance (ArzneimV) in the wording of 1971. An addition was made by adding to the liability laws the Paris agreement (PUE) on the liability towards third persons in the field of nuclear energy in the wording of the announcement of 5 Feb 76. (orig./HP)

  2. The International Atomic Energy Agency's safeguards system

    International Nuclear Information System (INIS)

    A system of international safeguards has been established to provide assurance that nuclear materials in civilian use are not diverted from their peaceful purpose. The safeguards system is administered by the International Atomic Energy Agency/Department of Safeguards and devolves from treaties and other international agreements. Inspectors from the Agency verify reports from States about nuclear facilities by audits, observation, and measurements. (author)

  3. International Atomic Energy Agency: Highlights of activities

    International Nuclear Information System (INIS)

    This document provides a brief, well-illustrated summary of the activities of the International Atomic Energy Agency in the months up to September 1992. Especially mentioned are the programmes to enhance the safety of nuclear power, from the study of nuclear reactors to assessing the radiological consequences of reactor accidents, and the areas of non-proliferation and safeguards

  4. International Atomic Energy Agency. Highlights of activities

    International Nuclear Information System (INIS)

    This document provides a brief, well-illustrated summary of the activities of the International Atomic Energy Agency in the months up to September 1991. Especially mentioned are the programmes to enhance the safety of nuclear power, from the study of nuclear reactors to assessing the radiological consequences of reactor accidents, and the areas of non-proliferation and safeguards

  5. Atomic Energy Act with ordinances. 16. ed.

    International Nuclear Information System (INIS)

    The convenient edition contains the entire body of German atomic energy and radiation protection laws in their updated version as of June 1992. Thus it also takes the amendments of the Atomic Energy Act (Article 22 Paragraph 1 Sentence 1 and Paragraph 3 as well as Article 46 Paragraph 3 Atomic Energy Act) into account on the basis of the Law on the Establishment of a Federal Export Office from February 28, 1992 (Code of Federal Laws I, pp. 376 ff). As a result of this law, which became effective as of April 1, 1992, within the scope of business of the Federal Ministry for Economic Affairs, a federal export office was established which was endowed with the status of a federal agency. This office is in charge of administrative and supervisory tasks on the federal level. Within the framework of the atomic energy law this agency is in charge of export and import permits as well as the supervision of the export and import of nuclear fuel and other radioactive materials. (orig./HP)

  6. Long-term nuclear knowledge management (NKM) of innovative nuclear energy systems (INES). A case study of the Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Within JAERI, funds invested in a 45-year study of LWR totaled 4.2b$ for research and 3.4b$ (34,718 man years) for personnel. The benefits to taxpayers from this JAERI work were estimated to be about 6.3b$ , resulting in a favorable cost-benefit ratio of 1.5 (6.3/4.2). JAERI is a national research institute and this figure may be regarded as sufficiently high, and many high risk and complex tasks were completed successfully. Funds invested in the 32-year study of HTGR were 1.5b$ for R and D and 0.3b$ (2966 man years) for personnel. Commercialized HTGR will result in a cost reduction of electricity during power generation. Retail cost is 0.36b$/year and the share of JAERI (MCP) is 0.018b$/year. Funds invested in the 32-year study of FR were 5.4b$ for R and D and 0.6b$ (6331 man years) for personnel. Estimate is that after commercialization in 2050, a FR will generate revenue from electricity as high as 1687b$ during the period 2050-2100, or 34b$/year - which is greater than that of LWR. However, there is substantial uncertainty in these estimates. To achieve long-term INES, it is necessary to develop the sustainable scenarios and the long-term robust NKM, as shown in the present study. (author)

  7. Energy research in Switzerland

    International Nuclear Information System (INIS)

    This brochure takes a look at energy research in Switzerland, and contains a foreword from the director of the Swiss Federal Office of Energy (SFOE), an interview with the president of the Swiss Energy Research Commission and a total of 12 articles on energy research-related topics. These include the expectations placed on energy research by politics, industry's point of view, figures on energy research in the nineties, financing aspects, international co-operation, solar technology, geothermal energy, fuel cells, sensible building for the future, nuclear fusion and socio-economical fundamentals. Private energy research is also focused on with examples of products produced by innovative small and medium-sized companies in Switzerland

  8. Thermoluminescence Dosimetry Studies at the Philippine Atomic Research Center

    International Nuclear Information System (INIS)

    Thermoluminescence dosimetry studies have been initiated at the Philippine Atomic Research Center of the Philippine Atomic Energy Commission. A recalibration of the equipment indicates a divergence from supplied calibration curves, especially with regard to the dark current. Operating currents and heating temperatures also show a statistical uncertainty of approximately 7%. Gamma-dose calibrations were undertaken using a 60Co gamma garden previously mapped with an R-meter and chemical dosimeters. Neutron dose calibrations have been attempted using the Philippine research reactor. Some isodose curves in a dry gamma room from a 20 000 Ci 60Co source inside the PRR-I reactor pool were presented. The values of parameters α, β, Np, N0 were obtained for both unannealed LiF and annealed LiF. The values fitted the model of thermoluminescence versus dose suggested by Cameron et al. Using the same model the values of these parameters were obtained for CaSO4 : Mn. (author)

  9. International Atomic Energy Agency activities in decommissioning

    International Nuclear Information System (INIS)

    Full text: The International Atomic Energy Agency (IAEA) has been addressing the safety and technical issues of decommissioning for over 20 years, but their focus has been primarily on planning. Up to know, the activities have been on an ad hoc basis and sometimes, important issues have been missed. A new Action Plan on the Decommissioning of Nuclear Facilities has recently been approved by the Agency's board of Governors which will focus the Agency's efforts and ensure that our Member States' concerns are addressed. The new initiatives associated with this Action Plan will help ensure that decommissioning activities in the future are performed in a safe and coherent manner. The International Atomic Energy Agency (IAEA) has been preparing safety and technical documents concerning decommissioning since the mid-1980's. There have been over 30 documents prepared that provide safety requirements, guidance and supporting technical information. Many of these documents are over 10 years old and need updating. The main focus in the past has been on planning for decommissioning. During the past five years, a set of Safety Standards have been prepared and issued to provide safety requirements and guidance to Member States. However, decommissioning was never a real priority with the Agency, but was something that had to be addressed. To illustrate this point, the first requirements documents on decommissioning were issued as part of a Safety Requirements [1] on pre-disposal management of radioactive waste. It was felt that decommissioning did not deserve its own document because it was just part of the normal waste management process. The focus was mostly on waste management. The Agency has assisted Member States with the planning process for decommissioning. Most of these activities have been focused on nuclear power plants and research reactors. Now, support for the decommissioning of other types of facilities is being requested. The Agency is currently providing technical

  10. Probing Dark Energy with Atom Interferometry

    CERN Document Server

    Burrage, Clare; Hinds, E A

    2015-01-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  11. Nuclear energy related research

    International Nuclear Information System (INIS)

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  12. Nuclear energy related research

    Science.gov (United States)

    Rintamaa, R.

    1992-05-01

    The annual Research Program Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Center of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Center for Radiation and Nuclear Safety (STUK), and VTT itself. Other research institutes, utilities, and industry also contribute to many projects.

  13. Nuclear energy related research

    International Nuclear Information System (INIS)

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  14. German Atomic Energy Act turns fifty

    International Nuclear Information System (INIS)

    The German Atomic Energy Act entered into force on January 1, 1960. It turns fifty at the beginning of 2010. Is this a reason to celebrate or rather the opposite? Lawyers, in principle, can view old pieces of legislation from 2 perspectives: On the one hand, aged laws are treated in a spirit of veneration and are celebrated as proven. On the other hand, an anniversary of this kind can be a welcome reason for demands to abolish or, at least, fundamentally renew that law. Over the past half century, the German Atomic Energy Act went through stormy and varied phases both of a legal and a political character. Its 50th anniversary is likely to spark off very conflicting evaluations as well. A review of legal history shows that the German or, rather, the Federal German Atomic Energy Act (AtG) was not a first-of-its-kind piece of legislation but stemmed from the 1957 EURATOM Treaty, in a way representing a latecomer of that treaty. The Atomic Energy Act experienced a number of important developments throughout its history: - In 1975, compulsory licensing of fuel element factories was introduced. - The back end of the fuel cycle, especially final storage, were incorporated in the Atomic Energy Act comprehensively first in 1976. - In 1985, legislators decided in favor of unlimited nuclear liability. - In 1994 and 1998, only some innovations in special items were introduced under the headings of environmental impact assessment and suitability for repository storage because the controversy about nuclear power did not permit a fundamental alignment towards a more comprehensive modern safety law. - The decision to opt out of the peaceful uses of nuclear power in 2002 drew the final line so far of decisions about directions of nuclear law in a major amendment. In parallel, the decisions by the Federal Constitutional Court and the Federal Administrative Court in the late 1970s and, above all, the 1980s provided important assistance which has remained valid to this day. What is

  15. Atomic energy and science disclosure in Cordoba

    International Nuclear Information System (INIS)

    In September 2009, considering the existing interest in public communication of scientific activities that are developed locally, a group of researchers and communicators from Córdoba, decided to form the Network of Outreach of Córdoba. Its stated objectives of the Constitutive Act are presented in this paper along with the main activities undertaken to date and plans for the future. Since that time, the Management of Institutional Relations of the CNEA in Córdoba became involved in public circulation of scientific knowledge, in what has proven to be a framework that ensures an adequate level of debate to present nuclear national activities. This will involve collaborative efforts with professional institutions involved in research, teaching and communicating science. The main objective was to encourage the transfer of knowledge to optimize available resources, improving the methodological approaches and generating creative products tailored to regional needs, in order to promote the democratization of science and nuclear technology. This paper consists of two parts. On the one hand describes the activities of the Network during the year 2011 shows results with particular emphasis on topics related to atomic energy, and secondly, shows the desirability of promoting such activities in the CNEA. Among the main actions considered, highlighting the institutional participation in the official Ministry of Science and Technology Fair participation in Science and Technology Provincial Cordoba 2011, issue of the radio program 'Green Light: Science and technology everyday life' by National Technological University Radio and a network of forty provincial stations, and active participation in the Course of Specialization in Public Communication of Science and Scientific Journalism, organized by the School of Information Sciences and the Faculty of Mathematics, Physics and Astronomy, National University of Cordoba, among others. (author)

  16. Physics for all, who want to join in conversation. On atomic power, dirty bombs, space research, solar energy, and the global heating

    International Nuclear Information System (INIS)

    Which dangers contains the global heating really? What can happen at an attack on a atomic power plant?. Which chances offer renewable energies? Questions which are put daily in the pursuing of news - but to which we have only seldomly answers ready, because basic physical knowledge is absent. But it must not even be the great world policy. Already at the decision wether solar cells shall be mounted on the roof or punted on geothermal heat physics are not unimportant. More often than we think it are natural sciences, which yield the foundations for important decisions. Richard A. Muller explains simply and illustratively, how physics determines our life. Thereby he removes prejudices and mediates quite surprising insights

  17. Research using energy landscape

    International Nuclear Information System (INIS)

    Energy landscape is a theoretical tool used for the study of systems where cooperative processes occur such as liquid, glass, clusters, and protein. Theoretical and experimental researches related to energy landscape are introduced in this review

  18. On the energy of electric field in hydrogen atom

    OpenAIRE

    Kornyushin, Yuri

    2009-01-01

    It is shown that hydrogen atom is a unique object in physics having negative energy of electric field, which is present in the atom. This refers also to some hydrogen-type atoms: hydrogen anti-atom, atom composed of proton and antiproton, and positronium.

  19. Energy research 2003 - Overview

    International Nuclear Information System (INIS)

    This publication issued by the Swiss Federal Office of Energy (SFOE) presents an overview of advances made in energy research in Switzerland in 2003. In the report, the heads of various programmes present projects and summarise the results of research in four main areas: Efficient use of energy, renewable energies, nuclear energy and energy policy fundamentals. Energy-efficiency is illustrated by examples from the areas of building, traffic, electricity, ambient heat and combined heat and power, combustion, fuel cells and in the process engineering areas. In the renewable energy area, projects concerning energy storage, photovoltaics, solar chemistry and hydrogen, biomass, small-scale hydro, geothermal energy and wind energy are presented. Work being done on nuclear safety and disposal regulations as well as controlled thermonuclear fusion are discussed

  20. Atomic physics experiments at the high energy storage ring

    Science.gov (United States)

    Stöhlker, Thomas; Litvinov, Yuri A.; the SPARC Collaboration

    2015-11-01

    Facility for Antiproton and Ion Research (FAIR), will offer unprecedented experimental opportunities. The Stored Particles Atomic Research Collaboration (SPARC) at FAIR aims at creating a worldwide unique research program with highly charged ions by utilizing storage ring and trapping facilities. The foreseen experiments will address physics at strong, ultra-short electromagnetic fields including the fundamental interactions between electrons and heavy nuclei as well as the experiments at the border between nuclear and atomic physics. In view of the staged construction of the FAIR facility, SPARC worked out an early realization scheme for experiments with highly-charged heavy-ions at relativistic energies to be conducted in the High-Energy Storage Ring.

  1. Nuclear energy related research

    International Nuclear Information System (INIS)

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  2. Nuclear energy related research

    International Nuclear Information System (INIS)

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  3. Nuclear energy related research

    International Nuclear Information System (INIS)

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  4. Atomic Mass and Nuclear Binding Energy for Fe-52 (Iron)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fe-52 (Iron, atomic number Z = 26, mass number A = 52).

  5. Atomic Mass and Nuclear Binding Energy for Sr-71 (Strontium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sr-71 (Strontium, atomic number Z = 38, mass number A = 71).

  6. Department of Atomic Energy: Annual report, 1983-84

    International Nuclear Information System (INIS)

    The annual report of the Department of Atomic Energy for the financial year 1983-84 describes its activities under the headings: Nuclear Power, Research and Development, Public Sector Undertakings, and Other Activities. The report surveys: (1) the performance of nuclear power plants at Tarapur, Kota and Kalpakkam, heavy water plants, fuel fabrication and reprocessing plants, and waste management facilities, (2) the research and development activities of Bhabha Atomic Research Centre at Bombay and its constituent units at various locations in the country, Reactor Research Centre at Kalpakkam, the aided institutes, namely, Tata Institute of Fundamental Research and Tata Memorial Centre, both at Bombay, and Saha Institute of Nuclear Physics at Calcutta, (3) performance of public sector undertakings: Indian Rare Earths Ltd., Uranium Corporation of India Ltd., and Electronics Corporation of India Ltd., (4) progress of nuclear power projects at Narora and Kakrapar, Orissa Sand Complex Project, MHD project at Tiruchirapalli, DHRUVA (formerly known as R-5) project at Bombay, Fast Breeder Test Reactor and 500 MW Prototype Fast Breeder Reactor projects at Kalpakkam, and heavy water projects at Thal-Vaishet and Manuguru, and (5) other activities including technology transfer; training; service to industry, agriculture and medicine in use of radioisotopes and radiation, export of radioisotopes, allied products and nuclear instruments; international relations; countrywide radiation safety programme, exploration of atomic minerals; information and publicity etc. An Atomic Energy Regulatory Board was established during the report year for the special purpose of carrying out regulatory and safety functions specified in the Atomic Energy Act of the Government of India. (M.G.B.)

  7. Department of Atomic Energy, annual report, 1980-81

    International Nuclear Information System (INIS)

    The annual report of the Department of Atomic Energy (DAE) of the Government of India for the period of the fiscal year 1980-81 surveys the work of DAE, its various constituent units and aided institutions. The main thrust of the DAE's programme in the country is directed towards peaceful uses of atomic energy - primarily for generation of electric power and also for application of radioisotopes and radiation in medicine, agriculture, and industry. The research and development (R and D) activities of the Bhabha Atomic Research Centre (BARC) at Bombay, the major R and D establishment of DAE, in the fields of nuclear physics, solid state physics, chemistry and materials science, isotope and radiation applications, reactor technology and radioactive waste management are described in detail. The R and D activities of the Reactor Research Centre at Kalpakkam and the aided institutions such as the Tata Institute of Fundamental Research and the Tata Memorial Centre, both at Bombay, and the Saha Institute of Nuclear Physics at Calcutta are reviewed in brief. Progress of the MHD project, the heavy water plant projects, the thermal research reactor R-5 project at BARC and nuclear power plant projects at Narora and Kalpakkam is surveyed. Performance of industrial production units such as nuclear power stations at Tarapur and Kota, the Nuclear Fuel Complex at Hyderabad, Atomic Minerals Division, ISOMED - the radiation sterilisation plant for medical products, the Indian Rare Earths Ltd., the Electronics Corporation of India Ltd., and the Uranium Corporation of India Ltd., is reported. India's participation in the activities of the International Atomic Energy Agency and collaboration with other countries are also mentioned. (M.G.B.)

  8. Using atom interferometry to detect dark energy

    Science.gov (United States)

    Burrage, Clare; Copeland, Edmund J.

    2016-04-01

    We review the tantalising prospect that the first evidence for the dark energy driving the observed acceleration of the universe on giga-parsec scales may be found through metre scale laboratory-based atom interferometry experiments. To do that, we first introduce the idea that scalar fields could be responsible for dark energy and show that in order to be compatible with fifth force constraints, these fields must have a screening mechanism which hides their effects from us within the solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon effect where the field's mass becomes dependent on the environment. The way the field behaves in the presence of a spherical source is determined and we then go on to show how in the presence of the kind of high vacuum associated with atom interferometry experiments, and when the test particle is an atom, it is possible to use the associated interference pattern to place constraints on the acceleration due to the fifth force of the chameleon field - this has already been used to rule out large regions of the chameleon parameter space and maybe one day will be able to detect the force due to the dark energy field in the laboratory.

  9. Proposed general amendments to the atomic energy control regulations

    International Nuclear Information System (INIS)

    Canada's Atomic Energy Control Act defines the powers and responsibilities of the Atomic Energy Control Board (AECB). Among these is to make regulations to control the development, application and use of atomic energy. In these proposed general amendments to the Atomic Energy Control Regulations substantial changes are proposed in the designation of the authority of AECB staff, exemptions from licensing, international safeguards, duties of licensees and atomic radiation workers, security of information, and provision for hearings. The scope of the control of atomic energy has been redefined as relating to matters of health, safety, security, international safeguards, and the protection of the environment

  10. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J. R. [ed.

    1977-01-01

    The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

  11. Fossil energy research meeting

    Energy Technology Data Exchange (ETDEWEB)

    Kropschot, R. H.; Phillips, G. C.

    1977-12-01

    U.S. ERDA's research programs in fossil energy are reviewed with brief descriptions, budgets, etc. Of general interest are discussions related to the capabilities for such research of national laboratories, universities, energy centers, etc. Of necessity many items are treated briefly, but a general overview of the whole program is provided. (LTN)

  12. Basic law of atomic energy for pacific uses

    International Nuclear Information System (INIS)

    This law comprehend information about the pacific uses of atomic energy. Likewise it creates the Commission of Atomic Energy and stipulates: it s organization and functions, regulations and licensures, responsibilities, income and patrimony. (SGB)

  13. Young students's opinion about atomic energy

    International Nuclear Information System (INIS)

    The present research work was performed in answer to a requirement that the CNEA-RC made to students of the Public and Institutional Relations Degree of the UES21, as a part of activities carried out in the framework of the Academic Cooperation Agreement between both institutions. In this case the students had to attend the Professional Practical course during the first semester of 2006, which included a short period in some company or organization. The Degree of Knowledge and the Opinion of the students from the Cycle of Specialization of the Province of Cordoba Educational System (ages between 15 and 17 years old), on the activities that are made in the site of CNEA-RC and DIOXITEK SA at Alta Cordoba neighborhood in Cordoba city has been analyzed. The same aspects were analyzed for Dioxitek's activities (equipment, raw materials, risk performance, etc.). Although the activities made at CNEA-RC involved during 2005/6 about 4000 students, due to the short time available for the practical part only the data of two schools located near the facilities were processed. Three aspects of the space conformed between the public and the general opinion were analyzed: the customs, the stereotypes and the attitudes of the people. These aspects were taken as the characteristics to describe to the opinions, their direction and intensity. The analysis was based on an exploratory investigation of type, characterized by its flexibility. The field work was of quantitative character. The surveys were structured with closed questions (categories of answers delimited previously on which the students must answer). For its design we used diverse sources of intelligence, such as pages of Internet, pamphlets, magazines, annual balances of the organizations, etc. The main results were the following: 1) The greater percentage of students declared to have little information on Atomic Energy. Only 4% declared to have abundant knowledge on the subject. 2) A 38% of the students indicated that

  14. Using Atom Interferometry to Detect Dark Energy

    CERN Document Server

    Burrage, Clare

    2015-01-01

    We review the tantalising prospect that the first evidence for the dark energy driving the observed acceleration of the Universe on giga-parsec scales may be found through metre scale laboratory based atom interferometry experiments. To do that, we first introduce the idea that scalar fields could be responsible for dark energy and show that in order to be compatible with fifth force constraints these fields must have a screening mechanism which hides their effects from us within the solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon effect where the field's mass becomes dependent on the environment. The way the field behaves in the presence of a spherical source is determined and we then go on to show how in the presence of the kind of high vacuum associated with atom interferometry experiments, and when the test particle is an atom, it is possible to use the associated interference pattern to place constraints on the acceleration due to the fifth force of the ...

  15. A study on the improvement of the legal system concerning Korean Atomic Energy Act

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Il Un; Jung, Jong Hak; Kim, Jae Ho; Moon, Jong Wook; Kim, In Sub [Chungnam National Univ., Taejon (Korea, Republic of)

    1998-03-15

    Cause-effect analysis, adjustment, and generalization of the current atomic energy act are contents of this research. These are to be based on the legal theory. Analysis of the current atomic energy act from the viewpoint of constitutional law and administrative law. Review of the other domestic legal systems which have similar problems as the atomic energy act has. Inquiry about the operation of nuclear legal systems of foreign nations.

  16. A study on the improvement of the legal system concerning Korean Atomic Energy Act

    International Nuclear Information System (INIS)

    Cause-effect analysis, adjustment, and generalization of the current atomic energy act are contents of this research. These are to be based on the legal theory. Analysis of the current atomic energy act from the viewpoint of constitutional law and administrative law. Review of the other domestic legal systems which have similar problems as the atomic energy act has. Inquiry about the operation of nuclear legal systems of foreign nations

  17. Nuclear energy related research

    International Nuclear Information System (INIS)

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  18. On INIS atomic energy literature file of JOIS

    International Nuclear Information System (INIS)

    The International Nuclear Information System (INIS) atomic energy literature file is the file made under IAEA, and the input related to the atomic energy in Japan into this file is carried out by the Japan Atomic Energy Research Institute. Now, the service of offering the information to the users in Japan was to be made by the Japan Information Center of Science and Technology through the on-line system JOIS. The INIS file is old in the world as the data base with the objective of mechanized retrieval, and the data bases set up thereafter followed its pattern. For example, the thesaurus for the purpose of precise information retrieval and the link connecting the relation of words to words were incorporated in the data base from the beginning. The JICST on-line information system (JOIS) started the service in April, 1976, and offers the service for 13 files. Now, as the 14th, the INIS file was added. The materials since January, 1976, have been collected, and as of 1983, the total number reached about 590,000. As the features of the INIS file, the literatures, books, reports, patents and so on related to the peaceful use of atomic energy are collected. The retrieval of necessary literatures is made on-line by using key words and others. Also secondary retrieval can be utilized. (Kako, I.)

  19. Training courses run by the Department of Atomic Energy, India

    International Nuclear Information System (INIS)

    The Department of Atomic Energy (DAE), India, conducts a large number of courses covering a variety of fields, mainly concerned with nuclear energy and its applications. These courses are : (1) a comprehensive multidisciplinary course in nuclear sciences and engineering, (2) courses in safety aspects of: (a) the medical uses of radioisotopes, (b) research applications of ionising radiations, (c) the industrial applications of radiation sources, and (d) industrial radiography; (3) industrial radiographer's certification course, (4) course in hospital physics and radiological physics, (5) diploma course in radiation medicine, (6) courses in operation and maintenance of: (a) research reactors and facilities, (b) nuclear power reactors, and (7) course in exploration of atomic minerals. Detailed information on these courses, covering institutions of DAE conducting them, duration, academic requirements for admission to them, method of adimission, detailed syllabus, and general information such as fees, accommodation, stipend if any, etc. is given. (M.G.B.)

  20. High energy halogen atom reactions activated by nuclear transformations

    International Nuclear Information System (INIS)

    This program, which has been supported for twenty-four years by the Us Atomic Energy Commission and its successor agencies, has produced significant advances in the understanding of the mechanisms of chemical activation by nuclear processes; the stereochemistry of radioactivity for solution of specific problems. This program was contributed to the training of approximately seventy scientists at various levels. This final report includes a review of the areas of research and chronological tabulation of the publications

  1. Decommissioning in the United Kingdom Atomic Energy Authority

    International Nuclear Information System (INIS)

    The United Kingdom Atomic Energy Authority's policy on decommissioning is described. Several fission reactors have already been taken out of service and the state of decommissioning is given. Estimates of the volume of decommissioning wastes are made. The wastes will be either intermediate-level or low-level wastes. Research and development programmes have been undertaken to allow decommissioning to be safe and cost-effective. Some of the contaminated facilities have been decontaminated and re-used. (U.K.)

  2. Atomic Energy Board, twenty first annual report, 1977

    International Nuclear Information System (INIS)

    Progress is reported on the following: nuclear materials, nuclear power, application of radioisotopes and radiation, health and safety, and fundamental studies undertaken in the fields of physics, chemistry, metallurgy, medicine and geology during 1977. The supporting activities of the computer services, engineering sevices, waste disposal plant, instrumentation section, research reactor and analytical services are given for 1977. The report contains a bibliography of publications published by staff members and bursars of the Atomic Energy Board during 1977

  3. Atomic-scale imaging of surfaces and interfaces. Materials Research Society Symposium Proceedings, volume 295

    Science.gov (United States)

    Biegelsen, David K.; Smith, David J.; Tong, S. Y.

    The gap between imagining and imaging is getting ever smaller. The Atomic-Scale Imaging of Surfaces and Interfaces, Symposium W at the 1992 MRS Fall Meeting in Boston, Massachusetts, brought together researchers using state-of-the-art imaging techniques capable of resolving atomic features. Methods represented were scanning tunneling microscopy (STM), atomic force microscopy (AFM), low energy electron microscopy (LEEM), transmission (TEM) and reflection (REM) electron microscopy, scanning electron microscopy (SEM), atom probe field ion microscopy (APFIM or POSAP), high and low energy external source electron holographies, and internal source electron holographies. Some highlights from the STM papers included discussions of the limitations and future potential of STM as well as current findings. Several papers presented work with STM at elevated temperatures. Jene Golovchenko reviewed STM work showing cooperative diffusion events (Pb on Ge) involving many tens of substrate atoms. Don Eigler focused on atomic manipulation and some of its uses to enable fundamental studies of small atomic clusters.

  4. Self-energy corrections in muonic atoms

    International Nuclear Information System (INIS)

    Numerical values of the Bethe logarithm for the 1s, 2s, 2p and 3p states in muonic atoms have been computed by assuming a uniform nuclear charge distribution of radius r0=1.2Asup(1/3)fm. The accuracy of the results has been checked against several sum rules obeyed by the oscillator strengths. The possible relevance of these results for more realistic models of the charge distribution is also discussed, and the lowest-order Lamb shift correction to muonic energy levels is reexamined

  5. Atomic energy wants new personality. An essay of education and personality in atomic energy

    International Nuclear Information System (INIS)

    New personality in atomic energy consists of personification of independence, democracy and publication. They are able to create new technologies and new plants with safety and maintenance. The technical experts and all the parties concerned have to explain the situation and the conditions of atomic energy in order to justify the people's trust in them. Only good personality with morals can obtain the confidence of the nation. It is important for new technical experts and all the parties concerned to receive an education related to sociality. (S.Y.)

  6. Re-evaluation of Assay Data of Spent Nuclear Fuel obtained at Japan Atomic Energy Research Institute for validation of burnup calculation code systems

    International Nuclear Information System (INIS)

    Highlights: → The specifications required for the analyses of the destructive assay data taken from irradiated fuel in Ohi-1 and Ohi-2 PWRs were documented in this paper. → These data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. → These destructive assay data are suitable for the benchmarking of the burnup calculation code systems. - Abstract: The isotopic composition of spent nuclear fuels is vital data for studies on the nuclear fuel cycle and reactor physics. The Japan Atomic Energy Agency (JAEA) has been active in obtaining such data for pressurized water reactor (PWR) and boiling water reactor (BWR) fuels, and some data has already been published. These data have been registered with the international Spent Fuel Isotopic Composition Database (SFCOMPO) and widely used as international benchmarks for burnup calculation codes and libraries. In this paper, Assay Data of Spent Nuclear Fuel from two fuel assemblies irradiated in the Ohi-1 and Ohi-2 PWRs in Japan are shown. The destructive assay data from Ohi-2 have already been published. However, these data were not suitable for the benchmarking of calculation codes and libraries because several important specifications and data were not included. This paper summarizes the details of destructive assay data and specifications required for analyses of isotopic composition from Ohi-1 and Ohi-2. For precise burnup analyses, the burnup values of destructive assay samples were re-evaluated in this study. These destructive assay data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. This indicates that the quality of destructive assay data from Ohi-1 and Ohi-2 PWRs is high, and that these destructive assay data are suitable for the benchmarking of burnup calculation code systems.

  7. European atomic energy law. Nuclear energy laws. 2. ed.

    International Nuclear Information System (INIS)

    The present re-edition closes a gap that had existed in particular in the German literature on European atomic energy law. This field of law is becoming more and more important through the introduction of new directives and regulations. The textbook starts with a discussion of the principles and international regulations of European atomic energy law. Forming its core is a presentation of the Euratom Treaty with all its regulations, directives, and decisions taken by the European Commission and the European Court of Justice. Since the Fukushima disaster, and as a result of the still ongoing renaissance of nuclear energy in many countries outside of Europe, a substantial demand has grown for information on international and specifically European nuclear energy law.

  8. Constitutionality of the Atomic Energy Act

    International Nuclear Information System (INIS)

    Roma locuta, causa finita. The Federal Constitutional Court declared in its decree of 8 August 1978 the peaceful uses of nuclear energy (Paragraph 7 sub-section 1 and 2 Atomic Energy Act) in NPPs of the so-called fast breeder type as constitutional for the time being. The excellent simplicity of the explanations, namely about the anavoidability and social adequancy of the so-called residual risk in a highly technical society and about the determining influence of practical ratio as a measure for the estimation of the residual risk which must be born by all citizens, creates a good clarification on the level of constitutional law. However, it remains, to be seen whether the decree can give the administrative courts any orientation help in the future and whether it will lead to an improved legal protection of all participants and a more effective handling of administrative processes. (orig.)

  9. Ninth German symposium on atomic energy law

    International Nuclear Information System (INIS)

    The symposium dealt with the forthcoming amendment to the Atomic Energy Law. There was an introductory presentation of the plans of the Federal Government for the amendment the aims attached to the amendment as seen by the Social Democratic Party and the revival of the nuclear option. The topics of the five work sessions were: questions concerning constitutional law - Laender administration on behalf of the Federal Government - subordinate legislation in the system of energy law; legislation on liability; financial security financing of decommissioning; licensing, supervision, retrofitting; waste disposal, ultimate waste disposal, fuel cycle. All lectures held in the work sessions and the reports on the discussions following them are included. Finally the amendment project was considered from the technological point of view and a resume was drawn. All 22 lectures have been seperately prepared for retrieval from the database. (HSCH)

  10. Danish Atomic Energy Commission Annual Report 1 April 1975 - 28 April 1976

    International Nuclear Information System (INIS)

    Activities of the Danish Atomic Energy Commission and the Research Establishment Risoe for the period 1 April 1975 - 28 April 1976 are summarized. Financial data are tabulated, and a list of staff publications is given. This is the last report before the dissolution of the Danish Atomic Energy Commission. (B.P.)

  11. Atomic energy for the peace and progress

    International Nuclear Information System (INIS)

    This document is a poster of the Commission of Atomic Energy of Costa Rica. In it some uses of atomic energy in Costa Rica, are mentioned. Some of them are: the technical cooperation, which has permitted to develop and to fortify the production and control of radio pharmaceuticals in the nuclear services of medicine. The diagnoses and medical processing, to acquire new equipment and to consolidate the maintenance and service of nuclear instrumentation. By means of technical of induced mutations, they have developed agricultural resistant varieties to the environmental conditions. Control of ripeness, genetic improvement of seeds, resistance to the illnesses and efficiency of the agronomic performance. The isotopic techniques of traces have great importance to evaluate the hydric resources, and their risk of contamination with toxic metals and pesticides. Nuclear techniques have been used to obtain information and to deepen in their knowledge. A laboratory of radiology control was established in the Technological Institute of Costa Rica, to give service to the industrial installations. To access the information of this field, the Nuclear Center of Information can be consulted, in the University of Costa Rica. (author)

  12. Nuclear methods in environmental and energy research

    International Nuclear Information System (INIS)

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research

  13. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J R [ed.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  14. Atomic energy. Section 5.6.2

    International Nuclear Information System (INIS)

    A brief outline is given of the research programme planned for Institutt for Atomenergi (IFA) in the years 1977-81. Research on nuclear power technology will be carried out within the Halden Reactor Project. IFA will also participate in the international Marviken programme and in American safety projects in the framework of IEA. Other activities will include energy technology research, also in IEA, mathematical and isotope methods in the petroleum field, isotope production and applications, fundamental research in solid state physics and process and environment technology. (JIW)

  15. Enthalpies of formation and atomization energies of rare earth halides

    International Nuclear Information System (INIS)

    On the basis of experimentally determined atomization energies and formation enthalpies of gaseous rare earth chlorides and theoretical insights of quantum-chemical model ''atom in a molecule'' the analysis of the known literature data on formation enthalpies and atomization energies for lanthanide fluorides, bromides and iodides has been carried out and their values are assessed for unexplored molecules

  16. Bhabha Atomic Research Centre (BARC) annual report 1985-86

    International Nuclear Information System (INIS)

    The research and development (R and D) activities and accomplishments during the financial year 1985-86 of the Bhabha Atomic Research Centre, Bombay are reported. The BARC is a multidisciplinary laboratory engaged in R and D activities in the field of nuclear energy. The main thrust of the R and D activities of the Centre is aimed at: (1) achieving targets of India's nuclear power programme, (2) indigenisation of the various steps in the nuclear fuel cycle, (3) developing and propagating peaceful applications of nuclear science and technology in the country in fields such as agriculture, medicine and industry, (4) providing scientific support to regulatory functions associated with nuclear facilities and radiation protection activities in the country. The salient features of these R and D activities are described in the chapters entitled: (1) physical sciences, (2) chemical sciences, (3) materials and materials sciences, (4) life sciences, (5) radioisotopes, (6) reactors, (7) fuel cycle, (8) health and safety, (9) electronics and instrumentation, and (10) technical services. A list of publications by the staff-members during the report period is given at the end of each chapter. The R and D activities of the outstation units of BARC, namely, Nuclear Research Laboratory at Srinagar, High Altitude Research Laboratory at Gulmarg, Variable Energy Cyclotron Centre at Calcutta and Gauribidanur Seismic Array near Bangalore are also covered in the report. Other activities of the Centre include technology transfer and manpower training which are also described briefly. (M.G.B.)

  17. Department of Atomic Energy [India]: Annual report 1978-79

    International Nuclear Information System (INIS)

    The research and development activities and achievements of the research organizations of the Department of Atomic Energy (DAE, India), progress of various DAE projects underway and performance of nuclear power plants and other public sector underking of DAE have been reported. The report covers the financial year 1978-79. Some of the major achievements during the year have been: (1) development of a portable local vacuum electron beam welding machine, (2) commissioning of the Variable Energy Cyclotron, Calcutta for obtaining an external beam of 30 MeV alphas, (4) locating minute leaks by tracer techniques on the 140 km. Koyali-Viramgam Oil pipeline and (5) investigation by tracer technique of geological fault at the Lakya dam site of the Kudremukh Iron Ore Project in Karnataka. The R and D work of the Bhabha Atomic Research Centre, Bombay; Reactor Research Centre, Kalpakkam; Tata Institute of Fundamental Research, Bombay; Saha Institute of Nuclear Physics, Calcutta, Tata Memorial Centre and Cancer Research Centre both at Bombay is summarised. (M.G.B.)

  18. Amendment of Atomic Energy Basic Law and the development of Atomic Energy Administration

    International Nuclear Information System (INIS)

    This article explains the key points of the major development of Atomic Energy Administration recently made by amendments of Atomic Energy Basic Law and other two relating laws. These amendments passed through the Diet and were enacted on 7th, June, 1978. The aim of them is focussed on reinforcement and rearrangement of safety controls on nuclear reactors. Previously, although the approval of the installation plan with basic designs of a nuclear reactor has been done by Prime Minister, further approvals of detailed designs and process of construction works, as well as inspections before and after operation have been conducted by each responsible minister, respectively. That is, those controls for power reactors have been within jurisdiction of minister of Trade and Industry, and for nuclear ships' reactors minister of Transportation has been responsible. Under the new system, above mentioned ministers continue to exercise almost same controls over reactors within their jurisdiction respectively, however the new laws have established so-called ''double check'' principle in that: when each responsible minister approves the installation, detailed designs and further stages of construction and operation of the reactor, he should hear and pay a great regard for opinions of Atomic Energy Commission and Atomic Energy Safety Commission. The latter is newly established organization which has similar status and authority to the former. (J.P.N.)

  19. Atomic Structure of Benzene Which Accounts for Resonance Energy

    OpenAIRE

    Heyrovska, Raji

    2008-01-01

    Benzene is a hexagonal molecule of six carbon atoms, each of which is bound to six hydrogen atoms. The equality of all six CC bond lengths, despite the alternating double and single bonds, and the surplus (resonance) energy, led to the suggestion of two resonanting structures. Here, the new atomic structure shows that the bond length equality is due to three carbon atoms with double bond radii bound to three other carbon atoms with resonance bond radii (as in graphene). Consequently, there ar...

  20. Energy research strategic plan

    International Nuclear Information System (INIS)

    Research and development is an essential element of economic prosperity and a traditional source of strength for the U.S. economy. During the past two decades, the way of introducing technological developments into the national economy has changed steadily. Previously, industry did most long-term technology development and some basic research with private funding. Today, the Nation's industry relies mostly on federally-funded research to provide the knowledge base that leads to new technologies and economic growth. In the 1980s, U.S. firms lost major technology markets to foreign competition. In response, many firms increased emphasis on technology development for near term payoff while decreasing long term research for new technology. The purpose of the Office of Energy Research of the U.S. Department of Energy (DOE) is to provide basic research and technology development that triggers and drives economic development and helps maintain U.S. world leadership in science. We do so through programs of basic and applied research that support the Department's energy, environmental and national defense missions and that provide the foundation for technical advancement. We do so by emphasizing research that maintains our world leadership in science, mathematics, and engineering and through partnerships with universities, National Laboratories, and industries across the Nation

  1. Energy research strategic plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Research and development is an essential element of economic prosperity and a traditional source of strength for the U.S. economy. During the past two decades, the way of introducing technological developments into the national economy has changed steadily. Previously, industry did most long-term technology development and some basic research with private funding. Today, the Nation`s industry relies mostly on federally-funded research to provide the knowledge base that leads to new technologies and economic growth. In the 1980s, U.S. firms lost major technology markets to foreign competition. In response, many firms increased emphasis on technology development for near term payoff while decreasing long term research for new technology. The purpose of the Office of Energy Research of the U.S. Department of Energy (DOE) is to provide basic research and technology development that triggers and drives economic development and helps maintain U.S. world leadership in science. We do so through programs of basic and applied research that support the Department`s energy, environmental and national defense missions and that provide the foundation for technical advancement. We do so by emphasizing research that maintains our world leadership in science, mathematics, and engineering and through partnerships with universities, National Laboratories, and industries across the Nation.

  2. Contributions to energy research

    International Nuclear Information System (INIS)

    Part A of this thesis deals with the question whether solar energy research makes sense or not. Based on physical considerations, the state of solar energy technology and its future potential it is shown that it is impossible to realize the solar alternative with today's dynamic of energy consumption. Nevertheless in long terms, there is no alternative to solar energy, if we are taking into account the pollution problems by hydrocarbon and nuclear energy production. Therefore the factors that determine energy consumption have to be investigated. The analysis shows that energy consumption is not only determined by natural science but more than this by social aspects. In the author's opinion, the most important factors are: the structure of society (including aspects of organization and geographical structures of the economic system), the way how society deals with energy (including role of energy prize) and the ethic background of society and its connection to energy consumption. Focussed on environmental and energy problems, these aspects and its interconnections are discussed in 21 theses. Part B of this thesis describes an electrochemical method of characterization of semiconductors, the so-called Mott-Schottky plots and the results which have been obtained by this method with p-type silicon in acetonitrile. (author) figs., tabs., refs

  3. Philippine Atomic Energy Commission 1972 - 1980

    International Nuclear Information System (INIS)

    This publication presents in a nutshell the organization, its facilities and equipment resources and its thrusts and accomplishments as contributions to the country's programs from 1972 to 1981. It enumerates its research and development program geared toward basic needs like food and agriculture, energy studies; industry and engineering, medicine, public health and nutrition, improvement of the human environment and other basic objective researches. Equally important besides its research and development program are its other functions on nuclear regulation and safety, technical extension services, nuclear public acceptance, nuclear manpower development, and its commitments in international affairs by means of bilateral agreements. (author)

  4. Bhabha Atomic Research Centre: annual report 1986-87

    International Nuclear Information System (INIS)

    The Research and Development (R and D) work and achievements of the Bhabha Atomic Research Centre, Bombay, during the financial year 1986-1987 are reported. The R and D activities of BARC cover the entire nuclear fuel cycle, production and use of radioisotopes, radiation protection and also basic research in several disciplines. The report is presented in the chapters entitled: Physical Sciences, Chemical Sciences, Materials and Materials Science, Life Sciences, Radioisotopes, Reactors, Fuel Cycle, Health and Safety, Electronics and Instrumentation, Engineering and General Services. At the end of each chapter are listed the journal articles published, the paper presented at conferences, symposia etc. and technical reports issued by the scientists of BARC in the subject field indicated by the title of the chapter. The R and D work of the outstation units of BARC, namely, Nuclear Research Laboratory at Srinagar, High Altitute Research Laboratory at Gulmarg, Variable Energy Cyclotron Centre at Calcutta and Gauribidanur Seismic Array near Bangalore are also described in the report. The report concludes with a brief account of: (1) transfer of technologies developed at the Centre, (2) activities related to human resource development for nuclear programmes of the country, and (3) progress of design and construction work of Centre for Advanced Technology at Indore. (M.G.B.)

  5. Innovation projects of atomic energy institute of national nuclear center RK in the area of peaceful use of atomic energy

    International Nuclear Information System (INIS)

    Institute of Atomic Energy of National Nuclear Center RK (IAE NNC RK) is located in Kurchatov. The city is situated at the border of former Semipalatinsk test site. The institute includes two reactor complexes - IGR and Baikal-1, which are rather distant from Kurchatov. Main activities of IAE NNC RK are: 1. Experimental researches of the nuclear power reactors safety; 2. Experimental researches of behavior of the structural materials for fusion and fission facilities under reactor irradiation; 3. Management of radioactive wastes; 4. Participation in the projects on decommissioning of the fast neutron reactor BN-350; 5. innovation projects: creation of first Kazakhstan's fusion reactor - tokamak KTM for materials; research and testing; development of new technologies (irradiated Be-recycling); development of new reactor technologies - project on creation of high temperature gas-cooled reactor KHTR. IAE NNC RK jointly with Japanese Atomic Energy Agency and with participation of Japanese Atomic Power Company is performing the activities on experimental substantiation of design of active core of prospective fast neutron reactor. Main goal of out-of-pile experiments at the EAGLE facility is obtaining of the information on fuel movement processes under conditions simulating the accident with melting of fast reactor core containing tube-design fuel assembly. Batch mixture is loaded into graphite crucible; then it is melded into electric melting furnace and poured into melt top trap. The outlet pipe is melted by the melt, which is poured into bottom melt trap through the pipe with sodium

  6. Atomic Energy Control Board vocabulary - preliminary edition

    International Nuclear Information System (INIS)

    This preliminary edition was prepared at the Board's request to help it establish a standardized terminology. It was produced by scanning the 99 French and English documents listed at the end of this Vocabulary. The documents include legislation concerning atomic energy and the transportation of radioactive materials, as well as the Board's publications, such as the Consultative Documents, Regulatory Documents and Notices. The terms included from the following areas are: radiation protection, reactor technology, nuclear fuel cycle, radioactive material packaging and transportation, radioactive waste management, uranium mines, and medical and industrial applications of radioelements. Also included are the titles of publications and the names of organizations and units. The vocabulary contains 2,589 concepts, sometimes accompanied by definitions, contexts or usage examples. Where terms have been standardized by the Canadian Committee for the Standardization of Nuclear Terminology, this has been indicated. Where possible, we have verified the terms using the TERMIUM, the Government of Canada Linguistic Data Bank. (author)

  7. Atomic Mass and Nuclear Binding Energy for Bh-318 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-318 (Bohrium, atomic number Z = 107, mass number A = 318).

  8. Atomic Mass and Nuclear Binding Energy for Bh-356 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-356 (Bohrium, atomic number Z = 107, mass number A = 356).

  9. Atomic Mass and Nuclear Binding Energy for Bh-322 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-322 (Bohrium, atomic number Z = 107, mass number A = 322).

  10. Atomic Mass and Nuclear Binding Energy for Bh-351 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-351 (Bohrium, atomic number Z = 107, mass number A = 351).

  11. Atomic Mass and Nuclear Binding Energy for Bh-310 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-310 (Bohrium, atomic number Z = 107, mass number A = 310).

  12. Atomic Mass and Nuclear Binding Energy for Bh-336 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-336 (Bohrium, atomic number Z = 107, mass number A = 336).

  13. Atomic Mass and Nuclear Binding Energy for Bh-299 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-299 (Bohrium, atomic number Z = 107, mass number A = 299).

  14. Atomic Mass and Nuclear Binding Energy for Bh-288 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-288 (Bohrium, atomic number Z = 107, mass number A = 288).

  15. Atomic Mass and Nuclear Binding Energy for Bh-359 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-359 (Bohrium, atomic number Z = 107, mass number A = 359).

  16. Atomic Mass and Nuclear Binding Energy for Bh-343 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-343 (Bohrium, atomic number Z = 107, mass number A = 343).

  17. Atomic Mass and Nuclear Binding Energy for Bh-304 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-304 (Bohrium, atomic number Z = 107, mass number A = 304).

  18. Atomic Mass and Nuclear Binding Energy for Bh-280 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-280 (Bohrium, atomic number Z = 107, mass number A = 280).

  19. Atomic Mass and Nuclear Binding Energy for Bh-349 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-349 (Bohrium, atomic number Z = 107, mass number A = 349).

  20. Atomic Mass and Nuclear Binding Energy for Bh-325 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-325 (Bohrium, atomic number Z = 107, mass number A = 325).

  1. Atomic Mass and Nuclear Binding Energy for Bh-332 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-332 (Bohrium, atomic number Z = 107, mass number A = 332).

  2. Atomic Mass and Nuclear Binding Energy for Bh-306 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-306 (Bohrium, atomic number Z = 107, mass number A = 306).

  3. Atomic Mass and Nuclear Binding Energy for Bh-324 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-324 (Bohrium, atomic number Z = 107, mass number A = 324).

  4. Atomic Mass and Nuclear Binding Energy for Bh-293 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-293 (Bohrium, atomic number Z = 107, mass number A = 293).

  5. Atomic Mass and Nuclear Binding Energy for Bh-327 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-327 (Bohrium, atomic number Z = 107, mass number A = 327).

  6. Atomic Mass and Nuclear Binding Energy for Bh-350 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-350 (Bohrium, atomic number Z = 107, mass number A = 350).

  7. Atomic Mass and Nuclear Binding Energy for Bh-308 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-308 (Bohrium, atomic number Z = 107, mass number A = 308).

  8. Atomic Mass and Nuclear Binding Energy for Bh-358 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-358 (Bohrium, atomic number Z = 107, mass number A = 358).

  9. Atomic Mass and Nuclear Binding Energy for Bh-321 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-321 (Bohrium, atomic number Z = 107, mass number A = 321).

  10. Atomic Mass and Nuclear Binding Energy for Bh-345 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-345 (Bohrium, atomic number Z = 107, mass number A = 345).

  11. Atomic Mass and Nuclear Binding Energy for Bh-286 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-286 (Bohrium, atomic number Z = 107, mass number A = 286).

  12. Atomic Mass and Nuclear Binding Energy for Bh-307 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-307 (Bohrium, atomic number Z = 107, mass number A = 307).

  13. Atomic Mass and Nuclear Binding Energy for Bh-303 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-303 (Bohrium, atomic number Z = 107, mass number A = 303).

  14. Atomic Mass and Nuclear Binding Energy for Bh-312 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-312 (Bohrium, atomic number Z = 107, mass number A = 312).

  15. Atomic Mass and Nuclear Binding Energy for Bh-294 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-294 (Bohrium, atomic number Z = 107, mass number A = 294).

  16. Atomic Mass and Nuclear Binding Energy for Bh-326 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-326 (Bohrium, atomic number Z = 107, mass number A = 326).

  17. Atomic Mass and Nuclear Binding Energy for Bh-273 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-273 (Bohrium, atomic number Z = 107, mass number A = 273).

  18. Atomic Mass and Nuclear Binding Energy for Bh-284 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-284 (Bohrium, atomic number Z = 107, mass number A = 284).

  19. Atomic Mass and Nuclear Binding Energy for Bh-315 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-315 (Bohrium, atomic number Z = 107, mass number A = 315).

  20. Atomic Mass and Nuclear Binding Energy for Bh-328 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-328 (Bohrium, atomic number Z = 107, mass number A = 328).

  1. Atomic Mass and Nuclear Binding Energy for Bh-311 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-311 (Bohrium, atomic number Z = 107, mass number A = 311).

  2. Atomic Mass and Nuclear Binding Energy for Bh-353 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-353 (Bohrium, atomic number Z = 107, mass number A = 353).

  3. Atomic Mass and Nuclear Binding Energy for Bh-348 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-348 (Bohrium, atomic number Z = 107, mass number A = 348).

  4. Atomic Mass and Nuclear Binding Energy for Bh-360 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-360 (Bohrium, atomic number Z = 107, mass number A = 360).

  5. Atomic Mass and Nuclear Binding Energy for Bh-347 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-347 (Bohrium, atomic number Z = 107, mass number A = 347).

  6. Atomic Mass and Nuclear Binding Energy for Bh-277 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-277 (Bohrium, atomic number Z = 107, mass number A = 277).

  7. Atomic Mass and Nuclear Binding Energy for Bh-309 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-309 (Bohrium, atomic number Z = 107, mass number A = 309).

  8. Atomic Mass and Nuclear Binding Energy for Bh-340 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-340 (Bohrium, atomic number Z = 107, mass number A = 340).

  9. Atomic Mass and Nuclear Binding Energy for Bh-285 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-285 (Bohrium, atomic number Z = 107, mass number A = 285).

  10. Atomic Mass and Nuclear Binding Energy for Bh-341 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-341 (Bohrium, atomic number Z = 107, mass number A = 341).

  11. Atomic Mass and Nuclear Binding Energy for Bh-283 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-283 (Bohrium, atomic number Z = 107, mass number A = 283).

  12. Atomic Mass and Nuclear Binding Energy for Bh-305 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-305 (Bohrium, atomic number Z = 107, mass number A = 305).

  13. Atomic Mass and Nuclear Binding Energy for Bh-331 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-331 (Bohrium, atomic number Z = 107, mass number A = 331).

  14. Atomic Mass and Nuclear Binding Energy for Bh-342 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-342 (Bohrium, atomic number Z = 107, mass number A = 342).

  15. Atomic Mass and Nuclear Binding Energy for Bh-300 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-300 (Bohrium, atomic number Z = 107, mass number A = 300).

  16. Atomic Mass and Nuclear Binding Energy for Bh-330 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-330 (Bohrium, atomic number Z = 107, mass number A = 330).

  17. Atomic Mass and Nuclear Binding Energy for Bh-296 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-296 (Bohrium, atomic number Z = 107, mass number A = 296).

  18. Atomic Mass and Nuclear Binding Energy for Bh-338 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-338 (Bohrium, atomic number Z = 107, mass number A = 338).

  19. Atomic Mass and Nuclear Binding Energy for Bh-270 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-270 (Bohrium, atomic number Z = 107, mass number A = 270).

  20. Atomic Mass and Nuclear Binding Energy for Bh-320 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-320 (Bohrium, atomic number Z = 107, mass number A = 320).

  1. Atomic Mass and Nuclear Binding Energy for Bh-346 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-346 (Bohrium, atomic number Z = 107, mass number A = 346).

  2. Atomic Mass and Nuclear Binding Energy for Bh-274 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-274 (Bohrium, atomic number Z = 107, mass number A = 274).

  3. Atomic Mass and Nuclear Binding Energy for Bh-357 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-357 (Bohrium, atomic number Z = 107, mass number A = 357).

  4. Atomic Mass and Nuclear Binding Energy for Bh-319 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-319 (Bohrium, atomic number Z = 107, mass number A = 319).

  5. Atomic Mass and Nuclear Binding Energy for Bh-337 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-337 (Bohrium, atomic number Z = 107, mass number A = 337).

  6. Atomic Mass and Nuclear Binding Energy for Bh-329 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-329 (Bohrium, atomic number Z = 107, mass number A = 329).

  7. Atomic Mass and Nuclear Binding Energy for Bh-276 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-276 (Bohrium, atomic number Z = 107, mass number A = 276).

  8. Atomic Mass and Nuclear Binding Energy for Bh-335 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-335 (Bohrium, atomic number Z = 107, mass number A = 335).

  9. Atomic Mass and Nuclear Binding Energy for Bh-314 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-314 (Bohrium, atomic number Z = 107, mass number A = 314).

  10. Atomic Mass and Nuclear Binding Energy for Bh-281 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-281 (Bohrium, atomic number Z = 107, mass number A = 281).

  11. Atomic Mass and Nuclear Binding Energy for Bh-282 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-282 (Bohrium, atomic number Z = 107, mass number A = 282).

  12. Atomic Mass and Nuclear Binding Energy for Bh-339 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-339 (Bohrium, atomic number Z = 107, mass number A = 339).

  13. Atomic Mass and Nuclear Binding Energy for Bh-275 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-275 (Bohrium, atomic number Z = 107, mass number A = 275).

  14. Atomic Mass and Nuclear Binding Energy for Bh-289 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-289 (Bohrium, atomic number Z = 107, mass number A = 289).

  15. Atomic Mass and Nuclear Binding Energy for Bh-316 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-316 (Bohrium, atomic number Z = 107, mass number A = 316).

  16. Atomic Mass and Nuclear Binding Energy for Bh-354 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-354 (Bohrium, atomic number Z = 107, mass number A = 354).

  17. Atomic Mass and Nuclear Binding Energy for Bh-355 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-355 (Bohrium, atomic number Z = 107, mass number A = 355).

  18. Atomic Mass and Nuclear Binding Energy for Bh-295 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-295 (Bohrium, atomic number Z = 107, mass number A = 295).

  19. Atomic Mass and Nuclear Binding Energy for Bh-272 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-272 (Bohrium, atomic number Z = 107, mass number A = 272).

  20. Atomic Mass and Nuclear Binding Energy for Bh-334 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-334 (Bohrium, atomic number Z = 107, mass number A = 334).

  1. Atomic Mass and Nuclear Binding Energy for Bh-279 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-279 (Bohrium, atomic number Z = 107, mass number A = 279).

  2. Atomic Mass and Nuclear Binding Energy for Bh-323 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-323 (Bohrium, atomic number Z = 107, mass number A = 323).

  3. Atomic Mass and Nuclear Binding Energy for Bh-352 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-352 (Bohrium, atomic number Z = 107, mass number A = 352).

  4. Atomic Mass and Nuclear Binding Energy for Bh-298 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-298 (Bohrium, atomic number Z = 107, mass number A = 298).

  5. Atomic Mass and Nuclear Binding Energy for Bh-317 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-317 (Bohrium, atomic number Z = 107, mass number A = 317).

  6. Atomic Mass and Nuclear Binding Energy for Bh-344 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-344 (Bohrium, atomic number Z = 107, mass number A = 344).

  7. Atomic Mass and Nuclear Binding Energy for Bh-302 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-302 (Bohrium, atomic number Z = 107, mass number A = 302).

  8. Atomic Mass and Nuclear Binding Energy for Bh-292 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-292 (Bohrium, atomic number Z = 107, mass number A = 292).

  9. Atomic Mass and Nuclear Binding Energy for Bh-287 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-287 (Bohrium, atomic number Z = 107, mass number A = 287).

  10. Atomic Mass and Nuclear Binding Energy for Bh-301 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-301 (Bohrium, atomic number Z = 107, mass number A = 301).

  11. Atomic Mass and Nuclear Binding Energy for Bh-291 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-291 (Bohrium, atomic number Z = 107, mass number A = 291).

  12. Atomic Mass and Nuclear Binding Energy for Bh-278 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-278 (Bohrium, atomic number Z = 107, mass number A = 278).

  13. Atomic Mass and Nuclear Binding Energy for Bh-290 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-290 (Bohrium, atomic number Z = 107, mass number A = 290).

  14. Atomic Mass and Nuclear Binding Energy for Bh-333 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-333 (Bohrium, atomic number Z = 107, mass number A = 333).

  15. Atomic Mass and Nuclear Binding Energy for Bh-268 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-268 (Bohrium, atomic number Z = 107, mass number A = 268).

  16. Atomic Mass and Nuclear Binding Energy for Bh-313 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-313 (Bohrium, atomic number Z = 107, mass number A = 313).

  17. Atomic Mass and Nuclear Binding Energy for Bh-271 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-271 (Bohrium, atomic number Z = 107, mass number A = 271).

  18. Atomic Mass and Nuclear Binding Energy for Bh-269 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-269 (Bohrium, atomic number Z = 107, mass number A = 269).

  19. Atomic Mass and Nuclear Binding Energy for Bh-297 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-297 (Bohrium, atomic number Z = 107, mass number A = 297).

  20. Atomic Structure of Benzene Which Accounts for Resonance Energy

    CERN Document Server

    Heyrovska, Raji

    2008-01-01

    Benzene is a hexagonal molecule of six carbon atoms, each of which is bound to six hydrogen atoms. The equality of all six CC bond lengths, despite the alternating double and single bonds, and the surplus (resonance) energy, led to the suggestion of two resonanting structures. Here, the new atomic structure shows that the bond length equality is due to three carbon atoms with double bond radii bound to three other carbon atoms with resonance bond radii (as in graphene). Consequently, there are two kinds of CH bonds of slightly different lengths. The bond energies account for the resonance energy.

  1. Proceedings of the seminar on the joint research project between JAERI and Universities. 'Actinide researches for 21st century - fusion between chemistry and engineering'. August 20-21, 1999, Japan Atomic Energy Research Inst., Tokai, Japan

    International Nuclear Information System (INIS)

    The Seminar on the Joint Research Project between JAERI and Universities was held in Tokai, August 20-21, 1999, to discuss future perspectives of the actinide researches for the nuclear fuel cycle. The papers related to the Joint Research Project on the Backend Chemistry were presented and discussed. The present report complies the papers contributed to the Seminar. (author)

  2. Proceedings of the seminar on the joint research project between JAERI and Universities. 'Actinide researches for 21st century - fusion between chemistry and engineering'. August 20-21, 1999, Japan Atomic Energy Research Inst., Tokai, Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    The Seminar on the Joint Research Project between JAERI and Universities was held in Tokai, August 20-21, 1999, to discuss future perspectives of the actinide researches for the nuclear fuel cycle. The papers related to the Joint Research Project on the Backend Chemistry were presented and discussed. The present report complies the papers contributed to the Seminar. (author)

  3. Israel Atomic Energy Commission 1997 Annual Report

    International Nuclear Information System (INIS)

    The 1997 Annual Report is published in a special year for Israel, marking the 50th anniversary of its independece and statehood. From its inception, and the election of a distinguished scientist as its first president, Israel has regarded science and technology as a central pillar for future AEC development and a lever for improved quality of life of its people. The Israel Atomic Energy Commission, which will be celebrating its own anniversary in a few years, has made a modest but significant contribution to the establishment and growth of the technological infrastructure of the country. The first article in this Annual Report focuses attention on yet another aspect of our continuing investigation of the basic properties of technologically interesting and important materials, presented in our 1994 and 1996 Annual Reports. The current entry describes an application of the nuclear Time Differential Perturbed Angular Correlation technique to the study of the structure and properties of metal-hydrogen compounds, of potential interest within the framework of future, environmentally attractive hydrogen-burning energy systems, and in fusion power reactors. The second article also relates to some basic aspects of nuclear fusion. A theoretical study of the behavior and properties of laser-generated hot plasmas resulted in the proposal of a new confinement scheme, in which a plasma generated by circularly polarized laser light is confined in a miniature magnetic bottle created by magnetic fields induced in the plasma by the same light. The paper discusses the conditions under which such confinement and ensuing energy gain may be achieved. Measurements of actual axial magnetic fields generated in plasma by intense circularly polarized laser light are also reported. The third report describes one of our ongoing efforts to improve and streamline the techniques and procedures used in medical applications of radioisotopes. Replacement of the customary )311 solutions for

  4. A study of the kinetic energy density functional for atoms

    International Nuclear Information System (INIS)

    This paper studies the rigorous kinetic energy density functional at the level of the Hartree-Fock method for closed electron shell atoms. The behaviour of the kinetic energy and its components, is analysed as the atomic number N increases. It is shown that the increments of the specific energies for two consecutive closed electron shells atoms depend distinctly on the electron configuration of the last electron shell. 35 refs, 1 fig., 4 tabs

  5. The Atomic Energy Corporation: facing up to the challenge of commercialisation

    International Nuclear Information System (INIS)

    The Atomic Energy Corporation of South Africa recently announced that it would make its considerable expertise available to industry. The background to the Corporation's change in strategy, from a research organization to a commercial business, is presented. 2 ills

  6. Atomic energy policy in fiscal year 1985

    International Nuclear Information System (INIS)

    The international demand and supply of petroleum advance in relaxed condition at present, but tend to get stringent in long term. Nuclear power is the most promising substitute energy for petroleum, and in Japan, 28 nuclear power plants with 20.56 million kW output are in operation, generating 20.4% of the total generated power in 1983. According to the perspective of long term power supply, the installed capacity of nuclear power plants will reach 62 million kW and 27% of the total installed capacity by 2000. It is important to positively deal with the industrialization of nuclear fuel cycle, the upgrading of nuclear power generation, the development of the reactors of new types and so on, preparing for the age that nuclear power generation will become the center of power supply. The atomic energy policy of the Ministry of International Trade and Industry in fiscal year 1985 is reflected to the budget, financial investment and funding and other measures based on the above viewpoint. The outline of the budget and financial investment and funding for fiscal year 1985 is explained. The points are the promotion of industrialization of nuclear fuel cycle, the promotion of nuclear power generation and the promotion of understanding and cooperation of nation on the location of electric power sources. (Kako, I.)

  7. Atomic Energy Control Act, c A.19, s.1

    International Nuclear Information System (INIS)

    The Revised Statutes of Canada 1985 entered into force on 12 December 1988, revoking the previous Atomic Energy Control Act and replacing it with a new version. The new Act (Chapter A-16 of the Revised Statutes) updates the previous text and makes some linguistic corrections. The Atomic Energy Control Act establishes the Atomic Energy Control Board and sets out its duties and powers which include, in particular, the making of regulations for developing, controlling and licensing the production, application and use of atomic energy

  8. Determination of Atomic Data Pertinent to the Fusion Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  9. A New Instrument Design for Imaging Low Energy Neutral Atoms

    Science.gov (United States)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  10. Agreement among the Portuguese Republic, the Government of the United States of America and the International Atomic Energy Agency for assistance in securing nuclear fuel for a research reactor

    International Nuclear Information System (INIS)

    The text of the Agreement among the Portuguese Republic, the Government of the United States of America and the International Atomic Energy Agency for Assistance in Securing Nuclear Fuel for a Research Reactor is reproduced in this document for the information of all Members of the Agency. The Agency's Board of Governors approved the above mentioned Agreement on 14 June 2006. The Agreement was signed by the authorized representatives of Portugal on 27 June 2006 and the United States on 13 December 2006, and by the Director General of the IAEA on 14 December 2006. Pursuant to the Article XII.1 of the Agreement, the Agreement entered into force on 19 April 2007, the date on which the Agency received written notification from Portugal that its internal requirements for entry into force had been met

  11. Agreement among the Government of the Republic of Poland, the Government of the United States of America and the International Atomic Energy Agency for assistance in securing nuclear fuel for a research reactor

    International Nuclear Information System (INIS)

    The text of the Project and Supply Agreement among the Government of the Republic of Poland, the Government of the United States of America and the International Atomic Energy Agency for Assistance in Securing Nuclear Fuel for a Research Reactor is reproduced in this document for the information of all Members of the Agency. The Agency's Board of Governors approved the above mentioned Project and Supply Agreement on 14 June 2006. The Agreement was signed by the authorized representatives of Poland on 8 January 2007, the United States on 12 January 2007 and by the Director General of the IAEA on 16 January 2007. Pursuant to the Article XII of the Agreement, the Agreement entered into force on 16 January 2007, upon signature by the representatives of Poland, the United States and the Director General of the IAEA

  12. Agreement Between the International Atomic Energy Agency, the Government of Jamaica and the Government of the United States of America for Assistance in Securing Low Enriched Uranium for a Research Reactor

    International Nuclear Information System (INIS)

    The text of the Agreement between the International Atomic Energy Agency, the Government of Jamaica and the Government of the United States of America for Assistance in Securing Low Enriched Uranium for a Research Reactor is reproduced in this document for the information of all Members of the Agency. The Agency's Board of Governors approved the text of the Agreement on 6 March 2013. The Agreement was signed by the authorized representatives of Jamaica on 25 November 2013, the United States on 2 May 2013 and the Director General of the IAEA on 16 December 2013. Pursuant to the Article XI of the Agreement, the Agreement entered into force on 16 December 2013, upon signature by the Director General of the IAEA and by the authorized representatives of Jamaica and the United States

  13. Nuclear regulation plans originated from the results of accidents or natural disasters and countermeasures adopted in Kinki University Atomic Energy Research Institute. The information in this paper hopes to ensure sensible and safe reactor management

    International Nuclear Information System (INIS)

    As a result of investigating cause and effect of accidents or natural disasters, the authorities concerned would introduce new regulations. It is desirable that the person in authority should negotiate with the parties concerned on the regulation. After following accidents and natural disasters, three negotiations were made between the person in authority and the Kinki University Atomic Energy Research Institute. (1) The accident at Three Mile Island nuclear power plant in 1979. (2) The crash near a nuclear power plant in Ehime prefecture in 1988. (3) The Great Hanshin Earthquake in 1995. The documents of the negotiations are described. They discuss ways of building up better relationships between the authorities and the parties concerned. (author)

  14. Magnetospheric imaging with low-energy neutral atoms.

    OpenAIRE

    1991-01-01

    Global imaging of the magnetospheric charged particle population can be achieved by remote measurement of the neutral atoms produced when magnetospheric ions undergo charge exchange with cold exospheric neutral atoms. Previously suggested energetic neutral atom imagers were only able to measure neutral atoms with energies typically greater than several tens of keV. A laboratory prototype has been built and tested for a different type of space plasma neutral imaging instrument, which allows ne...

  15. Quantum Effects at Low Energy Atom-Molecule Interface

    OpenAIRE

    Deb, B.; Rakshit, A.; Hazra, J.; Chakraborty, D.

    2013-01-01

    Quantum interference effects in inter-conversion between cold atoms and diatomic molecules are analysed. Within the framework of Fano's theory, continuum-bound anisotropic dressed state formalism of atom-molecule quantum dynamics is presented. This formalism is applicable in photo- and magneto-associative strong-coupling regimes. The significance of Fano effect in ultracold atom-molecule transitions is discussed. Quantum effects at low energy atom-molecule interface are important for explorin...

  16. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, No. 29. April 1, 1995 - March 31, 1996

    International Nuclear Information System (INIS)

    The annual research activities of the Osaka Laboratory for Radiation Chemistry, JAERI, during the fiscal year 1995, are reported. The research activities were conducted under two research programs: the study on laser-induced organic chemical reactions and the study on basic radiation technology for functional materials. Detailed description of the activities are presented as reviews on the following subjects: laser-induced chemical transformation, laser-induced reaction of polymer surface, photochemical separation of stable isotopes, microprocessing by radiation-induced polymerization, preparation of fine metal particles by gamma-ray irradiation, and electron beam dosimetry. The operation report of the irradiation facility is also included. In October 1995, the Osaka Laboratory was dissolved into the Kansai Research Establishment which was newly inaugurated to promote advanced photon research. Therefore, this is the final issue of the annual report of the Osaka Laboratory for Radiation Chemistry. (author)

  17. Recent developments at the atomic and molecular data unit of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    The Atomic and Molecular (A+M) Data Unit of the IAEA main purpose is to establish and maintain databases in support of nuclear fusion energy research. This encompasses a very large number of processes in atomic, molecular, and plasma - material interaction physics. Recent improvements and additions to these databases are presented. A prototype search engine, which searches five different sites for radiative data and two sites for electron impact excitation and ionization data is introduced. It is available at the IAEA, Weizmann Institute and GAPHYOR web sites. Data on erosion materials produced by the Co-ordinated research project (CRP) 'Plasma-interaction induced erosion of fusion reactor materials' was evaluated, fitted to physically realistic forms for angle and energy dependence and the resulting fits were added to the online electronic database. In a CRP on radiative power losses in plasmas, many lenghtly modelling calculations were carried out. In addition to providing the calculated radiated power, effective ionisation and recombination rate coefficients were derived. These data were stored along with the populations of the ion stages as well as the total radiation from each ion stage. Thus, it is possible to use these data to interpolate in temperature and electron density to obtain the radiated power at an arbitrary temperature and density. A preliminary version of a new interface to the bibliographic database at the A+M Data unit was developed, it allows the user to search by author and/or keyword. The resulting references are displayed along with a link to the home page of the journal where possible. A code for calculation electron impact excitation cross sections using the so-called 'average approximation' and a version of the Hartree-Fock atomic structure code were installed in the unit and can be run through an interface at the web page. (nevyjel)

  18. Arctic Energy Resources: Energy Research

    Science.gov (United States)

    Gryc, George

    1984-04-01

    Arctic Energy Resources is a volume of 26 papers recording the proceedings of the Comite' Arctique International Conference, held at the Veritas Centre, Oslo, Norway, September 22-24, 1982. This was the fourth of a series of meetings on the Arctic organized by the Comite', an organization established in the Principality of Monaco with the active support of H.S.H. Prince Rainer III. The fourth Conference was opened by H.R.H. Crown Prins Harald of Norway, a noble beginning for a noble objective.The North Polar Region has drawn world attention recently because of several large hydrocarbon and other mineral discoveries and because of major political and environmental actions in the North American Arctic. Since 1923 when Naval Petroleum Reserve number 4 (NPR-4) was established, northern Alaska has been considered a major petroleum province. It was first explored systematically with modern techniques from 1943 to 1953. In 1958, Alaska became a state, and both federal and state lands in northern Alaska were available for private exploration. Building on the knowledge base provided by the Pet-4 program and its spinoff research laboratory at Barrow, industry explored the area east of NPR-4 and discovered the largest hydrocarbon accumulation (9.6 bbl crude oil and 26 Tcf (trillion cubic feet) gas) in North America at Prudhoe Bay. Concerns for environmental impacts, including oil spills, led to the passing of the National Environmental Policy Act in 1969. In 1970, over 9 million acres were set aside, now known as the Arctic National Wildlife Range, and in 1971 the Alaska Native Claims Settlement Act was passed by the U.S. Congress. The Arab oil embargo of 1973 heightened the energy crisis and changed the economic basis for further exploration in the Arctic. The convergence of these events dramatically changed the balance of power and the pace of activity in the North American Arctic.

  19. TRIGA International - History of Training Research Isotope production General Atomics

    International Nuclear Information System (INIS)

    TRIGA conceived at GA in 1956 by a distinguished group of scientists including Edward Teller and Freeman Dyson. First TRIGA reactor Mk-1 was commissioned on 3 may 1958 at G.A. Characteristic feature of TRIGA reactors is inherent safety: Sitting can be confinement or conventional building. TRIGA reactors are the most prevalent in the world: 67 reactors in 24 countries. Steady state powers up to 14 MWt, pulsing up to 22,000 MWt. To enlarge the scope of its manufactured products, CERCA engaged in a Joint Venture with General Atomics, and in July 1995 a new Company was founded: TRIGA INTERNATIONAL SAS (50% GA, 50% CERCA; Head Office: Paris (France); Sales offices: GA San Diego (Ca, USA) and CERCA Lyon (France); Manufacturing plant: CERCA Romans. General Atomics ID: founded in 1955 at San Diego, California, by General Dynamics; status: Privately held corporation; owners: Neal and Linden Blue; business: High technology research, design, manufacturing, and production for industry and Government in the U.S. and overseas; locations: U.S., Germany, Japan, Australia, Thailand, Morocco; employees: 5,000. TRIGA's ID: CERCA is a subsidiary of AREVA, born in November 05, 1957. Activities: fuel manufacture for research reactor, equipment and components for high-energy physics, radioactive sources and reference sources; plants locations: Romans and Pierrelatte (France); total strength: 180. Since the last five years TRIGA has manufactured and delivered more than 800 fuel elements with a door to door service. TRIGA International has the experience to manufacture all types of TRIGA fuel: standard fuel elements, instrumented fuel elements, fuel followed control rods, geometry: 37.3 mm (1.47 in.), 35.8 mm (1.4 in), 13 mm (0.5 in), chemical Composition: U w% 8.5, 12, 20, 30 and 45 w/o, erbium and no erbium. TRIGA International is on INL's approved vendor list (ISO 9000/NQA) and is ready to meet any TRIGA fuel needs either in the US or worldwide

  20. Recent developments in atomic energy law

    International Nuclear Information System (INIS)

    The paper explains essential changes and their development not primarily from the legal point of view, but in the broader context of the events, consequences and demands that have induced recent developments on the political and legal level: The Chernobyl reactor accident and its impact on legal provisions for reactor safety and radiological protection. The political and legal disputes about the Hanau nuclear establishments; resulting effects with regard to licensing, the plutonium controversy, design of the nuclear fuel cycle, radioactive waste management, physical protection of nuclear installations, reliability of personnel, international safeguards and their implementation on national level. The paper also discusses recent court decisions concerning indicial control of administrative decisions, construction permits and transport licences, procedures under atomic energy law and water law, armed works protection forces, section 87, subsec. (1), 1st sentence of the BetrVG and permits and directives for nuclear installations, the legal position of foreigners from neighbour countries, and the legal institute of environmental impact assessment (as determined by the EC Directive of 27 June 1985). (RST)

  1. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 28). April 1, 1994 - March 31, 1995

    International Nuclear Information System (INIS)

    The annual research activities of Osaka Laboratory for Radiation Chemistry, JAERI during the fiscal year of 1994 (April 1, 1994 - March 31, 1995) are described. The research activities were conducted under two research programs: the study on laser-induced organic chemical reactions and the study on basic radiation technology for functional materials. Detailed descriptions of the activities are presented as reviews on the following subjects: laser-induced chemical transformation, laser-induced reaction of polymer surface, microprocessing by radiation-induced polymerization, preparation of fine metal particles by gamma ray irradiation, and electron beam dosimetry. The operation report of the irradiation facilities is also included. (author)

  2. Annual progress report of the U. S. C. Nuclear Physics Research Laboratory supported by US Atomic Energy Commission. [Dept. of Physics, Univ. of Southern California, 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-09-01

    Operation of the present accelerator is summarized and plans for a new injection system and additional machine modernization are described. Research results of both experimentalists and theorists are reviewed in very brief summaries; references are provided. (RWR)

  3. Atomic, Nuclear and Molecular Research Center CICANUM

    International Nuclear Information System (INIS)

    CICANUM has a Gamma Spectroscopy Laboratory, has been the laboratory official, appointed by the Ministerio de Agricultura in Costa Rica to analyze export products (for human consumption and animal), also, to determine radioactive contamination. The Laboratory has four systems using germanium detectors and canberra technology, including software Genie 2000 to establish the activity of cesium, iodine and natural gamma emitters in solid or liquid samples for food products, sediments and rocks. This Laboratory belongs to the Universidad de Costa Rica which has different institutes and research centers

  4. International Atomic Energy Agency Coordinated Research Project on Application of 3D Neutron Imaging and Tomography in Cultural Heritage Research. Report of the first Research Co-ordination Meeting

    International Nuclear Information System (INIS)

    Experts from the participating IAEA Member States presented their individual reports on their activities on Neutron Imaging (NI) as well as on Cultural Heritage (CH) studies. The participants also presented an overview of their facilities, ranging from conventional to advanced, and their plans for implementing or improving NI. From the presentations of the delegates it is evident that the current existing NI technology provides a unique non-destructive bulk analytical capability to the CH community. This technology entails 2-dimensional and 3-dimensional results, and is available at about 16 well equipped facilities throughout the world.The presentations also reported new techniques under development in NI which will be capable to further support the needs expressed by the CH community. These techniques expand the capability of the existing NI technology in the field of structural, chemical and elemental analysis. The CH-community favours non-invasive techniques to characterize their research objects, which include irreplaceable unique findings recovered from Archaeological-, Palaeontologic-, Human evolution- and Historical sites. Answers needed include identification of ancient manufacturing technology, detection of hidden features and objects, mensuration, authentication, provenance and identification of the best ways of conservation, etc. The experts welcome the initiation of a CRP to harmonize selected Neutron-based Imaging techniques in order to provide state-of-the-art end user services in the area of CH research. The CRP promotes NI technology utilization in all Member States, especially those in developing countries in order to encourage exploitation of all types of neutron sources for NI through CH research activities. These activities will establish and strengthen collaborations between the NI specialists and researchers from the CH community beyond the 3-year lifetime of this project. Standardization procedures and methodologies were addressed to achieve

  5. Books on Atomic Energy for Adults and Children

    Energy Technology Data Exchange (ETDEWEB)

    None

    1969-01-01

    This booklet contains two lists of atomic energy books, one for students and one for adults. The student list has grade annotations. The lists are not all-inclusive but comprise selected basic books on atomic energy and closely related subjects.

  6. Application of an open information on atomic energy

    International Nuclear Information System (INIS)

    In the field of atomic energy, 'Gray literature' problem is not significant. Because literatures are translated as soon as possible into English and delivered to related organizations of the world. A field of atomic energy is a specific field about open literature. It is important to continue to open information both at home and abroad. (author)

  7. The development of atomic energy in Sri Lanka

    International Nuclear Information System (INIS)

    This article was written by the Institution's overseas representative Professor P.P.G.L. Siriwardene, Chairman of the Atomic Energy Authority of Sri Lanka, with the express purpose of conveying to members of the Institution a broad outline of his country's interest in the peaceful uses of atomic energy. (author)

  8. Research on metal atom evaporation with 2-D steady flows

    International Nuclear Information System (INIS)

    Study of the evaporation is one of crucial technology in AVLIS (atomic vapor laser isotopic separation). The research work on physical parameters of atomic vapor in separation region such as the 2-D distributions of velocity, density and temperature provides some important scientific data for designing separator in AVLIS engineering. The distribution of density, velocity and temperature is presented and some related interpretations for them are also given on the basis of BGK equation, when many absorbing boards are considered

  9. Research in atomic and applied physics using a 6-GeV synchrotron source

    International Nuclear Information System (INIS)

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented

  10. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, 22. April 1, 1988 - March 31, 1989

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1988 through March 31, 1989. The latest report, for 1987, is JAERI-M 90-054. Detailed descriptions of the activities are presented in the following subjects : (i) studies on laser-induced organic chemical reactions and (ii) studies on radiation chemistry of high polymers and radiation dosimetry. (J.P.N.)

  11. International Atomic Energy Agency. Highlights of activities. September 1993

    International Nuclear Information System (INIS)

    This document describes the most important activities of the International Atomic Energy Agency during the period September 1992 - September 1993, in particular in the following areas: (i) nuclear power; (ii) nuclear fuel cycle; (iii) radioactive waste management; (iv) comparative assessment of energy sources; (v) IAEA laboratory activities; (vi) nuclear applications in the food industry and in agriculture; (vii) human health applications of nuclear techniques, especially in the treatment and prevention of diseases and in the analysis of health problems related to the environment; (viii) industry and earth sciences; (ix) physical and chemical sciences; (x) radiation protection; (xi) safety of nuclear installations; (xii) safeguards and non-proliferation activities; (xiii) activities in the area of public and technical information such as the International Nuclear Information System (INIS) and other IAEA computerized databases and reference systems, the publication Nuclear Fusion, a monthly scientific journal of articles on thermonuclear fusion research and development, and the organization of meetings on atomic energy; and (xiv) a description of the Agency's technical assistance activities, including financial data

  12. Decree of the Czechoslovak Atomic Energy Commission No. 9 as of 16 May 1985 on ensuring nuclear safety of nuclear research facilities

    International Nuclear Information System (INIS)

    Based on the State Surveillance over Nuclear Safety of Nuclear Facilities Act No. 28/1984, the Decree stipulates binding procedures to be adhered to by bodies, organizations and personnel responsible for the design, construction, commissioning, start-up, trial and permanent operation, reconstruction and decommissioning of nuclear research facilities. In addition to general nuclear safety requirements, the Decree sets requirements placed on in-service inspection, radiological protection of the facility environs, radiological protection within the facility, provisions against equipment failures, heat removal, fire protection, protection against effects arising from natural or man-made factors beyond the facility, protection against adverse human activities, and conditions for versatile uses of the facility. The Decree specifies requirements to be met by the reactor core design and by the instrumentation and control system, accident prevention system efficiency, links between the control and protective/preventive functions. Requirements are set for the research reactor cooling system, primary circuit design, quality control and in-service inspection, coolant makeup and purification system, residual heat removal system, emergency core cooling system and its in-service inspection, and secondary circuit design. Ionizing radiation protection principles are also laid down, covering ionizing radiation monitoring, ventilation and filtering systems, and radioactive substance releases into the environment. Conditions are set for the operation, reconstruction and decommissioning of nuclear research facilities: general provisions, personnel qualification and competence requirements, nuclear fuel handling, and limits and conditions. Requirements for physical and power start-up are also specified, as are requirements placed on security and emergency provisions. The Decree entered into force on 1 July 1985. (J.B.)

  13. Atomization of U3Si2 for research reactor fuel

    International Nuclear Information System (INIS)

    Rotating disk atomization technique is applied to KMRR (Korea Multi-purpose Research Reactor) fuel fabrication. A rotating disk atomizer is designed and manufactured locally and U-4.0 wt. % Si alloy powders are produced. The atomized powders are heat-treated to transform into U3Si and the mixture of U3Si and Al are extruded to fuel meat. Most of the atomized powders are spherical in shape. The microstructure of the powder is fine due to the rapid solidification. The time required for peritectoid reaction is reduced due to the fine microstructures and the resultant U3Si grain size is finer than ever obtained from ingot process. The mechanical properties of the fuel meat are improved: yield strength about 30 %, tensile strength 10% and elongation 250 % increased. (author)

  14. Atomic Energy of Canada Limited annual report 1989-1990

    International Nuclear Information System (INIS)

    In 1990, after a comprehensive industry review, the Canadian government announced that steps would be taken to revitalize the nuclear industry. Canada's nuclear utilities made a commitment to bear a large share of the cost of nuclear research and development. Atomic Energy of Canada Limited (AECL) reported its first financial loss in twelve years, as anticipated at the start of the year. Four of the 20 CANDU reactors operating worldwide were in the top ten based on lifetime performance. By year-end one foreign and two domestic utilities had announced their intention to build more CANDU units. The federal government has agreed to stabilize AECL's research funding at 1989-90 levels ($31.5 million above levels planned in 1985), has authorized AECL to negotiate with New Brunswick to build Point Lepreau-2 as the prototype for the CANDU-3 reactor, and has allowed the restructuring of AECL so utility and private sector investors can become equity partners in AECL CANDU

  15. Atomic energy as an humane endeavor: Retrospective on its development

    International Nuclear Information System (INIS)

    This report is a speech delivered in Tokyo, Japan, by the author. It covers the historical aspects of atomic energy, from the pre-fission days until present. Such pioneer experiments conducted by O. Hahn, L. Meitner, and F. Strassmann to describe barium isotopes as the result of bombardment of uranium with neutrons are discussed. The author also discussed in detail the pre-war nuclear research at Berkeley, a leading center of nuclear research. Such important events as the synthesis and identification of cobalt-60, iodine-131, and technetium-99m are also discussed. The author discussed the nuclear power as a source of electricity and the perspective on the future of nuclear power. 32 refs., 19 figs., 5 tabs

  16. Highly charged ions in exotic atoms research at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Anagnostopoulos, D.F.; Biri, S.; Boisbourdain, V.; Demeter, M.; Borchert, G.; Egger, J.P.; Fuhrmann, H.; Gotta, D.; Gruber, A.; Hennebach, M.; Indelicato, P.; Liu, Y.W.; Manil, B.; Markushin, V.E.; Marton, H.; Nelms, N.; Rusi El Hassani, A.J.; Simons, L.M. E-mail: leopold.simons@psi.ch; Stingelin, L.; Wasser, A.; Wells, A.; Zmeskal, J

    2003-05-01

    During their de-excitation, exotic atoms formed in low pressure gases reach a state of high or even complete ionization. X-rays emitted from higher n-states of electron-free atoms have well defined energies with the error originating only from the error in the mass values of the constituent particles. They served as a basis for a new determination of the pion mass as well as for a high precision measurement of the pionic hydrogen ground state shift. The response function of the Bragg spectrometer has been determined with X-rays from completely ionized pionic carbon and with a dedicated electron cyclotron resonance ion trap (ECRIT). A further extension of the ECRIT method implemented in the experiment allows a direct calibration of exotic atom transitions as well as a precise determination of the energy of fluorescence lines.

  17. Energy Scaling of Cold Atom-Atom-Ion Three-Body Recombination

    Science.gov (United States)

    Krükow, Artjom; Mohammadi, Amir; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H.

    2016-05-01

    We study three-body recombination of Ba++Rb +Rb in the mK regime where a single 138Ba+ ion in a Paul trap is immersed into a cloud of ultracold 87Rb atoms. We measure the energy dependence of the three-body rate coefficient k3 and compare the results to the theoretical prediction, k3∝Ecol-3 /4, where Ecol is the collision energy. We find agreement if we assume that the nonthermal ion energy distribution is determined by at least two different micromotion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed in an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s -wave regime.

  18. Energy scaling of cold atom-atom-ion three-body recombination

    CERN Document Server

    Krükow, Artjom; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H

    2015-01-01

    We study three-body recombination of Ba$^+$ + Rb + Rb in the mK regime where a single $^{138}$Ba$^{+}$ ion in a Paul trap is immersed into a cloud of ultracold $^{87}$Rb atoms. We measure the energy dependence of the three-body rate coefficient $k_3$ and compare the results to the theoretical prediction, $k_3 \\propto E_{\\textrm{col}}^{-3/4}$ where $E_{\\textrm{col}}$ is the collision energy. We find agreement if we assume that the non-thermal ion energy distribution is determined by at least two different micro-motion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed into an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s-wave regime.

  19. Atomic energy: agreement between Canada and the Socialist Republic of Romania

    International Nuclear Information System (INIS)

    The governments of Canada and Romania agreed to cooperate in the development and application of atomic energy for peaceful purposes, including joint research and development projects, the application of atomic energy for electricity generation and other peaceful purposes, industrial enterprises; the supply of information, material, nuclear material, equipment and facilities; licensing arrangements; access to equipment and facilities; technical assistance; scientific visits; and training. Reprocessing, enrichment, and heavy water technology are excluded. Safeguards measures are spelled out. (LL)

  20. Annual report to the Atomic Energy Control Board on the regulatory research and support program April 1, 1993 - March 31, 1994

    International Nuclear Information System (INIS)

    This report presents information on the scope of RSP activities during the year and describes how the program was managed, organized and implemented. Overviews are presented of research and support work undertaken in each field of activity and some highlights of results obtained and included. More detailed information has been compiled into six appendices which are being issued as a separate document. The membership of active review panels is given in Appendix A. Appendix B contains summary descriptions and information on the status of individual projects. Appendix C presents a list of those projects which were within the overall RSP but were not active during the year. Appendix D lists the projects which were complete but for which the post project evaluation had as yet to be completed. All projects which were worked on during the year are listed in Appendix E. Specific objectives set for the RSP for Fiscal Year 1993/94 and the degree to which the objectives were achieved are outlined in Appendix F. 3 tabs

  1. Kinetic-energy density functional: Atoms and shell structure

    International Nuclear Information System (INIS)

    We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. copyright 1996 The American Physical Society

  2. Water uptake by a clay bulkhead installed in the tunnel sealing experiment at Atomic Energy of Canada's underground research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.A.; Martino, J.B.; Chandler, N.A. [Atomic Energy of Canada Ltd., AECL, Pinawa, MB (Canada); Sugita, Y. [Japan Nuclear Cycle, Development Institute, JNC, Tokai (Japan); Vignal, B. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France)

    2003-07-01

    A major international experiment, demonstrating technologies for tunnel sealing at full-scale, is being conducted at Canada's Underground Research Laboratory (URL) with participation by organizations from Canada, Japan, France and the U.S.A. Two bulkheads, one composed of high performance concrete and the other of highly compacted sand-bentonite material, have been constructed in a tunnel in unfractured granitic rock at the URL. The results from the Tunnel Sealing Experiment (TSX) are being used to characterize the performance of the two bulkheads under applied hydraulic pressures. The chamber between the two bulkheads has been pressurized to 4 MPa, a value representative of the natural hydrostatic heads at the 420 m depth below the ground surface. Instrumentation has been installed throughout the clay bulkhead to monitor stress development, bulkhead strain, moisture conditions, temperature, and water transport through this clay-based barrier. Construction was completed in 1998 October, and the sand-filled chamber between the clay and concrete bulkheads was filled and pressurized with water. Full pressure of 4 MPa was achieved in 2001 September and by 2002 June nearly complete saturation of the clay bulkhead was indicated. The rapid rate of saturation of the bulkhead (<5 years) is attributed initial large-flow events that caused a full perimeter water supply and allowed input of a considerable volume of water into the core of the bulkhead. Seepage through the clay bulkhead has been measured to be approximately 1.1 L/day under a 4 MPa pressure gradient across the 3.5 x 4.4 x 2.7 m length bulkhead. The majority of the seepage appears to be via the lower density outer perimeter of the bulkhead. Tracer tests have been completed which allow for assessment of flow times and pathways within the clay bulkhead. On achieving essentially full saturation, Phase 1 of the TSX was completed. A second phase of this experiment has recently (2002 June) begun with the

  3. Annual report of the Department of Atomic Energy 1975-76

    International Nuclear Information System (INIS)

    The activities of the various constituent units of the Department of Atomic Energy such as the Bhabha Atomic Research Centre, Reactor Research Centre, Variable Energy Cyclotron, the power stations and a few others during the year 1975-76 are reported. The progress achieved in the field of atomic minerals, nuclear medicine, nuclear power, development of radioisotopes etc. are presented in detail. The responsibilities and achievements of the public sector undertakings under Department of Atomic Energy such as the Indian Rare Earth Ltd., Electronics Corporation of India Ltd., Uranium Corporation of India Ltd., are highlighted. Other activities such as planning and execution, economic and personnel health aspects, international relations etc. are also mentioned. (A.K.)

  4. Neck of public acceptance of atomic energy in Japan

    International Nuclear Information System (INIS)

    Discussion is lacking concerning the public acceptance of atomic energy in Japan. In case of the atomic powered ship Mutsu, an opponent says that the ship carries an atomic bomb, but a member of a support group says that the ship emits soft radiation like a hot spring. This is an example of discussion, and most of discussions are made under the political interest, instead of on the scientific base. In Japan, preparatory negotiations are required in advance to the decision making meeting in most cases. Therefore, most of substantial discussions are not public. Engineers in the nuclear industry can hardly express their opinion concerning the development of atomic energy. Most of the data for discussions are not original, but foreign data. Reasons for the development of atomic energy change case by case. It is necessary to consider that people will decide their opinion according to whether the responsible person is reliable or not. Some people oppose to atomic energy to find a new sense of value. Now, all people are requested to think and discuss the problem of atomic energy calmly. (Kato, T.)

  5. Quantum Effects at Low Energy Atom-Molecule Interface

    CERN Document Server

    Deb, B; Hazra, J; Chakraborty, D

    2013-01-01

    Quantum interference effects in inter-conversion between cold atoms and diatomic molecules are analysed. Within the framework of Fano's theory, continuum-bound anisotropic dressed state formalism of atom-molecule quantum dynamics is presented. This formalism is applicable in photo- and magneto-associative strong-coupling regimes. The significance of Fano effect in ultracold atom-molecule transitions is discussed. Quantum effects at low energy atom-molecule interface are important for exploring coherent phenomena in hither-to unexplored parameter regimes.

  6. Managing public perceptions about atomic energy in India

    International Nuclear Information System (INIS)

    Dr. Homi Jehangir Bhabha, in his presidential address at the first International Conference on the Peaceful Uses of Atomic Energy in Geneva in August 1955 had said 'Acquisition by man of the knowledge of how to release and use atomic energy must be recognized as the third epoch of human history'. Indeed during the last six decades, Atomic Energy has touched practically all aspects of human life and has registered its presence in almost every part of the globe. In India too, the Department of Atomic Energy set up in 1954, has been successfully pursuing a programme with a mandate to generate electricity, produce radioisotopes and develop radiation technologies with application in the areas of healthcare, food security, industry, water management, environment, R and D etc. Besides, DAE is also engaged in developing advanced technologies such as lasers, accelerator, robotics, fast computing and biosciences

  7. Atomic Energy Authority Act, No. 19 of 1969

    International Nuclear Information System (INIS)

    Act to provide for the establishment of an Atomic Energy Authority and an advisory committee to advise such authority, to specify the power, duties, rights and functions of such authority, and to provide for matters connected therewith or incidental thereto

  8. Between research and energy production

    International Nuclear Information System (INIS)

    When on March 20th, 1974, the nuclear power plant in Atucha, 100 km to the north-west of Argentine's capital Buenos Aires, built by Siemens, was taken into operation, it seemed as if South America had resolutely stepped into the atomic age. In the meantime, Brazil makes preparations for fortified construction of nuclear power plants and its own nuclear industry, and Mexico is accelerating its investigations in order to replace its dwindlung hydroelectric reserves as soon as possible with nuclear energy. The effect of the oil crisis was that Latin American countries, too, take a different look at the peaceful uses of atomic energy. (orig.)

  9. The Canadian public's awareness and perception of the Atomic Energy Control Board. V. 2

    International Nuclear Information System (INIS)

    The primary objective of the research is to measure how the Atomic Energy Control Board (AECB) stands with the Canadian public. The research examines the existing level of awareness and knowledge about the AECB and the image that people have about the Board. Another issue addressed in the research is the level of confusion within the public between the AECB and Atomic Energy of Canada Limited. The data in this report can also be used as a benchmark against which improvements can be measured from the AECB's communications programs and activities undertaken in the future

  10. Probing the Planck Scale in Low-Energy Atomic Physics

    OpenAIRE

    Bluhm, Robert

    2001-01-01

    Experiments in atomic physics have exceptional sensitivity to small shifts in energy in an atom, ion, or bound particle. They are particularly well suited to search for unique low-energy signatures of new physics, including effects that could originate from the Planck scale. A number of recent experiments have used CPT and Lorentz violation as a candidate signal of new physics originating from the Planck scale. A discussion of these experiments and their theoretical implications is presented.

  11. Gravitational Corrections to Energy-Levels of a Hydrogen Atom

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen-Hua; LIU Yu-Xiao; LI Xi-Guo

    2007-01-01

    The first-order perturbations of the energy levels of a hydrogen atom in central internal gravitational field are investigated.The internal gravitational field is produced by the mass of the atomic nucleus.The energy shifts are calculated for the relativistic 1S,2S,2P,3S,3P,3D,4S,and 4P levels with Schwarzschild metric.The calculated results show that the gravitational corrections are sensitive to the total angular momentum quantum number.

  12. Future atomic physics researches at HIRFL-CSR

    International Nuclear Information System (INIS)

    A new storage ring system, HIRFL-CSR, is now in construction in the National Laboratory of Heavy Ion Research Facility of Lanzhou, China. The new facility consists of a main ring (CSRm) and an experimental ring (CSRe). With the flexibility of the production and the investigation of highly charged ions and radioactive ion beams the new HIRFL-CSR facility will make many frontier atomic physics researches possible in near future. The future physics researches at the HIRFL-CSR are now under consideration. In this paper an overview of the HIRFL-CSR project is given, and the main atomic physics programs to be carried at the HIRFL-CSR are presented. (orig.)

  13. Chameleon Dark Energy and Atom Interferometry

    OpenAIRE

    Elder, Benjamin; Khoury, Justin; Haslinger, Philipp; Jaffe, Matt; Müller, Holger; Hamilton, Paul

    2016-01-01

    Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a 3-dimensional nonlinear partial differential equation (PDE). In this paper, we introduce a new technique for calculating the chameleonic force, using a numerical relaxation scheme on a uniform g...

  14. Development of cooperation of the CIS member states in the peaceful use of atomic energy

    International Nuclear Information System (INIS)

    Full text: Cooperation platform: Attraction of potential investors; Promotion of national goods and services; Pursuit of national and commercial interests. The Commission of the CIS Member States for the Peaceful Use of Atomic Energy is a nuclear cooperation body and the CIS intergovernmental coordinating and advisory authority. The Commission of the CIS Member States for the Peaceful Use of Atomic Energy coordinates and expands the spheres of cooperation. Members of the Commission- state-appointed heads of the authorized CIS member state bodies in the peaceful use of atomic energy; Secretariat is the working body of the Commission. Expert work groups formed within the CIS members States Commission: On the status of the draft Agreement on Coordination of Interstate Relations in the Peaceful Use of Atomic Energy in the CIS Territory; On the establishment of the CIS regional center for advanced training of medical physicists; Formation of an integrated system for the maintenance of safety of the nuclear research facilities. Issues of establishing the Coalition of the CIS Nuclear Research reactors; Formation of mechanisms for the convergence of the CIS member states legal and technical regulations in the peaceful use of atomic energy; Adaptation and introduction in the CIS members states of international standards in the field of using industrial radiation technologies and ensuring radiation safety; Basic forms of the CIS cooperation in ensuring economic security of projects for the peaceful use of atomic energy; Establishment of a system for the management of intellectual assets of the CIS members states; On the use of tele medical technologies of Ros atom State Cooperation- FMBA-MEPHI in diagnosis of oncologic diseases; Development of the major components of the Concept of Ensuring Nuclear, radiation and Radio ecological; Policy of the CIS Member States in the Peaceful Use of Atomic Energy; Joint implementation of the project to establish and implement a program of

  15. Atomic Energy of Canada Limited annual report 2000-2001

    International Nuclear Information System (INIS)

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor

  16. Atomic Energy of Canada Limited annual report 1999-2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2000, and summarizes the activities of AECL during the period 1999-2000. The activities covered in this report include the CANDU reactor business, with the completion of the Wolsong unit 4 in the Republic of Korea, progress in the construction of two CANDU reactors for the Qinshan CANDU project in China, as well as the service business with Ontario Power Generation in the rehabilitation and life extension of operating CANDU reactors. In the R and D programs there is on-going effort towards the next generation of reactor technologies for CANDU nuclear power plants, discussions continue on the funding for the Canadian Neutron Facility for materials research (CNF) and progress being made on the Maple medical isotope reactor.

  17. Atomic Energy of Canada Limited annual report 2000-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor.

  18. Atomic Energy of Canada Limited annual report 1999-2000

    International Nuclear Information System (INIS)

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2000, and summarizes the activities of AECL during the period 1999-2000. The activities covered in this report include the CANDU reactor business, with the completion of the Wolsong unit 4 in the Republic of Korea, progress in the construction of two CANDU reactors for the Qinshan CANDU project in China, as well as the service business with Ontario Power Generation in the rehabilitation and life extension of operating CANDU reactors. In the R and D programs there is on-going effort towards the next generation of reactor technologies for CANDU nuclear power plants, discussions continue on the funding for the Canadian Neutron Facility for materials research (CNF) and progress being made on the Maple medical isotope reactor

  19. The role and structure of the Atomic Energy Control Board

    International Nuclear Information System (INIS)

    The Atomic Energy Control Board is responsible for the control and supervision of the application and use of nuclear materials and the operation of nuclear facilities to ensure that the health and safety of people are protected and that the nuclear materials and equipment are used only in accordance with the government non-proliferation policy. Requirements for control and supervision are made into regulations subject to approval by the Governor in Council. They are applied through a comprehensive licensing system. The interpretation and implementation of the regulations are contained in a series of regulatory documents published from time to time by the Board. The functional organization of staff that assist the Board for the administration, the assessment and issuance of licenses, compliance and inspection, as well as for the management of the regulatory research program is described. (author)

  20. Danish Atomic Energy Commission Annual Report 1 April 1974 -31 March 1975

    International Nuclear Information System (INIS)

    Activities of the Danish Atomic Energy Commission and the Risoe Research Establishment for the period April 1, 1974 to March 31, 1975 are summarized. The operations of the various facilities at the Research Establishment are revised. Operating staff levels and financial data are tabulated, and a list of staff publications is given. (author)

  1. Glossary of scientific and technical terms in atomic energy

    International Nuclear Information System (INIS)

    In order to facilitate the task of Arabic speaking scientists in the field of nuclear energy, the Atomic Energy Commission of Syria assigned a committee constituted of leading physicists and chemists at Damascus University, the aim of the commission was to include the Arabic equivalent of the terms cited in English, French, Russian and Spanish in the glossary published by the United Nations, 1958 ''Atomic Energy Glossary of Technical Terms.'' The result of the committee's work was this glossary containing approximately 6000 terms in the field of nuclear energy which are given in Arabic, English, French, Russian and Spanish

  2. High energy physics research

    International Nuclear Information System (INIS)

    This is a progress report on the first year of the five year proposal of the UCSD high energy physics group. The main activity of our group continues to be the L3 experiment at LEP. During the last year in L3, we have worked principally on physics analysis. We have also fulfilled our duties in running the detector and contributing to L3 software and computing. In addition, we have made a major effort toward the development of the GEM detector at the SSC. Our SSC work is done in collaboration with the other UCSD groups which are primarily supported by the NSF. In this progress report, we will review our recent activities and describe the current status of the group. Some of the publications and documents which display the work of our group over the last year are included as appendices. We will also outline our research plan to continue our participation in L3 physics and upgrades and to work on the design and construction of the GEM detector

  3. Two atoms scattering at low and cold energies

    Indian Academy of Sciences (India)

    Hasi Ray

    2014-12-01

    A modified static-exchange model is developed to study the collision of an atom with another atom. It includes the effect of long-range dipole–dipole van der Waals interaction between two atoms in addition to the exact effect of short-range force due to Coulomb exchange between two system electrons. Both these interactions dominate at colder energies. The system is treated as a four-centre problem in the centre-of-mass frame. The present ab-initio model is useful to study the two-atomic collisions at low energies, as well as cold energies. The new code is applied to study the scattering of positronium (Ps) by hydrogen (H), both in their ground states.

  4. CPT Magnetometer with Atomic Energy Level Modulation

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-Bin; DU Run-Chang; LIU Chao-Yang; GU Si-Hong

    2008-01-01

    We propose and experimentally investigate a coherent population trapping state based magnetometer prototype with87 Rb atoms.Through modulating Zeeman sublevels with an ac magnetic field,not only a phase sensitive detection scheme suitable for miniature magnetometer is realized,but also the detection resolution of magnetic field intensity could be improved by a factor of two.Our study result indicates that it is a promising low power consumption miniature sensitive low magnetic field sensor offering spatially resolved measurement at the sub-millimetre level.

  5. A New Instrument Design for Imaging Low Energy Neutral Atoms

    Science.gov (United States)

    Keller, J. W.; Collier, M. R.; Chornay, D.; Roz, P.; Getty, S.; Cooper, J. F.; Smith, B.

    2007-12-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite, will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI- ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets, also including time variability of ENA fluxes and charge-exchange interactions in the upper atmosphere from the terrestrial ring current source.

  6. International Atomic Energy Agency Annual Report 2014

    International Nuclear Information System (INIS)

    Along with an examination of the state of worldwide nuclear-related developments last year, the IAEA Annual Report 2014 provides a comprehensive look at the Agency’s activities over the course of the year. From coordinating 125 research projects to conducting 2114 nuclear verification inspections worldwide, the IAEA’s 2560 employees continued to work on a wide range of areas to meet the evolving needs of Member States. The Annual Report, published in August, will be discussed and endorsed at the IAEA’s General Conference in September. Serving 162 Member States, two more than the year before, the IAEA’s activities in 2014 focused on the following areas, in line with its mandate: • Nuclear Energy: The IAEA assisted Member States in the introduction of nuclear power programmes and in the efficient and safe use of nuclear energy, fostering innovation and building capability in energy planning, analysis, and nuclear information and knowledge management. • Nuclear Sciences and Applications: The IAEA continued to assist Member States in building, strengthening and maintaining capacities in the safe, peaceful and secure use of nuclear technology. • Nuclear Safety and Security: The IAEA and its Member States continued to strengthen nuclear safety worldwide, including through the implementation of the Action Plan on Nuclear Safety, which had been endorsed by the General Conference in 2011 after the accident at the Fukushima Daiichi nuclear power plant earlier that year. The IAEA also supported States, upon request, in their efforts to achieve effective security wherever nuclear and other radioactive materials are in use. • Nuclear Verification: The IAEA implemented safeguards in 180 States and as at the end of every year, it drew conclusions for each State for which safeguards were applied. • Technical Cooperation: The IAEA assisted Member States in their efforts to achieve the Millennium Development Goals and in preparation for the post-2015 Sustainable

  7. Scientometric dimensions of technical reports from Bhabha Atomic Research Centre

    OpenAIRE

    Swarna, T.; Kalyane, V. L.; Vijai Kumar, *

    2002-01-01

    Technical report is one of the media to record the scientific information generated by scientists and engineers, Bhabha Atomic Research Centre (BARC) published 554 technical reports during 1990-99 under the categories: External (373) and Internal (181), Engineering and technology generated 207 technical reports followed by chemistry, materials and earth sciences (129), while their interdisciplinary interactions resulted in 31 technical reports, Life and environmental sciences produced 42 tech...

  8. 2004 Atomic and Molecular Interactions Gordon Research Conference

    International Nuclear Information System (INIS)

    The 2004 Gordon Research Conference on Atomic and Molecular Interactions was held July 11-16 at Colby-Sawyer College, New London, New Hampshire. This latest edition in a long-standing conference series featured invited talks and contributed poster papers on dynamics and intermolecular interactions in a variety of environments, ranging from the gas phase through surfaces and condensed media. A total of 90 conferees participated in the conference

  9. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  10. Chameleon Dark Energy and Atom Interferometry

    CERN Document Server

    Elder, Benjamin; Haslinger, Philipp; Jaffe, Matt; Müller, Holger; Hamilton, Paul

    2016-01-01

    Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a 3-dimensional nonlinear partial differential equation (PDE). In this paper, we introduce a new technique for calculating the chameleonic force, using a numerical relaxation scheme on a uniform grid. This technique is more general than previous work, which assumed spherical symmetry to reduce the PDE to a 1-dimensional ordinary differential equation (ODE). We examine the effects of approximations made in previous efforts on this subject, and calculate the chameleonic force in a set-up that closely mimics the recent experiment of Hamilton et al. Specifically, we simulate the vacuum chamber as a cylinder with dimensions matching those of the experiment, taking into account the backreaction of the source mass, its o...

  11. Annual report 1982-83 [of the Department of Atomic Energy, India

    International Nuclear Information System (INIS)

    The annual report of the Department of Atomic Energy (DAE) of the Government of India for the financial year 1982-83 surveys the work of its various establishments. The major thrust of the DAE's programme is directed towards peaceful uses of atomic ener%y - primarily for electric power generation and applications of radiation and radioisotopes in medicine, agriculture and industry. The Bhabha Atomic Research Centre at Bombay is the major R and D establishment of the DAE and its activities in the fields of nuclear physics, chemistry and materials science, radiochemistry, nuclear fuels, reactor engineering, radiation protection, radioactive waste management and applications of radiation and radioactive isotopes are described in detail. The R and D activities of the Reactor Research Centre at Kanpakkam, the Tata Institute of Fundamental Research and the Tata A1emorial Centre, both at Bombay, and the Saha Institute of Nuclear Physics at Calcutta are described in brief. The performance of the Tarapur Atomic Power Station, the Rajasthan Atomic Power Station, the Nuclear Fuel Complex at Hyderabad, the Atomic Minerals Division, Uranium Corporation of India Ltd at Jaduguda, various heavy water plants and other industrial units of DAE is reported. Progress of nuclear power projects at Narora and Kakrapar, R-5 Project at Bombay and FBTR Project at Kalpakkam is described. India's participation in the activities of the International Atomic Energy Agency is also mentioned. (M.G.B.)

  12. Unparticle contribution to the hydrogen atom ground state energy

    Science.gov (United States)

    Wondrak, Michael F.; Nicolini, Piero; Bleicher, Marcus

    2016-08-01

    In the present work we study the effect of unparticle modified static potentials on the energy levels of the hydrogen atom. By using Rayleigh-Schrödinger perturbation theory, we obtain the energy shift of the ground state and compare it with experimental data. Bounds on the unparticle energy scale ΛU as a function of the scaling dimension dU and the coupling constant λ are derived. We show that there exists a parameter region where bounds on ΛU are stringent, signaling that unparticles could be tested in atomic physics experiments.

  13. Energy and decay width of the pi-K atom

    CERN Document Server

    Jallouli, H

    2006-01-01

    The energy and decay width of the pi-K atom are evaluated in the framework of the quasipotential-constraint theory approach. The main electromagnetic and isospin symmetry breaking corrections to the lowest-order formulas for the energy shift from the Coulomb binding energy and for the decay width are calculated. They are estimated to be of the order of a few per cent. We display formulas to extract the strong interaction S-wave pi-K scattering lengths from future experimental data concerning the pi-K atom.

  14. The International Atomic Energy Agency - IAEA

    International Nuclear Information System (INIS)

    The origens, functions and objectives of the IAEA are analysed. The application of safeguards to avoid military uses of nuclear energy is discussed. In the final section the agrement between Brazil and Germany regarding IAEA safeguards, as well as the competence for executing the brazilian program are explained. It is, then, an informative study dealing with nuclear energy and its peaceful path, the creation of International Fuel Cycle Evaluation and nonproliferation

  15. On-line processing of searching scientific informations and literatures on atomic energy

    International Nuclear Information System (INIS)

    The information processing using computers has been carried out in the field of atomic energy science internationally since early period, and CINDA and NEUDADA, which are the accumulation of the nuclear data on neutrons, and INIS for the search of literatures are the examples. In Japan, the Japan Atomic Energy Research Institute has functioned as the center for collecting, evaluating and distributing the international informations on atomic energy. In universities, various researcher groups have endeavored to make and utilize the data bases with the advance of functions of large computer centers. In the future plan of the Kyoto University Reactor Research Institute, the establishment of Atomic Energy Science Information Center is planned. In order to discuss the concept for this and refer to the state of activities in other fields, the short period study meeting was helt in 1979, and the special study meeting on the on-line processing of searching the scientific informations and literatures on atomic energy was established in 1980. This report summarizes the results of studies and investigations published in this special study meeting. The abstracts of five papers on various data bases are given. (Kako, I.)

  16. Positron impact ionization of atomic hydrogen at low energies

    Indian Academy of Sciences (India)

    K Chakrabarti

    2001-04-01

    Low energy positron impact ionization of atomic hydrogen is studies theoretically using the hyperspherical partial wave method of Das [1] in constant 12, equal energy sharing geometry. The TDCS reveal considerable differences in physics compared to electron impact ionization under the same geometry.

  17. Law on the use of atomic energy for peaceful purposes

    International Nuclear Information System (INIS)

    This is an amended and corrected edition of the Bulgarian atomic energy law. Its purpose is to promote nuclear energy peaceful applications, to regulate the use of radioactive substances and instrumentation, to provide protection against the radioactive hazards. The Law also determines the status of the Governmental Regulatory Body - the CUAEPP

  18. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  19. Sustainable energy research at DTU

    DEFF Research Database (Denmark)

    Nielsen, Rolf Haugaard; Andersen, Morten

    university is in the international vanguard of knowledge and research in the field of sustainable energy. With as many as 1,000 employees spread across a large number of departments, the university possesses extensive expertise on a wide range of energy technologies and energy systems. Research is carried...... out in close cooperation with internationally leading institutions and experts. Based on a wealth of core competencies, DTU takes a broadand holistic approach to energy research within both energy supply and consumption. Against this background, DTU identifies, presents and discusses new energy...... technologies, energy systems and energy consumption in buildings, the transport sector and for lighting purposes. The university alsolooks at challenges, opportunities and limitations.This publication present a selection of the sustainable energy related activities at DTU, which all point towards future...

  20. An atomic clockwork using phase dependent energy shifts

    CERN Document Server

    De Munshi, D; Mukherjee, M

    2011-01-01

    A frequency stabilized laser referenced to an unperturbed atomic two level system acts as the most accurate clock with femtosecond clock ticks. For any meaningful use, a Femtosecond Laser Frequency Comb (FLFC) is used to transfer the atomic clock accuracy to electronically countable nanosecond clock ticks. Here we propose an alternative clockwork based on the phenomenon that when an atomic system is slowly evolved in a cyclic path, the atomic energy levels gather some phase called the geometric phase. This geometric phase dependent energy shift has been used here to couple the two frequency regimes in a phase coherent manner. It has also been shown that such a technique can be implemented experimentally, bypassing the highly involved setup of a FLFC.

  1. Application of atomic energy in agriculture

    International Nuclear Information System (INIS)

    The activities of the Institute in 1980 are reported in a series of reports from the following research groups: Contamination, plant nutrition-soils, properties of crop plants, crop protection and product treatment. (C.F.)

  2. The licensing procedure under Atomic Energy Law

    International Nuclear Information System (INIS)

    This post-doctoral thesis of 1981 has been updated to include developments in this field up to the year 1983. The author discusses in detail all questions relating to the peaceful uses of nuclear energy in the Federal Republic of Germany, predominantly from the point of view of administrative law. He investigates nuclear energy and its contribution to electricity supplies with a view to other energy sources, renewable energy sources, alternative energy policies, nuclear fuel and the fuel cycle, development of the nuclear industry, nuclear power stations in operation, under construction, or in development. Following a survey of the nuclear controversy, both on the national and the international level, the author reviews the legal system and arising controversies in the Federal Republic of Germany, defining the purpose of this thesis to be the systematic analysis of the available legal instruments, in order to show structural deficiencies in the planning law relating to nuclear power stations, and thus reasons of ambiguities within the licensing procedure. The author studies the following terms and requirements: licensing requirements and licensability, the licensing method and scenario, the legal character of licences, their contents and effects within the stepwise procedure, and due publication. (HSCH)

  3. Non-conservation of energy arising from atomic dipole interactions and its effects on light field and coupled atoms

    Institute of Scientific and Technical Information of China (English)

    董传华

    2003-01-01

    The interactions between coupled atoms and a single mode of a quantized electromagnetic field, which involve the terms originating from the dipole interactions, are discussed. In the usual Jaynes Cummings model for coupled atoms,the terms of non-conservation of energy originating from dipole interactions are neglected, however, we take them into consideration in this paper. The effects of these terms on the evolutions of quantum statistic properties and squeezing of the field, the squeezing of atomic dipole moments and atomic population inversion are investigated. It has been shown that the coupling between atoms modulates these evolutions of fields and atoms. The terms of non-conservation of energy affect these evolutions of fields and atoms slightly. They also have effects on the squeezing of the field, the squeezing of atomic dipole and atomic population inversions. The initial states of atoms also affect these properties.

  4. Non—conservation of energy arising from atomic dipole interactions and its effects on light field and coupled atoms

    Institute of Scientific and Technical Information of China (English)

    DongChuan-Hua

    2003-01-01

    The interactions between coulpled atoms and a single mode of a quantized electromagnetic field, which involve the terms originating from the dipole interactions, are discussed. In the usual Jaynes-Cummings model for coupled atoms, the terms of non-conservation of energy originating from dipole interactions are neglected, however, we take them into consideration in this paper. The effects of these terms on the evolutions of quantum statistic properties and squeezing of the field, the squeezing of atomic dipole moments and atomic population inversion are investigated. It has been shown that the coupling between atoms modulates these evolutions of fields and atoms. The terms of non-conservation of energy affect these evolutions of field and atoms slightly. They also have effects on the squeezing of the field, the squeezing of atomic dipole and atomic population inversions. The initial states of atoms also affect these properties.

  5. 论《核安全法》与《原子能法》的关系%Research on the Relationship between Nuclear Safety Act and the Atomic Energy Act

    Institute of Scientific and Technical Information of China (English)

    汪劲

    2014-01-01

    The“Twelfth Five-Year Plan and the 2020 vision of nuclear safety and radioactive pollution prevention” passed by State Council requires that the Atomic Energy Act and the Nuclear Safety Act should be started to research and develop at the same time. It proved that promoting the legislation of these two acts simultaneously is imperative when China has not yet developed a speciifc act on nuclear industry and nuclear safety. However, there may exist conlficts between these two acts, properly handling the relationship between them is very important.%国务院通过的《核安全与放射性污染防治“十二五”规划及2020年远景目标》提出,要抓紧研究制定原子能法和核安全法。国际法的要求和各国的立法实践表明,同时推进这两部法律的立法工作不存在法律障碍。在我国还没有一部专门规定核能产业发展与核安全方面内容的法律的情形下,同时推进两部法律的立法工作,解决“无法可依”的局面势在必行。但鉴于两部法律可能存在的内容重叠和交叉情况,正确处理这两部法律的关系对明确我国核安全立法的定位尤为重要。

  6. Annual report 1984-85 [of the Department of Atomic Energy, of the Government of India

    International Nuclear Information System (INIS)

    Research and Development (R and D) activities of the research establishments of the Department of Atomic Energy (DAE), performance of various production units and public sector undertakings of DAE and progress of various projects underway are reported. The report covers the period of the financial year 1984-85. The research establishments of DAE are the Bhabha Atomic Research Centre at Bombay and the Reactor Research Centre at Kalpakkam. DAE production units include atomic power stations for electricity generation at Tarapur, Kota and Kalpakkam; heavy water plants around the country and the Nuclear Fuel Complex at Hyderabad. Public sector undertaking of the Department are Indian Rare Earths Ltd., Electronic Corporation of India Ltd., and Uranium Corporation of India Ltd. The Atomic Minerals Division of the Department is mainly engaged in the R and D activities pertaining to exploration, prospecting and development of mineral resources needed for nuclear power programme. The Department's objective is to achieve the target of 10,000 MWe of nuclear power generating capacity by the year 2000. The Department's Nuclear Power Board operates the atomic power stations and is charged with the responsibility of design, construction and commissioning of atomic power projects at Narora and Kakrapar. The Department also financially supports the Tata Institute of Fundamental Research, the Tata Memorial Centre, both at Bombay and the Saha Institute of Nuclear Physics at Calcutta. The R and D activities of these institutions are also described in brief in this report. (M.G.B.)

  7. International nuclear low and atomic energy

    International Nuclear Information System (INIS)

    The aim of this work is to put points on the codification of international law of nuclear energy and its uses in military and peaceful in the first part. The second part was devoted for the imperfection of the law of international nuclear.

  8. Atomic force microscopy in biomedical research - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available Pier Carlo Braga and Davide Ricci are old friends not only for those researchers familiar with Atomic force microscopy (AFM but also for those beginners (like the undersigned that already enthusiastically welcomed their 2004 edition (for the same Humana press printing types of Atomic force microscopy: Biomedical methods and applications, eventhough I never had used the AFM. That book was much intended to overview the possible AFM applications for a wide range of readers so that they can be in some way stimulated toward the AFM use. In fact, the great majority of scientists is afraid both of the technology behind AFM (that is naturally thought highly demanding in term of concepts not so familiar to biologists and physicians and of the financial costs: both these two factors are conceived unapproachable by the medium range granted scientist usually not educated in terms of biophysics and electronic background....

  9. Bremsstrahlung spectra from atoms and ions at low relativistic energies

    International Nuclear Information System (INIS)

    Analytic expressions for bremsstrahlung spectra from neutral atoms and ions, including the polarizational bremsstrahlung contribution in a stripped atom approximation, are developed for electron scattering at energies of 10-2000 keV. A modified Elwert factor and a simple higher Born correction are used for the Coulomb spectrum, with ordinary bremsstrahlung screening effects in ions and atoms adequately characterized in the non-relativistic Born approximation. In parallel with the development of this analytic description, new numerical results are obtained for ordinary bremsstrahlung from ions and from bare nuclei, appreciably extending the available data set which can be used to study dependences on element, ionicity, energy and the fraction of incident energy radiated. The accuracy of predictions with the analytic expressions is then determined by comparison with the full numerical relativistic partial-wave results for ordinary bremsstrahlung and with non-relativistic numerical results in the Born approximation or in partial waves for the polarizational amplitude. (author)

  10. Scientists speak of the peaceful use of atomic energy

    International Nuclear Information System (INIS)

    Experts from Argentina, Cuba, Mexico, Peru and Costa Rica have met in that last country, to offer the forum 'Peaceful uses of atomic energy: prospects for Costa Rica'. Specialists were invited by the Centro de Investigacion en Biologia Celular y Molecular (CIBCM) of the Universidad de Costa Rica (UCR) and the Centro de Investigacion en Biotecnologia (CIB) of Instituto Tecnologico de Costa Rica. The forum has developed around the theme the usefulness of atomic energy for science, and importance for the development of the country. The peaceful use of atomic energy was explained by specialists in each country, specifically in the field of health, industry, agriculture, industrial equipment sterilization, medical products, body tissues and crops

  11. General engineering ethics and multiple stress of atomic energy engineering

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kunihiko [Shibaura Inst. of Tech., Tokyo (Japan)

    1999-08-01

    The factors, by which the modern engineering ethics has been profoundly affected, were classified to three categories, namely mental blow, the destruction of human function and environment damage. The role of atomic energy engineering in the ethic field has been shown in the first place. It is pointed out that it has brought about the mental blow by the elucidation of universal truth and discipline and the functional disorder by the power supply. However, the direct effect of radiation to the human kinds is only a part of the stresses comparing to the accumulation of the social stress which should be taken into account of by the possibility of disaster and the suspicion of the atomic energy politics. An increase in the multiple stresses as well as the restriction of criticism will place obstacles on the promotion of atomic energy. (author)

  12. General engineering ethics and multiple stress of atomic energy engineering

    International Nuclear Information System (INIS)

    The factors, by which the modern engineering ethics has been profoundly affected, were classified to three categories, namely mental blow, the destruction of human function and environment damage. The role of atomic energy engineering in the ethic field has been shown in the first place. It is pointed out that it has brought about the mental blow by the elucidation of universal truth and discipline and the functional disorder by the power supply. However, the direct effect of radiation to the human kinds is only a part of the stresses comparing to the accumulation of the social stress which should be taken into account of by the possibility of disaster and the suspicion of the atomic energy politics. An increase in the multiple stresses as well as the restriction of criticism will place obstacles on the promotion of atomic energy. (author)

  13. Tree planting in deserts and utilization of atomic energy

    International Nuclear Information System (INIS)

    Global environment problems are discussed actively, concretely, those are the warming of the earth, the advance of desertification, the damage due to acid rain, the decrease of tropical forests, the pollution of sea, the depletion of ozone layer and so on. Most of these phenomena advance gradually. However, the advance of desertification is different from other phenomena in that the people in the areas concerned are deprived of their living space and even their lives are threatened at this moment. Desertification is advancing on global scale, and its rate is estimated to be 60,000 km2 yearly. Especially the area where the advance is remarkable is the southern edge of Sahara Desert, which advances southward at 10-30 km in one year. Recently also in Japan, the interest in the prevention of desertification has become high, and the experiment on tree planting in a desert using a huge desert dome of the Institute of Physical and Chemical Research, 'Desert Aquanet concept' of Shimizu Construction Co., Ltd., 'Sahara green belt project' of the Ministry of International Trade and Industry and so on were published. Water and energy for tree planting in deserts, utilization of atomic energy for seawater desalination and the technical fields to which Japan can contribute are reported. (K.I.)

  14. Atom-interferometry constraints on dark energy

    OpenAIRE

    Hamilton, Paul; Jaffe, Matt; Haslinger, Philipp; Simmons, Quinn; Müller, Holger; Khoury, Justin

    2015-01-01

    If dark energy --- which drives the accelerated expansion of the universe --- consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultra-high vacu...

  15. Jointly Sponsored Research Program Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental

  16. Basic Energy Research. Final Report

    International Nuclear Information System (INIS)

    This is the final report of a research programme that covered the need for long-term basic research in Norway within the main fields of new renewable energy sources and hydroelectric power. For the hydropower part, emphasis was placed on the environmental consequences and several projects have been done, with different approaches. Other aspects of hydropower have also been supported, such as dam safety and flow in water paths connected to turbines. Within the field of renewable energies, priority was given to solar energy and bio energy. Research on hydrogen as an energy carrier has also been supported; the programme mainly targeted universities and the research institutes, and the education of PhD's has been a priority. The programme was funded through the Ministry of Petroleum and Energy and the budget was 33 million NOK for the period 1997 - 2000

  17. Application of atomic energy in agriculture

    International Nuclear Information System (INIS)

    A state-of-the-art survey of current research is presented in the form of a series of short articles which includes X-ray dosimetry intercomparison (EULEP), testing of lyoluminescent materials for the 25-krad to 2.5-Mrad dose range, behaviour of radioactive and nonradioactive pollutants in soils and plants (also fallout), plant nutrition in relation to soils, Experimental Soil-Plant-Atmosphere System tests, nitrogen fixation, gene mutations and chromosome manipulation in both legumes and ornamental plants, incompatibility studies, radiation mutagenesis, crop protection by genetic control of insects, food sterilization and preservation by irradiation, and waste irradiation. An outline is given of the research plans for the coming four years and the international cooperation involved. A survey of the outward services, lectures, publications and conference participation is presented at the end. (Auth.)

  18. Atomic Energy Board, twentieth annual report, 1976

    International Nuclear Information System (INIS)

    Progress is reported on the following: nuclear materials, nuclear power, application of radioisotopes and radiation, health and safety, and fundamental studies undertaken in the fields of physics, chemistry, metallurgy, medicine and geology during 1976. The supporting activities of the computer services, engineering services, waste disposal plant, instrumentation section, research reactor and analytical services are given for 1976. The report contains a bibliography of publications published by staff members and bursars during 1976

  19. Application of atomic energy in agriculture

    International Nuclear Information System (INIS)

    The main part of this annual report consists of short notes reporting the progress made in the various research projects, viz. dosimetry, radiation and mutagenic effects in plants in light of mutation breeding as well as related technical subjects, food preservation by irradiation, radiogenetic effects on unwanted insects, self-incompatibility studies in higher plants, nitrogen in soil-plant studies, behaviour of radioactive and conventional contaminants in soils and plants, and nuclear methods in the recycling of liquid wastes

  20. Application of atomic energy in agriculture

    International Nuclear Information System (INIS)

    The work carried out in 1978 is reported as a series of papers. Research has been carried out in the areas of the contamination due to primary radiation effects and due to the behaviour of radioactive and non-radioactive pollutants in soils, sediments and plants, plant nutrition in soils, properties of crop plants, crop protection by genetic control and product treatment by disinfection and disinfestation. Internal matters, publications, lectures and internal reports are detailed. (C.F.)

  1. The tenth Arab conference on peaceful uses of atomic energy

    International Nuclear Information System (INIS)

    This conference includes the paper presented at the tenth Arab conference of the peaceful uses of Nuclear Atomic Energy that is organized by AAEA (Arab Atomic Energy Agency) in cooperation with Iraqi Ministry of Science and Technology and Kurdistan government , held in Erbil (Iraq) from 12-16 December 2010. This conference consists of three volumes covering the following concepts: Analysis and Material Improvement, Soil fertility, Water Recourse Management, Nuclear Medicine and Biological Irradiation, Isotopes Production, Improvement of Plant and Animal Production, Decommissioning and Dismantling of Nuclear Facilities, Radioactive Waste Management, Nuclear Safety and Security of Radiation Protection, Pest Control and Food Irradiation Processing

  2. Premier Tools of Energy Research Also Probe Secrets of Viral Disease

    Science.gov (United States)

    Chui, Glennda

    2011-03-28

    Advanced light sources peer into matter at the atomic and molecular scales, with applications ranging from physics, chemistry, materials science, and advanced energy research, to biology and medicine.

  3. International Atomic Energy Agency: Personal reflections

    International Nuclear Information System (INIS)

    This set of personal recollections reflect a variety of views from twenty-five people who have played major roles in shaping the policies of the IAEA or have made notable contributions to its work at different periods of its history. They provide individual insights - often from a rarely available insider's perspective - into particular aspects of the development of an international organization and thus complement the History of the IAEA written by David Fischer. The articles in this collection illustrate some of the complexities involved in the work of an international organization, where the Governing Bodies consist of over a hundred Member States, with different levels of industrial development, different political outlooks and different interests in the benefits of nuclear energy or concerns about the spread of nuclear weapons

  4. High energy neutral atoms from high intensity laser plasma interaction

    International Nuclear Information System (INIS)

    Interaction of a high intensity laser with solid targets leads to acceleration of ions from the surface of the target. Ion acceleration is governed by electron dynamics at the target vacuum interface setting up a charge separation. This electron cloud near the target interface can also provide a neutralizing background for ions that have been accelerated. The accelerated ions are thus detected as a high energy neutral atom on a detector. Further, due to the inherent contrast profile of high intensity lasers a pre-plasma is almost always formed and neutral atoms can be detected. The ion and neutral atom energies are measured by a Thomson parabola spectrometer coupled with a 'time of flight' measurement. The neutral atom energies are obtained from the time of flight. The TIFR 20TW laser with an intensity contrast 10-5 was used to carry out the experiment. Defocusing the target led to a 2 fold increase in the neutral atom yield suggesting the role of the pre-plasma. Using a high contrast laser we attempt to tune the recombination dynamics for efficient neutralization of ions by using a controlled pre-plasma. (author)

  5. Energy levels of light atoms in strong magnetic fields

    CERN Document Server

    Thirumalai, Anand

    2014-01-01

    In this review article we provide an overview of the field of atomic structure of light atoms in strong magnetic fields. There is a very rich history of this field which dates back to the very birth of quantum mechanics. At various points in the past significant discoveries in science and technology have repeatedly served to rejuvenate interest in atomic structure in strong fields, broadly speaking, resulting in three eras in the development of this field; the historical, the classical and the modern eras. The motivations for studying atomic structure have also changed significantly as time progressed. The review presents a chronological summary of the major advances that occurred during these eras and discusses new insights and impetus gained. The review is concluded with a description of the latest findings and the future prospects for one of the most remarkably cutting-edge fields of research in science today.

  6. Why atomic energy affects Civil Law

    Energy Technology Data Exchange (ETDEWEB)

    Knieper, R.

    1980-01-01

    The author deals with the widely disparaged decision of the Stuttgart Local Court which dismissed the complaint filed against some 'electricity rate payment boycotters' as being 'unfounded for the time being'. He proceeds on the question as to whether political considerations have surpassed the disciplining limits of laws and interpretations bound by the Basic Law. He considers the real problem to be whether the protected interests of third parties may be sacrified for the sake of any ideals of freedom. The relationship between complainant and defendant is much more complex than a contractual relation, the social dependence on power supply and being at the mercy of researchers embrace this relation inescapably. To make this general problem operationable, the court resorts to the construction of 'an additional obligation under a contract being broken'.

  7. Radiation Protection Institute,Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    The Radiation Protection Institute of the Ghana Atomic Energy Commission was established to provide scientific and technical support for executing the operational functions of the Radiation Protection Board. The 2014 Annual Report highlights the operational activities of Institutes. Also presented is a list of research projects, publications and abstracts of technical reports.

  8. Correlated energy transfer between two ultracold atomic species

    Science.gov (United States)

    Krönke, Sven; Knörzer, Johannes; Schmelcher, Peter

    2015-05-01

    We study a single atom as an open quantum system, which is initially prepared in a coherent state of low energy and oscillates in a one-dimensional harmonic trap through an interacting ensemble of NA bosons, held in a displaced trap [arXiv:1410.8676]. The non-equilibrium quantum dynamics of the total system is simulated by means of an ab-initio method, giving us access to all properties of the open system and its finite environment. In this talk, we focus on unraveling the interplay of energy exchange and correlations between the subsystems, which are coupled in such a spatio-temporally localized manner. We show that an inter-species interaction-induced level splitting accelerates the energy transfer between the atomic species for larger NA, which becomes less complete at the same time. System-environment correlations prove to be significant except for times when the excess energy distribution among the subsystems is highly imbalanced. These correlations result in incoherent energy transfer processes, which accelerate the early energy donation of the single atom. By analyzing correlations between intra-subsystem excitations, certain energy transfer channels are shown to be (dis-)favored depending on the instantaneous direction of transfer.

  9. The World Power Conference and atomic energy

    International Nuclear Information System (INIS)

    The possibility that emerged after the last World War that useful power could be produced from nuclear fission led to optimistic estimates that nuclear power would prove to be the solution to the world's energy problems. The possible advantages of nuclear methods of power production compared with conventional means are discussed at the World Power Conference. The 1962 Conference with its theme 'The Changing Pattern of Power' will undoubtedly attract great interest in a world where the change-over from conventional to nuclear fuels for power production has started in some countries and is being actively examined in others. It is generally being realized that even though a country may possess indigenous supplies of uranium or thorium minerals, the building up of a nuclear industry i s a long and expensive process and the alternative of depending on countries more advanced in nuclear technology for the supply of materials, skill and know-how is costly in foreign exchange and international prestige. Many of the industrialized countries, still possessing supplies of conventional fuels, are preparing for the day when their reserves will become depleted and are embarking on training schemes to ensure a continuing supply of engineers and scientists skilled in nuclear arts

  10. Development of neutron detectors and neutron radiography at Bhabha Atomic Research Centre

    Indian Academy of Sciences (India)

    A M Shaikh

    2008-10-01

    Design and development of neutron detectors and R&D work in neutron radiography (NR) for non-destructive evaluation are important parts of the neutron beam and allied research programme of Solid State Physics Division (SSPD) of Bhabha Atomic Research Centre (BARC). The detectors fabricated in the division not only meet the in-house requirement of neutron spectrometers but also the need of other divisions in BARC, Department of Atomic Energy units and some universities and research institutes in India and abroad for a variety of applications. The NR facility set up by SSPD at Apsara reactor has been used for a variety of applications in nuclear, aerospace, defense and metallurgical industries. The work done in the development of neutron detectors and neutron radiography is reported in this article.

  11. Tidal Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  12. International Atomic Energy Agency annual report 2006

    International Nuclear Information System (INIS)

    The Annual Report reviews the results of the Agency's programme according to the three pillars of technology, safety and verification. The main part of the report generally follows the programme structure as given in The Agency's Programme and Budget 2006-2007 (GC(49)/2). The introductory chapter seeks to provide a thematic analysis, based on the three pillars, of the Agency's activities within the overall context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2006 and Background to the Safeguards Statement. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is provided on the attached CD-ROM, and is also available on the Agency's web site at http://www.iaea.org/Worldatom/Documents/Anrep/Anrep2006/. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The topics covered in the chapter related to technology are: nuclear power; nuclear fuel cycle and materials technologies; capacity building and nuclear knowledge maintenance for sustainable energy development; nuclear science; food and agriculture; human health; water resources; assessment and management of marine and terrestrial environments; radioisotope production and radiation technology; safety and security; incident and emergency preparedness and response; safety of nuclear installations; radiation and transport safety; management of radioactive waste; nuclear security

  13. French Atomic Energy Commission Decommissioning Programme and Feedback Experience - 12230

    Energy Technology Data Exchange (ETDEWEB)

    Guiberteau, Ph.; Nokhamzon, J.G. [French Atomic and Alternatives Energy Commission CEA/DEN/DADN Saclay 91191 Gif-sur-Yvette Cedex (France)

    2012-07-01

    Since the French Atomic and Alternatives Energy Commission (CEA) was founded in 1945 to carry out research programmes on use of nuclear, and its application France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future. Since the 1960's and 1970's in all its centres, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing now from two dedicated funds, close to euro 15,000 M for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2016, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R (Decontamination Decommissioning and Remediation) strategy, programme and feedback experience inside the CEA's Nuclear Energy Division. A special feature of dismantling

  14. French Atomic Energy Commission Decommissioning Programme and Feedback Experience - 12230

    International Nuclear Information System (INIS)

    Since the French Atomic and Alternatives Energy Commission (CEA) was founded in 1945 to carry out research programmes on use of nuclear, and its application France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future. Since the 1960's and 1970's in all its centres, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing now from two dedicated funds, close to euro 15,000 M for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2016, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R (Decontamination Decommissioning and Remediation) strategy, programme and feedback experience inside the CEA's Nuclear Energy Division. A special feature of dismantling operations at the CEA

  15. Energy Research Seed Funding Competition

    OpenAIRE

    2011-01-01

    Introduction. Energy in all its aspects will be a leading priority for the Navy and the DoD in the 21st century, and represents a major strategic opportunity for the University. NPS has taken a leadership role in standing up educational programs in energy, and seeks to expand its portfolio in energy research both to support our education programs, and to tap into a growing base of federal and private sponsors for energy-related work. Towards this end, the Research Board has end...

  16. Current trend of atomic energy development in Japan - 2

    International Nuclear Information System (INIS)

    The atomic energy power generation is recognized to be important to solve the problems of the competitive relations among the Asian developing countries due to the increasing dependency on the crude oil produced in the Middle East and the insecurity of transport route of the oil. The reorganization and inauguration of JNC(former PNC) has been carried out for the development of liquid metal reactor and related fuel cycle technology as the national development project to prevent the global green house effect and to continue the economic development. The construction of light water reactor, the utilization of plutonium in light water reactor and the enrichment and reprocessing of spent fuel of light water reactor are classified as proven technologies which will be covered by the industry. The government will lead to the environment favorable for introduction of the atomic energy and will monitor the situation. The specifics of atomic energy development project and the development system for the 21th century will be contained in the long term atomic energy development plan which will be completed by 2000 and the reorganization operation has been initiated. (author). 41 refs., 5 tabs., 30 figs

  17. Radiation therapy. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    This catalog lists all sales publications of the International Atomic Energy Agency dealing with Radiation Therapy, and issued during the period 1 January 1990 - 30 April 2001. Most publications are issued in English, though some are also available in other languages. These are noted in the catalogue

  18. Energy fluctuations induced by stochastic frequency changes in atom traps

    International Nuclear Information System (INIS)

    We study the quantum description of energy fluctuations induced by stochastic changes in the frequency of atom traps. Using the connection between classical and quantum descriptions of parametric oscillators, the classical cumulant expansion method is used to obtain quantum results beyond standard perturbation theory. Both the case of static and time-dependent traps are explicitly worked out

  19. Environment. 1980-1994. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    The catalogue lists all publications of the International Atomic Energy Agency dealing with the Environment issued during the period 1980-1993. The major subjects covered include: effect of agrochemical residues on soils and aquatic ecosystems, application of radioisotopes in conservation of the environment, siting of nuclear power plants, environmental isotope data and environmental contamination due to nuclear accidents

  20. A Bibliography of Basic Books on Atomic Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1974-01-01

    This booklet lists selected commercially published books for the general public on atomic energy and closely related subjects. Books for young readers have school grade annotations.This booklet contains an author index, a title index, and a list of publishers’ addresses.

  1. Environment. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    This catalog lists all sales publications of the International Atomic Energy Agency dealing with the Environment, and issued during the period 1 January 1990 - 30 April 2001. Most publications are issued in English, though some are also available in other languages. These are noted in the catalogue

  2. Ground state wave function and energy of the lithium atom

    OpenAIRE

    Puchalski, Mariusz; Pachucki, Krzysztof

    2006-01-01

    Highly accurate nonrelativistic ground-state wave function and energy of the lithium atom is obtained in the Hylleraas basis set. The leading relativistic corrections,as represented by Breit-Pauli Hamiltonian, are obtained in fair agreement with the former results. The calculational method is based on the analytical evaluation of Hylleraas integrals with the help of recursion relations.

  3. Scientists credit `Atoms for Peace' for progress on energy, security

    CERN Multimedia

    Jones, D

    2003-01-01

    "Fifty years after President Eisenhower unveiled his plan for developing peaceful uses for nuclear fission, the scientific advances spawned by his Atoms for Peace program have made possible major advances in energy and national security, a panel of physicists said last week" (1 page).

  4. Act No. 2690 concerning the Turkish Atomic Energy Association

    International Nuclear Information System (INIS)

    The purpose of this Act is to reorganise the Turkish Atomic Energy Commission (TAEC) into an Association (TAEA) in order to provide it with greater powers. While remaining under the direct supervision of the Prime Minister, the TAEA how has legal personality, with more independence and flexibility from the financial and administrative viewpoints. (NEA)

  5. Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research.

    Science.gov (United States)

    Altman, Eric I; Baykara, Mehmet Z; Schwarz, Udo D

    2015-09-15

    Although atomic force microscopy (AFM) was rapidly adopted as a routine surface imaging apparatus after its introduction in 1986, it has not been widely used in catalysis research. The reason is that common AFM operating modes do not provide the atomic resolution required to follow catalytic processes; rather the more complex noncontact (NC) mode is needed. Thus, scanning tunneling microscopy has been the principal tool for atomic scale catalysis research. In this Account, recent developments in NC-AFM will be presented that offer significant advantages for gaining a complete atomic level view of catalysis. The main advantage of NC-AFM is that the image contrast is due to the very short-range chemical forces that are of interest in catalysis. This motivated our development of 3D-AFM, a method that yields quantitative atomic resolution images of the potential energy surfaces that govern how molecules approach, stick, diffuse, and rebound from surfaces. A variation of 3D-AFM allows the determination of forces required to push atoms and molecules on surfaces, from which diffusion barriers and variations in adsorption strength may be obtained. Pushing molecules towards each other provides access to intermolecular interaction between reaction partners. Following reaction, NC-AFM with CO-terminated tips yields textbook images of intramolecular structure that can be used to identify reaction intermediates and products. Because NC-AFM and STM contrast mechanisms are distinct, combining the two methods can produce unique insight. It is demonstrated for surface-oxidized Cu(100) that simultaneous 3D-AFM/STM yields resolution of both the Cu and O atoms. Moreover, atomic defects in the Cu sublattice lead to variations in the reactivity of the neighboring O atoms. It is shown that NC-AFM also allows a straightforward imaging of work function variations which has been used to identify defect charge states on catalytic surfaces and to map charge transfer within an individual

  6. Corrections to the Nonrelativistic Ground Energy of a Helium Atom

    Institute of Scientific and Technical Information of China (English)

    段一士; 刘玉孝; 张丽杰

    2004-01-01

    Considering the nuclear motion, we present the nonrelativistic ground energy of a helium atom by using a simple effective variational wavefunction with a flexible parameter k. Based on the result, the relativistic and radiative corrections to the nonrelativistic Hamiltonian are discussed. The high precision value of the helium ground energy is evaluated to be -2.90338 a.u. With the relative error 0.00034%.

  7. High energy physics research

    International Nuclear Information System (INIS)

    The goal of this research is to understand the fundamental constituents of matter and their interactions. At this time, the following activities are underway: e+e- interactions and Z0 physics at CERN; studies to upgrade the L3 detector at LHC; very high statistics charm physics at Fermilab; search for the H particle at BNL; search for the fifth force; rare kaon decay experiments at BNL; study of B-meson physics at hadron colliders; e+e- pair creation by light at SLAC; R ampersand D related to SSC experiments and the GEM detector; and theoretical research in elementary particle physics and cosmology. The main additions to the activities described in detail in the original grant proposal are (1) an experiment at SLAC (E-144) to study strong-field QED effects in e-laser and γ-laser collisions, and (2) a search for the H particle at BNL (E-188). The R ampersand D efforts for the GEM detector have also considerably expanded. In this paper we give a brief status report for each activity currently under way

  8. Tenth act amending the German atomic energy act

    International Nuclear Information System (INIS)

    On January 14, 2009, the German federal government introduced into parliament the 10th Act Amending the Atomic Energy Act. In the first reading in the federal parliament, Federal Minister for the Environment Gabriel emphasized 2 main points: Intensified protection of nuclear facilities and of transports of radioactive substances against unauthorized interventions; transfer by law to the Federal Office for Radiological Protection (BfS) of decommissioning of the Asse mine. Reliability review: The amendment to Sec.12 b of the Atomic Energy Act is to meet the different safety and security conditions after the terrorist attacks on September 11, 2001 in the United States and other terrorist activities afterwards (London, Madrid) also with respect to hazards arising to nuclear facilities and nuclear transports. The bill must be seen in conjunction with the Ordinance on Reliability Reviews under the Atomic Energy Act dated July 1, 1999 which covers reviews of reliability of persons holding special responsibilities. Asse II mine: The competence of the Federal Office for Radiological Protection is achieved by an amendment to Sec.23, Para.1, Number 2, Atomic Energy Act, in which the words ''and for the Asse II mine'' are added after the word ''waste.'' Further proceedings depend on the additional provision in a new Sec.57 b, Atomic Energy Act. Accordingly, the operation and decommissioning of the Asse II mine are subject to the regulations applicable to facilities of the federation pursuant to Sec.9a, Para.3. In this way, Asse II is given the same legal status as the federal waste management facilities. Moreover, it is stipulated that the mine is to be shut down immediately. (orig.)

  9. Nuclear fuel cycles as reflected in the atomic energy laws

    International Nuclear Information System (INIS)

    The author measures the stations of the nuclear fuel cycles against the requirements laid down by the constitution and the Atomic Energy Act. All safety-relevant installations of the nuclear fuel cycles for LWR-type and FBR-type reactor stations are explained and defined in the first section of the book, stating facts and technical aspects including the capacity problems in connection with spent fuel management and the resulting need for interim storage facilities. The following sections on the legal aspects discuss the various installations in comparison to the legal requirements and definitions of the Atomic Energy Act. The author emphasizes the separation of competences for the determination of safety-relevant facts (natural sciences and engineering), and for weighting decisions on the required prevention of damage (state powers). The licensing requirements given in section 7, sub-sec. (2) Atomic Energy Act and their respective relationships are examined in detail. The lines of concretization emanating from section 7, sub-sec. (2), no. 3 Atomic Energy Act are followed up down to the lowest level of legislative powers, and essential deficits in the light of constitutional law are pointed out, together with suggestions for improvement. Within the frame of a constitutional interpretation of section 7, sub-sec. (2), no. 3 Atomic Energy Act, the author analyses the decisions of the Federal Constitutional Court concerning the protective obligations of the state and their validity with regard to future generations, showing that the Federal Constitutional Court applies higher safety standards than those currently used by the administrative bodies. On this basis, the author develops a national, arithmetical average of natural radiation burden to serve as a substantive criterion for determining the borderline between damage prevention and risk to be accepted. (orig./HP)

  10. [Research in high energy physics

    International Nuclear Information System (INIS)

    This report discusses progress in the following research in high energy physics: The crystal ball experiment; delco at PEP; proton decay experiment; MACRO detector; mark III detector; SLD detector; CLEO II detector; and the caltech L3 group

  11. Research in high energy physics

    International Nuclear Information System (INIS)

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformal field theory. (LSP)

  12. Research in high energy physics

    International Nuclear Information System (INIS)

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  13. Research in high energy physics

    International Nuclear Information System (INIS)

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  14. Rough estimate demand of atomic energy-related budget for fiscal year 1996

    International Nuclear Information System (INIS)

    The rough estimate demand of the budget for fiscal year 1996 of eight atomic energy-related ministries and agencies was determined at about 494,879 million yen, which is 2.4% growth as compared with that for the previous year. Concretely, the general account is 204,594 million yen, 2.2% growth, and the special account is 290,285 million yen, 2.6% growth. The budget is 357,060 million yen and 3.7% growth for Science and Technology Agency, 130, 787 million yen and 2% decrease for Ministry of International Trade and Industry, and 7,032 million yen and 29.2% increase for other six ministries and agencies. Emphasis is placed on the research of upgrading LWRs including the disassembling of reactors, the performance test for fuel, the improvement of reactor technology and the verifying test of practical reactor decommissioning facilities, and the research and development of advanced nuclear fuel cycle technology. Also the technical development of waste treatment and disposal including high level radioactive waste is carried out with 40.3 billion yen. Atomic Energy Commission exerts efforts for the development of atomic energy policy for the peaceful utilization, the establishment of coordinative LWR power generation system, the development of nuclear fuel recycling and the strengthening of the basic research on atomic energy. (K.I.)

  15. Arbitrary excitation of atomic hydrogen at high energies

    International Nuclear Information System (INIS)

    Because of the growing need of excitation cross-section data of atomic hydrogen by fully stripped heavy ions for the preparation of an atomic database for neutral-beam penetration in large tokamaks, we have calculated these data in the framework of the first-order Born approximation for n≤20 in the energy range of 0.1 to 1.5 MeV/amu. The present computed results are found to be in agreement with the existing observed results. From the present calculation it also appears that the contribution from subshells characterized by l>3 is always less than 2%

  16. Effects of QED and Beyond from the Atomic Binding Energy

    International Nuclear Information System (INIS)

    Atomic binding energies are calculated at utmost precision. A report on the current status of Lamb-shift predictions for hydrogenlike ions, including all quantum electrodynamical corrections to first and second order in the fine structure constant α is presented. All relevant nuclear effects are taken into account. High-precision calculations for the Lamb shift in hydrogen are presented. The hyperfine structure splitting and the g factor of a bound electron in the strong electromagnetic field of a heavy nucleus is considered. Special emphasis is also put on parity violation effects in atomic systems. For all systems possible investigations beyond precision tests of quantum electrodynamics are considered

  17. High-energy electroproduction in an atomic field

    CERN Document Server

    Krachkov, P A

    2016-01-01

    The differential cross section of high-energy electroproduction in the electric field of heavy atoms is derived. The result is obtained with the exact account of the atomic field by means of the quasiclassical approximation to the wave functions in the external field. The Coulomb corrections substantially modify the differential cross section compared with the Born result. They lead to the azimuth asymmetry in the differential cross section for the polarized incoming electron. The Coulomb corrections to the total cross section are obtained in the leading logarithmic approximation.

  18. Annual report of the Department of Atomic Energy, 1976-77

    International Nuclear Information System (INIS)

    Research and development work in various research units, and activities and achievements of various public undertakings of the Department of Atomic Energy, India, during 1976-77 are reported. Construction of the 100 MW-thermal research reactor at Trombay and the Fast Breeder Test Reactor at Kalpakkam is in progress. Work on desalination, MHD and in seismology in continued. Report on performance of the Tarapur and Rajasthan Atomic Power Stations and progress of construction of the nuclear power stations at Kalpakkam and Narora is given. Fuelling machine carriage and shielding and plug assemblies for the second unit of the Rajasthan Atomic Power Station have been indigenously fabricated. A novel technique for prospecting nuclear minerals, termed as BARC-TEFUREX has been evolved and is being used successfully. The country-wide radiological protection programme covers 42,000 radiation workers in 2,280 institutions. (M.G.B.)

  19. The place of Turkish Atomic Energy Authority in nuclear energy production

    International Nuclear Information System (INIS)

    Turkish Atomic Energy Authority (TAEA), established in 1982 by the Act no: 2690, is a governmental organization directly under the direct supervision of the Prime Minister. The objective of the establisment of TAEA is the peaceful utilization of atomic energy, regarding the national policy and the related plans and programs, for the benefits of State. The main duties of TAEA, as stated in related Act, can be summarized as: to determine and progress the basis of the national policy and the related plans and programs and to submit them to be approved by the Prime Minister; to execute and to support scientific, technical and administrative studies; to give approval, permission and license to the nuclear installations; to enlighten the public in nuclear matters; to establish research and educate the personnel in the nuclear field If Turkey would participate in a Nuclear Energy Program, especially, TAEA should perform its own duties properly and in this respect, as an Authority, we should have objectives that have to be determined as State Policy

  20. Potential Impact of Biofield Energy Treatment on the Atomic, Physical and Thermal Properties Indium Powder

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Indium has gained significant attention in the semiconductor industries due to its unique thermal and optical properties. The objective of this research was to investigate the influence of the biofield energy treatment on the atomic, physical and thermal properties of the indium. The study was performed in two groups (control and treated). The control group remained as untreated, and treated group received Mr. Trivedi’s biofield energy treatment. Subsequently, the control and treated in...