WorldWideScience

Sample records for atomic emission spectroscopy

  1. Atomic emission spectroscopy

    Science.gov (United States)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  2. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    Science.gov (United States)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  3. Photon emission spectroscopy of ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, B.

    1995-10-01

    Emission cross sections for the 1snp{sup 1}P{sub 1}-levels have been measured by photon emission spectroscopy for the collision systems He{sup +} + He at 10 keV and He{sup 2+} + He at 10-35 keV. Photon spectra of Krypton (Kr VIII) and Xenon (Xe V - IX) have also been obtained using 10q keV beams of Kr{sup q+} (q=7-9) and Xe{sup q+} (q=5-9) colliding with Helium and Argon. The Lifetimes of 3p{sup 2}P-levels in Na-like Nb are reported together with lifetime for the 3s3p{sup 3}P{sub 1}-level in Mg-like Ni, Kr, Y, Zr and Nb where this level has an intercombination transition to the ground state. 45 refs, 20 figs.

  4. Atomic Oscillator Strengths by Emission Spectroscopy and Lifetime Measurements

    Science.gov (United States)

    Wiese, W. L.; Griesmann, U.; Kling, R.; Musielok, J.

    2002-11-01

    Over the last seven years, we have carried out numerous oscillator strength measurements for some light and medium heavy elements (Musielok et al. 1995, 1996, 1997, 1999, 2000; Veres & Wiese 1996; Griesmann et al. 1997; Bridges & Wiese 1998; Kling et al. 2001; Kling & Gries- mann 2000; Bridges & Wiese to be published). Most recently we have determined numerous transitions of Mu II (Kling et al. 2001; Kling & Griesmann 2000) and are now working on Cl I (Bridges & Wiese to be published). See the summary statement at the end of the text. For the emission measurements, we have applied either a high-current wall-stabilized arc (described for example, in Musielok et al. (1999)), or a high-current hollow cathode, or a Penning discharge. The latter two sources were used for branching ratio measurements from common upper 1ev- els, while the wall-stabilized arc was operated at atmospheric pressure under the condition of partial local thermodynamic equilibrium, which allows the measurement of relative transition probabilities. Absolute data were obtained by combining the emission results with lifetime data measured by other research groups, especially the University of Hannover, with which we have closely collaborated. This group uses the laser induced fluorescence (LIF) technique. Our emission spectra were recorded for the light elements with a 2 m grating spectrometer, or, for Mu II, with an FT 700 vacuum ultraviolet Fourier transform spectrometer. The radiometric calibration was carried out with a tungsten strip lamp for the visible part of the spectrum and with a deuterium lamp for the ultraviolet. All measurements were made under optically thin conditions, which was checked by doubling the path length with a focusing mirror setup. Typical uncertainties of the measured oscillator strengths are estimated to be in the range 15%-20% (one-standard deviation). However, discrepancies with advanced atomic structure theories are sometimes much larger. In Tables 1-3 and Fig. 1, we

  5. Determination of sulfur content in steel by laser-produced plasma atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A.; Ortiz, M. [Unidad de Fisica Atomica y Laseres, Instituto de Investigacion Basica, CIEMAT, Avda Complutense 22, 28040 Madrid (Spain); Campos, J. [Catedra de Fisica Atomica Experimental, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    1995-11-01

    Sulfur content in steel samples has been determined by laser-produced plasma atomic emission spectroscopy with the use of a Q-switch Nd:YAG laser. With the use of time-resolved spectroscopy employing an OMA III (EG&G) as detector, a detection limit of 70 ppm and a precision of 7{percent} have been obtained. Calibration curves are linear, and no noticeable matrix effects have been observed. {copyright} {ital 1995 Society for Applied Spectroscopy.}

  6. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fara, M.; Novak, F. [EGU Prague, PLC, Bichovice, Prague (Czechoslovakia)

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  7. Probing nucleic acid-ion interactions with buffer exchange-atomic emission spectroscopy.

    Science.gov (United States)

    Greenfeld, Max; Herschlag, Daniel

    2009-01-01

    The ion atmosphere of nucleic acids directly affects measured biochemical and biophysical properties. However, study of the ion atmosphere is difficult due to its diffuse and dynamic nature. Standard techniques available have significant limitations in sensitivity, specificity, and directness of the assays. Buffer exchange-atomic emission spectroscopy (BE-AES) was developed to overcome many of the limitations of previously available techniques. This technique can provide a complete accounting of all ions constituting the ionic atmosphere of a nucleic acid at thermodynamic equilibrium. Although initially developed for the study of the ion atmosphere of nucleic acids, BE-AES has also been applied to study site-bound ions in RNA and protein. Copyright © 2009 Elsevier Inc. All rights reserved.

  8. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  9. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  10. Sub-microanalysis of solid samples with near-field enhanced atomic emission spectroscopy

    Science.gov (United States)

    Wang, Xiaohua; Liang, Zhisen; Meng, Yifan; Wang, Tongtong; Hang, Wei; Huang, Benli

    2018-03-01

    A novel approach, which we have chosen to name it as near-field enhanced atomic emission spectroscopy (NFE-AES), was proposed by introducing a scanning tunnelling microscope (STM) system into a laser-induced breakdown spectrometry (LIBS). The near-field enhancement of a laser-illuminated tip was utilized to improve the lateral resolution tremendously. Using the hybrid arrangement, pure metal tablets were analyzed to verify the performance of NFE-AES both in atmosphere and in vacuum. Due to localized surface plasmon resonance (LSPR), the incident electromagnetic field is enhanced and confined at the apex of tip, resulting in sub-micron scale ablation and elemental emission signal. We discovered that the signal-to-noise ratio (SNR) and the spectral resolution obtained in vacuum condition are better than those acquired in atmospheric condition. The quantitative capability of NFE-AES was demonstrated by analyzing Al and Pb in Cu matrix, respectively. Submicron-sized ablation craters were achieved by performing NFE-AES on a Si wafer with an Al film, and the spectroscopic information from a crater of 650 nm diameter was successfully obtained. Due to its advantage of high lateral resolution, NFE-AES imaging of micro-patterned Al lines on an integrated circuit of a SIM card was demonstrated with a sub-micron lateral resolution. These results reveal the potential of the NFE-AES technique in sub-microanalysis of solids, opening an opportunity to map chemical composition at sub-micron scale.

  11. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  12. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perring, Loic; Basic-Dvorzak, Marija [Department of Quality and Safety Assurance, Nestle Research Centre, P.O. Box 44, Vers chez-les-Blanc, 1000, Lausanne (Switzerland)

    2002-09-01

    Tin is considered to be a priority contaminant by the Codex Alimentarius Commission. Tin can enter foods either from natural sources, environmental pollution, packaging material or pesticides. Higher concentrations are found in processed food and canned foods. Dissolution of the tinplate depends on the of food matrix, acidity, presence of oxidising reagents (anthocyanin, nitrate, iron and copper) presence of air (oxygen) in the headspace, time and storage temperature. To reduce corrosion and dissolution of tin, nowadays cans are usually lacquered, which gives a marked reduction of tin migration into the food product. Due to the lack of modern validated published methods for food products, an ICP-AES (Inductively coupled plasma-atomic emission spectroscopy) method has been developed and evaluated. This technique is available in many laboratories in the food industry and is more sensitive than atomic absorption. Conditions of sample preparation and spectroscopic parameters for tin measurement by axial ICP-AES were investigated for their ruggedness. Two methods of preparation involving high-pressure ashing or microwave digestion in volumetric flasks were evaluated. They gave complete recovery of tin with similar accuracy and precision. Recoveries of tin from spiked products with two levels of tin were in the range 99{+-}5%. Robust relative repeatabilities and intermediate reproducibilities were <5% for different food matrices containing >30 mg/kg of tin. Internal standard correction (indium or strontium) did not improve the method performance. Three emission lines for tin were tested (189.927, 283.998 and 235.485 nm) but only 189.927 nm was found to be robust enough with respect to interferences, especially at low tin concentrations. The LOQ (limit of quantification) was around 0.8 mg/kg at 189.927 nm. A survey of tin content in a range of canned foods is given. (orig.)

  13. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  14. Determination of the equilibrium constants of organophosphorus liquid-liquid extractants by inductively coupled Plasma-Atomic Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ke-an, L.; Muralidharan, S.; Freiser, H.

    1985-12-01

    The technique of inductively coupled Plasma-Atomic Emission Spectroscopy (ICP) has been used for determining the equilibrium constants of organophosphorus extractants in liquid-liquid extraction systems. The 213.618 nm first order atomic emission line of phosphorus was monitored to determine the equilibrium constants. The relevant equilibrium constants of bis(2,4,4-trimethylpentyl)phosphinic acid, bis(2-ethylhexyl)phosphoric acid, diphenylphosphinic acid, trioctylphosphine oxide and tri-n-butylphosphate have been determined in this manner. It has been demonstrated for the first time that the equilibrium constants for liquid-liquid extractants can be determined in a facile manner using ICP. 14 references, 1 figure, 1 table.

  15. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    OpenAIRE

    Muramatsu, Yasuji

    2009-01-01

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and mo...

  16. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  17. Determination of Metals Present in Textile Dyes Using Laser-Induced Breakdown Spectroscopy and Cross-Validation Using Inductively Coupled Plasma/Atomic Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Rehan

    2017-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS was used for the quantitative analysis of elements present in textile dyes at ambient pressure via the fundamental mode (1064 nm of a Nd:YAG pulsed laser. Three samples were collected for this purpose. Spectra of textile dyes were acquired using an HR spectrometer (LIBS2000+, Ocean Optics, Inc. having an optical resolution of 0.06 nm in the spectral range of 200 to 720 nm. Toxic metals like Cr, Cu, Fe, Ni, and Zn along with other elements like Al, Mg, Ca, and Na were revealed to exist in the samples. The %-age concentrations of the detected elements were measured by means of standard calibration curve method, intensities of every emission from every species, and calibration-free (CF LIBS approach. Only Sample 3 was found to contain heavy metals like Cr, Cu, and Ni above the prescribed limit. The results using LIBS were found to be in good agreement when compared to outcomes of inductively coupled plasma/atomic emission spectroscopy (ICP/AES.

  18. X-ray emission spectroscopy applied to glycine adsorbed on Cu(110): An atom and symmetry projected view

    Energy Technology Data Exchange (ETDEWEB)

    Hasselstroem, J.; Karis, O.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    When a molecule is adsorbed on a metal surface by chemical bonding new electronic states are formed. For noble and transition metals these adsorption-induced states overlap with the much more intense metal d-valence band, making them difficult to probe by for instance direct photoemission. However, it has recently been shown that X-ray emission spectroscopy (XES) can be applied to adsorbate systems. Since the intermediate state involves a core hole, this technique has the power to project out the partial density of states around each atomic site. Both the excitation and deexcitation processes are in general governed by the dipole selection rules. For oriented system, it is hence possible to obtain a complete separation into 2p{sub x}, 2p{sub y} and 2p{sub z} contributions using angular resolved measurements. The authors have applied XES together with other core level spectroscopies to glycine adsorption on Cu(110). Glycine (NH{sub 2}CH{sub 2}COOH) is the smallest amino acid and very suitable to study by core level spectroscopy since it has several functional groups, all well separated in energy by chemical shifts. Its properties are futhermore of biological interest. In summary, the authors have shown that it is possible to apply XES to more complicated molecular adsorbates. The assignment of different electronic states is however not as straight forward as for simple diatomic molecules. For a complete understanding of the redistribution and formation of new electronic states associated with the surface chemical bond, experimental data must be compared to theoretical calculations.

  19. Microwave plasma-atomic emission spectroscopy as a tool for the determination of copper, iron, manganese and zinc in animal feed and fertilizer.

    Science.gov (United States)

    Li, Wei; Simmons, Patrick; Shrader, Doug; Herrman, Timothy J; Dai, Susie Y

    2013-08-15

    Quantitative analysis of elements in agricultural products like animal feed and fertilizers by a new instrument using microwave plasma-atomic emission spectroscopy (MP-AES) technology was demonstrated in this work. Hot plate and microwave digestion were used to digest the sample matrices and the consequent digests were subject to atomic absorption spectroscopy (AA), inductive coupled plasma optical emission spectroscopy (ICP-OES) and MP-AES analysis. The detection limit, accuracy and dynamic range for each instrument, were compared and matrix effects were evaluated with respect to the fertilizer and feed materials. The new MP-AES platform can offer comparable or better performance compared to AA and/or ICP-OES with respect to routine analysis for a regulatory program. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Atomic scale properties of magnetic Mn-based alloys probed by emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys on the atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  1. Standard test method for determining elements in waste Streams by inductively coupled plasma-atomic emission spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the sample. Waste streams from manufacturing processes of nuclear and non-nuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable in process control within waste treatment facilities. 1.2 This test method is applicable only to waste streams that contain radioactivity levels that do not require special personnel or environmental protection. 1.3 A list of the elements determined in waste streams and the corresponding lower reporting limit is found in Table 1. 1.4 This test method has been used successfully for treatment of a large variety of waste solutions and industrial process liquids. The com...

  2. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  3. Evaluation of lithium determination in three analyzers: flame emission, flame atomic absorption spectroscopy and ion selective electrode.

    Science.gov (United States)

    Aliasgharpour, Mehri; Hagani, Hamid

    2009-10-01

    Lithium carbonate salt has become an increasingly important substance in the treatment of manic depressive disorders, and its relatively narrow therapeutic range has caused laboratories to monitor the serum concentration carefully. In the present work we evaluated lithium measurement in 3 different analyzers. METHODS #ENTITYSTARTX00026; Three different analyzers including Flame Emission (FES), Flame Atomic Absorption Spectroscopy (FAAS), and Ion Selective Electrode (ISE) were used. All chemicals had a grade suitable for trace metal analysis. Within-day precision of CV was ≤ 1.5% for FES & FAAS, except for ISE (1.9% CV). Between-days precision of CV was less for FES than for FAAS and ISE (1.3% versus 2.2% & 2.3%). The percent recovery of added lithium in pooled patients' serum was higher for ISE than for FASS and FES (103.4% versus 96.2% and 94.6%). We also obtained a higher average lithium concentration for patients' serum samples (n=16) measured by ISE than for FAAS and FES (0.825±0.30 versus 0.704±0.26 & 0.735±0.19). Paired t-test results revealed a significant difference (p< 0.001) for patient sera analyzed with FAAS and ISE. We report higher results for ISE than the other two analyzers and conclude that the choice between the two flame methods for patients' serum lithium determination is arbitrary and that FES analyzer is a more attractive routine alternative for lithium determination than FAAS because of its cost and ease of performance. In addition, the results obtained by ISE are precise. However, its accuracy may depend on other interfering factors.

  4. Symposium on atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented. (GHT)

  5. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  6. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    Science.gov (United States)

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  7. Solar Spectroscopy: Atomic Processes

    Science.gov (United States)

    Mason, H.; Murdin, P.

    2000-11-01

    A Greek philosopher called DEMOCRITUS (c. 460-370 BC) first introduced the concept of atoms (which means indivisible). His atoms do not precisely correspond to our atoms of today, which are not indivisible, but made up of a nucleus (protons with positive charge and neutrons which have no charge) and orbiting electrons (with negative charge). Indeed, in the solar atmosphere, the temperature is suc...

  8. Spectroscopy, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the "Understanding the Atom" Series. The science of spectroscopy is presented by a number of topics dealing with (1) the uses of spectroscopy, (2) its origin and background, (3) the basic optical systems of spectroscopes, spectrometers, and spectrophotometers, (4) the characteristics of wave motion, (5) the…

  9. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  10. Laser techniques for spectroscopy of core-excited atomic levels

    Science.gov (United States)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  11. Determination of some inorganic metals in edible vegetable oils by inductively coupled plasma atomic emission spectroscopy (ICP-AES

    Directory of Open Access Journals (Sweden)

    Musa Özcan, M.

    2008-09-01

    Full Text Available Seventeen edible vegetable oils were analyzed spectrometrically for their metal (Cu, Fe, Mn, Co, Cr, Pb, Cd, Ni, and Zn contents. Toxic metals in edible vegetable oils were determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES. The highest metal concentrations were measured as 0.0850, 0.0352, 0.0220, 0.0040, 0.0010, 0.0074, 0.0045, 0.0254 and 0.2870 mg/kg for copper in almond oil, for iron in corn oil-(c, for manganese in soybean oil, for cobalt in sunflower oil-(b and almond oil, for chromium in almond oil, for lead in virgin olive oil, for cadmium in sunflower oil-(e, for nickel almond oil and for zinc in almond oil respectively. The method for determining toxic metals in edible vegetable oils by using ICP-AES is discussed. The metals were extracted from low quantities of oil (2-3 g with a 10% nitric acid solution. The extracted metal in acid solution can be injected into the ICPAES. The proposed method is simple and allows the metals to be determined in edible vegetable oils with a precision estimated below 10% relative standard deviation (RSD for Cu, 5% for Fe, 15% for Mn, 8% for Co, 10% for Cr, 20% for Pb, 5% for Cd, 16% for Ni and 11% for Zn.En este estudio se analizó espectrométricamente el contenido en metales (Cu, Fe, Mn, Co, Cr, Pb, Cd, Ni, and Zn de 17 aceites vegetales comestibles mediante ICP-AES. Las concentaciones más elevadas se encontraron para el cobre en el aceite de almendra (0.0850 mg/kg, para el hierro en el aceite de maiz(c,(0.0352 mg/kg, para el manganeso en el aceite de soja (0.0220 mg/kg, para el cobalto en el aceite de girasol (b (0.0040 mg/kg, para el cromo en el aceite de almendra (0.0010 mg/kg, para el plomo en el aceite de oliva virgen (0.0074 mg/kg, para el cadmio en el aceite de girasol (e (0.0045 mg/kg, para el niquel en el aceite de almendra (0.0254 mg/kg y para el zincen el aceite de almendra (0.2870 mg/kg. Los metales se extrajeron a partir de bajas cantidades de aceite (2-3 g, con

  12. Infrared (1-12 Micrometers) Atomic and Molecular Emission Signatures from Energetic Materials using Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    2013-01-01

    emission spectra were recorded using a boxcar average with a gate width of 15 s and delay times of 16 µs (NIR, MIR) and 30 s (LWIR), respectively...REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1... Average 2. EXPERIMENTAL CONSIDERATIONS Powder samples of commercially available chlorate and nitrate compounds (Alfa Aesar) were pressed into tablets of

  13. Determination of Serum Lithium by Flame Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    R. Nafissy

    1976-07-01

    Full Text Available Lithum can be de termined both by atomic absorption spectroscopy andflame emission spectroscopy. We have used the later method with a Zeiss Model pMQlI spectro photometer fitt ed with ante-chamber atomizer and a potensiome rric line recorder. Accurate ana lysis for the clement was acco mplished due to a sophisracared measuring instrument.

  14. Determination of Metals Present in Textile Dyes Using Laser-Induced Breakdown Spectroscopy and Cross-Validation Using Inductively Coupled Plasma/Atomic Emission Spectroscopy

    National Research Council Canada - National Science Library

    K. Rehan; I. Rehan; S. Sultana; M. Zubair Khan; Z. Farooq; A. Mateen; M. Humayun

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) was used for the quantitative analysis of elements present in textile dyes at ambient pressure via the fundamental mode (1064 nm) of a Nd:YAG pulsed laser...

  15. Combination of the ionic-to-atomic line intensity ratios from two test elements for the diagnostic of plasma temperature and electron number density in Inductively Coupled Plasma Atomic Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tognoni, E. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)], E-mail: tognoni@ipcf.cnr.it; Hidalgo, M.; Canals, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia. Universidad de Alicante. Apdo. 99, 03080, Alicante (Spain); Cristoforetti, G.; Legnaioli, S.; Salvetti, A.; Palleschi, V. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)

    2007-05-15

    In Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) spectrochemical analysis, the MgII(280.270 nm)/MgI(285.213 nm) ionic to atomic line intensity ratio is commonly used as a monitor of the robustness of operating conditions. This approach is based on the univocal relationship existing between intensity ratio and plasma temperature, for a pure argon atmospheric ICP in thermodynamic equilibrium. In a multi-elemental plasma in the lower temperature range, the measurement of the intensity ratio may not be sufficient to characterize temperature and electron density. In such a range, the correct relationship between intensity ratio and plasma temperature can be calculated only when the complete plasma composition is known. We propose the combination of the line intensity ratios of two test elements (double ratio) as an effective diagnostic tool for a multi-elemental low temperature LTE plasma of unknown composition. In particular, the variation of the double ratio allows us discriminating changes in the plasma temperature from changes in the electron density. Thus, the effects on plasma excitation and ionization possibly caused by introduction of different samples and matrices in non-robust conditions can be more accurately interpreted. The method is illustrated by the measurement of plasma temperature and electron density in a specific analytic case.

  16. Nanoscale Terahertz Emission Spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Kim, Hyewon; Colvin, Vicki L.

    By utilizing plasmonic coupling to an AFM probe, we demonstrate Laser Terahertz Emission Nanoscopy (LTEN) with sub-20 nm resolution. We demonstrate the resolution by imaging a single gold nanorod on an InAs substrate.......By utilizing plasmonic coupling to an AFM probe, we demonstrate Laser Terahertz Emission Nanoscopy (LTEN) with sub-20 nm resolution. We demonstrate the resolution by imaging a single gold nanorod on an InAs substrate....

  17. Solving a Mock Arsenic-Poisoning Case Using Atomic Spectroscopy

    Science.gov (United States)

    Tarr, Matthew A.

    2001-01-01

    A new upper-level undergraduate atomic spectroscopy laboratory procedure has been developed that presents a realistic problem to students and asks them to assist in solving it. Students are given arsenic-laced soda samples from a mock crime scene. From these samples, they are to gather evidence to help prosecute a murder suspect. The samples are analyzed by inductively coupled plasma atomic emission spectroscopy or by atomic absorbance spectroscopy to determine the content of specific metal impurities. By statistical comparison of the samples' composition, the students determine if the soda samples can be linked to arsenic found in the suspect's home. As much as possible, the procedures and interpretations are developed by the students. Particular emphasis is placed on evaluating the limitations and capabilities of the analytical method with respect to the demands of the problem.

  18. Relativistic atomic beam spectroscopy II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  19. Small amplitude atomic force spectroscopy

    NARCIS (Netherlands)

    de Beer, Sissi; van den Ende, Henricus T.M.; Ebeling, Daniel; Mugele, Friedrich Gunther; Bhushan, Bharat

    2011-01-01

    Over the years atomic force microscopy has developed from a pure imaging technique to a tool that can be employed for measuring quantitative tip–sample interaction forces. In this chapter we provide an overview of various techniques to extract quantitative tip–sample forces focusing on both

  20. Precision spectroscopy on atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Parthey, Christian Godehard

    2011-12-15

    This Thesis reports on three measurements involving the 1S-2S transition in atomic hydrogen and deuterium conducted on a 5.8 K atomic beam. The transition is excited Doppler-free via two counter-propagating photons near 243 nm. The H/D isotope shift has been determined as {delta}{integral}{sub exp}=670 994 334 606(15) Hz. Comparing with the theoretical value for the isotope shift, excluding the leading nuclear size effect, {delta}{integral}{sub th}=670 999 566.90(66)(60) kHz we confirm, twice more accurate, the rms charge radius difference of the deuteron and the proton as left angle r{sup 2} right angle {sub d}- left angle r{sup 2} right angle {sub p}=3.82007(65) fm{sup 2} and the deuteron structure radius r{sub str}=1.97507(78) fm. The frequency ratio of the 1S-2S transition in atomic hydrogen to the cesium ground state hyperfine transition provided by the mobile cesium fountain clock FOM is measured to be {integral}{sub 1S-2S}=2 466 061 413 187 035 (10) Hz which presents a fractional frequency uncertainty of 4.2 x 10{sup -15}. The second absolute frequency measurement of the 1S-2S transition in atomic hydrogen presents the first application of a 900 km fiber link between MPQ and Physikalisch- Technische Bundesanstalt (PTB) in Braunschweig which we have used to calibrate the MPQ hydrogen maser with the stationary cesium fountain clock CSF1 at PTB. With the result of {integral}{sub 1S-2S}=2 466 061 413 187 017 (11) Hz we can put a constraint on the electron Lorentz boost violating coefficients 0.95c{sub (TX)}-0.29c{sub (TY)}-0.08 c{sub (TZ)}=(2.2{+-}1.8) x 10{sup -11} within the framework of minimal standard model extensions. We limit a possible drift of the strong coupling constant through the ratio of magnetic moments at a competitive level ({partial_derivative})/({partial_derivative}t)ln ({mu}{sub Cs})/({mu}{sub B})=-(3.0{+-}1.2) x 10{sup -15} yr{sup -1}.

  1. Electronic structure of atoms: atomic spectroscopy information system

    Science.gov (United States)

    Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.

    2017-10-01

    The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.

  2. Building and analyzing models from data by stirred tank experiments for investigation of matrix effects caused by inorganic matrices and selection of internal standards in Inductively Coupled Plasma-Atomic Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grotti, Marco [Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, 16146 Genova (Italy)], E-mail: grotti@chimica.unige.it; Paredes, Eduardo; Maestre, Salvador; Todoli, Jose Luis [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, 03080, Alicante (Spain)

    2008-05-15

    Interfering effects caused by inorganic matrices (inorganic acids as well as easily ionized elements) in inductively coupled plasma-atomic emission spectroscopy have been modeled by regression analysis of experimental data obtained using the 'stirred tank method'. The main components of the experimental set-up were a magnetically-stirred container and two peristaltic pumps. In this way the matrix composition was gradually and automatically varied, while the analyte concentration remained unchanged throughout the experiment. An inductively coupled plasma spectrometer with multichannel detection based on coupled charge device was used to simultaneously measure the emission signal at several wavelengths when the matrix concentration was modified. Up to 50 different concentrations were evaluated in a period of time of 10 min. Both single interfering species (nitric, hydrochloric and sulphuric acids, sodium and calcium) and different mixtures (aqua regia, sulfonitric mixture, sodium-calcium mixture and sodium-nitric acid mixture) were investigated. The dependence of the emission signal on acid concentration was well-fitted by logarithmic models. Conversely, for the easily ionized elements, 3-order polynomial models were more suitable to describe the trends. Then, the coefficients of these models were used as 'signatures' of the matrix-related signal variations and analyzed by principal component analysis. Similarities and differences among the emission lines were highlighted and discussed, providing a new insight into the interference phenomena, mainly with regards to the combined effect of concomitants. The combination of the huge amount of data obtained by the stirred tank method in a short period of time and the speed of analysis of principal component analysis provided a judicious means for the selection of the optimal internal standard in inductively coupled plasma-atomic emission spectroscopy.

  3. Atomic Force Microscope for Imaging and Spectroscopy

    Science.gov (United States)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  4. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Colon, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Todoli, J.L. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Hidalgo, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Iglesias, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain)], E-mail: monica.iglesias@udg.es

    2008-02-25

    Two new, simple and accurate methods for the determination of sulfide (S{sup 2-}) at low levels ({mu}g L{sup -1}) in aqueous samples were developed. The generation of hydrogen sulfide (H{sub 2}S) took place in a coil where sulfide reacted with hydrochloric acid. The resulting H{sub 2}S was then introduced as a vapor into an inductively coupled plasma-atomic emission spectrometer (ICP-AES) and sulfur emission intensity was measured at 180.669 nm. In comparison to when aqueous sulfide was introduced, the introduction of sulfur as H{sub 2}S enhanced the sulfur signal emission. By setting a gas separator at the end of the reaction coil, reduced sulfur species in the form of H{sub 2}S were removed from the water matrix, thus, interferences could be avoided. Alternatively, the gas separator was replaced by a nebulizer/spray chamber combination to introduce the sample matrix and reagents into the plasma. This methodology allowed the determination of both sulfide and sulfate in aqueous samples. For both methods the linear response was found to range from 5 {mu}g L{sup -1} to 25 mg L{sup -1} of sulfide. Detection limits of 5 {mu}g L{sup -1} and 6 {mu}g L{sup -1} were obtained with and without the gas separator, respectively. These new methods were evaluated by comparison to the standard potentiometric method and were successfully applied to the analysis of reduced sulfur species in environmental waters.

  5. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  6. Mid infrared emission spectroscopy of carbon plasma

    Science.gov (United States)

    Nemes, Laszlo; Brown, Ei Ei; Yang, Clayton S.-C.; Hommerich, Uwe

    2017-01-01

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6 μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10 μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5 μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results.

  7. Mid infrared emission spectroscopy of carbon plasma.

    Science.gov (United States)

    Nemes, Laszlo; Brown, Ei Ei; S-C Yang, Clayton; Hommerich, Uwe

    2017-01-05

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Atoms, molecules and optical physics 1. Atoms and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter

    2015-09-01

    This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  9. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  10. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy; Probabilidades de transicion de algunos niveles de Cr II, Na II y Sb I medediante espectroscopia de plasma producidos por laser

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-07-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities ({approx}{approx} 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs.

  11. Collinear laser spectroscopy of atomic cadmium

    CERN Document Server

    Frömmgen, Nadja; Bissell, Mark L.; Bieroń, Jacek; Blaum, Klaus; Cheal, Bradley; Flanagan, Kieran; Fritzsche, Stephan; Geppert, Christopher; Hammen, Michael; Kowalska, Magdalena; Kreim, Kim; Krieger, Andreas; Neugart, Rainer; Neyens, Gerda; Rajabali, Mustafa M.; Nörtershäuser, Wilfried; Papuga, Jasna; Yordanov, Deyan T.

    2015-01-01

    Hyperfine structure $A$ and $B$ factors of the atomic $5s\\,5p\\,\\; ^3\\rm{P}_2 \\rightarrow 5s\\,6s\\,\\; ^3\\rm{S}_1$ transition are determined from collinear laser spectroscopy data of $^{107-123}$Cd and $^{111m-123m}$Cd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with $s_{1/2}$ and $d_{5/2}$ nuclear ground states and isomeric $h_{11/2}$ states is evaluated and a linear relationship is observed for all nuclear states except $s_{1/2}$. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic $5s\\,5p\\,\\; ^3\\mathrm{P}_2$ level is derived from multi-configuration Dirac-Hartree-Fock calculatio...

  12. Spectroscopy of the extreme ultraviolet dayglow at 6.5A resolution - Atomic and ionic emissions between 530 and 1240A

    Science.gov (United States)

    Gentieu, E. P.; Feldman, P. D.; Meier, R. R.

    1979-01-01

    EUV spectra (530-1500A) of the day airglow in up, down and horizontal aspect orientations have been obtained with 6.5A resolution and a limiting sensitivity of 5R from a rocket experiment. Below 834A the spectrum is rich in previously unobserved OII transitions connecting with 4S(0), 2D(0), and 2P(0) states. Recent broad-band photometric observations of geocoronal HeI 584A emission in terms of the newly observed OII emissions are shown. The OI 989A and OI 1304A emissions exhibit similar dependence on altitude and viewing geometry with the OI 989A brightness 1/15 that of OI 1340. Emission at 1026A is identified as geocoronal HI Lyman beta rather than OI multiplet emission and observed intensities agree well with model estimates. An unexpectedly high NI 1200/NI 1134A brightness ratio is evidence of a significant contribution from photodissociative excitation of N2 to the NI 1200A source function.

  13. Towards Atomic Column-by-Column Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pennycook, S.J.; Rafferty, B.

    1998-09-06

    The optical arrangement of the scanning transmission electron microscope (STEM) is ideally suited for performing analysis of individual atomic columns in materials. Using the incoherent Z-contrast image as a reference, and arranging incoherent conditions also for the spectroscopy, a precise correspondence is ensured between features in the inelastic image and elastic signals. In this way the exact probe position needed to maximise the inelastic signal from a selected column can be located and monitored during the analysis using the much higher intensity elastic signal. Although object functions for EELS are typically less than 1 {Angstrom} full width at half maximum, this is still an order of magnitude larger than the corresponding object functions for elastic (or diffuse) scattering used to form the Z-contrast image. Therefore the analysis is performed with an effective probe that is significantly broader than that used for the reference Z-contrast image. For a 2.2 {Angstrom} probe the effective probe is of the order of 2.5 {Angstrom}, while for a 1.3 {Angstrom} probe the effective probe is 1.6 {Angstrom}. Such increases in effective probe size can significantly reduce or even eliminate contrast between atomic columns that are visible in the image. However, this is only true if we consider circular collector apertures. Calculations based upon the theory of Maslen and Rossouw (Maslen and Rossouw 1984; Rossouw and Maslen 1984) show that employing an annular aperture can reduce the FWHM of the inelastic object function down to values close 0.1 {Angstrom}. With practical aperture sizes it should be possible to achieve this increased spatial resolution without loosing too much signal.

  14. [Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES)].

    Science.gov (United States)

    Hao, Zhi-hong; Yao, Jian-zhen; Tang, Rui-ling; Zhang, Xue-mei; Li, Wen-ge; Zhang, Qin

    2015-02-01

    The method for the determmation of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current are full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES) was established. Direct current are full spectrum direct reading atomic emission spectrometer with a large area of solid-state detectors has functions of full spectrum direct reading and real-time background correction. The new electrodes and new buffer recipe were proposed in this paper, and have applied for national patent. Suitable analytical line pairs, back ground correcting points of elements and the internal standard method were selected, and Ge was used as internal standard. Multistage currents were selected in the research on current program, and each current set different holding time to ensure that each element has a good signal to noise ratio. Continuous rising current mode selected can effectively eliminate the splash of the sample. Argon as shielding gas can eliminate CN band generating and reduce spectral background, also plays a role in stabilizing the are, and argon flow 3.5 L x min(-1) was selected. Evaporation curve of each element was made, and it was concluded that the evaporation behavior of each element is consistent, and combined with the effects of different spectrographic times on the intensity and background, the spectrographic time of 35s was selected. In this paper, national standards substances were selected as a standard series, and the standard series includes different nature and different content of standard substances which meet the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples. In the optimum experimental conditions, the detection limits for B, Mo, Ag, Sn and Pb are 1.1, 0.09, 0.01, 0.41, and 0.56 microg x g(-1) respectively, and the precisions (RSD, n=12) for B, Mo, Ag, Sn and Pb are 4.57%-7.63%, 5.14%-7.75%, 5.48%-12.30%, 3.97%-10.46%, and 4.26%-9.21% respectively. The analytical accuracy was

  15. Optical Frequency Comb Spectroscopy of Rare Earth Atoms

    Science.gov (United States)

    Swiatlowski, Jerlyn; Palm, Christopher; Joshi, Trinity; Montcrieffe, Caitlin; Jackson Kimball, Derek

    2013-05-01

    We discuss progress in our experimental program to employ optical-frequency-comb-based spectroscopy to understand the complex spectra of rare-earth atoms. We plan to carry out systematic measurements of atomic transitions in rare-earth atoms to elucidate the energy level structure and term assignment and determine presently unknown atomic state parameters. This spectroscopic information is important in view of the increasing interest in rare-earth atoms for atomic frequency standards, in astrophysical investigations of chemically peculiar stars, and in tests of fundamental physics (tests of parity and time-reversal invariance, searches for time variation of fundamental constants, etc.). We are presently studying the use of hollow cathode lamps as atomic sources for two-photon frequency comb spectroscopy. Supported by the National Science Foundation under grant PHY-0958749.

  16. Theoretical Calculations of Atomic Data for Spectroscopy

    Science.gov (United States)

    Bautista, Manuel A.

    2000-01-01

    Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.

  17. Magnetic field modulation spectroscopy of rubidium atoms

    Indian Academy of Sciences (India)

    phase-sensitive detection of the signal, thereby paving the way for very high sensitive measurement in the parts per billion (PPB) levels [4]. On the other hand, the saturation. FMS (SFMS) can be used as a very precise frequency reference in experiments involving laser-cooled atoms, frequency standards as in atomic clock, ...

  18. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    Science.gov (United States)

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  19. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  20. Microwave Spectroscopy of Cold Rubidium Atoms

    OpenAIRE

    Entin, V. M.; Ryabtsev, I. I.

    2004-01-01

    The effect of microwave radiation on the resonance fluorescence of a cloud of cold $^{85}Rb$ atoms in a magnetooptical trap is studied. The radiation frequency was tuned near the hyperfine splitting frequency of rubidium atoms in the 5S ground state. The microwave field induced magnetic dipole transitions between the magnetic sublevels of the 5S(F=2) and 5S(F=3) states, resulting in a change in the fluorescence signal. The resonance fluorescence spectra were recorded by tuning the microwave r...

  1. Principles and applications of force spectroscopy using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Kyu; Kim, Woong; Park, Joon Won [Dept. of Chemistry, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-12-15

    Single-molecule force spectroscopy is a powerful technique for addressing single molecules. Unseen structures and dynamics of molecules have been elucidated using force spectroscopy. Atomic force microscope (AFM)-based force spectroscopy studies have provided picoNewton force resolution, subnanometer spatial resolution, stiffness of substrates, elasticity of polymers, and thermodynamics and kinetics of single-molecular interactions. In addition, AFM has enabled mapping the distribution of individual molecules in situ, and the quantification of single molecules has been made possible without modification or labeling. In this review, we describe the basic principles, sample preparation, data analysis, and applications of AFM-based force spectroscopy and its future.

  2. Spectroscopy and atomic force microscopy of biomass.

    Science.gov (United States)

    Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T

    2010-05-01

    Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.

  3. An atom in a multi-frequency laser emission field

    Energy Technology Data Exchange (ETDEWEB)

    Delone, N.B.; Kovarskii, V.A.; Masalov, A.V.; Perelman, N.F.

    1980-01-01

    An analysis of the features of the interaction between a nonmonochromatic multi-frequency laser emission field and an isolated atom is given. The multi-photon excitation and non-linear ionization of the atom during the excitation of the atomic levels by the laser emission field are examined. Specific cases of the interaction between the atom and the field are examined in detail: the case of a broad laser emission laser spectrum (rapid field fluctuations) and the case of a narrow spectrum (slow fluctuation). The available experimental data relating to these problems are analyzed.

  4. The exponential laws for emission and decaying of entangled atoms

    Science.gov (United States)

    Sancho, Pedro

    2017-08-01

    The first photon emission and the disentanglement of a pair of identical bosonic atoms in excited entangled states follow an exponential law. We extend the theory to distinguishable and identical fermionic two-atom systems. As a byproduct of the analysis we determine the symmetries of the fermionic wave function. We also derive the emission distributions of excited atoms in product states, which must take into account the presence of simultaneous detections. Comparing both distributions reveals a direct manifestation of the modifications induced by entanglement on the atomic emission properties.

  5. Measurement of frequency sweep nonlinearity using atomic absorption spectroscopy

    Science.gov (United States)

    Song, Ningfang; Lu, Xiangxiang; Xu, Xiaobin; Pan, Xiong; Li, Wei; Hu, Di; Liu, Jixun

    2018-01-01

    A novel scheme to determine frequency sweep nonlinearity using atomic saturated absorption spectroscopy is proposed and demonstrated. The frequency modulation rate is determined by directly measuring the interference fringe number and the frequency gap between two atomic transition peaks of rubidium atom. An experimental setup is established, and test results show that the frequency sweep nonlinearity is ∼10%, with an average frequency modulation rate of ∼1.12 THz/s. Moreover, the absolute optical frequency and optical path difference between two laser beams are simultaneously determined with this method. This low-cost technique can be used for optical frequency sweep nonlinearity correction and real-time frequency monitor.

  6. A Pragmatic Smoothing Method for Improving the Quality of the Results in Atomic Spectroscopy

    OpenAIRE

    Bennun, Leonardo

    2016-01-01

    A new smoothing method for the improvement on the identification and quantification of spectral functions based on the previous knowledge of the signals that are expected to be quantified, is presented. These signals are used as weighted coefficients in the smoothing algorithm. This smoothing method was conceived to be applied in atomic and nuclear spectroscopies preferably to these techniques where net counts are proportional to acquisition time, such as particle induced X-ray emission (PIXE...

  7. Application of dynamic impedance spectroscopy to atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Kazimierz Darowicki, Artur Zieliński and Krzysztof J Kurzydłowski

    2008-01-01

    Full Text Available Atomic force microscopy (AFM is a universal imaging technique, while impedance spectroscopy is a fundamental method of determining the electrical properties of materials. It is useful to combine those techniques to obtain the spatial distribution of an impedance vector. This paper proposes a new combining approach utilizing multifrequency scanning and simultaneous AFM scanning of an investigated surface.

  8. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    Science.gov (United States)

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  9. Atomic Absorption Spectroscopy. The Present and the Future.

    Science.gov (United States)

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  10. Single atom identification by energy dispersive x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lovejoy, T. C.; Dellby, N.; Krivanek, O. L. [Nion, 1102 8th St., Kirkland, Washington 98033 (United States); Ramasse, Q. M. [SuperSTEM Laboratory, STFC Daresbury, Keckwick Lane, Daresbury WA4 4AD (United Kingdom); Falke, M.; Kaeppel, A.; Terborg, R. [Bruker Nano GmbH, Schwarzschildstr. 12, 12489 Berlin (Germany); Zan, R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

    2012-04-09

    Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

  11. SPECTRW: A software package for nuclear and atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalfas, C.A., E-mail: kalfas@inp.demokritos.gr [National Centre for Scientific Research Demokritos, Institute of Nuclear & Particle Physics, 15310 Agia Paraskevi, Attiki (Greece); Axiotis, M. [National Centre for Scientific Research Demokritos, Institute of Nuclear & Particle Physics, 15310 Agia Paraskevi, Attiki (Greece); Tsabaris, C. [Hellenic Centre for Marine Research, Institute of Oceanography, 46.7 Km Athens-Sounio Ave, P.O. Box 712, Anavyssos 19013 (Greece)

    2016-09-11

    A software package to be used in nuclear and atomic spectroscopy is presented. Apart from analyzing γ and X-ray spectra, it offers many additional features such as de-convolution of multiple photopeaks, sample analysis and activity determination, detection system evaluation and an embedded code for spectra simulation.

  12. Current Status of Atomic Spectroscopy Databases at NIST

    Science.gov (United States)

    Kramida, Alexander; Ralchenko, Yuri; Reader, Joseph

    2016-05-01

    NIST's Atomic Spectroscopy Data Center maintains several online databases on atomic spectroscopy. These databases can be accessed via the http://physics.nist.gov/PhysRefData web page. Our main database, Atomic Spectra Database (ASD), recently upgraded to v. 5.3, now contains critically evaluated data for about 250,000 spectral lines and 109,000 energy levels of almost all elements in the periodic table. This new version has added several thousand spectral lines and energy levels of Sn II, Mo V, W VIII, and Th I-III. Most of these additions contain critically evaluated transition probabilities important for astrophysics, technology, and fusion research. A new feature of ASD is providing line-ratio data for diagnostics of electron temperature and density in plasmas. Saha-Boltzmann plots have been modified by adding an experimental feature allowing the user to specify a multi-element mixture. We continue regularly updating our bibliography databases, ensuring comprehensive coverage of current literature on atomic spectra for energy levels, spectral lines, transition rates, hyperfine structure, isotope shifts, Zeeman and Stark effects. Our other popular databases, such as the Handbook of Basic Atomic Spectroscopy Data, searchable atlases of spectra of Pt-Ne and Th-Ne lamps, and non-LTE plasma-kinetics code comparisons, continue to be maintained.

  13. Emission of fast non-Maxwellian hydrogen atoms in low-density laboratory plasma

    Science.gov (United States)

    Brandt, Christian; Marchuk, Oleksandr; Pospieszczyk, Albrecht; Dickheuer, Sven

    2017-03-01

    The source of strong and broad emission of the Balmer-α line in mixed plasmas of hydrogen (or deuterium) and noble gases in front of metallic surfaces is a subject of controversial discussion of many plasma types. In this work the excitation source of the Balmer lines is investigated by means of optical emission spectroscopy in the plasma device PSI-2. Neutral fast non-Maxwellian hydrogen atoms are produced by acceleration of hydrogen ions towards an electrode immersed into the plasma. By variation of the electrode potential the energy of ions and in turn of reflected fast atoms can be varied in the range of 40-300 eV. The fast atoms in front of the electrode are observed simultaneously by an Echelle spectrometer (0.001 nm/channel) and by an imaging spectrometer (0.01 nm/channel) up to few cm in the plasma. Intense excitation channels of the Balmer lines are observed when hydrogen is mixed with argon or with krypton. Especially in Ar-H and Ar-D mixed plasmas the emission of fast hydrogen atoms is very strong. Intermixing hydrogen with other noble gases (He, Ne or Xe) one observes the same effect however the emission is one order of magnitude less compared to Kr-H or Kr-D plasmas. It is shown, that the key process, impacting this emission, is the binary collision between the fast neutral hydrogen atom and the noble gas atom. Two possible sources of excitation are discussed in details: one is the excitation of hydrogen atoms by argon atoms in the ground state and the second one is the process of the so-called excitation transfer between the metastable states of noble gases and hydrogen. In the latter case the atomic data for excitation of Balmer lines are still not available in literature. Further experimental investigations are required to conclude on the source process of fast atom emission.

  14. Future projects of light kaonic atom X-ray spectroscopy

    Directory of Open Access Journals (Sweden)

    Tatsuno H.

    2016-01-01

    Full Text Available X-ray spectroscopy of light kaonic atoms is a unique tool to provide precise information on the fundamental K̄N interaction at the low-energy limit and the in-medium nuclear interaction of K−. The future experiments of kaonic deuterium strong-interaction shift and width (SIDDHARTA-2 and J-PARC E57 can extract the isospin dependent K−N interaction at threshold. The high-resolution X-ray spectroscopy of kaonic helium with microcalorimeters (J-PARC E62 has the possibility to solve the long-standing potential-strength problem of the attractive K−-nucleus interaction. Here, the recent experimental results and the future projects of X-ray spectroscopy of light kaonic atoms are presented.

  15. Directional emission of single photons from small atomic samples

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; V. Poulsen, Uffe; Mølmer, Klaus

    2013-01-01

    We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state i...... is coupled by a classical laser field to an optically excited state which rapidly decays to the ground atomic state. Our model accounts for the different field polarization components via re-absorption and emission of light by the Zeeman manifold of optically excited states....

  16. Imaging the atomic orbitals of carbon atomic chains with field-emission electron microscopy

    Science.gov (United States)

    Mikhailovskij, I. M.; Sadanov, E. V.; Mazilova, T. I.; Ksenofontov, V. A.; Velicodnaja, O. A.

    2009-10-01

    A recently developed high-field technique of atomic chains preparation has made it possible to attain the ultrahigh resolution of field-emission electron microscopy (FEEM), which can be used to direct imaging the intra-atomic electronic structure. By applying cryogenic FEEM, we are able to resolve the spatial configuration of atomic orbitals, which correspond to quantized states of the end atom in free-standing carbon atomic chains. Knowledge of the intra-atomic structure will make it possible to visualize generic aspects of quantum mechanics and also lead to approaches for a wide range of nanotechnological applications.

  17. Polarization spectroscopy of atomic erbium in a hollow cathode lamp

    Science.gov (United States)

    Ang’ong’a, Jackson; Gadway, Bryce

    2018-02-01

    In this work we perform polarization spectroscopy of erbium atoms in a hollow cathode lamp (HCL). We review the theory behind Doppler-free polarization spectroscopy, theoretically model the expected erbium polarization spectra, and compare the numerically calculated spectra to our experimental data. We further analyze the dependence of the measured spectra on the HCL current and the peak intensities of our pump and probe lasers to determine conditions. Applications include wavelength stabilization of diode laser radiation to the 400.91 nm erbium transition.

  18. Spreadsheet-Based Program for Simulating Atomic Emission Spectra

    Science.gov (United States)

    Flannigan, David J.

    2014-01-01

    A simple Excel spreadsheet-based program for simulating atomic emission spectra from the properties of neutral atoms (e.g., energies and statistical weights of the electronic states, electronic partition functions, transition probabilities, etc.) is described. The contents of the spreadsheet (i.e., input parameters, formulas for calculating…

  19. 2p3d Resonant X-ray emission spectroscopy of cobalt compounds

    NARCIS (Netherlands)

    van Schooneveld, M.M.|info:eu-repo/dai/nl/315032863

    2013-01-01

    This manuscript demonstrates that 2p3d resonant X-ray emission spectroscopy (RXES) yields unique information on the chemically relevant valence electrons of transition metal atoms or ions. Experimental data on cobalt compounds and several theories were used hand-in-hand. In chapter 1 2p3d RXES was

  20. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections.

  1. Two-Color Laser Resonance Ionization Spectroscopy of Zirconium Atoms

    Science.gov (United States)

    Hasegawa, Shuichi; Nagamoto, Daisuke

    2017-10-01

    We have performed two-color laser resonance ionization spectroscopy of zirconium atoms to measure the energies of excited states below the third ionization limit. The number of intermediate states that we observed is 19, and energies deduced from the experiments agree with previous data. Complex ionization spectra of the excited states were observed through the intermediate states. The values of the first, second, and third ionization limits were derived from the Rydberg series of the spectra with quantum defect theory.

  2. Single-atom spectroscopy of phosphorus dopants implanted into graphene

    Science.gov (United States)

    Susi, Toma; Hardcastle, Trevor P.; Hofsäss, Hans; Mittelberger, Andreas; Pennycook, Timothy J.; Mangler, Clemens; Drummond-Brydson, Rik; Scott, Andrew J.; Meyer, Jannik C.; Kotakoski, Jani

    2017-06-01

    One of the keys behind the success of modern semiconductor technology has been the ion implantation of silicon, which allows its electronic properties to be tailored. For similar purposes, heteroatoms have been introduced into carbon nanomaterials both during growth and using post-growth methods. However, due to the nature of the samples, it has been challenging to determine whether the heteroatoms have been incorporated into the lattice as intended. Direct observations have so far been limited to N and B dopants, and incidental Si impurities. Furthermore, ion implantation of these materials is challenging due to the requirement of very low ion energies and atomically clean surfaces. Here, we provide the first atomic-resolution imaging and electron energy loss spectroscopy (EELS) evidence of phosphorus atoms in the graphene lattice, implanted by low-energy ion irradiation. The measured P L 2,3-edge shows excellent agreement with an ab initio spectrum simulation, conclusively identifying the P in a buckled substitutional configuration. While advancing the use of EELS for single-atom spectroscopy, our results demonstrate the viability of phosphorus as a lattice dopant in sp 2-bonded carbon structures and provide its unmistakable fingerprint for further studies.

  3. High precision spectroscopy of pionic and antiprotonic atoms; Spectroscopie de precision des atomes pioniques et antiprotoniques

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, P

    1998-04-15

    The study of exotic atoms, in which an orbiting electron of a normal atom is replaced by a negatively charged particle ({pi}{sup -}, {mu}{sup -}, p, {kappa}{sup -}, {sigma}{sup -},...) may provide information on the orbiting particle and the atomic nucleus, as well as on their interaction. In this work, we were interested in pionic atoms ({pi}{sup -14} N) on the one hand in order to determine the pion mass with high accuracy (4 ppm), and on the other hand in antiprotonic atoms (pp-bar) in order to study the strong nucleon-antinucleon interaction at threshold. In this respect, a high-resolution crystal spectrometer was coupled to a cyclotron trap which provides a high stop density for particles in gas targets at low pressure. Using curved crystals, an extended X-ray source could be imaged onto the detector. Charge-Coupled Devices were used as position sensitive detectors in order to measure the Bragg angle of the transition to a high precision. The use of gas targets resolved the ambiguity owing to the number of K electrons for the value of the pion mass, and, for the first time, strong interaction shift and broadening of the 2p level in antiprotonic hydrogen were measured directly. (author)

  4. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  5. Applications of beam-foil spectroscopy to atomic collisions in solids

    Science.gov (United States)

    Sellin, I. A.

    1976-01-01

    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  6. Search for Ultralight Scalar Dark Matter with Atomic Spectroscopy.

    Science.gov (United States)

    Van Tilburg, Ken; Leefer, Nathan; Bougas, Lykourgos; Budker, Dmitry

    2015-07-03

    We report new limits on ultralight scalar dark matter (DM) with dilatonlike couplings to photons that can induce oscillations in the fine-structure constant α. Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels whose energy splitting is sensitive to changes in α. Spectroscopy data for two isotopes of dysprosium over a two-year span are analyzed for coherent oscillations with angular frequencies below 1  rad s-1. No signal consistent with a DM coupling is identified, leading to new constraints on dilatonlike photon couplings over a wide mass range. Under the assumption that the scalar field comprises all of the DM, our limits on the coupling exceed those from equivalence-principle tests by up to 4 orders of magnitude for masses below 3×10(-18)  eV. Excess oscillatory power, inconsistent with fine-structure variation, is detected in a control channel, and is likely due to a systematic effect. Our atomic spectroscopy limits on DM are the first of their kind, and leave substantial room for improvement with state-of-the-art atomic clocks.

  7. The use of atomic spectroscopy in the pharmaceutical industry for the determination of trace elements in pharmaceuticals.

    Science.gov (United States)

    Lewen, Nancy

    2011-06-25

    The subject of the analysis of various elements, including metals and metalloids, in the pharmaceutical industry has seen increasing importance in the last 10-15 years, as modern analytical instrumentation has afforded analysts with the opportunity to provide element-specific, accurate and meaningful information related to pharmaceutical products. Armed with toxicological data, compendial and regulatory agencies have revisited traditional approaches to the testing of pharmaceuticals for metals and metalloids, and analysts have begun to employ the techniques of atomic spectroscopy, such as flame- and graphite furnace atomic absorption spectroscopy (FAAS, Flame AA or FAA and GFAAS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS), to meet their analytical needs. Newer techniques, such as laser-induced breakdown spectroscopy (LIBS) and Laser Ablation ICP-MS (LAICP-MS) are also beginning to see wider applications in the analysis of elements in the pharmaceutical industry.This article will provide a perspective regarding the various applications of atomic spectroscopy in the analysis of metals and metalloids in drug products, active pharmaceutical ingredients (API's), raw materials and intermediates. The application of atomic spectroscopy in the analysis of metals and metalloids in clinical samples, nutraceutical, metabolism and pharmacokinetic samples will not be addressed in this work. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ..nu.. less than or equal to 360 eV and laboratory sources, is divided into three parts.

  9. Laser sources for precision spectroscopy on atomic strontium.

    Science.gov (United States)

    Poli, N; Ferrari, G; Prevedelli, M; Sorrentino, F; Drullinger, R E; Tino, G M

    2006-04-01

    We present a new laser setup designed for high-precision spectroscopy on laser cooled atomic strontium. The system, which is entirely based on semiconductor laser sources, delivers 200 mW at 461 nm for cooling and trapping atomic strontium from a thermal source, 4 mW at 497 nm for optical pumping from the metastable P23 state, 12 mW at 689 nm on linewidth less than 1 kHz for second-stage cooling of the atomic sample down to the recoil limit, 1.2 W at 922 nm for optical trapping close to the "magic wavelength" for the 0-1 intercombination line at 689 nm. The 689 nm laser was already employed to perform a frequency measurement of the 0-1 intercombination line with a relative accuracy of 2.3 x 10(-11), and the ensemble of laser sources allowed the loading in a conservative dipole trap of multi-isotopes strontium mixtures. The simple and compact setup developed represents one of the first steps towards the realization of a transportable optical standards referenced to atomic strontium.

  10. Atomic Spectroscopy and Collisions Using Slow Antiprotons \\\\ ASACUSA Collaboration

    CERN Multimedia

    Matsuda, Y; Lodi-rizzini, E; Kuroda, N; Schettino, G; Hori, M; Pirkl, W; Mascagna, V; Malbrunot, C L S; Yamazaki, Y; Eades, J; Simon, M; Massiczek, O; Sauerzopf, C; Nagata, Y; Knudsen, H; Uggerhoj, U I; Mc cullough, R W; Toekesi, K M; Venturelli, L; Widmann, E; Zmeskal, J; Kanai, Y; Hayano, R; Kristiansen, H; Todoroki, K; Bartel, M A; Moller, S P; Charlton, M; Leali, M; Diermaier, M; Kolbinger, B

    2002-01-01

    ASACUSA (\\underline{A}tomic \\underline{S}pectroscopy \\underline{A}nd \\underline{C}ollisions \\underline{U}sing \\underline{S}low \\underline{A}ntiprotons) is a collaboration between a number of Japanese and European research institutions, with the goal of studying bound and continuum states of antiprotons with simple atoms.\\\\ Three phases of experimentation are planned for ASACUSA. In the first phase, we use the direct $\\overline{p}$ beam from AD at 5.3 MeV and concentrate on the laser and microwave spectroscopy of the metastable antiprotonic helium atom, $\\overline{p}$He$^+$, consisting of an electron and antiproton bound by the Coulomb force to the helium nucleus. Samples of these are readily created by bringing AD antiproton beam bunches to rest in helium gas. With the help of techniques developed at LEAR for resonating high precision laser beams with antiproton transitions in these atoms, ASACUSA achieved several of these first-phase objectives during a few short months of AD operation in 2000. Six atomic tr...

  11. Atomic Physics at Accelerators Laser Spectroscopy and Applications

    CERN Document Server

    Letokhov, V

    2003-01-01

    From 19 to 24 September, 1999, the First European Conference Atomic physics at Accelerators: Laser Spectroscopy and Applications (APAC'99) was held at University of Mainz and Schloss Waldhausen (Budenheim, Germany) under the chairmanship of H. Backe and G. Huber. The idea of this up-to-date conference was associated with the 65th anniversary of Professor Ernst Otten (University of Mainz) who, together with H. Kluge, contributed much to the development of this work at CERN, University of Mainz, and Darmstadt. (17 refs).

  12. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    Science.gov (United States)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  13. Spectroscopy of lithium atoms and molecules on helium nanodroplets.

    Science.gov (United States)

    Lackner, Florian; Poms, Johannes; Krois, Günter; Pototschnig, Johann V; Ernst, Wolfgang E

    2013-11-21

    We report on the spectroscopic investigation of lithium atoms and lithium dimers in their triplet manifold on the surface of helium nanodroplets (He(N)). We present the excitation spectrum of the 3p ← 2s and 3d ← 2s two-photon transitions for single Li atoms on He(N). The atoms are excited from the 2S(Σ) ground state into Δ, Π, and Σ pseudodiatomic molecular substates. Excitation spectra are recorded by resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) mass spectroscopy, which allows an investigation of the exciplex (Li*–He(m), m = 1–3) formation process in the Li–He(N) system. Electronic states are shifted and broadened with respect to free atom states, which is explained within the pseudodiatomic model. The assignment is assisted by theoretical calculations, which are based on the Orsay–Trento density functional where the interaction between the helium droplet and the lithium atom is introduced by a pairwise additive approach. When a droplet is doped with more than one alkali atom, the fragility of the alkali–He(N) systems leads preferably to the formation of high-spin molecules on the droplets. We use this property of helium nanodroplets for the preparation of Li dimers in their triplet ground state (13Σu(+)). The excitation spectrum of the 23Πg(ν′ = 0–11) ← 13Σu(+)(ν″ = 0) transition is presented. The interaction between the molecule and the droplet manifests in a broadening of the transitions with a characteristic asymmetric form. The broadening extends to the blue side of each vibronic level, which is caused by the simultaneous excitation of the molecule and vibrations of the droplet (phonons). The two isotopes of Li form 6Li2 and 7Li2 as well as isotope mixed 6Li7Li molecules on the droplet surface. By using REMPI-TOF mass spectroscopy, isotope-dependent effects could be studied.

  14. Atomic spectroscopy sympsoium, Gaithersburg, Maryland, September 23--26, 1975. [Program, abstracts, and author index

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Abstracts of one hundred papers given at the conference are presented along with the conference program and an author index. Session topics include: highly ionized atoms; laser spectroscopy and hyperfine structure; complex spectra; laser spectroscopy, radiation theory; theory of highly ionized atoms and analysis of plasmas; plasma spectroscopy, line strengths; spectral analysis, instrumentation, reference wavelengths; beam foil spectroscopy, line strengths, energy levels; absorption spectroscopy, autoionization, and related theory; and spectral analysis, instrumentation, and VUV physics. (GHT)

  15. Laser-excitation atomic fluorescence spectroscopy in a helium microwave-induced plasma

    Science.gov (United States)

    Schroeder, Timothy S.

    The focus of this dissertation is to report the first documented coupling of helium microwave induced plasmas (MIPs) to laser excitation atomic fluorescence spectroscopy. The ability to effectively produce intense atomic emission from both metal and nonmetal analytes gives helium microwave induced plasmas a greater flexibility than the more commonly utilized argon inductively coupled plasma (ICP). Originally designed as an element selective detector for non-aqueous chromatography applications at low applied powers (500 W). The helium MIP has been shown to be a very powerful analytical atomic spectroscopy tool. The development of the pulsed dye laser offered an improved method of excitation in the field of atomic fluorescence. The use of laser excitation for atomic fluorescence was a logical successor to the conventional excitation methods involving hollow cathode lamps and continuum sources. The highly intense, directional, and monochromatic nature of laser radiation results in an increased population of atomic species in excited electronic states where atomic fluorescence can occur. The application of laser excitation atomic fluorescence to the analysis of metals in a helium microwave induced plasma with ultrasonic sample nebulization was the initial focus of this work. Experimental conditions and results are included for the aqueous characterization of manganese, lead, thallium, and iron in the helium MIP- LEAFS system. These results are compared to previous laser excitation atomic fluorescence experimentation. The effect of matrix interferences on the analytical fluorescence signal was also investigated for each element. The advantage of helium MIPs over argon ICPs in the determination of nonmetals in solution indicates that the helium MIP is an excellent candidate for laser excitation atomic fluorescence experiments involving nonmetals such as chlorine, bromine, iodine, and sulfur. Preliminary investigations into this area are reported, including documentation

  16. High-speed atomic force microscopy: imaging and force spectroscopy.

    Science.gov (United States)

    Eghiaian, Frédéric; Rico, Felix; Colom, Adai; Casuso, Ignacio; Scheuring, Simon

    2014-10-01

    Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Direct Measurements of Terahertz Meta-atoms with Near-Field Emission of Terahertz Waves

    Science.gov (United States)

    Serita, Kazunori; Darmo, Juraj; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi

    2017-09-01

    We present the direct measurements of terahertz meta-atoms, an elementary unit of metamaterials, by using locally generated terahertz waves in the near-field region. In contrast to a conventional far-field terahertz spectroscopy or imaging, our technique features the localized emission of coherent terahertz pulses on a sub-wavelength scale, which has a potential for visualizing details of dynamics of each meta-atom. The obtained data show the near-field coupling among the meta-atoms and the impact of the electric field distribution from the excited meta-atom to neighbor meta-atoms. The observable LC resonance response is enhanced with an increase of numbers of meta-atoms. Furthermore, our approach also has a potential for visualizing the individual mode of meta-atom at different terahertz irradiation spots. These data can help us to understand the important role of the meta-atom in metamaterials and develop the novel terahertz components and devices such as active terahertz metamaterial and compact, high-sensitive bio-sensor devices.

  18. Medical applications of atomic force microscopy and Raman spectroscopy.

    Science.gov (United States)

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  19. Electrochemical frequency modulation and inductively coupled plasma atomic emission spectroscopy methods for monitoring corrosion rates and inhibition of low alloy steel corrosion in HCl solutions and a test for validity of the Tafel extrapolation method

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Mohammed A. [Chemistry Department, Faculty of Science, Ain Shams University, Al-Khalefah Al-Maamoon St., Abbassia, Cairo 11566 (Egypt)], E-mail: maaismail@yahoo.com; Abd El Rehim, Sayed S. [Chemistry Department, Faculty of Science, Ain Shams University, Al-Khalefah Al-Maamoon St., Abbassia, Cairo 11566 (Egypt); Abdel-Fatah, Hesham T.M. [Central Chemical Laboratories, Egyptian Electricity Holding Company, Sabtia, Cairo (Egypt)

    2009-04-15

    The inhibition effect of glycine (Gly) towards the corrosion of low alloy steel ASTM A213 grade T22 boiler steel was studied in aerated stagnant 0.50 M HCl solutions in the temperature range 20-60 deg. C using potentiodynamic polarization (Tafel polarization and linear polarization) and impedance techniques, complemented with scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Electrochemical frequency modulation (EFM), a non-destructive corrosion measurement technique that can directly give values of corrosion current without prior knowledge of Tafel constants, is also presented here. Experimental corrosion rates determined by the Tafel extrapolation method are compared with corrosion rates obtained by electrochemical, namely EFM technique, and chemical (i.e., non-electrochemical) method for steel in HCl. The chemical method of confirmation of the corrosion rates involved determination of the dissolved cation, using ICP-AES (inductively coupled plasma atomic emission spectrometry) method of analysis. Corrosion rates (in mm y{sup -1}) obtained from the electrochemical (Tafel extrapolation and EFM) and the chemical method, ICP, are in a good agreement. Polarization studies have shown that Gly is a good 'green', mixed-type inhibitor with cathodic predominance. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive agents. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) examinations of the electrode surface confirmed the existence of such an adsorbed film. The inhibition efficiency increases with increase in Gly concentration, while it decreases with solution temperature. Temkin isotherm is successfully applied to describe the adsorption process. Thermodynamic functions for the adsorption process were determined.

  20. CANAS '01 - Colloquium analytical atomic spectroscopy; CANAS '01 - Colloquium Analytische Atomspektroskopie. Programm. Kurzfassungen der Vortraege und Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The main topics of the meeting on analytical atom spectroscopy were: optical atom spectrometry, x-ray fluorescence analysis, absorption spectroscopy, icp mass spectroscopy, trace analysis, sampling, sample preparation and quality assurance.

  1. Spontaneous emission of light from atoms: the model

    Energy Technology Data Exchange (ETDEWEB)

    Marecki, P. [Wyzsza Szkola Informatyki i Zarzadzania, ul. Legionow 81, 43-300 Bielsko-Biala (Poland); Szpak, N. [Institute for Theoretical Physics, J. W. Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany)

    2005-07-08

    We investigate (non-relativistic) atomic systems interacting with quantum electromagnetic field (QEF). The resulting model describes spontaneous emission of light from a two-level atom surrounded by various initial states of the QEF. We assume that the quantum field interacts with the atom via the standard, minimal-coupling Hamiltonian, with the A{sup 2} term neglected. We also assume that there will appear at most single excitations (photons). By conducting the analysis on a general level we allow for an arbitrary initial state of the QEF (which can be for instance: the vacuum, the ground state in a cavity, or the squeezed state). We derive a Volterra-type equation which governs the time evolution of the amplitude of the excited state. The two-point function of the initial state of the QEF, integrated with a combination of atomic wavefunctions, forms the kernel of this equation. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  2. On-line laser spectroscopy with thermal atomic beams

    CERN Document Server

    Thibault, C; De Saint-Simon, M; Duong, H T; Guimbal, P; Huber, G; Jacquinot, P; Juncar, P; Klapisch, Robert; Liberman, S; Pesnelle, A; Pillet, P; Pinard, J; Serre, J M; Touchard, F; Vialle, J L

    1981-01-01

    On-line high resolution laser spectroscopy experiments have been performed in which the light from a CW tunable dye laser interacts at right angles with a thermal atomic beam. /sup 76-98/Rb, /sup 118-145 /Cs and /sup 208-213/Fr have been studied using the ionic beam delivered by the ISOLDE on-line mass separator at CERN while /sup 30-31/Na and /sup 38-47/K have been studied by setting the apparatus directly on-line with the PS 20 GeV proton beam. The principle of the method is briefly explained and some results concerning nuclear structure are given. The hyperfine structure, spins and isotope shifts of the alkali isotopes and isomers are measured. (8 refs).

  3. The determination of vanadium in brines by atomic absorption spectroscopy

    Science.gov (United States)

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  4. Plasma emission spectroscopy method of tumor therapy

    Science.gov (United States)

    Fleming, K.J.

    1997-03-11

    Disclosed are a method and apparatus for performing photon diagnostics using a portable and durable apparatus which incorporates the use of a remote sensing probe in fiberoptic communication with an interferometer or spectrometer. Also disclosed are applications for the apparatus including optically measuring high velocities and analyzing plasma/emission spectral characteristics. 6 figs.

  5. Investigating single molecule adhesion by atomic force spectroscopy.

    Science.gov (United States)

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  6. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Science.gov (United States)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  8. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Diaz, M; Ponce, L; Arronte, M; Flores, T [Laboratorio TecnologIa Laser, CICATA-IPN, Unidad Altamira, Carretera Tampico-Puerto Ind. Altamira, 89600, TAMPS (Mexico)

    2007-04-15

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  9. Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation plumes

    Science.gov (United States)

    Hartig, K. C.; Brumfield, B. E.; Phillips, M. C.; Harilal, S. S.

    2017-09-01

    Oxygen present in the ambient gas medium may affect both laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) emission through a reduction of emission intensity and persistence. In this study, an evaluation is made on the role of oxygen in the ambient environment under atmospheric pressure conditions in LIBS and laser ablation (LA)-LIF emission. To generate plasmas, 1064 nm, 10 ns pulses were focused on an aluminum alloy sample. LIF was performed by frequency scanning a CW laser over the 396.15 nm (3s24s 2S1/2 → 3s23p 2P°3/2) Al I transition. Time-resolved emission and fluorescence signals were recorded to evaluate the variation in emission intensity caused by the presence of oxygen. The oxygen partial pressure (po) in the atmospheric pressure environment using N2 as the makeup gas was varied from 0 to 400 Torr O2. 2D-fluorescence spectroscopy images were obtained for various oxygen concentrations for simultaneous evaluation of the emission and excitation spectral features. Results showed that the presence of oxygen in the ambient environment reduces the persistence of the LIBS and LIF emission through an oxidation process that depletes the density of atomic species within the resulting laser-produced plasma (LPP) plume.

  10. Symposium on atomic spectroscopy (SAS-83): abstracts and program

    Energy Technology Data Exchange (ETDEWEB)

    1983-09-01

    Abstracts of papers given at the symposium are presented. Session topics include: Rydbergs, optical radiators, and planetary atoms; highly ionized atoms; ultraviolet radiation; theory, ion traps, and laser cooling; beam foil; and astronomy. (GHT)

  11. Nonlinear ultrasonic spectroscopy and acoustic emission in SHM of aircrafts

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Chlada, Milan; Krofta, Josef

    2012-01-01

    Roč. 2012, SI (2012), s. 36-40 ISSN 1213-3825 R&D Projects: GA MPO(CZ) FR-TI1/274 Institutional support: RVO:61388998 Keywords : NDT * structural health monitoring * acoustic emission * nonlinear elastic wave spectroscopy * time reversal mirrors Subject RIV: BI - Acoustics

  12. Emission Line Imaging and Spectroscopy of Distant Galaxies

    DEFF Research Database (Denmark)

    Zabl, Johannes Florian

    for the gas surrounding a galaxy. Around some objects the extended Ly αemission is so strong that it can be detected for individual objects. In this thesis extremely deep VLT/XSHOOTER rest-frame far-UV spectroscopy is presented for Himiko, a gigantic Ly α emitter at redshift z = 6.6 or a time when...

  13. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    Science.gov (United States)

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  14. Theory of single molecule emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bel, Golan, E-mail: bel@bgu.ac.il [Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990 (Israel); Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, California 93106 (United States); Brown, Frank L. H., E-mail: flbrown@chem.ucsb.edu [Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2015-05-07

    A general theory and calculation framework for the prediction of frequency-resolved single molecule photon counting statistics is presented. Expressions for the generating function of photon counts are derived, both for the case of naive “detection” based solely on photon emission from the molecule and also for experimentally realizable detection of emitted photons, and are used to explicitly calculate low-order photon-counting moments. The two cases of naive detection versus physical detection are compared to one another and it is demonstrated that the physical detection scheme resolves certain inconsistencies predicted via the naive detection approach. Applications to two different models for molecular dynamics are considered: a simple two-level system and a two-level absorber subject to spectral diffusion.

  15. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands

    Science.gov (United States)

    Trautner, Stefan; Jasik, Juraj; Parigger, Christian G.; Pedarnig, Johannes D.; Spendelhofer, Wolfgang; Lackner, Johannes; Veis, Pavel; Heitz, Johannes

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) for composition analysis of polymer materials results in optical spectra containing atomic and ionic emission lines as well as molecular emission bands. In the present work, the molecular bands are analyzed to obtain spectroscopic information about the plasma state in an effort to quantify the content of different elements in the polymers. Polyethylene (PE) and a rubber material from tire production are investigated employing 157 nm F2 laser and 532 nm Nd:YAG laser ablation in nitrogen and argon gas background or in air. The optical detection reaches from ultraviolet (UV) over the visible (VIS) to the near infrared (NIR) spectral range. In the UV/VIS range, intense molecular emissions, C2 Swan and CN violet bands, are measured with an Echelle spectrometer equipped with an intensified CCD camera. The measured molecular emission spectra can be fitted by vibrational-rotational transitions by open access programs and data sets with good agreement between measured and fitted spectra. The fits allow determining vibrational-rotational temperatures. A comparison to electronic temperatures Te derived earlier from atomic carbon vacuum-UV (VUV) emission lines show differences, which can be related to different locations of the atomic and molecular species in the expanding plasma plume. In the NIR spectral region, we also observe the CN red bands with a conventional CDD Czerny Turner spectrometer. The emission of the three strong atomic sulfur lines between 920 and 925 nm is overlapped by these bands. Fitting of the CN red bands allows a separation of both spectral contributions. This makes a quantitative evaluation of sulfur contents in the start material in the order of 1 wt% feasible.

  16. Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium

    NARCIS (Netherlands)

    McAlexander, W.I.; Abraham, E.R.I.; Ritchie, N.W.M.; Williams, C.J.; Stoof, H.T.C.; Hulet, R.G.

    1995-01-01

    We have obtained spectra of the high-lying vibrational levels of the 13Σg+ state of 6Li2 via photoassociation of ultracold 6Li atoms confined in a magneto-optical trap. The 13Σg+ state of the diatomic molecule correlates to a 2S1/2 state atom plus a 2P1/2 state atom. The long-range part of the

  17. Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Verhoff, B.; Harilal, S. S.; Freeman, J. R.; Diwakar, P. K.; Hassanein, A. [Center for Materials Under Extreme Environment and School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2012-11-01

    We investigated the spatial and temporal evolution of temperature and electron density associated with femto- and nanosecond laser-produced plasmas (LPP) from brass under similar laser fluence conditions. For producing plasmas, brass targets were ablated in vacuum employing pulses either from a Ti:Sapphire ultrafast laser (40 fs, 800 nm) or from a Nd:YAG laser (6 ns, 1064 nm). Optical emission spectroscopy is used to infer the density and temperature of the plasmas. The electron density (n{sub e}) was estimated using Stark broadened profiles of isolated lines while the excitation temperature (T{sub exc}) was estimated using the Boltzmann plot method. At similar fluence levels, continuum and ion emission are dominant in ns LPP at early times (<50 ns) followed by atomic emission, while the fs LPP provided an atomic plume throughout its visible emission lifetime. Though both ns and fs laser-plasmas showed similar temperatures ({approx}1 eV), the fs LPP is found to be significantly denser at shorter distances from the target surface as well as at early phases of its evolution compared to ns LPP. Moreover, the spatial extension of the plume emission in the visible region along the target normal is larger for fs LPP in comparison with ns LPP.

  18. Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy

    Science.gov (United States)

    Verhoff, B.; Harilal, S. S.; Freeman, J. R.; Diwakar, P. K.; Hassanein, A.

    2012-11-01

    We investigated the spatial and temporal evolution of temperature and electron density associated with femto- and nanosecond laser-produced plasmas (LPP) from brass under similar laser fluence conditions. For producing plasmas, brass targets were ablated in vacuum employing pulses either from a Ti:Sapphire ultrafast laser (40 fs, 800 nm) or from a Nd:YAG laser (6 ns, 1064 nm). Optical emission spectroscopy is used to infer the density and temperature of the plasmas. The electron density (ne) was estimated using Stark broadened profiles of isolated lines while the excitation temperature (Texc) was estimated using the Boltzmann plot method. At similar fluence levels, continuum and ion emission are dominant in ns LPP at early times (<50 ns) followed by atomic emission, while the fs LPP provided an atomic plume throughout its visible emission lifetime. Though both ns and fs laser-plasmas showed similar temperatures (˜1 eV), the fs LPP is found to be significantly denser at shorter distances from the target surface as well as at early phases of its evolution compared to ns LPP. Moreover, the spatial extension of the plume emission in the visible region along the target normal is larger for fs LPP in comparison with ns LPP.

  19. Phase-resolved optical emission spectroscopy for an electron cyclotron resonance etcher

    Energy Technology Data Exchange (ETDEWEB)

    Milosavljevic, Vladimir [BioPlasma Research Group, Dublin Institute of Technology, Sackville Place, Dublin 1 (Ireland); Biosystems Engineering, University College Dublin, Dublin 4, Ireland and Faculty of Physics, University of Belgrade, Belgrade (Serbia); MacGearailt, Niall; Daniels, Stephen; Turner, Miles M. [NCPST, Dublin City University, Dublin (Ireland); Cullen, P. J. [BioPlasma Research Group, Dublin Institute of Technology, Sackville Place, Dublin 1 (Ireland)

    2013-04-28

    Phase-resolved optical emission spectroscopy (PROES) is used for the measurement of plasma products in a typical industrial electron cyclotron resonance (ECR) plasma etcher. In this paper, the PROES of oxygen and argon atoms spectral lines are investigated over a wide range of process parameters. The PROES shows a discrimination between the plasma species from gas phase and those which come from the solid phase due to surface etching. The relationship between the micro-wave and radio-frequency generators for plasma creation in the ECR can be better understood by the use of PROES.

  20. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    Science.gov (United States)

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  1. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy.

    Science.gov (United States)

    Neuman, Keir C; Nagy, Attila

    2008-06-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations.

  2. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  3. Degradation of fast electrons energy and atomic hydrogen generation in an emission plume from atomic power stations

    Science.gov (United States)

    Kolotkov, G. A.; Penin, S. T.; Chistyakova, L. K.

    2006-02-01

    The problem of remote detecting of a radioactivity in emissions from atomic power stations (APS) is devoted. The basic radionuclides contained in emissions of nuclear energy stations with various types of reactors have been analyzed. The total power spectrum of electrons is determined taking into account their multiplication. Physical and chemical reactions reducing to generation of atomic hydrogen are considered. For definition of the radiating volume in the emission from APS, the spatial distribution of atomic hydrogen concentration has been calculated with the use Pasquill- Gifford model. Power radiating by the emission plume from the APS with the BWR (Boiling Water Reactor) is estimated. It has been shown, that for estimation of radiation effect on the atmosphere, it is necessary to take into account many generations of electrons, because they have average energies exceeding considerably the ionization potentials for atoms and molecules of the atmospheric components. The area of the maximum concentration of atomic hydrogen in an emission plume can be determined by modelling the transport processes of admixture. The power radiated at frequency 1420 MHz by the volume 1 km from the APS emissions can amount to ~10 -13 W that allows one to detect the total level of activity confidently. The possible configuration of an emission plume has been calculated for various atmospheric stratification and underlying surfaces.

  4. Spectroscopy, Manipulation and Trapping of Neutral Atoms, Molecules, and Other Particles Using Optical Nanofibers: A Review

    Directory of Open Access Journals (Sweden)

    Síle Nic Chormaic

    2013-08-01

    Full Text Available The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization, and optical trapping schemes. Next, a natural extension of this work to molecules is introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for specific applications.

  5. Spectroscopy, Manipulation and Trapping of Neutral Atoms, Molecules, and Other Particles Using Optical Nanofibers: A Review

    Science.gov (United States)

    Morrissey, Michael J.; Deasy, Kieran; Frawley, Mary; Kumar, Ravi; Prel, Eugen; Russell, Laura; Truong, Viet Giang; Chormaic, Síle Nic

    2013-01-01

    The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization, and optical trapping schemes. Next, a natural extension of this work to molecules is introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for specific applications. PMID:23945738

  6. Spectroscopy, Manipulation and Trapping of Neutral Atoms, Molecules, and Other Particles using Optical Nanofibers: A Review

    CERN Document Server

    Morrissey, Michael J; Frawley, Mary; Kumar, Ravi; Prel, Eugen; Russell, Laura; Truong, Viet Giang; Chormaic, Síle Nic

    2013-01-01

    The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining ground in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization and optical trapping schemes. Next, a natural extension on this work to molecules will be introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for particular applications.

  7. Diagnostic study of laser-produced tungsten plasma using optical emission spectroscopy and time-of-flight mass spectroscopy

    Science.gov (United States)

    Wu, Ding; Zhang, Lei; Liu, Ping; Sun, Liying; Hai, Ran; Ding, Hongbin

    2017-11-01

    In this work, the plasma was produced by irradiating a tungsten target with an 8 ns pulsed Nd:YAG (λ = 1064 nm) laser in a vacuum chamber under the pressure of 4 × 10- 4 Pa. The optical and particle emissions were systematically investigated using laser induced breakdown spectroscopy and time-of-flight mass spectroscopy respectively. The results showed that not only there were neutral and single ionized atoms in the laser induced plasma, but also quite a number of multi-charged ions were observed. The ion charge state was even up to 6 at the laser power density of 11 GW/cm2. Time and space resolved optical spectroscopy was investigated by using a bundle of lined fibers. Meanwhile, the time-resolved mass spectrometric study of laser produced tungsten plasma was carried out. The variation in intensities of the different species with time showed that higher charged ions reached their peak intensities earlier. This demonstrated that the higher charged ions had higher velocities and the different charged ions were separated during the expansion process. The kinetic energy corresponding to the velocity of the ions was found to increase exponentially with ionic charge state which was related to the acceleration of the dynamic plasma sheath.

  8. Characterization of the atomic emission in inconel 718 alloy metal vapor arcs

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R.L.; Peebles, H.C.; Bertram, L.A.; Hareland, W.A.; Zanner, F.J.

    1986-01-01

    Visible and uv emission spectroscopy was used to identify and study various atomic species in the plasma of a vacuum arc furnace during a remelt of Inconel 718. The studies were carried out at a base pressure of 10 mtorr, and with the furnace backfilled with CO to a total pressure of 100 mtorr. Various emitting species were identified, and the internal energy distributions of a number of these species were mapped out using Boltzmann plots. Internal temperatures of 6000 to 7000/sup 0/K were measured for the neutral atomic species in the low pressure arc, while a value of 11,600/sup 0/K was obtained for the ion temperature. In addition, the density of the highly volatile element Mn in the interelectrode region was found to be greatly enhanced compared to its relative abundance in the bulk alloy, indicating the importance of vaporization in determining the atomic composition of the arc plasma. Increasing the furnace pressure resulted in an increase in the temperature of the neutral species of 1500 to 4000/sup 0/K, and an apparent suppression of the Mn vaporization rate.

  9. Application of beam emission spectroscopy to NBI plasmas of Heliotron J.

    Science.gov (United States)

    Kobayashi, S; Kado, S; Oishi, T; Kagawa, T; Ohshima, S; Mizuuchi, T; Nagasaki, K; Yamamoto, S; Okada, H; Minami, T; Murakami, S; Lee, H Y; Minami, T; Nakamura, Y; Hanatani, K; Konoshima, S; Takeuchi, M; Toushi, K; Sano, F

    2010-10-01

    This paper describes the application of the beam emission spectroscopy (BES) to Heliotron J, having the nonsymmetrical helical-magnetic-axis configuration. The spectral and spatial profile of the beam emission has been estimated by the numerical calculation taking the collisional excitation processes between plasmas (electrons/ions) and beam atoms. Two sets of the sightlines with good spatial resolution are presented. One is the optimized viewing chords which have 20 sightlines and observe the whole plasma region with the spatial resolution Δρ less than ±0.055 using the newly designed viewing port. The other is 15 sightlines from the present viewing port of Heliotron J for the preliminary measurement to discuss the feasibility of the density fluctuation measurement by BES. The beam emission has been measured by a monochromator with a CCD camera. A good consistency has been obtained between the spectral profiles of the beam emission measured by the monochromator and the beam emission spectrum deduced by the model calculation. An avalanche photodiode with an interference filter system was also used to evaluate the signal-to-noise (S/N) ratio of the beam emission in the present experimental setup. The modification of the optical system is being planned to improve the S/N ratio, which will enable us to estimate the density fluctuation in Heliotron J.

  10. Atom-at-a-time laser resonance ionization spectroscopy of nobelium.

    Science.gov (United States)

    Laatiaoui, Mustapha; Lauth, Werner; Backe, Hartmut; Block, Michael; Ackermann, Dieter; Cheal, Bradley; Chhetri, Premaditya; Düllmann, Christoph Emanuel; van Duppen, Piet; Even, Julia; Ferrer, Rafael; Giacoppo, Francesca; Götz, Stefan; Heßberger, Fritz Peter; Huyse, Mark; Kaleja, Oliver; Khuyagbaatar, Jadambaa; Kunz, Peter; Lautenschläger, Felix; Mistry, Andrew Kishor; Raeder, Sebastian; Ramirez, Enrique Minaya; Walther, Thomas; Wraith, Calvin; Yakushev, Alexander

    2016-10-27

    Optical spectroscopy of a primordial isotope has traditionally formed the basis for understanding the atomic structure of an element. Such studies have been conducted for most elements and theoretical modelling can be performed to high precision, taking into account relativistic effects that scale approximately as the square of the atomic number. However, for the transfermium elements (those with atomic numbers greater than 100), the atomic structure is experimentally unknown. These radioactive elements are produced in nuclear fusion reactions at rates of only a few atoms per second at most and must be studied immediately following their production, which has so far precluded their optical spectroscopy. Here we report laser resonance ionization spectroscopy of nobelium (No; atomic number 102) in single-atom-at-a-time quantities, in which we identify the ground-state transition 1S01P1. By combining this result with data from an observed Rydberg series, we obtain an upper limit for the ionization potential of nobelium. These accurate results from direct laser excitations of outer-shell electrons cannot be achieved using state-of-the-art relativistic many-body calculations that include quantum electrodynamic effects, owing to large uncertainties in the modelled transition energies of the complex systems under consideration. Our work opens the door to high-precision measurements of various atomic and nuclear properties of elements heavier than nobelium, and motivates future theoretical work.

  11. Atom-at-a-time laser resonance ionization spectroscopy of nobelium

    Science.gov (United States)

    Laatiaoui, Mustapha; Lauth, Werner; Backe, Hartmut; Block, Michael; Ackermann, Dieter; Cheal, Bradley; Chhetri, Premaditya; Düllmann, Christoph Emanuel; van Duppen, Piet; Even, Julia; Ferrer, Rafael; Giacoppo, Francesca; Götz, Stefan; Heßberger, Fritz Peter; Huyse, Mark; Kaleja, Oliver; Khuyagbaatar, Jadambaa; Kunz, Peter; Lautenschläger, Felix; Mistry, Andrew Kishor; Raeder, Sebastian; Ramirez, Enrique Minaya; Walther, Thomas; Wraith, Calvin; Yakushev, Alexander

    2016-10-01

    Optical spectroscopy of a primordial isotope has traditionally formed the basis for understanding the atomic structure of an element. Such studies have been conducted for most elements and theoretical modelling can be performed to high precision, taking into account relativistic effects that scale approximately as the square of the atomic number. However, for the transfermium elements (those with atomic numbers greater than 100), the atomic structure is experimentally unknown. These radioactive elements are produced in nuclear fusion reactions at rates of only a few atoms per second at most and must be studied immediately following their production, which has so far precluded their optical spectroscopy. Here we report laser resonance ionization spectroscopy of nobelium (No; atomic number 102) in single-atom-at-a-time quantities, in which we identify the ground-state transition 1S0 1P1. By combining this result with data from an observed Rydberg series, we obtain an upper limit for the ionization potential of nobelium. These accurate results from direct laser excitations of outer-shell electrons cannot be achieved using state-of-the-art relativistic many-body calculations that include quantum electrodynamic effects, owing to large uncertainties in the modelled transition energies of the complex systems under consideration. Our work opens the door to high-precision measurements of various atomic and nuclear properties of elements heavier than nobelium, and motivates future theoretical work.

  12. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    Science.gov (United States)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  13. Magnetic effects in resonant X-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grebennikov, V.I. E-mail: greben@imp.uran.ru

    2004-07-01

    A theoretical description for L{sub {alpha}} and L{sub {beta}} emission spectra recorded at different excitation photon energies gives the main spectral lines: a normal emission peak, with the constant energy, and a quasi-elastic peak that moves in energy scale when the incident photon energy changes. The intensity of the quasi-elastic peak is strongly controlled by valence electron excitations due to core-hole effects. Characteristic shake-up processes give rise to double lines in spectra. Applications of resonant inelastic soft X-ray scattering for studying magnetic systems are discussed. Emission spectra (as well as absorption spectra) show the magnetic dichroism when they are excited by the polarized incident X-ray radiation. But, the emission experiments contain information on the local magnetic moment values on excited atoms even in the case of depolarized incident radiation and in disordered magnetic states. The integral intensities ratio for L{sub {beta}}/L{sub {alpha}} lines in transition metal oxides are analyzed from this point of view. The similarity of experimental X-ray fluorescent spectra with emission spectra received by electron impacts allow us to conclude that in 3d-element compounds the high-energy electron impact transfers the 2p-electron into valence states with considerable probability.

  14. Optical emission spectroscopy of Aluminum Nitride thin films deposited by Pulsed Laser Deposition

    Science.gov (United States)

    Pérez, J. A.; Vera, L. P.; Riascos, H.; Caicedo, J. C.

    2014-05-01

    In this work we study the Aluminium Nitride plasma produced by Nd:YAG pulsed laser, (λ = 1064 nm, 500 mJ, τ = 9 ns) with repletion rate of 10 Hz. The laser interaction on Al target (99.99%) under nitrogen gas atmosphere generate a plasma which is produced at room temperature; with variation in the pressure work from 0.53 Pa to 0.66 Pa matching with a applied laser fluence of 7 J/cm2.The films thickness measured by profilometer was 150 nm. The plasma generated was at different pressures was characterized by Optical Emission Spectroscopy (EOS). From emission spectra obtained ionic and atomic species were observed. The plume electronic temperature has been determined by assuming a local thermodynamic equilibrium of the emitting species. Finally the electronic temperature was calculated with Boltzmann plot from relative intensities of spectral lines.

  15. Laser induced aluminiun plasma analysis by optical emission spectroscopy in a nitrogen background gas

    Science.gov (United States)

    Chamorro, J. C.; Uzuriaga, J.; Riascos, H.

    2012-06-01

    We studied an Al plasma generated by a Nd:YAG laser with a laser fluence of 4 J/cm2, a wavelength of 1064 nm, energy pulse of 500 mJ and 10 Hz repetition rate. We studied their spectral characteristics at various ambient nitrogen pressures by optical emission spectroscopy (OES). The N2 gas pressure was varied from 20 mTorr to 150 mTorr. In Al plume, both atomic and ionic spectra were observed. The electron temperature and electron number density of the plume as of the function ambient gas pressure were determined. The electron temperature was calculated by using the Boltzmann-plot method and the number density was calculated considering the stark effect as dominating on the emission lines.

  16. Superradiant emission from a cascade atomic ensemble by positive-P phase space method simulation

    Science.gov (United States)

    Jen, Hsiang-Hua

    2012-06-01

    We numerically simulate the superradiant emission properties from an atomic ensemble with cascade level configuration. The correlated spontaneous emissions (signal then idler fields) are initiated by quantum fluctuations of the ensemble. We apply the positive-P phase space method to investigate the dynamics of the atoms and counter-propagating emissions in the four-wave mixing condition. The light field intensities are calculated, and the signal-idler correlation function is studied for different optical depths of the atomic ensemble. Shorter correlation time scale for a denser atomic ensemble implies a broader spectral window required to store or retrieve the idler pulse.

  17. Emission of muonic tritium into vacuum: An atomic beam for muon experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.C. [University of British Columbia (Canada); Bailey, J.M. [Chester Technology (United Kingdom); Beer, G.A. [University of Victoria (Canada); Beveridge, J.L. [TRIUMF (Canada); Douglas, J.L. [University of Victoria (Canada); Huber, T.M. [Gustavus Adolphus College (United States); Jacot-Guillarmod, R. [Universite de Fribourg, CH-1700 (Switzerland); Kammel, P. [University of California (United States); Kim, S.K. [Jeonbuk National University (Korea, Republic of); Knowles, P.E. [University of Victoria (Canada); Kunselman, A.R. [University of Wyoming (United States); Maier, M. [University of Victoria (Canada); Markushin, V.E. [Paul Scherrer Institute (Switzerland); Marshall, G.M. [TRIUMF (Canada); Martoff, C.J. [Temple University (United States); Mason, G.R. [University of Victoria (Canada); Mulhauser, F. [Universite de Fribourg, CH-1700 (Switzerland); Olin, A. [University of Victoria (Canada); Petitjean, C. [Paul Scherrer Institute (Switzerland); Porcelli, T.A. [University of Victoria (Canada)] (and others)

    1997-04-15

    The emission of muonic tritium atoms from a thin film of hydrogen isotopes into vacuum was observed. The time and position of the muon decays were measured by tracking the decay electron trajectory. The observations are useful both for testing the theoretical cross sections for muonic atomic interactions, and producing an atomic beam of slow {mu}{sup -}t with a controllable energy.

  18. [Preliminary study of atomic emission spectrometry of Ti (H) plasma produced by vacuum arc ion source].

    Science.gov (United States)

    Deng, Chun-Feng; Wu, Chun-Lei; Wang, Yi-Fu; Lu, Biao; Wen, Zhong-Wei

    2014-03-01

    In order to study the discharge process of vacuum arc ion source, make a detail description of the discharge plasma, and lay the foundation for further research on ion source, atomic emission spectrometry was used to diagnose the parameters of plasma produced by vaccum arc ion source. In the present paper, two kinds of analysis method for the emission spectra data collected by a spectrometer were developed. Those were based in the stark broadening of spectral lines and Saba-Boltzmann equation. Using those two methods, the electron temperature, electron number density and the ion temperature of the plasma can be determined. The emission spectroscopy data used in this paper was collected from the plasma produced by a vacuum are ion source whose cathode was made by Ti material (which adsorbed hydrogen during storage procedure). Both of the two methods were used to diagnose the plasma parameters and judge the thermal motion state of the plasma. Otherwise, the validity of the diagnostic results by the two methods were analyzed and compared. In addition, the affection from laboratory background radiation during the spectral acquisition process was discussed.

  19. Study of NaCl:Mn{sup 2+} nanostructures in the Suzuki phase by optical spectroscopy and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mejía-Uriarte, E.V., E-mail: elsi.mejia@ccadet.unam.mx [Laboratorio de Fotónica de Microondas, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, AP 70-186, C.P. 04510, D.F. México (Mexico); Kolokoltsev, O. [Laboratorio de Fotónica de Microondas, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, AP 70-186, C.P. 04510, D.F. México (Mexico); Navarrete Montesinos, M. [Instituto de Ingeniería, Universidad Nacional Autónoma de México, D.F. México (Mexico); Camarillo, E.; Hernández A, J.; Murrieta S, H. [Instituto de Física, Universidad Nacional Autónoma de México, AP 20-364, C.P. 01000, D.F. México (Mexico)

    2015-04-15

    NaCl:Mn{sup 2+} nanostructures in the Suzuki phase have been studied by fluorescence (emission and excitation) spectroscopy and atomic force microscopy (AFM) as a function of temperature. The “as-grown” samples give rise to two broad emission bands that peak at 508 (green emission) and 610 nm (red emission). The excitation spectrum shows peaks at 227 nm and 232 nm for emission wavelengths at 508 nm and 610 nm, respectively. When the samples are heated continuously from room temperature up to 220 °C, the green emission (associated to the excitation peak at 227 nm) disappears at a temperature close to 120 °C, whilst only the red emission remains, which is characteristic of manganese ions. AFM images on the (0 0 1) surface (freshly cleaved) show several conformations of nanostructures, such as disks of 20–50 nm in diameter. Particularly, the images also reveal nanostructures with rectangular shape of ~280×160 nm{sup 2} and ~6 nm height; these are present only in samples with green emission associated to the Suzuki phase. Then, the evidence suggests that this topographic configuration might be related to the interaction with the first neighbors and the next neighbors, according to the configuration that has been suggested for the Suzuki phase. - Highlights: • NaCl:Mn{sup 2+} single crystals in the Suzuki phase contain rectangular nanostructures. • Double emission of manganese ions: green (508 nm) and red (610 nm) bands. • The excitation peak at 227 nm is attributed to rectangular nanostructures. • The green emission band associated to Suzuki phase is extinguished at 120 °C.

  20. Relationship between Ba atom emission and electrode temperature in a low-pressure fluorescent lamp

    Energy Technology Data Exchange (ETDEWEB)

    Yamagata, Yukihiko, E-mail: yamagata@ence.kyushu-u.ac.j [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakouen, Kasuga, Fukuoka 816-8580 (Japan); Kai, Makoto [Lighting Company, Panasonic Corporation, 1-1 Saiwaicho, Takatsuki, Osaka 569-1193 (Japan); Naito, Sho; Tomita, Kentaro; Uchino, Kiichiro [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakouen, Kasuga, Fukuoka 816-8580 (Japan); Manabe, Yoshio [Lighting Company, Panasonic Corporation, 1-1 Saiwaicho, Takatsuki, Osaka 569-1193 (Japan)

    2010-04-30

    A relationship between emission characteristics of Ba atom as an emitter material and temperature distributions of an electrode in a fluorescent lamp is described, which is measured by using laser-induced fluorescence and black-body radiation method, respectively. In a virgin lamp, a hot spot observed at the electrode edge connected to the power supply is the main source of Ba atom emission. In a long-term-used lamp, it is shown that Ba atom emission, thermionic electron emission in cathode half-cycle and electron collection in anode half-cycle are most active on the hot spot appearing on the center of the electrode.

  1. Ultrafast Time-Resolved Hard X-Ray Emission Spectroscopy on a Tabletop

    Directory of Open Access Journals (Sweden)

    Luis Miaja-Avila

    2016-09-01

    Full Text Available Experimental tools capable of monitoring both atomic and electronic structure on ultrafast (femtosecond to picosecond time scales are needed for investigating photophysical processes fundamental to light harvesting, photocatalysis, energy and data storage, and optical display technologies. Time-resolved hard x-ray (>3  keV spectroscopies have proven valuable for these measurements due to their elemental specificity and sensitivity to geometric and electronic structures. Here, we present the first tabletop apparatus capable of performing time-resolved x-ray emission spectroscopy. The time resolution of the apparatus is better than 6 ps. By combining a compact laser-driven plasma source with a highly efficient array of microcalorimeter x-ray detectors, we are able to observe photoinduced spin changes in an archetypal polypyridyl iron complex [Fe(2,2^{′}-bipyridine_{3}]^{2+} and accurately measure the lifetime of the quintet spin state. Our results demonstrate that ultrafast hard x-ray emission spectroscopy is no longer confined to large facilities and now can be performed in conventional laboratories with 10 times better time resolution than at synchrotrons. Our results are enabled, in part, by a 100- to 1000-fold increase in x-ray collection efficiency compared to current techniques.

  2. Precision Spectroscopy of Kaonic Atoms at DAΦNE

    Directory of Open Access Journals (Sweden)

    Scordo A.

    2010-04-01

    Full Text Available The SIDDHARTA experiment aims at a precise measurement of K -series kaonic hydrogen x-rays and the first-ever measurement of the kaonic deuterium x-rays to determine the strong-interaction energy-level shift and width of the lowest lying atomic states. These measurements offer a unique possibility to precisely determine the isospin-dependent $ar{K}$-nucleon scattering lengths.

  3. Hard X-ray emission spectroscopy with pink beam

    Energy Technology Data Exchange (ETDEWEB)

    Kvashnina, Kristina O.; Rossberg, Andre; Exner, Joerg; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    Valence-band X-ray emission spectroscopy (XES) with a ''pink beam'', i.e. a beam with large energy bandwidth produced by a double-multilayer monochromator, is introduced here to overcome the weak count rate of monochromatic beams produced by conventional double-crystal monochromators. Our results demonstrate that - in spite of the large bandwidth in the order of 100 eV - the high spectral resolution of the Johann-type spectrometer is maintained, while the two orders of magnitude higher flux greatly reduces the required counting time. The short working distance Johann-type X-ray emission spectrometer and multilayer monochromator is available at ROBL.

  4. Tracking of azobenzene isomerization by X-ray emission spectroscopy.

    Science.gov (United States)

    Ebadi, H

    2014-09-11

    Cis-trans isomerizations are among the fundamental processes in photochemistry. In azobenzene or its derivatives this dynamics is, due to its reversibility, one of the reactions widely used in photostimulation of molecular motors or in molecular electronics. Though intensively investigated in the optical regime, no detailed study exists in the X-ray regime so far. Because the X-ray emission spectroscopy echoes the electronic structure sensitive to the geometry, this theoretical report based on the density functional theory and its time-dependent version presents different nitrogen K-edge X-ray emission spectra for cis and trans isomers with close interrelation to their electron configuration. Considering the spectrum along the isomerization path, these structural signatures can be utilized to probe the isomerization dynamics in the excited molecule. The scheme can further be generalized to the element specific photoreactions.

  5. Enhanced Sensitivity Beam Emission Spectroscopy System for Nonlinear Turbulence Measurements

    CERN Document Server

    Gupta, Deepak K; McKee, George R; Schlossberg, David J; Shafer, Morgan W

    2008-01-01

    An upgraded Beam Emission Spectroscopy (BES) system has been deployed to access low amplitude turbulence regions near internal transport barriers on the DIII-D tokamak. Sixteen high sensitivity channels are being installed. A significant increase in total signal to noise is achieved by: 1.) Increased spatial volume sampling tailored to known turbulence characteristics; 2.) An increased throughput spectrometer assembly to isolate the local beam fluorescence, coupled to new large-area photoconductive photodiodes; 3.) A new sharp edge interference filter designed to optimize detection of the beam emission plus a significant fraction of the thermal deuterium charge exchange. A new data acquisition system has been installed, providing an 8 times increase in integration time or an increased sample rate. Preliminary results from the upgraded system show a signal enhancement of greater than an order of magnitude. A clear broadband density fluctuation signal is observed in H-mode discharges with the upgraded BES syste...

  6. Echo spectroscopy and quantum stability of trapped atoms

    OpenAIRE

    Andersen, M. F.; Kaplan, A.; Davidson, N.

    2002-01-01

    We investigate the dephasing of ultra cold ^{85}Rb atoms trapped in an optical dipole trap and prepared in a coherent superposition of their two hyperfine ground states by interaction with a microwave pulse. We demonstrate that the dephasing, measured as the Ramsey fringe contrast, can be reversed by stimulating a coherence echo with a pi-pulse between the two pi/2 pulses, in analogy to the photon echo. We also demonstrate that the failure of the echo for certain trap parameters is due to dyn...

  7. An atomic hydrogen beam to test ASACUSA's apparatus for antihydrogen spectroscopy

    CERN Document Server

    Diermaier, Martin; Kolbinger, Bernadette; Malbrunot, Chloé; Massiczek, Oswald; Sauerzopf, Clemens; Simon, Martin C.; Wolf, Michael; Zmeskal, Johann; Widmann, Eberhard

    2015-01-01

    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter pendant to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth's magnetic field.

  8. Resonant three-photon ionization spectroscopy of atomic Fe

    Science.gov (United States)

    Liu, Y.; Gottwald, T.; Havener, C. C.; Mattolat, C.; Vane, C. R.; Wendt, K.

    2013-12-01

    Laser spectroscopic investigations on high-lying states around the ionization potential (IP) in the atomic spectrum of Fe have been carried out for the development of a practical three-step resonance ionization scheme accessible by Ti: sapphire lasers. A hot cavity laser ion source, typically used at on-line radioactive ion beam production facilities, was employed in this work. Ionization schemes employing high-lying Rydberg and autoionizing states populated by three-photon excitations were established. Five new Rydberg and autoionizing Rydberg series converging to the ground and to the first four excited states of Fe II are reported. Analyses of the Rydberg series yield the value 63 737.686 ± 0.068 cm-1 for the ionization potential of iron.

  9. Atomic force microscopy and spectroscopy of native membrane proteins.

    Science.gov (United States)

    Müller, Daniel J; Engel, Andreas

    2007-01-01

    Membrane proteins comprise 30% of the proteome of higher organisms. They mediate energy conversion, signal transduction, solute transport and secretion. Their native environment is a bilayer in a physiological buffer solution, hence their structure and function are preferably assessed in this environment. The surface structure of single membrane proteins can be determined in buffer solutions by atomic force microscopy (AFM) at a lateral resolution of less than 1 nm and a vertical resolution of 0.1-0.2 nm. Moreover, single proteins can be directly addressed, stuck to the AFM stylus and subsequently unfolded, revealing the molecular interactions of the protein studied. The examples discussed here illustrate the power of AFM in the structural analysis of membrane proteins in a native environment.

  10. The emission of atoms and molecules accompanying fracture of single-crystal MgO

    Science.gov (United States)

    Dickinson, J. T.; Jensen, L. C.; Mckay, M. R.; Freund, F.

    1986-01-01

    The emission of particles due to deformation and fracture of materials has been investigated. The emission of electrons (exoelectron emission), ions, neutral species, photons (triboluminescence), as well as long wavelength electromagnetic radiation was observed; collectively these emissions are referred to as fractoemission. This paper describes measurements of the neutral emission accompanying the fracture of single-crystal MgO. Masses detected are tentatively assigned to the emission of H2, CH4, H2O, CO, O2, CO2, and atomic Mg. Other hydrocarbons are also observed. The time dependencies of some of these emissions relative to fracture are presented for two different loading conditions.

  11. Atomic collision and spectroscopy experiments with ultra-low-energy antiprotons

    CERN Document Server

    Torii, Hiroyuki A; Toyoda, Hiroshi; Imao, Hiroshi; Kuroda, Naofumi; Varentsov, Victor L; Yamazaki, Yasunori

    2009-01-01

    Antiproton, the antiparticle of proton, is a unique projectile in the study of atomic collision physics, which can be treated theoretically either as a 'negative proton' or a 'heavy electron'. Atomic capture of an antiproton will result in formation of a highly excited exotic atom. Antiprotonic helium atom has been studied intensively by means of precision laser spectroscopy, which has led to a stringent determination of antiproton mass and charge to a level of ppb. Comparison of these values with those of proton gives one of the best tests of CPT invariance, the most fundamental symmetry in physics. However, the dynamic processes of antiproton capture remain unclarified. With an aim to produce an antiproton beam at atomic-physics energies for 'pure' collision experiments, we have so far developed techniques to decelerate, cool and confine antiprotons in vacuo, using a sequential combination of the Antiproton Decelerator (AD) at CERN, a Radio-Frequency Quadrupole Decelerator (RFQD), and an electromagnetic tra...

  12. The chemical sensitivity of X-ray spectroscopy: high energy resolution XANES versus X-ray emission spectroscopy of substituted ferrocenes.

    Science.gov (United States)

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2013-06-07

    X-ray spectroscopy at the metal K-edge is an important tool for understanding catalytic processes and provides insight into the geometric and electronic structures of transition metal complexes. In particular, X-ray emission-based methods such as high-energy resolution fluorescence detection (HERFD), X-ray absorption near-edge spectroscopy (XANES) and valence-to-core X-ray emission spectroscopy (V2C-XES) hold the promise of providing increased chemical sensitivity compared to conventional X-ray absorption spectroscopy. Here, we explore the ability of HERFD-XANES and V2C-XES spectroscopy to distinguish substitutions beyond the directly coordinated atoms for the example of ferrocene and selected ferrocene derivatives. The experimental spectra are assigned and interpreted through the use of density functional theory (DFT) calculations. We find that while the pre-edge peaks in the HERFD-XANES spectra are affected by substituents at the cyclopentadienyl ring containing π-bonds [A. J. Atkins, Ch. R. Jacob and M. Bauer, Chem.-Eur. J., 2012, 18, 7021], the V2C-XES spectra are virtually unchanged. The pre-edge in HERFD-XANES probes the weak transition to unoccupied metal d-orbitals, while the V2C-XES spectra are determined by dipole-allowed transitions from occupied ligand orbitals to the 1s core hole. The latter turn out to be less sensitive to changes beyond the first coordination shell.

  13. Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Boothroyd, C.B., E-mail: ChrisBoothroyd@cantab.net [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Moreno, M.S. [Centro Atómico Bariloche, 8400 – San Carlos de Bariloche (Argentina); Duchamp, M.; Kovács, A. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Monge, N.; Morales, G.M.; Barbero, C.A. [Department of Chemistry, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto (Argentina); Dunin-Borkowski, R.E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2014-10-15

    We present an atomic resolution transmission electron microscopy (TEM) and scanning TEM (STEM) study of the local structure and composition of graphene oxide modified with Ba{sup 2+}. In our experiments, which are carried out at 80 kV, the acquisition of contamination-free high-resolution STEM images is only possible while heating the sample above 400 °C using a highly stable heating holder. Ba atoms are identified spectroscopically in electron energy-loss spectrum images taken at 800 °C and are associated with bright contrast in high-angle annular dark-field STEM images. The spectrum images also show that Ca and O occur together and that Ba is not associated with a significant concentration of O. The electron dose used for spectrum imaging results in beam damage to the specimen, even at elevated temperature. It is also possible to identify Ba atoms in high-resolution TEM images acquired using shorter exposure times at room temperature, thereby allowing the structure of graphene oxide to be studied using complementary TEM and STEM techniques over a wide range of temperatures. - Highlights: • Graphene oxide modified with Ba{sup 2+} was imaged using TEM and STEM at 80 kV. • High-resolution images and spectra were obtained only by heating above 400 °C. • Elemental maps show the distribution of C, Ba, O and Ca on the graphene oxide. • Single Ba atoms were identified in STEM HAADF and HRTEM images.

  14. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  15. Atom-at-a-time laser resonance ionization spectroscopy of nobelium

    NARCIS (Netherlands)

    Laatiaoui, Mustapha; Lauth, Werner; Backe, Hartmut; Block, Michael; Ackermann, Dieter; Cheal, Bradley; Chhetri, Premaditya; Düllmann, Christoph Emanuel; van Duppen, Piet; Even, Julia; Ferrer, Rafael; Giacoppo, Francesca; Götz, Stefan; Heßberger, Fritz Peter; Huyse, Mark; Kaleja, Oliver; Khuyagbaatar, Jadambaa; Kunz, Peter; Lautenschläger, Felix; Mistry, Andrew Kishor; Raeder, Sebastian; Ramirez, Enrique Minaya; Walther, Thomas; Wraith, Calvin; Yakushev, Alexander

    2016-01-01

    Optical spectroscopy of a primordial isotope has traditionally formed the basis for understanding the atomic structure of an element. Such studies have been conducted for most elements and theoretical modelling can be performed to high precision, taking into account relativistic effects that scale

  16. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    Science.gov (United States)

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  17. Continuation of Atomic Spectroscopy on Alkali Isotopes at ISOLDE

    CERN Multimedia

    2002-01-01

    Laser optical measurements on Rb, Cs and Fr have already been performed at ISOLDE in 1978-79. The hyperfine structure and isotope shift of |7|6|-|9|8Rb, |1|1|8|-|1|4|5Cs, |2|0|8|-|2|1|3Fr and 14 of their isomers have been studied. Among the wealth of information which has been obtained, the most important are the first observation of an optical transition of the element Fr, the evidence of the onset of nuclear deformation at N~=~60 for Rb isotopes and the shape isomerism isotopes. \\\\ \\\\ From both the atomic and nuclear physics point of view, new studies seem very promising: \\item - the search for new optical transitions in Fr; the shell effect in the rms charge radius at N~=~126 for Fr isotopes \\item - the study of a possible onset of deformation for Cs isotopes beyond |1|4|5Cs \\item - the study of a region of static deformation in neutron-deficient Rb isotopes. \\\\ \\\\ \\end{enumerate} A new apparatus has been built. The principle remains the same as used in our earlier experiments. The improvements concern ess...

  18. Some historic and current aspects of plasma diagnostics using atomic spectroscopy

    Science.gov (United States)

    Hutton, Roger; Zou, Yaming; Andersson, Martin; Brage, Tomas; Martinson, Indrek

    2010-07-01

    In this paper we give a short introduction to the use of atomic spectroscopy in plasma diagnostics. Both older works and exciting new branches of atomic physics, which have relevance to diagnostics, are discussed. In particular we focus on forbidden lines in Be-like ions, lines sensitive to magnetic fields and levels which have a lifetime dependence on the nuclear spin of the ion, i.e. f-dependent lifetimes. Finally we mention a few examples of where tokamaks, instead of needing atomic data, actually provide new data and lead to developments in atomic structure studies. This paper is dedicated to the memory of Nicol J Peacock (1931-2008), a distinguished plasma scientist who contributed much to the field of spectroscopy applied to plasma, and in particular, fusion plasma diagnostics. During the final stages of the preparation of this paper Professor Indrek Martinson passed away peacefully in his sleep on 14 November 2009. Indrek will be greatly missed by many people, both for his contributions to atomic spectroscopy and for his great kindness and friendliness, which many of us experienced.

  19. Development of atomic spectroscopy technologies - Hyperfine structure of 2 period atoms using optogalvanic effects

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Nam Ic [Hankuk University of foreign studies, Seoul (Korea)

    2000-03-01

    The source of anomalous broad linewidth of 3{sup 3}P{sub 1},{sub 2},{sub 3}-3{sup 3}D{sub 2},{sub 3},4(3s') transition was explained. The broad optogalvanic spectrum was consisted of two gaussian peaks of different linewidths, and they are separated by 250 MHz. The Narrow peak, which has linewidth of room temperature, is from oxygen atoms already separated, and the shifted broad peak, which has linewidth corresponding to a temperature of 9000 K, is from weakly bound molecular ions. Obtained hyperfine spectrum of fluorine atom at the expected frequency, was too weak to analyze hyperfine structure constants. Microwave discharge might be necessary for higher density of excited state. 16 refs., 11 figs. (Author)

  20. European Group for Atomic Spectroscopy. Summaries of contributions, eleventh annual conference, Paris-Orsay, July 10-13, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Summaries are presented of talks given at the eleventh conference of the European group for atomic spectroscopy. Topics covered include: lifetimes; collisions; line shape; hyperfine structure; isotope shifts; saturation spectroscopy; Hanle effect; Rydberg levels; quantum beats; helium and helium-like atoms; metrology; and molecules. (GHT)

  1. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    Science.gov (United States)

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  2. Spatial characterization of laser induced Yb plasma in argon using optical emission spectroscopy: Pressure effect

    Energy Technology Data Exchange (ETDEWEB)

    Jazmati, A.K.; Alnama, K., E-mail: pscientific21@aec.org.sy; Alkhawwam, A.

    2014-09-15

    Highlights: • Laser induced Yb plasma at different pressure of Argon is spatially investigated. • O-TOF profiles and excitation temperature are used to characterize the plasma. • At 100 Pa of argon background gas, shock wave begins to be formed. • Drag force expansion describes the plasma propagation at pressures bigger than 1 Pa. • Two components of velocity distribution of the Yb atoms are estimated. - Abstract: Spatial and temporal behavior of laser induced Ytterbium plasma plume is studied using optical emission spectroscopy technique. A third harmonic Nd:YAG nanosecond laser was used to generate Yb plasma plume at different Argon background pressures (1, 10, 10{sup 2}, 10{sup 3} and 10{sup 4} Pa). The plasma dynamics was investigated based on the spatial behavior of the excitation temperature coupled with optical time of flight (O-TOF) profiles of neutral Yb emission line (555.65 nm) along the propagation axe of the plasma plume. Drag force model was appropriate to describe the propagation dynamics at all pressures except of the lowest one (1 Pa) where free expansion model is dominant. The velocity distribution of Yb I atoms were extracted using two terms of Shifted Maxwell–Boltzmann (SMB) distribution. The correlation between the spatial comportment of both excitation temperature and O-TOF profiles is discussed.

  3. Electronic structure of advanced materials studied by x-ray emission spectroscopy

    Science.gov (United States)

    Kurmaev, E. Z.; Galakhov, V. R.; Yarmoshenko, Yu. M.; Trofimova, V. A.; Shamin, S. N.; Cherkashenko, V. M.; Poteryaev, A. I.; Anisimov, V. I.

    1997-01-01

    High resolution soft x-ray emission spectroscopy with high spatial resolution is used to study of the electronic structure and characterize advanced materials: high-Tc superconductors, transition metal compounds, porous silicon, solid-solid buried interfaces and hard materials. In high-Tc, the main attention is focused on the analysis of oxygen-cation interactions and the determination of the location of impurity atoms. In transition metal compounds the participation of different electronic states of constitute atoms in the valence band is analyzed and correctness of LDA band structure calculations is estimated. For CuFeO2 an unusual mutual position of the Cu3d and Fe3d bands was found which is attributed to strong electron-electron correlations. In porous silicon the local structure of silicon atoms is found to depend on the type of doping of the initial Si wafer. Solid-solid buried interfaces in thin semiconducting films irradiated by eximer laser are investigated. For the hard materials boron-carbonitride a structure consisting of hexagonal lattice planes of carbon and boron nitride is proposed.

  4. The influence of magnetic fields on absorption and emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heshou; Yan, Huirong [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Richter, Philipp [Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Leibniz-Institut fuer Astrophysik Potsdam (AIP) (Germany)

    2016-10-15

    Spectroscopic observations play essential roles in astrophysics. They are crucial for determining important physical parameters, providing information about the composition of various objects in the universe, as well as depicting motions in the universe. However, spectroscopic studies often do not consider the influence of magnetic fields. In this paper, we explore the influence of magnetic fields on the spectroscopic observations arising from Ground State Alignment (GSA). Synthetic spectra are generated to show the measurable changes of the spectra due to GSA. The influences of atomic alignment on absorption from DLAs, emission from H II Regions, submillimeter fine-structure lines from star forming regions are presented as examples to illustrate the effect in diffuse gas. Furthermore, we demonstrate the influence of atomic alignment on physical parameters derived from spectral line ratios, such as the alpha-to-iron ratio([X/Fe]), interstellar temperature, and ionization rate. Results in our paper show that due to GSA, magnetic fields will affect the spectra of diffuse gas with high signal-to-noise(S/N) ratio under the condition that photon-excitation is much more efficient than thermal collision.

  5. Comparative study of bandwidths in copper delafossites from x-ray emission spectroscopy

    Science.gov (United States)

    Shin, D.; Foord, J. S.; Payne, D. J.; Arnold, T.; Aston, D. J.; Egdell, R. G.; Godinho, K. G.; Scanlon, D. O.; Morgan, B. J.; Watson, G. W.; Mugnier, E.; Yaicle, C.; Rougier, A.; Colakerol, L.; Glans, P. A.; Piper, L. F. J.; Smith, K. E.

    2009-12-01

    The widths of the valence bands in the copper (I) delafossites CuGaO2 , CuInO2 , and CuScO2 have been measured by OK -shell x-ray emission spectroscopy and are compared with previous experimental work on CuAlO2 and CuCrO2 . In agreement with recent density-functional theory calculations it is found that the bandwidth decreases in the series CuAlO2>CuGaO2>CuInO2>CuScO2 . It is shown that states at the top of the valence band are of dominant Cu3dz2 atomic character but with significant mixing with O2p states.

  6. Laser spectroscopy of the antiprotonic helium atom – its energy levels and state lifetimes

    CERN Document Server

    Hidetoshi, Yamaguchi

    2003-01-01

    The antiprotonic atom is a three-body exotic system consisting of an antiproton, an electron and a helium nucleus. Its surprising longevity was found and has been studied for more than 10 years. In this work, transition energies and lifetimes of this exotic atom were systematically studied by using the antiproton beam of AD(Antiproton Decelerator) facility at CERN, with an RFQ antiproton decelerator, a narrow-bandwidth laser, Cerenkov counters with fast-response photomultiplier tubes, and cryogenic helium target systems. Thirteen transition energies were determined with precisions of better than 200 ppb by a laser spectroscopy method, together with the elimination of the shift effect caused by collisions with surrounding atoms. Fifteen lifetimes (decay rates) of short-lived states were determined from the time distributions of the antiproton-annihilation signals and the resonance widths of the atomic spectral lines. The relation between the magnitude of the decay rates and the transition multipolarity was inv...

  7. Characterization and Infrared Emission Spectroscopy of Ball Plasmoid Discharges

    Science.gov (United States)

    Dubowsky, Scott E.; McCall, Benjamin J.

    2015-06-01

    Plasmas at atmospheric pressure serve many purposes, from ionization sources for ambient mass spectrometry (AMS) to plasma-assisted wound healing. Of the many naturally occurring ambient plasmas, ball lightning is one of the least understood; there is currently no solid explanation in the literature for the formation and lifetime of natural ball lightning. With the first measurements of naturally occurring ball lightning being reported last year, we have worked to replicate the natural phenomenon in order to elucidate the physical and chemical processes by which the plasma is sustained at ambient conditions. We are able to generate ball-shaped plasmoids (self-sustaining plasmas) that are analogous to natural ball lightning using a high-voltage, high-current, pulsed DC system. Improvements to the discharge electronics used in our laboratory and characterization of the plasmoids that are generated from this system will be described. Infrared emission spectroscopy of these plasmoids reveals emission from water and hydroxyl radical -- fitting methods for these molecular species in the complex experimental spectra will be presented. Rotational temperatures for the stretching and bending modes of H2O along with that of OH will be presented, and the non-equilibrium nature of the plasmoid will be discussed in this context. Cen, J.; Yuan, P,; Xue, S. Phys. Rev. Lett. 2014, 112, 035001. Dubowsky, S.E.; Friday, D.M.; Peters, K.C.; Zhao, Z.; Perry, R.H.; McCall, B.J. Int. J. Mass Spectrom. 2015, 376, 39-45.

  8. A Pragmatic Smoothing Method for Improving the Quality of the Results in Atomic Spectroscopy

    Science.gov (United States)

    Bennun, Leonardo

    2017-07-01

    A new smoothing method for the improvement on the identification and quantification of spectral functions based on the previous knowledge of the signals that are expected to be quantified, is presented. These signals are used as weighted coefficients in the smoothing algorithm. This smoothing method was conceived to be applied in atomic and nuclear spectroscopies preferably to these techniques where net counts are proportional to acquisition time, such as particle induced X-ray emission (PIXE) and other X-ray fluorescence spectroscopic methods, etc. This algorithm, when properly applied, does not distort the form nor the intensity of the signal, so it is well suited for all kind of spectroscopic techniques. This method is extremely effective at reducing high-frequency noise in the signal much more efficient than a single rectangular smooth of the same width. As all of smoothing techniques, the proposed method improves the precision of the results, but in this case we found also a systematic improvement on the accuracy of the results. We still have to evaluate the improvement on the quality of the results when this method is applied over real experimental results. We expect better characterization of the net area quantification of the peaks, and smaller Detection and Quantification Limits. We have applied this method to signals that obey Poisson statistics, but with the same ideas and criteria, it could be applied to time series. In a general case, when this algorithm is applied over experimental results, also it would be required that the sought characteristic functions, required for this weighted smoothing method, should be obtained from a system with strong stability. If the sought signals are not perfectly clean, this method should be carefully applied

  9. Measurement of the Local Tension of Red Blood Cell Membranes by Atomic Force Spectroscopy

    Directory of Open Access Journals (Sweden)

    V. A. Sergunova

    2013-01-01

    Full Text Available Objective: to study the average local tension of a membrane upon exposure to its modifiers. Materials and methods. Blood from 3 healthy donors was sampled into ethylene diamine tetraacetate-containing microvettes (Sarstedt AG and Co., Germany during prophylactic examinations. In this series of experiments, the red blood cells were exposed to the membrane nanosurface modifier hemin (muriatic hematin. Hemin disrupts the conformation of spectrin, a band 4.1 protein, and weakens their bond [19]. Hemin was added to blood in vitro. Its blood concentration was 1.8 mM. The images of cells and their membranes were obtained on a NTEGRA Prima atomic force microscope (NT-MDT, Russia [16]. The membrane tension was estimated by atomic force spectroscopy. Results. After exposure to hemin, 68% of cases showed a 2.1-fold increase in the average tension as compared to the mean control value (p<0.05, which could reduce ID by «30 %. Subsequent exposure to perftoran returned the membrane tension to the baseline values in 85% of cases. The membrane tension of other 15% of the areas on the cells remained high — 2.3 times higher than the control values (p<0.05 even despite the action of perftoran. Conclusion. Thus, atomic force spectroscopy was used to measure the average local tension of the membrane, which depended on exposure to its modifiers, such as hemin. Key words: red blood cell, membrane tension, atomic force spectroscopy, hemin.

  10. Spectroscopy of lithium atoms sublimated from isolation matrix of solid Ne.

    Science.gov (United States)

    Sacramento, R L; Scudeller, L A; Lambo, R; Crivelli, P; Cesar, C L

    2011-10-07

    We have studied, via laser absorption spectroscopy, the velocity distribution of (7)Li atoms released from a solid neon matrix at cryogenic temperatures. The Li atoms are implanted into the Ne matrix by laser ablation of a solid Li precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms at around 12 K. We find interesting differences in the velocity distribution of the released Li atoms from the model developed for our previous experiment with Cr [R. Lambo, C. C. Rodegheri, D. M. Silveira, and C. L. Cesar, Phys. Rev. A 76, 061401(R) (2007)]. This may be due to the sublimation regime, which is at much lower flux for the Li experiment than for the Cr experiment, as well as to the different collisional cross sections between those species to the Ne gas. We find a drift velocity compatible with Li being thermally sublimated at 11-13 K, while the velocity dispersion around this drift velocity is low, around 5-7 K. With a slow sublimation of the matrix we can determine the penetration depth of the laser ablated Li atoms into the Ne matrix, an important information that is not usually available in most matrix isolation spectroscopy setups. The present results with Li, together with the previous results with Cr suggest this to be a general technique for obtaining cryogenic atoms, for spectroscopic studies, as well as for trap loading. The release of the isolated atoms is also a useful tool to study and confirm details of the matrix isolated atoms which are masked or poorly understood in the solid. © 2011 American Institute of Physics

  11. Unreported Emission Lines of Rb, Ce, La, Sr, Y, Zr, Pb and Se Detected Using Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Lepore, K. H.; Mackie, J.; Dyar, M. D.; Fassett, C. I.

    2017-01-01

    Information on emission lines for major and minor elements is readily available from the National Institute of Standards and Technology (NIST) as part of the Atomic Spectra Database. However, tabulated emission lines are scarce for some minor elements and the wavelength ranges presented on the NIST database are limited to those included in existing studies. Previous work concerning minor element calibration curves measured using laser-induced break-down spectroscopy found evidence of Zn emission lines that were not documented on the NIST database. In this study, rock powders were doped with Rb, Ce, La, Sr, Y, Zr, Pb and Se in concentrations ranging from 10 percent to 10 parts per million. The difference between normalized spectra collected on samples containing 10 percent dopant and those containing only 10 parts per million were used to identify all emission lines that can be detected using LIBS (Laser-Induced Breakdown Spectroscopy) in a ChemCam-like configuration at the Mount Holyoke College LIBS facility. These emission spectra provide evidence of many previously undocumented emission lines for the elements measured here.

  12. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    Science.gov (United States)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  13. High-power Ti:sapphire lasers for spectroscopy of antiprotonic atoms and radioactive ions

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M., E-mail: Masaki.Hori@mpq.mpg.de [Max-Planck-Institut fuer Quantenoptik (Germany); Dax, A. [University of Tokyo, Department of Physics (Japan); Soter, A. [Max-Planck-Institut fuer Quantenoptik (Germany)

    2012-12-15

    The ASACUSA collaboration has developed injection-seeded Ti:sapphire lasers of linewidth {Gamma}{sub pl} {approx} 6 MHz, pulse energy 50-100 mJ, and output wavelength {lambda} = 726-941 nm. They are being used in two-photon spectroscopy experiments of antiprotonic helium atoms at the Antiproton Decelerator (AD) of CERN. Ti:sapphire lasers of larger linewidth {Gamma}{sub pl} {approx} 100 MHz but more robust design will also be used in collinear resonance ionization spectroscopy (CRIS) experiments of neutron-deficient francium ions at the ISOLDE facility.

  14. High-power Ti:sapphire lasers for spectroscopy of antiprotonic atoms and radioactive ions

    Science.gov (United States)

    Hori, M.; Dax, A.; Soter, A.

    The ASACUSA collaboration has developed injection-seeded Ti:sapphire lasers of linewidth Γpl ˜ 6 MHz, pulse energy 50-100 mJ, and output wavelength λ = 726-941 nm. They are being used in two-photon spectroscopy experiments of antiprotonic helium atoms at the Antiproton Decelerator (AD) of CERN. Ti:sapphire lasers of larger linewidth Γpl ˜ 100 MHz but more robust design will also be used in collinear resonance ionization spectroscopy (CRIS) experiments of neutron-deficient francium ions at the ISOLDE facility.

  15. Emission Channeling Studies of the Lattice Site of Oversized Alkali Atoms Implanted in Metals

    CERN Multimedia

    2002-01-01

    % IS340 \\\\ \\\\ As alkali atoms have the largest atomic radius of all elements, the determination of their lattice configuration following implantation into metals forms a critical test for the various models predicting the lattice site of implanted impurity atoms. The site determination of these large atoms will especially be a crucial check for the most recent model that relates the substitutional fraction of oversized elements to their solution enthalpy. Recent exploratory $^{213}$Fr and $^{221}$Fr $\\alpha$-emission channeling experiments at ISOLDE-CERN and hyperfine interaction measurements on Fr implanted in Fe gave an indication for anomalously large substitutional fractions. To investigate further the behaviour of Fr and other alkali atoms like Cs and Rb thoroughly, more on-line emission channeling experiments are needed. We propose a number of shifts for each element, where the temperature of the implanted metals will be varied between 50$^\\circ$ and 700$^\\circ$~K. Temperature dependent measurements wi...

  16. Spontaneous emission of an atom in the presence of a plasmonic cloaking sphere

    Energy Technology Data Exchange (ETDEWEB)

    Kort-Kamp, W.J.M.; Rosa, F.S.S.; Pinheiro, F.A.; Farina, Carlos [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2012-07-01

    Full text: Cavity Quantum Electrodynamics (CQED) consists, essentially, in the study of the influence of the neighborhood of an atomic system in its radiative properties. The purpose of this kind of study is not only to obtain more precise results for atomic quantities like the anomalous magnetic moment of the electron, but also to control the radiative properties of the system as, for example, the atomic transition frequencies or the natural line widths. Particularly, spontaneous emission rates, which are directly related to the natural line widths, may be enhanced, weakened or even suppressed due to the presence of appropriately arranged perfectly conducting walls in the vicinity of the atomic system. The work considered as a landmark of CQED, presented in a conference of the American Physical Society by Purcell in 1946, was precisely about this kind of influence. Purcell showed that the spontaneous emission associated to nuclear magnetic dipole transitions could be enhanced if the system were appropriately coupled to a resonant external electric circuit. Nowadays, there are several studies about the influence in the spontaneous emission rate of an atom due to the presence of new materials in its neighborhood. Particularly, the so-called metamaterials, the name given to material structures artificially constructed with desired electromagnetic properties, give rise to a new way of controlling the radiative properties of an atomic system.In the present work, after making a brief introduction on spontaneous emission, which includes the calculation of Einstein's coefficient in some simple cases as, for example, an atom embedded in a negative refractive index metamaterial, we discuss how the spontaneous emission rate of a two level atom is altered due to the presence of a plasmonic cloaking sphere. Among other things, our result shows that the emission rate exhibits an oscillatory behavior with the mutual distance between the atom and sphere. Also, we show that

  17. Optical frequency synthesizer for precision spectroscopy of Rydberg states of Rb atoms

    Science.gov (United States)

    Watanabe, Naoto; Tamura, Hikaru; Musha, Mitsuru; Nakagawa, Ken'ichi

    2017-11-01

    We have developed an optical frequency synthesizer for the precision spectroscopy of highly excited Rydberg states of Rb atoms. This synthesizer can generate a widely tunable 480 nm laser light with an optical power of 150 mW and an absolute frequency uncertainty of less than 100 kHz using a high-repetition-rate (325 MHz) Er fiber-based optical frequency comb and a tunable frequency-doubled diode laser at 960 nm. We demonstrate the precision two-photon spectroscopy of the Rydberg states of 87Rb atoms by observing the electromagnetically induced transparency in a vapor cell, and measure the absolute transition frequencies of 87Rb to nD (n = 53-92) and nS (n = 60-90) Rydberg states with an uncertainty of less than 250 kHz. It is the first direct frequency measurements of these transitions using an optical frequency comb.

  18. Deuteron charge radius and Rydberg constant from spectroscopy data in atomic deuterium

    Science.gov (United States)

    Pohl, Randolf; Nez, François; Udem, Thomas; Antognini, Aldo; Beyer, Axel; Fleurbaey, Hélène; Grinin, Alexey; Hänsch, Theodor W.; Julien, Lucile; Kottmann, Franz; Krauth, Julian J.; Maisenbacher, Lothar; Matveev, Arthur; Biraben, François

    2017-04-01

    We give a pedagogical description of the method to extract the charge radii and Rydberg constant from laser spectroscopy in regular hydrogen (H) and deuterium (D) atoms, that is part of the CODATA least-squares adjustment (LSA) of the fundamental physical constants. We give a deuteron charge radius {{r}\\text{d}} from D spectroscopy alone of 2.1415(45) fm. This value is independent of the measurements that lead to the proton charge radius, and five times more accurate than the value found in the CODATA Adjustment 10. The improvement is due to the use of a value for the 1S\\to 2S transition in atomic deuterium which can be inferred from published data or found in a PhD thesis.

  19. Development of atomic spectroscopy technologies - Study on the ac stark from intense light

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dong Hyun; Lim, Dong Kun; Park, Chang Yong; Lee, Chung Mok [Korea University, Seoul (Korea)

    2000-04-01

    We studied the ac Stark shift on heavy atoms from an intense laser light using the spherical tensor formalism. In the experimental part, we used a low-velocity intense source constructed from a magneto-optical trap and the stimulated Raman spectroscopy as well as a vapor cell with the saturated absorption spectroscopy. We found that when the laser light is circularly polarized and properly detuned the resulting ac Stark shift could take the form of a pure Zeeman shift. We also found a condition where an atomic clock driven by a stimulated Raman process did not have a systematic shift from the ac Stark shift. We also studied the energy shift of an excited state in relation to that of the ground state. 10 refs., 18 figs. (Author)

  20. New Atomic Data for Doubly Ionized Iron Group Atoms by High Resolution UV Fourier Transform Spectroscopy

    Science.gov (United States)

    Smith, Peter L.; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    Currently available laboratory spectroscopic data of doubly ionized iron-group element were obtained about 50 years ago using spectrographs of modest dispersion, photographic plates, and eye estimates of intensities. The accuracy of the older wavelength data is about 10 mAngstroms at best, whereas wavelengths are now needed to an accuracy of 1 part in 10(exp 6) to 10(exp 7) (0.2 to 2 mAngstroms at 2000 Angstroms). The Fourier transform (FT) spectroscopy group at Imperial College, London, and collaborators at the Harvard College Observatory have used a unique VUV FT spectrometer in a program focussed on improving knowledge of spectra of many neutral and singly and doubly ionized, astrophysically important, iron group elements. Spectra of Fe II and Fe III have been recorded at UV and VUV wavelengths with signal-to-noise ratios of several hundred for the stronger lines. Wavelengths and energy levels for Fe III are an order of magnitude more accurate than previous work; analysis is close to completion. f-values for Fe II have been published.

  1. Reply to ``Comment on `Imaging the atomic orbitals of carbon atomic chains with field-emission electron microscopy' ''

    Science.gov (United States)

    Mikhailovskij, I. M.; Sadanov, E. V.; Mazilova, T. I.; Ksenofontov, V. A.; Velicodnaja, O. A.

    2010-03-01

    In our recent paper [I. M. Mikhailovskij, E. V. Sadanov, T. I. Mazilova, V. A. Ksenofontov, and O. A. Velicodnaja, Phys. Rev. B 80, 165404 (2009)], we have presented evidence for field emission from individual orbitals of self-standing carbon chains, which can be used for real-space imaging of the end-atom orbitals with a field-emission electron microscope (FEEM). In this reply to the preceding Comment, we refer to the issues brought up there, which concern the viewpoint that the observed spontaneous mutual transformations of FEEM patterns have been attributed to the ligand-induced symmetry breaking by calling attention to the role of hydrogen atoms unavoidable in most nanostructured carbon materials.

  2. Fluorescent atom coincidence spectroscopy of extremely neutron-deficient barium isotopes

    Science.gov (United States)

    Wells, S. A.; Evans, D. E.; Griffith, J. A. R.; Eastham, D. A.; Groves, J.; Smith, J. R. H.; Tolfree, D. W. L.; Warner, D. D.; Billowes, J.; Grant, I. S.; Walker, P. M.

    1988-09-01

    Fluorescent atom coincidence spectroscopy (FACS) has been used to measure the nuclear mean square radii and moments of the extremely neutron-deficient isotopes 120-124Ba. At N=65 an abrupt change in nuclear mean square charge radii is observed which can be understood in terms of the occupation of the spin-orbit partner g7/25/2[413] neutron and g9/29/2[404] proton orbitals and the consequent enhancement of the n-p interaction.

  3. Determination of traces of silicone defoamer in fruit juices by solvent extraction/atomic absorption spectroscopy.

    Science.gov (United States)

    Gooch, E G

    1993-01-01

    Silicone defoamers are used to control foam during the processing of fruit juices. Residual silicones in fruit juices can be separated from the naturally occurring siliceous materials in fruit products and selectively recovered by solvent extraction, after suitable pretreatment. The recovered silicone is measured by atomic absorption spectroscopy. Silicone concentrations as low as about 1 ppm can be measured. The juices are accurately spiked for recovery studies by the addition of silicone dispersed in D-sorbitol.

  4. Some problems connected with boron determination by atomic absorption spectroscopy and the sensitivity improvement

    Directory of Open Access Journals (Sweden)

    JELENA J. SAVOVIC

    2001-08-01

    Full Text Available Two atomizers were compared: an N2O–C2H2 flame and a stabilized U-shaped DC arc with aerosol supply. Both the high plasma temperature and the reducing atmosphere obtained by acetylene addition to the argon stream substantially increase the sensitivity of boron determination by atomic absorption spectroscopy (AAS when the arc atomizer is used. The results were compared with those for silicon as a control element. The experimental characteristic concentrations for both elements were compared with the computed values. The experimentally obtained characteristic concentration for boron when using the arc atomizer was in better agreement with the calculated value. It was estimated that the influence of stable monoxide formation on the sensitivity for both elements was about the same, but reduction of analyte and formation of non-volatile carbide particles was more important for boron, which is the main reason for the low sensitivity of boron determination using a flame atomizer. The use of an arc atomizer suppresses this interference and significantly improves the sensitivity of the determination.

  5. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    Science.gov (United States)

    Rock, B. A.; Parsons, M. L.; Mantenieks, M. A.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputting rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  6. Precision spectroscopy of Mg atoms in a magneto-optical trap

    Science.gov (United States)

    Goncharov, A. N.; Bonert, A. E.; Brazhnikov, D. V.; Shilov, A. M.; Bagayev, S. N.

    2014-06-01

    We report the results of experimental investigations aimed at creation of the optical frequency standard based on magnesium atoms cooled and localised in a magneto-optical trap (MOT). An experimentally realised MOT for magnesium made it possible to obtain a cloud comprising ~106 - 107 atoms at a temperature of 3 - 5 mK. The results of ultra-high resolution spectroscopy of intercombination 1S0 - 3P1 transition for Mg atom are presented, the resonances in time-domain separated optical fields with the half-width of Γ = 500 Hz are recorded, which corresponds to the Q-factor of the reference line Q = ν/Δν ~ 1.3 × 1012.

  7. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Science.gov (United States)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  8. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  9. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.

    Science.gov (United States)

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-01-07

    It was found that carbon atomic emission can be excited in low temperature dielectric barrier discharge (DBD), and an atmospheric pressure, low power consumption, and compact microplasma carbon atomic emission spectrometer (AES) was constructed and used as a universal and sensitive gas chromatographic (GC) detector for detection of volatile carbon-containing compounds. A concentric DBD device was housed in a heating box to increase the plasma operation temperature to 300 °C to intensify carbon atomic emission at 193.0 nm. Carbon-containing compounds directly injected or eluted from GC can be decomposed, atomized, and excited in this heated DBD for carbon atomic emission. The performance of this new optical detector was first evaluated by determination of a series of volatile carbon-containing compounds including formaldehyde, ethyl acetate, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, and absolute limits of detection (LODs) were found at a range of 0.12-0.28 ng under the optimized conditions. Preliminary experimental results showed that it provided slightly higher LODs than those obtained by GC with a flame ionization detector (FID). Furthermore, it is a new universal GC detector for volatile carbon-containing compounds that even includes those compounds which are difficult to detect by FID, such as HCHO, CO, and CO2. Meanwhile, hydrogen gas used in conventional techniques was eliminated; and molecular optical emission detection can also be performed with this GC detector for multichannel analysis to improve resolution of overlapped chromatographic peaks of complex mixtures.

  10. Atomic parity violation in heavy alkalis: detection by stimulated emission for cesium and traps for cold francium

    Energy Technology Data Exchange (ETDEWEB)

    Sanguinetti, St

    2004-07-01

    The present work deals with the recent advances of atomic spectroscopy experiments on cesium and francium, which aim at precise parity violation (PV) measurements in these atoms. Within the framework of a 'double-badged thesis', the candidate devoted himself on the one hand to the preliminary PV measurement (8% accuracy) of the present Cs experiment at the Kastler-Brossel laboratory in Paris and on the other hand to the preparation of a Fr radioactive atomic sample (production and trapping) at the LNL (INFN) in Italy. The two experiments are at very different stages. The measurements reported for cesium were actually made possible thanks to the work initiated in 1991, for the PV detection by stimulated emission. The Italian experiment is instead in a beginning stage: in order to probe the properties of francium, which is unstable, a number of atoms large enough has to be first produced and collected. The PV schemes which proved to be well suited for cesium are a solid starting point for the case of francium. (author)

  11. Raman spectroscopy and field emission characterization of delafossite CuFeO2

    Science.gov (United States)

    Pavunny, Shojan P.; Kumar, Ashok; Katiyar, R. S.

    2010-01-01

    Delafossite p-type CuFeO2 (CFO) semiconductors were synthesized by a modified solid state reaction technique and investigated by x-ray diffraction, x-ray photoemission spectroscopy (XPS), energy dispersive x-ray spectroscopy, and scanning electron microscopy, revealing the single-phase nature of CFO with 1:1 Cu/Fe atomic ratio. The valance states of CFO were examined by XPS and suggest Cu and Fe ions are in +1 and +3 valance states with high spin S=5/2. The "turn-on field" which is the macroscopic field needed to get an emission current of 9 nA, was calculated as 5.72 V/μm. Room temperature Raman spectra of CFO displayed two main Raman active modes at Eg˜351 cm-1 and Ag˜692 cm-1 in accord with other delafossite structures. Temperature dependent Raman spectra showed that both the modes shifted to lower frequency with significant decrease in intensity with increase in temperature. Frequency shift and linewidth of both phonon lines matched well with the theoretical damped harmonic oscillator model based on thermal expansion of the lattice and their anharmonicity coupling with other phonons.

  12. Temporally resolved diagnosis of an atmospheric-pressure pulse-modulated argon surface wave plasma by optical emission spectroscopy

    Science.gov (United States)

    Chen, Chuan-Jie; Li, Shou-Zhe; Zhang, Jialiang; Liu, Dongping

    2018-01-01

    A pulse-modulated argon surface wave plasma generated at atmospheric pressure is characterized by means of temporally resolved optical emission spectroscopy (OES). The temporal evolution of the gas temperature, the electron temperature and density, the radiative species of atomic Ar, and the molecular band of OH(A) and N2(C) are investigated experimentally by altering the instantaneous power, pulse repetitive frequency, and duty ratio. We focused on the physical phenomena occurring at the onset of the time-on period and after the power interruption at the start of the time-off period. Meanwhile, the results are discussed qualitatively for an in-depth insight of its dynamic evolution.

  13. PETOS-BASIC programs for treating data and reporting results in atomic spectroscopy; Programacion en lenguaje BASIC-PETOS para el tratamiento de datos e informacion de resultados en espectroscopia atomica

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M.

    1985-07-01

    A PETOS-BASIC program was written which provides the off-line treatment of data in optical emission spectroscopy, flame photometry and, atomic absorption spectroscopy. Polynomial calibration functions are fitted in overlapped steps by the least squares method. The calculated concentrations in unknown samples are stored in sequential files (one per element, up to four), from which they can be read to be reported in a second program. (Author) 7 refs.

  14. PREFACE: Heavy-Ion Spectroscopy and QED Effects in Atomic Systems

    Science.gov (United States)

    Lindgren, Ingvar; Martinson, Indrek; Schuch, Reinhold

    1993-01-01

    now essentially solved. The experimental accuracy is already so high that also higher-order QED effects become observable, and several groups are now active in trying to evaluate such effects from first principles. Another related field where substantial progress has recently been made involves precision measurements of X-ray transitions. This has created an interest in the study of deep inner holes in heavy atoms, where large relativistic and QED effects appear. These effects are as large as in corresponding highly charged ions, but the interpretation requires that the many-body effects from the surrounding electrons are accurately extracted. This is a big challenge at present. Atomic collision physics with highly charged ions has been dominated in recent years by the search for a possibility to describe electron-electron interaction within the dynamics of collisions. The experiments on multielectron transfer reactions with highly charged ions posed in this respect quite a challenge to the theory. The models developed to meet this were often based on methods and terminologies developed for describing the inter-electronic interactions in atomic structure. This caused many controversial discussions, also during this symposium. A new and fast rising field is the interaction of highly charged ions with solid surfaces. This may become an important link between atomic physics and condensed-matter physics, stimulated by the opportunity to study effects in coupled many-body systems present in the case when a large amount of electrons is transferred from the solid to each single ion. Furtheron, collision experiments with cooled ion beams in ion storage rings open new dimensions also for atomic spectroscopy. It appears possible that transition and binding energies can be measured in recombination of very heavy ions with a better quality than by conventional Auger electron or X-ray spectroscopy. Obviously, it is not possible to cover all the fields mentioned here in a single

  15. Laser wavelength effects on ionic and atomic emission from tin plasmas

    Science.gov (United States)

    Campos, D.; Harilal, S. S.; Hassanein, A.

    2010-04-01

    We investigated the effects of laser wavelength on atomic and ionic emission from Sn plasmas. Plasmas were produced using planar Sn targets excited with 10.6 μm carbon dioxide (CO2) and 1.06 μm neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers. Two-dimensional spectral imaging of visible emission showed that continuum emission was significantly more intense in the CO2 laser produced plasma (LPP) whereas line emission was considerably more extensive in the Nd:YAG LPP. Faraday cup analysis showed that ion profiles were narrower with CO2 LPPs although they possessed higher kinetic energies.

  16. Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma

    Science.gov (United States)

    Smith, Coleman A.; Martinez, Max A.; Veirs, D. Kirk; Cremers, David A.

    2002-05-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied for the determination of plutonium isotope ratios through direct observation of atomic emission from laser-induced plasmas at high resolution. The Pu-239/Pu-240 isotope shift of -0.355 cm -1 from the plutonium atomic line at 594.52202 nm (Blaise et al., The Atomic Spectrum of Plutonium, Argonne National Laboratory Report ANL-83-95, 1984) is clearly resolved in our plasma conditions. Atomic emission is dispersed through a 2-m spectrometer in double pass mode and collected on an electronically gated, intensified charge-coupled device (ICCD) camera. The integrated peak areas obtained from curve-fitting closely match the Pu-239/Pu-240 isotopic ratios obtained from standard methods of thermal ionization mass spectrometry and gamma spectrometry. The observed plutonium linewidths were 0.19 cm -1 (0.0067 nm). These linewidths are within the experimental error of the ideal instrument-limited linewidth, which is calculated to be 0.15 cm -1 (0.0052 nm) based upon the known modulation transfer function for the ICCD system. This linewidth should allow LIBS to be applicable for isotopic ratio measurements for all of the light actinides.

  17. Interaction of intense laser pulses with atomic clusters: Measurements of ion emission, simulations and applications

    Energy Technology Data Exchange (ETDEWEB)

    Tisch, J.W.G. E-mail: john.tisch@ic.ac.uk; Hay, N.; Mendham, K.J.; Springate, E.; Symes, D.R.; Comley, A.J.; Mason, M.B.; Gumbrell, E.T.; Ditmire, T.; Smith, R.A.; Marangos, J.P.; Hutchinson, M.H.R

    2003-05-01

    This review paper provides a general introduction to the interaction of intense (>10{sup 15} W cm{sup -2}), femtosecond laser pulses with atomic clusters in the size range 500-10{sup 5} atoms. A nanoplasma model of the laser-cluster interaction is used to elucidate the underlying physics. Measurements of ion emission from the laser-cluster interaction are presented together with numerical simulations. Emerging applications are described.

  18. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  19. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Bonomo, F., E-mail: federica.bonomo@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Istituto Gas Ionizzati - CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Barbisan, M.; Pasqualotto, R.; Serianni, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Cristofaro, S. [Universitá degli Studi di Padova, Via 8 Febbraio 2, 35122 Padova (Italy)

    2015-04-08

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H{sub α} light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H{sub α} spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  20. Non-linear Spectroscopy of Sr Atoms in an Optical Cavity for Laser Stabilization

    CERN Document Server

    Christensen, Bjarke T R; Schäffer, Stefan A; Westergaard, Philip G; Ye, Jun; Holland, Murray; Thomsen, Jan W

    2015-01-01

    We study the non-linear interaction of a cold sample of strontium-88 atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit and investigate the implications for applications to laser stabilization. The atoms are probed on the weak inter-combination line $\\lvert 5s^{2} \\, ^1 \\textrm{S}_0 \\rangle \\,-\\, \\lvert 5s5p \\, ^3 \\textrm{P}_1 \\rangle$ at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and absorption of the light field transmitted through the cavity represented by the complex cavity transmission coefficient. We demonstrate high signal-to-noise-ratio measurements of both quadratures - the cavity transmitted phase and absorption - by employing FM spectroscopy (NICE-OHMS). We also show that when FM spectroscopy is employed in connection with a cavity locked to the probe light, observables are substantially modified compared to the free space situation where no cavity is present. Furthermore, the non-linear dynami...

  1. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Visible Light Emission from Atomic Scale Patterns Fabricated by the Scanning Tunneling Microscope

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Stokbro, Kurt

    1999-01-01

    Scanning tunneling microscope (STM) induced light emission from artificial atomic scale structures comprising silicon dangling bonds on hydrogen-terminated Si(001) surfaces has been mapped spatially and analyzed spectroscopically in the visible spectral range. The light emission is based on a novel...... a quasipoint source with a spatial extension similar to the size of a dangling bond. [S0031-9007(98)08376-8]....

  3. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    Science.gov (United States)

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  4. Ionization potential and electron attenuation length of titanium dioxide deposited by atomic layer deposition determined by photoelectron spectroscopy in air

    Science.gov (United States)

    Marques, Francisco C.; Jasieniak, Jacek J.

    2017-11-01

    Photoelectron emission spectroscopy in air (PESA) has been used to investigate titanium dioxide (TiO2) deposited by atomic layer deposition (ALD). A procedure has been developed to unambiguously determine the photoemission threshold energy (also referred to as the ;ionization potential;) of TiO2 thin films, avoiding inherent artifacts due to photoelectron emission from the substrate, which supplies misleading results. This has been achieved using PESA measurements performed as a function of TiO2 film thickness on two substrates with different work functions. We find that proper measurements of the photoemission threshold energy (including work function and ionization potential) of thin films by PESA require the use of films much thicker than their electron attenuation length (EAL). A photoemission threshold energy of 5.0 ± 0.2 eV is obtained for TiO2 and has been attributed to a trap level due to oxygen vacancies, which lie within the band gap of the TiO2. The analysis of the photoemission decay with film thickness also provides a method for determining a ;practical; (or effective) EAL at excitation energy slightly above the photoemission threshold energy of the material. We extract an EAL for the deposited TiO2 of 0.65 ± 0.02 nm (at 0.5 eV). The procedure can also be adopted for determining the thickness of extremely thin films, provided their thickness is smaller than their EAL.

  5. Atomic substitutions in synthetic apatite; Insights from solid-state NMR spectroscopy

    Science.gov (United States)

    Vaughn, John S.

    Apatite, Ca5(PO4)3X (where X = F, Cl, or OH), is a unique mineral group capable of atomic substitutions for cations and anions of varied size and charge. Accommodation of differing substituents requires some kind of structural adaptation, e.g. new atomic positions, vacancies, or coupled substitutions. These structural adaptations often give rise to important physicochemical properties relevant to a range of scientific disciplines. Examples include volatile trapping during apatite crystallization, substitution for large radionuclides for long-term storage of nuclear fission waste, substitution for fluoride to improve acid resistivity in dental enamel composed dominantly of hydroxylapatite, and the development of novel biomaterials with enhanced biocompatibility. Despite the importance and ubiquity of atomic substitutions in apatite materials, many of the mechanisms by which these reactions occur are poorly understood. Presence of substituents at dilute concentration and occupancy of disordered atomic positions hinder detection by bulk characterization methods such as X-ray diffraction (XRD) and infrared (IR) spectroscopy. Solid-state nuclear magnetic resonance (NMR) spectroscopy is an isotope-specific structural characterization technique that does not require ordered atomic arrangements, and is therefore well suited to investigate atomic substitutions and structural adaptations in apatite. In the present work, solid-state NMR is utilized to investigate structural adaptations in three different types of apatite materials; a series of near-binary F, Cl apatite, carbonate-hydroxylapatite compositions prepared under various synthesis conditions, and a heat-treated hydroxylapatite enriched in 17O. The results indicate that hydroxyl groups in low-H, near binary F,Cl apatite facilitate solid-solution between F and Cl via column reversals, which result in average hexagonal symmetry despite very dilute OH concentration ( 2 mol percent). In addition, 19F NMR spectra indicate

  6. Stark spectroscopy of atomic hydrogen balmer-alpha line for electric field measurement in plasmas by saturation spectroscopy

    Science.gov (United States)

    Nishiyama, S.; Katayama, K.; Nakano, H.; Goto, M.; Sasaki, K.

    2016-09-01

    Detailed structures of electric fields in sheath and pre-sheath regions of various plasmas are interested from the viewpoint of basic plasma physics. Several researchers observed Stark spectra of Doppler-broadened Rydberg states to evaluate electric fields in plasmas; however, these measurements needed high-power, expensive tunable lasers. In this study, we carried out another Stark spectroscopy with a low-cost diode laser system. We applied saturation spectroscopy, which achieves a Doppler-free wavelength resolution, to observe the Stark spectrum of the Balmer-alpha line of atomic hydrogen in the sheath region of a low-pressure hydrogen plasma. The hydrogen plasma was generated in an ICP source which was driven by on-off modulated rf power at 20 kHz. A planar electrode was inserted into the plasma. Weak probe and intense pump laser beams were injected into the plasma from the counter directions in parallel to the electrode surface. The laser beams crossed with a small angle above the electrode. The observed fine-structure spectra showed shifts, deformations, and/or splits when varying the distance between the observation position and the electrode surface. The detection limit for the electric field was estimated to be several tens of V/cm.

  7. To the application of the emission Mössbauer and positron annihilation spectroscopies for detection of carcinogens

    Science.gov (United States)

    Bokov, A. V.; Byakov, V. M.; Kulikov, L. A.; Perfiliev, Yu. D.; Stepanov, S. V.

    2017-11-01

    Being the main cause of cancer, almost all chemical carcinogens are strong electrophiles, that is, they have a high affinity for the electron. We have shown that positron annihilation lifetime spectroscopy (PALS) is able to detect chemical carcinogens by their inhibition of positronium (Ps) formation in liquid media. Electrophilic carcinogens intercept thermalized track electrons, which are precursors of Ps, and as a result, when they are present Ps atom does not practically form. Available biophysical data seemingly indicate that frozen solutions model better an intracellular medium than the liquid ones. So it is reasonable to use emission Mössbauer spectroscopy (EMS) to detect chemical carcinogens, measuring the yield of 57Fe2+ions formed in reactions of Auger electrons and other secondary electrons they produced with 57Fe3+. These reactions are similar to the Ps formation process in the terminal part the positron track: e++ e- =>Ps. So EMS and PALS are complementary methods for detection of carcinogenic compounds.

  8. Atomic Force Microscopy-Infrared Spectroscopy of Individual Atmospheric Aerosol Particles: Subdiffraction Limit Vibrational Spectroscopy and Morphological Analysis.

    Science.gov (United States)

    Bondy, Amy L; Kirpes, Rachel M; Merzel, Rachel L; Pratt, Kerri A; Banaszak Holl, Mark M; Ault, Andrew P

    2017-09-05

    Chemical analysis of atmospheric aerosols is an analytical challenge, as aerosol particles are complex chemical mixtures that can contain hundreds to thousands of species in attoliter volumes at the most abundant sizes in the atmosphere (∼100 nm). These particles have global impacts on climate and health, but there are few methods available that combine imaging and the detailed molecular information from vibrational spectroscopy for individual particles <500 nm. Herein, we show the first application of atomic force microscopy with infrared spectroscopy (AFM-IR) to detect trace organic and inorganic species and probe intraparticle chemical variation in individual particles down to 150 nm. By detecting photothermal expansion at frequencies where particle species absorb IR photons from a tunable laser, AFM-IR can study particles smaller than the optical diffraction limit. Combining strengths of AFM (ambient pressure, height, morphology, and phase measurements) with photothermal IR spectroscopy, the potential of AFM-IR is shown for a diverse set of single-component particles, liquid-liquid phase separated particles (core-shell morphology), and ambient atmospheric particles. The spectra from atmospheric model systems (ammonium sulfate, sodium nitrate, succinic acid, and sucrose) had clearly identifiable features that correlate with absorption frequencies for infrared-active modes. Additionally, molecular information was obtained with <100 nm spatial resolution for phase separated particles with a ∼150 nm shell and 300 nm core. The subdiffraction limit capability of AFM-IR has the potential to advance understanding of particle impacts on climate and health by improving analytical capabilities to study water uptake, heterogeneous reactivity, and viscosity.

  9. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  10. Atomic physics studies of highly charged ions on tokamaks using x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.

    1989-07-01

    An overview is given of atomic physics issues which have been studied on tokamaks with the help resolution x-ray spectroscopy. The issues include the testing of model calculations predicting the excitation of line radiation, the determination of rate coefficients, and accurate atomic structure measurements. Recent research has focussed primarily on highly charged heliumlike (22 less than or equal to Z less than or equal to 28) and neonlike (34 less than or equal to Z less than or equal to 63) ions, and results are presented from measurements on the PLT and TFTR tokamaks. Many of the measurements have been aided by improved instrumental design and new measuring techniques. Remarkable agreement has been found between measurements and theory in most cases. However, in this review those areas are stressed where agreement is worst and where further investigations are needed. 19 refs., 13 figs., 2 tabs.

  11. Spectroscopy with Laser-cooled Francium and Progress on Atomic Parity Non-conservation

    Science.gov (United States)

    Zhang, Jiehang

    Francium, the heaviest alkali, possesses a unique combination of structural simplicity and great sensitivity to effects such as atomic parity non-conservation (APNC). We report in this thesis our progress towards measuring weak-interaction physics in a low energy system: the francium atom. We have built a new generation of high-efficiency laser cooling and trapping facility at TRIUMF national laboratory in Canada. We constructed a precision science chamber and demonstrate francium atom transfer into the precision trap, where the electromagnetic field environments can be exquisitely controlled such that weak-interaction studies via optical and microwave excitations can take place. We perform laser spectroscopy measurements of the hyperfine structure and isotope shifts in a chain of francium isotopes near the neutron closed shell (N = 126), including both ground and isomeric nuclear states. These measurements provide a basis for benchmarking state of the art atomic theory, as well as future nuclear structure calculations in Fr, necessary for interpreting the weak-interaction studies. These developments lay important foundations for precision parity non-conservation measurements with francium.

  12. Wideband laser locking to an atomic reference with modulation transfer spectroscopy.

    Science.gov (United States)

    Negnevitsky, V; Turner, L D

    2013-02-11

    We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.

  13. Optical spectroscopy study of c(4 x 2) Ge (001)-surfaces, covered with atomic Au wires

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Utz; Meyer, Sebastian; Schaefer, Joerg; Geurts, Jean [Universitaet Wuerzburg, Physikalisches Institut, Am Hubland, 97074 Wuerzburg (Germany); Speiser, Eugen; Esser, Norbert [ISAS, Albert-Einstein-Strasse 9, 12489 Berlin (Germany)

    2011-07-01

    Novel quasi-1D systems like e.g. atomic gold chains on a c(4x2) reconstructed Ge(001)-surfaces enable the investigation of 1D-effects like the possible occurrence of the Luttinger- to Fermi liquid transition. As there is a crucial interplay of the lattice vibrations and the electrical and structural properties on such sensitive systems, phonon dynamics are in the focus of this work. The phonons were addressed by Raman spectroscopy and reveal a clear change from the Ge-oxide layer to the final surface with Au-nano wires. Thermally deoxidizing the Ge-surface under UHV leads to a distinct low-frequency vibration around 65cm-1. Its frequency range and its persistence after Gold deposition in the submonolayer range indicate that this signal is surface related. Additionally, the surface-induced anisotropy of the optical reflectance was complementary investigated by Reflectance-Anisotropy-Spectroscopy (RAS) and IR-ellipsometry.

  14. Two photon laser spectroscopy of antiprotonic helium atoms at CERN’s AD

    CERN Document Server

    Hori, M

    2014-01-01

    The ASACUSA collaboration of CERN has carried out two-photon laser spectroscopy of antiprotonic helium atoms using counter-propagating ultraviolet laser beams. This excited some non-linear transitions of the antiproton at the wavelengths λ = 139.8–197.0 nm, in a way that reduced the thermal Doppler broadening of the observed resonances. The resulting narrow spectral lines allowed the measurement of three transition frequencies with fractional precisions of 2.3–5 parts in 109. By comparing these values with three-body QED calculations, the antiproton-to-electron mass ratio was derived as 1836.1526736(23). We briefly review these results.

  15. Fluorescent atom coincidence spectroscopy of extremely neutron-deficient barium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Wells, S.A.; Evans, D.E.; Griffith, J.A.R.; Eastham, D.A.; Groves, J.; Smith, J.R.H.; Tolfree, D.W.L.; Warner, D.D.; Billowes, J.; Grant, I.S.

    1988-09-01

    Fluorescent atom coincidence spectroscopy (FACS) has been used to measure the nuclear mean square radii and moments of the extremely neutron-deficient isotopes /sup 120-124/Ba. At N=65 an abrupt change in nuclear mean square charge radii is observed which can be understood in terms of the occupation of the spin-orbit partner g/sub 7/2/ 5/2(413) neutron and g/sub 9/2/ 9/2(404) proton orbitals and the consequent enhancement of the n-p interaction.

  16. Effects of nonlinear forces on dynamic mode atomic force microscopy and spectroscopy.

    Science.gov (United States)

    Das, Soma; Sreeram, P A; Raychaudhuri, A K

    2007-06-01

    In this paper, we describe the effects of nonlinear tip-sample forces on dynamic mode atomic force microscopy and spectroscopy. The jumps and hysteresis observed in the vibration amplitude (A) versus tip-sample distance (h) curves have been traced to bistability in the resonance curve. A numerical analysis of the basic dynamic equation was used to explain the hysteresis in the experimental curve. It has been found that the location of the hysteresis in the A-h curve depends on the frequency of the forced oscillation relative to the natural frequency of the cantilever.

  17. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  18. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling.

    Science.gov (United States)

    Torun, H; Finkler, O; Degertekin, F L

    2009-07-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.

  19. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants

    Science.gov (United States)

    Hayano, Ryugo S.

    2010-01-01

    Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants. PMID:20075605

  20. Development of atomic spectroscopy technology -Development of ultrasensitive spectroscopic analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Kee; Song Kyoo Suk; Kim, Duk Hyun; Hong, Suk Kyung; Lee, Yong Joo; Lee, Jong Hoon; Yang, Kee Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    For the resonance ionization spectroscopy experiment, erbium and samarium were chosen as test elements and their optimum photoionization schemes for trace analysis have been investigated by using multiphoton spectroscopic techniques. With the optimum scheme, the detection limit of various atoms were measured. For the test of laser induced fluorescence system, calibration curves obtained from lead and cadmium standard solutions were made and Pb concentrations of various unknown solutions were determined. By using the developed differential absorption lidar system, backscattering signals from aerosol and ozone have been measured. Error source, error calibration and data interpretation techniques have been also studied. 60 figs, 8 pix, 28 tabs, 30 refs. (Author).

  1. Quantification of aortic valve calcification using multislice spiral computed tomography: comparison with atomic absorption spectroscopy.

    Science.gov (United States)

    Koos, Ralf; Mahnken, Andreas Horst; Kühl, Harald Peter; Mühlenbruch, Georg; Mevissen, Vera; Stork, Ludwig; Dronskowski, Richard; Langebartels, Georg; Autschbach, Rüdiger; Ortlepp, Jan R

    2006-05-01

    Multislice spiral computed tomography (MSCT) allows the in vivo detection of valvular calcification. The aim of this study was to validate the quantification of aortic valve calcification (AVC) by MSCT with in vitro measurements by atomic absorption spectroscopy. In 18 patients with severe aortic stenosis, 16 detector row MSCT (SOMATOM Sensation 16, Siemens, Forchheim, Germany with scan parameters as follows: 420 milliseconds tube rotation time, 12 x 0.75 mm collimation, tube voltage 120 KV) was performed before aortic valve replacement. Images were reconstructed at 60% of the RR interval with an effective slice thickness of 3 mm and a reconstruction increment of 2 mm. AVC was assessed using Agatston AVC score, mass AVC score, and volumetric AVC score. After valve replacement, the calcium content of the excised human stenotic aortic valves was determined in vitro using atomic absorption spectroscopy. The mean Agatston AVC score was 3,842 +/- 1,790, the mean volumetric AVC score was 3,061 +/- 1,406, and mass AVC score was 888 +/- 492 as quantified by MSCT. Atomic absorption spectroscopy showed a mean true calcification mass (Ca5(PO4)3OH) of 19 +/- 8 mass%. There was a significant correlation between in vivo AVC scores determined by MSCT and in vitro mean true calcification mass (r = 0.74, P = 0.0004 for mass AVC score, r = 0.79, P = 0.0001 for volumetric AVC score and r = 0.80, P = 0.0001 for Agatston AVC score) determined by atomic absorption spectroscopy. Linear regression analysis showed a significant association between the degree of hydroxyapatite (given in mass%) in the aortic valve and the degree of AVC (R = 0.74, F = 19.6, P = 0.0004 for mass AVC score, R = 0.80, F = 29.3, P = 0.0001 for Agatston AVC score and R = 0.79, F = 27.3, P = 0.0001 for volumetric AVC score) assessed by MSCT. MSCT allows accurate in vivo quantification of aortic valve calcifications.

  2. Determination of serum lithium: comparison between atomic emission and absorption spectrometry methods

    Directory of Open Access Journals (Sweden)

    Carlos Elielton do Espírito Santo

    2014-02-01

    Full Text Available Introduction: The therapeutic monitoring of lithium, through concentration measurements, is important for individual dose adjustment, as a marker of treatment adherence and to prevent poisoning and side effects. Objectives: Validate and compare two methods - atomic emission and atomic absorption - for the determination of lithium in serum samples. Methodology: Parameters such as specificity, precision, accuracy, limit of detection (LOD and linearity were considered. The atomic absorption spectrometer was used, operating in either emission or absorption mode. For the quantitative comparison of 30 serum samples from patients with mood disorder treated with lithium, the results were submitted to Student's t-test, F-test and Pearson's correlation. Results: The limit of quantification (LOQ was established as 0.05 mEq/l of lithium, and calibration curves were constructed in the range of 0.05-2 mEq/l of lithium, using aqueous standards. Sample preparation time was reduced, what is important in medical laboratory. Conclusion: Both methods were considered satisfactory, precise and accurate and can be adopted for lithium quantification. In the comparison of quantitative results in lithium-treated patients through statistical tests, no significant differences were observed. Therefore the methods for lithium quantification by flame atomic absorption spectrometry (FAAS and flame atomic emission spectrometry (FAES may be considered similar.

  3. DYNAMICS OF ATOMIC AND MOLECULAR EMISSION FEATURES FROM NANOSECOND, FEMTOSECOND LASER AND FILAMENT PRODUCED PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.; Phillips, Mark C.

    2016-08-08

    In this presentation, the persistence of atomic, and molecular emission features and its relation to fundamental properties (temperature and density) of ablation plumes generated using various irradiation methods (ns, fs, filaments) will be discussed in detail along with its implications for remote sensing applications.

  4. PLASMA SPECTROSCOPY

    NARCIS (Netherlands)

    Jaspers, R. J. E.

    2010-01-01

    A brief introduction into the spectroscopy of fusion plasmas is presented. Basic principles of the emission of ionic, atomic and molecular radiation is explained and a survey of the effects, which lead to the population of the respective excited levels, is given. Line radiation, continuum radiation,

  5. Gas chromatography of organic microcontaminants using atomic emission and mass spectrometric detection combined in one instrument (GC-AED/MS)

    NARCIS (Netherlands)

    Mol, H.G.J.; Hankemeier, T.; Brinkman, U.A.T.

    1999-01-01

    This study describes the coupling of an atomic-emission detector and mass-spectrometric detector to a single gas chromatograph. Splitting of the column effluent enables simultaneous detection by atomic-emission detection (AED) and mass spectrometry (MS) and yields a powerful system for the target

  6. Precision X-ray spectroscopy of kaonic atoms as a probe of low-energy kaon-nucleus interaction

    Directory of Open Access Journals (Sweden)

    Shi H.

    2016-01-01

    Full Text Available In the exotic atoms where one atomic 1s electron is replaced by a K−, the strong interaction between the K− and the nucleus introduces an energy shift and broadening of the low-lying kaonic atomic levels which are determined by only the electromagnetic interaction. By performing X-ray spectroscopy for Z = 1,2 kaonic atoms, the SIDDHARTA experiment determined with high precision the shift and width for the 1s state of K− p and the 2p state of kaonic helium-3 and kaonic helium-4. These results provided unique information of the kaon-nucleus interaction in the low energy limit.

  7. Application of emission ( 57Co) Mössbauer spectroscopy in bioscience

    Science.gov (United States)

    Kamnev, Alexander A.

    2005-06-01

    Cobalt is an essential trace element with a broad range of physiological and biochemical functions. However, biochemical speciation of cobalt and structural investigations of cobalt-containing complexes with biomacromolecules are challenging, as the participation of cobalt in physiological processes is limited by its very low concentrations. Emission Mössbauer spectroscopy (EMS), with the radioactive 57Co isotope as the most widely used nuclide, is several orders of magnitude more sensitive than its 57Fe absorption variant which has had a rich history of applications in bioscience. Nevertheless, owing to specific difficulties related to the necessity of using radioactive 57Co in samples under study, applications of EMS in biological fields have so far been sparse. In this communication, the EMS applicability to studying biological objects as well as some specific aspects of the EMS methodology are considered in order to draw attention to the unique structural information which can be obtained non-destructively in situ. Chemical consequences (after-effects) of the nuclear transition ( 57Co→ 57Fe), which provide additional information on the electron acceptor properties of the proximate chemical microenvironment of the metal ions, are also considered. The data presented demonstrate that EMS is a sensitive tool for monitoring the chemical state and coordination of cobalt species in biological matter and in biomacromolecular complexes (metalloenzymes), providing valuable structural information at the atomic level.

  8. An Effective-Hamiltonian Approach to CH5+, Using Ideas from Atomic Spectroscopy

    Science.gov (United States)

    Hougen, Jon T.

    2016-06-01

    In this talk we present the first steps in the design of an effective Hamiltonian for the vibration-rotation energy levels of CH5+. Such a Hamiltonian would allow calculation of energy level patterns anywhere along the path travelled by a hypothetical CH5+ (or CD5+) molecule as it passes through various coupling cases, and might thus provide some hints for assigning the observed high-resolution spectra. The steps discussed here, which have not yet addressed computational problems, focus on mapping the vibration-rotation problem in CH5+ onto the five-electron problem in the boron atom, using ideas and mathematical machinery from Condon and Shortley's book on atomic spectroscopy. The mapping ideas are divided into: (i) a mapping of particles, (ii) a mapping of coordinates (i.e., mathematical degrees of freedom), and (iii) a mapping of quantum mechanical interaction terms. The various coupling cases along the path correspond conceptually to: (i) the analog of a free-rotor limit, where the H atoms see the central C atom but do not see each other, (ii) the low-barrier and high-barrier tunneling regimes, and (iii) the rigid-molecule limit, where the H atoms remain locked in some fixed molecular geometry. Since the mappings considered here often involve significant changes in mathematics, a number of interesting qualitative changes occur in the basic ideas when passing from B to CH5+, particularly in discussions of: (i) antisymmetrization and symmetrization ideas, (ii) n,l,ml,ms or n,l,j,mj quantum numbers, and (iii) Russell-Saunders computations and energy level patterns. Some of the mappings from B to CH5+ to be discussed are as follows. Particles: the atomic nucleus is replaced by the C atom, the electrons are replaced by protons, and the empty space between particles is replaced by an "electron soup." Coordinates: the radial coordinates of the electrons map onto the five local C-H stretching modes, the angular coordinates of the electrons map onto three rotational

  9. Single Ra{sup +} ion spectroscopy - towards a measurement of atomic parity violation

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Portela, Mayerlin; Mohanti, A.; Dijck, E.A.; Bekker, H.; Boell, O.; Berg, J. van den; Giri, G.S.; Jungmann, K.; Onderwater, C.J.G.; Santra, B.; Timmermans, R.G.E.; Versolato, O.O.; Wansbeek, L.W.; Willmann, L.; Wilschut, H.W. [KVI, University of Groningen, Groningen (Netherlands)

    2013-07-01

    The sensitivity of the Atomic Parity Violation (APV) signal grows faster than the third power of the atomic number Z. Ra{sup +} (Z=88) is heaviest alkaline earth ion available. A single trapped Ra{sup +} ion opens a very promising path for a measurement atomic parity violation. One of the experimental challenges is the localization of the ion within a fraction of an optical wavelength. For this the current experiments are focused on trapping and laser cooling of Ba{sup +} ions as a precursor for Ra{sup +}. Ba{sup +} ions are trapped and laser cooled in a precision hyperbolic Paul trap. Work towards single Ba{sup +} ion localization and detection is in progress. Recently the hyperfine structure of the 6d{sub 2}D{sub 3/2} states and the isotope shift of the 6d{sub 2}D{sub 3/2}-7p{sub 2}P{sub 1/2} transition in the isotopes {sup 209-214}Ra{sup +} has been measured in online laser spectroscopy experiments at the KVI AGOR/TRIμP facility. These results are essential for the interpretation of an APV measurement in Ra{sup +}.

  10. Beyond-Born-Oppenheimer effects in sub-kHz-precision photoassociation spectroscopy of ytterbium atoms

    Science.gov (United States)

    Borkowski, Mateusz; Buchachenko, Alexei A.; Ciuryło, Roman; Julienne, Paul S.; Yamada, Hirotaka; Kikuchi, Yuu; Takahashi, Kakeru; Takasu, Yosuke; Takahashi, Yoshiro

    2017-12-01

    We present high-resolution two-color photoassociation spectroscopy of Bose-Einstein condensates of ytterbium atoms. The use of narrow Raman resonances and careful examination of systematic shifts enabled us to measure 13 bound-state energies for three isotopologues of the ground-state ytterbium molecule with standard uncertainties of the order of 500 Hz. The atomic interactions are modeled using an ab initio based mass-scaled Born-Oppenheimer potential whose long-range van der Waals parameters and total WKB phase are fitted to experimental data. We find that the quality of the fit of this model, of about 112.9 kHz (rms) can be significantly improved by adding the recently calculated beyond-Born-Oppenheimer (BBO) adiabatic corrections [J. J. Lutz and J. M. Hutson, J. Mol. Spectrosc. 330, 43 (2016), 10.1016/j.jms.2016.08.007] and by partially treating the nonadiabatic effects using distance-dependent reduced masses. Our BBO interaction model represents the experimental data to within about 30.2 kHz on average, which is 3.7 times better than the "reference" Born-Oppenheimer model. We calculate the s -wave scattering lengths for bosonic isotopic pairs of ytterbium atoms with error bars over two orders of magnitude smaller than previous determinations. For example, the s -wave scattering length for 174Yb is +5.55812 (50 ) nm.

  11. New Strategies for Atomic Scale Measurements at Interfaces using Electron Energy Loss Spectroscopy

    Science.gov (United States)

    Muller, David A.

    1997-03-01

    The local electronic structure of a material can be measured directly from the energy loss spectrum of a swift electron scattered through it. When the electron beam is focussed down to the width of an atomic column, the electronic density of states at an interface, grain boundary or impurity site can be decomposed by site, chemical species and angular momentum. Here, we discuss the use of electron energy loss spectroscopy (EELS) fine structure to provide insight into the origin of grain boundary and interfacial properties. EELS can reveal the physics underlying why a particular local bonding arrangement develops. Even a qualitative understanding of local bonding can help indentify possible sites for chemical reactions and potentially weak points at a grain boundary. More can be done however: an EELS sum rule allows quantitative estimates of grain boundary energies. This is particularly useful at general, large angle grain boundaries where no other atomic scale information can be obtained. As an example, we show how atomic-scale EELS measurements of grain boundaries in Ni_3Al (D.A. Muller, S. Subramanian, P.E. Batson, S.L. Sass, J. Silcox, Phys. Rev. Lett.) 75 4744 (1995). lead not only to rules-of-thumb for segregation and bond strength, but also to quantitative estimates of the boundary cohesion. Application to magnetic multilayers and Al:Cu interconnects will also be touched on. (Work at Cornell supported by DOE grant DE-FG02-87ER45322 and NSF grant DMR-9121654.)

  12. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    Science.gov (United States)

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  13. Atomic spectroscopy studies of short-lived isotopes and nuclear isomer separation with the ISOLDE RILIS

    CERN Document Server

    Fedosseev, V; Weissman, L; Mishin, V I; Federov, D V; Seliverstov, D M; Horn, R; Huber, G; Lassen, J; Wendt, K

    2003-01-01

    The Resonance Ionization Laser Ion Source (RILIS) at the ISOLDE on-line isotope separator is based on the selective excitation of atomic transitions by tunable laser radiation. Ion beams of isotopes of 20 elements have been produced using the RILIS setup. Together with the mass separator and a particle detection system it represents a tool for high-sensitive laser spectroscopy of short-lived isotopes. By applying narrow-bandwidth lasers for the RILIS one can study isotope shifts (IS) and hyperfine structure (HFS) of atomic optical transitions. Such measurements are capable of providing data on nuclear charge radii, spins and magnetic moments of exotic nuclides far from stability. Although the Doppler broadening of the optical absorption lines limits the resolution of the technique, the accuracy of the HFS measurements examined in experiments with stable Tl isotopes approaches a value of 100 MHz. Due to the hyperfine splitting of atomic lines the RILIS gives an opportunity to separate nuclear isomers. Isomer s...

  14. Study of the Neutron Deficient Pb and Bi Isotopes by Simultaneous Atomic- and Nuclear-Spectroscopy

    CERN Multimedia

    Kessler, T

    2002-01-01

    We propose to study systematically nuclear properties of the neutron deficient lead $^{183-189}$Pb, $^{191g}$Pb, $^{193g}$Pb and bismuth isotopes $^{188-200}$Bi by atomic spectroscopy with the ISOLDE resonance ionisation laser ion source (RILIS) combined with simultaneous nuclear spectroscopy at the detection set-up. The main focus is the determination of the mean square charge radii of $^{183-190}$Pb and $^{188-193}$Bi from which the influence of low-lying intruder states should become obvious. Also the nuclear spin and magnetic moments of ground-states and long-lived isomers will be determined unambiguously through evaluation of the hyperfine structure, and new isomers could be discovered. The decay properties of these nuclei can be measured by $\\alpha$-$\\gamma$ and $\\beta$-$\\gamma$ spectroscopy. With this data at hand, possible shape transitions around mid-shell at N$\\sim$104 will be studied. This data is crucial for the direct test of nuclear theory in the context of intruder state influence (e.g. energy ...

  15. Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality.

    Science.gov (United States)

    Carvalho, Filomena A; Martins, Ivo C; Santos, Nuno C

    2013-03-01

    Atomic force microscopy (AFM) applied to biological systems can, besides generating high-quality and well-resolved images, be employed to study protein folding via AFM-based force spectroscopy. This approach allowed remarkable advances in the measurement of inter- and intramolecular interaction forces with piconewton resolution. The detection of specific interaction forces between molecules based on the AFM sensitivity and the manipulation of individual molecules greatly advanced the understanding of intra-protein and protein-ligand interactions. Apart from the academic interest in the resolution of basic scientific questions, this technique has also key importance on the clarification of several biological questions of immediate biomedical relevance. Force spectroscopy is an especially appropriate technique for "mechanical proteins" that can provide crucial information on single protein molecules and/or domains. Importantly, it also has the potential of combining in a single experiment spatial and kinetic measurements. Here, the main principles of this methodology are described, after which the ability to measure interactions at the single-molecule level is discussed, in the context of relevant protein-folding examples. We intend to demonstrate the potential of AFM-based force spectroscopy in the study of protein folding, especially since this technique is able to circumvent some of the difficulties typically encountered in classical thermal/chemical denaturation studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Angle-resolved 2D imaging of electron emission processes in atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kukk, E.; Wills, A.A.; Langer, B.; Bozek, J.D.; Berrah, N.

    2004-09-02

    A variety of electron emission processes have been studied in detail for both atomic and molecular systems, using a highly efficient experimental system comprising two time-of-flight (TOF) rotatable electron energy analyzers and a 3rd generation synchrotron light source. Two examples are used here to illustrate the obtained results. Firstly, electron emissions in the HCL molecule have been mapped over a 14 eV wide photon energy range over the Cl 2p ionization threshold. Particular attention is paid to the dissociative core-excited states, for which the Auger electron emission shows photon energy dependent features. Also, the evolution of resonant Auger to the normal Auger decay distorted by post-collision interaction has been observed and the resonating behavior of the valence photoelectron lines studied. Secondly, an atomic system, neon, in which excitation of doubly excited states and their subsequent decay to various accessible ionic states has been studied. Since these processes only occurs via inter-electron correlations, the many body dynamics of an atom can be probed, revealing relativistic effects, surprising in such a light atom. Angular distribution of the decay of the resonances to the parity unfavored continuum exhibits significant deviation from the LS coupling predictions.

  17. Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens.

    Science.gov (United States)

    Lu, Ping; Yuan, Renliang; Zuo, Jian Min

    2017-02-01

    Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm2 with the acquisition time of ~2 s or less. Here we report the details of this method, and, in particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO3 in [001] projection for 200 keV electrons.

  18. Ultra fast atomic process in X-ray emission by inner-shell ionization

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Tajima, T.

    1998-03-01

    An ultra-fast atomic process together with X-ray emission by inner-shell ionization using high intensity (10{sup 18} W/cm{sup 2}) short pulse (20fs) X-ray is studied. A new class of experiment is proposed and a useful pumping source is suggested. In this method, it is found that the gain value of X-ray laser amounts to larger than 1000(1/cm) with use of the density of 10{sup 22}/cm{sup 3} of carbon atom. Electron impact ionization effect and initial density effect as well as intensity of pumping source effect are also discussed. (author)

  19. Ionization potentials of the lanthanides and actinides - towards atomic spectroscopy of super-heavy elements

    Science.gov (United States)

    Wendt, K.; Gottwald, T.; Mattolat, C.; Raeder, S.

    2014-06-01

    A study on the systematic of the atomic ionization potentials for both, the lanthanide and actinide elements have been performed. The existing experimental basis, predominantly relying on results from resonance ionization spectroscopy, has been extended by novel laser spectroscopic investigations on the elements Au, Dy, Pr and Pa. Conclusive results of suitable precision for the ionization potentials could be obtained except for Pa, due to the complexity of its atomic spectrum. Nevertheless, a consistent interpretation of the observed trends for the ionization potentials of lanthanides and actinides was attempted. The series of lanthanides depicts the two well-known, completely smooth, linear trends above and below half-shell closure, from which an expectation value for the missing ionization potential of the all radioactive element promethium of IP Pm= 44985(140) cm -1 was derived. In contrast, the lighter members of the actinide series below the half-filled shell exhibit a significant deviation from predictions, which are ascribed dominantly to relativistic influences affecting the energetic position of the multitude of low-lying configurations. With the assumption of removal of a 6d electron during the ionization process agreement between theory and experiment and a smooth, even though not linear behavior, is obtained also in this region of the Periodic Table. This new interpretation could help to better predict similar trends and systematics for elements heavier than the actinides. Particularly relevant in this respect are the super-heavy elements, which are produced only in minuscule atom numbers and thus were not accessible for any atomic physics study yet.

  20. Multiple stimulated emission fluorescence photoacoustic sensing and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gaoming [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007 (China); Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin, E-mail: yjzheng@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Qiu, Yishen [Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007 (China)

    2016-07-04

    Multiple stimulated emission fluorescence photoacoustic (MSEF-PA) phenomenon is demonstrated in this letter. Under simultaneous illumination of pumping light and stimulated emission light, the fluorescence emission process is speeded up by the stimulated emission effect. This leads to nonlinear enhancement of photoacoustic signal while the quantity of absorbed photons is more than that of fluorescent molecules illuminated by pumping light. The electronic states' specificity of fluorescent molecular can also be labelled by the MSEF-PA signals, which can potentially be used to obtain fluorescence excitation spectrum in deep scattering tissue with nonlinearly enhanced photoacoustic detection. In this preliminary study, the fluorescence excitation spectrum is reconstructed by MSEF-PA signals through sweeping the wavelength of exciting light, which confirms the theoretical derivation well.

  1. Femtosecond photoelectron imaging of transient electronic states and Rydberg atom emission from electronically excited he droplets.

    Science.gov (United States)

    Kornilov, Oleg; Bünermann, Oliver; Haxton, Daniel J; Leone, Stephen R; Neumark, Daniel M; Gessner, Oliver

    2011-07-14

    Ultrafast relaxation of electronically excited pure He droplets is investigated by femtosecond time-resolved photoelectron imaging. Droplets are excited by extreme ultraviolet (EUV) pulses with photon energies below 24 eV. Excited states and relaxation products are probed by ionization with an infrared (IR) pulse with 1.6 eV photon energy. An initially excited droplet state decays on a time scale of 220 fs, leading predominantly to the emission of unaligned 1s3d Rydberg atoms. In a second relaxation channel, electronically aligned 1s4p Rydberg atoms are emitted from the droplet within less than 120 fs. The experimental results are described within a model that approximates electronically excited droplet states by localized, atomic Rydberg states perturbed by the local droplet environment in which the atom is embedded. The model suggests that, below 24 eV, EUV excitation preferentially leads to states that are localized in the surface region of the droplet. Electronically aligned 1s4p Rydberg atoms are expected to originate from excitations in the outermost surface regions, while nonaligned 1s3d Rydberg atoms emerge from a deeper surface region with higher local densities. The model is used to simulate the He droplet EUV absorption spectrum in good agreement with previously reported fluorescence excitation measurements.

  2. Atomic scattering spectroscopy for determination of the polarity of semipolar AlN grown on ZnO

    Science.gov (United States)

    Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Oshima, Masaharu; Fujioka, Hiroshi

    2013-11-01

    Determination of the polarity of insulating semipolar AlN layers was achieved via atomic scattering spectroscopy. The back scattering of neutralized He atoms on AlN surfaces revealed the atomic alignment of the topmost layers of semipolar AlN and the ZnO substrate. Pole figures of the scattering intensity were used to readily determine the polarity of these wurtzite-type semipolar materials. In addition, we found that +R-plane AlN epitaxially grows on -R-plane ZnO, indicating that the polarity flips at the semipolar AlN/ZnO interface. This polarity flipping is possibly explained by the appearance of -c and m-faces on the -R ZnO surfaces, which was also revealed by atomic scattering spectroscopy.

  3. Laser sampling system for an inductively-coupled atomic emission spectrometer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-15

    A laser sampling system was attached to a Perkin Elmer Optima 3000 inductively-coupled plasma, atomic emission spectrometer that was already installed and operating in the Chemistry and Geochemistry Department at the Colorado School of Mines. The use of the spectrometer has been highly successful. Graduate students and faculty from at least four different departments across the CSM campus have used the instrument. The final report to NSF is appended to this final report. Appendices are included which summarize several projects utilizing this instrument: acquisition of an inductively-coupled plasma atomic emission spectrometer for the geochemistry program; hydrogen damage susceptibility assessment for high strength steel weldments through advanced hydrogen content analysis, 1996 and 1997 annual reports; and methods for determination of hydrogen distribution in high strength steel welds.

  4. X-ray emission simulation from hollow atoms produced by high intensity laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Zhidkov, A. [Japan Atomic Energy Research Inst., Kansai Research Establishment, Neyagawa, Osaka (Japan); Suto, Keiko [Nara Women' s Univ., Graduate School of Human Culture, Nara (Japan); Kagawa, Takashi [Nara Women' s Univ., Department of Physics, Nara (Japan)

    2001-10-01

    We theoretically study the x-ray emission from hollow atoms produced by collisions of multiply charged ions accelerated by a short pulse laser with a solid or foil. By using the multistep-capture-and-loss (MSCL) model a high conversion efficiency to x-rays in an ultrafast atomic process is obtained. It is also proposed to apply this x-ray emission process to the x-ray source. For a few keV x-rays this x-ray source has a clear advantage. The number of x-ray photons increases as the laser energy becomes larger. For a laser energy of 10 J, the number of x-ray photons of 3x10{sup 11} is estimated. (author)

  5. Quantitative emission from femtosecond microplasmas for laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taschuk, M T; Kirkwood, S E; Tsui, Y Y; Fedosejevs, R [Department of Electical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6H 2V4 (Canada)

    2007-04-15

    An ongoing study of the scaling of Laser-Induced Breakdown Spectroscopy (LIBS) to microjoule pulse energies is being conducted to quantify the LIBS process. The use of microplasmas for LIBS requires good understanding of the emission scaling in order to maximize the sensitivity of the LIBS technique at low energies. The quantitative scaling of emission of Al, Cu and Si microplasmas from 100 {mu}J down to 100 nJ is presented. The scaling of line emission from major and minor constituents in Al 5052 alloy is investigated and evaluated for analytical LIBS. Ablated crater volume scaling and emission efficiency for Si microplasmas are investigated.

  6. Atoms, molecules and optical physics 2. Molecules and photons - Spectroscopy and collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V. (Germany)

    2015-09-01

    This is the second volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 2 introduces lasers and quantum optics, while the main focus is on the structure of molecules and their spectroscopy, as well as on collision physics as the continuum counterpart to bound molecular states. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  7. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers

    Science.gov (United States)

    Unsay, Joseph D.; Cosentino, Katia; García-Sáez, Ana J.

    2015-01-01

    Atomic force microscopy (AFM) is a versatile, high-resolution imaging technique that allows visualization of biological membranes. It has sufficient magnification to examine membrane substructures and even individual molecules. AFM can act as a force probe to measure interactions and mechanical properties of membranes. Supported lipid bilayers are conventionally used as membrane models in AFM studies. In this protocol, we demonstrate how to prepare supported bilayers and characterize their structure and mechanical properties using AFM. These include bilayer thickness and breakthrough force. The information provided by AFM imaging and force spectroscopy help define mechanical and chemical properties of membranes. These properties play an important role in cellular processes such as maintaining cell hemostasis from environmental stress, bringing membrane proteins together, and stabilizing protein complexes. PMID:26273958

  8. Towards 4-dimensional atomic force spectroscopy using the spectral inversion method.

    Science.gov (United States)

    Williams, Jeffrey C; Solares, Santiago D

    2013-01-01

    We introduce a novel and potentially powerful, yet relatively simple extension of the spectral inversion method, which offers the possibility of carrying out 4-dimensional (4D) atomic force spectroscopy. With the extended spectral inversion method it is theoretically possible to measure the tip-sample forces as a function of the three Cartesian coordinates in the scanning volume (x, y and z) and the vertical velocity of the tip, through a single 2-dimensional (2D) surface scan. Although signal-to-noise ratio limitations can currently prevent the accurate experimental implementation of the 4D method, and the extraction of rate-dependent material properties from the force maps is a formidable challenge, the spectral inversion method is a promising approach due to its dynamic nature, robustness, relative simplicity and previous successes.

  9. Towards 4-dimensional atomic force spectroscopy using the spectral inversion method

    Directory of Open Access Journals (Sweden)

    Jeffrey C. Williams

    2013-02-01

    Full Text Available We introduce a novel and potentially powerful, yet relatively simple extension of the spectral inversion method, which offers the possibility of carrying out 4-dimensional (4D atomic force spectroscopy. With the extended spectral inversion method it is theoretically possible to measure the tip–sample forces as a function of the three Cartesian coordinates in the scanning volume (x, y and z and the vertical velocity of the tip, through a single 2-dimensional (2D surface scan. Although signal-to-noise ratio limitations can currently prevent the accurate experimental implementation of the 4D method, and the extraction of rate-dependent material properties from the force maps is a formidable challenge, the spectral inversion method is a promising approach due to its dynamic nature, robustness, relative simplicity and previous successes.

  10. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    Science.gov (United States)

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  11. An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments.

    Science.gov (United States)

    Materassi, Donatello; Baschieri, Paolo; Tiribilli, Bruno; Zuccheri, Giampaolo; Samorì, Bruno

    2009-08-01

    We describe the realization of an atomic force microscope architecture designed to perform customizable experiments in a flexible and automatic way. Novel technological contributions are given by the software implementation platform (RTAI-LINUX), which is free and open source, and from a functional point of view, by the implementation of hard real-time control algorithms. Some other technical solutions such as a new way to estimate the optical lever constant are described as well. The adoption of this architecture provides many degrees of freedom in the device behavior and, furthermore, allows one to obtain a flexible experimental instrument at a relatively low cost. In particular, we show how such a system has been employed to obtain measures in sophisticated single-molecule force spectroscopy experiments [Fernandez and Li, Science 303, 1674 (2004)]. Experimental results on proteins already studied using the same methodologies are provided in order to show the reliability of the measure system.

  12. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.

    Science.gov (United States)

    Sapra, K Tanuj

    2013-01-01

    The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.

  13. Extreme ultraviolet spectroscopy and atomic models of highly charged heavy ions in the Large Helical Device

    Science.gov (United States)

    Suzuki, C.; Murakami, I.; Koike, F.; Tamura, N.; Sakaue, H. A.; Morita, S.; Goto, M.; Kato, D.; Ohashi, H.; Higashiguchi, T.; Sudo, S.; O'Sullivan, G.

    2017-01-01

    We report recent results of extreme ultraviolet (EUV) spectroscopy of highly charged heavy ions in plasmas produced in the Large Helical Device (LHD). The LHD is an ideal source of experimental databases of EUV spectra because of high brightness and low opacity, combined with the availability of pellet injection systems and reliable diagnostic tools. The measured heavy elements include tungsten, tin, lanthanides and bismuth, which are motivated by ITER as well as a variety of plasma applications such as EUV lithography and biological microscopy. The observed spectral features drastically change between quasicontinuum and discrete depending on the plasma temperature, which leads to some new experimental identifications of spectral lines. We have developed collisional-radiative models for some of these ions based on the measurements. The atomic number dependence of the spectral feature is also discussed.

  14. Lattice-Assisted Spectroscopy: A Generalized Scanning Tunneling Microscope for Ultracold Atoms.

    Science.gov (United States)

    Kantian, A; Schollwöck, U; Giamarchi, T

    2015-10-16

    We propose a scheme to measure the frequency-resolved local particle and hole spectra of any optical lattice-confined system of correlated ultracold atoms that offers single-site addressing and imaging, which is now an experimental reality. Combining perturbation theory and time-dependent density matrix renormalization group simulations, we quantitatively test and validate this approach of lattice-assisted spectroscopy on several one-dimensional example systems, such as the superfluid and Mott insulator, with and without a parabolic trap, and finally on edge states of the bosonic Su-Schrieffer-Heeger model. We highlight extensions of our basic scheme to obtain an even wider variety of interesting and important frequency resolved spectra.

  15. High precision X-ray spectroscopy in hydrogen-like fermionic and bosonic atomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Borchert, G.L.; Anagnostopoulos, D.; Augsburger, M.; Belmiloud, D.; Castelli, C.; Chatellard, D.; Daum, M.; Egger, J.P.; El-Khoury, P.; Elble, M.; Frosch, R.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O.W.B. (and others)

    1998-11-15

    Some time after its formation an exotic atom may be considered a hydrogen-like system consisting of a nucleus and an exotic particle in a bound state. In this situation it is an ideal tool to study cascade properties, while for the innermost orbits it can be used to probe the interaction with the nucleus. From an extended series of experiments using high resolution X-ray spectroscopy for both aspects typical examples are reported and preliminary results are given: 1. To determine the complex scattering length in p-barH the 3D{yields}2P hyperfine transitions have been measured. 2. To determine the pion mass the 5 {yields} 4 transitions in {pi}{sup 14}N have been studied. In all cases a major contribution to the uncertainty originates from the calibration. Therefore a new method is proposed that will establish a universal set of high precision calibration lines for pionic, muonic and electronic systems.

  16. Atomic force microscope-based single-molecule force spectroscopy of RNA unfolding.

    Science.gov (United States)

    Heus, Hans A; Puchner, Elias M; van Vugt-Jonker, Aafke J; Zimmermann, Julia L; Gaub, Hermann E

    2011-07-01

    Single-molecule force spectroscopy (SMFS) using the atomic force microscope (AFM) has emerged as an important tool for probing biomolecular interaction and exploring the forces, dynamics, and energy landscapes that underlie function and specificity of molecular interaction. These studies require attaching biomolecules on solid supports and AFM tips to measure unbinding forces between individual binding partners. Herein we describe efficient and robust protocols for probing RNA interaction by AFM and show their value on two well-known RNA regulators, the Rev-responsive element (RRE) from the HIV-1 genome and an adenine-sensing riboswitch. The results show the great potential of AFM-SMFS in the investigation of RNA molecular interactions, which will contribute to the development of bionanodevices sensing single RNA molecules. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy.

    Science.gov (United States)

    Nations, Marcel; Wang, Shengkai; Goldenstein, Christopher S; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2015-10-10

    We report the use of cavity-enhanced absorption spectroscopy (CEAS) using two distributed feedback diode lasers near 777.2 and 844.6 nm for sensitive, time-resolved, in situ measurements of excited-state populations of atomic oxygen in a shock tube. Here, a 1% O2/Ar mixture was shock-heated to 5400-8000 K behind reflected shock waves. The combined use of a low-finesse cavity, fast wavelength scanning of the lasers, and an off-axis alignment enabled measurements with 10 μs time response and low cavity noise. The CEAS absorption gain factors of 104 and 142 for the P35←S520 (777.2 nm) and P0,1,23←S310 (844.6 nm) atomic oxygen transitions, respectively, significantly improved the detection sensitivity over conventional single-pass measurements. This work demonstrates the potential of using CEAS to improve shock-tube studies of nonequilibrium electronic-excitation processes at high temperatures.

  18. SO2 EMISSION MEASUREMENT BY DOAS (DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY AND COSPEC (CORRELATION SPECTROSCOPY AT MERAPI VOLCANO (INDONESIA

    Directory of Open Access Journals (Sweden)

    Hanik Humaida

    2010-06-01

    Full Text Available The SO2 is one of the volcanic gases that can use as indicator of volcano activity. Commonly, SO2 emission is measured by COSPEC (Correlation Spectroscopy. This equipment has several disadvantages; such as heavy, big in size, difficulty in finding spare part, and expensive. DOAS (Differential Optical Absorption Spectroscopy is a new method for SO2 emission measurement that has advantages compares to the COSPEC. Recently, this method has been developed. The SO2 gas emission measurement of Gunung Merapi by DOAS has been carried out at Kaliadem, and also by COSPEC method as comparation. The differences of the measurement result of both methods are not significant. However, the differences of minimum and maximum result of DOAS method are smaller than that of the COSPEC. It has range between 51 ton/day and 87 ton/day for DOAS and 87 ton/day and 201 ton/day for COSPEC. The measurement of SO2 gas emission evaluated with the seismicity data especially the rockfall showed the presence of the positive correlation. It may cause the gas pressure in the subsurface influencing instability of 2006 eruption lava.   Keywords: SO2 gas, Merapi, DOAS, COSPEC

  19. Unraveling protein-protein interactions in clathrin assemblies via atomic force spectroscopy.

    Science.gov (United States)

    Jin, Albert J; Lafer, Eileen M; Peng, Jennifer Q; Smith, Paul D; Nossal, Ralph

    2013-03-01

    Atomic force microscopy (AFM), single molecule force spectroscopy (SMFS), and single particle force spectroscopy (SPFS) are used to characterize intermolecular interactions and domain structures of clathrin triskelia and clathrin-coated vesicles (CCVs). The latter are involved in receptor-mediated endocytosis (RME) and other trafficking pathways. Here, we subject individual triskelia, bovine-brain CCVs, and reconstituted clathrin-AP180 coats to AFM-SMFS and AFM-SPFS pulling experiments and apply novel analytics to extract force-extension relations from very large data sets. The spectroscopic fingerprints of these samples differ markedly, providing important new information about the mechanism of CCV uncoating. For individual triskelia, SMFS reveals a series of events associated with heavy chain alpha-helix hairpin unfolding, as well as cooperative unraveling of several hairpin domains. SPFS of clathrin assemblies exposes weaker clathrin-clathrin interactions that are indicative of inter-leg association essential for RME and intracellular trafficking. Clathrin-AP180 coats are energetically easier to unravel than the coats of CCVs, with a non-trivial dependence on force-loading rate. Published by Elsevier Inc.

  20. Emission Spectroscopy of Atmospheric-Pressure Ball Plasmoids: Higher Energy Reveals a Rich Chemistry

    Science.gov (United States)

    Dubowsky, Scott E.; Rose, Amber Nicole; Glumac, Nick; McCall, Benjamin J.

    2017-06-01

    Ball plasmoids (self-sustaining spherical plasmas) are a particularly unique example of a non-equilibrium air plasma. These plasmoids have lifetimes on the order of hundreds of milliseconds without an external power source, however, current models dictate that a ball plasmoid should recombine in a millisecond or less. Ball plasmoids are considered to be a laboratory analogue of natural ball lightning, a phenomenon that has eluded scientific explanation for centuries. We are searching for the underlying physicochemical mechanism(s) by which ball plasmoids and (by extension) ball lightning are stabilized using a variety of diagnostic techniques. This presentation will focus on optical emission spectroscopy (OES) of ball plasmoid discharges between 190-850 nm. The previous generation of OES measurements of this system showed emission from only a few atomic and molecular species, however, the energy available for the discharges in these experiments was limited by the size of the capacitor banks and voltages to which the capacitor banks were charged. We are capable of generating plasmoids at much higher energies, and as a result we are the first to report a very rich chemistry previously not observed in ball plasmoids. We have identified signals from species including NO A^{2}Σ^{+}→X^{2}Π, OH A^{2}Σ^{+}→X^{2}Π, NH A^{3}Π→X^{3}Σ^{-}, AlO A^{2}Π→X^{2}Σ^{+}, NH^{+} B^{2}Δ→X^{2}Π, W I, Al I, Cu I, and H_{α}, all of which have not yet been reported for this system. Analysis of the emission spectra and fitting procedures will be discussed, rotational temperatures of constituent species will be reported, and theories of ball plasmoid stabilization based upon these new results will be presented. Versteegh, A.; Behringer, K.; Fantz, U.; Fussman, G.; Jüttner, B.; Noack, S. Plas. Sour. Sci. Technol. 2008, 17(2), 024014 Stephan, K. D.; Dumas, S.; Komala-Noor, L.; McMinn, J. Plas. Sour. Sci. Technol. 2013, 22(2), 025018

  1. Open-path tunable diode laser absorption spectroscopy for acquisition of fugitive emission flux data.

    Science.gov (United States)

    Thoma, Eben D; Shores, Richard C; Thompson, Edgar L; Harris, D Bruce; Thorneloe, Susan A; Varma, Ravi M; Hashmonay, Ram A; Modrak, Mark T; Natschke, David F; Gamble, Heather A

    2005-05-01

    Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. Environmental Protection Agency (EPA) has developed a ground-based optical remote-sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transform infrared spectroscopy (OP-FTIR) has been the primary technique for acquisition of pollutant concentration data used in this emission measurement method. For a number of environmentally important compounds, such as ammonia and methane, open-path tunable diode laser absorption spectroscopy (OP-TDLAS) is shown to be a viable alternative to Fourier transform spectroscopy for pollutant concentration measurements. Near-IR diode laser spectroscopy systems offer significant operational and cost advantages over Fourier transform instruments enabling more efficient implementation of the measurement strategy. This article reviews the EPA's fugitive emission measurement method and describes its multipath tunable diode laser instrument. Validation testing of the system is discussed. OP-TDLAS versus OP-FTIR correlation testing results for ammonia (R2 = 0.980) and methane (R2 = 0.991) are reported. Two example applications of tunable diode laser-based fugitive emission measurements are presented.

  2. Airborne measurement of aircraft emissions using passive infrared FT spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haschberger, P.; Lindermeir, E.; Tank, V. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Optoelektronik

    1997-12-01

    For the first time emissions from aircraft jet engines where measured inflight by use of a Fourier transform infrared spectrometer. The instrument works in a non-intrusive mode observing the plume from the cabin and detecting the emitted infrared radiation. Applying nonlinear inversion techniques the concentrations and emission indices of the infrared active gas components are calculated. Besides CO, CO{sub 2}, and water vapor the separate acquisition of NO and NO{sub 2} is of special interest. For the ATTAS research aircraft as a first carrier the emission index of NO{sub x}, EI(NO{sub x}), is in the range of 5-7.5 g(NO{sub 2})/(kg fuel) with a ratio NO{sub 2}/NO{sub x} of 12-22%. The precision of the measurement system is better than 5%, the estimated accuracy depends on the species and ranges between 5-25%. This report presents a summary of the results including a comparison of measured data and ground-to-altitude correlation models. (orig.) 144 figs., 42 tabs., 497 refs.

  3. Near infrared emission spectroscopy induced by ultrasonic irradiation.

    Science.gov (United States)

    Borges, Sivanildo Silva; Korn, Mauro; Gonzaga, Fabiano Barbieri; Pasquini, Celio

    2006-07-01

    Near infrared emission caused by ultrasonic excitation is demonstrated for the first time in this work. The instrument is constituted of an acousto-optical tunable filter-based spectrometer, an ultrasonic processor connected to a titanium alloy ultrasonic probe and a cylindrical borosilicate flask containing the sample to be excited. The radiation emitted by the sample is collected by a concave mirror and sent to the spectrometer. The effects of the position of the probe extremity in relation to a lateral entrance of the borosilicate flask and of the ultrasonic power on the emission signal were studied. The best results were obtained by positioning the probe extremity up to 2mm from the reflexive body (lateral entrance) using 30% of the full ultrasonic incident power and acquiring spectra after 5 min of sonication. The NIR emission spectra resulting from the ultrasonic excitation were in agreement with that obtained by thermal excitation. The proposed technique was utilized to study different poly(dimethylsiloxane) samples having different viscosities.

  4. Beyond hot Jupiters: Characterizing exoplanets below 1000 K with Spitzer and JWST emission spectroscopy

    Science.gov (United States)

    Benneke, Björn; Université de Montréal, Caltech, University of Arizona, Space Science Institute, UCSC, Harvard University

    2018-01-01

    Most thermal emission spectra of exoplanets to date have been obtained for the hot Jupiters with equilibrium temperatures above ~1500K due to their favorable eclipse depth in the NIR. Emission spectroscopy of colder planets, however, provides us with the important opportunity to understand cloud formation and atmospheric chemistry near the CH4/CO transition. In this talk, we will demonstrate JWST’s unique capabilities for these planets and discuss results from our ongoing Spitzer effort to study warm Neptunes and Jupiters.

  5. Time-resolved characterization of a filamentary argon discharge at atmospheric pressure in a capillary using emission and absorption spectroscopy

    Science.gov (United States)

    Schröter, Sandra; Pothiraja, Ramasamy; Awakowicz, Peter; Bibinov, Nikita; Böke, Marc; Niermann, Benedikt; Winter, Jörg

    2013-11-01

    An argon/nitrogen (0.999/0.001) filamentary pulsed discharge operated at atmospheric pressure in a quartz tube is characterized using voltage-current measurements, microphotography, optical emission spectroscopy (OES) and absorption spectroscopy. Nitrogen is applied as a sensor gas for the purpose of OES diagnostic. The density of argon metastable atoms Ar(3P2) is determined using tunable diode laser absorption spectroscopy (TDLAS). Using a plasma chemical model the measured OES data are applied for the characterization of the plasma conditions. Between intense positive pulses the discharge current oscillates with a damped amplitude. It is established that an electric current flows in this discharge not only through a thin plasma filament that is observed in the discharge image but also through the whole cross section of the quartz tube. A diffuse plasma fills the quartz tube during a time between intense current pulses. Ionization waves are propagating in this plasma between the spike and the grounded area of the tube producing thin plasma channels. The diameter of these channels increases during the pause between the propagation of ionization waves probably because of thermal expansion and diffusion. Inside the channels electron densities of ˜2 × 1013 cm-3, argon metastable densities ˜1014 cm-3 and a reduced electric field about 10 Td are determined.

  6. Symmetry-resolved spectroscopy by detection of a metastable hydrogen atom for investigating the doubly excited states of molecular hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Odagiri, Takeshi; Kumagai, Yoshiaki; Tanabe, Takehiko; Nakano, Motoyoshi; Kouchi, Noriyuki [Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Suzuki, Isao H, E-mail: joe@chem.titech.ac.j [Photon Factory, IMSS, KEK, Tsukuba, Ibaraki 305-0801 (Japan)

    2009-11-01

    Symmetry-resolved spectroscopy for investigating the doubly excited states of molecular hydrogen has been newly developed, where a metastable hydrogen atom dissociating in a direction parallel and perpendicular to the electric vector of the linearly polarized incident light is detected.

  7. Antiproton–to–electron mass ratio determined by two-photon laser spectroscopy of antiprotonic helium atoms

    Directory of Open Access Journals (Sweden)

    Sótér A.

    2014-03-01

    Full Text Available The ASACUSA collaboration of CERN has recently carried out two-photon laser spectroscopy of antiprotonic helium atoms. Three transition frequencies were determined with fractional precisions of 2.3–5 parts in 109. By comparing the results with three-body QED calculations, the antiproton-to-electron mass ratio was determined as 1836.1526736(23.

  8. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    Science.gov (United States)

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  9. Precision spectroscopy of the 2S-4P{sub 1/2} transition in atomic hydrogen on a cold thermal beam of optically excited 2S atoms

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Axel; Kolachevsky, Nikolai; Alnis, Janis; Yost, Dylan C.; Matveev, Arthur; Parthey, Christian G.; Pohl, Randolf; Udem, Thomas [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Khabarova, Ksenia [FSUE ' VNIIFTRI' , 141570 Moscow (Russian Federation); Haensch, Theodor W. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Ludwig-Maximilians-Universitaet, 80799 Muenchen (Germany)

    2013-07-01

    The 'proton size puzzle', i.e. the discrepancy between the values for the proton r.m.s. charge radius deduced from precision spectroscopy of atomic hydrogen and electron-proton-scattering on one side and the value deduced from muonic hydrogen spectroscopy on the other side, has been persisting for more than two years now. Although huge efforts have been put into trying to resolve this discrepancy from experimental and theoretical side, no convincing argument could be found so far. In this talk, we report on a unique precision spectroscopy experiment on atomic hydrogen, which is aiming to bring some light to the hydrogen part of the puzzle: In contrast to any previous high resolution experiment probing a transition frequency between the meta-stable 2S state and a higher lying nL state (n=3,4,6,8,12, L=S,P,D), our measurement of the 2S-4P{sub 1/2} transition frequency is the first experiment being performed on a cold thermal beam of hydrogen atoms optically excited to the 2S state. We will discuss how this helps to efficiently suppresses leading systematic effects of previous measurements and present the preliminary results we obtained so far.

  10. Determination of precious metals in rocks and ores by microwave plasma-atomic emission spectrometry for geochemical prospecting studies

    National Research Council Canada - National Science Library

    Vysetti Balaram; Dharmendra Vummiti; Parijat Roy; Craig Taylor; Prasenjit Kar; Arun Kumar Raju; Krishnaiah Abburi

    2013-01-01

    Methods were designed and developed for the quantitative determination of Au, Ag, Pt and Pd in several rock and ore reference samples by a new analytical technique, microwave plasma-atomic emission spectrometry (MP-AES...

  11. Determination of Boron, Phosphorus, and Molybdenum Content in Biosludge Samples by Microwave Plasma Atomic Emission Spectrometry (MP-AES)

    National Research Council Canada - National Science Library

    Sreenivasulu Vudagandla; Nadavala Siva Kumar; Vummiti Dharmendra; Mohammad Asif; Vysetti Balaram; Haung Zhengxu; Zhou Zhen

    2017-01-01

    A novel analytical method for accurate determination of boron (B), phosphorous (P), and molybdenum (Mo) content in biosludge samples based on a relatively recent analytical technique, microwave plasma atomic emission spectrometry...

  12. Optical emission spectroscopy diagnostics of an atmospheric pressure direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Sismanoglu, B.N., E-mail: bogos@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Amorim, J., E-mail: jayr.amorim@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Souza-Correa, J.A., E-mail: jorge.correa@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Oliveira, C., E-mail: carlosf@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Gomes, M.P., E-mail: gomesmp@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil)

    2009-11-15

    This paper is about the use of optical emission spectroscopy as a diagnostic tool to determine the gas discharge parameters of a direct current (98% Ar-2% H{sub 2}) non-thermal microplasma jet, operated at atmospheric pressure. The electrical and optical behaviors were studied to characterize this glow discharge. The microplasma jet was investigated in the normal and abnormal glow regimes, for current ranging from 10 to 130 mA, at approx 220 V of applied voltage for copper cathode. OH (A {sup 2}SIGMA{sup +}, nu = 0 -> X {sup 2}PI, nu' = 0) rotational bands at 306.357 nm and also the 603.213 nm Ar I line, which is sensitive to van der Waals broadening, were used to determine the gas temperature, which ranges from 550 to 800 K. The electron number densities, ranging from 6.0 x 10{sup 14} to 1.4 x 10{sup 15} cm{sup -3}, were determined through a careful analysis of the main broadening mechanisms of the H{sub beta} line. From both 603.213 nm and 565.070 nm Ar I line broadenings, it was possible to obtain simultaneously electron number density and temperature (approx 8000 K). Excitation temperatures were also measured from two methods: from two Cu I lines and from Boltzmann-plot of 4p-4s and 5p-4s Ar I transitions. By employing H{sub alpha} line, the hydrogen atoms' H temperature was estimated (approx 18,000 K) and found to be surprisingly hotter than the excitation temperature.

  13. Direct Detection of Oxygen Ligation to the Mn4Ca Cluster of Photosystem II by X-ray Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pushkar, Yulia; Long, Xi; Glatzel, Pieter; Brudvig, Gary W.; Dismukes, G. Charles; Collins, Terrence J.; Yachandra, Vittal K.; Yano, Junko; Bergmann, Uwe

    2009-06-16

    Ligands play critical roles during the catalytic reactions in metalloproteins through bond formation/breaking, protonation/deprotonation, and electron/spin delocalization. While there are well-defined element-specific spectroscopic handles, such as X-ray spectroscopy and EPR, to follow the chemistry of metal catalytic sites in a large protein matrix, directly probing particular ligand atoms like C, N, and O is challenging due to their abundance in the protein. FTIR/Raman and ligand-sensitive EPR techniques such as ENDOR and ESEEM have been applied to study metal-ligand interactions. X-ray absorption spectroscopy (XAS) can also indirectly probe the ligand environment; its element-specificity allows us to focus only on the catalytic metal site, and EXAFS and XANES provide metal-ligand distances, coordination numbers, and symmetry of ligand environments. However, the information is limited, since one cannot distinguish among ligand elements with similar atomic number (i.e. C, N. and O). As an alternative and a more direct method to probe the specific metal-ligand chemistry in the protein matrix, we investigated the application of X-ray emission spectroscopy (XES). Using this technique we have identified the oxo-bridging ligands of the Mn{sub 4}Ca complex of photosystem II (PS II), a multisubunit membrane protein, that catalyzes the water oxidizing reaction. The catalytic mechanism has been studied intensively by Mn XAS. The fundamental question of this reaction, however, is how the water molecules are ligated to the Mn{sub 4}Ca cluster and how the O-O bond formation occurs before the evolution of O{sub 2}. This implies that it is necessary to follow the chemistry of the oxygen ligands in order to understand the mechanism.

  14. Halogenated salicylaldehyde azines: The heavy atom effect on aggregation-induced emission enhancement properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiao-tong, E-mail: chenxiaotong@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Tong, Ai-jun [Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084 (China)

    2014-01-15

    This study investigates the heavy-atom effect (HAE) on aggregation-induced emission enhancement (AIEE) properties of salicylaldehyde azines. For this purpose, a series of halogenated salicylaldehyde azine derivatives, namely, chloro-salicylaldehyde azine (1), bromo-salicylaldehyde azine (2) and iodo-salicylaldehyde azine (3) are synthesized. 1 and 2 display typical AIEE characteristics of salicylaldehyde azine compounds; whereas for the iodo-substituent in 3, is found to be effective “external” heavy atom quenchers to salicylaldehyde azine fluorescence in aggregated state. Based on its weak fluorescence in aggregated state and relative strong fluorescence in dispersed state, 3 can also be applied as a turn-on fluorescence probe for egg albumin detection attributed to hydrophobic interaction. -- Highlights: • This study investigates the heavy-atom effect (HAE) on aggregation-induced emission enhancement (AIEE) properties of salicylaldehyde azines. • Chloro- and bromo-salicylaldehyde display typical AIEE properties of salicylaldehyde azine, whereas the iodo-substitute quenches AIEE in aggregated state. • Iodo-salicylaldehyde can be applied as a turn-on fluorescence probe for egg albumin detection attributed to hydrophobic interaction.

  15. Photoelectron Emission Spectroscopy of Inorganic Cations in Aqueous Solution.

    Science.gov (United States)

    1980-12-01

    I.7 Equation (12) clearly shows the relationship between the free energies AGz(aq) and AG for photoelectron emission and thermodynamics in the...York, 1963, pp. 1-30). (i.0OSelected Values of Chemical Thermodynamic Properties, Circular No. 500 of the National Bureau of Standards (U. S...data E " z 4,61 - G B t S eV eV eV Ag+ 7.60 (Cl04), 7.52 (C104, 5 M HCLO4 ) 21.48 4.95 3.80 T1+ 7.40 (F-), 7.46 (C10, 5 H HC1O4) 20.42 3.55 4.67 V2

  16. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    Science.gov (United States)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  17. SU-F-J-46: Feasibility of Cerenkov Emission for Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oraiqat, I; Rehemtulla, A; Lam, K; Ten Haken, R; El Naqa, I [University of Michigan, Radiation Oncology, Ann Arbor, MI (United States); Clarke, R [University of Michigan, Physics Department, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: Cerenkov emission (CE) is a promising tool for online tumor microenvironment interrogation and targeting during radiotherapy. In this work, we utilize CE generated during radiotherapy as a broadband excitation source for real-time absorption spectroscopy. We demonstrate the feasibility of CE spectroscopy using a controlled experiment of materials with known emission/absorption properties. Methods: A water tank is irradiated with 20 MeV electron beam to induce Cerenkov emission. Food coloring dyes (Yellow #5, Red #40, and Blue #1), which have known emission/absorption properties were added to the water tank with increasing concentration (1 drop (0.05 mL), 2 drops, and 4 drops from a dispenser bottle). The signal is collected using a condensing lens which is coupled into a 20m optical fiber that is fed into a spectrometer that measures the emitted spectra. The resulting spectra from water/food coloring dye solutions were normalized by the reference spectrum, which is the Cerenkov spectrum of pure water, correcting for both the nonlinearity of the broadband Cerenkov emission spectrum as well as the non-uniform spectral response of the spectrometer. The emitted spectra were then converted into absorbance and their characteristics were analyzed. Results: The food coloring dye had a drastic change on the Cerenkov emission, shifting its wavelength according to its visible color. The collected spectra showed various absorbance peaks which agrees with tabulated peak positions of the dyes added within 0.3% for yellow, 1.7% for red, and 0.16% for blue. The CE peak heights proportionally increased as the dye concentration is increased. Conclusion: This work shows the potential for real-time functional spectroscopy using Cerenkov emission during radiotherapy. It was demonstrated that molecule identification as well as relative concentration can be extracted from the Cerenkov emission color shift.

  18. Noninvasive, real-time measurements of plasma parameters via optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin 53706 (United States); Boffard, John B.; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Radovanov, Svetlana; Persing, Harold [Varian Semiconductor Equipment, Applied Materials Inc., Gloucester, Massachusetts 01939 (United States)

    2013-03-15

    Plasma process control applications require acquisition of diagnostic data at a rate faster than the characteristic timescale of perturbations to the plasma. Diagnostics based on optical emission spectroscopy of intense emission lines permit rapid noninvasive measurements with low-resolution ({approx}1 nm), fiber-coupled spectrographs, which are included on many plasma process tools for semiconductor processing. Here the authors report on rapid analysis of Ar emissions with such a system to obtain electron temperatures, electron densities, and metastable densities in argon and argon/mixed-gas (Ar/N{sub 2}, Ar/O{sub 2}, Ar/H{sub 2}) inductively coupled plasmas. Accuracy of the results (compared to measurements made by Langmuir probe and white-light absorption spectroscopy) are typically better than {+-}15% with a time resolution of 0.1 s, which is more than sufficient to capture the transient behavior of many processes, limited only by the time response of the spectrograph used.

  19. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reininger, Charlotte; Woodfield, Kellie [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States); Keelor, Joel D.; Kaylor, Adam; Fernández, Facundo M. [Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332 (United States); Farnsworth, Paul B., E-mail: paul_farnsworth@byu.edu [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States)

    2014-10-01

    The absolute number densities of helium atoms in the 2s {sup 3}S{sub 1} metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 10{sup 12} cm{sup −3} and 0.011 × 10{sup 12} cm{sup −3}, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 10{sup 12} cm{sup −3} and 0.97 × 10{sup 12} cm{sup −3} were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges. - Highlights: • We determine He metastable number densities for four plasma types • The highest number densities were observed in a dielectric barrier discharge • No helium metastable atoms were observed downstream from the exits of glow discharges.

  20. Emission Mössbauer spectroscopy of advanced materials for opto- and nano-electronics

    CERN Multimedia

    Olafsson, S; Weyer, G O P; Masenda, H; Dlamini, W B

    Mössbauer Spectroscopy (MS) is a versatile solid state method giving information about probe atom interactions with its nearest neighbours. Simultaneously, information on the probe valence state, site symmetry, and electric and magnetic hyperfine interactions is obtained. MS can be applied in many different contexts in material science and solid state physics. MS using radioactive isotopes, applied for decades at the ISOLDE facilities, has the particular merit of very high sensitivity. This opens up many new possibilities compared to traditional (absorption) Mössbauer spectroscopy. Among them is the possibility of working with very low concentrations (10$^{-4}$ at. ~\\%), where the probe atoms are true dilute impurities. Here we propose four main themes in our Mössbauer investigations for the coming years: \\\\(1) Para-magnetic relaxations in compound semiconductors. \\\\(2) Vacancy diffusion in group IV semiconductors. \\\\(3) Doping of Si-nano-particles. \\\\(4) Investigation of phase change mechanisms in chalcog...

  1. Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals

    Science.gov (United States)

    Stenger, I.; Schué, L.; Boukhicha, M.; Berini, B.; Plaçais, B.; Loiseau, A.; Barjon, J.

    2017-09-01

    Hexagonal boron nitride (hBN) has recently gained a strong interest as a strategic component in engineering van der Waals heterostructures built with 2D crystals such as graphene. This work reports micro-Raman measurements on hBN flakes made of a few atomic layers, prepared by mechanical exfoliation. The temperature dependence of the Raman scattering in hBN is investigated first such as to define appropriate measurements conditions suitable for thin layers avoiding undesirable heating induced effects. We further focus on the low frequency Raman mode corresponding to the rigid shearing oscillation between adjacent layers, found to be equal to 52.5 cm-1 in bulk hBN. For hBN sheets with thicknesses below typically 4 nm, the frequency of this mode presents discrete values, which are found to decrease down to 46.0(5) cm-1 for a three-layer hBN, in good agreement with the linear-chain model. This makes Raman spectroscopy a relevant tool to quantitatively determine in a non destructive way the number of layers in ultra thin hBN sheets, below 8 L, prior to their integration in van der Waals heterostructures.

  2. Compact metal probes: a solution for atomic force microscopy based tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Rodriguez, R D; Sheremet, E; Müller, S; Gordan, O D; Villabona, A; Schulze, S; Hietschold, M; Zahn, D R T

    2012-12-01

    There are many challenges in accomplishing tip-enhanced Raman spectroscopy (TERS) and obtaining a proper tip is probably the greatest one. Since tip size, composition, and geometry are the ultimate parameters that determine enhancement of intensity and lateral resolution, the tip becomes the most critical component in a TERS experiment. However, since the discovery of TERS the cantilevers used in atomic force microscopy (AFM) have remained basically the same: commercial silicon (or silicon nitride) tips covered by a metallic coating. The main issues of using metal-coated silicon cantilevers, such as wearing off of the metal layer or increased tip radius, can be completely overcome by using all-metal cantilevers. Until now in TERS experiments such probes have only been used in a scanning tunneling microscope or in a tuning fork-based shear force microscope but not in AFM. In this work for the first time, we show the use of compact silver cantilevers that are fully compatible with contact and tapping modes in AFM demonstrating their superb performance in TERS experiments.

  3. Electron-beam-induced carbon contamination on silicon: characterization using Raman spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Lau, Deborah; Hughes, Anthony E; Muster, Tim H; Davis, Timothy J; Glenn, A Matthew

    2010-02-01

    Electron-beam-induced carbon film deposition has long been recognized as a side effect of scanning electron microscopy. To characterize the nature of this type of contamination, silicon wafers were subjected to prolonged exposure to 15 kV electron beam energy with a probe current of 300 pA. Using Raman spectroscopy, the deposited coating was identified as an amorphous carbon film with an estimated crystallite size of 125 A. Using atomic force microscopy, the cross-sectional profile of the coating was found to be raised and textured, indicative of the beam raster pattern. A map of the Raman intensity across the coating showed increased intensity along the edges and at the corner of the film. The intensity profile was in excess of that which could be explained by thickness alone. The enhancement was found to correspond with a modeled local field enhancement induced by the coating boundary and showed that the deposited carbon coating generated a localized disturbance in the opto-electrical properties of the substrate, which is compared and contrasted with Raman edge enhancement that is produced by surface structure in silicon.

  4. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    Science.gov (United States)

    Riley, M. A.; Simpson, J.; Paul, E. S.

    2016-12-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.

  5. MDM2-MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance.

    Science.gov (United States)

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2-MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2-MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD ) in the micromolar range for the MDM2-MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2-MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2-MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation.

  6. Speciation of methylmercury and ethylmercury by gas chromatography cold vapor atomic fluresence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Boggess, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-28

    Existing models and simulants of tank disposition media at SRS have presumed the presence of high concentrations of inorganic mercury. However, recent quarterly tank analyses show that mercury is present as organomercurial species at concentrations that may present challenges to remediation and disposition and may exceed the Saltstone Waste Acceptance Criteria (WAC). To-date, methylmercury analysis for Savannah River Remediation (SRR) has been performed off-site by Eurofins Scientific (Lancaster, PA). A series of optimization and validation experiments has been performed at SRNL, which has resulted in the development of on-site organomercury speciation capabilities using purge and trap gas chromatography coupled with thermal desorption cold vapor atomic fluorescence spectroscopy (P&T GC/CVAFS). Speciation has been achieved for methylmercury, with a method reporting limit (MRL) values of 1.42 pg for methylmercury. Results obtained by SRNL from the analysis of past quarterly samples from tanks 21, 40, and 50 have demonstrated statistically indistinguishable concentration values compared with the concentration data obtained from Eurofins, while the data from SRNL has demonstrated significantly improved precision and processing time.

  7. Atomic layer sensitive in-situ plasma etch depth control with reflectance anisotropy spectroscopy (RAS)

    Science.gov (United States)

    Doering, Christoph; Kleinschmidt, Ann-Kathrin; Barzen, Lars; Strassner, Johannes; Fouckhardt, Henning

    2017-06-01

    Reflectance anisotropy spectroscopy (RAS) allows for in-situ monitoring of reactive ion etching (RIE) of monocrystalline III-V semiconductor surfaces. Upon use of RAS the sample to be etched is illuminated with broad-band linearly polarized light under nearly normal incidence. Commonly the spectral range is between 1.5 and 5.5 eV. Typically the spectrally resolved difference in reflectivity for light of two orthogonal linear polarizations of light is measured with respect to time - for example for cubic lattices (like the zinc blende structures of most III-V semiconductors) polarizations along the [110] and the [-110] direction. Local anisotropies on the etch front cause elliptical polarization of the reflected light resulting in the RAS signal. The time and photon energy resolved spectra of RAS include reflectometric as well as interferometric information. Light with wavelengths well above 100 nm (even inside the material) can be successfully used to monitor surface abrasion with a resolution of some tens of nanometers. The layers being thinned out act as optical interferometers resulting in Fabry-Perot oscillations of the RAS-signal. Here we report on RAS measurements assessing the surface deconstruction during dry etching. For low etch rates our experimental data show even better resolution than that of the (slow) Fabry-Perot oscillations. For certain photon energies we detect monolayer-etch-related oscillations in the mean reflectivity, which give the best possible resolution in etch depth monitoring and control, i.e. the atomic scale.

  8. Highly sensitive fiber grating chemical sensors: An effective alternative to atomic absorption spectroscopy

    Science.gov (United States)

    Laxmeshwar, Lata. S.; Jadhav, Mangesh S.; Akki, Jyoti. F.; Raikar, Prasad; Kumar, Jitendra; prakash, Om; Raikar, U. S.

    2017-06-01

    Accuracy in quantitative determination of trace elements like Zinc, present in drinking water in ppm level, is a big challenge and optical fiber gratings as chemical sensors may provide a promising solution to overcome the same. This paper presents design of two simple chemical sensors based on the principle of shift in characteristic wavelength of gratings with change in their effective refractive index, to measure the concentration of Zinc in drinking water using etched short period grating (FBG) and Long period grating (LPG) respectively. Three samples of drinking water from different places have been examined for presence of Zinc. Further, the results obtained by our sensors have also been verified with the results obtained by a standard method, Atomic absorption spectroscopy (AAS). The whole experiment has been performed by fixing the fibers in a horizontal position with the sensor regions at the center of the fibers, making it less prone to disturbance and breaking. The sensitivity of LPG sensor is about 205 times that of the FBG sensor. A few advantages of Fiber grating sensors, besides their regular features, over AAS have also been discussed, that make our sensors potential alternatives for existing techniques in determination of trace elements in drinking water.

  9. Detection of Glucose with Atomic Absorption Spectroscopy by Using Oligonucleotide Functionalized Gold Nanoparticle.

    Science.gov (United States)

    Zhang, Hong; Yan, Honglian; Ling, Liansheng

    2016-06-01

    A novel method for the detection of glucose was established with atomic absorption spectroscopy by using the label of gold nanoparticle (AuNP). Silver-coated glass assembled with oligonucleotide 5'-SH-T12-AGA CAA GAG AGG-3' (Oligo 1) was acted as separation probe, oligonucleotide 5'-CAA CAG AGA ACG-T12-SH-3' modified gold nanoparticle (AuNP-Oligo 2) was acted as signal-reporting probe. Oligonucleotide 5'-CGT TCT CTG TTG CCT CTC TTG TCT-3' (Oligo 3) could hybridize with Oligo 1 on the surface of silver-coated glass and AuNP-Oligo 2, and free AuNP-Oligo 2 could be removed by rinsing with buffer. Hence the concentration of Oligo 3 was transformed into the concentration of gold element. In addition, Oligo 3 could be cleaved into DNA fragments by glucose, glucose oxidase and Fe(2+)-EDTA through Fenton reaction. Thereby the concentration of glucose could be transformed to the absorbance of gold element. Under the optimum conditions, the integrated absorbance decreased proportionally to the concentration of glucose over the range from 50.0 μM to 1.0 mM with a detection limit of 40.0 μM. Moreover, satisfactory result was obtained when the assay was used to determinate glucose in human serum.

  10. [Detecting Thallium in Water Samples using Dispersive Liquid Phase Microextraction-Graphite Furnace Atomic Absorption Spectroscopy].

    Science.gov (United States)

    Zhu, Jing; Li, Yan; Zheng, Bo; Tang, Wei; Chen, Xiao; Zou, Xiao-li

    2015-11-01

    To develope a method of solvent demulsification dispersive liquid phase microextraction (SD-DLPME) based on ion association reaction coupled with graphite furnace atomic absorption spectroscopy (GFAAS) for detecting thallium in water samples. Methods Thallium ion in water samples was oxidized to Tl(III) with bromine water, which reacted with Cl- to form TlCl4-. The ionic associated compound with trioctylamine was obtained and extracted. DLPME was completed with ethanol as dispersive solvent. The separation of aqueous and organic phase was achieved by injecting into demulsification solvent without centrifugation. The extractant was collected and injected into GFAAS for analysis. With palladium colloid as matrix modifier, a two step drying and ashing temperature programming process was applied for high precision and sensitivity. The linear range was 0.05-2.0 microg/L, with a detection limit of 0.011 microg/L. The relative standard derivation (RSD) for detecting Tl in spiked water sample was 9.9%. The spiked recoveries of water samples ranged from 94.0% to 103.0%. The method is simple, sensitive and suitable for batch analysis of Tl in water samples.

  11. Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy.

    Science.gov (United States)

    Becknell, Nigel; Kang, Yijin; Chen, Chen; Resasco, Joaquin; Kornienko, Nikolay; Guo, Jinghua; Markovic, Nenad M; Somorjai, Gabor A; Stamenkovic, Vojislav R; Yang, Peidong

    2015-12-23

    Understanding the atomic structure of a catalyst is crucial to exposing the source of its performance characteristics. It is highly unlikely that a catalyst remains the same under reaction conditions when compared to as-synthesized. Hence, the ideal experiment to study the catalyst structure should be performed in situ. Here, we use X-ray absorption spectroscopy (XAS) as an in situ technique to study Pt3Ni nanoframe particles which have been proven to be an excellent electrocatalyst for the oxygen reduction reaction (ORR). The surface characteristics of the nanoframes were probed through electrochemical hydrogen underpotential deposition and carbon monoxide electrooxidation, which showed that nanoframe surfaces with different structure exhibit varying levels of binding strength to adsorbate molecules. It is well-known that Pt-skin formation on Pt-Ni catalysts will enhance ORR activity by weakening the binding energy between the surface and adsorbates. Ex situ and in situ XAS results reveal that nanoframes which bind adsorbates more strongly have a rougher Pt surface caused by insufficient segregation of Pt to the surface and consequent Ni dissolution. In contrast, nanoframes which exhibit extremely high ORR activity simultaneously demonstrate more significant segregation of Pt over Ni-rich subsurface layers, allowing better formation of the critical Pt-skin. This work demonstrates that the high ORR activity of the Pt3Ni hollow nanoframes depends on successful formation of the Pt-skin surface structure.

  12. Probing new spin-independent interactions through precision spectroscopy in atoms with few electrons

    Science.gov (United States)

    Delaunay, Cédric; Frugiuele, Claudia; Fuchs, Elina; Soreq, Yotam

    2017-12-01

    The very high precision of current measurements and theory predictions of spectral lines in few-electron atoms allows us to efficiently probe the existence of exotic forces between electrons, neutrons and protons. We investigate the sensitivity to new spin-independent interactions in transition frequencies (and their isotopic shifts) of hydrogen, helium and some heliumlike ions. We find that present data probe new regions of the force-carrier couplings to electrons and neutrons around the MeV mass range. We also find that, below few keV, the sensitivity to the electron coupling in precision spectroscopy of helium and positronium is comparable to that of the anomalous magnetic moment of the electron. Finally, we interpret our results in the dark-photon model where a new gauge boson is kinetically mixed with the photon. There, we show that helium transitions, combined with the anomalous magnetic moment of the electron, provide the strongest indirect bound from laboratory experiments above 100 keV.

  13. Atomic spectroscopy on fusion relevant ions and studies of light impurities in the JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Tunklev, M

    1999-03-01

    The spectrum and energy levels of C IV and the 3l-4l system of the Mg-like ions in the iron group elements have been investigated. This has led to several hundred identified transitions, many of them previously unknown. Using the Charge Exchange Diagnostic system at JET, ion temperatures, rotation velocities and densities have been derived from visible spectroscopic measurements on fully ionised light impurities, such as He, C, N and Ne. The existence of plume contribution from beam produced hydrogen-like ions has been proven beyond any doubt to affect the deduction of the active charge exchange signal of He II. In the case of C VI the plume signal was estimated to be at least a factor of five lower than the active charge exchange signal. Line integrated passive charge exchange emission between neutral background atoms and fully stripped impurity ions has been investigated and modelled. When the synthetic spectrum is fitted into the experimentally detected spectra the neutral background density can be deduced. The importance of including background atoms (H, D and T) as charge exchange donors, not only in state 2s, but also in state 1s, has shown to be crucial in high temperature shots. Transport of light impurities has been studied with gas puff injections into steady state H-mode plasmas. The results suggest that light impurities are transported as described by the neo-classical Pfirsch-Schlueter regime at the edge, whilst in the centre, sawtoothing, preferably to Banana transport, is mixing the plasma and increases the measured values on the diffusion. For the peaking of impurities in a steady state plasma an anomalous treatment was more in agreement with the experimental data. Certain confinement information, previously predicted theoretically as a part of the peaking equation, has been experimentally verified

  14. Identification of microcrystalline rocks using thermal emission spectroscopy

    Science.gov (United States)

    Hardgrove, C. J.; Rogers, D.; Glotch, T. D.; Arnold, J. A.

    2015-12-01

    High-silica deposits on Mars have been discovered from orbit (Holden Crater, Mawrth Vallis) and from landed surface missions to both Gusev Crater (Spirit) and Gale Crater (Curiosity). The character of these silica deposits can be used to understand both the depositional environment (i.e. fumarole vs. sinter) and/or diagenetic process. Initial work has shown that, in the case of opaline silica, there are differences in spectral shape that may be related to surface textural features imparted during formation or post-depositional alteration. Due to the increasing importance of understanding microcrystalline deposits on Mars, here, we study the effects of crystal size and surface roughness on thermal infrared emission spectra of micro- and macro-crystalline quartz. The spectra of chert and macro-crystalline quartz have significant differences in both spectral contrast, and in the rounded doublet between ~1000-1250 cm-1, which can shift and appear less rounded in microcrystalline samples. We find that microcrystalline minerals exhibit naturally rough surfaces compared to their macrocrystalline counterparts at the 10 micron scale; and that this roughness causes distinct spectral differences within the Reststrahlen bands. We find that surface roughness, if rough on the scale of the wavelengths where the wavelength-dependent absorption coefficient (k) is large, can cause not only decreased spectral contrast, but also substantial changes in spectral shape. The spectral shape differences are small enough that the composition of the material is still recognizable, but large enough such that a roughness effect could be detected. We find that my studying the thermal infrared spectral character of the sample, it may be possible to make general inferences about microcrystallinity, and thus aid in the potential reconstruction of sedimentary rock diagenesis.

  15. X-ray photoelectron spectroscopy study of the functionalization of carbon metal-containing nanotubes with phosphorus atoms

    Energy Technology Data Exchange (ETDEWEB)

    Shabanova, I.N., E-mail: xps@fti.udm.ru; Terebova, N.S.

    2013-08-15

    Highlights: •Carbon metal-containing nanotubes (Me–Cu, Ni, Fe) were functionalized with chemical groups containing different concentrations of phosphorous. •The C1s and Me3s spectra were measured by the X-ray photoelectron spectroscopy method. •The values of the atomic magnetic moment of the carbon metal-containing nanotubes were determined. -- Abstract: In the present paper, carbon metal-containing (Me: Cu, Ni, Fe) nanotubes functionalized with phosphorus atoms (ammonium polyphosphate) were studied by X-ray photoelectron spectroscopy (XPS) on an X-ray electron magnetic spectrometer. It is found that the functionalization leads to the change of the metal atomic magnetic moment, i.e. the value of the atomic magnetic moment in the functionalized carbon metal-containing (Cu, Ni, Fe) nanotubes increases and is higher than that in pristine nanotubes. It is shown that the covalent bond of Me and P atoms is formed. This leads to an increase in the activity of the nanostructure surface which is necessary for the modification of materials.

  16. [The Emission Spectroscopy of Nitrogen Discharge under Low Voltage at Room Temperature].

    Science.gov (United States)

    Shen, Li-hua; Yu, Chun-xia; Yan, Bei; Zhang, Cheng-xiao

    2015-03-01

    A set of direct current (DC) discharge device of N2 plasma was developed, carbon nanotubes (CNT) modified ITO electrode was used as anode, aluminum plate as cathode, with -80 μm separation between them. Nitrogen emission spectra was observed at room temperature and low DC voltage (less than 150 V), and the emission spectrometry was used to diagnose the active species of the process of nitrogen discharge. Under DC discharge, the strongest energy band N2 (C3π(u)), the weak Gaydon's Green system N2 (H3 -Φ(u)-G3 Δ(g)) and the emission line of nitrogen atoms (4 p-4 p0) at 820 nm were observed. Found that metastable state of nitrogen molecules were the main factors leading to a series of excited state nitrogen atoms and nitrogen ionization. Compared the emission spectra under DC with that under alternating current (AC) (1.1 kV), and it can be seen that under DC the spectra band of nitrogen atoms can be obviously observed, and there was a molecular band in the range of 500 - 800 nm. The effect of oxygen and hydrogen on the emission spectra of nitrogen was investigated. The results showed that the oxygen inhibited the luminescence intensity of nitrogen, but the shape of spectra unchanged. All of the second positive system, Gaydon's Green system and atomic lines of nitrogen can be observed. The second positive system and Gaydon's Green system of nitrogen will be greatly affected when the volume ratio of nitrogen and hydrogen greatly affected is 1 : 1, which was due to the hydrogen. The hydrogen can depresse nitrogen plasma activation, and make the Gaydon's Green System disappeared. CNT modified ITO electrode can reduce the breakdown voltage, and the optical signal generated by the weakly ionized gas can be observed by the photo-multiplier tube at low voltage of 10 V.

  17. Assessment of macronutrients and heavy metals in Fagonia cretica Linn of Pakistan by atomic spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Naeem

    2014-05-01

    Full Text Available The macronutrients and heavy metals content of different parts of a locally found herb named Fagonia cretica, an important medicinal herb, were investigated. Al, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Sr and Zn were measured in roots, shoots, leaves, spines and flowers/fruits of the plant. The analysis was carried out by inductively coupled plasma optical emission spectrometry (ICP-OES and atomic absorption spectrophotometry (AAS. The results revealed that the Fagonia cretica accumulate the elemental contents at different parts. The accuracy of the method was checked by analysing a certified reference material and the results were in agreement with the enumerate value. The presence of a certain set of elements at percentage level like Ca, K and Mg is useful for strengthening of bones and body. Other elements important from health perspective including Al, Co, Cr, Cu, Fe, Mn, Na, Sr and Zn are found at ppm levels in all parts of the plant. DOI: http://dx.doi.org/10.4314/bcse.v28i2.2

  18. Standard practice for analysis of aqueous leachates from nuclear waste materials using inductively coupled plasma-atomic emission spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice is applicable to the determination of low concentration and trace elements in aqueous leachate solutions produced by the leaching of nuclear waste materials, using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). 1.2 The nuclear waste material may be a simulated (non-radioactive) solid waste form or an actual solid radioactive waste material. 1.3 The leachate may be deionized water or any natural or simulated leachate solution containing less than 1 % total dissolved solids. 1.4 This practice should be used by analysts experienced in the use of ICP-AES, the interpretation of spectral and non-spectral interferences, and procedures for their correction. 1.5 No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-AES instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices...

  19. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

    Directory of Open Access Journals (Sweden)

    Alberto Milani

    2015-02-01

    Full Text Available Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs can be arranged in two possible structures: a sequence of double bonds (cumulenes, resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes, expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms and the type of termination (e.g., atom, molecular group or nanostructure. Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length. Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds.

  20. Experimental Investigation Of Segregation Of Carbon Atoms Due To Sub-Zero Cryogenic Treatment In Cold Work Tool Steel By Mechanical Spectroscopy And Atom Probe Tomography

    Directory of Open Access Journals (Sweden)

    Min N.

    2015-06-01

    Full Text Available In this work, we present mechanical spectroscopy of cold work tool steel subjected to sub-zero cryogenic soaking treatment to reveal the carbon segregation and the subsequent carbides refinement. The maximum of Snoek-Köster (SK peak height was obtained in the sample subjected to soaking 1h at −130°C cryogenic treatment. The SK peak height is reduced with prolonging the soaking time. The results indicate that an increase in the height of SK peak is connected with an increase in dislocation density and the number of segregated carbon atoms in the vicinity of dislocations or twin planes after martensite transformation at −130°C which is confirmed by corresponding TEM and atom probe tomography measurement. Hence, it is suggested that the isothermal martensite, formed during the cryogenic soaking treatment decreases (APT the height of SK peak.

  1. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  2. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells.

    Science.gov (United States)

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P

    2017-04-17

    Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.

  3. Detection of laser-produced tin plasma emission lines in atmospheric environment by optical emission spectroscopy technique

    Science.gov (United States)

    Aadim, Kadhim A.

    2017-12-01

    A spectroscopic study on laser-produced tin plasma utilizing the optical emission spectroscopy (OES) technique is presented. Plasma is produced from a solid tin target irradiated with pulsed laser in room environment. Electron temperature is determined at different laser peak powers from the ratio of line intensities, while electron density is deduced from Saha-Boltzmann equation. A limited number of suitable tin lines are detected, and the effect of the laser peak power on the intensity of emission lines is discussed. Electron temperatures are measured in the range of 0.36 eV-0.44 eV with electron densities of the order 1017 cm-3 as the laser peak power is varied from 11 MW to 22 MW.

  4. Hole emission from Ge/Si quantum dots studied by time-resolved capacitance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kapteyn, C.M.A.; Lion, M.; Heitz, R.; Bimberg, D. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik; Miesner, C.; Asperger, T.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Emission of holes from self-organized Ge quantum dots (QDs) embedded in Si Schottky diodes is studied by time-resolved capacitance spectroscopy (DLTS). The DLTS signal is rather broad and depends strongly on the filling and detection bias conditions. The observed dependence is interpreted in terms of carrier emission from many-hole states of the QDs. The activation energies obtained from the DLTS measurements are a function of the amount of stored charge and the position of the Fermi level in the QDs. (orig.)

  5. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Walder, Robert; Van Patten, William J; Adhikari, Ayush; Perkins, Thomas T

    2018-01-23

    Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements. This inaccuracy is particularly problematic in AFM studies using double-stranded DNA and RNA due to their large persistence length (p ≈ 50 nm), often limiting such studies to other SMFS platforms (e.g., custom-built optical and magnetic tweezers). Here, we developed an automated algorithm that aligns the AFM tip above the DNA's attachment point to a coverslip. Importantly, this algorithm was performed at low force (10-20 pN) and relatively fast (15-25 s), preserving the connection between the tip and the target molecule. Our data revealed large uncorrected lateral offsets for 100 and 650 nm DNA molecules [24 ± 18 nm (mean ± standard deviation) and 180 ± 110 nm, respectively]. Correcting this offset yielded a 3-fold improvement in accuracy and precision when characterizing DNA's overstretching transition. We also demonstrated high throughput by acquiring 88 geometrically corrected force-extension curves of a single individual 100 nm DNA molecule in ∼40 min and versatility by aligning polyprotein- and PEG-based protein-ligand assays. Importantly, our software-based algorithm was implemented on a commercial AFM, so it can be broadly adopted. More generally, this work illustrates how to enhance AFM-based SMFS by developing more sophisticated data-acquisition protocols.

  6. Multiparametric characterisation of metal-chalcogen atomic multilayer assembly by potentiodynamic electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ragoisha, G.A. [Physico-Chemical Research Institute, Belarusian State University, Minsk 220050 (Belarus)], E-mail: ragoishag@bsu.by; Bondarenko, A.S. [Physico-Chemical Research Institute, Belarusian State University, Minsk 220050 (Belarus); Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede (Netherlands); Osipovich, N.P. [Physico-Chemical Research Institute, Belarusian State University, Minsk 220050 (Belarus); Rabchynski, S.M.; Streltsov, E.A. [Chemistry Department, Belarusian State University, Minsk 220050 (Belarus)

    2008-04-20

    An approach to multiparametric characterisation of variable electroactive interfaces based on potentiodynamic electrochemical impedance spectroscopy (PDEIS) [G.A. Ragoisha, A.S. Bondarenko, Electrochim. Acta 50 (2005) 1553] has been extended to atomic multilayer assembly monitoring. The multilayers were formed by successive underpotential deposition of Te, Se and Pb or Cu adlayers on Au, and also by cadmium adlayer deposition on tellurium underlayer supported by gold. These multilayers were characterised in potentiodynamic mode by dependences of ac equivalent circuit parameters on electrode potential. The dependences disclose variations of interfacial double electric layer, charge transfer and diffusion. The dependencies of the characteristic parameters of the Au/Te{sub ad}/Se{sub ad}/Pb{sub ad} composite three-layer have been found to be significantly different from the corresponding dependences of Au/Te{sub ad}/Pb{sub ad} and Au/Se{sub ad}/Pb{sub ad} bilayers, while Au/Te{sub ad}/Se{sub ad}/Cu{sub ad} has shown much similarity with Au/Se{sub ad}/Cu{sub ad} in Faradaic part of ac response. Upd of Pb, Cu and Cd on the chalcogen adlayers has shown irreversibility with especially strong potential shift of adlayer oxidation potential in the case of lead deposition on bi-chalcogen Au/Te{sub ad}/Se{sub ad} underlayer. Unlike Pb adlayer, which is formed locally on top of tellurium-selenium bilayer and could be fully dissolved in the anodic scan in the potential range of stability of the chalcogen composite underlayer, copper penetrated into the Au/Te{sub ad}/Se{sub ad} bilayer and dissolved incompletely at Cu adlayer oxidation potential. The self-descriptiveness of potential dependences of circuit parameters suggests PDEIS to be a handy tool for layer-by-layer deposition monitoring in electrochemical nanotechnologies.

  7. Evaluation of Serum Copper Level in Naswar (Smokeless Tobacco) Addicts Using Flame Atomic Absorption Spectroscopy.

    Science.gov (United States)

    Ullah, Asmat; Khan, Abad; Iqbal, Zafar; Khan, Ismail

    2017-10-01

    Substance abuse and its consequences are a matter of great concern in South-East Asian countries, especially Pakistan and Afghanistan. Due to contamination of Naswar with copper, or by any other physiological mechanism, there is a great chance of copper poisoning in addicts. Keeping in view the literature, there is no comparative study on serum copper levels (SCuL) in Naswar addicts. Therefore, it is very important to evaluate SCuL in this population. The current study was performed in September 2016 where a total of 75 volunteers (selected from villages near the University of Peshawar, Pakistan) were grouped as Naswar addicts (n = 45) and the control group (n = 30). The addicts were compared to controls for age, weight, BMI, FBS and creatinine clearance. For serum analysis, about 3mL of blood was collected from which the serum was separated, digested, and then evaluated for SCuL using  flame atomic absorption spectroscopy at the Department of Pharmacy and Centralized Resource Laboratory of University of Peshawar. The SCuL in addicts had a range of 2.6 to 11.1 µg/dL with a mean of 5.1 ± 2.4 µg/dL. In the healthy control group, SCuL was between 1.7 to 3.9 µg/dL with a mean of 2.6 ±0.1 µg/dL. The mean difference between the two study groups was statistically significant (P = 0.005); the duration of addiction and quantity of drug consumptions per day correlated positively with SCuL. Serum level of copper in Naswar addicts is elevated compared to the Control group. The exact cause of SCuL elevations and the mechanisms involved must be studied in large group samples.

  8. A Pragmatic Smoothing Method for Improving the Quality of the Results in Atomic Spectroscopy.

    Science.gov (United States)

    Bennun, Leonardo

    2017-07-01

    A new smoothing method for improvement on the quantification of spectral signals, which requires the previous knowledge of the functions that should be quantified, is presented. These functions are used as weighted coefficients in the proposed smoothing algorithm. This method is extremely effective in reducing the scatter of signals obtained by the multichannel analyzer and it could be applied in atomic and nuclear spectroscopies, preferably to these techniques where net counts are a linear function of the acquisition time, like total reflection X-ray fluorescence, micro X-ray fluorescence, etc. If this algorithm is properly applied, it does not distort the form or the intensity of the signal, so it is well suited for use in all kinds of spectroscopic techniques. However, it should not be applied to data obtained from systems depending on time, e.g., control sciences, time series, sound analysis, etc. We applied this method over simulated data and real experimental measurements. As with all smoothing techniques, the proposed method improves the precision of the results, but when it was applied to computer-simulated spectra, we found a systematic enhancement on the accuracy of the results. We still do not have an answer for this apparent paradox. We also have to evaluate, in spectral analysis, the improvement produced by this smoothing procedure over detection and quantification limits. When this algorithm is applied over experimental results, it is mandatory that the sought characteristic functions, required for this weighted smoothing method, should be obtained from a system with strong stability. If the sought signals are not perfectly clean, this method should be applied with care.

  9. Emission of fast hydrogen atoms at a plasma–solid interface in a low density plasma containing noble gases

    Science.gov (United States)

    Marchuk, O.; Brandt, C.; Pospieszczyk, A.; Reinhart, M.; Brezinsek, S.; Unterberg, B.; Dickheuer, S.

    2018-01-01

    The source of the broad radiation of fast hydrogen atoms in plasmas containing noble gases remains one of the most discussed problems relating to plasma–solid interface. In this paper, we present a detailed study of Balmer lines emission generated by fast hydrogen and deuterium atoms in an energy range between 40 and 300 eV in a linear magnetised plasma. The experiments were performed in gas mixtures containing hydrogen or deuterium and one of the noble gases (He, Ne, Ar, Kr or Xe). In the low-pressure regime (0.01–0.1 Pa) of plasma operation emission is detected by using high spectral and spatial resolution spectrometers at different lines-of-sight for different target materials (C, Fe, Rh, Pd, Ag and W). We observed the spatial evolution for H α , H β and H γ lines with a resolution of 50 μm in front of the targets, proving that emission is induced by reflected atoms only. The strongest radiation of fast atoms was observed in the case of Ar–D or Ar–H discharges. It is a factor of five less in Kr–D plasma and an order of magnitude less in other rare gas mixture plasmas. First, the present work shows that the maximum of emission is achieved for the kinetic energy of 70–120 eV/amu of fast atoms. Second, the emission profile depends on the target material as well as surface characteristics such as the particle reflection, e.g. angular and energy distribution, and the photon reflectivity. Finally, the source of emission of fast atoms is narrowed down to two processes: excitation caused by collisions with noble gas atoms in the ground state, and excitation transfer between the metastable levels of argon and the excited levels of hydrogen or deuterium.

  10. Investigation of microplasma discharge in sea water for optical emission spectroscopy

    Science.gov (United States)

    Gamaleev, Vladislav; Okamura, Yo; Kitamura, Kensuke; Hashimoto, Yusuke; Oh, Jun-Seok; Furuta, Hiroshi; Hatta, Akimitsu

    2016-07-01

    Microplasma discharge in sea water for optical emission spectroscopy was investigated using a needle-to-plane electrode system. The electrodes of a Pd needle and a Pt plate were placed with a gap of 25 µm in typical artificial sea water or locally sampled natural deep sea water. A pulse current source, consisting of a MOSFET switch, a capacitor, an inductor and the resistance of the sea water between the electrodes, was used. The circuit parameters were optimized to decrease the breakdown voltage and the spark duration to suppress erosion of the electrodes. Using a microgap configuration, spark discharges were reproducibly ignited in the highly conductive sea water at low breakdown voltages. The ignition of spark discharges required not only a critical voltage sufficient for breakdown, but also a critical energy for preheating of the sea water, sufficient for bubble formation. The possibility of using optical emission spectroscopy of microplasma in water is shown for identifying elemental composition of sea water.

  11. PREFACE: International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces

    Science.gov (United States)

    Dowek, Danielle; Bennani, Azzedine; Lablanquie, Pascal; Maquet, Alfred

    2008-12-01

    The 2008 edition of the International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces was held in Paris from 30 June to 2 July 2008. This biennial conference alternates with the International Symposium on (e,2e), Double Photoionization and Related Topics which is a satellite of the International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC) conference. Over 110 participants from 20 countries gathered to examine the latest developments in the field of radiation interactions with matter. These include electron-electron correlation effects in excitation and in single and multiple ionization of atoms, molecules, clusters and surfaces with various projectiles: electrons, photons and ions. The present proceedings gathers the contributions of invited speakers and is intended to provide a detailed state-of-the-art account of the various facets of the field. Special thanks are due to Université Paris Sud XI, CNRS, and the laboratories LCAM, LIXAM and LCPMR which provided financial support for the organization of the conference. We are also grateful to the contribution of the companies Varian and RoentDek Handels GmbH. Guest Editors: Danielle Dowek and Azzedine Bennani LCAM, Université Paris Sud XI, France Pascal Lablanquie and Alfred Maquet LCPMR, Université Pierre et Marie Curie, Paris, France INTERNATIONAL SCIENTIFIC COMMITTEE Lorenzo Avaldi, (Italy) Alexei Grum Grzhimailo, (Russia) Klaus Bartschat, (USA) Nikolai Kabachnik, (Russia) Jamal Berakdar, (Germany) Birgit Lohmann, (Australia) Nora Berrah, (USA) Don H Madison, (USA) Michael Brunger, (Australia) Francis Penent, (France) Albert Crowe, (UK) Bernard Piraux, (Belgium) Claude Dal Cappello, (France) Roberto Rivarola, (Argentina) JingKang Deng, (China) Emma Sokkel, (Ireland) Alexander Dorn, (Germany) Giovanni Stefani, (Italy) Reinhardt Dorner, (Germany) Noboru Watanabe, (Japan) François Frémont, (France) LOCAL ORGANIZING COMMITTEE Azzedine BENNANI (Chair

  12. Flame emission spectroscopy measurement of a steam blast and air blast burner

    Directory of Open Access Journals (Sweden)

    Jozsa Viktor

    2017-01-01

    Full Text Available Control and online monitoring of combustion have become critical to meet the increasingly strict pollutant emission standards. For such a purpose, optical sensing methods, like flame emission spectrometry, seem to be the most feasible technique. Spectrometry is capable to provide information about the local equivalence ratio inside the flame through the chemiluminescence intensity ratio measurement of various radicals. In the present study, a 15 kW atmospheric burner was analyzed utilizing standard diesel fuel. Its plain jet type atomizer was operated with both air and steam atomizing mediums. Up to now, injection of steam into the reaction zone has attracted less scientific attention contrary to its practical importance. Spatial plots of OH*, CH*, and C2* excited radicals were analyzed at 0.35, 0.7, and 1 bar atomization gauge pressures, utilizing both atomizing mediums. The C2* was found to decrease strongly with increasing steam addition. The OH*/CH* and OH*/C2* chemiluminescence intensity ratios along the axis showed a divergent behavior in all the analyzed cases. Nevertheless, CH*/C2* chemiluminescence intensity ratio decreased only slightly, showing low sensitivity to the position of the spectrometer. The findings may be directly applied in steady operating combustion systems, i. e., gas turbines, boilers, and furnaces.

  13. Copper Determination in Gunshot Residue by Cyclic Voltammetric and Inductive Coupled Plasma-Optical Emission Spectroscopy

    OpenAIRE

    Mohd Hashim Nurul’Afiqah Hashimah; Mohd Zain Zainiharyati; Jaafar Mohd Zuli

    2016-01-01

    Analysis of gunshot residue (GSR) is a crucial evidences for a forensic analyst in the fastest way. GSR analysis insists a suitable method provides a relatively simple, rapid and precise information on the spot at the crime scene. Therefore, the analysis of Cu(II) in GSR using cyclic voltammetry (CV) on screen printed carbon electrode (SPCE) is a better choice compared to previous alternative methods such as Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) those required a lon...

  14. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    Science.gov (United States)

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  15. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    Science.gov (United States)

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  16. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DEFF Research Database (Denmark)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    2017-01-01

    valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitals directly involved in the light-driven dynamics; a change in the metal ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations......We probe the dynamics of valence electrons in photoexcited [Fe(terpy)2]2+ in solution to gain deeper insight into the Fe ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making...... it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied...

  17. Intra- and intercycle interference of electron emission in laser assisted XUV atomic ionization

    CERN Document Server

    Gramajo, Ana Alicia; Garibotti, Carlos Roberto; Arbó, Diego

    2016-01-01

    We study the ionization of atomic hydrogen in the direction of polarization due to a linearly polarized XUV pulse in the presence a strong field IR. We describe the photoelectron spectra as an interference problem in the time domain. Electron trajectories steming from different optical laser cycles give rise to intercycle interference energy peaks known as sidebands. These sidebands are modulated by a grosser structure coming from the intracycle interference of the two electron trajectories born during the same optical cycle. We make use of a simple semiclassical model which offers the possibility to establish a connection between emission times and the photoelectron kinetic energy. We compare the semiclassical predictions with the continuum-distorted wave strong field approximation and the ab initio solution of the time dependent Schr\\"odinger equation. We analyze such interference pattern as a function of the time delay between the IR and XUV pulse and also as a function of the laser intensity.

  18. Radiative emission of neutrino pairs in atoms and light sterile neutrinos

    Directory of Open Access Journals (Sweden)

    D.N. Dinh

    2015-03-01

    Full Text Available The process of Radiative Emission of Neutrino Pair (RENP in atoms is sensitive to the absolute neutrino mass scale, the type of spectrum neutrino masses obey and the nature – Dirac or Majorana – of massive neutrinos. We analyse the possibility to test the hypothesis of existence of neutrinos with masses at the eV scale coupled to the electron in the weak charged lepton current in an RENP experiment. The presence of eV scale neutrinos in the neutrino mixing is associated with the existence of sterile neutrinos which mix with the active flavour neutrinos. At present there are a number of hints for active–sterile neutrino oscillations driven by Δm2∼1 eV2. We perform a detailed analysis of the RENP phenomenology within the “3+1” scheme with one sterile neutrino.

  19. Estimation of lead, cadmium and nickel content by means of Atomic Absorption Spectroscopy in dry fruit bodies of some macromycetes growing in Poland. II.

    Directory of Open Access Journals (Sweden)

    Jan Grzybek

    2014-08-01

    Full Text Available The content of lead, cadmium, and nickel in dry fruit bodies of 34 species of macromyoetes collected in Poland from 72 natural babitats by means of Atomic Absorption Spectroscopy (AAS was estimated.

  20. VUV absorption spectroscopy measurements of the role of fast neutral atoms in a high-power gap breakdown

    Science.gov (United States)

    Filuk; Bailey; Cuneo; Lake; Nash; Noack; Maron

    2000-12-01

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. We describe a newly developed diagnostic tool that provides a direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1-mm spatial resolution in the 10-mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO2 gas fills confirm the reliability of the diagnostic technique. Throughout the 50-100 ns ion diode pulses no measurable neutral absorption was seen, setting upper limits of (0.12-1.5)x10(14) cm(-3) for ground-state fast neutral atom densities of H, C, N, O, and F. The absence of molecular absorption bands also sets upper limits of (0.16-1.2)x10(15) cm(-3) for common simple molecules. These limits are low enough to rule out ionization of fast neutral atoms as a breakdown mechanism. Breakdown due to ionization of molecules is also found to be unlikely. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

  1. Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy.

    Science.gov (United States)

    Wang, Jiankang; Farrell, James

    2003-09-01

    Metallic iron filings are commonly employed as reducing agents in permeable barriers used for remediating groundwater contaminated by chlorinated solvents. Reactions of trichloroethylene (TCE) and tetrachloroethylene (PCE) with zerovalent iron were investigated to determine the role of atomic hydrogen in their reductive dechlorination. Experiments simultaneously measuring dechlorination and iron corrosion rates were performed to determine the fractions of the total current going toward dechlorination and hydrogen evolution. Corrosion rates were determined using Tafel analysis, and dechlorination rates were determined from rates of byproduct generation. Electrochemical impedance spectroscopy (EIS) was used to determine the number of reactions that controlled the observed rates of chlorocarbon disappearance, as well as the role of atomic hydrogen in TCE and PCE reduction. Comparison of iron corrosion rates with those for TCE reaction showed that TCE reduction occurred almost exclusively via atomic hydrogen at low pH values and via atomic hydrogen and direct electron transfer at neutral pH values. In contrast, reduction of PCE occurred primarily via direct electron transfer at both low and neutral pH values. At low pH values and micromolar concentrations, TCE reaction rates were faster than those for PCE due to more rapid reduction of TCE by atomic hydrogen. At neutral pH values and millimolar concentrations, PCE reaction rates were faster than those for TCE. This shift in relative reaction rates was attributed to a decreasing contribution of the atomic hydrogen reaction mechanism with increasing halocarbon concentrations and pH values. The EIS data showed that all the rate limitations for TCE and PCE dechlorination occurred during the transfer of the first two electrons. Results from this study show that differences in relative reaction rates of TCE and PCE with iron are dependent on the significance of the reduction pathway involving atomic hydrogen.

  2. Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy

    Science.gov (United States)

    Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.

    2015-01-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…

  3. Evaluation of Optical Depths and Self-Absorption of Strontium and Aluminum Emission Lines in Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Alfarraj, Bader A; Bhatt, Chet R; Yueh, Fang Yu; Singh, Jagdish P

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) is a widely used laser spectroscopic technique in various fields, such as material science, forensic science, biological science, and the chemical and pharmaceutical industries. In most LIBS work, the analysis is performed using radiative transitions from atomic emissions. In this study, the plasma temperature and the product [Formula: see text] (the number density N and the absorption path length [Formula: see text]) were determined to evaluate the optical depths and the self-absorption of Sr and Al lines. A binary mixture of strontium nitrate and aluminum oxide was used as a sample, consisting of variety of different concentrations in powder form. Laser-induced breakdown spectroscopy spectra were collected by varying various parameters, such as laser energy, gate delay time, and gate width time to optimize the LIBS signals. Atomic emission from Sr and Al lines, as observed in the LIBS spectra of different sample compositions, was used to characterize the laser induced plasma and evaluate the optical depths and self-absorption of LIBS.

  4. Rapid and simultaneous determination of essential minerals and trace elements in human milk by improved flame atomic absorption spectroscopy (FAAS) with microwave digestion.

    Science.gov (United States)

    Luo, Yang; Zhang, Bo; Chen, Ming; Wang, Jue; Zhang, Xue; Gao, Wei-Yin; Huang, Jun-Fu; Fu, Wei-Ling

    2010-09-08

    A method for the simultaneous and economical determination of many trace elements in human milk is developed. Two multi-element hollow cathode lamps (HCLs) were used instead of single-element HCLs to improve the sample throughput of flame atomic absorption spectroscopy (FAAS). The microwave digestion of milk is optimized prior to detection, and the performance characteristics of the improved analysis method are identified. Clinical samples are detected by both FAAS and inductively coupled plasma-optical emission spectroscopy (ICP-OES) for methodology evaluation. Results reveal that the proposed FAAS with multi-element HCLs could determine six essential minerals and trace elements within 15 min. This method provides a linear analytical range of 0.01-10 mg L(-1). For Ca, Cu, Fe, Mg, Mn, and Zn, the limits of determination are 1.5, 3, 1.8, 2.2, 2.1, and 1.3 microg L(-1), respectively. The mean relative standard deviations (RSDs) of intra- and interassays are lower than 7%. Excellent operational characteristics of rapidity, simplicity, and economy make the proposed method a promising one for the quantification of trace elements in human milk in clinics of underdeveloped areas.

  5. Anisotropy resolved multidimensional emission spectroscopy (ARMES): A new tool for protein analysis.

    Science.gov (United States)

    Groza, Radu Constantin; Li, Boyan; Ryder, Alan G

    2015-07-30

    Structural analysis of proteins using the emission of intrinsic fluorophores is complicated by spectral overlap. Anisotropy resolved multidimensional emission spectroscopy (ARMES) overcame the overlap problem by the use of anisotropy, with chemometric analysis, to better resolve emission from different fluorophores. Total synchronous fluorescence scan (TSFS) provided information about all the fluorophores that contributed to emission while anisotropy provided information about the environment of each fluorophore. Here the utility of ARMES was demonstrated via study of the chemical and thermal denaturation of human serum albumin (HSA). Multivariate curve resolution (MCR) analysis of the constituent polarized emission ARMES data resolved contributions from four emitters: fluorescence from tryptophan (Trp), solvent exposed tyrosine (Tyr), Tyr in a hydrophobic environment, and room temperature phosphorescence (RTP) from Trp. The MCR scores, anisotropy, and literature validated these assignments and showed all the expected transitions during HSA unfolding. This new methodology for comprehensive intrinsic fluorescence analysis of proteins is applicable to any protein containing multiple fluorophores. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy

    Science.gov (United States)

    Bertilsson, Simon; Larsson, Fredrik; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik

    2017-10-01

    In the last few years the use of Li-ion batteries has increased rapidly, powering small as well as large applications, from electronic devices to power storage facilities. The Li-ion battery has, however, several safety issues regarding occasional overheating and subsequent thermal runaway. During such episodes, gas emissions from the electrolyte are of special concern because of their toxicity, flammability and the risk for gas explosion. In this work, the emissions from heated typical electrolyte components as well as from commonly used electrolytes are characterized using FT-IR spectroscopy and FT-IR coupled with thermogravimetric (TG) analysis, when heating up to 650 °C. The study includes the solvents EC, PC, DEC, DMC and EA in various single, binary and ternary mixtures with and without the LiPF6 salt, a commercially available electrolyte, (LP71), containing EC, DEC, DMC and LiPF6 as well as extracted electrolyte from a commercial 6.8 Ah Li-ion cell. Upon thermal heating, emissions of organic compounds and of the toxic decomposition products hydrogen fluoride (HF) and phosphoryl fluoride (POF3) were detected. The electrolyte and its components have also been extensively analyzed by means of infrared spectroscopy for identification purposes.

  7. Time-of-flight spectroscopy of muonic hydrogen atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.C. [Dept. of Physics and Astronomy, Univ. of British Columbia, Vancouver, BC (Canada)]|[Dept. of Physics, Faculty of Science, Univ. of Tokyo (Japan); Adamczak, A. [Inst. of Nuclear Physics, Krakow (Poland); Bailey, J.M. [Chester Technology, Chester (United Kingdom); Beer, G.A.; Mason, G.R. [Dept. of Physics and Astronomy, Univ. of Victoria, BC (Canada); Beveridge, J.L.; Marshall, G.M.; Olin, A. [TRIUMF, Vancouver, BC (Canada); Faifman, M.P. [Russian Research Center, Kurchatov Inst., Moscow (Russian Federation); Huber, T.M. [Dept. of Physics, Gustavus Adolphus Coll., St. Peter, MN (United States); Kammel, P. [Dept. of Physics and Lawrence Berkeley National Lab., Univ. of California, Berkeley, CA (United States); Kim, S.K. [Dept. of Physics, Jeonbuk National Univ., Jeonju City (Korea); Knowles, P.E.; Mulhauser, F. [Inst. of Physics, Univ. of Fribourg (Switzerland); Kunselman, A.R. [Dept. of Physics and Astronomy, Univ. of Wyoming, Laramie, WY (United States); Markushin, V.E.; Petitjean, C. [Paul Scherrer Inst., Villigen (Switzerland); Porcelli, T.A. [Dept. of Physics, Univ. of Northern British Columbia, Prince George, BC (Canada); Zmeskal, J. [Inst. for Medium Energy Physics, Austrian Academy of Sciences, Vienna (Austria)

    2001-07-01

    Studies of muonic hydrogen atoms and molecules have been performed traditionally in bulk targets of gas, liquid or solid. At TRIUMF, Canada's meson facility, we have developed a new type of target system using multilayer thin films of solid hydrogen, which provides a beam of muonic hydrogen atoms in vacuum. Using the time-of-flight of the muonic atoms, the energy-dependent information of muonic reactions are obtained in direct manner.We discuss some unique measurements enabled by the new technique, with emphasis on processes relevant to muon catalyzed fusion.

  8. Application of microwave plasma atomic emission spectrometry (MP-AES) for environmental monitoring of industrially contaminated sites in Hyderabad city.

    Science.gov (United States)

    Kamala C T; Balaram V; Dharmendra V; Satyanarayanan M; Subramanyam K S V; Krishnaiah A

    2014-11-01

    Recently introduced microwave plasma-atomic emission spectroscopy (MP-AES) represents yet another and very important addition to the existing array of modern instrumental analytical techniques. In this study, an attempt is made to summarize the performance characteristics of MP-AES and its potential as an analytical tool for environmental studies with some practical examples from Patancheru and Uppal industrial sectors of Hyderabad city. A range of soil, sediment, water reference materials, particulate matter, and real-life samples were chosen to evaluate the performance of this new analytical technique. Analytical wavelengths were selected considering the interference effects of other concomitant elements present in different sample solutions. The detection limits for several elements were found to be in the range from 0.05 to 5 ng/g. The trace metals analyzed in both the sectors followed the topography with more pollution in the low-lying sites. The metal contents were found to be more in ground waters than surface waters. Since a decade, the pollutants are transfered from Patancheru industrial area to Musi River. After polluting Nakkavagu and turning huge tracts of agricultural lands barren besides making people residing along the rivulet impotent and sick, industrialists of Patancheru are shifting the effluents to downstream of Musi River through an 18-km pipeline from Patancheru. Since the effluent undergoes primary treatment at Common Effluent Treatment Plant (CETP) at Patanchru and travels through pipeline and mixes with sewage, the organic effluents will be diluted. But the inorganic pollutants such as heavy and toxic metals tend to accumulate in the environmental segments near and downstreams of Musi River. The data generated by MP-AES of toxic metals like Zn, Cu, and Cr in the ground and surface waters can only be attributed to pollution from Patancheru since no other sources are available to Musi River.

  9. Atomic spectroscopy and highly accurate measurement: determination of fundamental constants; Spectroscopie atomique et mesures de grande precision: determination de constantes fonfamentales

    Energy Technology Data Exchange (ETDEWEB)

    Schwob, C

    2006-12-15

    This document reviews the theoretical and experimental achievements of the author concerning highly accurate atomic spectroscopy applied for the determination of fundamental constants. A pure optical frequency measurement of the 2S-12D 2-photon transitions in atomic hydrogen and deuterium has been performed. The experimental setting-up is described as well as the data analysis. Optimized values for the Rydberg constant and Lamb shifts have been deduced (R = 109737.31568516 (84) cm{sup -1}). An experiment devoted to the determination of the fine structure constant with an aimed relative uncertainty of 10{sup -9} began in 1999. This experiment is based on the fact that Bloch oscillations in a frequency chirped optical lattice are a powerful tool to transfer coherently many photon momenta to the atoms. We have used this method to measure accurately the ratio h/m(Rb). The measured value of the fine structure constant is {alpha}{sub -1} = 137.03599884 (91) with a relative uncertainty of 6.7*10{sup -9}. The future and perspectives of this experiment are presented. This document presented before an academic board will allow his author to manage research work and particularly to tutor thesis students. (A.C.)

  10. Atomic spectroscopy study of nuclear properties of francium and cesium isotopes; Etude par spectroscopie atomique de proprietes nucleaires d'isotopes de francium et de cesium

    Energy Technology Data Exchange (ETDEWEB)

    Coc, A

    1986-04-15

    This work is based on the study of cesium ({sup 118,146}Cs) and francium ({sup 207-213}Fr,{sup 220-228}Fr) isotopes by hyperfine atomic spectroscopy and on the interpretation of these results from the nuclear physics point of view. The measured nuclear quantities are: the spin, the magnetic moment, the electric quadrupole moment and the mean square charge radius. The experimental method which is based on hyperfine optical pumping with a tunable laser, followed by magnetic analysis of the atoms is described in the first part. Results related to atomic physics are also presented. In the second part, these data are interpreted in the framework of nuclear models. The deformation of light cesium isomers are compared to values obtained from a theoretical self-consistent calculation. Heavy francium isotopes are situated in an area where the existence of static octupole deformations have been predicted. The odd-even staggering measured on the mean square radius is abnormal in this region. However, on the basis of experimental data, no definitive conclusion can be drawn regarding the nature of these deformations. (author)

  11. Investigating the lignocellulosic composition during delignification using confocal raman spectroscopy, cross-polarization magic angle spinning carbon 13 - nuclear magnetic resonance (CP/MAS 13C- NMR) spectroscopy and atomic force microscopy

    CSIR Research Space (South Africa)

    Chunilall, Viren

    2012-03-01

    Full Text Available spectroscopy, Cross-Polarization Magic Angle Spinning Carbon 13 - Nuclear Magnetic Resonance (CP/MAS 13C-NMR) spectroscopy and Atomic Force Microscopy (AFM) in conjunction with image analysis. The confocal Raman results showed that there were differences...

  12. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  13. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    Science.gov (United States)

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of AlxGa1-xAs, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector

    Science.gov (United States)

    Ashtari Esfahani, A.; Böser, S.; Claessens, C.; de Viveiros, L.; Doe, P. J.; Doeleman, S.; Fertl, M.; Finn, E. C.; Formaggio, J. A.; Guigue, M.; Heeger, K. M.; Jones, A. M.; Kazkaz, K.; LaRoque, B. H.; Machado, E.; Monreal, B.; Nikkel, J. A.; Oblath, N. S.; Robertson, R. G. H.; Rosenberg, L. J.; Rybka, G.; Saldaña, L.; Slocum, P. L.; Tedeschi, J. R.; Thümmler, T.; Vandevender, B. A.; Wachtendonk, M.; Weintroub, J.; Young, A.; Zayas, E.

    2017-09-01

    The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron’s Lorentz factor, this is also a measurement of the electron’s energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a gaseous 83m Kr source. Here we present the main design aspects of the first phase prototype, which was operated during parts of 2014 and 2015. We will also discuss the procedures used to analyze these data, along with the features which have been observed and the performance achieved to date.

  15. Atomic-scale Chemical Imaging and Quantification of Metallic Alloy Structures by Energy-Dispersive X-ray Spectroscopy

    Science.gov (United States)

    Lu, Ping; Zhou, Lin; Kramer, M. J.; Smith, David J.

    2014-01-01

    Determination of atomic-scale crystal structure for nanostructured intermetallic alloys, such as magnetic alloys containing Al, Ni, Co (alnico) and Fe, is crucial for understanding physical properties such as magnetism, but technically challenging due to the small interatomic distances and the similar atomic numbers. By applying energy-dispersive X-ray spectroscopy (EDS) mapping to the study of two intermetallic phases of an alnico alloy resulting from spinodal decomposition, we have determined atomic-scale chemical composition at individual lattice sites for the two phases: one is the B2 phase with Fe0.76Co0.24 -Fe0.40Co0.60 ordering and the other is the L21 phase with Ni0.48Co0.52 at A-sites, Al at BΙ-sites and Fe0.20Ti0.80 at BΙΙ-sites, respectively. The technique developed through this study represents a powerful real-space approach to investigate structure chemically at the atomic scale for a wide range of materials systems. PMID:24492747

  16. Comparison Between X-rays Absorption and Emission Spectroscopy Measurements on a Ceramic Envelop Lamp

    Science.gov (United States)

    Lafitte, Bruno; Aubes, Michel; Zissis, Georges

    2007-12-01

    Burners of metal halide lamps used for illumination are generally made of polycrystalline alumina ceramic (PCA) which is translucent to visible light. We show that the difficulty of selecting a line of sight through the lamp prevents the use of optical emission diagnostic. X-rays photons are mainly absorbed and not scattered by PCA. Absorption by mercury atoms contributing to the discharge allowed us to determine the density of mercury in the lamp. By comparing diagnostic methods, we put in evidence the difficulty of taking into account the scattering of light mathematically.

  17. Piezoelectric tuning fork probe for atomic force microscopy imaging and specific recognition force spectroscopy of an enzyme and its ligand.

    Science.gov (United States)

    Makky, Ali; Viel, Pascal; Chen, Shu-wen Wendy; Berthelot, Thomas; Pellequer, Jean-Luc; Polesel-Maris, Jérôme

    2013-11-01

    Piezoelectric quartz tuning fork has drawn the attention of many researchers for the development of new atomic force microscopy (AFM) self-sensing probes. However, only few works have been done for soft biological materials imaging in air or aqueous conditions. The aim of this work was to demonstrate the efficiency of the AFM tuning fork probe to perform high-resolution imaging of proteins and to study the specific interaction between a ligand and its receptor in aqueous media. Thus, a new kind of self-sensing AFM sensor was introduced to realize imaging and biochemical specific recognition spectroscopy of glucose oxidase enzyme using a new chemical functionalization procedure of the metallic tips based on the electrochemical reduction of diazonium salt. This scanning probe as well as the functionalization strategy proved to be efficient respectively for the topography and force spectroscopy of soft biological materials in buffer conditions. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Reverse engineering of an affinity-switchable molecular interaction characterized by atomic force microscopy single-molecule force spectroscopy.

    Science.gov (United States)

    Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert

    2008-02-19

    Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.

  19. Direct imaging of three-dimensional atomic arrangement by stereophotography using two-dimensional photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Daimon, H., E-mail: daimon@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Matsui, F.; Goto, K.; Matsumoto, T. [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Kato, Y.; Matsushita, T. [SPring-8/JASRI, Kouto 1-1-1, Mikazuki, Sayo, Hyogo 679-5198 (Japan)

    2011-08-21

    We have developed a new method, 'stereo-atomscope', to obtain a stereophotograph of the three-dimensional atomic arrangement around a specific atom at the surface, with which one can view the three-dimensional atomic arrangement directly by naked eyes. The azimuthal shifts of forward focusing peaks in the photoelectron angular distribution pattern obtained with left and right helicity lights are the same as the parallax in a stereo-view. Taking advantage of this phenomenon of circular dichroism in the photoelectron angular distribution, one can realize a stereoscope of atomic arrangement. A display-type spherical-mirror analyzer has been used to obtain stereoscopic photographs directly on the screen without any computer-aided conversion process.

  20. Measurement of the magnetic field profile in the atomic fountain clock FoCS-2 using Zeeman spectroscopy

    Science.gov (United States)

    Devenoges, Laurent; Di Domenico, Gianni; Stefanov, André; Jallageas, Antoine; Morel, Jacques; Südmeyer, Thomas; Thomann, Pierre

    2017-04-01

    We report the evaluation of the second-order Zeeman shift in the continuous atomic fountain clock FoCS-2. Because of its continuous operation and geometrical constraints, the methods used in pulsed fountains are not applicable. We use here time-resolved Zeeman spectroscopy to probe the magnetic field profile in the clock. Pulses of ac magnetic excitation allow us to spatially resolve the Zeeman frequency and to evaluate the Zeeman shift with a relative uncertainty smaller than 5× {{10}-16} .

  1. Chemical states of localized Fe atoms in ethylene matrices using in-beam Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y., E-mail: kyoshio@pc.uec.ac.jp [University of Electro-Communications, Graduate School of Engineering Science (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan); Tanigawa, S. [University of Electro-Communications, Graduate School of Engineering Science (Japan); Mihara, M. [Osaka University, Graduate School of Science (Japan); Kubo, M. K. [International Christian University, Division of Arts and Sciences (Japan); Sato, W. [Kanazawa University, Institute of Science and Engineering (Japan); Miyazaki, J. [Tokyo University of Agriculture and Technology, Department of Chemical Engineering (Japan); Nagatomo, T. [RIKEN, Nishina Center for Accelerator-Based Science (Japan); Sato, Y.; Natori, D.; Suzuki, M. [University of Electro-Communications, Graduate School of Engineering Science (Japan); Kobayashi, J. [International Christian University, Division of Arts and Sciences (Japan); Sato, S.; Kitagawa, A. [National Institute of Radiological Science (Japan)

    2016-12-15

    The reaction products of isolated single iron atoms in a low concentration matrix of ethylene were studied using in-beam Mössbauer spectroscopy with a short-lived {sup 57}Mn (T{sub 1/2}=1.45 m) beam. The in-beam Mössbauer spectrum of {sup 57}Fe arising from {sup 57}Mn in a matrix of ethylene and argon measured at 16 K was analyzed with four components. Density functional theory calculations were carried out to confirm the assignments. It was suggested that the reaction produced monoiron species of Fe(C {sub 2}H{sub 4}) with a spin state of S = 2.

  2. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Pia C. Lansåker

    2014-10-01

    Full Text Available Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness dg—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM combined with image analysis as well as by atomic force microscopy (AFM. The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for dg were obtained by SEM with image analysis and by AFM.

  3. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    Science.gov (United States)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  4. Excitation-emission matrices (EEMs) and synchronous fluorescence spectroscopy (SFS) investigations of gastrointestinal tissues

    Science.gov (United States)

    Genova, Ts.; Borisova, E.; Zhelyazkova, Al.; Semyachkina-Glushkovskaya, O.; Penkov, N.; Keremedchiev, M.; Vladimirov, B.; Avramov, L.

    2015-01-01

    In this report we will present our recent investigations of the fluorescence properties of lower part gastrointestinal tissues using excitation-emission matrix and synchronous fluorescence spectroscopy measurement modalities. The spectral peculiarities observed will be discussed and the endogenous sources of the fluorescence signal will be addressed. For these fluorescence spectroscopy measurements the FluoroLog 3 system (HORIBA Jobin Yvon, France) was used. It consists of a Xe lamp (300 W, 200-650 nm), a double mono-chromators, and a PMT detector with a work region at 220- 850 nm. Autofluorescence signals were detected in the form of excitation-emission matrices for the samples of normal mucosa, dysphasia and colon carcinoma and specific spectral features for each tissue were found. Autofluorescence signals from the same samples are observed through synchronous fluorescence spectroscopy, which is a novel promising modality for fluorescence spectroscopy measurements of bio-samples. It is one of the most powerful techniques for multicomponent analysis, because of its sensitivity. In the SFS regime, the fluorescence signal is recorded while both excitation λexc and emission wavelengths λem are simultaneously scanned. A constant wavelength interval is maintained between the λexc and λem wavelengths throughout the spectrum. The resulted fluorescence spectrum shows narrower peak widths, in comparison with EEMs, which are easier for identification and minimizes the chance for false determinations or pretermission of specific spectral feature. This modality is also faster, than EEMs, a much smaller number of data points are required.1 In our measurements we use constant wavelength interval Δλ in the region of 10-200 nm. Measurements are carried out in the terms of finding Δλ, which results in a spectrum with most specific spectral features for comparison with spectral characteristics observed in EEMs. Implementing synchronous fluorescence spectroscopy in optical

  5. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J.; Schaefer, K. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1997-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  6. Temporal VUV Emission Characteristics Related to Generations and Losses of Metastable Atoms in Xenon Pulsed Barrier Discharge

    Science.gov (United States)

    Motomura, Hideki; Loo, Ka Hong; Ikeda, Yoshihisa; Jinno, Masafumi; Aono, Masaharu

    Although xenon pulsed dielectric barrier discharge is one of the most promising substitutes for mercury low-pressure discharge for fluorescent lamps, the efficacy of xenon fluorescent lamp is not enough for practical use for general lighting. To improve the efficacy it is indispensable to clarify mechanisms of vacuum ultraviolet (VUV) emissions, which excite phosphor, from xenon discharge related to plasma characteristics. In this paper emission waveforms and temporal change of metastable atom density are measured and temporal VUV emission characteristics related to generations and losses of metastable atoms in xenon pulsed barrier discharge is investigated. It is shown that the lamp efficacy is improved by about 10% with shorter pulse in which the two VUV emission peaks in a pulse are overlapped. It is also shown that at the lower pressure of 1.3 kPa metastable atoms generated during on-period of the voltage pulse are not efficiently consumed for VUV emissions in the off-period of the voltage pulse because of lower rate of three-body collision and quenching. This fact is thought to be one of the reasons why the lamp efficacy is low at lower pressure.

  7. Monitoring laser cleaning of titanium alloys by probe beam reflection and emission spectroscopy

    Science.gov (United States)

    Whitehead, D. J.; Crouse, P. L.; Schmidt, M. J. J.; Li, L.; Turner, M. W.; Smith, A. J. E.

    2008-10-01

    Studies have shown excimer laser cleaning to be an effective non-chemical alternative method for removing contaminants from surfaces of titanium alloys in preparation for electron beam welding and diffusion bonding, with reference to aerospace applications. Among several important criteria for process acceptability, is the absence of oxide formation. This paper investigates the viability of using a probe beam reflection (PBR) system and laser plume emission spectroscopy (PES) for detection of incipient oxide formation on three typical aerospace titanium alloys, viz. Ti64, Ti6246, and IMI834. These diagnostic techniques have been shown to be capable of sensing different components in the emission plume and yield quantitative results. Results from this work correlate closely with previously reported cleaning mechanisms. The oxidation threshold, as well as the operating window for successful decontamination, is discussed.

  8. Mechanical design of the two dimensional beam emission spectroscopy diagnostics on mast

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Istvan Gabor, E-mail: kiss.istvan.gabor@rmki.kfki.hu [Association EURATOM, KFKI-RMKI, P.O. Box 49, H-1525 Budapest (Hungary); Meszaros, Botond; Dunai, Daniel; Zoletnik, Sandor; Krizsanoczi, Tibor [Association EURATOM, KFKI-RMKI, P.O. Box 49, H-1525 Budapest (Hungary); Field, Anthony R.; Gaffka, Rob [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2011-10-15

    A two dimensional beam emission spectroscopy (BES) system optimized for density turbulence measurements has recently been installed on the MAST tokamak. This system observes the emission of a Deuterium heating beam using a rotatable mirror to view from the plasma centre to the outboard edge (0.7-1.5 m), although the optics is optimized for core region (1.2 m). The beam is imaged onto a 4x8 pixel Avalanche Photodiode (APD) array detector, enabling measurements with 1 MHz bandwidth at photon-flux level of few times 10{sup 11} photons/s. This article will present the mechanical design of MAST BES equipment with special emphasis on its in-vessel components.

  9. X-ray absorption and X-ray emission spectroscopy theory and applications

    CERN Document Server

    Lamberti, Carlo

    2016-01-01

    During the last two decades, remarkable and often spectacular progress has been made in the methodological and instrumental aspects of x–ray absorption and emission spectroscopy. This progress includes considerable technological improvements in the design and production of detectors especially with the development and expansion of large-scale synchrotron reactors All this has resulted in improved analytical performance and new applications, as well as in the perspective of a dramatic enhancement in the potential of x–ray based analysis techniques for the near future. This comprehensive two-volume treatise features articles that explain the phenomena and describe examples of X–ray absorption and emission applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X–ray absorption experiments, and how to analyze the details of the resulting spectra. X-R...

  10. Emission Mössbauer spectroscopy study of fluence dependence of paramagnetic relaxation in Mn/Fe implanted ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Masenda, H., E-mail: hilary.masenda@wits.ac.za [University of the Witwatersrand, School of Physics (South Africa); Geburt, S. [University of Jena, Institute of Solid State Physics (Germany); Bharuth-Ram, K. [Durban University of Technology, Physics Department (South Africa); Naidoo, D. [University of the Witwatersrand, School of Physics (South Africa); Gunnlaugsson, H. P.; Johnston, K. [PH Dept, ISOLDE/CERN (Switzerland); Mantovan, R. [Laboratorio MDM, IMM-CNR (Italy); Mølholt, T. E. [PH Dept, ISOLDE/CERN (Switzerland); Ncube, M. [University of the Witwatersrand, School of Physics (South Africa); Shayestehaminzadeh, S. [RWTH Aachen University, Institute of Materials Chemistry (Germany); Gislason, H. P. [University of Iceland, Science Institute (Iceland); Langouche, G. [Instituut voor Kern-en Stralingsfysica, KU Leuven (Belgium); Ólafsson, S. [University of Iceland, Science Institute (Iceland); Ronning, C. [University of Jena, Institute of Solid State Physics (Germany); Collaboration: ISOLDE Collaboration

    2016-12-15

    Emission Mössbauer Spectroscopy following the implantation of radioactive precursor isotope {sup 57}Mn{sup +} (T{sub 1/2}= 1.5 min) into ZnO single crystals at ISOLDE/CERN shows that a large fraction of {sup 57}Fe atoms produced in the {sup 57}Mn beta decay is created as paramagnetic Fe{sup 3+} with relatively long spin-lattice relaxation times. Here we report on ZnO pre-implanted with {sup 56}Fe to fluences of 2×10{sup 13}, 5×10 {sup 13} and 8 × 10{sup 13} ions/cm{sup 2} in order to investigate the dependence of the paramagnetic relaxation rate of Fe{sup 3+} on fluence. The spectra are dominated by magnetic features displaying paramagnetic relaxation effects. The extracted spin-lattice relaxation rates show a slight increase with increasing ion fluence at corresponding temperatures and the area fraction of Fe{sup 3+} at room temperature reaches a maximum contribution of 80(3)% in the studied fluence range.

  11. Determination of trace elements in refined gold samples by inductively coupled plasma atomic emission spectrometry

    Directory of Open Access Journals (Sweden)

    Steharnik Mirjana

    2013-01-01

    Full Text Available This paper presents a method for determination the trace contents of silver, copper, iron, palladium, zinc and platinum in refined gold samples. Simultaneous inductively coupled plasma atomic emission spectrometer with radial torch position and cross flow nebulizer was used for determination. In order to compare the different calibration strategies, two sets of calibration standards were prepared. The first set was based on matrix matched calibration standards and the second was prepared without the addition of matrix material. Detection limits for matrix matching calibrations were higher for some elements than those without matrix matching. In addition, the internal standardization method was applied and experiments indicated that indium was the best option as internal standard. The obtained results for gold sample by matrix matching and matrix free calibrations were compared with the obtained results by standard addition method. The accuracy of the methods was tested performing recovery test. Recoveries for spiked sample were in the range of 90-115 %. The accuracy of the methods was also tested by analysis of certified reference material of high pure goldAuGHP1. The best results were achieved by matrix free calibration and standard addition method using indium as internal standard at wavelength of 230 nm. [Projekat Ministarstva nauke Republike Srbije, br. 34024: Development of Technologies for Recycling of Precious, Rare and Associated Metals from Solid Waste in Serbia to High Purity Products

  12. Capillary gas chromatography with atomic emission detection for determining chlorophenols in water and soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Campillo, Natalia [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Aguinaga, Nerea [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Vinas, Pilar [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Lopez-Garcia, Ignacio [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Hernandez-Cordoba, Manuel [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain)]. E-mail: hcordoba@um.es

    2005-11-03

    A purge-and-trap preconcentration system coupled to a GC equipped with a microwave-induced atomic emission detector was used to determine 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP) in water and soil samples. The analytes were previously leached from the solid matrices into a 5% (w/v) sodium carbonate solution using an ultrasonic probe. It was necessary to acetylate the compounds before purging them from the aqueous medium, which, at the same time, improved their chromatographic separation. After selecting the optimal experimental conditions, the performance of the system was evaluated. Each chromatographic run took 26 min, including the purge time. Detection limits for 5 ml water samples ranged from 23 to 150 ng l{sup -1}, which is lower than the limits reached using the methods proposed by the US Environmental Pollution Agency (EPA) for chlorophenols in water. For soil samples, detection limits were calculated for 7 g samples, the resulting values ranging between 80 and 540 pg g{sup -1} for 2,4,6-TCP and 2-CP, respectively. The accuracy of the method was checked by analysing a certified reference soil, as well as fortified water and soil samples.

  13. Computer expert system for spectral line simulation and selection in inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Yang, Pengyuan; Ying, Hai; Wang, Xiaoru; Huang, Benli

    1996-07-01

    This paper is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta, Part B (SAB). This hardcopy text, comprising the main body and an appendix, is accompanied by a disk with programs, data files and a brief manual. The main body discusses purpose, design principle and usage of the computer software for the inductively coupled plasma atomic emission spectrometry (ICP-AES) expert system. The appendix provides a brief instruction on the manipulation of the demonstration program and relevant information on accessing the diskette. The computer software of the expert system has been developed in C++ language to simulate spectra and to select analytical lines in ICP-AES. This expert system is based on a comprehensive model of non-LTE ICP-AES, which includes expertise in plasma discharges, analyte ionization and excitation, and spectral-line shapes. The system also provides several databases in which essential elemental and spectral data are stored. A logic reasoning engine is utilized for selection of the best analytical line with a main criterion of minimizing the true detection limit. The system is user-friendly with pop-up menus, an editor for database operation, and a graphic interface for the display of simulated spectra. The system can simulate spectra and predict spectral interferences with good accuracy.

  14. Fluorescence excitation-emission matrix spectroscopy as a tool for determining quality of sparkling wines.

    Science.gov (United States)

    Elcoroaristizabal, Saioa; Callejón, Raquel M; Amigo, Jose M; Ocaña-González, Juan A; Morales, M Lourdes; Ubeda, Cristina

    2016-09-01

    Browning in sparkling wines was assessed by the use of excitation-emission fluorescence spectroscopy combined with PARAllel FACtor analysis (PARAFAC). Four different cava sparkling wines were monitored during an accelerated browning process and subsequently storage. Fluorescence changes observed during the accelerated browning process were monitored and compared with other conventional parameters: absorbance at 420nm (A420) and the content of 5-hydroxymethyl-2-furfural (5-HMF). A high similarity of the spectral profiles for all sparkling wines analyzed was observed, being explained by a four component PARAFAC model. A high correlation between the third PARAFAC factor (465/530nm) and the commonly used non-enzymatic browning indicators was observed. The fourth PARAFAC factor (280/380nm) gives us also information about the browning process following a first order kinetic reaction. Hence, excitation-emission fluorescence spectroscopy, together with PARAFAC, provides a faster alternative for browning monitoring to conventional methods, as well as useful key indicators for quality control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Velocity-changing collisional effects in nonlinear atomic spectroscopy and photon echo decay in gases

    Science.gov (United States)

    Herman, R. M.

    1983-01-01

    A general theory of atomic dipole coherence under the influence of collisional phase changes, inelastic effects and optically active atom velocity changes, including those due to anisotropic interactions is presented. Velocity change effects are obtained in closed form. Line shapes appear as convolutions of standard pressure broadening contours with velocity-change contours. Width and shift parameters for the He-broadened Na D lines at 2 m bar pressure, 380 K are calculated, as are He-induced photon echo decay rates for these lines. Overall agreement with xperiment is reasonably good.

  16. Analytical atomic spectroscopy of plutonium—I. High resolution spectra of plutonium emitted in an inductively coupled plasma

    Science.gov (United States)

    Edelson, M. C.; DeKalb, E. L.; Winge, R. K.; Fassel, V. A.

    In the atomic emission spectrum of Pu-242 emitted in an inductively coupled plasma (ICP) 23 lines with detection limits of less than 100 ng/ml were identified in the 200-700 nm spectral range. The line at 453.614 nm had the best detection limit of 15 ng/ml. The isotopic splittings of several Pu emission lines were resolved with a commercial 1.5m spectrometer. The line at 398.988 nm (Pu-240 wavelength) had the greatest isotope shift, but was interfered with by neighboring Pu lines. Other lines were shown to be useful for Pu isotopic analysis. The hyperfine splitting of some intense Pu-239 lines was measured; the Pu 453.614 nm line exhibited the widest splitting (5.9 pm).

  17. Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer

    Science.gov (United States)

    Fink, Samuel D [Aiken, SC; Fondeur, Fernando F [North Augusta, SC

    2011-10-18

    An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.

  18. Development of Two-Photon Pump Polarization Spectroscopy Probe Technique Tpp-Psp for Measurements of Atomic Hydrogen .

    Science.gov (United States)

    Satija, Aman; Lucht, Robert P.

    2015-06-01

    Atomic hydrogen (H) is a key radical in combustion and plasmas. Accurate knowledge of its concentration can be used to better understand transient phenomenon such as ignition and extinction in combustion environments. Laser induced polarization spectroscopy is a spatially resolved absorption technique which we have adapted for quantitative measurements of H atom. This adaptation is called two-photon pump, polarization spectroscopy probe technique (TPP-PSP) and it has been implemented using two different laser excitation schemes. The first scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-3P levels using a circularly polarized 656-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 656 nm. As a result, the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. The laser beams were created by optical parametric generation followed by multiple pulse dye amplification stages. This resulted in narrow linewidth beams which could be scanned in frequency domain and varied in energy. This allowed us to systematically investigate saturation and Stark effect in 2S-3P transitions with the goal of developing a quantitative H atom measurement technique. The second scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-4P transitions using a circularly polarized 486-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 486 nm. As a result the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. A dye laser was pumped by third harmonic of a Nd:YAG laser to create a laser beam

  19. Robust High-Resolution Imaging and Quantitative Force Spectroscopy in Vacuum with Tuned-Oscillator Atomic Force Microscopy.

    Science.gov (United States)

    Schwarz, Udo; Dagdeviren, Omur; GöTzen, Jan; HöLscher, Hendrik; Altman, Eric

    Atomic force microscopy and spectroscopy are based on locally detecting the interactions between a surface and a sharp probe tip. For highest resolution imaging, noncontact modes that avoid tip-sample contact are used; control of the tip's vertical position is accomplished by oscillating the tip and detecting perturbations induced by its interaction with the surface potential. Due to this potential's nonlinear nature, however, achieving reliable control of the tip-sample distance is challenging, so much so that despite its power vacuum-based noncontact atomic force microscopy has remained a niche technique. Here we introduce a new pathway to distance control that prevents instabilities by externally tuning the oscillator's response characteristics. A major advantage of this operational scheme is that it delivers robust position control in both the attractive and repulsive regimes with only one feedback loop, thereby providing an easy-to-implement route to atomic resolution imaging and quantitative tip-sample interaction force measurement. Financial support from National Science Foundation through the Yale Materials Research Science and Engineering Center (Grant No. MRSEC DMR-1119826) is gratefully acknowledged.

  20. Measurement of titanium in hip-replacement patients by inductively coupled plasma optical emission spectroscopy.

    Science.gov (United States)

    Harrington, Chris F; McKibbin, Craig; Rahanu, Monika; Langton, David; Taylor, Andrew

    2017-05-01

    Background Patients with metal-on-metal hip replacements require testing for cobalt and chromium. There may also be a need to test for titanium, which is used in the construction of the femoral stem in total hip replacements. It is not possible to use quadrupole inductively coupled plasma mass spectrometry due to interferences. Methods Titanium was measured using inductively coupled plasma optical emission spectroscopy using the emission line at 336.1 nm and Y (internal standard) at 371.0 nm. Internal quality control materials were prepared for blood and serum and concentrations assigned using a sector field-inductively coupled plasma mass spectrometer. A candidate whole blood certified reference material was also evaluated. Results The method had detection and quantitation limits of 0.6 and 1.9 µg/L, respectively. The respective bias (%) and measurement uncertainty ( U) (k = 2) were 3.3% and 2.0 µg/L (serum) and - 1.0% and 1.4 µg/L (whole blood). The respective repeatability and intermediate precision (%) were 5.1% and 10.9% (serum) and 2.4% and 8.6% (whole blood). The concentration of titanium was determined in patients' samples, serum (median = 2.4 µg/L, n = 897) and whole blood (median = 2.4 µg/L, n = 189). Serum is recommended for monitoring titanium in patients, since the concentration is higher than in whole blood and the matrix less problematic. In hip fluid samples, the concentrations were much higher (mean 58.5 µg/L, median 5.1 µg/L, n = 83). Conclusions A method based on inductively coupled plasma optical emission spectroscopy was developed and validated for measuring titanium in clinical samples.

  1. In-source laser spectroscopy of polonium isotopes: From atomic physics to nuclear structure

    CERN Multimedia

    Rothe, S

    2014-01-01

    The Resonance Ionization Laser Ion Source RILIS [1] at the CERN-ISOLDE on-line radioactive ion beam facility is essential for ion beam production for the majority of experiments, but it is also powerful tool for laser spectroscopy of rare isotopes. A series of experiments on in-source laser spectroscopy of polonium isotopes [2, 3] revealed the nuclear ground state properties of 191;211;216;218Po. However, limitations caused by the isobaric background of surface-ionized francium isotopes hindered the study of several neutron rich polonium isotopes. The development of the Laser Ion Source and Trap (LIST) [4] and finally its integration at ISOLDE has led to a dramatic suppression of surface ions. Meanwhile, the RILIS laser spectroscopy capabilities have advanced tremendously. Widely tunable titanium:sapphire (Ti:Sa) lasers were installed to complement the established dye laser system. Along with a new data acquisition system [5], this more versatile laser setup enabled rst ever laser spectroscopy of the radioact...

  2. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  3. Monitoring Dielectric Thin-Film Production on Product Wafers Using Infrared Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    NIEMCZYK,THOMAS M.; ZHANG,SONGBIAO; HAALAND,DAVID M.

    2000-12-18

    Monitoring of dielectric thin-film production in the microelectronics industry is generally accomplished by depositing a representative film on a monitor wafer and determining the film properties off line. One of the most important dielectric thin films in the manufacture of integrated circuits is borophosphosilicate glass (BPSG). The critical properties of BPSG thin films are the boron content, phosphorus content and film thickness. We have completed an experimental study that demonstrates that infrared emission spectroscopy coupled with multivariate analysis can be used to simultaneous y determine these properties directly from the spectra of product wafers, thus eliminating the need of producing monitor wafers. In addition, infrared emission data can be used to simultaneously determine the film temperature, which is an important film production parameter. The infrared data required to make these determinations can be collected on a time scale that is much faster than the film deposition time, hence infrared emission is an ideal candidate for an in-situ process monitor for dielectric thin-film production.

  4. Time-resolved emission spectroscopy for the combustion analysis of series production engines

    Science.gov (United States)

    Block, Bernd; Moeser, Petra; Hentschel, Werner

    1997-04-01

    This paper presents a device that detects light emerging from the combustion inside a series production automotive engine. Simultaneous time and wavelength resolution is achieved by this system and it can be applied in a simple manner to either diesel or spark ignition (SI) engines without any geometrical modification or the combustion chamber. An optical probe is inserted into spark plug or glow plug. A fiber is connected to the probe and leads the light to a spectrograph, which provides spectral analysis in the UV and visible wavelength ranges. An intensified streak camera with time resolution in the microsecond range completes the detection unit. This measuring system enables time-resolved emission spectroscopy applied to the light emitted during the combustion in a series production engine. Time-resolved emission spectra are presented from both a diesel and an SI engine. The time behavior of the internal temperature in a diesel engine combustion chamber and its dependence on engine speed and load are measured with this setup using a multiple two-color method. In an SI engine, the time behavior of the emissions of specific molecules or radicals is detected. Thus, differences in the combustion process are demonstrated to be caused by operation with different fuels.

  5. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  6. Uma introdução à espectroscopia atômica: II - o espectro do sódio An introduction to atomic spectroscopy: II - the sodium spectrum

    Directory of Open Access Journals (Sweden)

    Oswaldo Sala

    2007-01-01

    Full Text Available The present article is devoted to Chemistry or Physics undergraduate students, given their difficulty to understand fundamental concepts and technical language used in atomic spectroscopy and quantum mechanics. An easy approach is shown in the treatment of the emission spectrum of the sodium atom without any involved calculations. In a previous article, the hydrogen spectrum was considered and the energy degeneracy of the angular momentum quantum number was observed. For the sodium spectrum, due to the valence electron penetration into internal shells, a breakdown of this degeneracy occurs and a dependence of this penetration on the angular momentum quantum number is observed. The eigenvalues are determined introducing the quantum defect correction (Rydberg correction in the denominator of the Balmer equation, and the energy diagram is obtained. The intensity ratio for the observed doublets is explained by introducing new wave functions, containing the magnetic quantum number of the total angular momentum.

  7. Atomic hydrogen and diatomic titanium-monoxide molecular spectroscopy in laser-induced plasma

    Science.gov (United States)

    Parigger, Christian G.; Woods, Alexander C.

    2017-03-01

    This article gives a brief review of experimental studies of hydrogen Balmer series emission spectra. Ongoing research aims to evaluate early plasma evolution following optical breakdown in laboratory air. Of interest is as well laser ablation of metallic titanium and characterization of plasma evolution. Emission of titanium monoxide is discussed together with modeling of diatomic spectra to infer temperature. The behavior of titanium particles in plasma draws research interests ranging from the modeling of stellar atmospheres to the enhancement of thin film production via pulsed laser deposition.

  8. Multiphoton laser wave-mixing absorption spectroscopy for samarium using a graphite furnace atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Maniaci, Michael J.; Tong, William G. E-mail: william.tong@sdsu.edu

    2004-07-30

    Nonlinear laser wave-mixing optical technique is presented as a sensitive atomic spectroscopic method for the analysis of rare earth elements using an unmodified commercially available graphite furnace (GF) atomizer. A simple nonplanar backward-scattering degenerate four-wave mixing optical arrangement offers sub-picogram detection sensitivity with sub-Doppler Lorentzian-broadened resolution. Nonlinear wave mixing is an unusually sensitive absorption-based optical method that offers both excellent detection sensitivity and sub-Doppler spectral resolution. A mass detection limit of 0.7 pg and a concentration detection limit of 70 pg/ml are determined for a rare earth element, samarium, using the 429.7-nm excitation line.

  9. Probing an Excited-State Atomic Transition Using Hyperfine Quantum Beat Spectroscopy

    CERN Document Server

    Wade, Christopher G; Keaveney, James; Adams, Charles S; Weatherill, Kevin J

    2014-01-01

    We describe a method to observe the dynamics of an excited-state transition in a room temperature atomic vapor using hyperfine quantum beats. Our experiment using cesium atoms consists of a pulsed excitation of the D2 transition, and continuous-wave driving of an excited-state transition from the 6P$_{3/2}$ state to the 7S$_{1/2}$ state. We observe quantum beats in the fluorescence from the 6P$_{3/2}$ state which are modified by the driving of the excited-state transition. The Fourier spectrum of the beat signal yields evidence of Autler-Townes splitting of the 6P$_{3/2}$, F = 5 hyperfine level and Rabi oscillations on the excited-state transition. A detailed model provides qualitative agreement with the data, giving insight to the physical processes involved.

  10. Determination of antimony in drinking waters by an inexpensive, reproducible hydride generator for atomic spectroscopy.

    Science.gov (United States)

    Barbera, R; Farré, R; Romero, I

    1991-01-01

    A method for determining antimony in drinking waters is described. In order to prevent a substantial error caused by the different oxidation states of antimony, Sb(V) is reduced to Sb(III) with potassium iodide-ascorbic acid. Covalent hydride is generated with a home made device by adding NaBH4. The hydride is then atomized in a flame-heated silica tube and atomic absorption is measured spectrophotometrically. The optimal conditions for this determination are discussed and interference effects are described. Results obtained by determining linearity range (0-200 ng), detection (LOD) and quantitation (LOQ) limits (LOD = 0.347 ng/ml, LOQ = 1.158 ng/ml), precision (instrumental CV 4.08% and method CV 7.74%) and accuracy performed by recovery assays (96.1%) show that the method is useful for antimony determination at the concentration usually present in drinking water.

  11. Study of polonium isotopes ground state properties by simultaneous atomic- and nuclear-spectroscopy

    CERN Multimedia

    Koester, U H; Kalaninova, Z; Imai, N

    2007-01-01

    We propose to systematically study the ground state properties of neutron deficient $^{192-200}$Po isotopes by means of in-source laser spectroscopy using the ISOLDE laser ion source coupled with nuclear spectroscopy at the detection setup as successfully done before by this collaboration with neutron deficient lead isotopes. The study of the change in mean square charge radii along the polonium isotope chain will give an insight into shape coexistence above the mid-shell N = 104 and above the closed shell Z = 82. The hyperfine structure of the odd isotopes will also allow determination of the nuclear spin and the magnetic moment of the ground state and of any identifiable isomer state. For this study, a standard UC$_{x}$ target with the ISOLDE RILIS is required for 38 shifts.

  12. Gunshot residue testing in suicides: Part II: Analysis by inductive coupled plasma-atomic emission spectrometry.

    Science.gov (United States)

    Molina, D Kimberley; Castorena, Joe L; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a decedent's hands, including scanning electron microscopy with energy dispersive x-ray (SEM/EDX) and inductive coupled plasma-atomic emission spectrometry (ICP-AES). In part I of this 2-part series, GSR results performed by SEM/EDX in undisputed cases of suicidal handgun wounds were studied. In part II, the same population was studied, deceased persons with undisputed suicidal handgun wounds, but GSR testing was performed using ICP-AES. A total of 102 cases were studied and analyzed for caliber of weapon, proximity of wound, and the results of the GSR testing. This study found that 50% of cases where the deceased was known to have fired a handgun immediately prior to death had positive GSR results by ICP/AES, which did not differ from the results of GSR testing by SEM/EDX. Since only 50% of cases where the person is known to have fired a weapon were positive for GSR by either method, this test should not be relied upon to determine whether someone has discharged a firearm and is not useful as a determining factor of whether or not a wound is self-inflicted or non-self-inflicted. While a positive GSR result may be of use, a negative result is not helpful in the medical examiner setting as a negative result indicates that either a person fired a weapon prior to death or a person did not fire a weapon prior to death.

  13. Low-Altitude Emission of Energetic Neutral Atoms: Multiple Interactions and Energy Loss

    Science.gov (United States)

    LLera, K.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2017-10-01

    Low-altitude emissions (LAEs) are the energetic neutral atom (ENA) signature of ring current ions precipitating along the magnetic field to an altitude of 200-800 km. This altitude region is considered to be "optically thick" because ring current ions undergo multiple charge changing interactions (MCCIs) with Earth's dense oxygen exosphere. While each interaction involves an energy loss of 36 eV, no prior study has determined the accumulated energy lost by 1-100 keV H+ emerging as LAEs. We have developed a 2-D model with a geomagnetic dipole that captures the net effects in energy loss and pitch angle evolution as a result of MCCIs without the computational requirements of a full Monte Carlo simulation. Dependent on the amount of latitudinal migration, the energy loss is greater than 20% for ions below 60 keV for equatorward moving particles (30 keV for poleward). Since the ENA travels ballistically across a geomagnetic dipole, upon reionization, ion velocity along the local field increases (antiparallel in the northern hemisphere). Redirecting the particle upward through MCCIs is most effective during poleward ENA motion. The net effect is to redirect precipitating ions (below 2,500 km) to eventually emerge from the optically thick region either as an ion or ENA. Precipitation is a joint ion-neutral process, affecting both the energy and pitch angle distribution through the transverse motion of ENA segments in a converging field. For particles that enter the MCCI regime, the energy loss and evolution of the pitch angle distribution must be considered within a realistic magnetic field.

  14. Measurement Campaigns on Mars Entry Plasmas Using ICP Torches. Characterization by Emission Spectroscopy and Probes Techniques

    Science.gov (United States)

    Lohle, S.; Vacher, D.; Menecier, S.; Dudeck, M.; Liebhart, H.; Marynowski, T.; Herdrich, G.; Fasoulas, S.; Andre, P.

    2011-02-01

    The inductively coupled plasma torch of the Laboratoire Arc Electrique et Plasma Thermique (LAEPT) is used to generate plasma at atmospheric pressure in order to investigate the radiation behavior of different plasma flows in chemical and thermal equilibrium. In the present study, the determination of the local specific enthalpy was assessed in order to compare results of optical emission spectroscopy. The comparison is realized using an enthalpy probe of Institut für Raumfahrtsysteme (IRS) of the University of Stuttgart. However, the original approach of the enthalpy probe could not be applied, but the measured heat flux was interpreted in terms of forced convection of the hot plasma to the cooled copper surface. Following this theory, the flow temperature in thermal and chemical equilibrium can be determined which compares very well to the measured temperatures using Mach-Zehnder-Interferometry.

  15. Optical spectroscopy of emission from CN plasma formed by laser ablation

    Science.gov (United States)

    Riascos, H.; Franco, L. M.; Pérez, J. A.

    2008-10-01

    The characterization of a plasma plume is a key issue in laser ablation and deposition studies. The formation, composition and propagation of laser-produced plasmas used for pulsed laser deposition (PLD) of CN have been studied under film growth conditions. The plume was generated by focusing 1064 nm, 9 ns pulses from Nd:YAG laser on carbon target under nitrogen ambient. We investigated the different species, such as CII, CI, C2, NII and CN, in laser ablated CN plasma using optical emission spectroscopy. The spectral characteristics of the plasmas were measured to determine the plasma properties as gas pressure was changed from 10-5 to 90 mTorr. The intensities of molecular species did not depend on gas ambient whereas ion intensities did. The vibrational temperature shows dependence with gas pressure.

  16. Optical spectroscopy of emission from CN plasma formed by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Riascos, H; Franco, L M; Perez, J A [Departamento de Fisica, Universidad Tecnologica de Pereira, A A 097, Pereira (Colombia)], E-mail: hriascos@utp.edu.co

    2008-10-15

    The characterization of a plasma plume is a key issue in laser ablation and deposition studies. The formation, composition and propagation of laser-produced plasmas used for pulsed laser deposition (PLD) of CN have been studied under film growth conditions. The plume was generated by focusing 1064 nm, 9 ns pulses from Nd:YAG laser on carbon target under nitrogen ambient. We investigated the different species, such as CII, CI, C{sub 2}, NII and CN, in laser ablated CN plasma using optical emission spectroscopy. The spectral characteristics of the plasmas were measured to determine the plasma properties as gas pressure was changed from 10{sup -5} to 90 mTorr. The intensities of molecular species did not depend on gas ambient whereas ion intensities did. The vibrational temperature shows dependence with gas pressure.

  17. Development of beam emission spectroscopy for turbulence transport study in Heliotron J

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, S., E-mail: kobayashi@iae.kyoto-u.ac.jp; Ohshima, S.; Kado, S.; Nagasaki, K.; Okada, H.; Minami, T.; Yamamoto, S.; Konoshima, S.; Mizuuchi, T. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Matsuda, H.; Lu, X. X.; Kokubu, D.; Nakamura, Y.; Ishizawa, A.; Otani, Y. [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan); Ida, K.; Kobayashi, T.; Yoshinuma, M.; Oishi, T.; Kenmochi, N. [National Institute for Fusion Science, Oroshi-cho 322-6, Toki, Gifu 509-5292 (Japan)

    2016-11-15

    This paper describes the development study of the beam emission spectroscopy (BES) for the turbulent transport study in Heliotron J. Modification of the sightlines (10 × 4 for edge and 10 × 2 for edge) enables us to obtain 2-dimensional BES imaging. The cooling effect on the reduction in the electrical noise of avalanche photodiode (APD) assembly has been investigated using a refrigerant cooling system. When the temperature of the APD element has set to be −20 °C, the electrical noise can be reduced more than 50%. The measurement error of the phase difference in the case of low signal level has been tested by two light-emitting diode lamps. The APD cooling has an effect to improve the measurement error at the low signal level of APD.

  18. Combination of emission channeling, photoluminescence and Mossbauer spectroscopy to identify rare earth defect complexes in semiconductors

    CERN Document Server

    Dalmer, M; Restle, M; Stötzler, A; Hofsäss, H C; Ronning, C R; Moodley, M K; Bharuth-Ram, K

    1999-01-01

    Implanted radioactive /sup 167/Tm//sup 167/Er and /sup 169/Yb//sup 169/Tm impurities in Si and GaN were studied with emission channeling and photoluminescence spectroscopy. The effect of co-doping with oxygen on the rare earth (RE) lattice sites and their luminescence behavior was investigated. Tm and Yb occupy near-tetrahedral sites in Si and substitutional sites in GaN after room temperature implantation and annealing. O-RE complexes are formed upon co-doping with O resulting in modified luminescence signals. RE impurities remain substitutional in O-doped GaN, but are displaced from tetrahedral sites in O-doped Si. We discuss the feasibility of Mossbauer studies using /sup 151/Eu, /sup 169/Tm and /sup 161/Dy to determine the RE valence state and to identify RE defect complexes. (25 refs).

  19. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael

    2016-01-01

    In liquid phase chemistry dynamic solute solvent interactions often govern the path, ultimate outcome, and efficiency of chemical reactions. These steps involve many-body movements on subpicosecond time scales and thus ultrafast structural tools capable of capturing both intramolecular electronic......, confirming previous ab initio molecular dynamics simulations. Structural changes in the aqueous solvent associated with density and temperature changes occur with similar to 1 ps time constants, characteristic for structural dynamics in water. This slower time scale of the solvent response allows us...... rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering atterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited...

  20. Probing resonant energy transfer in collisions of ammonia with Rydberg helium atoms by microwave spectroscopy

    Science.gov (United States)

    Zhelyazkova, V.; Hogan, S. D.

    2017-12-01

    We present the results of experiments demonstrating the spectroscopic detection of Förster resonance energy transfer from NH3 in the X1A1 ground electronic state to helium atoms in 1sns 3S1 Rydberg levels, where n = 37 and n = 40. For these values of n, the 1sns 3S1 → 1snp 3PJ transitions in helium lie close to resonance with the ground-state inversion transitions in NH3 and can be tuned through resonance using electric fields of less than 10 V/cm. In the experiments, energy transfer was detected by direct state-selective electric field ionization of the 3S1 and 3PJ Rydberg levels and by monitoring the population of the 3DJ levels following pulsed microwave transfer from the 3PJ levels. Detection by microwave spectroscopic methods represents a highly state selective, low-background approach to probing the collisional energy transfer process and the environment in which the atom-molecule interactions occur. The experimentally observed electric-field dependence of the resonant energy transfer process, probed both by direct electric field ionization and by microwave transfer, agrees well with the results of calculations performed using a simple theoretical model of the energy transfer process. For measurements performed in zero electric field with atoms prepared in the 1s40s 3S1 level, the transition from a regime in which a single energy transfer channel can be isolated for detection to one in which multiple collision channels begin to play a role has been identified as the NH3 density was increased.

  1. Projectile X-ray emission in relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Shadi Mohammad Ibrahim

    2010-03-16

    This work reports on the study of the projectile X-ray emission in relativistic ion-atom collisions. Excitation of K-shell in He-like uranium ions, electron capture into H-like uranium ions and Simultaneous ionization and excitation of initially He-like uranium ions have been studied using the experimental storage ring at GSI. For the K{sub {alpha}}{sub 1} and K{sub {alpha}}{sub 2} transitions originating from the excitation of the He-like uranium ions, no alignment was observed. In contrast, the Ly{sub {alpha}}{sub 1} radiation from the simultaneous ionization-excitation process of the He-like uranium ions shows a clear alignment. The experimental value leads to the inclusion of a magnetic term in the interaction potential. The capture process of target electrons into the highly-charged heavy ions was studied using H-like uranium ions at an incident energy of 220 MeV/u, impinging on N{sub 2} gas-target. It was shown that, the strongly aligned electrons captured in 2p{sub 3/2} level couple with the available 1s{sub 1/2} electron which shows no initial directional preference. The magnetic sub-state population of the 2p{sub 3/2} electron is redistributed according to the coupling rules to the magnetic sub-states of the relevant two-electron states. This leads to the large anisotropy in the corresponding individual ground state transitions contributing to the K{sub {alpha}}{sub 1} emission. From the K{sub {alpha}}{sub 1}/K{sub {alpha}}{sub 2} ratio, the current results show that the incoherent addition of the E1 and M2 transition components yield to an almost isotropic emission of the total K{sub {alpha}}{sub 1}. In contrast to the radiative electron capture, the experimental results for the K-shell single excitation of He-like uranium ions indicate that only the {sup 1}P{sub 1} level contributes to the K{sub {alpha}}{sub 1} transition. For this case, the anisotropy parameter {beta}{sub 20} was found to be -0.20{+-}0.03. This work also reports on the study of a two

  2. Authentication of organically grown plants - advantages and limitations of atomic spectroscopy for multi-element and stable isotope analysis

    DEFF Research Database (Denmark)

    Laursen, Kristian Holst; Schjørring, Jan Kofod; Kelly, S.D.

    2014-01-01

    Organic food products are believed to be healthier, safer and more environment-friendly than their conventional counterparts and are sold at premium prices. Consequently, adulteration of organic plants and fraudulent activities for economic profit are increasing. This has spurred the development...... of sophisticated analytical procedures for testing authenticity. We review the use of multi-element and stable-isotope analysis based on atomic spectroscopy for discriminating between organic and conventional plants. We conclude that inductively-coupled plasma-mass spectrometry, stable-isotope analysis of bulk...... plant tissue, and compound-specific isotope analysis based on isotope ratio-mass spectrometry are promising tools for documenting the fertilization history of organic plants. However, these techniques are challenged by the potential diversity of fertilization practices of organic and conventional plant...

  3. Structure and orbital ordering of ultrathin LaVO{sub 3} probed by atomic resolution electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors-Vrejoiu, Ionela; Engelmayer, Johannes; Loosdrecht, Paul H.M. van [II. Physikalisches Institut, Koeln Univ. (Germany); Jin, Lei; Jia, Chun-Lin [Peter Gruenberg Institut (PGI-5) and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH (Germany); Himcinschi, Cameliu [Institut fuer Theoretische Physik, TU Bergakademie Freiberg (Germany); Hensling, Felix; Waser, Rainer; Dittmann, Regina [Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH (Germany)

    2017-03-15

    Orbital ordering has been less investigated in epitaxial thin films, due to the difficulty to evidence directly the occurrence of this phenomenon in thin film samples. Atomic resolution electron microscopy enabled us to observe the structural details of the ultrathin LaVO{sub 3} films. The transition to orbital ordering of epitaxial layers as thin as ∼4 nm was probed by temperature-dependent Raman scattering spectroscopy of multilayer samples. From the occurrence and temperature dependence of the 700 cm{sup -1} Raman active mode it can be inferred that the structural phase transition associated with orbital ordering takes place in ultrathin LaVO{sub 3} films at about 130 K. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Surface chemistry of plasma-assisted atomic layer deposition of Al2O3 studied by infrared spectroscopy

    Science.gov (United States)

    Langereis, E.; Keijmel, J.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2008-06-01

    The surface groups created during plasma-assisted atomic layer deposition (ALD) of Al2O3 were studied by infrared spectroscopy. For temperatures in the range of 25-150°C, -CH3 and -OH were unveiled as dominant surface groups after the Al(CH3)3 precursor and O2 plasma half-cycles, respectively. At lower temperatures more -OH and C-related impurities were found to be incorporated in the Al2O3 film, but the impurity level could be reduced by prolonging the plasma exposure. The results demonstrate that -OH surface groups rule the surface chemistry of the Al2O3 process and likely that of plasma-assisted ALD of metal oxides from organometallic precursors in general.

  5. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    Science.gov (United States)

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  6. Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy.

    Science.gov (United States)

    Bizzarri, Anna Rita; Santini, Simona; Coppari, Emilia; Bucciantini, Monica; Di Agostino, Silvia; Yamada, Tohru; Beattie, Craig W; Cannistraro, Salvatore

    2011-01-01

    p28 is a 28-amino acid peptide fragment of the cupredoxin azurin derived from Pseudomonas aeruginosa that preferentially penetrates cancerous cells and arrests their proliferation in vitro and in vivo. Its antitumor activity reportedly arises from post-translational stabilization of the tumor suppressor p53 normally downregulated by the binding of several ubiquitin ligases. This would require p28 to specifically bind to p53 to inhibit specific ligases from initiating proteosome-mediated degradation. In this study, atomic force spectroscopy, a nanotechnological approach, was used to investigate the interaction of p28 with full-length p53 and its isolated domains at the single molecule level. Analysis of the unbinding forces and the dissociation rate constant suggest that p28 forms a stable complex with the DNA-binding domain of p53, inhibiting the binding of ubiquitin ligases other than Mdm2 to reduce proteasomal degradation of p53.

  7. Thermal effects in equilibrium surface segregation in a copper/10-atomic-percent-aluminum alloy using Auger electron spectroscopy

    Science.gov (United States)

    Ferrante, J.

    1972-01-01

    Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.

  8. Nano-mechanical and biochemical characterization of different subtypes of breast cells using atomic force microscopy and Raman spectroscopy

    Science.gov (United States)

    Zeng, Jinshu; Wang, Yuhua; Ruan, Qiuyong; Xu, Chaoxian; Jiang, Ningcheng; Xie, Shusen; Yang, Hongqin; Lin, Juqiang

    2016-11-01

    Combining atomic force microscopy (AFM) with Raman spectroscopy (RS), three different subtypes of breast cell lines, including metastatic cancer cells (MDA-MB-231), non-malignant cancer cells (MCF-7) and benign cells (MCF-10A), were studied to compare their differences in nano-mechanical and biochemical properties. Based on AFM measurements, two cancerous cells were found to have a close elasticity modulus, but were significantly softer than that of their benign counterparts. Raman spectral analysis revealed that the data points for two cancerous cells were distinct with completely separated clusters. The results demonstrate that combined AFM and RS techniques could obtain information about the biomechanical and biochemical properties necessary to distinguish different subtypes of breast cancer cells. This will hold great promise for cancer detection at the single cell level.

  9. SPATIALLY RESOLVED HST GRISM SPECTROSCOPY OF A LENSED EMISSION LINE GALAXY AT z {approx} 1

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Brenda L. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hurley, Mairead [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland); Bowen, David V. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08540 (United States); Meurer, Gerhardt [International Centre for Radio Astronomy Research, The University of Western Australia M468, 35 Stirling Highway, Crawley, WA 6009 (Australia); Sharon, Keren [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Straughn, Amber [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Coe, Dan [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Broadhurst, Tom [Ikerbasque, Basque Foundation for Science, E-48011 Bilbao (Spain); Guhathakurta, Puragra, E-mail: bfrye@as.arizona.edu [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2012-07-20

    We take advantage of gravitational lensing amplification by A1689 (z 0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i{sub 775} = 27.3 via slitless grism spectroscopy. One ELG (at z = 0.7895) is very bright owing to lensing magnification by a factor of Almost-Equal-To 4.5. Several Balmer emission lines (ELs) detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M{sub *} Almost-Equal-To 2 Multiplication-Sign 10{sup 9} M{sub Sun }) with a high specific star formation rate ( Almost-Equal-To 20 Gyr{sup -1}). From the blue ELs we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H) = 8.8 {+-} 0.2). We break the continuous line-emitting region of this giant arc into seven {approx}1 kpc bins (intrinsic size) and measure a variety of metallicity-dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by {approx}1 kpc have a placement on the blue H II region excitation diagram with f ([O III])/f (H{beta}) and f ([Ne III])/f (H{beta}) that can be fitted by an active galactic nucleus (AGN). This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction.

  10. Thermal Infrared Emission Spectroscopy of Synthetic Allophane and its Potential Formation on Mars

    Science.gov (United States)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, Douglas W.

    2010-01-01

    Allophane is a poorly-crystalline, hydrous aluminosilicate with variable Si/Al ratios approx.0.5-1 and a metastable precursor of clay minerals. On Earth, it forms rapidly by aqueous alteration of volcanic glass under neutral to slightly acidic conditions [1]. Based on in situ chemical measurements and the identification of alteration phases [2-4], the Martian surface is interpreted to have been chemically weathered on local to regional scales. Chemical models of altered surfaces detected by the Mars Exploration Rover Spirit in Gusev crater suggest the presence of an allophane-like alteration product [3]. Thermal infrared (TIR) spectroscopy and spectral deconvolution models are primary tools for determining the mineralogy of the Martian surface [5]. Spectral models of data from the Thermal Emission Spectrometer (TES) indicate a global compositional dichotomy, where high latitudes tend to be enriched in a high-silica material [6,7], interpreted as high-silica, K-rich volcanic glass [6,8]. However, later interpretations proposed that the high-silica material may be an alteration product (such as amorphous silica, clay minerals, or allophane) and that high latitude surfaces are chemically weathered [9-11]. A TIR spectral library of pure minerals is available for the public [12], but it does not contain allophane spectra. The identification of allophane on the Martian surface would indicate high water activity at the time of its formation and would help constrain the aqueous alteration environment [13,14]. The addition of allophane to the spectral library is necessary to address the global compositional dichotomy. In this study, we characterize a synthetic allophane by IR spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) to create an IR emission spectrum of pure allophane for the Mars science community to use in Martian spectral models.

  11. Atomic layer deposition of TiO2 and Al2O3 on nanographite films: structure and field emission properties

    Science.gov (United States)

    Kleshch, Victor I.; Ismagilov, Rinat R.; Smolnikova, Elena A.; Obraztsova, Ekaterina A.; Tuyakova, Feruza; Obraztsov, Alexander N.

    2016-03-01

    Atomic layer deposition (ALD) of metal oxides (MO) was used to modify the properties of nanographite (NG) films produced by direct current plasma-enhanced chemical vapor deposition technique. NG films consist of a few layers of graphene flakes (nanowalls) and nanoscrolls homogeneously distributed over a silicon substrate with a predominantly vertical orientation of graphene sheets to the substrate surface. TiO2 and Al2O3 layers, with thicknesses in the range of 50 to 250 nm, were deposited on NG films by ALD. The obtained NG-MO composite materials were characterized by scanning electron microscopy, energy dispersive x-ray analysis, and Raman spectroscopy. It was found that ALD forms a uniform coating on graphene flakes, while on the surface of needle-like nanoscrolls it forms spherical nanoparticles. Field emission properties of the films were measured in a flat vacuum diode configuration. Analysis based on obtained current-voltage characteristics and electrostatic calculations show that emission from NG-TiO2 films is determined by the nanoscrolls protruding from the TiO2 coverage. The TiO2 layers with thicknesses of stabilize the NG films' surface and can lead to an improvement of the NG cold cathode performance in vacuum electronics.

  12. PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES: Diagnosis of Methane Plasma Generated in an Atmospheric Pressure DBD Micro-Jet by Optical Emission Spectroscopy

    Science.gov (United States)

    Zhang, Jun-Feng; Bian, Xin-Chao; Chen, Qiang; Liu, Fu-Ping; Liu, Zhong-Wei

    2009-03-01

    Diagnosis of methane plasma, generated in an atmospheric pressure dielectric barrier discharge (DBD) microplasma jet with a quartz tube as dielectric material by a 25 kHz sinusoidal ac power source, is conducted by optical emission spectroscopy (OES). The reactive radicals in methane plasma such as CH, C2, and Hα are detected insitu by OES. The possible dissociation mechanism of methane in diluted Ar plasma is deduced from spectra. In addition, the density of CH radical, which is considered as one of the precursors in diamond-like (DLC) film formation, affected by the parameters of input voltage and the feed gas flow rate, is emphasized. With the Boltzmann plots, four Ar atomic spectral lines (located at 675.28nm, 687.13nm, 738.40nm and 794.82nm, respectively) are chosen to calculate the electron temperature, and the dependence of electron temperature on discharge parameters is also investigated.

  13. Cyclotron Radiation Emission Spectroscopy: First demonstration and performance benchmarks from the Project 8 experiment

    Science.gov (United States)

    LaRoque, Benjamin Hines

    The Project 8 collaboration is taking a phased approach to developing an experimental search for the absolute neutrino mass scale, based on a novel technique, Cyclotron Radiation Emission Spectroscopy. The first phase was a demonstration of this new spectroscopy technique using a well understood source of narrow conversion electron lines, 83mKr, as a proof of principle. Results from the first successful operation of the detector are presented, demonstrating the viability of the approach. The strong conversion electron lines near 17.8, 30.4, and 32 keV were observed with full width at half maximum between 140 eV and 15 eV depending on the choice of trapping configuration used. Various upgrades were made to the detector prior to its being operated with the specific goal of determining a performance baseline for planning future phases. These included alternative trapping configurations, with which the observed full width at half maximum has been improved to 3.6 eV. Evaluation of the event reconstruction and data quality are presented based on this data collection period. Areas where improvements will be required for phase II, when the approach will be used for the first time to measure a electrons from a continuous spectrum, are identified.

  14. Interactions between solute atoms in Fe-Si-Al-C alloys as studied by mechanical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sinning, H.-R., E-mail: hr.sinning@tu-bs.de [Institut fuer Werkstoffe, Technische Universitaet Braunschweig, Braunschweig (Germany); Golovin, I.S. [Physics of Metals Department, Moscow Institute of Steel and Alloys, Moscow (Russian Federation); Physics of Metals and Materials Science Department, Tula State University, Tula (Russian Federation); Strahl, A. [Institut fuer Fachdidaktik der Naturwissenschaften, TU Braunschweig (Germany); Sokolova, O.A. [Physics of Metals and Materials Science Department, Tula State University, Tula (Russian Federation); Sazonova, T. [Institut fuer Werkstoffe, Technische Universitaet Braunschweig, Braunschweig (Germany)

    2009-09-15

    In Fe-Si-Al-C alloys, point-defect relaxation includes both the interstitial carbon Snoek-type relaxation, split into a 'pure iron' (Fe-C-Fe) Snoek peak and an 'interstitial-substitutional' (Fe-C-Me; Me = Al, Si) peak, and the substitutional Zener relaxation. The influence of Al and Si, with varying Al/Si ratio, on these effects is used to study the qualitative characteristics of substitutional-interstitial (Si-C, Al-C) and substitutional-substitutional (Al-Al, Si-Si, Al-Si) interactions in these alloys. Concerning the latter, there is a mutual compensation of the elastic distortion fields, produced in the Fe matrix by the relatively bigger Al and smaller Si atoms, respectively, which largely suppresses the Zener relaxation in the ternary Fe-Si-Al alloys, probably without affecting the elastic dipole strength of interstitial carbon. From the kinetic behavior of the two components of the Snoek-type relaxation, it is concluded that the substitutional-interstitial interaction is generally attractive and sufficient for modifying the distribution of the C atoms, but not for trapping to become dominant.

  15. Determination of metal concentration in fat supplements for swine nutrition by atomic absorption spectroscopy.

    Science.gov (United States)

    Cocchi, Marina; Faeti, Valerio; Manfredini, Matteo; Manzini, Daniela; Marchetti, Andrea; Sighinolfi, Simona

    2005-01-01

    The presence of some essential and toxic metals in fat supplements for swine diet was investigated. Collected samples represented a relevant production of the Italian industry. In particular, some samples were enriched with antioxidants or waste cooking oils. The method for the determination of Ca, Cu, Cd, Fe, Mg, Mn, Ni, Pb, and Zn in fat samples was developed by means of a certified reference material (CRM 186) and a representative fatty sample (RFS). All samples were digested in closed vessels in a microwave oven and then analyzed by flame atomic absorption or graphite furnace atomic absorption spectrometry. The entire analytical method provided a satisfactory repeatability and reproducibility confirmed by agreement between the experimental recovery data obtained for the CRM 186 sample and, with the method of standard additions, for the RFS material. The samples generally showed a small amount of metals compared with the recommended daily intake for the essential elements. On the other hand, some samples contained a significant concentration, from an analytical point of view, of Cd, Ni, and Pb. Principal component analysis (PCA) was applied to inspect the experimental data obtained from samples analysis. Basically no differences were detected in terms of metal concentration among the fat supplements analyzed.

  16. Evaluation of the Randox colorimetric serum copper and zinc assays against atomic absorption spectroscopy.

    Science.gov (United States)

    Beckett, Jeffrey M; Hartley, Thomas F; Ball, Madeleine J

    2009-07-01

    Analysis of copper and zinc in serum is commonly performed using atomic absorption spectrometry (AAS); however, these methods are often not readily available in smaller laboratories. Randox colorimetric assays for copper and zinc in serum were evaluated on the Thermo Electron Data Pro analyser against flame AAS methods. Copper and zinc were measured in 48 serum samples using the Randox colorimetric copper (CU2340) and zinc (ZN2341) assays on the Data Pro analyser and the results compared with those from a Varian Spectra 880 atomic absorption spectrometer. A smaller set of samples (n = 15) were also analysed colorimetrically for zinc on the Roche Cobas Mira. Linear regression analyses of Bland and Altman plots from the Data Pro - AAS comparison gave the following results for copper: correlation r = 0.6669 (P < 0.01), slope = -0.2499 (P < 0.01), intercept = 3.219 (P < 0.01). For zinc, results were as follows: correlation r = 0.1976, slope = 0.1807, intercept = -1.922. For the smaller set of samples, the Cobas Mira - AAS comparison for zinc gave correlation r = 0.4379, slope = 0.5294, intercept = -4.074. The results indicated significant systematic and fixed bias between the colorimetric copper and the AAS method. Performances in comparison to AAS methods indicated the colorimetric methods, as used, are unsuitable for the accurate determination of copper and zinc in human serum.

  17. Photoionization and Velocity Map Imaging spectroscopy of atoms, molecules and clusters with Synchrotron and Free Electron Laser radiation at Elettra

    Science.gov (United States)

    Di Fraia, M.; Sergo, R.; Stebel, L.; Giuressi, D.; Cautero, G.; Tudor, M.; Callegari, C.; O'Keeffe, P.; Ovcharenko, Y.; Lyamayev, V.; Feyer, V.; Moise, A.; Devetta, M.; Piseri, P.; Grazioli, C.; Coreno, M.

    2015-12-01

    Advances in laser and Synchrotron Radiation instrumentation are continuously boosting fundamental research on the electronic structure of matter. At Elettra the collaboration between several groups active in the field of atomic, molecular and cluster physics and the Instrumentation and Detector Laboratory has resulted in an experimental set-up that successfully tackles the challenges posed by the investigation of the electronic structure of isolated species in the gas phase. The use of Synchrotron Radiation (SR) and Free Electron Laser (FEL) light, allows to cover a wide spectrum of targets from energetic to dynamics. We developed a Velocity Map Imaging (VMI) spectrometer that allows to perform as well SR as FEL experiments, just by changing part of the detection system. In SR experiments, at the Gasphase beamline of Elettra, a cross delay line detector is used, coupled to a 4-channel time-to-digital converter that reconstructs the position of the electrons. Simultaneously, a Time-of-Flight (TOF) mass spectrometer is used to acquire photoion spectra. Such a system allows PhotoElectron-PhotoIon-Coincidence (PEPICO) spectroscopy of atoms, molecules and clusters. In FEL experiments (notably differing from SR experiments in the much higher rate of events produced and detected, which forces one to forfeit coincidence detection), at the Low Density Matter (LDM) beamline of FERMI, a Micro Channel Plate (MCP) a phosphor screen and a CCD camera are used instead, capable of shot-by-shot collection of practically all events, albeit without time resolution.

  18. The interaction of 2-mercaptobenzimidazole with human serum albumin as determined by spectroscopy, atomic force microscopy and molecular modeling.

    Science.gov (United States)

    Li, Yuqin; Jia, Baoxiu; Wang, Hao; Li, Nana; Chen, Gaopan; Lin, Yuejuan; Gao, Wenhua

    2013-04-01

    The interaction of 2-mercaptobenzimidazole (MBI) with human serum albumin (HSA) was studied in vitro by equilibrium dialysis under normal physiological conditions. This study used fluorescence, ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FT-IR), circular dichroism (CD) and Raman spectroscopy, atomic force microscopy (AFM) and molecular modeling techniques. Association constants, the number of binding sites and basic thermodynamic parameters were used to investigate the quenching mechanism. Based on the fluorescence resonance energy transfer, the distance between the HSA and MBI was 2.495 nm. The ΔG(0), ΔH(0), and ΔS(0) values across temperature indicated that the hydrophobic interaction was the predominant binding Force. The UV, FT-IR, CD and Raman spectra confirmed that the HSA secondary structure was altered in the presence of MBI. In addition, the molecular modeling showed that the MBI-HSA complex was stabilized by hydrophobic forces, which resulted from amino acid residues. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with MBI. Overall, this study suggested a method for characterizing the weak intermolecular interaction. In addition, this method is potentially useful for elucidating the toxigenicity of MBI when it is combined with the biomolecular function effect, transmembrane transport, toxicological testing and other experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy.

    Science.gov (United States)

    Yamashita, Hayato; Inoue, Keiichi; Shibata, Mikihiro; Uchihashi, Takayuki; Sasaki, Jun; Kandori, Hideki; Ando, Toshio

    2013-10-01

    Bacteriorhodopsin (bR) trimers form a two-dimensional hexagonal lattice in the purple membrane of Halobacterium salinarum. However, the physiological significance of forming the lattice has long been elusive. Here, we study this issue by comparing properties of assembled and non-assembled bR trimers using directed mutagenesis, high-speed atomic force microscopy (HS-AFM), optical spectroscopy, and a proton pumping assay. First, we show that the bonds formed between W12 and F135 amino acid residues are responsible for trimer-trimer association that leads to lattice assembly; the lattice is completely disrupted in both W12I and F135I mutants. HS-AFM imaging reveals that both crystallized D96N and non-crystallized D96N/W12I mutants undergo a large conformational change (i.e., outward E-F loop displacement) upon light-activation. However, lattice disruption significantly reduces the rate of conformational change under continuous light illumination. Nevertheless, the quantum yield of M-state formation, measured by low-temperature UV-visible spectroscopy, and proton pumping efficiency are unaffected by lattice disruption. From these results, we conclude that trimer-trimer association plays essential roles in providing bound retinal with an appropriate environment to maintain its full photo-reactivity and in maintaining the natural photo-reaction pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap

    Science.gov (United States)

    Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.

  1. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, M. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); BME NTI, Budapest (Hungary); Anda, G.; Réfy, D.; Zoletnik, S. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); Czopf, A.; Erdei, G. [Department of Atomic Physics, BME IOP, Budapest (Hungary); Guszejnov, D.; Kovácsik, Á.; Pokol, G. I. [BME NTI, Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  2. Modeling and design of a beam emission spectroscopy diagnostic for the negative ion source NIO1.

    Science.gov (United States)

    Barbisan, M; Zaniol, B; Cavenago, M; Pasqualotto, R

    2014-02-01

    Consorzio RFX and INFN-LNL are building a flexible small ion source (Negative Ion Optimization 1, NIO1) capable of producing about 130 mA of H(-) ions accelerated at 60 KeV. Aim of the experiment is to test and develop the instrumentation for SPIDER and MITICA, the prototypes, respectively, of the negative ion sources and of the whole neutral beam injectors which will operate in the ITER experiment. As SPIDER and MITICA, NIO1 will be monitored with beam emission spectroscopy (BES), a non-invasive diagnostic based on the analysis of the spectrum of the Hα emission produced by the interaction of the energetic ions with the background gas. Aim of BES is to monitor direction, divergence, and uniformity of the ion beam. The precision of these measurements depends on a number of factors related to the physics of production and acceleration of the negative ions, to the geometry of the beam, and to the collection optics. These elements were considered in a set of codes developed to identify the configuration of the diagnostic which minimizes the measurement errors. The model was already used to design the BES diagnostic for SPIDER and MITICA. The paper presents the model and describes its application to design the BES diagnostic in NIO1.

  3. Beam emission spectroscopy turbulence imaging system for the MAST spherical tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Field, A. R.; Gaffka, R.; Shibaev, S. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Dunai, D.; Kiss, I.; Meszaros, B.; Krizsanoczi, T.; Zoletnik, S. [KFKI-RMKI, Association EURATOM, P.O. Box 49, H-1525 Budapest (Hungary); Ghim, Y.-C. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford (United Kingdom)

    2012-01-15

    A new beam emission spectroscopy turbulence imaging system has recently been installed onto the MAST spherical tokamak. The system utilises a high-throughput, direct coupled imaging optics, and a single large interference filter for collection of the Doppler shifted D{sub {alpha}} emission from the {approx}2 MW heating beam of {approx}70 keV injection energy. The collected light is imaged onto a 2D array detector with 8 x 4 avalanche photodiode sensors which is incorporated into a custom camera unit to perform simultaneous 14-bit digitization at 2 MHz of all 32 channels. The array is imaged at the beam to achieve a spatial resolution of {approx}2 cm in the radial (horizontal) and poloidal (vertical) directions, which is sufficient for detection of the ion-scale plasma turbulence. At the typical photon fluxes of {approx}10{sup 11} s{sup -1} the achieved signal-to-noise ratio of {approx}300 at the 0.5 MHz analogue bandwidth is sufficient for detection of relative density fluctuations at the level of a few 0.1%. The system is to be utilised for the study of the characteristics of the broadband, ion-scale turbulence, in particular its interaction with flow shear, as well as coherent fluctuations due to various types of MHD activity.

  4. Complex Molecules in the Laboratory - a Comparison of Chriped Pulse and Emission Spectroscopy

    Science.gov (United States)

    Hermanns, Marius; Wehres, Nadine; Maßen, Jakob; Schlemmer, Stephan

    2017-06-01

    Detecting molecules of astrophysical interest in the interstellar medium strongly relies on precise spectroscopic data from the laboratory. In recent years, the advancement of the chirped-pulse technique has added many more options available to choose from. The Cologne emission spectrometer is an additional path to molecular spectroscopy. It allows to record instantaneously broad band spectra with calibrated intensities. Here we present a comparison of both methods: The Cologne chirped-pulse spectrometer as well as the Cologne emission spectrometer both cover the frequency range of 75-110 GHz, consistent with the ALMA Band 3 receivers. High sensitive heterodyne receivers with very low noise temperature amplifiers are used with a typical bandwidth of 2.5 GHz in a single sideband. Additionally the chirped-pulse spectrometer contains a high power amplifier of 200 mW for the excitation of molecules. Room temperature spectra of methyl cyanide and comparison of key features, such as measurement time, sensitivity, limitations and commonalities are shown in respect to identification of complex molecules of astrophysical importance. In addition, future developments for both setups will be discussed.

  5. Operating parameters and observation modes for individual droplet analysis by inductively coupled plasma-atomic emission spectrometry

    Science.gov (United States)

    Chan, George C.-Y.; Zhu, Zhenli; Hieftje, Gary M.

    2012-10-01

    Several operating parameters for single-droplet analysis by inductively coupled plasma-atomic emission spectrometry were investigated and optimized. Two plasma observation modes, both of which measure the plasma side-on, were compared. In the "whole-vertical" mode, the entire vertical emission pattern of the center portion of the central channel was spatially integrated, whereas in the "lateral" mode emission from a thin horizontal slice of the vertical plasma image was measured. The limits of detection (LOD) as well as measurement precision attainable by these two observation modes were found to be practically identical. However, the lateral mode is preferred because emission is then more insensitive to a small drift in carrier-gas flow than in the vertical mode. Precision was found to degrade at carrier-gas flows that yield maximum sensitivities in both observation modes. As a result, the best precision and lowest LODs cannot be achieved under the same plasma operating conditions and a compromise is needed. In this study, precision was given a higher priority than LOD because each individual droplet is regarded as a new sample in single-droplet analysis and each such sample can be measured only once. For best precision, the observation region should be 3 mm downstream of the atomization site to avoid the adverse local plasma cooling effect of the vaporizing particle. Under optimized conditions, the best precision is about 3-4% and the absolute detection limits for eleven elements (Ag, B, Ca, Cd, Cu, Fe, Mg, Ni, Pb, Sr, and Zn) range from sub-single to hundreds of femtograms, which corresponds to 106 to 109 atoms for single-droplet analysis. In addition, a new synchronization trigger method for droplet analysis was developed. This method is based on Hα emission collected between the first and second lowest turns of the load coil. This trigger signal fires while the droplet is still intact, resides inside the lowest portion of the load coil, and is typically

  6. Investigation of specific interactions between T7 promoter and T7 RNA polymerase by force spectroscopy using atomic force microscope.

    Science.gov (United States)

    Zhang, Xiaojuan; Yao, Zhixuan; Duan, Yanting; Zhang, Xiaomei; Shi, Jinsong; Xu, Zhenghong

    2018-01-11

    The specific recognition and binding of promoter and RNA polymerase is the first step of transcription initiation in bacteria and largely determines transcription activity. Therefore, direct analysis of the interaction between promoter and RNA polymerase in vitro may be a new strategy for promoter characterization, to avoid interference due to the cell's biophysical condition and other regulatory elements. In the present study, the specific interaction between T7 promoter and T7 RNA polymerase was studied as a model system using force spectroscopy based on atomic force microscope (AFM). The specific interaction between T7 promoter and T7 RNA polymerase was verified by control experiments, and the rupture force in this system was measured as 307.2 ± 6.7 pN. The binding between T7 promoter mutants with various promoter activities and T7 RNA polymerase was analyzed. Interaction information including rupture force, rupture distance and binding percentage were obtained in vitro , and reporter gene expression regulated by these promoters was also measured according to a traditional promoter activity characterization method in vivo Using correlation analysis, it was found that the promoter strength characterized by reporter gene expression was closely correlated with rupture force and the binding percentage by force spectroscopy. These results indicated that the analysis of the interaction between promoter and RNA polymerase using AFM-based force spectroscopy was an effective and valid approach for the quantitative characterization of promoters. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Far-red to near infrared emission and scattering spectroscopy for biomedical applications

    Science.gov (United States)

    Zhang, Gang

    2001-06-01

    The thesis investigates the far-red and near infrared (NIR) spectral region from biomedical tissue samples for monitoring the state of tissues. The NIR emission wing intensity is weak in comparison to the emission in the visible spectral region. The wing emission from biomedical samples has revealed meaningful information about the state of the tissues. A model is presented to explain the shape of the spectral wing based on a continuum of energy levels. The wing can be used to classify different kinds of tissues; especially it can be used to differentiate cancer part from normal human breast tissues. The research work of the far-red emission from thermal damaged tissue samples shows that the emission intensity in this spectral region is proportional to the extent of the thermal damage of the tissue. Near infrared spectral absorption method is used to investigate blood hemodynamics (perfusion and oxygenation) in brain during sleep-wake transition. The result of the research demonstrates that the continuous wave (CW) type near infrared spectroscopy (NIRS) device can be used to investigate brain blood perfusion and oxygenation with a similar precision with frequency domain (FD) type device. The human subject sleep and wake transition, has been monitored by CW type NIRS instrument with traditional electroencephalograph (EEG) method. Parallel change in oxy-Hb and deoxy-Hb is a discrete event that occurs in the transition from both sleep to wakefulness and wakefulness to sleep. These hemodynamic switches are generally about few seconds delayed from the human decided transition point between sleep and wake on the polygraph EEG recording paper. The combination of NIRS and EEG methods monitor the brain activity, gives more information about the brain activity. The sleep apnea investigation was associated with recurrent apneas, insufficient nasal continuous positive airway pressure (CPAP) and the different response of the peripheral and central compartments to breathing

  8. Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions

    NARCIS (Netherlands)

    Moreno, T.; Karanasiou, A.; Amato, F.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.; Coz, E.; Artíñano, B.; Lumbreras, J.; Borge, R.; Boldo, E.; Linares, C.; Alastuey, A.; Querol, X.; Gibbons, W.

    2013-01-01

    A multi-analytical approach to chemical analysis of inhalable urban atmospheric particulate matter (PM), integrating particle induced X-ray emission, inductively coupled plasma mass spectrometry/atomic emission spectroscopy, chromatography and thermal-optical transmission methods, allows comparison

  9. A method for atomic spectroscopy of highly charged ions in the Pm isoelectronic sequence

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Oe.

    1995-08-01

    The aim was to search for alkali-like spectra in the Promethium isoelectronic sequence. Pb{sup 22+} ions were produced by means of an ECR-ion source and accelerated towards a target of He gas. Colliding with He atoms the Pb{sup 22+} ions are likely to capture an electron, thus forming an excited Pm-like ion (Pb{sup 21+}). A 2 m grazing-incidence spectrometer was used for recording the spectra arising as the accelerated ions impinge on the target. No lines were recorded throughout the wavelength region where the spectrometer is sensitive. Further experiments are needed to make clear if this is due to experimental errors or not. 14 refs, 8 figs.

  10. Precision Spectroscopy of Kaonic Helium-3 Atoms X-rays at J-PARC

    Directory of Open Access Journals (Sweden)

    Tanida K.

    2010-04-01

    Full Text Available We will measure the Balmer-series x-rays of kaonic-3He atoms using large-area high-resolution silicon drift x-rays detectors in order to provide the crucial information of K−-nucleus strong interaction at the low energy limit. The strong interaction 2p level shift will be determined with a precision of a few eV. At the present status, the construction of all detectors is in progress. In February, 2009, the first tuning of K1.8BR beamline was performed by the secondary beam generated in J-PARC hadron facility. The data taking will be started soon.

  11. Detection of copper in water using on-line plasma-excited atomic absorption spectroscopy (AAS).

    Science.gov (United States)

    Porento, Mika; Sutinen, Veijo; Julku, Timo; Oikari, Risto

    2011-06-01

    A measurement method and apparatus was developed to measure continuously toxic metal compounds in industrial water samples. The method was demonstrated by using copper as a sample metal. Water was injected into the sample line and subsequently into a nitrogen plasma jet, in which the samples comprising the metal compound dissolved in water were decomposed. The transmitted monochromatic light was detected and the absorbance caused by copper atoms was measured. The absorbance and metal concentration were used to calculate sensitivity and detection limits for the studied metal. The sensitivity, limit of detection, and quantification for copper were 0.45 ± 0.02, 0.25 ± 0.01, and 0.85 ± 0.04 ppm, respectively.

  12. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    ) coatings on titanium. We investigate the ability of a high density poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) coating to resist bacterial adhesion and biofilm formation from three clinically relevant bacteria: Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermis. The high...... density PLL-g-PEG coatings completely resisted bacterial colonization, whereas conventional coatings couldn’t resist colonization by S. epidermidis. The unique ability of S. epidermidis to colonize conventional PLL-g-PEG coatings was investigated by looking into the composition of S. epidermidis biofilm....... The strain-dependent susceptibility to bacterial colonization on conventional PLL-g-PEG illustrates how bacterial diversity challenges development of “universal” antifouling coatings, and AFM single-cell force spectroscopy was proven to be a powerful tool to provide insights into the molecular mechanisms...

  13. A constraint on antigravity of antimatter from precision spectroscopy of simple atoms

    Science.gov (United States)

    Karshenboim, S. G.

    2009-10-01

    Consideration of antigravity for antiparticles is an attractive target for various experimental projects. There are a number of theoretical arguments against it but it is not quite clear what kind of experimental data and theoretical suggestions are involved. In this paper we present straightforward arguments against a possibility of antigravity based on a few simple theoretical suggestions and some experimental data. The data are: astrophysical data on rotation of the Solar System in respect to the center of our galaxy and precision spectroscopy data on hydrogen and positronium. The theoretical suggestions for the case of absence of the gravitational field are: equality of electron and positron mass and equality of proton and positron charge. We also assume that QED is correct at the level of accuracy where it is clearly confirmed experimentally.

  14. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry

    Science.gov (United States)

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine metal-containing compounds as the total metal (e.g., total arsenic), using inductively coupled plasma-atomic emission spectrometry.

  15. Resonant coupling in the Van der Waals interaction between an excited alkali atom and a dielectric surface: an experimental study via stepwise selective reflection spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Failache, H.; Saltiel, S.; Fichet, M.; Bloch, D.; Ducloy, M. [Paris-13 Univ., Lab. de Physique des Lasers, UMR 7538 du CNRS, 93 - Villetaneuse (France)

    2003-05-01

    We present a detailed experimental study of the evaluation of the van der Waals (vW) atom-surface interaction for high-lying excited states of alkali-metal atoms (Cs and Rb), notably R-hen they couple resonantly with a surface-polariton mode of the neighbouring dielectric surface. This report extends our initial observation [Phys. Rev. Lett. 83, 5467 (1999)) of a vW repulsion between Cs(6D{sub 3/2}) and a sapphire surface. The experiment is based upon FM selective reflection spectroscopy, on a transition reaching a high-lying state from a resonance level, that has been thermally pumped by an initial one-photon step. Along with a strong vW repulsion fitted with a blue line-shift, -160 {+-} 25 kHz {mu}m{sup 3} for Cs(6D{sub 3/2}) in front of a sapphire surface (with a perpendicular c-axis), we demonstrate a weaker vW repulsion (-32{+-}5 kHz {mu}m{sup 3}) for Cs(6D{sub 3/2}) in front of a YAG surface, as due to a similar resonant coupling at 12 {mu}m between a virtual atomic emission (6D{sub 3/2}-7P{sub 1/2}) and the surface polariton modes. A resonant behaviour of Rb(6D{sub 5/2}) in front of a sapphire surface exists also because of analogous decay channels in the 12 {mu}m range. Finally. one demonstrates that fused silica. nonresonant for a virtual transition in the 12 {mu}m range and hence weakly attracting for Cs(6D{sub 3/2}), exhibits a resonant behaviour for Cs(9S{sub 1/2}) as due to its surface polariton resonance in the 8-9 {mu}m range. The limiting factors that affect both the accuracy of the theoretical prediction, and that of the fitting method applied to the experimental data. are discussed in the conclusion. (authors)

  16. X-ray emission spectroscopy study of the Verwey transition in Fe sub 3 O sub 4

    CERN Document Server

    Moewes, A; Finkelstein, L D; Galakhov, A V; Gota, S; Gautier-Soyer, M; Rueff, J P; Hague, C F

    2003-01-01

    The temperature-dependent Verwey transition in a 500 A (111) thin film of Fe sub 3 O sub 4 (magnetite) has been studied using soft-x-ray emission spectroscopy at room temperature and below the transition temperature T sub V. The Fe L sub 2 sub , sub 3 x-ray emission spectra show an increase in the intensity of the L sub 2 emission relative to the L sub 3 emission below T sub V. This is independent of the excitation energy and is attributed to a metal-insulator transition across T sub V. Comparison of the Fe L sub 3 emission and O K alpha spectra with LDA band structure calculations supports the suggestion of charge ordering in Fe sub 3 O sub 4 at low temperature.

  17. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    Science.gov (United States)

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  18. Determination of Fe Content of Some Food Items by Flame Atomic Absorption Spectroscopy (FAAS): A Guided-Inquiry Learning Experience in Instrumental Analysis Laboratory

    Science.gov (United States)

    Fakayode, Sayo O.; King, Angela G.; Yakubu, Mamudu; Mohammed, Abdul K.; Pollard, David A.

    2012-01-01

    This article presents a guided-inquiry (GI) hands-on determination of Fe in food samples including plantains, spinach, lima beans, oatmeal, Frosted Flakes cereal (generic), tilapia fish, and chicken using flame atomic absorption spectroscopy (FAAS). The utility of the GI experiment, which is part of an instrumental analysis laboratory course,…

  19. Adsorption and deposition of anthraquinone-2-carboxylic acid on alumina studied by inelastic electron tunneling spectroscopy, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Higo, Morihide [Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan)], E-mail: higo@apc.kagoshima-u.ac.jp; Miake, Takeshi; Mitsushio, Masaru; Yoshidome, Toshifumi [Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Ozono, Yoshihisa [Center for Instrumental analysis, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan)

    2008-04-30

    The adsorption state of anthraquinone-2-carboxylic acid (AQ-2-COOH) deposited from acetone solutions (0.01-1.00 mg/ml) on native oxide surfaces of Al films was characterized by inelastic electron tunneling spectroscopy, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy. The oxide was prepared on evaporated Al films at room temperature in an oxygen-dc glow discharge. The morphology of the deposited AQ-2-COOH on the oxide surfaces was observed and analyzed by atomic force microscopy. These surface analyses showed that AQ-2-COOH is adsorbed predominantly as a uniform nanometer-scale film of carboxylate anions on the oxide surfaces deposited from solutions with concentrations lower than or equal to 0.02 mg/ml. It was found that AQ-2-COOH is adsorbed as both a uniform film of anions and as micron-sized particles of neutral molecules with heights of a few tens of nanometers when AQ-2-COOH is deposited from solutions with concentrations higher than 0.02 mg/ml. A comparison of the results obtained by these surface analytical techniques clearly shows the features and advantages of these analytical techniques.

  20. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy.

    Science.gov (United States)

    Owen, R J; Heyes, C D; Knebel, D; Röcker, C; Nienhaus, G U

    2006-07-01

    In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution. (c) 2006 Wiley Periodicals, Inc.

  1. Bioavailability study of calcium sandoz-250 by atomic absorption spectroscopy in albino rats.

    Science.gov (United States)

    Patel, Bimalkumar N; Krishnaveni, N; Jivani, Nurrrudin P; Khodakiya, Akruti S; Khodakiya, Moorti S; Parida, Saswat K

    2014-01-01

    Calcium sandoz-250 is an Ayurvedic calcium supplement, containing Khatika Churna. Bioavailability study of the formulation is essential for estimation of peak plasma concentration (C max), time to C max and rate of absorption. To evaluate the absorption parameters of calcium sandoz-250 in albino rats by atomic absorption spectroscopic (AAS) method. Study was carried out as a single dose, open-label, randomized study. Estimation of calcium was carried out by AAS, after validating the method for a few parameters for the estimation. Pharmacokinetic parameters such as C max, time to peak concentration (T max), area under the plasma concentration - time curve were calculated for calcium on administration of calcium sandoz-250. Linearity curve was plotted for 0.5-2.5 ppm, given R (2) value 0.9975. The C max, i.e. C max after administration of calcium sandoz-250 was 0.793 mg/ml at 90 min (T max). Measurable calcium-blood levels were noticed in all subjects up to 3.0 h after administration of calcium sandoz-250. Calcium sandoz-250, consisting of Khatika Churna, increases the blood calcium level in albino rats.

  2. Determination of toxic metals in some herbal drugs through atomic absorption spectroscopy.

    Science.gov (United States)

    Hina, Bushra; Rizwani, Ghazala Hafeez; Naseem, Shahid

    2011-07-01

    This study presents a picture of occurrence of heavy metals (Pb, Cd, Cu, Cr, Co, Fe, Ni, Zn) in some selected valuable herbal drugs (G. glabra, O. bracteatum, V. odorata , F. vulgare, C. cyminum, C. sativum, and Z. officinalis) purchased from three different zones (southern, eastern, and western) of Karachi city using atomic absorption spectrophotometer. Heavy metal concentrations in these drugs were found in the range of: 3.26-30.46 for Pb, 1.6-4.91 for Cd, 0.65-120.21 for Cu, 83.74-433.76 for Zn, 1.61-186.75 for Cr, 0.48-76.97 for Ni, 5.54-77.97 for Co and 65.68-1652.89 µg/g for Fe. Percentage of heavy metals that were found beyond the permissible limits were: 71.4% for Pb, 28.51% for Cd, 14.2% for Cu, and 9.5 % for Cr. Significant difference was noticed for each heavy metal among herbal drugs as well as their zones of collection using two way ANOVA followed by least significant (LSD) test at p<0.05.Purpose of this research is to detect each type of heavy metal contaminant of herbal drugs by environmental pollution, as well as to highlight the health risks associated with the use of such herbal drugs that contain high levels of toxic heavy metals.

  3. Data correlation in on-line solid-phase extraction-gas chromatography-atomic emission/mass spectrometric detection of unknown microcontaminants

    NARCIS (Netherlands)

    Hankemeier, Th.; Rozenbrand, J.; Abhadur, M.; Vreuls, J.J.; Brinkman, U.A.Th.

    1998-01-01

    A procedure is described for the (non-target) screening of hetero-atom-containing compounds in tap and waste water by correlating data obtained by gas chromatography (GC) using atomic emission (AED) and mass selective (MS) detection. Solid-phase extraction (SPE) was coupled on-line to both GC

  4. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    Energy Technology Data Exchange (ETDEWEB)

    Milne, Chris J; Pham, Van-Thai; Veen, Renske M van der; El Nahhas, Amal; Lima, Frederico; Vithanage, Dimali A; Chergui, Majed [Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Federale de Lausanne (Switzerland); Gawelda, Wojciech [Laser Processing Group, Instituto de Optica, CSIC (Spain); Johnson, Steven L; Beaud, Paul; Ingold, Gerhard; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Abela, Rafael [Swiss Light Source, Paul Scherrer Institut (Switzerland); Benfatto, Maurizio [Laboratori Nazionali di Frascati, INFN (Italy); Hauser, Andreas [Departement de Chimie Physique, Universite de Geneve (Switzerland); Bressler, Christian, E-mail: majed.chergui@epfl.c, E-mail: chris.milne@psi.c [European XFEL Project Team, Deutsches Elektronen Synchrotron (Germany)

    2009-11-15

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [Fe{sup II}(bpy){sub 3}]{sup 2+}, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 A. In addition an analysis technique using the reduced {chi}{sup 2} goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  5. Evaluating the Optoelectronic Quality of Hybrid Perovskites by Conductive Atomic Force Microscopy with Noise Spectroscopy.

    Science.gov (United States)

    Lee, Byungho; Lee, Sangheon; Cho, Duckhyung; Kim, Jinhyun; Hwang, Taehyun; Kim, Kyung Hwan; Hong, Seunghun; Moon, Taeho; Park, Byungwoo

    2016-11-16

    Organic-inorganic hybrid perovskite solar cells have emerged as promising candidates for next-generation solar cells. To attain high photovoltaic efficiency, reducing the defects in perovskites is crucial along with a uniform coating of the films. Also, evaluating the quality of synthesized perovskites via facile and adequate methods is important as well. Herein, CH3NH3PbI3 perovskites were synthesized by applying second solvent dripping to nonstoichiometric precursors containing excess CH3NH3I. The resulting perovskite films exhibited a larger average grain size with a better crystallinity compared to that from stoichiometric precursors. As a result, the performance of planar perovskite solar cells was significantly improved, achieving an efficiency of 14.3%. Furthermore, perovskite films were effectively analyzed using a conductive AFM and noise spectroscopy, which have been uncommon in the field of perovskite solar cells. Comparing the topography and photocurrent maps, the variation of photocurrents in nanoscale was systematically investigated, and a linear relationship between the grain size and photocurrent was revealed. Also, noise analyses with a conductive probe enabled examination of the defect density of perovskites at specific grain interiors by excluding the grain-boundary effect, and reduced defects were clearly observed for the perovskites using CH3NH3I-rich precursors.

  6. Use of stirred tanks for studying matrix effects caused by inorganic acids, easily ionized elements and organic solvents in inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Eduardo [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Maestre, Salvador E. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Todoli, Jose L. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain)]. E-mail: jose.todoli@ua.es

    2006-03-15

    A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l{sup -1} in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l{sup -1} for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40-50 different solutions were prepared and measured in a period of time shorter than 6-7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min.

  7. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  8. Study on Emission Spectral Lines of Iron, Fe in Laser-Induced Breakdown Spectroscopy (LIBS) on Soil Samples

    Science.gov (United States)

    Idris, Nasrullah; Lahna, Kurnia; Fadhli; Ramli, Muliadi

    2017-05-01

    In this work, LIBS technique has been used for detection of heavy metal especially iron, Fe in soil sample. As there are a large number of emission spectral lines due to Fe and other constituents in soil, this study is intended to identify emission spectral lines of Fe and finally to find best fit emission spectral lines for carrying out a qualitative and quantitative analysis. LIBS apparatus used in this work consists of a laser system (Neodymium Yttrium Aluminum Garnet, Nd-YAG: Quanta Ray; LAB SERIES; 1,064 nm; 500 mJ; 8 ns) and an optical multichannel analyzer (OMA) system consisting of a spectrograph (McPherson model 2061; 1,000 mm focal length; f/8.6 Czerny- Turner) and an intensified charge coupled device (ICCD) 1024x256 pixels (Andor I*Star). The soil sample was collected from Banda Aceh city, Aceh, Indonesia. For spectral data acquisition, the soil sample has been prepared by a pressing machine in the form of pellet. The laser beam was focused using a high density lens (f=+150 mm) and irradiated on the surface of the pellet for generating luminous plasma under 1 atmosphere of air surrounding. The plasma emission was collected by an optical fiber and then sent to the optical multichannel analyzer (OMA) system for acquisition of the emission spectra. It was found that there are many Fe emission lines both atomic lines (Fe I) and ionic lines (Fe II) appeared in all detection windows in the wavelength regions, ranging from 200 nm to 1000 nm. The emission lines of Fe with strong intensities occurs together with emission lines due to other atoms such as Mg, Ca, and Si. Thus, the identification of emission lines from Fe is complicated by presence of many other lines due to other major and minor elements in soil. Considering the features of the detected emission lines, several emission spectral lines of Fe I (atomic emission line), especially Fe I 404.58 nm occurring at visible range are potential to be good candidate of analytical lines in relation to detection

  9. Characterization of chemically and enzymatically treated hemp fibres using atomic force microscopy and spectroscopy

    Science.gov (United States)

    George, Michael; Mussone, Paolo G.; Abboud, Zeinab; Bressler, David C.

    2014-09-01

    The mechanical and moisture resistance properties of natural fibre reinforced composites are dependent on the adhesion between the matrix of choice and the fibre. The main goal of this study was to investigate the effect of NaOH swelling of hemp fibres prior to enzymatic treatment and a novel chemical sulfonic acid method on the physical properties of hemp fibres. The colloidal properties of treated hemp fibres were studied exclusively using an atomic force microscope. AFM imaging in tapping mode revealed that each treatment rendered the surface topography of the hemp fibres clean and exposed the individual fibre bundles. Hemp fibres treated with laccase had no effect on the surface adhesion forces measured. Interestingly, mercerization prior to xylanase + cellulase and laccase treatments resulted in greater enzyme access evident in the increased adhesion force measurements. Hemp fibres treated with sulfonic acid showed an increase in surface de-fibrillation and smoothness. A decrease in adhesion forces for 4-aminotoulene-3-sulfonic acid (AT3S) treated fibres suggested a reduction in surface polarity. This work demonstrated that AFM can be used as a tool to estimate the surface forces and roughness for modified fibres and that enzymatic coupled with chemical methods can be used to improve the surface properties of natural fibres for composite applications. Further, this work is one of the first that offers some insight into the effect of mercerization prior to enzymes and the effect on the surface topography. AFM will be used to selectively screen treated fibres for composite applications based on the adhesion forces associated with the colloidal interface between the AFM tip and the fibre surfaces.

  10. Speciation of methylmercury in market seafood by thermal degradation, amalgamation and atomic absorption spectroscopy.

    Science.gov (United States)

    Ruiz-de-Cenzano, Manuela; Rochina-Marco, Arancha; Cervera, M Luisa; de la Guardia, Miguel

    2014-09-01

    Sample thermal decomposition followed by mercury amalgamation and atomic absorption has been employed for the determination of methylmercury (MeHg) in fish. The method involves HBr leaching of MeHg, extraction into toluene, and back-extraction into an aqueous l-cysteine solution. Preliminary studies were focused on the extraction efficiency, losses, contaminations, and species interconversion prevention. The limit of detection was 0.018µgg(-1) (dry weight). The intraday precision for three replicate analysis at a concentration of 4.2µgg(-1) (dry weight) was 3.5 percent, similar to the interday precision according to analysis of variance (ANOVA). The accuracy was guaranteed by the use of fortified samples involving 83-105 percent recoveries, and certified reference materials TORT-2 (lobster hepatopancreas) and DORM-3 (dogfish liver), providing 107 and 98 percent recovery of certified values. The greenness of the method was also evaluated with the analytical eco-scale being obtained a final score of 73 points which means an acceptable green analysis. The method was applied to fifty-seven market samples of different fish acquired from local markets in several sampling campaigns. The content of MeHg found varied between 0.0311 and 1.24µgg(-1) (wet weight), with values that involve 33-129 percent of the total mercury content. Some considerations about food safety were also done taking into account data about Spanish fish consume and Tolerable Weekly Intake (TWI) established for MeHg. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Characterization of chemically and enzymatically treated hemp fibres using atomic force microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    George, Michael; Mussone, Paolo G. [Biorefining Conversions and Fermentations Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6E 2P5 (Canada); Abboud, Zeinab [Biorefining Conversions and Fermentations Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6E 2P5 (Canada); Department of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1 (Canada); Bressler, David C., E-mail: david.bressler@ualberta.ca [Biorefining Conversions and Fermentations Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6E 2P5 (Canada)

    2014-09-30

    The mechanical and moisture resistance properties of natural fibre reinforced composites are dependent on the adhesion between the matrix of choice and the fibre. The main goal of this study was to investigate the effect of NaOH swelling of hemp fibres prior to enzymatic treatment and a novel chemical sulfonic acid method on the physical properties of hemp fibres. The colloidal properties of treated hemp fibres were studied exclusively using an atomic force microscope. AFM imaging in tapping mode revealed that each treatment rendered the surface topography of the hemp fibres clean and exposed the individual fibre bundles. Hemp fibres treated with laccase had no effect on the surface adhesion forces measured. Interestingly, mercerization prior to xylanase + cellulase and laccase treatments resulted in greater enzyme access evident in the increased adhesion force measurements. Hemp fibres treated with sulfonic acid showed an increase in surface de-fibrillation and smoothness. A decrease in adhesion forces for 4-aminotoulene-3-sulfonic acid (AT3S) treated fibres suggested a reduction in surface polarity. This work demonstrated that AFM can be used as a tool to estimate the surface forces and roughness for modified fibres and that enzymatic coupled with chemical methods can be used to improve the surface properties of natural fibres for composite applications. Further, this work is one of the first that offers some insight into the effect of mercerization prior to enzymes and the effect on the surface topography. AFM will be used to selectively screen treated fibres for composite applications based on the adhesion forces associated with the colloidal interface between the AFM tip and the fibre surfaces.

  12. Differential electron-Cu{sup 5+} elastic scattering cross sections extracted from electron emission in ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C.; Hagmann, S.; Bhalla, C.P.; Grabbe, S.R.; Cocke, C.L.; Richard, P. [J. R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506 (United States); Liao, C. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    1999-04-01

    We present a method of deriving energy and angle-dependent electron-ion elastic scattering cross sections from doubly differential cross sections for electron emission in ion-atom collisions. By analyzing the laboratory frame binary encounter electron production cross sections in energetic ion-atom collisions, we derive projectile frame differential cross sections for electrons elastically scattered from highly charged projectile ions in the range between 60{degree} and 180{degree}. The elastic scattering cross sections are observed to deviate strongly from the Rutherford cross sections for electron scattering from bare nuclei. They exhibit strong Ramsauer-Townsend electron diffraction in the angular distribution of elastically scattered electrons, providing evidence for the strong role of screening played in the collision. Experimental data are compared with partial-wave calculations using the Hartree-Fock model. {copyright} {ital 1999} {ital The American Physical Society}

  13. Prediction of methane emission from lactating dairy cows using milk fatty acids and mid-infrared spectroscopy.

    Science.gov (United States)

    van Gastelen, Sanne; Dijkstra, Jan

    2016-09-01

    Enteric methane (CH4 ) production is among the main targets of greenhouse gas mitigation practices for the dairy industry. A simple, robust and inexpensive measurement technique applicable on a large scale to estimate CH4 emission from dairy cattle would therefore be valuable. Milk fatty acids (MFA) are related to CH4 production because of the common biochemical pathway between CH4 and fatty acids in the rumen. A summary of studies that investigated the predictive power of MFA composition for CH4 emission indicated good potential, with predictive power ranging between 47% and 95%. Until recently, gas chromatography (GC) was the principal method used to determine the MFA profile, but GC is unsuitable for routine analysis. This has led to the application of mid-infrared (MIR) spectroscopy. The major advantages of using MIR spectroscopy to predict CH4 emission include its simplicity and potential practical application at large scale. Disadvantages include the inability to predict important MFA for CH4 prediction, and the moderate predictive power for CH4 emission. It may not be sufficient to predict CH4 emission based on MIR alone. Integration with other factors, like feed intake, nutrient composition of the feed, parity, and lactation stage may improve the prediction of CH4 emission using MIR spectra. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Development of a Reference Database for Particle-Induced Gamma-ray Emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriou, P., E-mail: P.Dimitriou@iaea.org [International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna (Austria); Becker, H.-W. [Ruhr Universität Bochum, Gebäude NT05/130, Postfach 102148, Bochum 44721 (Germany); Bogdanović-Radović, I. [Department of Experimental Physics, Institute Rudjer Boskovic, Bijenicka Cesta 54, 10000 Zagreb (Croatia); Chiari, M. [Istituto Nazionale di Fisica Nucleare, Via Sansone 1, Sesto Fiorentino, 50019 Firenze (Italy); Goncharov, A. [Kharkov Institute of Physics and Technology, National Science Center, Akademicheskaya Str.1, Kharkov 61108 (Ukraine); Jesus, A.P. [Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (Portugal); Kakuee, O. [Nuclear Science and Technology Research Institute, End of North Karegar Ave., PO Box 14395-836, Tehran (Iran, Islamic Republic of); Kiss, A.Z. [Institute of Nuclear Research (ATOMKI), Bem ter 18/c, PO Box 51, 4001 Debrecen (Hungary); Lagoyannis, A. [National Center of Scientific Research “Demokritos”, Agia Paraskevi, P.O. Box 60228, 15310 Athens (Greece); Räisänen, J. [Division of Materials Physics, Department of Physics, University of Helsinki, PO Box 43, 00014 University of Helsinki (Finland); Strivay, D. [Institut de Physique Nucleaire, Atomique et de Spectroscopie, Universite de Liège, Sart Tilman, B15 4000 Liège (Belgium); Zucchiatti, A. [Centro de Micro Análisis de Materiales, Universidad Autónoma de Madrid, Faraday 3, Madrid 28049 (Spain)

    2016-03-15

    Particle-Induced Gamma-ray Emission (PIGE) is a powerful analytical technique that exploits the interactions of rapid charged particles with nuclei located near a sample surface to determine the composition and structure of the surface regions of solids by measurement of characteristic prompt γ rays. The potential for depth profiling of this technique has long been recognized, however, the implementation has been limited owing to insufficient knowledge of the physical data and lack of suitable user-friendly computer codes for the applications. Although a considerable body of published data exists in the nuclear physics literature for nuclear reaction cross sections with γ rays in the exit channel, there is no up-to-date, comprehensive compilation specifically dedicated to IBA applications. A number of PIGE cross-section data had already been uploaded to the Ion Beam Analysis Nuclear Data Library (IBANDL) ( (http://www-nds.iaea.org/ibandl)) by members of the IBA community by 2011, however a preliminary survey of this body of unevaluated experimental data has revealed numerous discrepancies beyond the uncertainty limits reported by the authors. Using the resources and coordination provided by the IAEA, a concerted effort to improve the situation was made within the Coordinated Research Project on the Development of a Reference Database for PIGE spectroscopy, from 2011 to 2015. The aim of the CRP was to create a data library for Ion Beam Analysis that contains reliable and usable data on charged particle γ-ray emission cross sections that would be made freely available to the user community. As the CRP has reached its completion, we shall present its main achievements, including the results of nuclear cross-section evaluations and the development of a computer code that will become available to the public allowing for the implementation of a standardless PIGE technique.

  15. Detection of Rest-frame Optical Lines from X-shooter Spectroscopy of Weak Emission Line Quasars

    Science.gov (United States)

    Plotkin, Richard M.; Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Fan, Xiaohui; Gallo, Elena; Lira, Paulina; Luo, Bin; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.; Wu, Jianfeng

    2015-06-01

    Over the past 15 yr, examples of exotic radio-quiet quasars with intrinsically weak or absent broad emission line regions (BELRs) have emerged from large-scale spectroscopic sky surveys. Here, we present spectroscopy of seven such weak emission line quasars (WLQs) at moderate redshifts (z = 1.4-1.7) using the X-shooter spectrograph, which provides simultaneous optical and near-infrared spectroscopy covering the rest-frame ultraviolet (UV) through optical. These new observations effectively double the number of WLQs with spectroscopy in the optical rest-frame, and they allow us to compare the strengths of (weak) high-ionization emission lines (e.g., C iv) to low-ionization lines (e.g., Mg ii, Hβ, Hα) in individual objects. We detect broad Hβ and Hα emission in all objects, and these lines are generally toward the weaker end of the distribution expected for typical quasars (e.g., Hβ has rest-frame equivalent widths ranging from 15-40 Å). However, these low-ionization lines are not exceptionally weak, as is the case for high-ionization lines in WLQs. The X-shooter spectra also display relatively strong optical Fe ii emission, Hβ FWHM ≲ 4000 km s-1, and significant C iv blueshifts (≈1000-5500 km s-1) relative to the systemic redshift; two spectra also show elevated UV Fe ii emission, and an outflowing component to their (weak) Mg ii emission lines. These properties suggest that WLQs are exotic versions of “wind-dominated” quasars. Their BELRs either have unusual high-ionization components, or their BELRs are in an atypical photoionization state because of an unusually soft continuum. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 088.B-0355 and 090.B-0438.

  16. X-ray photoelectron spectroscopy study of pyrolytically coated graphite platforms submitted to simulated electrothermal atomic absorption spectrometry conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Frine [Laboratorio de Quimica Analitica, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Benzo, Zully [Laboratorio de Quimica Analitica, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Quintal, Manuelita [Laboratorio de Quimica Analitica, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Garaboto, Angel [Laboratorio de Quimica Analitica, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Albornoz, Alberto [Laboratorio de Fisicoquimica de Superficies, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Brito, Joaquin L. [Laboratorio de Fisicoquimica de Superficies, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela)]. E-mail: joabrito@ivic.ve

    2006-10-15

    The present work is part of an ongoing project aiming to a better understanding of the mechanisms of atomization on graphite furnace platforms used for electrothermal atomic absorption spectrometry (ETAAS). It reports the study of unused pyrolytic graphite coated platforms of commercial origin, as well as platforms thermally or thermo-chemically treated under simulated ETAAS analysis conditions. X-ray photoelectron spectroscopy (XPS) was employed to study the elements present at the surfaces of the platforms. New, unused platforms showed the presence of molybdenum, of unknown origin, in concentrations up to 1 at.%. Species in two different oxidations states (Mo{sup 6+} and Mo{sup 2+}) were detected by analyzing the Mo 3d spectral region with high resolution XPS. The analysis of the C 1s region demonstrated the presence of several signals, one of these at 283.3 eV related to the presence of Mo carbide. The O 1s region showed also various peaks, including a signal that can be attributed to the presence of MoO{sub 3}. Some carbon and oxygen signals were consistent with the presence of C=O and C-O- (probably C-OH) groups on the platforms surfaces. Upon thermal treatment up to 2900 deg. C, the intensity of the Mo signal decreased, but peaks due to Mo oxides (Mo{sup 6+} and Mo{sup 5+}) and carbide (Mo{sup 2+}) were still apparent. Thermo-chemical treatment with 3 vol.% HCl solutions and heating up to 2900 deg. C resulted in further diminution of the Mo signal, with complete disappearance of Mo carbide species. Depth profiling of unused platforms by Ar{sup +} ion etching at increasing time periods demonstrated that, upon removal of several layers of carbonaceous material, the Mo signal disappears suggesting that this contamination is present only at the surface of the pyrolytic graphite platform.

  17. Surface chemistry of group 11 atomic layer deposition precursors on silica using solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Pallister, Peter J.; Barry, Seán T.

    2017-02-01

    The use of chemical vapour deposition (CVD) and atomic layer deposition (ALD) as thin film deposition techniques has had a major impact on a number of fields. The deposition of pure, uniform, conformal thin films requires very specific vapour-solid reactivity that is largely unknown for the majority of ALD and CVD precursors. This work examines the initial chemisorption of several thin film vapour deposition precursors on high surface area silica (HSAS) using 13C, 31P, and quantitative 29Si nuclear magnetic resonance spectroscopy (NMR). Two copper metal precursors, 1,3-diisopropyl-imidazolin-2-ylidene copper (I) hexamethyldisilazide (1) and 1,3-diethyl-imidazolin-2-ylidene copper(I) hexamethyldisilazide (2), and one gold metal precursor, trimethylphosphine gold(III) trimethyl (3), are examined. Compounds 1 and 2 were found to chemisorb at the hydroxyl surface-reactive sites to form a ||-O-Cu-NHC surface species and fully methylated silicon (||-SiMe3, due to reactivity of the hexamethyldisilazane (HMDS) ligand on the precursor) at 150 °C and 250 °C. From quantitative 29Si solid-state NMR (SS-NMR) spectroscopy measurements, it was found that HMDS preferentially reacts at geminal disilanol surface sites while the copper surface species preferentially chemisorbed to lone silanol surface species. Additionally, the overall coverage was strongly dependent on temperature, with higher overall coverage of 1 at higher temperature but lower overall coverage of 2 at higher temperature. The chemisorption of 3 was found to produce a number of interesting surface species on HSAS. Gold(III) trimethylphosphine, reduced gold phosphine, methylated phosphoxides, and graphitic carbon were all observed as surface species. The overall coverage of 3 on HSAS was only about 10% at 100 °C and, like the copper compounds, had a preference for lone silanol surface reactive sites. The overall coverage and chemisorbed surface species have implications to the overall growth rate and purity of

  18. Dislocation emission at the Silicon/Silicon nitride interface: A million atom molecular dynamics simulation on parallel computers

    Science.gov (United States)

    Bachlechner; Omeltchenko; Nakano; Kalia; Vashishta; Ebbsjo; Madhukar

    2000-01-10

    Mechanical behavior of the Si(111)/Si(3)N4(0001) interface is studied using million atom molecular dynamics simulations. At a critical value of applied strain parallel to the interface, a crack forms on the silicon nitride surface and moves toward the interface. The crack does not propagate into the silicon substrate; instead, dislocations are emitted when the crack reaches the interface. The dislocation loop propagates in the (1; 1;1) plane of the silicon substrate with a speed of 500 (+/-100) m/s. Time evolution of the dislocation emission and nature of defects is studied.

  19. An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption

    NARCIS (Netherlands)

    Omenetto, N.; Winefordner, J.D.; Alkemade, C.T.J.

    An expression for the effect of self-absorption on the fluorescence and thermal emission intensities is derived by taking into account stimulated emission. A simple, idealized case is considered, consisting of a two level atomic system, in a flame, homogeneous with respect to temperature and

  20. Correlation Between Spectral Intensities of Coal and Coal Ash Using Emission Spectroscopy

    Science.gov (United States)

    Collett, W. L.; Bell, B.; Mahajan, S. M.; Munukutla, S. S.

    1996-10-01

    Leaching of trace metals such as arsenic, cadmium, lead, mercury, thallium, antimony, and selenium from coal ash into groundwater is a serious environmental concern. In an effort to develop an on-line technique to monitor these elements, a glow discharge based emission spectroscopy technique has been developed at Tennessee Tech University. A glow discharge at 1.25 torr of argon generates a plume near the base of a cooled hollow cathode with a compacted coal or coal ash sample as the base of the cathode. Five different samples of mineral coal and the corresponding samples of coal ash were obtained from a power plant. Spectral intensities were recorded for all seven trace metals with three discs of each sample and four scans of each disc. A correlation between coal and coal ash for each trace metal is currently being established. Such a correlation will help power plants to determine the toxicity level as a result of coal ash disposal prior to burning a particular batch of mineral coal.

  1. Non-equilibrium electron energy distribution in oxygen plasma: observation with optical emission spectroscopy

    Science.gov (United States)

    Boffard, John; Ly, Nathaniel; Wang, Shicong; Swee, Colin; Lin, Chun C.; Wendt, Amy

    2017-10-01

    Partially ionized inductively-coupled RF oxygen plasmas are in widespread use for materials processing, and non-invasive diagnostics are of interest for the optimization and control of the degrees of ionization and dissociation. Our initial study involves a 2-5% admixture of argon for optical emission spectroscopy (OES) of the oxygen plasma glow. The Ar 420.1/419.8 nm line intensity ratio, previously used in other mixtures to compute electron temperature, when 35 eV) electrons; the latter is observed under conditions of low power and high pressure in the oxygen plasma. We tentatively attribute the increase in energetic electrons to a transition to capacitive coupling, leading to electron acceleration to high energy in the sheaths adjacent to the powered electrode, which in this system is a spiral flat antenna separated from the plasma by a dielectric window. Investigations of OES methods involving additional species, including other trace rare gases, O, and O2+,to determine oxygen plasma properties such as non-Maxwellian electron energy distributions will also be described. Supported by NSF Grants PHY-1617602 and PHY-1068670.

  2. Plasma Wind Tunnel Investigation of European Ablators in Nitrogen/Methane Using Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ricarda Wernitz

    2013-01-01

    Full Text Available For atmospheric reentries at high enthalpies ablative heat shield materials are used, such as those for probes entering the atmosphere of Saturn’s moon Titan, such as Cassini-Huygens in December, 2004. The characterization of such materials in a nitrogen/methane atmosphere is of interest. A European ablative material, AQ60, has been investigated in plasma wind tunnel tests at the IRS plasma wind tunnel PWK1 using the magnetoplasma dynamic generator RD5 as plasma source in a nitrogen/methane atmosphere. The dimensions of the samples are 45 mm in length with a diameter of 39 mm. The actual ablator has a thickness of 40 mm. The ablator is mounted on an aluminium substructure. The experiments were conducted at two different heat flux regimes, 1.4 MW/m2 and 0.3 MW/m2. In this paper, results of emission spectroscopy at these plasma conditions in terms of plasma species’ temperatures will be presented, including the investigation of the free-stream species, N2 and N2+, and the major erosion product C2, at a wavelength range around 500 nm–600 nm.

  3. X-ray emission spectroscopy of bulk liquid water in "no-man's land".

    Science.gov (United States)

    Sellberg, Jonas A; McQueen, Trevor A; Laksmono, Hartawan; Schreck, Simon; Beye, Martin; DePonte, Daniel P; Kennedy, Brian; Nordlund, Dennis; Sierra, Raymond G; Schlesinger, Daniel; Tokushima, Takashi; Zhovtobriukh, Iurii; Eckert, Sebastian; Segtnan, Vegard H; Ogasawara, Hirohito; Kubicek, Katharina; Techert, Simone; Bergmann, Uwe; Dakovski, Georgi L; Schlotter, William F; Harada, Yoshihisa; Bogan, Michael J; Wernet, Philippe; Föhlisch, Alexander; Pettersson, Lars G M; Nilsson, Anders

    2015-01-28

    The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (TH) of ∼232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b1' and 1b1″ peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important.

  4. An X-ray absorption spectroscopy investigation of the local atomic structure in Cu-Ni-Si alloy after severe plastic deformation and ageing

    Science.gov (United States)

    Azzeddine, H.; Harfouche, M.; Hennet, L.; Thiaudiere, D.; Kawasaki, M.; Bradai, D.; Langdon, T. G.

    2015-08-01

    The local atomic structure of Cu-Ni-Si alloy after severe plastic deformation (SPD) processing and the decomposition of supersaturated solid solution upon annealing were investigated by means of X-ray absorption spectroscopy. The coordination number and interatomic distances were obtained by analyzing experimental extend X-ray absorption fine structure data collected at the Ni K-edge. Results indicate that the environment of Ni atoms in Cu-Ni-Si alloy is strongly influenced by the deformation process. Moreover, ageing at 973 K affects strongly the atomic structure around the Ni atoms in Cu-Ni-Si deformed by equal channel angular pressing and high pressure torsion. This influence is discussed in terms of changes and decomposition features of the Cu-Ni-Si solid solution.

  5. Unraveling the solid-liquid-vapor phase transition dynamics at the atomic level with ultrafast x-ray absorption near-edge spectroscopy.

    Science.gov (United States)

    Dorchies, F; Lévy, A; Goyon, C; Combis, P; Descamps, D; Fourment, C; Harmand, M; Hulin, S; Leguay, P M; Petit, S; Peyrusse, O; Santos, J J

    2011-12-09

    X-ray absorption near-edge spectroscopy (XANES) is a powerful probe of electronic and atomic structures in various media, ranging from molecules to condensed matter. We show how ultrafast time resolution opens new possibilities to investigate highly nonequilibrium states of matter including phase transitions. Based on a tabletop laser-plasma ultrafast x-ray source, we have performed a time-resolved (∼3  ps) XANES experiment that reveals the evolution of an aluminum foil at the atomic level, when undergoing ultrafast laser heating and ablation. X-ray absorption spectra highlight an ultrafast transition from the crystalline solid to the disordered liquid followed by a progressive transition of the delocalized valence electronic structure (metal) down to localized atomic orbitals (nonmetal-vapor), as the average distance between atoms increases.

  6. Investigation of electronic structure of tri- and tetranuclear molybdenum clusters by X-ray photoelectron and emission spectroscopies and quantum chemical methods

    Science.gov (United States)

    Kryuchkova, Natalya A.; Syrokvashin, Mikhail M.; Gushchin, Artem L.; Korotaev, Evgeniy V.; Kalinkin, Alexander V.; Laricheva, Yuliya A.; Sokolov, Maxim N.

    2018-02-01

    Charge state studies of compounds [Mo3S4(tu)8(H2O)]Cl4·4H2O (1), [Mo3S4Cl3(dbbpy)3]Cl·5H2O (2), [Mo3S4(CuCl)Cl3(dbbpy)3][CuCl2] (3), containing {Mo3S4}4+ and {Mo3CuS4}5+ cluster cores bearing terminal thiourea (tu) or 4,4‧-di-tert-butyl-2,2‧-bipyridine (dbbpy) ligands, have been performed by X-ray photoelectron and X-ray emission spectroscopies combined with quantum chemical calculations. The best agreement between theory and experiments has been obtained using the B3LYP method. According to the experimental and calculated data, the Mo atoms are in the oxidation state 4+ for all compounds. The energies and shapes of the Cu2p lines indicate formal oxidation states of Cu as 1+. The coordination of Cu(I) to the cluster {Mo3S4} in 3 does not lead to significant changes in the charge state of the molybdenum atoms and the {Mo3S4} unit can be considered as a tridentate metallothia crown ether.

  7. Investigation of electronic structure of tri- and tetranuclear molybdenum clusters by X-ray photoelectron and emission spectroscopies and quantum chemical methods.

    Science.gov (United States)

    Kryuchkova, Natalya A; Syrokvashin, Mikhail M; Gushchin, Artem L; Korotaev, Evgeniy V; Kalinkin, Alexander V; Laricheva, Yuliya A; Sokolov, Maxim N

    2018-02-05

    Charge state studies of compounds [Mo3S4(tu)8(H2O)]Cl4·4H2O (1), [Mo3S4Cl3(dbbpy)3]Cl·5H2O (2), [Mo3S4(CuCl)Cl3(dbbpy)3][CuCl2] (3), containing {Mo3S4}4+ and {Mo3CuS4}5+ cluster cores bearing terminal thiourea (tu) or 4,4'-di-tert-butyl-2,2'-bipyridine (dbbpy) ligands, have been performed by X-ray photoelectron and X-ray emission spectroscopies combined with quantum chemical calculations. The best agreement between theory and experiments has been obtained using the B3LYP method. According to the experimental and calculated data, the Mo atoms are in the oxidation state 4+ for all compounds. The energies and shapes of the Cu2p lines indicate formal oxidation states of Cu as 1+. The coordination of Сu(I) to the cluster {Mo3S4} in 3 does not lead to significant changes in the charge state of the molybdenum atoms and the {Mo3S4} unit can be considered as a tridentate metallothia crown ether. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, Alexey V., E-mail: a-bulanov@me.com [Far Eastern Federal University, Vladivostok, Russia 690950 (Russian Federation); V.I. Il’ichev Pacific Oceanological Institute, Vladivostok, Russia 690041 (Russian Federation); Nagorny, Ivan G., E-mail: ngrn@mail.ru [Far Eastern Federal University, Vladivostok, Russia 690950 (Russian Federation); Institute for automation and control processes, Vladivostok, Russia 690041 (Russian Federation)

    2015-10-28

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission in fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained.

  9. Study of gamma-ray emission by proton beam interaction with injected Boron atoms for future medical imaging applications

    Science.gov (United States)

    Petringa, G.; Cirrone, G. A. P.; Caliri, C.; Cuttone, G.; Giuffrida, L.; Larosa, G.; Manna, R.; Manti, L.; Marchese, V.; Marchetta, C.; Margarone, D.; Milluzzo, G.; Picciotto, A.; Romano, F.; Romano, F. P.; Russo, A. D.; Russo, G.; Santonocito, D.; Scuderi, V.

    2017-03-01

    In this work an experimental and theoretical study of gamma-prompt emission has been carried out with the main aim being to understand to what extent this approach can be used during a treatment based on proton-boron fusion therapy. An experimental campaign, carried out with a high purity Germanium detector, has been performed to evaluate the gamma emission from two pure 11B and 10B targets. Furthermore, a set of analytical simulations, using the Talys nuclear reaction code has been performed and the calculated spectra compared with the experimental results. These comparisons allowed us to successfully validate Talys which was then used to estimate the gamma emission when a realistic Boron concentration was considered. Both simulations and experimental results suggest that the gamma emission is low at certain proton energies, thus in order to improve the imaging capabilities, while still maintaining the Boron therapeutic role, we propose the addition of natural Copper bound by a dipyrromethene, BodiPy, to boron atoms. Analytical simulations with Talys suggest that the characteristic spectrum of the copper prompt gamma-rays has several peaks in the energetic regions where the background is negligible.

  10. A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Anil; Raghuram, Susarla, E-mail: bhardwaj_spl@yahoo.com, E-mail: anil_bhardwaj@vssc.gov.in, E-mail: raghuramsusarla@gmail.com [Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695022 (India)

    2012-03-20

    The green (5577 Angstrom-Sign ) and red-doublet (6300, 6364 Angstrom-Sign ) lines are prompt emissions of metastable oxygen atoms in the {sup 1}S and {sup 1}D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H{sub 2}O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O({sup 1}S) and O({sup 1}D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H{sub 2}O to the green (red) line emission is 30%-70% (60%-90%), while CO{sub 2} and CO are the next potential sources contributing 25%-50% (<5%). The ratio of the photoproduction rate of O({sup 1} S) to O({sup 1} D) would be around 0.03 ({+-}0.01) if H{sub 2}O is the main source of oxygen lines, whereas it is {approx}0.6 if the parent is CO{sub 2}. Our calculations suggest that the yield of O({sup 1} S) production in the photodissociation of H{sub 2}O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  11. Localized holes and delocalized electrons in photoexcited inorganic perovskites: Watching each atomic actor by picosecond X-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    Fabio G. Santomauro

    2017-07-01

    Full Text Available We report on an element-selective study of the fate of charge carriers in photoexcited inorganic CsPbBr3 and CsPb(ClBr3 perovskite nanocrystals in toluene solutions using time-resolved X-ray absorption spectroscopy with 80 ps time resolution. Probing the Br K-edge, the Pb L3-edge, and the Cs L2-edge, we find that holes in the valence band are localized at Br atoms, forming small polarons, while electrons appear as delocalized in the conduction band. No signature of either electronic or structural changes is observed at the Cs L2-edge. The results at the Br and Pb edges suggest the existence of a weakly localized exciton, while the absence of signatures at the Cs edge indicates that the Cs+ cation plays no role in the charge transport, at least beyond 80 ps. This first, time-resolved element-specific study of perovskites helps understand the rather modest charge carrier mobilities in these materials.

  12. Structure and Nanomechanics of Model Membranes by Atomic Force Microscopy and Spectroscopy: Insights into the Role of Cholesterol and Sphingolipids

    Directory of Open Access Journals (Sweden)

    Berta Gumí-Audenis

    2016-12-01

    Full Text Available Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs. Atomic force microscope (AFM is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information.

  13. Elucidation of the effect of aptamer immobilization strategies on the interaction between cell and its aptamer using atomic force spectroscopy.

    Science.gov (United States)

    Wang, Qing; Luo, Bianxia; Yang, Xiaohai; Wang, Kemin; Liu, Lin; Du, Shasha; Li, Zhiping

    2016-04-01

    The immobilization strategy of cell-specific aptamers is of great importance for studying the interaction between a cell and its aptamer. However, because of the difficulty of studying living cell, there have not been any systematic reports about the effect of immobilization strategies on the binding ability of an immobilized aptamer to its target cell. Because atomic force spectroscopy (AFM) could not only be suitable for the investigation of living cell under physiological conditions but also obtains information reflecting the intrinsic properties of individuals, the effect of immobilization strategies on the interaction of aptamer/human hepatocarcinoma cell Bel-7404 was successively evaluated using AFM here. Two different immobilization methods, including polyethylene glycol immobilization method and glutaraldehyde immobilization method were used, and the factors, such as aptamer orientation, oligodeoxythymidine spacers and dodecyl spacers, were investigated. Binding events measured by AFM showed that a similar unbinding force was obtained regardless of the change of the aptamer orientation, the immobilization method, and spacers, implying that the biophysical characteristics of the aptamer at the molecular level remain undisturbed. However, it showed that the immobilization orientation, immobilization method, and spacers could alter the binding probability of aptamer/Bel-7404 cell. Presumably, these factors may affect the accessibility of the aptamer toward its target cell. These results may provide valuable information for aptamer sensor platforms including ultrasensitive biosensor design. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Application of Atomic Dielectric Resonance Spectroscopy for the screening of blood samples from patients with clinical variant and sporadic CJD.

    Science.gov (United States)

    Fagge, Timothy J; Barclay, G Robin; Stove, G Colin; Stove, Gordon; Robinson, Michael J; Head, Mark W; Ironside, James W; Turner, Marc L

    2007-08-30

    Sub-clinical variant Creutzfeldt-Jakob disease (vCJD) infection and reports of vCJD transmission through blood transfusion emphasise the need for blood screening assays to ensure the safety of blood and transplanted tissues. Most assays aim to detect abnormal prion protein (PrPSc), although achieving required sensitivity is a challenge. We have used innovative Atomic Dielectric Resonance Spectroscopy (ADRS), which determines dielectric properties of materials which are established by reflectivity and penetration of radio/micro waves, to analyse blood samples from patients and controls to identify characteristic ADR signatures unique to blood from vCJD and to sCJD patients. Initial sets of blood samples from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors) were screened as training samples to determine group-specific ADR characteristics, and provided a basis for classification of blinded sets of samples. Blood sample groups from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors) screened by ADRS were classified with 100% specificity and sensitivity, discriminating these by a co-variance expert analysis system. ADRS appears capable of recognising and discriminating serum samples from vCJD, sCJD, non-CJD neurological diseases, and normal healthy adults, and might be developed to provide a system for primary screening or confirmatory assay complementary to other screening systems.

  15. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy.

    Science.gov (United States)

    Banerjee, T; Banerjee, S; Sett, S; Ghosh, S; Rakshit, T; Mukhopadhyay, R

    2016-01-01

    DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM) and spectroscopy (AFS). The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA-the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA-the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time.

  16. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.

    Science.gov (United States)

    Edwards, Devin T; Faulk, Jaevyn K; Sanders, Aric W; Bull, Matthew S; Walder, Robert; LeBlanc, Marc-Andre; Sousa, Marcelo C; Perkins, Thomas T

    2015-10-14

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.

  17. Force spectroscopy of hyaluronan by atomic force microscopy: from hydrogen-bonded networks toward single-chain behavior.

    Science.gov (United States)

    Giannotti, Marina I; Rinaudo, Marguerite; Vancso, G Julius

    2007-09-01

    The conformational behavior of hyaluronan (HA) polysaccharide chains in aqueous NaCl solution was characterized directly at the single-molecule level. This communication reports on one of the first single-chain atomic force microscopy (AFM) experiments performed at variable temperatures, investigating the influence of the temperature on the stability of the HA single-chain conformation. Through AFM single-molecule force spectroscopy, the temperature destabilization of a local structure was proven. This structure involved a hydrogen-bonded network along the polymeric chain, with hydrogen bonds between the polar groups of HA and possibly water, and a change from a nonrandom coil to a random coil behavior was observed when increasing the temperature from 29 +/- 1 to 46 +/- 1 degrees C. As a result of the applied force, this superstructure was found to break progressively at room temperature. The use of a hydrogen-bonding breaker solvent demonstrated the hydrogen-bonded water-bridged nature of the network structure of HA single chains in aqueous NaCl solution.

  18. MDM2–MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance

    Science.gov (United States)

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2016-01-01

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2–MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2–MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD) in the micromolar range for the MDM2–MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2–MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2–MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation. PMID:27621617

  19. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore.

    Science.gov (United States)

    Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter

    2007-01-01

    Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores. Copyright (c) 2007 John Wiley & Sons, Ltd.

  20. Application of Atomic Dielectric Resonance Spectroscopy for the screening of blood samples from patients with clinical variant and sporadic CJD

    Directory of Open Access Journals (Sweden)

    Ironside James W

    2007-08-01

    Full Text Available Abstract Background Sub-clinical variant Creutzfeldt-Jakob disease (vCJD infection and reports of vCJD transmission through blood transfusion emphasise the need for blood screening assays to ensure the safety of blood and transplanted tissues. Most assays aim to detect abnormal prion protein (PrPSc, although achieving required sensitivity is a challenge. Methods We have used innovative Atomic Dielectric Resonance Spectroscopy (ADRS, which determines dielectric properties of materials which are established by reflectivity and penetration of radio/micro waves, to analyse blood samples from patients and controls to identify characteristic ADR signatures unique to blood from vCJD and to sCJD patients. Initial sets of blood samples from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors were screened as training samples to determine group-specific ADR characteristics, and provided a basis for classification of blinded sets of samples. Results Blood sample groups from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors screened by ADRS were classified with 100% specificity and sensitivity, discriminating these by a co-variance expert analysis system. Conclusion ADRS appears capable of recognising and discriminating serum samples from vCJD, sCJD, non-CJD neurological diseases, and normal healthy adults, and might be developed to provide a system for primary screening or confirmatory assay complementary to other screening systems.

  1. Localized holes and delocalized electrons in photoexcited inorganic perovskites: Watching each atomic actor by picosecond X-ray absorption spectroscopy.

    Science.gov (United States)

    Santomauro, Fabio G; Grilj, Jakob; Mewes, Lars; Nedelcu, Georgian; Yakunin, Sergii; Rossi, Thomas; Capano, Gloria; Al Haddad, André; Budarz, James; Kinschel, Dominik; Ferreira, Dario S; Rossi, Giacomo; Gutierrez Tovar, Mario; Grolimund, Daniel; Samson, Valerie; Nachtegaal, Maarten; Smolentsev, Grigory; Kovalenko, Maksym V; Chergui, Majed

    2017-07-01

    We report on an element-selective study of the fate of charge carriers in photoexcited inorganic CsPbBr3 and CsPb(ClBr)3 perovskite nanocrystals in toluene solutions using time-resolved X-ray absorption spectroscopy with 80 ps time resolution. Probing the Br K-edge, the Pb L3-edge, and the Cs L2-edge, we find that holes in the valence band are localized at Br atoms, forming small polarons, while electrons appear as delocalized in the conduction band. No signature of either electronic or structural changes is observed at the Cs L2-edge. The results at the Br and Pb edges suggest the existence of a weakly localized exciton, while the absence of signatures at the Cs edge indicates that the Cs(+) cation plays no role in the charge transport, at least beyond 80 ps. This first, time-resolved element-specific study of perovskites helps understand the rather modest charge carrier mobilities in these materials.

  2. Immersed single-drop microextraction-electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples.

    Science.gov (United States)

    Bagheri, Habib; Naderi, Mehrnoush

    2009-06-15

    A new method based on single-drop microextraction (SDME) combined with electrothermal vaporization atomic absorption spectroscopy (ETV-AAS) was developed for the trace determination of mercury in water samples. A microdrop of m-xylene was applied as the extraction solvent. After extraction, the microdrop was introduced, directly, into a graphite furnace of AAS. Some important extraction parameters such as type of solvent, volume of solvent, sample stirring, ionic strength, sample pH, chelating agent concentration, sample temperature, and extraction time were investigated and optimized. The highest possible microdrop volume of 10 microL, a sampling temperature of 27 degrees C, and use of m-xylene containing dithizone, as complexing agent, are major parameters led to achieve a high enrichment factor of 970. Under the optimized conditions, the detection limit of the method was 0.01 microg L(-1) and the relative standard deviation was 6.1% (n=7). The proposed method has been successfully applied to the determination of Hg in two river water samples. The effects of interfering species such as Pt, Pd, Cu, Au, and Bi, having the tendency to form complexes with dithizone, at two concentration levels of 100 and 1000 microg L(-1) were also studied.

  3. [Determination of trace elements in Lophatherum gracile brongn from different habitat by microwave digestion-atomic absorption spectroscopy].

    Science.gov (United States)

    Yuan, Ke; Xue, Yue-Qin; Gui, Ren-Yi; Sun, Su-Qin; Yin, Ming-Wen

    2010-03-01

    A method of microwave digestion technique was proposed to determine the content of Zn, Fe, Cu, Mn, K, Ca, Mg, Ni, Cd, Pb, Cr, Co, Al, Se and As in Lophatherum gracile brongn of different habitat by atomic absorption spectroscopy. The RSD of the method was between 1.23% and 3.32%, and the recovery rates obtained by standard addition method were between 95.8% and 104.20%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of metal elements in Lophatherum gracile brongn. The experimental results also indicated that different areas' Lophantherum gracile brongn had different trace elements content. The content of trace elements K, Mg, Ca, Fe and Mn beneficial to the human body was rich. The content of the heavy metal trace element Pb in Lophantherum gracile brongn of Hunan province was slightly high. The content of the heavy metal trace element Cu in Lophantherum gracile brongn of Guangdong province and Anhui province is also slightly higher. Beside, the contents of harmful trace heavy metal elements Cd, Cu, Cr, Pb and As in Lophatherum gracile brongn of different habitat are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation and National Food Sanitation Standard. These determination results provided the scientific data for further discussing the relationship between the content of trace elements in Lophantherum gracile brongn and the medicine efficacy.

  4. Helicity-dependent terahertz emission spectroscopy of topological insulator S b2T e3 thin films

    Science.gov (United States)

    Tu, Chien-Ming; Chen, Yi-Cheng; Huang, Ping; Chuang, Pei-Yu; Lin, Ming-Yu; Cheng, Cheng-Maw; Lin, Jiunn-Yuan; Juang, Jenh-Yih; Wu, Kaung-Hsiung; Huang, Jung-Chun A.; Pong, Way-Faung; Kobayashi, Takayoshi; Luo, Chih-Wei

    2017-11-01

    We report on helicity-dependent terahertz emissions that originate from the helicity-dependent photocurrents in topological insulator S b2T e3 thin films due to ultrafast optical excitation. The polarity of the emitted terahertz radiation is controlled by both the incident angle and the helicity of optical pulses. Using an unprecedented decomposition-recombination procedure in the time domain, the signals of the Dirac fermions are fully separated from bulk contributions. These results provide insights into the optical coupling of topological surface states and open up opportunities for applying helicity-dependent terahertz emission spectroscopy in spintronics.

  5. Determination of Boron, Phosphorus, and Molybdenum Content in Biosludge Samples by Microwave Plasma Atomic Emission Spectrometry (MP-AES

    Directory of Open Access Journals (Sweden)

    Sreenivasulu Vudagandla

    2017-03-01

    Full Text Available A novel analytical method for accurate determination of boron (B, phosphorous (P, and molybdenum (Mo content in biosludge samples based on a relatively recent analytical technique, microwave plasma atomic emission spectrometry (MP-AES, is developed in the present work. Microwave assisted acid digestion method is utilized to extract B, P, and Mo from biosludge. To demonstrate the reliability and accuracy of the present MP-AES method, its results are compared with those obtained using two well-established techniques, i.e., flame atomic absorption spectrometry (FAAS and inductively coupled plasma optical emission spectrometry (ICP-OES. Matrix variation in the MP-AES technique is found to result in minimal changes. Precision and accuracy of the developed method are demonstrated using replicate analyses of certified sewage sludge reference material, EnviroMAT (BE-1. The limit of quantification and detection of B, P, and Mo in the extracts are determined; the linear regression coefficient was greater than 0.998 for all the three techniques. Analytical wavelengths are selected according to the sensitivity and interference effects. The results obtained in this work demonstrate the potential of MP-AES technique for the determination of B, P, and Mo content in biosludge, which achieved lower detection limits, higher accuracy, and better reproducibility as compared to other techniques.

  6. Channeling of spontaneous emission from an atom into the fundamental and higher-order modes of a vacuum-clad ultrathin optical fiber

    Science.gov (United States)

    Le Kien, Fam; Hejazi, S. Sahar S.; Busch, Thomas; Truong, Viet Giang; Nic Chormaic, Síle

    2017-10-01

    We study spontaneous emission from a rubidium atom into the fundamental and higher-order modes of a vacuum-clad ultrathin optical fiber. We show that the spontaneous emission rate depends on the magnetic sublevel, the type of modes, the orientation of the quantization axis, the position of the atom, and the fiber radius. We find that the rate of spontaneous emission into the TE modes is always symmetric with respect to the propagation directions. Directional asymmetry of spontaneous emission into other modes may appear when the quantization axis does not lie in the meridional plane containing the position of the atom. When the fiber radius is in the range from 330 to 450 nm, the spontaneous emission from an atom on the fiber surface into the HE21 modes is stronger than into the HE11, TE01, and TM01 modes. At the cutoff for higher-order modes, the rates of spontaneous emission into guided and radiation modes undergo steep variations, which are caused by the changes in the mode structure. We show that the spontaneous emission from the upper level of the cyclic transition into the TM modes is unidirectional when the quantization axis lies at an appropriate azimuthal angle in the fiber transverse plane.

  7. Multi-atom resonant photoemission and the development of next-generation software and high-speed detectors for electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Alexander William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2000-09-01

    This dissertation has involved the exploration of a new effect in photoelectron emission, multi-atom resonant photoemission (MARPE), as well as the development of new software, data analysis techniques, and detectors of general use in such research. We present experimental and theoretical results related to MARPE, in which the photoelectron intensity from a core level on one atom is influenced by a core-level absorption resonance on another. We point out that some of our and others prior experimental data has been strongly influenced by detector non-linearity and that the effects seen in new corrected data are smaller and of different form. Corrected data for the MnO(001) system with resonance between the O 1s and Mn 2p energy levels are found to be well described by an extension of well-known intraatomic resonant photoemission theory to the interatomic case, provided that interactions beyond the usual second-order Kramers-Heisenberg treatment are included. This theory is also found to simplify under certain conditions so as to yield results equivalent to a classical x-ray optical approach, with the latter providing an accurate and alternative, although less detailed and general, physical picture of these effects. Possible future applications of MARPE as a new probe of near-neighbor identities and bonding and its relationship to other known effects are also discussed. We also consider in detail specially written data acquisition software that has been used for most of the measurements reported here. This software has been used with an existing experimental system to develop the method of detector characterization and then data correction required for the work described above. The development of a next generation one-dimensional, high-speed, electron detector is also discussed. Our goal has been to design, build and test a prototype high-performance, one-dimensional pulse-counting detector that represents a significant advancement in detector technology and is well

  8. Inner-shell spectroscopy and exchange interaction of Rydberg electrons bound by singly and doubly charged Kr and Xe atoms in small clusters

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaka, Masanari; Hatsui, Takaki; Setoyama, Hiroyuki; Ruehl, Eckart [Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan); Kosugi, Nobuhiro, E-mail: kosugi@ims.ac.j [Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan)

    2011-01-15

    Surface-site resolved Kr 3d{sub 5/2}{sup -1}5p and 3d{sub 5/2}{sup -1}6p and Xe 4d{sub 5/2}{sup -1}6p and 4d{sub 5/2}{sup -1}7p Rydberg excited states in small van der Waals Kr and Xe clusters with a mean size of = 15 are investigated by X-ray absorption spectroscopy. Furthermore, surface-site resolved Kr 4s{sup -2}5p, 4s{sup -2}6p, and 4s{sup -1}4p{sup -1}5p shakeup-like Rydberg states in small Kr clusters are investigated by resonant Auger electron spectroscopy. The exchange interaction of the Rydberg electron with the surrounding atoms and the induced polarization of the surrounding atoms in the singly and doubly ionized atoms are deduced from the experimental spectra to analyze different surface-site contributions in small clusters, assuming that the corner, edge, face, and bulk sites have 3, 5-6, 8, and 12 nearest neighbor atoms. These energies are almost proportional to the number of the nearest neighbor atoms. The present analysis indicates that small Kr and Xe clusters with = 15 have an average or mixture structure between the fcc-like cubic and icosahedron-like spherical structures.

  9. Characterization of Atmospheric Pressure Carbon Dioxide Dissociation in Arrays of Microplasma Channels by Emission Spectroscopy and Effluent Analysis

    Science.gov (United States)

    Dai, Zhen; Shin, Chul; Park, Sung-Jin; Eden, James Gary

    2014-10-01

    Levied by rigorous regulations, the enormous cost of atmospheric carbon dioxide emission urged voracious demands on remediation technologies globally. Microplasma technology is being investigated as a new candidate to efficiently dissociate or remediate carbon dioxide contained in atmosphere. At a flow rate of 60 sccm of pure CO2 feedstock gas, dissociation degree of up to 14% has been achieved with stable glow discharges in an array of Al/Al2O3 microplasma channels. In-situ characterizations of the effluent gases were conducted with residual gas analysis, gas chromatography, and infrared spectroscopy. Furthermore, time and spatially resolved emission spectroscopy recorded with an intensified charge-coupled device in the 300-800 nm region revealed the excitation of CO and C2 species. The implications on the possible plasma chemistry and its reaction mechanisms in the microdischarge will be discussed. Work supported by AFOSR.

  10. Electrochemical emission and impedance spectroscopies of passive iron and carbon steel

    Science.gov (United States)

    Liu, Jun

    A high fidelity in situ technique for measuring electrochemical noise data on carbon steel in alkaline solutions, referred to as Electrochemical Emission Spectroscopy (EES), or Electrochemical Noise Measurement (ENM), has been developed in this thesis as a means of monitoring general corrosion and pitting corrosion on carbon steel in simulated DOE nuclear waste storage systems and to develop a better understanding of the corrosion processes of carbon steel in these environments. The data acquisition system is essential to the accuracy of voltage and current measurements and the validity of experimental data for further analysis. Time and frequency domain analyses display different characteristics for general corrosion and pitting corrosion. DOE raw noise data analysis shows that the penetration corrosion rate in liquid/sludge phases is in the order of 10-2--10-3 mm/year for the carbon steel-lined tanks in the DOE waste environments. In addition, good correlation has been observed between EES and traditional Linear Polarization Resistance (LPR) method in detecting the corrosion rates of carbon steel. The passive state on iron in EDTA (ethylene diammine tetra acetic acid, disodium salt, C10H14N2Na2O 8)-containing borate buffer solutions of pH ranging from 8.15 to 12.87 at ambient temperature has been explored using Electrochemical Impedance Spectroscopy (EIS), another powerful in situ electrochemical method for investigating steady-state electrochemical and corrosion systems. It has been found that frequency sweep range, perturbation voltage amplitude, solution pH, and film formation voltage are important factors to influence the impedance of passive iron. The steady-state passive films formed on iron have been shown to satisfy the conditions of linearity, causality, stability and finiteness, on the basis of the good agreement observed between the experimental impedance data and the Kramers-Kronig transforms calculated data over most of the frequency range employed

  11. A Chemical Detector for Gas Chromatography Using Pulsed Discharge Emission Spectroscopy on a Microchip

    Science.gov (United States)

    Luo, X.; Zhu, W.; Mitra, B.; Liu, J.; Liu, T.; Fan, X.; Gianchandani, Y.

    2011-12-01

    There is increasing interest in miniaturized systems for chemical analysis in harsh environments. Chemical detection by emission spectroscopy of on-chip microdischarges [1-3] can be performed at >200°C [4], suggesting utility inspace exploration, volcanic monitoring, and oil well monitoring. This abstract describes the first use of pulsed microdischarge spectroscopy for gas chromatography (GC).This effort supports NASA interests in monitoring closed-loop life support systems for spacecraft. The microdischarge occurs on a 1cm2 glass chip (Fig. 1a), with thin-film Ni electrodes separated by 160μm. A glass lid with a grooved gas-flow channel, and inlet/outlet capillary tubes are epoxy-sealed to the chip. Located downstream of the 1.7m-long, RTX-1-coated, GC separation column, the microdischarge chip is read by a spectrometer. In a typical experiment (Fig. 1b), a mixture of acetone 3.6μg, 1-hexanol 2.8μg and nitrobenzene 3.0μg, is injected, with He carrier gas at 1.56sccm, through the GC. Acetone elutes quickly while nitrobenzene is slower. Microdischarges are triggered at 0.5Hz for 6 min., and 0.04Hz thereafter. Each microdischarge consumes ≈8mJ; the average power is ≈1.14mW. The spectrum (Fig. 1b, inset) shows that the 388nm peak, representing CN/CH fragments [5], is enhanced by carbon compounds. Its strength relative to the 588nm peak of He provides a chromatogram. Fig. 1b also shows a benchmark result from a commercial flame ionization detector (FID). The differences in elution time are attributed to differences in the gas flow paths for the two detectors [1]. REFERENCES [1] Eijkel et al, Anal. Chem, 2000 [2] Mitra et al, IEEE Trans Plasma Sci, 2008 [3] Mitra et al, IEEE Sensors, 2008 [4] Wright et al, APL, 2009 [5] Pearse et al, The Identification of Molecular Spectra, 1963

  12. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  13. X-ray Emission Spectroscopy to Study Ligand Valence Orbitals in Mn Coordination Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, Grigory; Soldatov, Alexander V; Messinger, Johannes; Merz, Kathrin; Weyhermuller, Thomas; Bergmann, Uwe; Pushkar, Yulia; Yano, Junko; Yachandra, Vittal K.; Glatzel, Pieter

    2009-03-02

    We discuss a spectroscopic method to determine the character of chemical bonding and for the identification of metal ligands in coordination and bioinorganic chemistry. It is based on the analysis of satellite lines in X-ray emission spectra that arise from transitions between valence orbitals and the metal ion 1s level (valence-to-core XES). The spectra, in connection with calculations based on density functional theory (DFT), provide information that is complementary to other spectroscopic techniques, in particular X-ray absorption (XANES and EXAFS). The spectral shape is sensitive to protonation of ligands and allows ligands, which differ only slightly in atomic number (e.g., C, N, O...), to be distinguished. A theoretical discussion of the main spectral features is presented in terms of molecular orbitals for a series of Mn model systems: [Mn(H2O)6]2+, [Mn(H2O)5OH]+, [Mn(H2O)5NH2]+, and [Mn(H2O)5NH3]2+. An application of the method, with comparison between theory and experiment, is presented for the solvated Mn2+ ion in water and three Mn coordination complexes, namely [LMn(acac)N3]BPh4, [LMn(B2O3Ph2)(ClO4)], and [LMn(acac)N]BPh4, where L represents 1,4,7-trimethyl-1,4,7-triazacyclononane, acac stands for the 2,4-pentanedionate anion, and B2O3Ph2 represents the 1,3-diphenyl-1,3-dibora-2-oxapropane-1,3-diolato dianion.

  14. Spontaneous light emission by atomic hydrogen: Fermi's golden rule without cheating

    Science.gov (United States)

    Debierre, V.; Durt, T.; Nicolet, A.; Zolla, F.

    2015-10-01

    Focusing on the 2 p- 1 s transition in atomic hydrogen, we investigate through first order perturbation theory the time evolution of the survival probability of an electron initially taken to be in the excited (2 p) state. We examine both the results yielded by the standard dipole approximation for the coupling between the atom and the electromagnetic field - for which we propose a cutoff-independent regularisation - and those yielded by the exact coupling function. In both cases, Fermi's golden rule is shown to be an excellent approximation for the system at hand: we found its maximal deviation from the exact behaviour of the system to be of order 10-8 /10-7. Our treatment also yields a rigorous prescription for the choice of the optimal cutoff frequency in the dipole approximation. With our cutoff, the predictions of the dipole approximation are almost indistinguishable at all times from the exact dynamics of the system.

  15. Solar-energy conversion and light emission in an atomic monolayer p-n diode.

    Science.gov (United States)

    Pospischil, Andreas; Furchi, Marco M; Mueller, Thomas

    2014-04-01

    The limitations of the bulk semiconductors currently used in electronic devices-rigidity, heavy weight and high costs--have recently shifted the research efforts to two-dimensional atomic crystals such as graphene and atomically thin transition-metal dichalcogenides. These materials have the potential to be produced at low cost and in large areas, while maintaining high material quality. These properties, as well as their flexibility, make two-dimensional atomic crystals attractive for applications such as solar cells or display panels. The basic building blocks of optoelectronic devices are p-n junction diodes, but they have not yet been demonstrated in a two-dimensional material. Here, we report a p-n junction diode based on an electrostatically doped tungsten diselenide (WSe2) monolayer. We present applications as a photovoltaic solar cell, a photodiode and a light-emitting diode, and obtain light-power conversion and electroluminescence efficiencies of ∼ 0.5% and ∼ 0.1%, respectively. Given recent advances in the large-scale production of two-dimensional crystals, we expect them to profoundly impact future developments in solar, lighting and display technologies.

  16. Characterization of a direct dc-excited discharge in water by optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, Peter; Leys, Christophe [Department of Applied Physics, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent (Belgium); Schram, Daan [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Gonzalez, Manuel A [Departamento de Fisica Aplicada, Universidad de Valladolid, 47011 Valladolid (Spain); Rego, Robby [Flemish Institute of Technological Research, VITO Materials, Boeretang 200, B-2400 Mol (Belgium); Kong, Michael G [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom)], E-mail: peter.bruggeman@ugent.be

    2009-05-01

    Dc-excited discharges generated in water at the tip of a tungsten wire which is located at the orifice of a quartz capillary are investigated by time-averaged optical emission spectroscopy. Two distinctive discharge modes are observed. For small conductivities of the liquid the discharge is a streamer-like discharge in the liquid itself (liquid mode). For conductivities above typically 45 {mu}S cm{sup -1} a large vapour bubble is formed and a streamer discharge in this vapour bubble is observed (bubble mode). Plasma temperatures and electron densities are investigated for both modes. The gas temperature is estimated from the rotational temperature of N{sub 2}(C-B) and is 1600 {+-} 200 K for the bubble mode and 1900 {+-} 200 K for the liquid mode. The rotational temperature of OH(A-X) is up to 2 times larger and cannot be used as an estimate for the gas temperature. The rotational population distribution of OH(A), {nu} = 0 is also non-Boltzmann with a large overpopulation of high rotational states. This discrepancy in rotational temperatures is discussed in detail. Electron densities are obtained from the Stark broadening of the hydrogen Balmer beta line. The electron densities in the liquid mode are of the order of 10{sup 21} m{sup -3}. In the bubble mode electron densities are significantly smaller: (3-4) x 10{sup 20} m{sup -3}. These values are compared with the Stark broadening of the hydrogen alpha and gamma lines and with electron densities obtained from current density measurements. The chemical reactivities of the bubble and liquid modes are compared by means of the hydrogen peroxide production rate.

  17. Copper Determination in Gunshot Residue by Cyclic Voltammetric and Inductive Coupled Plasma-Optical Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mohd Hashim Nurul’Afiqah Hashimah

    2016-01-01

    Full Text Available Analysis of gunshot residue (GSR is a crucial evidences for a forensic analyst in the fastest way. GSR analysis insists a suitable method provides a relatively simple, rapid and precise information on the spot at the crime scene. Therefore, the analysis of Cu(II in GSR using cyclic voltammetry (CV on screen printed carbon electrode (SPCE is a better choice compared to previous alternative methods such as Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES those required a long time for analysis. SPCE is specially designed to handle with microvolumes of sample such as GSR sample. It gives advantages for identification of copper in GSR on-site preliminary test to prevent the sample loss on the process to be analyzed in the laboratory. SPCE was swabbed directly on the shooter’s arm immediately after firing and acetate buffer was dropped on SPCE before CV analysis. For ICP-OES analysis, cotton that had been soaked in 0.5 M nitric acid was swabbed on the shooter’s arm immediately after firing and kept in a tightly closed sampling tube. Gold coated SPCE that had been through nanoparticles modification exhibits excellent performance on voltammograms. The calibration was linear from 1 to 50 ppm of copper, the limit of detection for copper was 0.3 ppm and a relative standard deviation was 6.1 %. The method was successfully applied to the determination of copper in GSR. The Cu determination on SPCE was compared and validated by ICP-OES method with 94 % accuracy.

  18. Quantitative Determination of Dielectric Thin-Film Properties Using Infrared Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Franke, J.E.; Haaland, D.M.; Niemczyk, T.M.; Zhang, S.

    1998-10-14

    We have completed an experimental study to investigate the use of infrared emission spectroscopy (IRES) for the quantitative analysis of borophosphosilicate glass (BPSG) thin films on silicon monitor wafers. Experimental parameters investigated included temperatures within the range used in the microelectronics industry to produce these films; hence the potential for using the IRES technique for real-time monitoring of the film deposition process has been evaluated. The film properties that were investigated included boron content, phosphorus content, film thickness, and film temperature. The studies were conducted over two temperature ranges, 125 to 225 *C and 300 to 400 *C. The later temperature range includes realistic processing temperatures for the chemical vapor deposition (CVD) of the BPSG films. Partial least squares (PLS) multivariate calibration methods were applied to spectral and film property calibration data. The cross-validated standard errors of prediction (CVSEP) fi-om the PLS analysis of the IRES spectraof21 calibration samples each measured at 6 temperatures in the 300 to 400 "C range were found to be 0.09 wt. `?40 for B, 0.08 wt. `%0 for P, 3.6 ~m for film thickness, and 1.9 *C for temperature. By lowering the spectral resolution fi-om 4 to 32 cm-l and decreasing the number of spectral scans fi-om 128 to 1, we were able to determine that all the film properties could be measured in less than one second to the precision required for the manufacture and quality control of integrated circuits. Thus, real-time in-situ monitoring of BPSG thin films formed by CVD deposition on Si monitor wafers is possible with the methods reported here.

  19. Proton magnetic resonance spectroscopy and single photon emission CT in patients with olivopontocerebellar atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, Naomi [Yamaguchi Univ., Ube (Japan). School of Medicine

    1998-04-01

    Using proton magnetic resonance spectroscopy ({sup 1}H-MRS) and single photon emission CT (SPECT), the cerebellum of patients with olivopontocerebellar atrophy (OPCA) and of age-matched control subjects was studied. A spectrum was collected from a 27 cm{sup 3} (3 x 3 x 3 cm) voxel in the cerebellum containing white and gray matters in order to measure the distribution and relative signal intensities of N-acetylaspartate (NAA), creatine (Cre) and choline (Cho). In the cerebellum of the patients with OPCA, mean NAA/Cre ratios for OPCA patients were significantly decreased compared with normal control subjects (OPCA, 1.01{+-}0.247; controls, 1.526{+-}0.144: p<0.001). Mean NAA/Cho ratios for OPCA patients were slightly decreased (OPCA, 1.285{+-}0.228; controls 1.702{+-}0.469: p<0.06). Cho/Cre ratios valued in the cerebellum of OPCA patients were not significantly different from those in normal controls (OPCA, 0.793{+-}0.186; controls, 0.946{+-}0.219). The ratio of RI count in the cerebellum to that in the occipital lobe was significantly decreased in OPCA patients (OPCA, 0.947{+-}0.096; controls, 1.06{+-}0.063: p<0.01). Cerebellar signs were assessed including gait ataxia, limb ataxia, dysarthria, saccadic pursuit, and nystagmus separately or in combination. In patients with more severe ataxic gait and dysarthria, MRS revealed slightly lowered NAA/Cre ratio. There was no significant correlation between NAA/Cre ratio and severity of other clinical signs. The MRS and SPECT findings give a confirmative evidence of hypofunction in cerebellum of patients with OPCA. (author)

  20. Efficient emission of positronium atoms from an Na-coated polycrystalline tungsten surface

    Science.gov (United States)

    Terabe, H.; Iida, S.; Wada, K.; Hyodo, T.; Yagishita, A.; Nagashima, Y.

    2013-06-01

    Time-of-flight spectra for the ortho-positronium emitted from clean and Na-coated tungsten surfaces have been measured using the pulsed slow positron beam at KEK-IMSS slow positron facility. Emission efficiency of positronium from the Na-coated sample was found to be several times greater than that from uncoated tungsten surfaces.

  1. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model.

    Science.gov (United States)

    Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva

    2010-10-07

    Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.

  2. Monitoring nano-flow rate of water by atomic emission detection using helium radio-frequency plasma.

    Science.gov (United States)

    Nakagama, Tatsuro; Maeda, Tsuneaki; Uchiyama, Katsumi; Hobo, Toshiyuki

    2003-06-01

    Recently, high-performance nano-scale flow pumping systems have been developed for micro and miniaturized analysis systems. A novel device capable of measuring and monitoring nanoliter scale flow rates has been required for the further development of the pumping system. In this study, an atomic emission detector using helium radio-frequency plasma (RFP-AED) was used for the measurement of the nanoliter scale flow rate of water by quantitatively detecting the emission from hydrogen in the water molecules. Monitoring nano-flow rates of water in the range up to 1.0 microl min(-1), and the change in the flow rate by the indication of the ratio of the emissions of H (656.3 nm) and He (667.8 nm) were successful. At present, the lowest flow rate that could be determined reproducibly was 4 nl min(-1) calculated as five times the standard deviation of the background noise. Additionally, similar evaluations for the deviation of each flow rate by using the RFP-AED and a flow-injection system were produced.

  3. Avalanche dynamics of structural phase transitions in shape memory alloys by acoustic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Benno

    2009-09-24

    In this work the avalanche dynamics of five shape memory samples has been analyzed by acoustic emission spectroscopy. The acoustic emission spectroscopy is particularly suitable for this analysis as it couples with high sensitivity to small structural changes caused by nucleation processes, interface movements, or variant rearrangements [91]. Owing to its high time resolution it provides a statistical approach to describe the jerky and intermittent character of the avalanche dynamics [20]. Rate-dependent cooling and heating runs have been conducted in order to study time-dependent aspects of the transition dynamics of the single crystals Ni{sub 63}Al{sub 37}, Au{sub 50.5}Cd{sub 49.5}, and Fe{sub 68.8}Pd{sup single}{sub 31.2}, and the polycrystalline sample Fe{sub 68.8}Pd{sup poly}{sub 31.2}. Moreover, a ferromagnetic Ni{sub 52}Mn{sub 23}Ga{sub 25} single crystal has been studied by temperature cycles under an applied magnetic field and additionally by magnetic-field cycles at a constant temperature in the martensitic phase. All samples analyzed in this work show power law behavior in the acoustic emission features amplitude, energy, and duration, which indicates scale-free behavior. The access to these power law spectra allows an investigation of energy barriers separating the metastable states, which give rise to avalanche transition dynamics. By performing rate-dependent experiments the importance of thermal fluctuations and the impact of martensite respectively twin stabilization processes have been examined. In the case of the Ni{sub 52}Mn{sub 23}Ga{sub 25} sample, the magnetic-field-induced variant rearrangement at slow field cycles leads to stronger signals than the rearrangement at quick cycles. This behavior can be explained by twin stabilization processes, which are accompanied by a reduction of the twin boundary mobility. For Ni{sub 63}Al{sub 37}, the combination of relevant thermal fluctuations, different involved time scales, and a high degree of

  4. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture

  5. Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: an approach for evaluating cellular invasion.

    Science.gov (United States)

    Omidvar, Ramin; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Rostami, Mostafa

    2014-10-17

    The adhesiveness of cancerous cells to their neighboring cells significantly contributes to tumor progression and metastasis. The single-cell force spectroscopy (SCFS) approach was implemented to survey the cell-cell adhesion force between cancerous cells in three cancerous breast cell lines (MCF-7, T47D, and MDA-MB-231). The gene expression levels of two dominant cell adhesion markers (E-cadherin and N-cadherin) were quantified by real-time PCR. Additionally, the local stiffness of the cell bodies was measured by atomic force microscopy (AFM), and the actin cytoskeletal organization was examined by confocal microscopy. Results indicated that the adhesion force between cells was conversely correlated with their invasion potential. The highest adhesion force was observed in the MCF-7 cells. A reduction in cell-cell adhesion, which is required for the detachment of cells from the main tumor during metastasis, is partly due to the loss of E-cadherin expression and the enhanced expression of N-cadherins. The reduced adhesion was accompanied by the softening of cells, as described by the rearrangement of actin filaments through confocal microscopy observations. The softening of the cell body and the reduced cellular adhesiveness are two adaptive mechanisms through which malignant cells achieve the increased deformability, motility, and strong metastasis potential necessary for passage through endothelial junctions and positioning in host tissue. This study presented application of SCFS to survey cell phenotype transformation during cancer progression. The results can be implemented as a platform for further investigations that target the manipulation of cellular adhesiveness and stiffness as a therapeutic choice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco

    2014-01-01

    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  7. Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Patel, Darayas; Weimer, Jeffrey; Williams, John Dalton

    2017-07-05

    Supported lipid bilayers (SLBs) are widely used in biophysical research to probe the functionality of biological membranes and to provide diagnoses in high throughput drug screening. Formation of SLBs at below phase transition temperature (Tm) has applications in nano-medicine research where low temperature profiles are required. Herein, we report the successful production of SLBs at above-as well as below-the Tm of the lipids in an anisotropically etched, silicon-based micro-cavity. The Si-based cavity walls exhibit controlled temperature which assist in the quick and stable formation of lipid bilayer membranes. Fusion of large unilamellar vesicles was monitored in real time in an aqueous environment inside the Si cavity using atomic force microscopy (AFM), and the lateral organization of the lipid molecules was characterized until the formation of the SLBs. The stability of SLBs produced was also characterized by recording the electrical resistance and the capacitance using electrochemical impedance spectroscopy (EIS). Analysis was done in the frequency regime of 10(-2)-10⁵ Hz at a signal voltage of 100 mV and giga-ohm sealed impedance was obtained continuously over four days. Finally, the cantilever tip in AFM was utilized to estimate the bilayer thickness and to calculate the rupture force at the interface of the tip and the SLB. We anticipate that a silicon-based, micron-sized cavity has the potential to produce highly-stable SLBs below their Tm. The membranes inside the Si cavity could last for several days and allow robust characterization using AFM or EIS. This could be an excellent platform for nanomedicine experiments that require low operating temperatures.

  8. Exploring the binding of 4-thiothymidine with human serum albumin by spectroscopy, atomic force microscopy, and molecular modeling methods.

    Science.gov (United States)

    Zhang, Juling; Gu, Huaimin; Zhang, Xiaohui

    2014-01-30

    The interaction of 4-thiothymidine (S(4)TdR) with human serum albumin (HSA) was studied by equilibrium dialysis under normal physiological conditions. In this work, the mechanism of the interaction between S(4)TdR and human serum albumin (HSA) was exploited by fluorescence, UV, CD circular, and SERS spectroscopic. Fluorescence and UV spectroscopy suggest that HSA intensities are significantly decreased when adding S(4)TdR to HAS, and the quenching mechanism of the fluorescence is static. Also, the ΔG, ΔH, and ΔS values across temperature indicated that hydrophobic interaction was the predominant binding force. The CD circular results show that there is little change in the secondary structure of HSA except the environment of amino acid changes when adding S(4)TdR to HSA. The surface-enhanced Raman scattering (SERS) shows that the interaction between S(4)TdR and HSA can be achieved through different binding sites which are probably located in the II A and III A hydrophobic pockets of HSA which correspond to Sudlow's I and II binding sites. In addition, the molecular modeling displays that S(4)TdR-HSA complex is stabilized by hydrophobic forces, which result from amino acid residues. The atomic force microscopy results revealed that the single HSA molecular dimensions were larger after interaction of 4-thiothymidine. This work would be useful to understand the state of the transportation, distribution, and metabolism of the anticancer drugs in the human body, and it could provide a useful biochemistry parameter for the development of new anti-cancer drugs and research of pharmacology mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Comparison of colorimetry and electrothermal atomic absorption spectroscopy for the quantification of non-transferrin bound iron in human sera.

    Science.gov (United States)

    Jittangprasert, Piyada; Wilairat, Prapin; Pootrakul, Pensri

    2004-12-01

    This paper describes a comparison of two analytical techniques, one employing bathophenanthrolinedisulfonate (BPT), a most commonly-used reagent for Fe (II) determination, as chromogen and an electrothermal atomic absorption spectroscopy (ETAAS) for the quantification of non-transferrin bound iron (NTBI) in sera from thalassemic patients. Nitrilotriacetic acid (NTA) was employed as the ligand for binding iron from low molecular weight iron complexes present in the serum but without removing iron from the transferrin protein. After ultrafiltration the Fe (III)-NTA complex was then quantified by both methods. Kinetic study of the rate of the Fe (II)-BPT complex formation for various excess amounts of NTA ligand was also carried out. The kinetic data show that a minimum time duration (> 60 minutes) is necessary for complete complex formation when large excess of NTA is used. Calibration curves given by colorimetric and ETAAS methods were linear over the range of 0.15-20 microM iron (III). The colorimetric and ETAAS methods exhibited detection limit (3sigma) of 0.13 and 0.14 microM, respectively. The NTBI concentrations from 55 thalassemic serum samples measured employing BPT as chromogen were statistically compared with the results determined by ETAAS. No significant disagreement at 95% confidence level was observed. It is, therefore, possible to select any one of these two techniques for determination of NTBI in serum samples of thalassemic patients. However, the colorimetric procedure requires a longer analysis time because of a slow rate of exchange of NTA ligand with BPT, leading to the slow rate of formation of the colored complex.

  10. Fast ion atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berry, H.G.; Young, L.; Goodman, L.S.; Somerville, L.P.; Hardis, J.; Neek, D.

    1984-01-01

    We have set up two collinear fast beam/laser excitation systems, one at the Argonne Dynamitron Accelerator (0.5 to 5.0 MeV beam energy) and another at a small electrostatic accelerator (20 to 130 keV). Our objective is to study fine structure, hyperfine structure and QED effects in ions of a few electrons. Initial projects underway include studies of multi-excited transitions in Li/sup -/ and Li/sup 0/, and transitions to high Rydberg states in H/sup 0/ and He/sup 0/. We have simultaneously excited a sodium jet with a laser at the resonance wavelength (D/sub 1/ or D/sub 2/ lines) and a 1-MeV He/sup +/ beam to produce excitation to autoionizing Na and Na/sup +/ states. The Auger electron spectra are compared to spectra obtained without laser excitation, and indicate strong variations in final state populations. 17 references.

  11. Emission Line Astronomy - Coronagraphic Tunable Narrow Band Imaging and Integral Field Spectroscopy. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to continue our program of emission line astronomy featuring three areas of emphasis: 1) The distribution and nature of high redshift emission line...

  12. Volcanic SO2 and SiF4 visualization and their ratio monitored using 2-D thermal emission spectroscopy

    Science.gov (United States)

    Stremme, W.; Krueger, A.; Harig, R.; Grutter, M.

    2011-09-01

    The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a save distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006-2009 using a Scanning Infrared Gas Imaging System (SIGIS). The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm-1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume, animation and determination of its propagation speed. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 which was confirmed from the strong ash emission registered around 01:00 a.m. LST (Local Standard Time) and a pronounced SO2 cloud was registered. Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential imagees is used to calculate the emission rates at different distances from the crater.

  13. Control of lithium-t-butoxide addition during chemical vapor deposition of Li-doped diamond films by optical emission spectroscopy

    OpenAIRE

    Schreck, Matthias

    1999-01-01

    Control of lithium-t-butoxide addition during chemical vapor deposition of Li-doped diamond films by optical emission spectroscopy / B. Stritzker ... – In: Physica status solidi. A. 174. 1999. S. 65-72

  14. Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy.

    Science.gov (United States)

    Floeth, Frank Willi; Pauleit, Dirk; Wittsack, Hans-Jörg; Langen, Karl Josef; Reifenberger, Guido; Hamacher, Kurt; Messing-Jünger, Martina; Zilles, Karl; Weber, Friedrich; Stummer, Walter; Steiger, Hans-Jakob; Woebker, Gabriele; Müller, Hans-Wilhelm; Coenen, Heinz; Sabel, Michael

    2005-02-01

    The purpose of this study was to determine the predictive value of [18F]fluoroethyl-L-tyrosine (FET)-positron emission tomography (PET) and magnetic resonance (MR) spectroscopy for tumor diagnosis in patients with suspected gliomas. Both FET-PET and MR spectroscopy analyses were performed in 50 consecutive patients with newly diagnosed intracerebral lesions supposed to be diffuse gliomas on contrast-enhanced MR imaging. Lesion/brain ratios of FET uptake greater than 1.6 were considered positive, that is, indicative of tumor. Results of MR spectroscopy were considered positive when N-acetylaspartate (NAA) was decreased in conjunction with an absolute increase of choline (Cho) and an NAA/Cho ratio of 0.7 or less. An FET lesion/brain ratio, an NAA/Cho ratio, and signal abnormalities on MR images were compared with histological findings in neuronavigated biopsy specimens. The FET lesion/brain ratio and the NAA/Cho ratio were identified as significant independent predictors for the histological identification of tumor tissue. The accuracy in distinguishing neoplastic from nonneoplastic tissue could be increased from 68% with the use of MR imaging alone to 97% with MR imaging in conjunction with FET-PET and MR spectroscopy. Sensitivity and specificity for tumor detection were 100 and 81% for MR spectroscopy and 88 and 88% for FET-PET, respectively. Results of histological studies did not reveal tumor tissue in any of the lesions that were negative on FET-PET and MR spectroscopy. In contrast, a tumor diagnosis was made in 97% of the lesions that were positive with both methods. In patients with intracerebral lesions supposed to be diffuse gliomas on MR imaging, FET-PET and MR spectroscopy analyses markedly improved the diagnostic efficacy of targeted biopsies.

  15. Strength fragmentation of Gamow-Teller transitions and delayed neutron emission of atomic nuclei

    Science.gov (United States)

    Severyukhin, A. P.

    2017-11-01

    Starting from a Skyrme interaction with tensor terms, the β-decay rates of 52Ca have been studied within a microscopic model including the 2 p - 2 h configuration effects. We observe a redistribution of the strength of Gamow-Teller transitions due to the 2 p - 2 h fragmentation. Taking into account this effect results in a satisfactory description of the neutron emission probability of the β-decay in 52Ca.

  16. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M. [and others

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.

  17. Laser Induced Emission Spectroscopy of Cold and Isolated Neutral PAHs and PANH: Implications for the red rectangle emission

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid; Sciamma O'Brien, Ella

    2016-06-01

    Blue luminescence (BL) in the emission spectra of the red rectangle centered on the bright star HD44179 is recently reported by Vijh et al [1]. This results is consistent with the broad band polarization measurements obtained in 1980 by Schmidt et al. Both experimental and theoretical studies support that BL emission could be attributed the luminescence of Polycyclic Aromatic Hydrocarbon (PAH) excited with ultraviolet light from the center of the star [4 and reference therein]. The abundance on N to C in the interstellar medium suggest also that nitrogen substituted PAH (PANH) are likely abundant in the interstellar medium [3]. They exhibit similar features as PAHs and could contribute to the unidentified spectral bands. Comparing the BL to laboratory spectra obtained on similar environment is crucial for the identification of interstellar molecules. We present in this works the absorption and the laser induced emission spectra of several isolated and cold PAHs and PANHs. Laser induced emission was performed first to PAHs and PANHs isolated in Argon matrix at 10 K. Then, measurements are performed with the supersonic jet technique of the COSmIC laboratory facility at NASA Ames. We focus, here, on the emission spectra (fluorescence and (or) phosphorescence) of these molecules and we discuss their contributions to the blue luminescence emission in the Red Rectangle nebula.[1] Vijh,U.P., Witt. A.N. & Gordon,K.D, APJ, 606, L69 (2004)[2] Schmidt, G. D., Cohen, M. & Margon, B., ApJ, 239L.133S (1980)[3] Spitzer, L., Physical Processes in the Interstellar Medium (New York Wiley-Interscience) (1978)[4] Salama, F., Galazutdinov, G. A., Kre lowski, J., Allamandola, L. J., & Musaev, F. A. ApJ, 526,(1999)

  18. Emission Channeling Studies on the Behaviour of Light Alkali Atoms in Wide-Band-Gap Semiconductors

    CERN Multimedia

    Recknagel, E; Quintel, H

    2002-01-01

    % IS342 \\\\ \\\\ A major problem in the development of electronic devices based on diamond and wide-band-gap II-VI compound semiconductors, like ZnSe, is the extreme difficulty of either n- or p-type doping. The only reports of successful n-type doping of diamond involves ion implanted Li, which was found to be an intersititial donor. Recent theoretical calculations suggest that Na, P and N dopant atoms are also good candidates for n-type doping of diamond. No experimental evidence has been obtained up to now, mainly because of the complex and partly unresolved defect situation created during ion implantation, which is necessary to incorporate potential donor atoms into diamond. \\\\ \\\\In the case of ZnSe, considerable effort has been invested in trying to fabricate pn-junctions in order to make efficient, blue-light emitting diodes. However, it has proved to be very difficult to obtain p-type ZnSe, mainly because of electrical compensation related to background donor impurities. Li and Na are believed to be ampho...

  19. Quenching of the OH and nitrogen molecular emission by methane addition in an Ar capacitively coupled plasma to remove spectral interference in lead determination by atomic fluorescence spectrometry

    Science.gov (United States)

    Frentiu, T.; Ponta, M.; Mihaltan, A. I.; Darvasi, E.; Frentiu, M.; Cordos, E.

    2010-07-01

    A new method is proposed to remove the spectral interference on elements in atomic fluorescence spectrometry by quenching of the molecular emission of the OH radical (A 2Σ + → X 2Π) and N 2 second positive system (C 3Π u → B 3Σ g) in the background spectrum of medium power Ar plasmas. The experiments were carried out in a radiofrequency capacitively coupled plasma (275 W, 27.12 MHz) by CH 4 addition. The quenching is the result of the high affinity of OH radical for a hydrogen atom from the CH 4 molecule and the collisions of the second kind between nitrogen excited molecules and CH 4, respectively. The decrease of the emission of N 2 second positive system in the presence of CH 4 is also the result of the deactivation of the metastable argon atoms that could excite the nitrogen molecules. For flow rates of 0.7 l min - 1 Ar with addition of 7.5 ml min - 1 CH 4, the molecular emission of OH and N 2 was completely removed from the plasma jet spectrum at viewing heights above 60 mm. The molecular emission associated to CH and CH 2 species was not observed in the emission spectrum of Ar/CH 4 plasma in the ultraviolet range. The method was experimented for the determination of Pb at 283.31 nm by atomic fluorescence spectrometry with electrodeless discharge lamp and a multichannel microspectrometer. The detection limit was 35 ng ml - 1 , 2-3 times better than in atomic emission spectrometry using the same plasma source, and similar to that in hollow cathode lamp microwave plasma torch atomic fluorescence spectrometry.

  20. Microstructure of Monoplacophora (Mollusca) shell examined by low-voltage field emission scanning electron and atomic force microscopy.

    Science.gov (United States)

    Cruz, Renato; Weissmüller, Gilberto; Farina, Marcos

    2003-01-01

    The shell of Micropilina arntzi (Mollusca: Monoplacophora), a primitive molluscan class, was examined by using field emission scanning electron microscopy (FESEM) at low voltage and atomic force microscopy (AFM). The use of these two techniques allowed the observation of fine details of Micropilina arntzi shell and contributed to bring new features concerning the study of molluscan shell microtexture. Imaging with low-voltage FESEM provided well-defined edge contours of shell structures, while analyzing the sample with AFM gave information about the step height of stacked internal structures as well as the dimension of the particles present in their surface at a nanometric level. The shell microstructure of Monoplacophora species presents different patterns and may be a taxonomic implication in the systematic studies of the group.