WorldWideScience

Sample records for atomic emission determination

  1. Lithium determination in whole blood by flame atomic emission spectrometry

    International Nuclear Information System (INIS)

    Rahman, S.; Khalid, N.; Nasimullah; Iqbal, M.Z.

    2003-01-01

    A simple and rapid method for the determination of lithium in whole blood using Flame atomic emission spectrometry is described. No sample preparation was required apart from dilution with 0.02 N HNO/sub 3/. The reliability of the method was determined by analyzing Standard Reference Material (SRM) under identical experimental conditions and comparing the determined lithium concentration with the reported value. These were in good agreement with each other. The determined range of lithium in the whole blood of fifty-six healthy adult volunteers (28 males and 28 females) were 13.1 - 47.8 mg L-1. The determined average concentration of lithium in whole blood was compared with the reported values of other countries. The data was statistically analyzed with respect to sex and different age groups. (author)

  2. Determination numbers of ionized atoms from emission and absorption lines

    International Nuclear Information System (INIS)

    Alizadeh Azimi, A.; Shokouhi, N.

    2002-01-01

    Saha, M., (1920) estimated that salter chromosphere is not only due to radiation from neutral atoms, but from ionized atoms. The failure to observe these stellar lines in the laboratory was attributed to internal temperature and pressure about 10* E + 6 K 10* E-7 atm. In this research we found that emission lines of ionized atoms (like Cs) could be measured in laboratory condition, (about 10* E-3 atm and 2000 K) by using Graphite France Atomic Absorption with injection 124 u g C sel. We calculated the numbers of ionized atoms from Bottzman law. We also measured these numbers from area under the energy-time curve

  3. Automated installation for atomic emission determination of gold, silver and platinum group metals

    International Nuclear Information System (INIS)

    Zayakina, S.B.; Anoshin, G.N.; Gerasimov, P.A.; Smirnov, A.V.

    1999-01-01

    An automated installation for the direct atomic emission determination of silver, gold and platinum-group metals (Ru) in geological and geochemical materials with software for automated data acquisition and handling is designed and developed. The installation consists of a DFS-458 diffraction spectrograph, a MAES-10 multichannel analyzer of emission spectra, and a dual-jet plasmatron. A library of spectral lines of almost all elements excited in the dual-jet plasmatron is complied [ru

  4. Determination of rare earth elements in aluminum by inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Mahanti, H.S.; Barnes, R.M.

    1983-01-01

    Inductively coupled plasma-atomic emission spectroscopy is evaluated for the determination of 14 rare earth elements in aluminum. Spectral line interference, limit of detection, and background equivalent concentration values are evaluated, and quantitative recovery is obtained from aluminum samples spiked with rare earth elements. The procedure is simple and suitable for routine process control analysis. 20 references, 5 tables

  5. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fara, M.; Novak, F. [EGU Prague, PLC, Bichovice, Prague (Czechoslovakia)

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  6. Flame emission spectrometry using atomic absorption apparatus. I. Determination of Sr in sea water

    International Nuclear Information System (INIS)

    Aizawa, S.; Yoshimura, E.; Hamachi, M.; Haraguchi, H.; Dokiya, Y.; Fuwa, K.

    1976-01-01

    Flame emission determination of Sr in seawater was studied using an ordinary atomic absorption apparatus. The analytical line 4607 A was used with a background correction at 4616 A. The ionization was negligible in an air acetylene flame with seawater, and the interference of H 2 SO 4 was eliminated using the higher part of the flame. Sr concentration of seawater of Tokyo Bay and Sagami Bay has been determined

  7. Direct atomic-emission determination of tungsten in molybdenum oxide in dc arc

    International Nuclear Information System (INIS)

    Zolotareva, N.I.; Grazhulene, S.S.

    2007-01-01

    A method of direct atomic-emission determination of tungsten impurity in molybdenum trioxide of high purity in dc arc is presented. Chemically active additives of elementary sulfur and gallium oxide are used to optimize W evaporation rate and residence time in the arc plasma. The procedure is easy to use and provides the limit of W determination at a level of 2x10 -4 wt. % [ru

  8. Determination of trace amounts of cerium in paint by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Wong, K.L.

    1981-01-01

    The determination of Ce in paint by inductively coupled plasma atomic emission spectrometry (ICP-OES) is described, and the detection limit of ICP-OES of 0.0004 ppM is compared with that of other methods. The effects of the major elemental components of paint, Si, Pb, Cr, and Na on the ICP-OES determination of Ce were studied. The interference of 400 ppM of the other ions on the determination of 10 ppM Ce was small (0 to 3% error). The method is applicable to the range of 0.2 to 700 ppM Ce

  9. Determination of trace elements in maifanite by outer cover electrode atomic emission spectrometry

    Institute of Scientific and Technical Information of China (English)

    LI Jianqiang; LU Yiqiang; JIANG Wei

    2005-01-01

    Maifanite is a nature medicinal stone used in many fields for long time. The research on it showed that there are many trace elements in maifanite. In this paper, 36 trace elements in maifanite were determined by outer cover electrode atomic emission spectrometry, and the determination conditions were studied systematically. The results show that the concentrafions of elements, which are beneficial to human health, are higher, and the elements harmful to people health such as As, Cd, Hg, Cr, and Pb are tiny in maifanite. The precision and the accuracy were also discussed.

  10. Utilization of atomic emission spectroscopy methods for determination of rare earth elements

    International Nuclear Information System (INIS)

    Kubova, J.; Polakovicova, J.; Medved, J.; Stresko, V.

    1997-01-01

    The authors elaborated and applied procedures for rare earth elements (REE) determination using optical emission spectrograph with D.C arc excitation and ICP atomic emission spectrometry.Some of these analytical method are described. The proposed procedure was applied for the analysis of different types of geological materials from several Slovak localities. The results the REE determination were used for e.g. investigation of REE distribution in volcanic rocks, rhyolite tuffs with uranium-molybdenum mineralization, sandstones with heavy minerals accumulations, phosphatic sandstones, granites, quartz-carbonate veins and in the meteorite found in the locality Rumanova. The REE contents were determined in 19 mineral water sources and the results obtained by the both mentioned methods compared. The total REE contents in the analysed mineral water samples were between 2 · 10 -7 and 3 · 10 -5 g dm -3

  11. Atomic hydrogen determination in medium-pressure microwave discharge hydrogen plasmas via emission actinometry

    International Nuclear Information System (INIS)

    Geng Zicai; Xu Yong; Yang Xuefeng; Wang Weiguo; Zhu Aimin

    2005-01-01

    Atomic hydrogen plays an important role in the chemical vapour deposition of functional materials, plasma etching and new approaches to the chemical synthesis of hydrogen-containing compounds. This work reports experimental determinations of atomic hydrogen in microwave discharge hydrogen plasmas formed from the TM 01 microwave mode in an ASTeX-type reactor, via optical emission spectroscopy using Ar as an actinometer. The relative intensities of the H atom Balmer lines and Ar-750.4 nm emissions as functions of input power and gas pressure have been investigated. At an input microwave power density of 13.5 W cm -3 , the approximate hydrogen dissociation fractions calculated from electron-impact excitation and quenching cross sections in the literature, decreased from ∼0.08 to ∼0.03 as the gas pressure was increased from 5 to 25 Torr. The influences of the above cross sections, and the electron and gas temperatures of the plasmas on the determination of the hydrogen dissociation fraction data have been discussed

  12. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  13. Multielement determination of rare earth elements by liquid chromatography/inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Sawatari, Hideyuki; Asano, Takaaki; Hu, Xincheng; Saizuka, Tomoo; Itoh, Akihide; Hirose, Akio; Haraguchi, Hiroki

    1995-01-01

    The rapid determination of rare earth elements (REEs) has been investigated by an on-line system of high performance liquid chromatography/multichannel inductively coupled plasma atomic emission spectrometry. In the present system, all REEs could be detected simultaneously in a single chromatographic measurement without spectral interferences. Utilizing a cation exchange column and 2-hydroxy-2-methylpropanoic acid aqueous solution as the mobile phase, the detection limits of 0.4-30 ng ml -1 for all REEs were obtained. The system was applied to the determination of REEs in geological standard rock samples and rare earth impurities in high purity rare earth oxides. The REEs in standard rocks could be determined by the present HPLC/ICP-AES system without pretreatment after acid digestion, although the detection limits were not sufficient for the analysis of rare earth oxides. (author)

  14. Some metals determination in beers by atomic emission spectrometry of induced argon plasma

    International Nuclear Information System (INIS)

    Matsushige, I.

    1990-01-01

    It was made the identification and determination of metals in brazilian bottled and canned beer, using atomic emission spectrometry with d.c. are and argon coupled plasma excitation sources. The elements Co, Cr, Cu, Fe, Pb and Zn were determined in beer samples, after treatment with HNO sub(3) conc. /H sub(2) O sub(2) (30%). In the determination of Co, Cr, Cu, Pb and Zn and alternative method using HNO sub(3) conc. /O sub(3) was proved be useful. The results obtained for Co, Cr, Cu, Fe, Pb and Zn were below the limits established by brazilian legislation, showing the good quality of the beer concerning the metals. The results of this work were requested by the previous Ministerio do Meio Ambiente e Urbanismo in order to contribute to review the brazilian legislation in foods and beverages about metals contents. (author)

  15. Determination of rare earth elements by liquid chromatography/inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Yoshida, K.; Haraguchi, H.

    1984-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) interfaced with high-performance liquid chromatography (HPLC) has been applied to the determination of rare earth elements. ICP-AES was used as an element-selective detector for HPLC. The separation of rare earth elements with HPLC helped to avoid erroneous analytical results due to spectral interferences. Fifteen rare earth elements (Y and 14 lanthanides) were determined selectively with the HPLC/ICP-AES system using a concentration gradient method. The detection limits with the present HPLC/ICP-AES system were about 0.001-0.3 μg/mL with a 100-μL sample injection. The calibration curves obtained by the peak height measurements showed linear relationships in the concentration range below 500 μg/mL for all rare earth elements. A USGS rock standard sample, rare earth ores, and high-purity lanthanide reagents (>99.9%) were successfully analyzed without spectral interferences

  16. Determination of trace elements in soy milk using ICP atomic emission spectrometry

    International Nuclear Information System (INIS)

    Tanaka, Satoko; Chayama, Kenji

    2009-01-01

    The present study investigated the optimal method for the multi-element quantification of 9 elements in soy milk: calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc. Results obtained using ICP atomic emission spectrometry were compared with those obtained by atomic absorption spectrometry, which is the standard method. The same sample was measured using both ICP atomic emission spectrometry and atomic absorption spectrometry. The percentage of minerals recovered by ICP atomic emission spectrometry ranged from 99.3% to 102%, which was equivalent to that by atomic absorption spectrometry. Therefore, a good result with standard deviation was obtained. The mineral contents of 16 samples of commercially-available soy milk products were measured. The Cu content was significantly proportional to the amount of soybean solids (P < 0.001). Moreover, although relation-ships did not attain statistical significance, the consents of Fe, Zn, K, Mg and P were proportional to the amount of soybean solids, and were highest in soy milk, followed by prepared soy milk and so milk beverage. The Ca content of modified soy milk was significantly higher than that of soy milk and soy milk-based beverages (P < 0.001). Furthermore, the Na content in soy milk was significantly lower. (author)

  17. Inductively coupled plasma atomic emission spectrometric determination of tin in canned food.

    Science.gov (United States)

    Sumitani, H; Suekane, S; Nakatani, A; Tatsuka, K

    1993-01-01

    Various canned foods were digested sequentially with HNO3 and HCl, diluted to 100 mL, and filtered, and then tin was determined by inductively coupled plasma atomic emission spectrometry (ICP/AES). Samples of canned Satsuma mandarin, peach, apricot, pineapple, apple juice, mushroom, asparagus, evaporated milk, short-necked clam, spinach, whole tomato, meat, and salmon were evaluated. Sample preparations did not require time-consuming dilutions, because ICP/AES has wide dynamic range. The standard addition method was used to determine tin concentration. Accuracy of the method was tested by analyzing analytical standards containing tin at 2 levels (50 and 250 micrograms/g). The amounts of tin found for the 50 and 250 micrograms/g levels were 50.5 and 256 micrograms/g, respectively, and the repeatability coefficients of variation were 4.0 and 3.8%, respectively. Recovery of tin from 13 canned foods spiked at 2 levels (50 and 250 micrograms/g) ranged from 93.9 to 109.4%, with a mean of 99.2%. The quantitation limit for tin standard solution was about 0.5 microgram/g.

  18. Atomic emission spectroscopic investigations for determining depth profiles at boride layers on iron materials

    International Nuclear Information System (INIS)

    Danzer, K.; Marx, G.

    1980-01-01

    A combination of atomic emission spectroscopic surface analysis and mechanical removement of defined surface areas in layers by grinding yields information about the depth distribution of boron in iron. In addition, the evaluation with the aid of the two-dimensional variance analysis leads to statements on the homogeneous distribution within individual layers at different depth. The results obtained in this way are in agreement with those of other methods

  19. Determination of the elemental composition of cyanobacteria cells and cell fractions by atomic emission and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sedykh, Eh.M.; Lyabusheva, O.A.; Bannykh, L.N.; Tambiev, A.Kh.

    2005-01-01

    An approach to studying the elemental composition of cyanobacteria Spirulina platensis and Nostoc commune using a set of complementary analytical methods (ICP-AES, PAAS, and ETAAS) was proposed . The procedures were adapted for the determination of macro- and microelements (Na, K, Mg, Ca, Fe, Mn, Cu, Mo, Zn, B, and Se) in the biomass of cyanobacteria and separated cell fractions (chloroform and water-methanol extracts and precipitates). The conditions for the mineralization of biological materials were optimized for autoclave and microwave sample preparation procedures. The evaporation and atomization of Se and Mo in a graphite furnace in the presence of chloroform and methanol were studied [ru

  20. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perring, Loic; Basic-Dvorzak, Marija [Department of Quality and Safety Assurance, Nestle Research Centre, P.O. Box 44, Vers chez-les-Blanc, 1000, Lausanne (Switzerland)

    2002-09-01

    Tin is considered to be a priority contaminant by the Codex Alimentarius Commission. Tin can enter foods either from natural sources, environmental pollution, packaging material or pesticides. Higher concentrations are found in processed food and canned foods. Dissolution of the tinplate depends on the of food matrix, acidity, presence of oxidising reagents (anthocyanin, nitrate, iron and copper) presence of air (oxygen) in the headspace, time and storage temperature. To reduce corrosion and dissolution of tin, nowadays cans are usually lacquered, which gives a marked reduction of tin migration into the food product. Due to the lack of modern validated published methods for food products, an ICP-AES (Inductively coupled plasma-atomic emission spectroscopy) method has been developed and evaluated. This technique is available in many laboratories in the food industry and is more sensitive than atomic absorption. Conditions of sample preparation and spectroscopic parameters for tin measurement by axial ICP-AES were investigated for their ruggedness. Two methods of preparation involving high-pressure ashing or microwave digestion in volumetric flasks were evaluated. They gave complete recovery of tin with similar accuracy and precision. Recoveries of tin from spiked products with two levels of tin were in the range 99{+-}5%. Robust relative repeatabilities and intermediate reproducibilities were <5% for different food matrices containing >30 mg/kg of tin. Internal standard correction (indium or strontium) did not improve the method performance. Three emission lines for tin were tested (189.927, 283.998 and 235.485 nm) but only 189.927 nm was found to be robust enough with respect to interferences, especially at low tin concentrations. The LOQ (limit of quantification) was around 0.8 mg/kg at 189.927 nm. A survey of tin content in a range of canned foods is given. (orig.)

  1. Simultaneous determination of Cr, Ga, In and V in soil and water samples by tungsten coil atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Donati, George L.; Kron, Benjamin E. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Jones, Bradley T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States)], E-mail: jonesbt@wfu.edu

    2009-06-15

    Tungsten coil atomic emission spectrometry is employed for the simultaneous determination of Cr, Ga, In, and V. Both V and In are detected by this technique for the first time. The atomizer is a simple, inexpensive tungsten filament extracted from a mass-produced, commercially-available 150 W, 15 V microscope bulb. A 25 {mu}l sample aliquot is placed directly on the coil and a small constant-current power source is used to carefully dry, ash and atomize the sample. Analytical signals are detected with a Czerny-Turner spectrograph and a charge coupled device detector. Multiple emission lines from all 4 elements are monitored simultaneously in a 54 nm spectral window. Concentration limits of detection are in the {mu}g l{sup - 1} range for all elements, and the absolute limits of detection are 0.2, 2, 0.5, and 10 ng for Cr, Ga, In, and V, respectively. Even lower values may be obtained by combining the signals for the multiple emission lines of a single element. The method precision is typically better than 5.0% relative standard deviation, and sometimes as good as 0.95% (Ga). Standard reference materials of soil and water are used to check the method accuracy. After a simple acid extraction, the values determined by the method presented no significant difference from the reported values at the 95% confidence level.

  2. Determination of boron in waters by using methyl borate generation and flame atomic-emission spectrometry

    International Nuclear Information System (INIS)

    Castillo, J.R.; Mir, J.M.; Martinez, C.; Bendicho, C.

    1985-01-01

    An improved method is proposed for the determination of boron in waters. The esterification reaction between boric acid and methanol in a concentrated sulphuric acid medium and the vaporisation of the methyl borate formed (boiling-point, 68 C) are used in the determination by boron by measuring the emission of the BO 2 radical at 548 nm. This reaction is carried out in a simple and inexpensive generator, designed for this purpose, and the heat developed in it causes the rapid volatilisation of the methyl borate. Thus no collection systems or carrier gas are required. The proposed method gives an improved detection limit and it can be applied to the determination of boron in water samples. It is both rapid and highly selective. (author)

  3. Atomic emission spectroscopy

    Science.gov (United States)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  4. A separation method to overcome the interference of aluminium on zinc determination by inductively coupled plasma atomic emission spectroscopy

    OpenAIRE

    Jesus, Djane S. de; Korn, Maria das Graças Andrade; Ferreira, Sergio Luis Costa; Carvalho, Marcelo Souza de

    2000-01-01

    Texto completo: acesso restrito. p.389–394 The use of polyurethane foam (PUF) to separate zinc from large amounts of aluminium and its determination by inductively coupled plasma atomic emission spectroscopy technique (ICP-AES) in aluminium matrices is described. The proposed method is based on the solid-phase extraction of the zinc(II) cation as a thiocyanate complex. Parameters such as effect of pH on zinc sorption, zinc desorption from the foam and analytical features of the procedure w...

  5. Determination of trace elements in Egyptian cane sugar (Deshna Factories) by neutron activation, atomic absorption spectrophotometric and inductively coupled plasma-atomic emission spectrometric analysis

    International Nuclear Information System (INIS)

    Awadallah, R.M.; Sherif, M.K.; Mohamed, A.E.; Grass, F.

    1986-01-01

    Multielement instrumental neutron activation (INAA), inductively coupled plasma-atomic emission spectrometric (ICP-AES) and atomic absorption spectrophotometric (AAS) analyses were utilized for the determination of Ag, Al, As, Au, Ba, Be, Br, Ca, Cd, Ce, Cl, Co, Cr, Cu, Eu, Fe, Ga, Hf, K, La, Li, Lu, Mg, Mn, Na, Nb, Ni, P, Pb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Th, Ti, U, V, W and Zn in sugar cane plant, raw juice, juice in different stages, syrup, deposits, molasses, A, B and C sugar, refinery 1 and 2 sugar, and in soil samples picked up from the immediate vicinity of the cane plant roots at surface, 30 and 60 cm depth, respectively. (author)

  6. Direct determination of sodium, potassium, chromium and vanadium in biodiesel fuel by tungsten coil atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dancsak, Stacia E. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Silva, Sidnei G.; Nóbrega, Joaquim A. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, São Carlos, SP (Brazil); Jones, Bradley T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Donati, George L., E-mail: georgedonati@yahoo.com.br [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2014-01-02

    Graphical abstract: -- Highlights: •Direct analysis of biodiesel on a tungsten coil atomizer. •Determination of Na, K, Cr and V by tungsten coil atomic emission spectrometry. •Sample dilution with methanol or ethanol. •Ten-microliter sample aliquots and limits of detection between 20 and 90 μg kg{sup −1}. •Low consumption of reagents, samples and gases in a 140 s per run procedure. -- Abstract: High levels of sodium and potassium can be present in biodiesel fuel and contribute to corrosion, reduced performance and shorter engine lifetime. On the other hand, trace amounts of chromium and vanadium can increase the emission of pollutants during biodiesel combustion. Sample viscosity, immiscibility with aqueous solutions and high carbon content can compromise biodiesel analyzes. In this work, tungsten filaments extracted from microscope light bulbs are used to successively decompose biodiesel's organic matrix, and atomize and excite the analytes to determine sodium, potassium, chromium and vanadium by tungsten coil atomic emission spectrometry (WCAES). No sample preparation other than simple dilution in methanol or ethanol is required. Direct analysis of 10-μL sample aliquots using heating cycles with less than 150 s results in limits of detection (LOD) as low as 20, 70, 70 and 90 μg kg{sup −1} for Na, K, Cr and V, respectively. The procedure's accuracy is checked by determining Na and K in a biodiesel reference sample and carrying out spike experiments for Cr and V. No statistically significant differences were observed between reference and determined values for all analytes at a 95% confidence level. The procedure was applied to three different biodiesel samples and concentrations between 6.08 and 95.6 mg kg{sup −1} for Na and K, and between 0.22 and 0.43 mg kg{sup −1} for V were obtained. The procedure is simple, fast and environmentally friendly. Small volumes of reagents, samples and gases are used and no residues are generated

  7. Direct determination of sodium, potassium, chromium and vanadium in biodiesel fuel by tungsten coil atomic emission spectrometry

    International Nuclear Information System (INIS)

    Dancsak, Stacia E.; Silva, Sidnei G.; Nóbrega, Joaquim A.; Jones, Bradley T.; Donati, George L.

    2014-01-01

    Graphical abstract: -- Highlights: •Direct analysis of biodiesel on a tungsten coil atomizer. •Determination of Na, K, Cr and V by tungsten coil atomic emission spectrometry. •Sample dilution with methanol or ethanol. •Ten-microliter sample aliquots and limits of detection between 20 and 90 μg kg −1 . •Low consumption of reagents, samples and gases in a 140 s per run procedure. -- Abstract: High levels of sodium and potassium can be present in biodiesel fuel and contribute to corrosion, reduced performance and shorter engine lifetime. On the other hand, trace amounts of chromium and vanadium can increase the emission of pollutants during biodiesel combustion. Sample viscosity, immiscibility with aqueous solutions and high carbon content can compromise biodiesel analyzes. In this work, tungsten filaments extracted from microscope light bulbs are used to successively decompose biodiesel's organic matrix, and atomize and excite the analytes to determine sodium, potassium, chromium and vanadium by tungsten coil atomic emission spectrometry (WCAES). No sample preparation other than simple dilution in methanol or ethanol is required. Direct analysis of 10-μL sample aliquots using heating cycles with less than 150 s results in limits of detection (LOD) as low as 20, 70, 70 and 90 μg kg −1 for Na, K, Cr and V, respectively. The procedure's accuracy is checked by determining Na and K in a biodiesel reference sample and carrying out spike experiments for Cr and V. No statistically significant differences were observed between reference and determined values for all analytes at a 95% confidence level. The procedure was applied to three different biodiesel samples and concentrations between 6.08 and 95.6 mg kg −1 for Na and K, and between 0.22 and 0.43 mg kg −1 for V were obtained. The procedure is simple, fast and environmentally friendly. Small volumes of reagents, samples and gases are used and no residues are generated. Powers of detection are

  8. Standard test method for determining elements in waste streams by inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the specimen. Waste streams from manufacturing processes of nuclear and nonnuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable to process control within waste treatment facilities. This test method is applicable only to waste streams that contain radioactivity levels which do not require special personnel or environmental protection. A list of the elements determined in waste streams and the corresponding lower reporting limit is included

  9. Extraction of butyltins from sediments and their determination by liquid chromatography interfaced to inductively coupled plasma atomic emission detector

    International Nuclear Information System (INIS)

    Rivaro, P.; Frache, R.

    2000-01-01

    A liquid-liquid extraction of the butyltin compounds from sediment, suitable for their subsequent following determination by high performance liquid chromatography-hydride generation inductively coupled plasma atomic emission detector system, is proposed. Recoveries of 86%, 80% and 42% for tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) respectively were achieved. The relative detection limits of butyltin compounds by this method ranged from 27 to 62 ng of tin per gram of dry sediment. The method was applied to real sediment samples collected in the Venice lagoon (Italy). The results showed that, despite the restrictions on the use of butyltin contained in antifoulting paints, a considerable amount of organotin compounds is still present in Venice sediments [it

  10. Semi-automatic determination of tin in marine materials by continuous flow hydride generation inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Feng Yonglai; Narasaki, Hisataki; Chen Hongyuan; Tian Liching

    1997-01-01

    A semi-automated continuous flow hydride generation system with inductively coupled plasma atomic emission spectrometry (ICP-AES) was used for the determination of tin in marine materials. The effects of acids (H 2 SO 4 and HCl) were studied. The analytical parameters were thoroughly investigated. Under optimized conditions, the detection limit is 0.4 ng/ml. Interferences from transition elements were investigated and seven masking reagents were tested. L-cysteine hydrochloride monohydrate (1%) was used to mask the interferences from foreign ions. Finally, the accuracy, checked with a marine standard reference material obtained from the National Research Council (NRC), was within the certified value. (orig.). With 6 figs., 4 tabs

  11. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry

    International Nuclear Information System (INIS)

    Frentiu, Tiberiu; Mihaltan, Alin I.; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-01-01

    Highlights: → Use of a miniaturized analytical system with microtorch plasma for Hg determination. → Determination of Hg in non- and biodegradable materials using cold vapor generation. → Figures of merit and advantages of the miniaturized system for Hg determination. - Abstract: A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min -1 Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl 2 reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO 3 -H 2 SO 4 mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml -1 or 0.08 μg g -1 in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg -1 , while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level).

  12. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frentiu, Tiberiu, E-mail: ftibi@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Mihaltan, Alin I., E-mail: alinblaj2005@yahoo.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Ponta, Michaela, E-mail: mponta@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Darvasi, Eugen, E-mail: edarvasi@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Frentiu, Maria, E-mail: frentiu.maria@yahoo.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Cordos, Emil, E-mail: emilcordos@gmail.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania)

    2011-10-15

    Highlights: {yields} Use of a miniaturized analytical system with microtorch plasma for Hg determination. {yields} Determination of Hg in non- and biodegradable materials using cold vapor generation. {yields} Figures of merit and advantages of the miniaturized system for Hg determination. - Abstract: A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min{sup -1} Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl{sub 2} reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO{sub 3}-H{sub 2}SO{sub 4} mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml{sup -1} or 0.08 {mu}g g{sup -1} in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg{sup -1}, while recovery in two polyethylene certified reference materials in the range 98.7 {+-} 4.5% (95% confidence level).

  13. Localization of the antimony impurity atoms in the PbTe lattice determined by the Moessbauer emission spectroscopy

    International Nuclear Information System (INIS)

    Masterov, V.F.; Nasredinov, F.S.; Nemov, S.A.; Seregin, P.P.; Troitskaya, N.N.; Bondarevskij, S.I.

    1997-01-01

    The 119 Sb ( 119m Sn) emission Moessbauer spectroscopy has shown that a localization of the antimony impurity atoms in the PbTe lattice is affected by the conductivity type of the host material, the antimony atoms occupied mainly anion and cation sites in n-type and p-type samples, respectively. The 119 Sn impurity in the anion sublattice of PbTe formed an decay. Its charge state was shown to be independent of the Fermi level position

  14. Spontaneous emission by moving atoms

    International Nuclear Information System (INIS)

    Meystre, P.; Wilkens, M.

    1994-01-01

    It is well known that spontaneous emission is not an intrinsic atomic property, but rather results from the coupling of the atom to the vacuum modes of the electromagnetic field. As such, it can be modified by tailoring the electromagnetic environment into which the atom can radiate. This was already realized by Purcell, who noted that the spontaneous emission rate can be enhanced if the atom placed inside a cavity is resonant with one of the cavity is resonant with one of the cavity modes, and by Kleppner, who discussed the opposite case of inhibited spontaneous emission. It has also been recognized that spontaneous emission need not be an irreversible process. Indeed, a system consisting of a single atom coupled to a single mode of the electromagnetic field undergoes a periodic exchange of excitation between the atom and the field. This periodic exchange remains dominant as long as the strength of the coupling between the atom and a cavity mode is itself dominant. 23 refs., 6 figs

  15. Standard test method for determining elements in waste Streams by inductively coupled plasma-atomic emission spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the sample. Waste streams from manufacturing processes of nuclear and non-nuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable in process control within waste treatment facilities. 1.2 This test method is applicable only to waste streams that contain radioactivity levels that do not require special personnel or environmental protection. 1.3 A list of the elements determined in waste streams and the corresponding lower reporting limit is found in Table 1. 1.4 This test method has been used successfully for treatment of a large variety of waste solutions and industrial process liquids. The com...

  16. Determination of the mineral compositions of in six beans by microwave digestion with inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Yan, Q.; Yang, L.; Chen, S.; Liu, X.; Ma, X.

    2012-01-01

    In the study, microwave digestion procedure optimized was applied for digesting beans. Nineteen mineral element concentrations were determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The result indicated detection limits for the 19 elements were less than 0.0998, and relative standard deviations were 1.01% - 5.02% for all the elements, and recoveries were 90.89% - 104.55% by adding standard recovery experiment. The study showed the beans selected were abundant in mineral element contents in human nutrition, determination mineral element contents by ICP-AES with microwave digestion technology were a lot of merits of small environmental pollution, fast and accurate determination result, which could satisfy the examination request of bean samples. The results provided evidence that the six beans were a good source of K, P, Mg and Ca. This study is to give important reference value to people due to individual differences by adjusting the dietary to complement the different mineral elements. (author)

  17. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    Science.gov (United States)

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level). Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-01-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s 5 ) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s 3 ) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations. (paper)

  19. Development of inductively coupled plasma atomic emission spectrometry for palladium and Rhodium determination in platinum-based alloy

    International Nuclear Information System (INIS)

    Kovacevic, R.; Todorovic, M.; Manojlovic, D.; Mutic, J.

    2008-01-01

    Inductively coupled plasma atomic emission spectroscopy with internal standardization was applied for the analysis of an in-house reference platinum alloy containing palladium and rhodium (approximately 5% by weight). In order to compensate for variations in signal recovery due to matrix interferences, and therefore to improve the precision, platinum. the major component, was chosen as an internal standard. Quantitative analysis was based on calibration using a set of matrix-matched calibration standards with and without employing the internal standard. These results were compared with those obtained by X-ray fluorescence spectroscopy. The results for both techniques were in a good agreement, although the precision was slightly better in the inductively coupled plasma atomic emission spectroscopy technique, with or without the internal standard

  20. Quenching of the OH and nitrogen molecular emission by methane addition in an Ar capacitively coupled plasma to remove spectral interference in lead determination by atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frentiu, T., E-mail: ftibi@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Ponta, M., E-mail: mponta@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Mihaltan, A.I., E-mail: alinblaj2005@yahoo.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Darvasi, E., E-mail: edarvasi@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Frentiu, M., E-mail: frentiu.maria@yahoo.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Cordos, E., E-mail: emilcordos@gmail.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania)

    2010-07-15

    A new method is proposed to remove the spectral interference on elements in atomic fluorescence spectrometry by quenching of the molecular emission of the OH radical (A{sup 2{Sigma}+} {yields} X{sup 2{Pi}}) and N{sub 2} second positive system (C{sup 3{Pi}}{sub u} {yields} B{sup 3{Sigma}}{sub g}) in the background spectrum of medium power Ar plasmas. The experiments were carried out in a radiofrequency capacitively coupled plasma (275 W, 27.12 MHz) by CH{sub 4} addition. The quenching is the result of the high affinity of OH radical for a hydrogen atom from the CH{sub 4} molecule and the collisions of the second kind between nitrogen excited molecules and CH{sub 4}, respectively. The decrease of the emission of N{sub 2} second positive system in the presence of CH{sub 4} is also the result of the deactivation of the metastable argon atoms that could excite the nitrogen molecules. For flow rates of 0.7 l min{sup -1} Ar with addition of 7.5 ml min{sup -1} CH{sub 4}, the molecular emission of OH and N{sub 2} was completely removed from the plasma jet spectrum at viewing heights above 60 mm. The molecular emission associated to CH and CH{sub 2} species was not observed in the emission spectrum of Ar/CH{sub 4} plasma in the ultraviolet range. The method was experimented for the determination of Pb at 283.31 nm by atomic fluorescence spectrometry with electrodeless discharge lamp and a multichannel microspectrometer. The detection limit was 35 ng ml{sup -1}, 2-3 times better than in atomic emission spectrometry using the same plasma source, and similar to that in hollow cathode lamp microwave plasma torch atomic fluorescence spectrometry.

  1. Determination of lithium and potassium in uranium oxide powders and pellets by Flame Atomic Emission Spectrometric method

    International Nuclear Information System (INIS)

    Jat, J.R.; Balaji Rao, Y.; Prasada Rao, G.; Prahlad, B.

    2012-01-01

    The present paper describes a method developed at Control Laboratory, NFC which includes prior separation of lithium and potassium from uranium matrix before their measurements. Solvent extraction, using Tri-n-Butyl Phosphate (TBP) in CCI 4 followed by Tri-n-Octyl Phosphine Oxide (TOPO) in CCI 4 , is employed for prior separation of Li and K. The resultant aqueous solution was analyzed by Flame-Atomic Emission Spectrometric (AES) method. Solvent extraction conditions are optimized for measurement of Li and K in the same aliquot. Experimental conditions such as instrument calibration, flame condition, fuel flow, sample flow rate through nebulizer, burner height etc. are also optimized. Under the optimal condition the detection limits achieved for lithium is 0.02 ppm and 0.2 ppm for potassium. A RSD of ± 3 % for Li at 0.05 ppm and ± 4% for K at 1 ppm level has been achieved in this method. The results of lithium in the sample are compared with the values obtained by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Similarly, values of potassium are compared with Flame-Atomic Absorption Spectrometry (Flame-AAS) technique. The comparisons are in good agreement. The above method is simple, sensitive, reproducible and can be used for measurement of lithium and potassium in UO 2 powder and pellets on regular basis

  2. Determination of some inorganic metals in edible vegetable oils by inductively coupled plasma atomic emission spectroscopy (ICP-AES

    Directory of Open Access Journals (Sweden)

    Musa Özcan, M.

    2008-09-01

    Full Text Available Seventeen edible vegetable oils were analyzed spectrometrically for their metal (Cu, Fe, Mn, Co, Cr, Pb, Cd, Ni, and Zn contents. Toxic metals in edible vegetable oils were determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES. The highest metal concentrations were measured as 0.0850, 0.0352, 0.0220, 0.0040, 0.0010, 0.0074, 0.0045, 0.0254 and 0.2870 mg/kg for copper in almond oil, for iron in corn oil-(c, for manganese in soybean oil, for cobalt in sunflower oil-(b and almond oil, for chromium in almond oil, for lead in virgin olive oil, for cadmium in sunflower oil-(e, for nickel almond oil and for zinc in almond oil respectively. The method for determining toxic metals in edible vegetable oils by using ICP-AES is discussed. The metals were extracted from low quantities of oil (2-3 g with a 10% nitric acid solution. The extracted metal in acid solution can be injected into the ICPAES. The proposed method is simple and allows the metals to be determined in edible vegetable oils with a precision estimated below 10% relative standard deviation (RSD for Cu, 5% for Fe, 15% for Mn, 8% for Co, 10% for Cr, 20% for Pb, 5% for Cd, 16% for Ni and 11% for Zn.En este estudio se analizó espectrométricamente el contenido en metales (Cu, Fe, Mn, Co, Cr, Pb, Cd, Ni, and Zn de 17 aceites vegetales comestibles mediante ICP-AES. Las concentaciones más elevadas se encontraron para el cobre en el aceite de almendra (0.0850 mg/kg, para el hierro en el aceite de maiz(c,(0.0352 mg/kg, para el manganeso en el aceite de soja (0.0220 mg/kg, para el cobalto en el aceite de girasol (b (0.0040 mg/kg, para el cromo en el aceite de almendra (0.0010 mg/kg, para el plomo en el aceite de oliva virgen (0.0074 mg/kg, para el cadmio en el aceite de girasol (e (0.0045 mg/kg, para el niquel en el aceite de almendra (0.0254 mg/kg y para el zincen el aceite de almendra (0.2870 mg/kg. Los metales se extrajeron a partir de bajas cantidades de aceite (2-3 g, con

  3. Determination of daily intake of elements from Philippine total diet samples using inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Leon, G.C. de; Shiraishi, K.; Kawamura, H.; Igaraishi, Y.; Palattao, M.V.; Azanon, E.M.

    1990-10-01

    Total diet samples were analyzed for major elements (Na, K, Ca, Mg, P) and some minor trace elements (Fe, Zn, Mn, Al, Sr, Cu, Ba, Yt) using inductively coupled plasma-atomic emission spectrometry (ICP-AES). Samples analyzed were classified into sex and age groups. Results for some elements (Na, K, Mg, Zn, Cu, Mn) were compared with values from Bataan dietary survey calculated using the Philippine composition table. Exceot for Na, analytical results were similar to calculated values. Analytical results for Ca and Fe were also compared with the values from Food and Nutrition Research Institute. In general, values obtained in the study were lower than the FNRI values. Comparison of the analytical and calculated results with the Japanese and ICRP data showed that Philippine values were lower than foreign values. (Auth.). 22 refs., 9 tabs

  4. Flame emission, atomic absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Horlick, G.

    1980-01-01

    Six hundred and thirty references are cited in this review. The information in the review is divided into 12 major areas: books, reviews, and bibliographies; fundamental studies in flames; developments in instrumentation; measurement techniques and procedure; flame emission spectrometry; flame atomic absorption spectrometry; flame molecular absorption spectrometry; electrothermal atomization atomic absorption spectroscopy; hydride generation techniques; graphite furnace atomic emission spectrometry; atomic fluorescence spectrometry; and analytical comparisons

  5. Optimization and development of the instrumental parameters for a method of multielemental analysis through atomic spectroscopy emission, for the determination of My, Fe Mn and Cr

    International Nuclear Information System (INIS)

    Lanzoni Vindas, E.

    1998-01-01

    This study optimized the instrumental parameters of a method of multielemental (sequential) analysis, through atomic emission, for the determination of My, Fe,Mn and Cr. It used the factorial design at two levels and the method of Simplex optimization, that permitted the determination of the four cations under the same instrumental conditions. The author studied an analytic system, in which the conditions were not lineal between instrumental answers and the concentration, having to make adjustment of the calibration curves in homocedastic and heterocedastic conditions. (S. Grainger)

  6. In-situ determination of cross-over point for overcoming plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2008-01-01

    A novel method is described for overcoming plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry (ICP-AES). The method is based on measurement of the vertically resolved atomic emission of analyte within the plasma and therefore requires the addition of no reagents to the sample solution or to the plasma. Plasma-related matrix effects enhance analyte emission intensity low in the plasma but depress the same emission signal at higher positions. Such bipolar behavior is true for all emission lines and matrices that induce plasma-related interferences. The transition where the enhancement is balanced by the depression (the so-called cross-over point) results in a spatial region with no apparent matrix effects. Although it would be desirable always to perform determinations at this cross-over point, its location varies between analytes and from matrix to matrix, so it would have to be found separately for every analyte and for every sample. Here, a novel approach is developed for the in-situ determination of the location of this cross-over point. It was found that the location of the cross-over point is practically invariant for a particular analyte emission line when the concentration of the matrix was varied. As a result, it is possible to determine in-situ the location of the cross-over point for all analyte emission lines in a sample by means of a simple one-step sample dilution. When the original sample is diluted by a factor of 2 and the diluted sample is analyzed again, the extent of the matrix effect is identical (zero) between the original sample and the diluted sample at one and only one location - the cross-over point. This novel method was verified with several single-element matrices (0.05 M Na, Ca, Ba and La) and some mixed-element matrices (mixtures of Na-Ca, Ca-Ba, and a plant-sample digest). The inaccuracy in emission intensity due to the matrix effect could be as large as - 30% for conventional measurements in the

  7. Major constituent quantitative determination in uranium alloys by coupled plasma atomic emission spectrometry and X ray fluorescence wavelength dispersive spectrometry

    International Nuclear Information System (INIS)

    Oliveira, Luis Claudio de; Silva, Adriana Mascarenhas Martins da; Gomide, Ricardo Goncalves; Silva, Ieda de Souza

    2013-01-01

    A wavelength-dispersive X-ray fluorescence (WD-XRF) spectrometric method for determination of major constituents elements (Zr, Nb, Mo) in Uranium/Zirconium/Niobium and Uranium/Molybdenum alloy samples were developed. The methods use samples taken in the form of chips that were dissolved in hot nitric acid and precipitate particles melted with lithium tetraborate and dissolved in hot nitric acid and finally analyzed as a solution. Studies on the determination by inductively coupled plasma optic emission spectrometry (ICP OES) using matched matrix in calibration curve were developed. The same samples solution were analyzed in both methods. The limits of detection (LOD), linearity of the calibrations curves, recovery study, accuracy and precision of the both techniques were carried out. The results were compared. (author)

  8. Determination of 21 trace impurities in UO2 with tributyl phosphate chromatographic separation-USN-inductively coupled/atomic emission spectrometric

    International Nuclear Information System (INIS)

    Hou Lieqi; Wang Shuan; Li Jie

    1996-03-01

    A method of tributyl phosphate chromatographic separation-USN-inductively coupled/atomic emission spectrometric was selected. And the parameters, interference of acid concentrations, interference of coexisting elements, selecting of flow for carrier gas, solution temperature were studied. When the sampling amount is 250 mg, the determination range for Al, Ag, Ba, Ca, Cd, Co, Cr, Cu, Fe, In, Li, Mg, Mn, Mo, Ni, Pb, Sn, Ti, V, Y and Zn are 0.2∼100 ng· -1 , recovery are 94%∼110%. The RSD (n 8) are 0.8%∼6.2%. (3 refs., 4 tabs.)

  9. Evaluation of a new dielectric barrier discharge excitation source for the determination of arsenic with atomic emission spectrometry.

    Science.gov (United States)

    Zhu, Zhenli; He, Haiyang; He, Dong; Zheng, Hongtao; Zhang, Caixiang; Hu, Shenghong

    2014-05-01

    A low power dielectric barrier discharge excitation source was developed to determine arsenic in a cost-effective manner. Arsenic in water was reduced to AsH₃ by hydride generation (HG), which was transported to the miniature dielectric barrier discharge (DBD) excitation source for excitation and optical detection at As 193.7 nm atomic line. The DBD source consists of a quartz tube, a tungsten rod electrode, and a copper coil electrode. The main operation parameters and the potential interferences affecting the determination were investigated. The detection limit for arsenic with the proposed DBD-AES was 4.8 μg L(-1) when the HG products were dried with concentrated H₂SO₄ before introducing to DBD. Repeatability, expressed as the relative standard deviation of the spectral peak height, was 2.8% (n=11) for 0.1 mg L(-1) arsenic solution. The proposed method was successfully applied to the determinations of certified reference material (GBW08605) and nature water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Curve resolution and figures of merit estimation for determination of trace elements in geological materials by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Lorber, A.; Harel, A.; Goldbart, Z.; Brenner, I.B.

    1987-01-01

    In geochemical analysis using inductively coupled plasma atomic emission spectrometry (ICP-AES), spectral interferences and background enhancement in response to sample concomitants are the main cause of deterioration of the limit of detection (LOD) and inaccuracy of the determination at the trace and minor element levels. In this account, the authors describe the chemometric procedure of curve resolution for compensating for these sources of error. A newly developed method for calculating figures of merit is used to evaluate the correction procedure, test the statistical significance of the determined concentration, and determine LODs for each sample. The technique involves scanning the vicinity of the spectral line of the analyte. With prior knowledge of potential spectral interferences, deconvolution of the overlapped response is possible. Analytical data for a wide range of geological standard reference materials demonstrate the effectiveness of the chemometric techniques. Separation of 0.002 nm spectral coincidence, employing a 0.02 nm resolution spectrometer, is demonstrated

  11. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy.

    Science.gov (United States)

    Colon, M; Todolí, J L; Hidalgo, M; Iglesias, M

    2008-02-25

    Two new, simple and accurate methods for the determination of sulfide (S(2-)) at low levels (microgL(-1)) in aqueous samples were developed. The generation of hydrogen sulfide (H(2)S) took place in a coil where sulfide reacted with hydrochloric acid. The resulting H(2)S was then introduced as a vapor into an inductively coupled plasma-atomic emission spectrometer (ICP-AES) and sulfur emission intensity was measured at 180.669nm. In comparison to when aqueous sulfide was introduced, the introduction of sulfur as H(2)S enhanced the sulfur signal emission. By setting a gas separator at the end of the reaction coil, reduced sulfur species in the form of H(2)S were removed from the water matrix, thus, interferences could be avoided. Alternatively, the gas separator was replaced by a nebulizer/spray chamber combination to introduce the sample matrix and reagents into the plasma. This methodology allowed the determination of both sulfide and sulfate in aqueous samples. For both methods the linear response was found to range from 5microgL(-1) to 25mgL(-1) of sulfide. Detection limits of 5microgL(-1) and 6microgL(-1) were obtained with and without the gas separator, respectively. These new methods were evaluated by comparison to the standard potentiometric method and were successfully applied to the analysis of reduced sulfur species in environmental waters.

  12. Determination of metal impurities in MOX powder by direct current arc atomic emission spectroscopy. Application of standard addition method for direct analysis of powder sample

    International Nuclear Information System (INIS)

    Furuse, Takahiro; Taguchi, Shigeo; Kuno, Takehiko; Surugaya, Naoki

    2016-12-01

    Metal impurities in MOX powder obtained from uranium and plutonium recovered from reprocessing process of spent nuclear fuel have to be determined for its characterization. Direct current arc atomic emission spectroscopy (DCA-AES) is one of the useful methods for direct analysis of powder sample without dissolving the analyte into aqueous solution. However, the selection of standard material, which can overcome concerns such as matrix matching, is quite important to create adequate calibration curves for DCA-AES. In this study, we apply standard addition method using the certified U_3O_8 containing known amounts of metal impurities to avoid the matrix problems. The proposed method provides good results for determination of Fe, Cr and Ni contained in MOX samples at a significant quantity level. (author)

  13. Determination of Cu, Zn, Pb and Cd by atomic emission spectrometry with inductively coupled plasma in waters and sediments from San Juan Ecosystem, Santiago de Cuba

    International Nuclear Information System (INIS)

    Argota Perez, George; Argota Coello, Humberto; Fernandez-Heredia, Angel

    2014-01-01

    In this paper the levels of concentration of copper, zinc, lead and cadmium in waters and sediments from the ecosystem San Juan in the Santiago of Cuba province were evaluated. Two sampling of the ecosystem in two stations belonging to the high and middle part of the river, in rainy and little rainy periods were carried out. The conservation and treatment of the samples were developed according to established standards and the determinations of the elements were realized using atomic emission spectrometry with inductively coupled plasma. The concentrations intervals of the studied elements were established so much in the superficial waters like in the sediments and it was demonstrated that exists statistical significant differences for the factors station, period and type of sample, being the middle part of the river, the little rainy period and the sediments, where the grater concentrations of the pollutants appear

  14. Critical comparison of performances of inductively coupled plasma atomic emission spectrometry and neutron activation analysis for the determination of elements in human lungs

    International Nuclear Information System (INIS)

    Alimonti, A.; Coni, E.; Caroli, S.; Sabbioni, E.; Nicolaou, G.E.; Pietra, R.

    1989-01-01

    A study was carried out to assess the performance of inductively coupled plasma atomic emission spectrometry (ICP-AES) and neutron activation analysis (NAA) techniques for determining reference values for Al, Cd, Cr, Cu, Mg, Mn, V and Zn in human lungs of urban non-smoking subjects. Experimental data were subjected to the usual basic statistical tests to evaluate the respective merits of the two basically different analytical techniques. Both approaches, if used under carefully optimised experimental conditions, can yield reliable results affected only minimally by systematic and random errors. On the other hand, on a more routine basis, particular attention should be paid to elements such as Al, Cd and V which may pose some problems with both techniques. (author)

  15. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Colon, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Todoli, J.L. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Hidalgo, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Iglesias, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain)], E-mail: monica.iglesias@udg.es

    2008-02-25

    Two new, simple and accurate methods for the determination of sulfide (S{sup 2-}) at low levels ({mu}g L{sup -1}) in aqueous samples were developed. The generation of hydrogen sulfide (H{sub 2}S) took place in a coil where sulfide reacted with hydrochloric acid. The resulting H{sub 2}S was then introduced as a vapor into an inductively coupled plasma-atomic emission spectrometer (ICP-AES) and sulfur emission intensity was measured at 180.669 nm. In comparison to when aqueous sulfide was introduced, the introduction of sulfur as H{sub 2}S enhanced the sulfur signal emission. By setting a gas separator at the end of the reaction coil, reduced sulfur species in the form of H{sub 2}S were removed from the water matrix, thus, interferences could be avoided. Alternatively, the gas separator was replaced by a nebulizer/spray chamber combination to introduce the sample matrix and reagents into the plasma. This methodology allowed the determination of both sulfide and sulfate in aqueous samples. For both methods the linear response was found to range from 5 {mu}g L{sup -1} to 25 mg L{sup -1} of sulfide. Detection limits of 5 {mu}g L{sup -1} and 6 {mu}g L{sup -1} were obtained with and without the gas separator, respectively. These new methods were evaluated by comparison to the standard potentiometric method and were successfully applied to the analysis of reduced sulfur species in environmental waters.

  16. Preconcentration of uranium, thorium, zirconium, titanium, molybdenum and vanadium with oxine supported on microcrystalline naphthalene and their determinations by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Naveen Kumar, P.; Sanjay Kumar; Vijay Kumar; Nandakishore, S.S.; Bangroo, P.N.

    2013-01-01

    A sensitive and rapid method for the determination of uranium, thorium, zirconium, titanium, molybdenum and vanadium by inductively coupled plasma atomic emission spectrometry (ICP-AES) after solid-liquid extraction with microcrystalline naphthalene is developed. Analytes were quantitatively adsorbed as their oxinate complexes on naphthalene and determined by ICP-AES after stripping with 2 M HCl. The effect of various experimental parameters such as pH, reagent amounts, naphthalene amount and stripping conditions on the determination of these elements was investigated in detail. Under the optimized experimental conditions, the detection limits of this method for U (VI), Th (IV), Zr (IV), Ti (IV), Mo (VI) and V (V) were 20.0 ng mL -1 and the relative standard deviations obtained for three replicate determinations at a concentration of 1.0 µg mL -1 were 1.5-3.0%. The proposed method has been applied in the analysis of SY-2, SY-3 and pre-analysed samples for U, Th, Zr, Ti, Mo and V the analytical results are in good agreement with recommended values. (author)

  17. Problems, possibilities and limitations of inductively coupled plasma atomic emission spectrometry in the determination of platinum, palladium and rhodium in samples with different matrix composition

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, P.; Velichkov, S. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. bl. 11, 1113 Sofia (Bulgaria); Velitchkova, N. [Geological Institute, Bulgarian Academy of Sciences, Acad. G. Bontchev Str., bl.24, 1113 Sofia (Bulgaria); Havezov, I. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. bl. 11, 1113 Sofia (Bulgaria); Daskalova, N., E-mail: das15482@svr.igic.bas.b [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. bl. 11, 1113 Sofia (Bulgaria)

    2010-02-15

    The economic and geological importance of platinum group of elements has led to the development of analytical methods to quantify them in different types of samples. In the present paper the quantitative information for spectral interference in radial viewing 40.68 MHz inductively coupled plasma atomic emission spectrometry in the determination of Pt, Pd and Rh in the presence of complex matrix, containing Al, Ca, Fe, Mg, Mn, P and Ti as matrix constituents was obtained. The database was used for optimum line selections. By using the selected analysis lines the following detection limits in ng g{sup -1} were obtained: Pt 1700, Pd-1440, Rh-900. The reached detection limits determine the possibilities and limitation of the direct ICP-AES method in the determination of Pt, Pd and Rh in geological and environmental materials. The database for spectral interferences in the presence of aluminum can be used for the determination of platinum group of elements in car catalysts. The accuracy of the analytical results was experimentally demonstrated by two certified reference materials that were analyzed: SARM 7, Pt ore and recycled auto-catalyst certified reference material SRM 2556.

  18. Determination of Hg(2+) by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry.

    Science.gov (United States)

    Li, Qing; Zhang, Zhen; Wang, Zheng

    2014-10-03

    A simple and sensitive method to determine Hg(2+) was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized l-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg(2+) elution conditions, namely, an FI flow rate of 2.0 mL min(-1) and an eluent comprised of 10% thiourea in 0.2 mol L(-1) HNO3. The detection limit of FI-SCGD-AES was determined to be 0.75 μg L(-1), and the precision of the 11 replicate Hg(2+) measurements was 0.86% at a concentration of 100 μg L(-1). The proposed method was validated by determining Hg(2+) in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310). Copyright © 2014. Published by Elsevier B.V.

  19. Flow Injection Photochemical Vapor Generation Coupled with Miniaturized Solution-Cathode Glow Discharge Atomic Emission Spectrometry for Determination and Speciation Analysis of Mercury.

    Science.gov (United States)

    Mo, Jiamei; Li, Qing; Guo, Xiaohong; Zhang, Guoxia; Wang, Zheng

    2017-10-03

    A novel, compact, and green method was developed for the determination and speciation analysis of mercury, based on flow injection photochemical vapor generation (PVG) coupled with miniaturized solution cathode glow discharge-atomic emission spectroscopy (SCGD-AES). The SCGD was generated between a miniature hollow titanium tube and a solution emerging from a glass capillary. Cold mercury vapor (Hg(0)) was generated by PVG and subsequently delivered to the SCGD for excitation, and finally the emission signals were recorded by a miniaturized spectrograph. The detection limits (DLs) of Hg(II) and methylmercury (MeHg) were both determined to be 0.2 μg L -1 . Moreover, mercury speciation analysis could also be performed by using different wavelengths and powers from the UV lamp and irradiation times. Both Hg(II) and MeHg can be converted to Hg(0) for the determination of total mercury (T-Hg) with 8 W/254 nm UV lamp and 60 s irradiation time; while only Hg(II) can be reduced to Hg(0) and determined selectively with 4 W/365 nm UV lamp and 20 s irradiation time. Then, the concentration of MeHg can be calculated by subtracting the Hg(II) from the T-Hg. Because of its similar sensitivity and DL at 8 W/254 nm, the simpler and less toxic Hg(II) was used successfully as a primary standard for the quantification of T-Hg. The novel PVG-SCGD-AES system provides not only a 365-fold improvement in the DL for Hg(II) but also a nonchromatographic method for the speciation analysis of mercury. After validating its accuracy, this method was successfully used for mercury speciation analysis of water and biological samples.

  20. Determination of trace elements of some Egyptian crops by instrumental neutron activation, inductively coupled plasma-atomic emission spectrometric and flameless atomic absorption spectrophotometric analysis

    International Nuclear Information System (INIS)

    Awadallah, R.M.; Sherif, M.K.; Amrallah, A.H.; Grass, F.

    1986-01-01

    INAA was used for the determination of Al, Br, Ca, Ce, Cl, Co, Cr, Cs, Eu, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc, Se, Ti, Th, V and Zn, ICP-AES for the determination of Al, Ag, Ba, Be, Ca, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, P, Sc, Sr, Ti, V and Zn, and flameless AAS for the determination of Cd, Hg and Pb in egg plant, potatoes, green pepper (Leguminosae), vegetable marrow (Cucurbitaceae), pears, apple (Rosaceae), castor oil plant (Euphorbiaceae), lettuce (compositae), dill, parsley, coriander (Umbelliferae), and in some soil samples collected from Aswan province. (author)

  1. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Lead determinations in human bone by particle induced x-ray emission (PIXE) and graphite furnace atomic absorption spectrometry (GFAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Deibel, M A; Savage, J M; Robertson, J D; Ehmann, W D [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry; Markesbery, W R [Kentucky Univ., Lexington, KY (United States)

    1995-08-01

    Chronic lead (Pb) intoxication has been linked to Alzheimer`s disease (AD). Lead, like many heavy elements, tends to accumulate in bone. Pixe is a powerful analytical tool which permits the determination of Pb at the {mu}g/g level without requiring sample digestion. GFAAS is one of the most sensitive methods for the determination of Pb and is capable of determining ng/g levels is solution. For bone analyses by GFAAS, sample dissolution and a matrix modifier are required. Rib bone samples were analyzed for Pb by PIXE and GFAAS. IAEA Animal Bone (H-5) was used as a secondary standard for Pb with both methods to ensure accuracy. The range of Pb concentrations in human rib bone was 1.4-11.5 {mu}/g for the trabecular surface by PIXE, 1.3-45 {mu}g/g for the cortical surface by PIXE, and 1.54-11.75 {mu}g/g for whole bone by GFAAS. No significant difference p.<0.05 was found for AD versus control for either surface or for whole bone. (author). 17 refs., 2 figs., 3 tabs.

  3. Lead determinations in human bone by particle induced x-ray emission (PIXE) and graphite furnace atomic absorption spectrometry (GFAAS)

    International Nuclear Information System (INIS)

    Deibel, M.A.; Savage, J.M.; Robertson, J.D.; Ehmann, W.D.

    1995-01-01

    Chronic lead (Pb) intoxication has been linked to Alzheimer's disease (AD). Lead, like many heavy elements, tends to accumulate in bone. Pixe is a powerful analytical tool which permits the determination of Pb at the μg/g level without requiring sample digestion. GFAAS is one of the most sensitive methods for the determination of Pb and is capable of determining ng/g levels is solution. For bone analyses by GFAAS, sample dissolution and a matrix modifier are required. Rib bone samples were analyzed for Pb by PIXE and GFAAS. IAEA Animal Bone (H-5) was used as a secondary standard for Pb with both methods to ensure accuracy. The range of Pb concentrations in human rib bone was 1.4-11.5 μ/g for the trabecular surface by PIXE, 1.3-45 μg/g for the cortical surface by PIXE, and 1.54-11.75 μg/g for whole bone by GFAAS. No significant difference (p.<0.05 was found for AD versus control for either surface or for whole bone. (author). 17 refs., 2 figs., 3 tabs

  4. Determination of Hg{sup 2+} by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China); Zhang, Zhen [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Wang, Zheng, E-mail: wangzheng@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China)

    2014-10-03

    Highlights: • A modified SBA-15 mesoporous silica (SH-SBA-15) was synthesized as a sorbent. • On-line SPE combined with SCGD-AES based on FIA was used to detect Hg{sup 2+} firstly. • A simple, low-cost Hg{sup 2+} analysis in a complex matrix was established. • The sensitive detection of Hg{sup 2+} was achieved with a detection limit of 0.75 μg L{sup −1}. - Abstract: A simple and sensitive method to determine Hg{sup 2+} was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized L-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg{sup 2+} elution conditions, namely, an FI flow rate of 2.0 mL min{sup −1} and an eluent comprised of 10% thiourea in 0.2 mol L{sup −1} HNO{sub 3}. The detection limit of FI–SCGD-AES was determined to be 0.75 μg L{sup −1}, and the precision of the 11 replicate Hg{sup 2+} measurements was 0.86% at a concentration of 100 μg L{sup −1}. The proposed method was validated by determining Hg{sup 2+} in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310)

  5. Determination of methylmercury in fish tissue by gas chromatography with microwave-induced plasma atomic emission spectrometry after derivatization with sodium tetraphenylborate

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, H.E.L.; Leonel, L.V. [Comissao Nacional de Energia Nuclear - Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte (Brazil)

    2000-03-01

    The detection of methylmercury species (MeHg) in fish tissue was investigated. Samples were digested with KOH-methanol and acidified prior to extraction with methylene chloride. MeHg was back-extracted from the organic phase into water. An aliquot of this aqueous solution (buffered to pH 5) was subjected to derivatization with sodium tetraphenylborate (NaBPh{sub 4}) and then extracted with toluene. The organic phase containing MePhHg was injected into a gas chromatograph (GC) which is on-line with a microwave-induced plasma atomic emission spectrometer (MIP-AED). The quantification limit was about 0.6 {mu}g/g and 0.1 {mu}g/g of MeHg (as Hg) for 0.08 g of freeze-dried fish powder and 0.5 g of fresh samples, respectively. Two certified reference materials, CRM 464 (tuna fish) from Community Bureau of Reference-BCR and DORM-2 (dogfish muscle) from National Research Council Canada-NRC were selected for checking the accuracy of the method. This methodology was applied to the determination of MeHg in some kinds of fish from the Carmo river with alluvial gold recovery activities (''garimpos'') in Mariana, Minas Gerais, Brazil. (orig.)

  6. Headspace solid-phase microextraction for the determination of volatile organic sulphur and selenium compounds in beers, wines and spirits using gas chromatography and atomic emission detection.

    Science.gov (United States)

    Campillo, Natalia; Peñalver, Rosa; López-García, Ignacio; Hernández-Córdoba, Manuel

    2009-09-25

    A rapid and solvent-free method for the determination of eight volatile organic sulphur and two selenium compounds in different beverage samples using headspace solid-phase microextraction and gas chromatography with atomic emission detection has been developed. The bonded carboxen/polydimethylsiloxane fiber was the most suitable for preconcentrating the analytes from the headspace of the sample solution. Volumes of 20 mL of undiluted beer were used while, in the case of wines and spirits, sample:water ratios of 5:15 and 2:18, respectively, were used, in order to obtain the maximum sensitivity. Quantitation was carried out by using synthetic matrices of beer and wine, and a spiked sample for spirits, and using ethyl methyl sulphide and isopropyl disulphide as internal standards. Detection limits ranged from 8 ng L(-1) to 40 ng mL(-1), depending on the compound and the beverage sample analyzed, with a fiber time exposure of 20 min at ambient temperature. The optimized method was successfully applied to different samples, some of the studied compounds being detected at concentration levels in the 0.04-152 ng mL(-1) range.

  7. Determination of methylmercury in fish tissue by gas chromatography with microwave-induced plasma atomic emission spectrometry after derivatization with sodium tetraphenylborate.

    Science.gov (United States)

    Palmieri, H E; Leonel, L V

    2000-03-01

    The detection of methylmercury species (MeHg) in fish tissue was investigated. Samples were digested with KOH-methanol and acidified prior to extraction with methylene chloride. MeHg was back-extracted from the organic phase into water. An aliquot of this aqueous solution (buffered to pH 5) was subjected to derivatization with sodium tetraphenylborate (NaBPh4) and then extracted with toluene. The organic phase containing MePhHg was injected into a gas chromatograph (GC) which is on-line with a microwave-induced plasma atomic emission spectrometer (MIP-AED). The quantification limit was about 0.6 microg/g and 0.1 microg/g of MeHg (as Hg) for 0.08 g of freeze-dried fish powder and 0.5 g of fresh samples, respectively. Two certified reference materials, CRM 464 (tuna fish) from Community Bureau of Reference-BCR and DORM-2 (dogfish muscle) from National Research Council Canada-NRC were selected for checking the accuracy of the method. This methodology was applied to the determination of MeHg in some kinds of fish from the Carmo river with alluvial gold recovery activities ("garimpos") in Mariana, Minas Gerais, Brazil.

  8. Comparison of digestion procedures used for the determination of boron in biological tissues by ICP-AES [inductively-coupled, plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Bauer, W.F.; Miller, D.L.; Steele, S.M.

    1988-01-01

    A study was designed to identify the most accurate and reliable procedures for the digestion of biological tissues prior to the determination of boron by inductively-coupled, plasma-atomic emission spectroscopy (ICP-AES). The four procedures used in this study were an acid bomb digestion and digestions performed in test tubes using perchloric acid and hydrogen peroxide, nitric acid and hydrogen peroxide, and nitric acid alone. Digestions using nitric acid and hydrogen peroxide and nitric acid alone were performed in a manner analogous to the perchloric acid/hydrogen peroxide procedure. The tissues used in the study were from dogs that had been administered a boron compound (Na 2 B 12 H 11 SH) and included two brain tissues, a liver and a tongue. These tissues were selected in order to eliminate results that may be due to surface spiking only. None of the test tube procedures were successful in completely dissolving the samples, as was evidenced by residual color and a coagulated precipitate. The amount of precipitate was much larger for the brain tissues in all cases. The acid bomb digestion and the perchloric acid/hydrogen peroxide procedures gave comparable boron concentrations for all of the tissues in this study. 2 refs., 1 tab

  9. Simultaneous Pre-Concentration of Cadmium and Lead in Environmental Water Samples with Dispersive Liquid-Liquid Microextraction and Determination by Inductively Coupled Plasma-Atomic Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    M. Salahinejad

    2013-06-01

    Full Text Available The dispersive liquid–liquid microextraction (DLLME method for determination of Pb+2 and Cd+2 ions in the environmental water samples was combined with inductively coupled plasma-atomic emission spectrometry (ICP-AES. Ammonium pyrrolidine dithiocarbamate (APDC, chloroform and ethanol were used as chelating agent, extraction solvent and disperser solvent, respectively. Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters included extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH, sample volume and amount of the chelating agent.   Under the optimum conditions, the enrichment factor of 75 and 105 for Cd+2 and Pb+2 ions respectively was obtained from only 5.00mL of water sample. The detection limit (S/N=3 was 12 and 0.8ngmL−1 for Pb and Cd respectively. The relative standard deviation (RSDs for five replicate measurements of 0.50 mgL−1 of lead and cadmium was 6.5 and 4.4 % respectively. Mineral, tap, river, sea, dam and spiked water samples were analyzed for Cd and Pb amount.

  10. Fully automated dissolution and separation methods for inductively coupled plasma atomic emission spectrometry rock analysis. Application to the determination of rare earth elements

    International Nuclear Information System (INIS)

    Govindaraju, K.; Mevelle, G.

    1987-01-01

    In rock analysis laboratories, sample preparation is a serious problem, or even an enormous bottleneck. Because this laboratory is production-oriented, this problem was attacked by automating progressively, different steps in rock analysis for major, minor and trace elements. This effort has been considerably eased by the fact that all sample preparation schemes in this laboratory for the past three decades have been based on an initial lithium borate fusion of rock samples and all analytical methods based on multi-element atomic emission spectrometry, with switch-over from solid analysis by arc/spark excitation to solution analysis by plasma excitation in 1974. The sample preparation steps which have been automated are: weighing of samples and fluxes, lithium borate fusion, dissolution and dilution of fusion products and ion-exchange separation of difficult trace elements such as rare earth elements (REE). During 1985 and 1986, these different unit operations have been assembled together as peripheral units in the form of a workstation, called LabRobStation. A travelling robot is the master of LabRobStation, with all peripheral units at its reach in 10 m 2 workspace. As an example of real application, the automated determination of REE, based on more than 8000 samples analysed during 1982 and 1986, is presented. (author)

  11. Inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Winge, R.K.; Fassel, V.A.; Peterson, V.J.; Floyd, M.A.

    1985-01-01

    This atlas of inductively coupled plasma-atomic emission spectroscopy records the spectra of the elements in a way that would reveal the general nature of the spectra, in all their simplicity or complexity; and offers a definitive summary of the most prominent spectral lines of the elements, i.e., those most likely to be useful for the determination of trace and ultratrace concentrations; it provides reliable estimates, based on the recorded experimental spectra, of the powers of detection of the listed prominent lines; and assesses the very important problem of spectral interferences. The atlas is composed of three main sections. Part I is concerned with the historical aspects of compilations of spectral information. Part II is based on 232 wavelength scans of 70 elements. Each of the wavelength scans covers an 80 nm spectral region. These scans allow a rapid comparison of the background and spectral line intensities emitted in the ICP and provide a ready means for identification of the most prominent lines of each element and for estimation of the trace element analytical capabilities of these lines. A listing of 973 prominent lines with associated detection limits is also presented. Part III addresses the problem of spectral interferences. On this topic a detailed collection of coincidence profiles is presented for 281 of the most prominent lines, each with profiles of ten of the most prevalent concomitants superimposed. (Auth.)

  12. Theory of atomic spectral emission intensity

    Science.gov (United States)

    Yngström, Sten

    1994-07-01

    The theoretical derivation of a new spectral line intensity formula for atomic radiative emission is presented. The theory is based on first principles of quantum physics, electrodynamics, and statistical physics. Quantum rules lead to revision of the conventional principle of local thermal equilibrium of matter and radiation. Study of electrodynamics suggests absence of spectral emission from fractions of the numbers of atoms and ions in a plasma due to radiative inhibition caused by electromagnetic force fields. Statistical probability methods are extended by the statement: A macroscopic physical system develops in the most probable of all conceivable ways consistent with the constraining conditions for the system. The crucial role of statistical physics in transforming quantum logic into common sense logic is stressed. The theory is strongly supported by experimental evidence.

  13. Theory of atomic spectral emission intensity

    International Nuclear Information System (INIS)

    Yngstroem, S.

    1989-02-01

    The theoretical derivation of a new spectral line intensity formula for atomic radiative emission is presented. The theory is based on first principles of quantum physics and statistical physics. It is argued that the formulation of the theory provides a very good example of the manner in which quantum logic transforms into common sense logic. The theory is strongly supported by experimental evidence. (author) (16 refs.)

  14. Semi-automated technique for the separation and determination of barium and strontium in surface waters by ion exchange chromatography and atomic emission spectrometry

    International Nuclear Information System (INIS)

    Pierce, F.D.; Brown, H.R.

    1977-01-01

    A semi-automated method for the separation and the analysis of barium and strontium in surface waters by atomic emission spectrometry is described. The method employs a semi-automated separation technique using ion exchange and an automated aspiration-analysis procedure. Forty specimens can be prepared in approximately 90 min and can be analyzed for barium and strontium content in 20 min. The detection limits and sensitivities provided by the described technique are 0.003 mg/l and 0.01 mg/l respectively for barium and 0.00045 mg/l and 0.003 mg/l respectively for strontium

  15. Determination of benzothiazole and alkylphosphates in water samples from the Great Lakes Drainage Basin by gas chromatography/atomic emission detection

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B.F. [Environment Canada, Burlington, ON (Canada). Wastewater Technology Centre; Sverko, E.; Maguire, R.J. [Environment Canada, Burlington, ON (Canada). Wastewater Technology Centre

    1996-06-01

    Centrifuged water extracts from large receiving water bodies were analyzed for heteroatom-containing compounds. Extracts from aqueous environmental samples were analyzed by gas chromatography/atomic emission detection for P-, S-, and N- containing compounds. The samples exhibited complex chromatographic traces. Benzothiazole, tri-n-butylphosphate, tris(2-chloroethyl)phosphate, tris({beta}-chloroisopropyl)phosphate and two isomers of this last chemical were detected in all archived water extracts collected from permanent sampling stations at Fort Erie, Niagara-on-the-Lake and Wolfe Island. The concentrations of the trialkylphosphates reported in this study were at least four orders of magnitude lower than concentrations of some other trialkylphosphates and triarylphosphates that cause acute toxicity to rainbow trout, water fleas, midge larvae and shrimp. Further work on trialkylphosphates is under way to assess their environmental distribution, their levels in industrial and municipal effluents and their acute and chronic toxicity to aquatic organisms. 32 refs., 3 tabs., 5 figs.

  16. Determination of Metals Present in Textile Dyes Using Laser-Induced Breakdown Spectroscopy and Cross-Validation Using Inductively Coupled Plasma/Atomic Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Rehan

    2017-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS was used for the quantitative analysis of elements present in textile dyes at ambient pressure via the fundamental mode (1064 nm of a Nd:YAG pulsed laser. Three samples were collected for this purpose. Spectra of textile dyes were acquired using an HR spectrometer (LIBS2000+, Ocean Optics, Inc. having an optical resolution of 0.06 nm in the spectral range of 200 to 720 nm. Toxic metals like Cr, Cu, Fe, Ni, and Zn along with other elements like Al, Mg, Ca, and Na were revealed to exist in the samples. The %-age concentrations of the detected elements were measured by means of standard calibration curve method, intensities of every emission from every species, and calibration-free (CF LIBS approach. Only Sample 3 was found to contain heavy metals like Cr, Cu, and Ni above the prescribed limit. The results using LIBS were found to be in good agreement when compared to outcomes of inductively coupled plasma/atomic emission spectroscopy (ICP/AES.

  17. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission.

    Science.gov (United States)

    Wan, Ren-Gang; Zhang, Tong-Yi

    2011-12-05

    We propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom. We find that the frequency measurement of the emitted light localizes the atom in half-wavelength domain. Especially the probability of finding the atom at a particular position can reach 100% when a photon with certain frequency is detected. By increasing the Rabi frequencies of the driving fields, such 2D sub-half-wavelength atom localization can acquire high spatial resolution.

  18. A new atomization cell for trace metal determinations by tungsten coil atomic spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Donati, G.L., E-mail: georgedonati@yahoo.com.br [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Wildman, R.B.; Jones, B.T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2011-02-28

    A new metallic atomization cell is used for trace metal determinations by tungsten coil atomic absorption spectrometry and tungsten coil atomic emission spectrometry. Different protecting gas mixtures are evaluated to improve atomic emission signals. Ar, N{sub 2}, CO{sub 2} and He are used as solvents, and H{sub 2} and C{sub 2}H{sub 2} as solutes. A H{sub 2}/Ar mixture provided the best results. Parameters such as protecting gas flow rate and atomization current are also optimized. The optimal conditions are used to determine the figures of merit for both methods and the results are compared with values found in the literature. The new cell provides a better control of the radiation reaching the detector and a small, more isothermal environment around the atomizer. A more concentrated atomic cloud and a smaller background signal result in lower limits of detection using both methods. Cu (324.7 nm), Cd (228.8 nm) and Sn (286.3 nm) determined by tungsten coil atomic absorption spectrometry presented limits of detection as low as 0.6, 0.1, and 2.2 {mu}g L{sup -1}, respectively. For Cr (425.4 nm), Eu (459.4 nm) and Sr (460.7 nm) determined by tungsten coil atomic emission spectrometry, limits of detection of 4.5, 2.5, and 0.1 {mu}g L{sup -1} were calculated. The method is used to determine Cu, Cd, Cr and Sr in a water standard reference material. Results for Cu, Cd and Cr presented no significant difference from reported values in a 95% confidence level. For Sr, a 113% recovery was obtained.

  19. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  20. Discharge on boiling in a channel: effect of channel geometry on the performance characteristics of determining metals in a liquid flow by atomic emission spectrometry

    International Nuclear Information System (INIS)

    Zuev, B.K.; Yagov, V.V.; Grachev, A.S.

    2006-01-01

    Discharge on boiling in a channel was studied as a new atomization and excitation source for spectrochemical analysis in a flow of electrolyte solutions. The discharge arises between the liquid walls of a vapor lock formed in the channel of a dielectric membrane because of the rapid Joule heating of the liquid in the channel. The effect of channel geometry on the reproducibility of the integrated light intensity was studied. The background radiation spectrum was measured over the range 220-900 nm, and the possibility of determining alkali and alkaline earth metals in a flow was studied. The parameters of linear calibration equations and the detection limits for these metals are given [ru

  1. Flotation separation of Cd, Co, Cr, Cu, Ni and Tl from calcium minerals and their determination by inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Zajkova-Paneva, Vesna; Stafilov, Trajche; Boev, Blazho

    2003-01-01

    The method of inductively coupled plasma-atomic spectrometry (ICP-AES), is developed for determination of Cd, Co, Cr, Cu, Ni and Tl in traces in calcite and gypsum. The interferences of Ca as matrix element on Co, Cr, Cu, Ni and Tl intensities during their ICP-AES determination are investigated. The results reveal that Ca does not interfere on intensities of Cr, but tends to decrease the intensity of the other elements. To eliminate those matrix interferences of Ca on trace elements intensities a flotation separation method is proposed. Lead(II) hexamethylenedithiocarbamate, Pb(HMDTC) 2 , is applied as a collector for flotation of trace elements from acidic solutions of mineral samples. The most suitable concentrations of calcite and gypsum solutions for flotation are ascertained. The detection limits of ICP-AES method following flotation of elements present in calcite and gypsum as impurities are determined: 0.022 and 0.061 μg·g -1 for Cd, 0.071 and 0.042 μg·g -1 for Co, 0.026 and 0.132 μg·g -1 for Cr, 0.164 and 0.149 μg·g -1 for Cu, 0.289 and 0.095 μg·g -1 for Ni and 0.645 and 0.7666 μg·g -1 for Tl, respectively. (Original)

  2. Simultaneous determination of carbohydrates, carboxylic acids, alcohols, and metals in foods by high-performance liquid chromatography inductively coupled plasma atomic emission spectrometry.

    Science.gov (United States)

    Paredes, Eduardo; Maestre, Salvador E; Prats, Soledad; Todolí, José L

    2006-10-01

    The applicability of the HPLC-ICP-AES coupling for the simultaneous determination of carbohydrates, carboxylic acids, alcohols, and metals in a single chromatographic run has been demonstrated in the present work. Five saccharides, glucose, fructose, sucrose, sorbitol, and lactose; five carboxylic acids, citric, tartaric, malic, lactic, and acetic; and three alcohols, glycerol, ethanol, and methanol, have been determined. A H+ cation exchange column has been used to separate these compounds. The chromatograms have been obtained by monitoring the carbon emission signal at 193.09 nm. The results obtained by HPLC-ICP-AES have been compared against those found with conventional detection systems (i.e., refractive index, UV, and photodyode array detectors). The HPLC-ICP-AES method has shown the following features: (i) organic compounds and metals can be simultaneously determined; (ii) the detection method is universal; (iii) for nonvolatile organic compounds, a complete calibration line can be obtained from a single injection; and (iv) it provides absolute limits of detection similar to or lower than those found with conventional detection systems (i.e., on the order of several tens of nanograms of organic compound). The methodology has been validated through the analysis of food samples such as juices, isotonic beverages, wines, and a certified nonfat milk powder sample.

  3. Directional emission of single photons from small atomic samples

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; V. Poulsen, Uffe; Mølmer, Klaus

    2013-01-01

    We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state i...... is coupled by a classical laser field to an optically excited state which rapidly decays to the ground atomic state. Our model accounts for the different field polarization components via re-absorption and emission of light by the Zeeman manifold of optically excited states.......We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state...

  4. Determination of the mineral compositions of some selected oil-bearing seeds and kernels using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES

    Directory of Open Access Journals (Sweden)

    Musa Özcan, M.

    2006-06-01

    Full Text Available The aim of this paper was to establish the mineral contents of oil-bearing seeds and kernels such as peanut, turpentine, walnut, hazelnut, sesame, corn, poppy, almond, sunflower etc., using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES. Significant differences in mineral composition were observed among crops. All seeds and kernels contained high amounts of Al, Ca, Fe, K, Mg, Na, P and Zn. B, Cr, Cu, Li, Ni, Sr, Ti while V contents of the crops were found to be very low. The levels of K and P of all crops in this study were found to be higher than those of other seeds and kernels. The results obtained from analyses of the crops showed that the mean levels of potassiumcontent ranged from 1701.08 mg/kg (corn to 20895.8 mg/kg (soybean, the average content of phosphorus ranged from 3076.9 mg/kg (turpentine to 12006,5 mg/kg to 2617.4 mg/kg (cotton seed, and Ca from 68.4 mg/kg (corn to 13195.7 mg/kg (poppy seed. The results show that these values may  be useful for the evaluation of dietary information. Particularly the obtained results provide evidence that soybean, pinestone and poppy seed are a good source of K, P and Ca, respectively. Whereas pinestone is a good source of zinc.La finalidad del trabajo es establecer el contenido en elementos minerales de semillas oleaginosas tales como cacahuetes, trementina, avellana, sesamo, maiz, almendras, girasol, utilizando ICP-AES. Se han observado diferencias significativas en la composición de minerales entre cosechas. Todas las semillas contienen cantidades elevadas de Al, Ca, Fe, K, Mg, Na, P y Zn. Los contenidos de B, Cr, Cu, Li, Ni, Sr, Ti y V, sin embargo, fueron bajos. Los contenidos de K y P en todas las semillas estudiadas fueron superiores a las de otras semillas. El contenido medio de K osciló entre 1.701,1 mg/kg (maiz a 20.895,8 mg/kg (soja, el P entre 3.076.9 mg/kg (trementina a 12.006.5 mg/kg o 2.617,4 mg/kg (semilla de algodón, y Ca de 68,4 mg/kg (maiz a 13.195,7 mg

  5. Photoionization of Endohedral Atoms: Collective, Reflective and Collateral Emissions

    International Nuclear Information System (INIS)

    Chakraborty, Himadri S.; McCune, Matthew A.; Hopper, Dale E.; Madjet, Mohamed E.; Manson, Steven T.

    2009-01-01

    The photoionization properties of a fullerene-confined atom differ dramatically from that of an isolated atom. In the low energy region, where the fullerene plasmons are active, the electrons of the confined atom emerge through a collective channel carrying a significant chunk of plasmon with it. The photoelectron angular distribution of the confined atom however shows far lesser impact of the effect. At higher energies, the interference between two single-electron ionization channels, one directly from the atom and another reflected off the fullerene cage, producuces oscillatory cross sections. But for the outermost atomic level, which transfers some electrons to the cage, oscillations are further modulated by the collateral emission from the part of the atomic charge density transferred to the cage. These various modes of emissions are studied for the photoionization of Ar endohedrally confined in C 60 .

  6. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P

    2015-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

  7. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    Science.gov (United States)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  8. Comparison of 4 analytical techniques based on atomic spectrometry for the determination of total tin in canned foodstuffs

    OpenAIRE

    2011-01-01

    Abstract Different techniques for the determination of total tin in beverage and canned food by atomic spectrometry were compared. The performance characteristics of Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Hydride Generation Inductively Coupled Plasma Atomic Emission Spectrometry (HG-ICP-AES), Electrothermal Atomization Atomic Absorption Spectrometry (ETA-AAS) and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) were determined in term of linearity, ...

  9. Determination of hafnium at the 10−4% level (relative to zirconium content) using neutron activation analysis, inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Smolik, Marek; Polkowska-Motrenko, Halina; Hubicki, Zbigniew; Jakóbik-Kolon, Agata; Danko, Bożena

    2014-01-01

    Graphical abstract: -- Highlights: •We worked out ICP-MS method of Hf determination in Zr and Zr compounds. •We used NAA method as reference one. •We obtained pure zirconium matrix by ion exchange (Diphonix ® resin). •These permit to determine ≥1 × 10 −4 % Hf in Zr sample by ICP MS with good precision and accuracy. -- Abstract: Hafnium at the very low level of 1–8 ppm (in relation to zirconium) was determined in zirconium sulfate solutions (originating from investigations of the separation of ca. 44 ppm Hf from zirconium by means of the ion exchange method) by using three independent methods: inductively coupled plasma mass spectrometry (ICP MS), neutron activation analysis (NAA) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results of NAA and ICP MS determinations were consistent with each other across the entire investigated range (the RSD of both methods did not exceed 38%). The results of ICP-AES determination were more diverse, particularly at less than 5 ppm Hf (RSD was significantly higher: 29–253%). The ion exchange method exploiting Diphonix ® resin proved sufficient efficiency in Zr–Hf separation when the initial concentration ratio of the elements ([Zr] 0 /[Hf] 0 ) ranged from 1200 to ca. 143,000

  10. Spectrochemical analysis by atomic absorption and emission

    National Research Council Canada - National Science Library

    Lajunen, Lauri

    1992-01-01

    ... of these techniques. Inductively coupled plasma mass spectrometry (ICP-MS) has become a 'hot' analytical technique during the last few years, and is being used in many branches of science. Since the publication of my previous book 'Atomispektrometria' (in Finnish) in 1986, various techniques in analytical atomic spectroscopy have undergone significant dev...

  11. Atom localization via controlled spontaneous emission in a five-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhiping; Yu Benli; Zhu Jun; Cao Zhigang; Zhen Shenglai; Wu Xuqiang; Xu Feng

    2012-01-01

    We investigate the one- and two-dimensional atom localization behaviors via spontaneous emission in a coherently driven five-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of atom localization behaviors can be significantly improved via adjusting the system parameters. More importantly, the two-dimensional atom localization patterns reveal that the maximal probability of finding an atom within the sub-wavelength domain of the standing waves can reach unity when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization. - Highlights: ► One- and two-dimensional atom localization behaviors via spontaneous emission in five-level atoms are investigated. ► An assisting radio-frequency field is used to control the atom localization behaviors. ► High-precision and high-resolution two-dimensional atom localization can be realized in this scheme.

  12. Emission Channeling Studies of the Lattice Site of Oversized Alkali Atoms Implanted in Metals

    CERN Multimedia

    2002-01-01

    % IS340 \\\\ \\\\ As alkali atoms have the largest atomic radius of all elements, the determination of their lattice configuration following implantation into metals forms a critical test for the various models predicting the lattice site of implanted impurity atoms. The site determination of these large atoms will especially be a crucial check for the most recent model that relates the substitutional fraction of oversized elements to their solution enthalpy. Recent exploratory $^{213}$Fr and $^{221}$Fr $\\alpha$-emission channeling experiments at ISOLDE-CERN and hyperfine interaction measurements on Fr implanted in Fe gave an indication for anomalously large substitutional fractions. To investigate further the behaviour of Fr and other alkali atoms like Cs and Rb thoroughly, more on-line emission channeling experiments are needed. We propose a number of shifts for each element, where the temperature of the implanted metals will be varied between 50$^\\circ$ and 700$^\\circ$~K. Temperature dependent measurements wi...

  13. Comparison of inductively coupled plasma mass spectrometry with inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis for the determination of rare earth elements in Greek bauxites

    International Nuclear Information System (INIS)

    Ochsenkuehn-Petropoulou, Maria; Luck, Joachim

    1991-01-01

    Fore the determination of rare earth elements (REE) in bauxitic materials the techniques of inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and instrumental neutron activation analysis (INAA) were compared. In the NIST (National Institute of Standards and Technology) bauxites SRM 697 Dominican, and SRM 69 b Arkansas, the concentration of some REEs were determined. With the reference bauxite BX-N of the ARNT (Association Nationale de la Recherche Technique) the precision and accuracy of ICP-AES for the determination of REEs in bauxites was tested. Furthermore, Greek bauxites of the Parnassos-Giona area were investigated. In a comparison of the three methods it was possible to calculate from the data series the precision of each method, which showed that the tendency found in the deviations for the different REEs is in accordance with published values. Also the limits of detection for REEs in bauxites were calculated and found to be in the same range as those in the literature. (author)

  14. Determination of trace amounts of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment by inductively coupled plasma atomic emission spectrometry after iron matrix removal with extractant-contained resin

    International Nuclear Information System (INIS)

    Xu Yuyu; Zhou Jianfeng; Wang Guoxin; Zhou Jinfan; Tao Guanhong

    2007-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) was applied to the determination of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment. Samples were dissolved with hydrochloric acid and hydrogen peroxide. The digest was passed through a column, which was packed with a polymer resin containing a neutral organophosphorus extractant, tri-n-butylphosphate. Iron was sorbed selectively on the resin and the analytes of interest passed through the column, allowing the effective separation of them from the iron matrix. Conditions of separation were optimized. The detection limits (3σ) in solution were 10, 40, 7 and 5 μg L -1 , and in pigment were 0.2, 0.8, 0.14 and 0.1 mg kg -1 for lead, arsenic, cobalt and nickel, respectively. The recoveries ranged from 95% to 107% when sample digests were spiked with 5 μg of the analytes of interest, and relative standard deviations (n = 6) were 1.5-17.6% for the determination of the spiked samples. The method was successfully applied to the determination of trace amounts of these elements in high-purity iron oxide pigment samples

  15. Applicability of solid-phase microextraction combined with gas chromatography atomic emission detection (GC-MIP AED) for the determination of butyltin compounds in sediment samples

    Energy Technology Data Exchange (ETDEWEB)

    Carpinteiro, J.; Rodriguez, I.; Cela, R. [Universidad de Santiago de Compostela, Departamento de Quimica Analitica, Nutricion y Bromatologia, Instituto de Investigacion y Analisis Alimentario, Santiago de Compostela 15782 (Spain)

    2004-11-01

    The performance of solid-phase microextraction (SPME) applied to the determination of butyltin compounds in sediment samples is systematically evaluated. Matrix effects and influence of blank signals on the detection limits of the method are studied in detail. The interval of linear response is also evaluated in order to assess the applicability of the method to sediments polluted with butyltin compounds over a large range of concentrations. Advantages and drawbacks of including an SPME step, instead of the classic liquid-liquid extraction of the derivatized analytes, in the determination of butyltin compounds in sediment samples are considered in terms of achieved detection limits and experimental effort. Analytes were extracted from the samples by sonication using glacial acetic acid. An aliquot of the centrifuged extract was placed on a vial where compounds were ethylated and concentrated on a PDMS fiber using the headspace mode. Determinations were carried out using GC-MIP AED. (orig.)

  16. [Determination of ru, rh and Pd in 30% trialkyl phosphine oxide (TRPO)-kerosene by inductively coupled plasma-atomic emission spectrum (ICP-AES)].

    Science.gov (United States)

    Wang, Jian-Chen; Zhang, Lin

    2013-07-01

    The determination method of Ru, Rh and Pd in 30% TRPO-kerosene ICP-AES was studied by using aqueous calibration reference solution and choosing ethanol as diluent. The effects of the contents of 30% TRPO-kerosene and aqueous solution and the concentration of HNO3 in 30% TRPO-kerosene on the intensities of Ru, Rh and Pd were described. The optimized condition for preparing samples and calibration solutions was chosen as follows: The contents of 30% TRPO-kerosene and aqueous phase were 10% (V/V) and 5% (V/V) respectively and the concentration of HNO3 30% TRPO-kerosene was 0.20 mol x L(-1). The determination method of Au, Ru and Pd was set up according to the above condition. The detection limit, precision and recovery ratio of Ru, Rh and Pd are well. The method is not only used in determination of Au, Ru and Pd in 30% TRPO-kerosene, but also used in other organic phases.

  17. Uranium determination using atomic spectrometric techniques: An overview

    International Nuclear Information System (INIS)

    Santos, Juracir S.; Teixeira, Leonardo S.G.; Santos, Walter N.L. dos; Lemos, Valfredo A.; Godoy, Jose M.; Ferreira, Sergio L.C.

    2010-01-01

    This review focuses on the determination of uranium using spectroanalytical techniques that are aimed at total determination such as flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma optical emission spectrometry (ICP-OES); and inductively coupled plasma mass spectrometry (ICP-MS) that also enables the determination of uranium isotopes. The advantages and shortcomings related to interferences, precision, accuracy, sample type and equipment employed in the analysis are taken into account, as well as the complexity and costs (i.e., acquisition, operation and maintenance) associated with each of the techniques. Strategies to improve their performance that employ separation and/or preconcentration steps are considered, with an emphasis given to solid-phase extraction because of its advantages compared to other preconcentration procedures.

  18. Accurate determination of trace amounts of phosphorus in geological samples by inductively coupled plasma atomic emission spectrometry with ion-exchange separation

    International Nuclear Information System (INIS)

    Asoh, Kazuya; Ebihara, Mitsuru

    2013-01-01

    Graphical abstract: -- Highlights: •We set up an effective ICP-AES procedure for determining trace P in rock samples. •Some certified values of P for reference rock samples were proved to be doubtful. •Accurate and reliable data were presented for a suite of geological reference rocks. -- Abstract: In order to determine trace amounts of phosphorus in geological and cosmochemical rock samples, simple as well as reliable analytical schemes using an ICP-AES instrument were investigated. A (conventional) ICP-AES procedure could determine phosphorus contents at the level of several 100 μg g −1 with a reasonable reproducibility ( −1 ; 1σ). An ICP-AES procedure coupled with matrix-separation using cation and anion exchange resins could lower the quantification level down to 1 μg g −1 or even lower under the present experimental conditions. The matrix-separation ICP-AES procedure developed in this study was applied to twenty-one geological reference samples issued by Geological Survey of Japan. Obtained values vary from 1250 μg g −1 for JB-3 (basalt) to 2.07 μg g −1 for JCt-1 (carbonate). Matrix-separation ICP-AES yielded reasonable reproducibility (less than 8.3%; 1σ) of three replicate analyses for all the samples analyzed. In comparison of our data with certificate values as well as literature or reported values, there appear to be an apparent (and large) discrepancy between our values and certificate/reported values regardless of phosphorus contents. Based on the reproducibility of our data and the analytical capability of the matrix-separation ICP-AES procedure developed in this study (in terms of quantification limit, recovery, selectivity of an analyte through pre-concentration process, etc.), it is concluded that certified values for several reference standard rocks should be reevaluated and revised accordingly. It may be further pointed that some phosphorus data reported in literatures should be critically evaluated when they are to be

  19. Improvement of AOAC Official Method 984.27 for the determination of nine nutritional elements in food products by Inductively coupled plasma-atomic emission spectroscopy after microwave digestion: single-laboratory validation and ring trial.

    Science.gov (United States)

    Poitevin, Eric; Nicolas, Marine; Graveleau, Laetitia; Richoz, Janique; Andrey, Daniel; Monard, Florence

    2009-01-01

    A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-atomic emission spectroscopy in order to improve and update AOAC Official Method 984.27. The improvements involved optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed or open vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proved through a successful internal RT using experienced food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD and HorRat values) regarding SLV and RT. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an improved version of AOAC Official Method 984.27 for fortified food products, including infant formula.

  20. [Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES)].

    Science.gov (United States)

    Hao, Zhi-hong; Yao, Jian-zhen; Tang, Rui-ling; Zhang, Xue-mei; Li, Wen-ge; Zhang, Qin

    2015-02-01

    The method for the determmation of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current are full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES) was established. Direct current are full spectrum direct reading atomic emission spectrometer with a large area of solid-state detectors has functions of full spectrum direct reading and real-time background correction. The new electrodes and new buffer recipe were proposed in this paper, and have applied for national patent. Suitable analytical line pairs, back ground correcting points of elements and the internal standard method were selected, and Ge was used as internal standard. Multistage currents were selected in the research on current program, and each current set different holding time to ensure that each element has a good signal to noise ratio. Continuous rising current mode selected can effectively eliminate the splash of the sample. Argon as shielding gas can eliminate CN band generating and reduce spectral background, also plays a role in stabilizing the are, and argon flow 3.5 L x min(-1) was selected. Evaporation curve of each element was made, and it was concluded that the evaporation behavior of each element is consistent, and combined with the effects of different spectrographic times on the intensity and background, the spectrographic time of 35s was selected. In this paper, national standards substances were selected as a standard series, and the standard series includes different nature and different content of standard substances which meet the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples. In the optimum experimental conditions, the detection limits for B, Mo, Ag, Sn and Pb are 1.1, 0.09, 0.01, 0.41, and 0.56 microg x g(-1) respectively, and the precisions (RSD, n=12) for B, Mo, Ag, Sn and Pb are 4.57%-7.63%, 5.14%-7.75%, 5.48%-12.30%, 3.97%-10.46%, and 4.26%-9.21% respectively. The analytical accuracy was

  1. Ultrafast atomic process in X-ray emission by using inner-shell ionization method for sodium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-07-01

    An ultrafast inner-shell ionization process with X-ray emission stimulated by high-intensity short-pulse X-ray is studied. Carbon and sodium atoms are treated as target matter. It is shown that atomic processes of the target determine the necessary X-ray intensity for X-ray laser emission as well as the features of X-ray laser such as wavelength and duration time. The intensity also depends on the density of initial atoms. Furthermore, we show that as the intensity of X-ray source becomes high, the multi-inner-shell ionization predominates, leading to the formation of hollow atoms. As the density of hollow atoms is increased by the pumping X-ray power, the emission of X-rays is not only of significance for high brightness X-ray measurement but also is good for X-ray lasing. New classes of experiments of pump X-ray probe and X-ray laser are suggested. (author)

  2. High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system.

    Science.gov (United States)

    Ding, Chunling; Li, Jiahua; Yu, Rong; Hao, Xiangying; Wu, Ying

    2012-03-26

    A scheme for realizing two-dimensional (2D) atom localization is proposed based on controllable spontaneous emission in a coherently driven cycle-configuration atomic system. As the spatial-position-dependent atom-field interaction, the frequency of the spontaneously emitted photon carries the information about the position of the atom. Therefore, by detecting the emitted photon one could obtain the position information available, and then we demonstrate high-precision and high-resolution 2D atom localization induced by the quantum interference between the multiple spontaneous decay channels. Moreover, we can achieve 100% probability of finding the atom at an expected position by choosing appropriate system parameters under certain conditions.

  3. Optical emissions from oxygen atom reactions with adsorbates

    Science.gov (United States)

    Oakes, David B.; Fraser, Mark E.; Gauthier-Beals, Mitzi; Holtzclaw, Karl W.; Malonson, Mark; Gelb, Alan H.

    1992-12-01

    Although most optical materials are inert to the ambient low earth orbit environment, high velocity oxygen atoms will react with adsorbates to produce optical emissions from the ultraviolet into the infrared. The adsorbates arise from chemical releases or outgassing from the spacecraft itself. We have been investigating kinetic and spectral aspects of these phenomenon by direct observation of the 0.2 to 13 micrometers chemiluminescence from the interaction of a fast atomic oxygen beam with a continuously dosed surface. The dosing gases include fuels, combustion products and outgassed species such as unsymmetrical dimethylhydrazine (UDMH), NO, H2O and CO. The surface studied include gold and magnesium fluoride. In order to relate the results to actual spacecraft conditions these phenomena have been explored as a function of O atom velocity, dosant flux and substrate temperature. UDMH dosed surfaces exhibit spectra typical (wavelength and intensity) of carbonaceous surfaces. The primary emitters are CO, CO2, and OH. H2O dosed surfaces are dominated by OH and /or H2O emission while CO dosed surfaces are dominated by CO and CO2 emissions. The nitric oxide dosed surface produces a glow from 0.4 to 5.4 micrometers due to NO2* continuum emission. The emission was observed to increase by a factor of two upon cooling the surface from 20 degree(s)C to -35 degree(s)C.

  4. A novel task specific magnetic polymeric ionic liquid for selective preconcentration of potassium in oil samples using centrifuge-less dispersive liquid-liquid microextraction technique and its determination by flame atomic emission spectroscopy.

    Science.gov (United States)

    Beiraghi, Asadollah; Shokri, Masood

    2018-02-01

    In the present study a new centrifuge-less dispersive liquid-liquid microextraction technique based on application of a new task specific magnetic polymeric ionic liquid (TSMPIL) as a chelating and extraction solvent for selective preconcentration of trace amounts of potassium from oil samples is developed, for the first time. After extraction, the fine droplets of TSMPIL were transferred into an eppendorf tube and diluted to 500µL using distilled water. Then, the enriched analyte was determined by flame atomic emission spectroscopy (FAES). Several important factors affecting both the complexation and extraction efficiency including extraction time, rate of vortex agitator, amount of carbonyl iron powder, pH of sample solution, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) and quantification (LOQ) were 0.5 and 1.6µgL -1 respectively with the preconcentration factor of 128. The precision (RSD %) for seven replicate determinations at 10µgL -1 of potassium was better than 3.9%. The relative recoveries for the spiked samples were in the acceptable range of 95-104%. The results demonstrated that no remarkable interferences are created by other various ions in the determination of potassium, so that the tolerance limits (W Ion /W K ) of major cations and anions were in the range of 2500-10,000. The purposed method was successfully applied for the analysis of potassium in some oil samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Matrix digestion of soil and sediment samples for extraction of lead, cadmium and antimony and their direct determination by inductively coupled plasma-mass spectrometry and atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chattopadhyay, P.; Fisher, A.S.; Henon, D.N.; Hill, S.J.

    2004-01-01

    An environmentally friendly and simple method has been developed for complete digestion of lead, cadmium and antimony from soil samples using a magnesium nitrate assisted dry ashing procedure. Statistical data for a series of experiments with standard reference materials are presented, and precision values are found to be comparable for inductively coupled plasma-mass spectrometry and for inductively coupled plasma-atomic emission spectrometry. From a single digest solution all analytes are quantified without involving any preconcentration routes. Inter-method comparison of inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) shows that the probability of the results being different is less than 99 %. (author)

  6. Measurement of Apparent Temperature in Post-Detonation Fireballs Using Atomic Emission Spectroscopy

    Science.gov (United States)

    2011-02-01

    thermometric species into burners.3,12 Interestingly, Wilkin- son et al.6 have recently observed Al atomic emission lines in the spectrum of aluminum...candidate thermometric species must produce several strong emission lines in the spectrum that originate from different upper energy levels in order to...allow the populations of the associated states to be determined. Barium nitrate was chosen as a thermometric impurity for the current work since Ba

  7. Determination of hafnium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yoshida, Isao; Kobayashi, Hiroshi; Ueno, Keihei.

    1977-01-01

    Optimum conditions for atomic absorption spectrophotometric determination of hafnium were investigated by use of a Jarrel-Ash AA-1 instrument which was equipped with a premixed gas burner slotted 50 mm in length and 0.4 mm in width. Absorption of hafnium, which was atomized in an nitrous oxide-acetylene flame, was measured on a resonance line at 307.29 nm. The absorption due to hafnium was enhanced in the presence of ammonium fluoride and iron(III) ion, as shown in Figs. 2 and 3, depending on their concentration. The highest absorption was attained by the addition of (0.15 -- 0.3)M ammonium fluoride, 0.07 M of iron(III) ion and 0.05 M of hydrochloric acid. An excess of the additives decreased the absorption. The presence of zirconium, which caused a significant interference in the ordinary analytical methods, did not affect the absorption due to hafnium, if the zirconium concentration is less than 0.2 M. A standard procedure was proposed; A sample containing a few mg of hafnium was dissolved in a 25-ml volumetric flask, and ammonium fluoride, ferric nitrate and hydrochloric acid were added so that the final concentrations were 0.3, 0.07 and 0.05 M, respectively. Atomic absorption was measured on the aqueous solution in a nitrous oxide-acetylene flame and the hafnium content was calculated from the absorbance. Sensitivity was as high as 12.5 μg of Hf/ml/l% absorption. The present method is especially recommendable to the direct determination of hafnium in samples containing zirconium. (auth.)

  8. Quantitative determination of impurities in nuclear grade aluminum by Flame-Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Jat, J.R.; Nayak, A.K.; Balaji Rao, Y.; Ravindra, H.R.

    2013-01-01

    The paper deals with quantitative determination of impurity elements in nuclear grade aluminum, used as fin tubes in research reactors, by Flame-Atomic Absorption Spectrometry (F-AAS). The results have been compared with those obtained by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) method. Experimental conditions used in both the methods are given in the paper. (author)

  9. Cooling atoms with extraresonant stimulated emission below the Doppler limit

    International Nuclear Information System (INIS)

    Shevy, Y.

    1989-01-01

    The process of cooling atoms with radiation pressure is well understood in terms of absorption and spontaneous emission of fluorescence photons. This process imposes a lower limit on the minimum equilibrium temperature of laser cooled two level atoms of K b T = ℎΓ 21 /2 (the Doppler limit), where Γ 21 is the excited state decay rate to the ground state. At high laser intensity, it has been demonstrated that the stimulated emission process changes the sign of the force to a heating force at the red side of the atomic resonance and to a cooling force at blue detunings. Although this stimulated force is more efficient than the radiation pressure force, it has been generally accepted that this force cannot lead to lower equilibrium temperatures due to the large heating caused by diffusion of momentum at high intensity. These conclusions are valid only when the sole damping mechanism is the excited state decay to the ground state by spontaneous emission. However, when the atomic system is opened, i.e., is allowed to decay to other levels, or the dipole decay rate is altered by dephasing events, the stimulated force is dramatically modified. Under this conditions the stimulated force can occur at lower laser intensity and can even reverse sign to provide damping at the red side of resonance. These phenomena originate from extraresonances in the stimulated emission process between the two counterpropagating waves. These resonances appear as a dispersive feature in pump probe spectra (Two Wave Mixing) and are closely related to the extraresonances in four wave mixing studied originally by Bloembergen and co-workers. This paper establishes this connection and the potential of these phenomena for laser cooling. The implications of these results to the recently observed ultra-cold Na and Cs atoms are also discussed

  10. Emission Spectrum Property of Modulated Atom-Field Coupling System

    International Nuclear Information System (INIS)

    Gao Yun-Feng; Feng Jian; Li Yue-Ke

    2013-01-01

    The emission spectrum of a two-level atom interacting with a single mode radiation field in the case of periodic oscillation coupling coefficient is investigated. A general expression for the emission spectrum is derived. The numerical results for the initial field in pure number stare are calculated. It is found that the effect of the coupling coefficient modulation on the spectral structure is very obvious in the case of a low modulation frequency and larger amplitude when the initial field is vacuum, which is potentially useful for exploring a modulated light source. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Delta-electron emission in fast heavy ion atom collisions

    International Nuclear Information System (INIS)

    Schmidt-Boecking, H.; Ramm, U.; Berg, H.; Kelbch, C.; Feng Jiazhen; Hagmann, S.; Kraft, G.; Ullrich, J.

    1991-01-01

    The δ-electron emission processes occuring in fast heavy ion atom collisons are explained qualitatively. The different spectral structures of electron emission arising from either the target or the projectile are explained in terms of simple models of the kinetics of momentum transfer induced by the COULOMB forces. In collisions of very heavy ions with matter, high nuclear COULOMB forces are created. These forces lead to a strong polarization of the electronic states of the participated electrons. The effects of this polarization are discussed. (orig.)

  12. Emission spectrum of a harmonically trapped Λ-type three-level atom

    International Nuclear Information System (INIS)

    Guo Hong; Tang Pei

    2013-01-01

    We theoretically investigate the emission spectrum for a Λ-type three-level atom trapped in the node of a standing wave. We show that the atomic center-of-mass motion not only directly affects the peak number, peak position, and peak height in the atomic emission spectrum, but also influences the effects of the cavity field and the atomic initial state on atomic emission spectrum. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Effect of atomic initial phase difference on spontaneous emission of an atom embedded in photonic crystal

    International Nuclear Information System (INIS)

    Bing, Zhang; Xiu-Dong, Sun; Xiang-Qian, Jiang

    2010-01-01

    We investigate the effect of initial phase difference between the two excited states of a V-type three-level atom on its steady state behaviour of spontaneous emission. A modified density of modes is introduced to calculate the spontaneous emission spectra in photonic crystal. Spectra in free space are also shown to compare with that in photonic crystal with different relative positions of the excited levels from upper band-edge frequency. It is found that the initial phase difference plays an important role in the quantum interference property between the two decay channels. For a zero initial phase, destructive property is presented in the spectra. With the increase of initial phase difference, quantum interference between the two decay channels from upper levels to ground level turns to be constructive. Furthermore, we give an interpretation for the property of these spectra. (atomic and molecular physics)

  14. Spontaneous emission of an atom in the presence of nanobodies

    International Nuclear Information System (INIS)

    Klimov, Vasilii V; Ducloy, M; Letokhov, V S

    2001-01-01

    The effect of nanobodies, i.e., the bodies whose size is small compared to the emission wavelength, on spontaneous emission of an atom located near them is considered. The results of calculations performed within the framework of quantum and classical electrodynamics are presented both in analytic and graphical forms and can be readily used for planning experiments and analysis of experimental data. It is shown that nanobodies can be used to control efficiently the rate of spontaneous transitions. Thus, an excited atom located near a nanocylinder or a nanospheroid pole, whose transition dipole moment is directed normally to the nanobody surface, can decay with the rate that is tens and hundreds times higher than the decay rate in a free space. In the case of some (negative) dielectric constants, the decay rate can increase by a factor of 10 5 -10 6 and more. On the other hand, the decay of an excited atom whose transition dipole moment is directed tangentially to the nanobody surface substantially slows down. The probability of nonradiative decay of the excited state is shown to increase substantially in the presence of na-nobodies possessing losses. (review)

  15. Determination of Atomic Data Pertinent to the Fusion Energy Program

    International Nuclear Information System (INIS)

    Reader, J.

    2013-01-01

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra

  16. Simultaneous detection of selenium by atomic fluorescence and sulfur by molecular emission by flow-injection hydride generation with on-line reduction for the determination of selenate, sulfate and sulfite

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, J.F., E-mail: tyson@chem.umass.edu [Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Palmer, C.D. [Lead Poisoning Trace Elements Laboratory, Wadsworth Center, New York State Department of Health, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509 (United States)

    2009-10-12

    An inductively coupled plasma atomic fluorescence spectrometry (ICP-AFS) instrument, was modified so that it was capable of monitoring transient chromatographic or flow-injection profiles and that sulfur molecular emission and selenium atomic fluorescence could be monitored simultaneously in an argon-hydrogen diffusion flame on a glass burner. The analytes were introduced as hydrogen selenide and hydrogen sulfide, generated on a flow-injection manifold. Selenate was reduced to hydride-forming selenite by microwave-assisted on-line reaction with hydrochloric acid, and sulfate, or sulfite, was reduced to hydride-forming sulfide by a mixture of hydriodic acid, acetic acid and sodium hypophosphite. The effects of the nature of reducing agent, flow rate, microwave power and coil length were studied. The limit of detection (3 s) for selenium was 10 {mu}g L{sup -1}, and for sulfide was 70 {mu}g L{sup -1} (200-{mu}L injection volume). The calibration was linear for selenium up to 2 mg L{sup -1} and to 10 mg L{sup -1} for sulfide. The throughput was 180 h{sup -1}. The three sulfur species could be differentiated on the basis of reactivity at various microwave powers.

  17. The influence of atomic alignment on absorption and emission spectroscopy

    Science.gov (United States)

    Zhang, Heshou; Yan, Huirong; Richter, Philipp

    2018-06-01

    Spectroscopic observations play essential roles in astrophysics. They are crucial for determining physical parameters in the universe, providing information about the chemistry of various astronomical environments. The proper execution of the spectroscopic analysis requires accounting for all the physical effects that are compatible to the signal-to-noise ratio. We find in this paper the influence on spectroscopy from the atomic/ground state alignment owing to anisotropic radiation and modulated by interstellar magnetic field, has significant impact on the study of interstellar gas. In different observational scenarios, we comprehensively demonstrate how atomic alignment influences the spectral analysis and provide the expressions for correcting the effect. The variations are even more pronounced for multiplets and line ratios. We show the variation of the deduced physical parameters caused by the atomic alignment effect, including alpha-to-iron ratio ([X/Fe]) and ionisation fraction. Synthetic observations are performed to illustrate the visibility of such effect with current facilities. A study of PDRs in ρ Ophiuchi cloud is presented to demonstrate how to account for atomic alignment in practice. Our work has shown that due to its potential impact, atomic alignment has to be included in an accurate spectroscopic analysis of the interstellar gas with current observational capability.

  18. Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere

    International Nuclear Information System (INIS)

    Swaczyna, Paweł; Bzowski, Maciej

    2017-01-01

    Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2–130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smaller for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50–10 6 times smaller than the hydrogen ENA intensities observed by IBEX . The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.

  19. Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Swaczyna, Paweł; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw (Poland)

    2017-09-10

    Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2–130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smaller for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50–10{sup 6} times smaller than the hydrogen ENA intensities observed by IBEX . The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.

  20. Density determination in the TEXTOR boundary layer by laser-ablated fast lithium atoms

    International Nuclear Information System (INIS)

    Pospieszczyk, A.; Ross, G.G.

    1988-01-01

    A method is presented which allows a determination of electron density profiles in the plasma boundary of a fusion device up to some 10 13 cm -3 within about 100 μs. For this purpose, the complete attenuation of an injected lithium beam is determined by measuring its optical emission profile. The beam is generated by a ruby laser, which ablates small portions of a LiF coating with a thickness of about 1000 A from the rear side of a glass substrate. The produced lithium atoms have velocities of 1 x 10 6 cm/s and can penetrate into the plasma until n/sub e/ x l ≅1 x 10 13 cm -2 . For the measurement of the optical emission profile of the excited lithium atoms, a silicon photodiode array camera is used. The emission profile is then converted into an electron density profile with the help of the ionization rate for lithium atoms by electron impact

  1. William Barlow and the Determination of Atomic Arrangement in Crystals.

    Science.gov (United States)

    Mauskopf, Seymour H

    2015-04-01

    William Barlow (1845-1934) was an important if unconventional scientist, known for having developed the 'closest-packing' atomic models of crystal structure. He resumed an early nineteenth-century tradition of utilizing crystallographical and chemical data to determine atomic arrangements in crystals. This essay recounts Barlow's career and scientific activity in three parts: (a) His place in the tradition of determining atomic arrangement in context of this earlier tradition and of contemporaneous developments of crystallography and chemistry, (b) his unconventional career, and (c) the 'success' of his program to determine atomic arrangements in crystals and its influence on the work of William Lawrence Bragg.

  2. Determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Usenko, S.I.; Prorok, M.M.

    1992-01-01

    A method of direct determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization was developed. Concomitant elements Si, K, Mg, Na, present in natural waters in the concentration of 0.05-100 mg/cv 3 , do not produce effect on the value of boron atomic absorption. Boron determination limit constituted 0.02 mg/cm 3 for 25 ml of solution introduced

  3. Determination of atomic cluster structure with cluster fusion algorithm

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2005-01-01

    We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters.......We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters....

  4. Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber.

    Science.gov (United States)

    Das, Manoj; Shirasaki, A; Nayak, K P; Morinaga, M; Le Kien, Fam; Hakuta, K

    2010-08-02

    We show that the fluorescence emission spectrum of few atoms can be measured by using an optical nanofiber combined with the optical heterodyne and photon correlation spectroscopy. The observed fluorescence spectrum of the atoms near the nanofiber shows negligible effects of the atom-surface interaction and agrees well with the Mollow triplet spectrum of free-space atoms at high excitation intensity.

  5. Secondary electron emission from Au by medium energy atomic and molecular ions

    CERN Document Server

    Itoh, A; Obata, F; Hamamoto, Y; Yogo, A

    2002-01-01

    Number distributions of secondary electrons emitted from a Au metal surface have been measured for atomic and molecular ions of H sup + , He sup + , C sup + , N sup + , O sup + , H sup + sub 2 , H sup + sub 3 , HeH sup + , CO sup + and O sup + sub 2 in the energy range 0.3-2.0 MeV. The emission statistics obtained are described fairly well by a Polya function. The Polya parameter b, determining the distribution shape, is found to decrease monotonously with increasing emission yield gamma, revealing a surprising relationship of b gamma approx 1 over the different projectile species and impact energies. This finding supports certainly the electron cascading model. Also we find a strong negative molecular effect for heavier molecular ions, showing a significant reduction of gamma compared to the estimated values using constituent atomic projectile data.

  6. Pattern changes in determinants of Chinese emissions

    Science.gov (United States)

    Mi, Zhifu; Meng, Jing; Guan, Dabo; Shan, Yuli; Liu, Zhu; Wang, Yutao; Feng, Kuishuang; Wei, Yi-Ming

    2017-07-01

    The Chinese economy has been recovering slowly from the global financial crisis, but it cannot achieve the same rapid development of the pre-recession period. Instead, the country has entered a new phase of economic development—a ‘new normal’. We use a structural decomposition analysis and environmental input-output analysis to estimate the determinants of China’s carbon emission changes during 2005-2012. China’s imports are linked to a global multi-regional input-output model based on the Global Trade and Analysis Project database to calculate the embodied CO2 emissions in imports. We find that the global financial crisis has affected the drivers of China’s carbon emission growth. From 2007 to 2010, the CO2 emissions induced by China’s exports dropped, whereas emissions induced by capital formation grew rapidly. In the ‘new normal’, the strongest factors that offset CO2 emissions have shifted from efficiency gains to structural upgrading. Efficiency was the strongest factor offsetting China’s CO2 emissions before 2010 but drove a 1.4% increase in emissions in the period 2010-2012. By contrast, production structure and consumption patterns caused a 2.6% and 1.3% decrease, respectively, in China’s carbon emissions from 2010 to 2012. In addition, China tends to shift gradually from an investment to a consumption-driven economy. The proportion of CO2 emissions induced by consumption had a declining trend before 2010 but grew from 28.6%-29.1% during 2010-2012.

  7. Determination of quenching coefficients by time resolved emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F. [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Laser- und Plasmaphysik

    2001-07-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved.

  8. Determination of quenching coefficients by time resolved emission spectroscopy

    International Nuclear Information System (INIS)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F.

    2001-01-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved

  9. A Magnetized Nanoparticle Based Solid-Phase Extraction Procedure Followed by Inductively Coupled Plasma Atomic Emission Spectrometry to Determine Arsenic, Lead and Cadmium in Water, Milk, Indian Rice and Red Tea.

    Science.gov (United States)

    Azimi, Salameh; Es'haghi, Zarrin

    2017-06-01

    A sensitive and simple method using magnetic multi-walled carbon nanotube (MWCNTs-Fe 3 O 4 MNP), as the adsorbent, has been successfully developed for extraction and pre-concentration of arsenic, lead and cadmium with detection by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The nanosorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction pattern (XRD), vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM). The key factors affecting the signal intensity such as pH, adsorbent amount, etc. were investigated. Under optimal conditions, the limits of detection (three-time of signal to noise ratio, S/N 3) were 0.3, 0.6, 0.3 ng/mL for arsenic, lead and cadmium, respectively. Application of the adsorbent was investigated by the analysis of water, milk, Indian rice and red tea. The experimental data was analyzed and obeyed Langmuir and Freundlich adsorption models. The kinetic data was fitted to the pseudo-second-order model. Thermodynamic studies revealed the feasibility and exothermic nature of the system.

  10. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Průša, Libor [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Hlavova 8, Prague 2, CZ 128 43 Czech Republic (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-12-04

    Graphical abstract: -- Highlights: •In-atomizer trapping HG-AAS was optimized for Sn. •A compact quartz trap-and-atomizer device was employed. •Generation, preconcentration and atomization steps were investigated in detail. •Hundred percent preconcentration efficiency for tin was reached. •Routine analytical method was developed for Sn determination (LOD of 0.03 ng mL{sup −1} Sn). -- Abstract: A quartz multiatomizer with its inlet arm modified to serve as a trap (trap-and-atomizer device) was employed to trap tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcentration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5% was found. The detection limits reached were 0.029 and 0.14 ng mL{sup −1} Sn, respectively, for 120 s preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples.

  11. Water analysis. Determination of elements by atomic absorption

    International Nuclear Information System (INIS)

    Anon.

    Analysis of homogeneous water solutions (plain water, polluted waters, effluents...) by atomic absorption spectrometry with correction for non specific absorption. The quantity ratio is determined by comparison with standard solutions, correction tables are given [fr

  12. Atomic emission and atomic fluorescence spectroscopy in the direct current plasma

    International Nuclear Information System (INIS)

    Hendrick, M.S.

    1985-01-01

    The Direct Current Plasma (DCP) was investigated as a source for Atomic Emission (AE) and Atomic Fluorescence Spectrometry (AFS). The DCP was optimized for AE analyses using simplex optimization and Box-Behnken partial factorial experimental design, varying argon flows, and plasma position. Results were compared with a univariate search carried out in the region of the simplex optimum. Canonical analysis demonstrated that no true optimum exists for sensitivity, precision, or drift. A stationary ridge, where combinations of conditions gave comparable instrumental responses, was found. The DCP as an excitation source for AFS in a flame was used for diagnostic studies of the DCP. Moving the aerosol introduction tube behind the DCP with respect to the flame improved the characteristics of the DCP as a narrow line source, although self-absorption was observed at high concentrations of metal salt solutions in the DCP. Detection limits for Cd, Co, Cr, Cu, Fe, Mg, Mn, Zn, and Ni were in the low ng/mL region. Theoretical expressions for scatter correction with a two-line technique were derived, although no correction was necessary to achieve accurate results for standard reference materials

  13. Development of the Flame Test Concept Inventory: Measuring Student Thinking about Atomic Emission

    Science.gov (United States)

    Bretz, Stacey Lowery; Murata Mayo, Ana Vasquez

    2018-01-01

    This study reports the development of a 19-item Flame Test Concept Inventory, an assessment tool to measure students' understanding of atomic emission. Fifty-two students enrolled in secondary and postsecondary chemistry courses were interviewed about atomic emission and explicitly asked to explain flame test demonstrations and energy level…

  14. Determination of cobalt in human liver by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Caldas, E.D.; Gine-Rosias, M.F.; Dorea, J.G.

    1991-01-01

    A detailed study of the use of electrothermal atomic absorption spectrometry for the determination of cobalt in human liver is described. Comparisons of sample digestion using nitric acid or nitric acid plus perchloric acid, atomization procedures and the application of palladium and magnesium nitrate chemical modifiers were studied using NBS SRM 1577a Bovine Liver. The best results were achieved with sample decomposition in nitric acid, atomization from the tube wall and no chemical modifier. Cobalt was determined in 90 samples of livers from foetuses and deceased newborns using the standard addition method with an average recovery of 99.8%. (author). 30 refs.; 4 figs.; 2 tabs

  15. Charging induced emission of neutral atoms from NaCl nanocube corners

    International Nuclear Information System (INIS)

    Ceresoli, Davide; Zykova-Timan, Tatyana; Tosatti, Erio

    2008-01-01

    Detachment of neutral cations/anions from solid alkali halides can in principle be provoked by donating/subtracting electrons to the surface of alkali halide crystals, but generally constitutes a very endothermic process. However, the amount of energy required for emission is smaller for atoms located in less favorable positions, such as surface steps and kinks. For a corner ion in an alkali halide cube the binding is the weakest, so it should be easier to remove that atom, once it is neutralized. We carried out first principles density functional calculations and simulations of neutral and charged NaCl nanocubes, to establish the energetics of extraction of neutralized corner ions. Following hole donation (electron removal) we find that detachment of neutral Cl corner atoms will require a limited energy of about 0.8 eV. Conversely, following the donation of an excess electron to the cube, a neutral Na atom is extractable from the corner at the lower cost of about 0.6 eV. Since the cube electron affinity level (close to that a NaCl(100) surface state, which we also determine) is estimated to lie about 1.8 eV below vacuum, the overall energy balance upon donation to the nanocube of a zero-energy electron from vacuum will be exothermic. The atomic and electronic structure of the NaCl(100) surface, and of the nanocube Na and Cl corner vacancies are obtained and analyzed as a byproduct

  16. Combustor exhaust-emissions and blowout-limits with diesel number 2 and Jet A fuels utilizing air-atomizing and pressure-atomizing nozzles

    Science.gov (United States)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.

  17. Determination of lead and cadmium in urine by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Vasil'eva, L.A.; Grinshtejn, I.L.; Gucher, Sh.; Izgi, B.

    2008-01-01

    The applicability of a DETATA sorbent to the preconcentration of lead and cadmium followed by the determination of these elements in urine using atomic absorption spectrometry with electrothermal atomization was demonstrated. After preconcentration by a factor of 10, the limits of detection were 0.01 and 0.2 μg/l for cadmium and lead, respectively. The accuracy of the results was supported by the analysis of Seronorm TM Trace Elements Urine Batch no.101021 [ru

  18. Direct atomic absorption determination of silicon in metallic niobium

    International Nuclear Information System (INIS)

    Blinova, Eh.S.; Guzeev, I.D.; Nedler, V.V.; Khokhrin, V.M.

    1984-01-01

    Consideration is being given to realization of the basic advantage of non-flame atomizer-analysis of directly solid samples-for silicon determination in niobium for the content of the first one of less than 1x10 -3 mass %. Analysis technique is described. Diagrams of the dependences of atomic silicon absorption in graphite cells of usual type as well as lined by tungsten carbide and atomic silicon absorption on the value of niobium weighed amount are presented. It is shown that Si determination in metallic niobium according to aqueous reference solutions results in understatement of results 2.4 times. The optimal conditions for Si determination in niobium are the following: 2400 deg C temperature, absence of carbon and oxygen. Different niobium specimens with the known silicon content were used as reference samples

  19. Determination of microquantities of cesium in leaching tests by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Crubellati, R.O.; Di Santo, N.R.

    1988-01-01

    An original method for cesium determinations by atomic absorption spectrometry with electrothermal atomization is described. The effect of foreign ions (alkali and earth alkaline metals) present in leaching test of glasses with incorporated radioactive wastes was studied. The effect of different mineral acids was also investigated. A comparison between the flame excitation method and the electrothermal atomization one was made. Under optimum conditions, cesium in quantities down to 700 ng in 1000 ml of sample could be determined. The calibration curve was linear in the range of 0.7 - 15 ng/mL. The fact that the proposed determinations can be performed in a short time and that a small sample volume is required are fundamental advantages of this method, compared with the flame excitation procedure. Besides, it is adaptable to be applied in hot cells and glove boxes. (Author) [es

  20. Determination of Serum Lithium by Flame Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    R. Nafissy

    1976-07-01

    Full Text Available Lithum can be de termined both by atomic absorption spectroscopy andflame emission spectroscopy. We have used the later method with a Zeiss Model pMQlI spectro photometer fitt ed with ante-chamber atomizer and a potensiome rric line recorder. Accurate ana lysis for the clement was acco mplished due to a sophisracared measuring instrument.

  1. Frequency shifts in spontaneous emission from two interacting atoms

    International Nuclear Information System (INIS)

    James, D.F.V.

    1993-01-01

    A model radiating system consisting of two atoms in close proximity is analyzed. This system demonstrates the influence of spatial coherence on the spectrum of the radiation field. Explicit expressions for the degree of coherence, the source spectrum, and the spectrum of the radiation field are derived. The results are discussed in terms of Wolf's work [Phys. Rev. Lett. 56, 1370 (1986)] on this effect, which can be considered in terms of a multiple-atom analog of the effects of radiation reaction on a single atom, i.e., spontaneous decay and the Lamb shift

  2. The determination of zirconium by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Rodriguez, E.R.; Cunha, M.T.C. da

    1975-01-01

    The interference of iron in the determination of zirconium by atomic absorption spectrophotometry was studied. Attempts were made to emininate this interference by complexing the iron with EDTA, ascorbic acid and hydrazine; also by the addition of ammonium fluoride to the solution. Some experiments were carried out in order to explain the results obtained [pt

  3. Sorghum cobalt analysis on not determined wave length with atomic ...

    African Journals Online (AJOL)

    This study was to know the better wave length on measuring cobalt content in forage sorghum hybrid (Sorghum bicolor) with an atomic absorption spectrophotometer. The analysis was on background correction mode with three wave lengths; 240.8, 240.7 (determined wave length or recommended wave length) and 240.6 ...

  4. Localization of the relative position of two atoms induced by spontaneous emission

    International Nuclear Information System (INIS)

    Zheng, L.; Li, C.; Li, Y.; Sun, C.P.

    2005-01-01

    We reexamine the back-action of emitted photons on the wave packet evolution about the relative position of two cold atoms. We show that photon recoil resulting from the spontaneous emission can induce the localization of the relative position of the two atoms through the entanglement between the spatial motion of individual atoms and their emitted photons. The obtained result provides a more realistic model for the analysis of the environment-induced localization of a macroscopic object

  5. Flotation atomic absorption determination of bismuth in nonferrous metal alloys

    International Nuclear Information System (INIS)

    Ososkov, V.K.; Plintus, A.M.; Kornelli, M.Eh.; Zakhariya, A.N.; Lozanova, E.V.

    1986-01-01

    Technique of flotation concentration and atomic absorption determination of bismuth microquantities in alloys on the basis of copper and zinc has been developed. Fine-dispersed EhDEh-10P anionite was used as a carrier in flotation concentration. State standard samples (SSS) of brasses and German silver were used as analysed objects. Effect of macrocomponents on the results of bismuth content determination has been studied. Satisfactory coincidence of the results obtained and SSS certificates is shown

  6. Ab-initio modeling of an iron laser-induced plasma: Comparison between theoretical and experimental atomic emission spectra

    International Nuclear Information System (INIS)

    Colgan, J.; Judge, E.J.; Kilcrease, D.P.; Barefield, J.E.

    2014-01-01

    We report on efforts to model the Fe emission spectrum generated from laser-induced breakdown spectroscopy (LIBS) measurements on samples of pure iron oxide (Fe 2 O 3 ). Our modeling efforts consist of several components. We begin with ab-initio atomic structure calculations performed by solving the Hartree–Fock equations for the neutral and singly ionized stages of Fe. Our energy levels are then adjusted to their experimentally known values. The atomic transition probabilities and atomic collision quantities are also computed in an ab-initio manner. We perform LTE or non-LTE calculations that generate level populations and, subsequently, an emission spectrum for the iron plasma for a range of electron temperatures and electron densities. Such calculations are then compared to the experimental spectrum. We regard our work as a preliminary modeling effort that ultimately strives towards the modeling of emission spectra from even more complex samples where less atomic data are available. - Highlights: • LIBS plasma of iron oxide • Ab-initio theoretical Modeling • Discussion of LTE versus non-LTE criteria and assessment • Boltzmann plots for Fe—determination of when LTE is a valid assumption • Emission spectra for Fe—comparison of theoretical modeling and measurement: good agreement obtained

  7. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    Science.gov (United States)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  8. Visible Light Emission from Atomic Scale Patterns Fabricated by the Scanning Tunneling Microscope

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Stokbro, Kurt

    1999-01-01

    Scanning tunneling microscope (STM) induced light emission from artificial atomic scale structures comprising silicon dangling bonds on hydrogen-terminated Si(001) surfaces has been mapped spatially and analyzed spectroscopically in the visible spectral range. The light emission is based on a novel...

  9. Electron and X-ray emission in collisions of multiply charged ions and atoms

    International Nuclear Information System (INIS)

    Woerlee, P.H.

    1979-01-01

    The author presents experimental results of electron and X-ray emission following slow collisions of multiply charged ions and atoms. The aim of the investigation was to study the mechanisms which are responsible for the emission. (G.T.H.)

  10. Determination of atomic number and composition of human enamel

    International Nuclear Information System (INIS)

    Nogueira, M.S.; Rodas Duran, J.E.

    2001-01-01

    The teeth are organs of complicated structure that consist, partly, of hard tissue containing in its interior the dental pulp, rich in vases and nerves. The main mass of the tooth is constituted by the dentine, which is covered with hard tissues and of epithelial origin called enamel. The dentine of the human teeth used in this work were completely removed and the teeth were cut with a device with a diamond disc. In this work the chemical composition of the human enamel was determined, which showed a high percentage of Ca and P, in agreement with the results found in the literature. The effective atomic number of the material and the half-value layer in the energy range of diagnostic X-ray beams were determined. Teeth could be used to evaluated the public's individual doses as well as for retrospective dosimetry what confirms the importance of their effective atomic number and composition determination. (author)

  11. Steelmaking process control using remote ultraviolet atomic emission spectroscopy

    Science.gov (United States)

    Arnold, Samuel

    Steelmaking in North America is a multi-billion dollar industry that has faced tremendous economic and environmental pressure over the past few decades. Fierce competition has driven steel manufacturers to improve process efficiency through the development of real-time sensors to reduce operating costs. In particular, much attention has been focused on end point detection through furnace off gas analysis. Typically, off-gas analysis is done with extractive sampling and gas analyzers such as Non-dispersive Infrared Sensors (NDIR). Passive emission spectroscopy offers a more attractive approach to end point detection as the equipment can be setup remotely. Using high resolution UV spectroscopy and applying sophisticated emission line detection software, a correlation was observed between metal emissions and the process end point during field trials. This correlation indicates a relationship between the metal emissions and the status of a steelmaking melt which can be used to improve overall process efficiency.

  12. Rainbow Emission from an Atomic Transition in Doped Quantum Dots.

    Science.gov (United States)

    Hazarika, Abhijit; Pandey, Anshu; Sarma, D D

    2014-07-03

    Although semiconductor quantum dots are promising materials for displays and lighting due to their tunable emissions, these materials also suffer from the serious disadvantage of self-absorption of emitted light. The reabsorption of emitted light is a serious loss mechanism in practical situations because most phosphors exhibit subunity quantum yields. Manganese-based phosphors that also exhibit high stability and quantum efficiency do not suffer from this problem but in turn lack emission tunability, seriously affecting their practical utility. Here, we present a class of manganese-doped quantum dot materials, where strain is used to tune the wavelength of the dopant emission, extending the otherwise limited emission tunability over the yellow-orange range for manganese ions to almost the entire visible spectrum covering all colors from blue to red. These new materials thus combine the advantages of both quantum dots and conventional doped phosphors, thereby opening new possibilities for a wide range of applications in the future.

  13. Electrothermal atomization laser-excited atomic fluorescence spectroscopy for the determination of indium

    International Nuclear Information System (INIS)

    Aucelio, R.Q.; Smith, B.W.; Winefordner, J.D.

    1998-01-01

    A dye laser pumped by a high-repetition-rate copper vapor laser was used as the excitation source to determine indium at parts-per-trillion level by electrothermal atomization laser-excited atomic fluorescence spectrometry (ETA-LEAFS). A comparison was made between wall atomization, in pyrolytic and nonpyrolytic graphite tubes, and platform atomization. The influence of several chemical modifiers either in solution or precoated in the graphite tube was evaluated. The influence of several acids and NaOH in the analyte solution was also studied. Optimization of the analytical conditions was carried out to achieve the best signal-to-background ratio and consequently an absolute limit of detection of 1 fg. Some possible interferents of the method were evaluated. The method was evaluated by determining indium in blood, urine, soil, and urban dust samples. Recoveries between 99.17 and 109.17% are reported. A precision of 4.1% at the 10 ng g -1 level in water standards was achieved. copyright 1998 Society for Applied Spectroscopy

  14. Frequency lock of a dye laser emission on iron atomic line top

    International Nuclear Information System (INIS)

    Durand, P.

    1995-03-01

    The aim of this thesis is to realize a frequency lock of a dye laser emission on iron atomic line top. To reach that goal, the author first presents the calculation of atomic vapour density by means of laser absorption ratio measure and studies the dye laser working. It is then necessary to find a device giving the required precision on the frequency of the absorption line choosen. It is obtained thanks to the atomic line reconstitution by optogalvanic effect which gives the reference. Besides, the author presents the necessity of a laser emission power regulation which is obtained thanks to a device including an acoustic and optic modulator. A reliable and accurate captor is choosen and adjusted testing various hollow cathode lamps. The method to obtain the frequency lock of laser emission on iron atomic line top is described. (TEC). 18 refs., 64 figs

  15. Study of interferences in the atomic - absorption and emission of barium in nitrous oxide/acetylene flame

    International Nuclear Information System (INIS)

    Curtius, A.J.; Couto, M.I.

    1979-01-01

    The interferences of several ions that are present in oifield water and sea water in the atomic absorption and emission of barium were investigated. It was verified that the interferences of sodium, potassium, calcium, strontium and chloride are the most important. The indirect method for the determination of sulfate by measuring barium by atomic absorption after precipitating barium sulfate with an excess of barium chloride, should not be used for highly salted matrix. To avoid the interferences that are not compensated by an ionization supressor, the measurement of barium by the standard addition method or a previous sulfate separation is recommended. (Author) [pt

  16. Determination of cadmium in aluminium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Batistoni, D.A.; Erlijman, L.H.

    1978-12-01

    A direct method for the determination of cadmium in elemental aluminium is described. Metal samples are dissolved in diluted hydrochloric acid and cadmium is determined by atomic absorption spectrometry in an air-acetylene flame. Interference by non-specific absorption observed at the analytical wavelength incorrected for by means of a non-absorbing line emitted by the hollow-cathode lamp. Relatively large amounts of arsenic do not interfere. The minimun determinable concentration of cadmium for this procedure is 2-3 ppm, expressed on aluminium basis. (author) [es

  17. Spontaneous emission spectrum of a four-level atom coupled by three kinds of reservoirs

    International Nuclear Information System (INIS)

    Yang Dong; Wang Jian; Zhang, Hanzhuang; Yao Jinbo

    2007-01-01

    A model of a four-level atom embedded in a double-band photonic crystal (PC) is presented. The atomic transitions from the upper two levels to the lower two levels are coupled by the same reservoir which is assumed in turn to be isotropic PC modes, anisotropic PC modes and free vacuum modes. The effects of the fine structure of the atomic ground state levels and the quantum interference on the spontaneous emission spectrum of an atom are investigated in detail. Most interestingly, it is shown for the first time that new spontaneous emission lines are produced from the fine splitting of atomic ground state levels in the isotropic PC case. Quantum interference induces additional narrow spontaneous lines near the transition from the empty upper level to the lower levels

  18. Mineral distribution in rice: Measurement by Microwave Plasma Atomic Emission Spectroscopy (MP-AES)

    International Nuclear Information System (INIS)

    Ramos, Nerissa C.; Ramos, R.G.A.; Quirit, L.L.; Arcilla, C.A.

    2015-01-01

    Microwave Plasma Atomic Emission Spectroscopy (MP-AES) is a new technology with comparable performance and sensitivity to Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Both instrument use plasma as the energy source that produces atomic and ionic emission lines. However, MP-AES uses nitrogen as the plasma gas instead of argon which is an additional expense for ICP-OES. Thus, MP-AES is more economical. This study quantified six essential minerals (Se, Zn, Fe, Cu, Mn and K) in rice using MP-AES. Hot plate digestion was used for sample extraction and the detection limit for each instrument was compared with respect to the requirement for routine analysis in rice. Black, red and non-pigmented rice samples were polished in various intervals to determine the concentration loss of minerals. The polishing time corresponds to the structure of the rice grains such as outer bran layer (0 to 15), inner bran layer (15 to 30), outer endosperm layer (30 to 45), and middle endosperm layer (45 to 60). Results of MP-AES analysis showed that black rice had all essential materials (except K) in high concentration at the outer bran layer. The red and non-pigmented rice samples on the other hand, contained high levels of Se, Zn, Fe, and Mn in the whole bran portion. After 25 seconds, the mineral concentrations remained constant. The concentration of Cu however, gave consistent value in all polishing intervals, hence Cu might be located in the inner endosperm layer. Results also showed that K was uniformly distributed in all samples where 5% loss was consistently observed for every polishing interval. Therefore, the concentration of K was also affected by polishing time. Thus, the new MP-AES technology with comparable performance to ICP-OES is a promising tool for routine analysis in rice. (author)

  19. On the role of coulomb forces in atomic radiative emission

    International Nuclear Information System (INIS)

    Yngstroem, S.

    1988-10-01

    It is shown how the generalized Coulomb interaction (electric and magnetic fields of force) competes with the radiative interaction causing overall inhibition of the radiative capability of atoms and ions in a gaseous sample of matter. Basic quantum mechanical aspects of the electromagnetic interaction are discussed in a heuristic introduction followed by a more precise treatment in the formalism of relativistic quantum electrodynamics. (author)

  20. Teleporting the one-qubit state via two-level atoms with spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Hu Mingliang, E-mail: mingliang0301@xupt.edu.cn, E-mail: mingliang0301@163.com [School of Science, Xi' an University of Posts and Telecommunications, Xi' an 710061 (China)

    2011-05-14

    We study quantum teleportation via two two-level atoms coupled collectively to a multimode vacuum field and prepared initially in different atomic states. We concentrated on the influence of the spontaneous emission, collective damping and dipole-dipole interaction of the atoms on fidelity dynamics of quantum teleportation and obtained the region of spatial distance between the two atoms over which the state can be teleported nonclassically. Moreover, we showed through concrete examples that entanglement of the channel state is the prerequisite but not the only essential quantity for predicting the teleportation fidelity.

  1. Coherent effects on two-photon correlation and directional emission of two two-level atoms

    International Nuclear Information System (INIS)

    Ooi, C. H. Raymond; Kim, Byung-Gyu; Lee, Hai-Woong

    2007-01-01

    Sub- and superradiant dynamics of spontaneously decaying atoms are manifestations of collective many-body systems. We study the internal dynamics and the radiation properties of two atoms in free space. Interesting results are obtained when the atoms are separated by less than half a wavelength of the atomic transition, where the dipole-dipole interaction gives rise to new coherent effects, such as (a) coherence between two intermediate collective states, (b) oscillations in the two-photon correlation G (2) , (c) emission of two photons by one atom, and (d) the loss of directional correlation. We compare the population dynamics during the two-photon emission process with the dynamics of single-photon emission in the cases of a Λ and a V scheme. We compute the temporal correlation and angular correlation of two successively emitted photons using the G (2) for different values of atomic separation. We find antibunching when the atomic separation is a quarter wavelength λ/4. Oscillations in the temporal correlation provide a useful feature for measuring subwavelength atomic separation. Strong directional correlation between two emitted photons is found for atomic separation larger than a wavelength. We also compare the directionality of a photon spontaneously emitted by the two atoms prepared in phased-symmetric and phased-antisymmetric entangled states vertical bar ±> k 0 =e ik 0 ·r 1 vertical bar a 1 ,b 2 >±e ik 0 ·r 2 vertical bar b 1 ,a 2 > by a laser pulse with wave vector k 0 . Photon emission is directionally suppressed along k 0 for the phased-antisymmetric state. The directionality ceases for interatomic distances less than λ/2

  2. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bentlin, Fabrina R.S. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Pozebon, Dirce [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil)], E-mail: dircepoz@iq.ufrgs.br; Mello, Paola A.; Flores, Erico M.M. [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900 Santa Maria, RS (Brazil)

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO{sub 3}){sub 2} was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 {mu}g g{sup -1} of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  3. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bentlin, Fabrina R.S.; Pozebon, Dirce; Mello, Paola A.; Flores, Erico M.M.

    2007-01-01

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO 3 ) 2 was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 μg g -1 of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  4. Direct experimental determination of the atomic structure at internal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Browning, N.D. [Oak Ridge National Lab., TN (United States)]|[Illinois Univ., Chicago, IL (United States); Pennycook, S.J. [Oak Ridge National Lab., TN (United States)

    1995-07-01

    A crucial first step in understanding the effect that internal interfaces have on the properties of materials is the ability to determine the atomic structure at the interface. As interfaces can contain atomic disorder, dislocations, segregated impurities and interphases, sensitivity to all of these features is essential for complete experimental characterization. By combining Z-contrast imaging and electron energy loss spectroscopy (EELS) in a dedicated scanning transmission electron microscope (STEM), the ability to probe the structure, bonding and composition at interfaces with the necessary atomic resolution has been obtained. Experimental conditions can be controlled to provide, simultaneously, both incoherent imaging and spectroscopy. This enables interface structures observed in the image to be interpreted intuitively and the bonding in a specified atomic column to be probed directly by EELS. The bonding and structure information can then be correlated using bond-valence sum analysis to produce structural models. This technique is demonstrated for 25{degrees}, 36{degrees} and 67{degrees} symmetric and 45{degrees} and 25{degrees} asymmetric [001] tilt grain boundaries in SrTiO{sub 3} The structures of both types of boundary were found to contain partially occupied columns in the boundary plane. From these experimental results, a series of structural units were identified which could be combined, using continuity of gain boundary structure principles, to construct all [001] tilt boundaries in SrTiO{sub 3}. Using these models, the ability of this technique to address the issues of vacancies and dopant segregation at grain boundaries in electroceramics is discussed.

  5. Study of uranium matrix interference on ten analytes using inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, A.A.; Qamar, S.; Atta, M.A. (A.Q. Khan Research Labs., Rawalpindi (Pakistan))

    1993-08-01

    Maximum allowable concentrations of 12 elements in uranium hexafluoride feed for enrichment to reactor grade material (about 3%), vary from 1 to 100 ppm ([mu]g/g). Using an inductively coupled plasma atomic emission spectrometer, 51 lines of tine of these elements (B, Cr, Mo, P, Sb, Si, Ta, Ti, V and W) has been studied with a uranium matrix to investigate the matrix interference on the basis of signal to background (SBR), and background to background ratios (BBR). Detection limits and limits of quantitative determination (LQDs) were calculated for these elements in a uranium matrix using SBR and relative standard deviation of the background signal (RSD[sub B]) approach. In almost all cases, the uranium matrix interference reduces the SBRs to the extent that direct trace analysis is impossible. A uranium sample having known concentrations of impurities (around LQDs) was directly analysed with results that showed reasonable accuracy and precision. (Author).

  6. Determinants and predictability of global wildfire emissions

    Directory of Open Access Journals (Sweden)

    W. Knorr

    2012-08-01

    Full Text Available Biomass burning is one of the largest sources of atmospheric trace gases and aerosols globally. These emissions have a major impact on the radiative balance of the atmosphere and on air quality, and are thus of significant scientific and societal interest. Several datasets have been developed that quantify those emissions on a global grid and offered to the atmospheric modelling community. However, no study has yet attempted to systematically quantify the dependence of the inferred pyrogenic emissions on underlying assumptions and input data. Such a sensitivity study is needed for understanding how well we can currently model those emissions and what the factors are that contribute to uncertainties in those emission estimates.

    Here, we combine various satellite-derived burned area products, a terrestrial ecosystem model to simulate fuel loads and the effect of fire on ecosystem dynamics, a model of fuel combustion, and various emission models that relate combusted biomass to the emission of various trace gases and aerosols. We carry out simulations with varying parameters for combustion completeness and fuel decomposition rates within published estimates, four different emissions models and three different global burned-area products. We find that variations in combustion completeness and simulated fuel loads have the largest impact on simulated global emissions for most species, except for some with highly uncertain emission factors. Variation in burned-area estimates also contribute considerably to emission uncertainties. We conclude that global models urgently need more field-based data for better parameterisation of combustion completeness and validation of simulated fuel loads, and that further validation and improvement of burned area information is necessary for accurately modelling global wildfire emissions. The results are important for chemical transport modelling studies, and for simulations of biomass burning impacts on the

  7. Line emission processes in atomic and molecular shocks

    International Nuclear Information System (INIS)

    Shull, J.M.

    1988-01-01

    The review discusses the observations and theoretical models of interstellar shock waves in diffuse and molecular clouds. After summarizing the relevant gas dynamics, atomic, molecular and grain processes, and physics of radiative and magnetic precursors, the author describes observational diagnostics of shocks. This paper concludes with a discussion of two topics: unstable or non-steady shocks and thermal conduction in metal-rich shocks

  8. Low-energy neutral atom emission from the Earth's magnetosphere

    International Nuclear Information System (INIS)

    Moore, K.R.; Scime, E.E.; Funsten, H.O.; McComas, D.J.; Thomsen, M.F.

    1994-01-01

    Imaging of the terrestrial magnetosphere is possible through the detection of low-energy neutral atoms (LENAs) produced by charge exchange between magnetospheric plasma ions and neutral atoms of the Earth's geocorona. The authors present calculations of both hydrogen and oxygen line-of-sight LENA fluxes expected on orbit for various plasma regimes as predicted by the Rice University Magnetospheric Specification Model. To decrease the required computation time, they are in the process of adapting their code for massively parallel computers. The speed gains achieved from parallel algorithms are substantial, and they present results from computational runs on the Connection Machine CM-2 data parallel supercomputer. They also estimate expected image count rates and image quality based on realistic instrument geometric factors, energy passbands, neutral atom scattering in the instrument, and image accumulation intervals. The results indicate that LENA imaging instruments will need a geometric factor (G) on the order of 0.1 cm 2 sr eV/eV to be capable of imaging storm time ring currents, and a G of 1.0 cm 2 sr eV/eV in order to image the quiet time ring current fluxes, ion injections from the tail, and subsequent ion drifts toward the dayside magnetopause

  9. Two-photon emission and multiphoton absorption by atoms

    International Nuclear Information System (INIS)

    Mu, X.

    1988-01-01

    This thesis consists of investigations of two problems concerning photon-atom interactions. The first topic deals with two-photon transitions in atomic inner shells. An independent-particle model has been used to describe the two-photon transitions between different inner-shell electron states. The first relativistic self-consistent-field calculation of these transition rates in Ag, Mo, and Xe has been carried out. The theoretical results are compared with recent measurements. Good agreement with measured rates is found except in some cases where more reliable experiments still need to be done. The second topic is multiphoton multiionization of atoms. The maximum entropy principle has been employed in this theoretical investigation. A detailed statistical analysis of measured ionic charge distributions produced in strong laser pulses has been carried out. The results of this analysis indicates that the charge-state distribution is a Poissonian, rather than the binomial which prevails under infrared radiation, and hence that ionization occurs stepwise during the pulse. This result is shown to be consistent with experimental data

  10. Electron emission in collisions of intermediate energy ions with atoms

    International Nuclear Information System (INIS)

    Garibotti, C.R.

    1988-01-01

    The aim of this work, is the analysis of the processes of electronic emission produced in the collisions of small ions (H + , He ++ ) of intermediate energy (50 a 200 KeV/amu) with light gaseous targets. (A.C.A.G.) [pt

  11. Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms

    International Nuclear Information System (INIS)

    Wang Dawei; Li Zhenghong; Zheng Hang; Zhu Shiyao

    2010-01-01

    A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state and the other in the ground state. The unitary transformation guarantees that our calculations are based on the ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift) and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift). The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift, which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the modification of the effective density of states by the interaction between two atoms can modulate the quantum Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.

  12. Atomic spectroscopy and highly accurate measurement: determination of fundamental constants

    International Nuclear Information System (INIS)

    Schwob, C.

    2006-12-01

    This document reviews the theoretical and experimental achievements of the author concerning highly accurate atomic spectroscopy applied for the determination of fundamental constants. A pure optical frequency measurement of the 2S-12D 2-photon transitions in atomic hydrogen and deuterium has been performed. The experimental setting-up is described as well as the data analysis. Optimized values for the Rydberg constant and Lamb shifts have been deduced (R = 109737.31568516 (84) cm -1 ). An experiment devoted to the determination of the fine structure constant with an aimed relative uncertainty of 10 -9 began in 1999. This experiment is based on the fact that Bloch oscillations in a frequency chirped optical lattice are a powerful tool to transfer coherently many photon momenta to the atoms. We have used this method to measure accurately the ratio h/m(Rb). The measured value of the fine structure constant is α -1 = 137.03599884 (91) with a relative uncertainty of 6.7*10 -9 . The future and perspectives of this experiment are presented. This document presented before an academic board will allow his author to manage research work and particularly to tutor thesis students. (A.C.)

  13. Photon emission spectroscopy of ion-atom collisions

    International Nuclear Information System (INIS)

    Nystroem, B.

    1995-10-01

    Emission cross sections for the 1snp 1 P 1 -levels have been measured by photon emission spectroscopy for the collision systems He + + He at 10 keV and He 2+ + He at 10-35 keV. Photon spectra of Krypton (Kr VIII) and Xenon (Xe V - IX) have also been obtained using 10q keV beams of Kr q+ (q=7-9) and Xe q+ (q=5-9) colliding with Helium and Argon. The Lifetimes of 3p 2 P-levels in Na-like Nb are reported together with lifetime for the 3s3p 3 P 1 -level in Mg-like Ni, Kr, Y, Zr and Nb where this level has an intercombination transition to the ground state. 45 refs, 20 figs

  14. Photon emission spectroscopy of ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, B

    1995-10-01

    Emission cross sections for the 1snp{sup 1}P{sub 1}-levels have been measured by photon emission spectroscopy for the collision systems He{sup +} + He at 10 keV and He{sup 2+} + He at 10-35 keV. Photon spectra of Krypton (Kr VIII) and Xenon (Xe V - IX) have also been obtained using 10q keV beams of Kr{sup q+} (q=7-9) and Xe{sup q+} (q=5-9) colliding with Helium and Argon. The Lifetimes of 3p{sup 2}P-levels in Na-like Nb are reported together with lifetime for the 3s3p{sup 3}P{sub 1}-level in Mg-like Ni, Kr, Y, Zr and Nb where this level has an intercombination transition to the ground state. 45 refs, 20 figs.

  15. Analytical applications of atomic spectroscopy, with particular reference to inductively coupled plasma emission analysis of coal and fly ash

    International Nuclear Information System (INIS)

    Pougnet, M.A.B.

    1983-08-01

    This thesis outlines the analytical applications of atomic emission and absorption spectroscopy to a variety of materials. Special attention was directed to the analysis of coal and coal ashes. A simple slurry sampling technique was developed and used to determine V, Ni, Co, Mo and Mn in the National Bureau of Standards Standard Reference Materials (NBS-SRM) coals 1632a and 1635 by furnace atomic absorption spectroscopy (FAAS). Coal and fly ash were analysed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The determination of B, Be, Li, C, K and other trace elements by ICP-AES was investigated. Analytical methods were developed for the analysis of coal, fly ash and water samples. Fusion with sodium carbonate and a digestion bomb dissolution method were compared for the determination of boron in a South African boron-rich mineral (Kornerupine). Eight elements were determined in 10 industrial water samples from a power plant. Ca, Mg, Si and B were determined by ICP-AES and V, Ni, Co and Mo by FAAS. Various problems encountered during the course of the work and interferences in ICP-AES analysis are discussed. Some recommendations concerning method development and routine analysis by this technique are suggested

  16. Determination of molybdenum in human urine by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Pita Calvo, C.; Bermejo Barrera, P.; Bermejo Barrera, A.

    1995-01-01

    Various matrix modifiers were investigated for the determination of molybdenum in human urine samples by electrothermal atomization atomic absorption spectrometry. Methods with nitric acid, barium difluoride, magnesium nitrate, palladium-magnesium nitrate and palladium-hydroxylamine hydrochloride were studied by introducing the urine samples directly into the graphite furnace with 0.3% Triton X-100. The charring and atomization curves, the amount of modifier and the calibration and addition graphs were studied in all instances. The precision, accuracy and chemical interferences of the methods were also investigated. The matrix interferences have been removed with the modifiers barium difluoride, palladium-magnesium nitrate and palladium-hydroxylamine hydrochloride. The limits of detection and quantification were 0.2 and 0.7 μg l -1 , respectively, for these modifiers. The characteristic masses were 14.1, 18.0 and 14.9 pg of Mo for palladium-magnesium nitrate, palladium-hydroxylamine hydrochloride and barium difluoride, respectively. The method with palladium-magnesium nitrate has been applied to the study of the amount of molybdenum in human urine samples. The molybdenum levels found lie between 4.8-205.6 μg l -1

  17. Ammonia emission from organic pig houses determined with local parameters

    NARCIS (Netherlands)

    Aarnink, A.J.A.; Hol, J.M.G.; Ogink, N.W.M.

    2016-01-01

    The objective of this study was to determine the ammonia emissions from houses for growing-finishing pigs with an outside yard. While regular emission measurements are not possible in these open systems another approach was used. Local parameters were measured and used in an existing NH3 emission

  18. Determination of metals in atmospheric particulates using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Alduan, F.A.; Capdevila, C.

    1979-01-01

    Nineteen trace metals in atmospheric samples have been determined by atomic absorption spectrometry, using a graphite furnace for most elements. Paper filters have been used to collect air samples. The sample preparation procedure involves the removal of organic matter and the conversion of the metals to soluble salts by ashing the filters in an oxygen plasma at 125 deg C for 6 h. and by subsequent dissolution in HN0 3 HCl solution. The sensitivities achieved are in the range of 2,5.10 -5 and 6,3.10 -3 μg/m 3 , for an air volume of 2000 m 3 . (author)

  19. Construção de espectrômetro de emissão atômica com atomização eletrotérmica em filamento de tungstênio (WCAES Construction of a tungsten coil atomic emission spectrometer (WCAES

    Directory of Open Access Journals (Sweden)

    Mário H. Gonzalez

    2010-01-01

    Full Text Available It is here discussed the development of a low cost analytical instrument with capacity for metals determination using atomic emission measurements in an electrothermal atomization system with a tungsten coil atomizer. The main goal was to show a new frontier for using this atomizer and to demonstrate that the simple instrumental arrangement here proposed has potential for portability and for solving analytical tasks related to metals determination. Atomic emission of calcium was selected for the adjustment of instrumental parameters and to evaluate the main characteristics of the lab-built instrument. Cobalt was determined in medicines and one alloy to demonstrate its feasibility.

  20. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    Science.gov (United States)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  1. Emission and electron transitions in an atom interacting with an ultrashort electromagnetic pulse

    International Nuclear Information System (INIS)

    Matveev, V.I.

    2003-01-01

    Electron transitions and emission of an atom interacting with a spatially inhomogeneous ultrashort electromagnetic pulse are considered. The excitation and ionization probabilities are obtained as well as the spectra and cross sections of the reemission of such a pulse by atoms. By way of an example, one- and two-electron inelastic processes accompanying the interaction of ultrashort pulses with hydrogen- and helium-like atoms are considered. The developed technique makes it possible to take into account exactly the spatial nonuniformity of the ultrashort pulse field and photon momenta in the course of reemission

  2. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  3. Impurities determination of uranium metal flame spectrophotometry and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Rukihati.

    1978-01-01

    The atomic absorption flame spectrophotometry has been applied to the determination of chromium, copper, iron, lead, manganese and nickel in the metal of uranium. The first step to be done is to dissolve the uranium sample in nitric acid and then the uranium is extracted by a tributylphosphate-carbon tetrachloride solution. The aqueous phase which contains the chromium, copper, iron, lead, manganese and nickel is aspirated into an airacetylene flame. The results of this method are compared with the results of emission spectrographic method. It is found that this technique is competative to other methods in the sense that it is quite fast and accurate. (author)

  4. Atomic absorption spectrometric determination of mineral elements in mammalian bones

    International Nuclear Information System (INIS)

    Udoh, Anthony P.

    2000-01-01

    The phosphorus content of the major bones of male and female selected mammals was determined using the yellow vanadomolybdate colorimetric method. For each animal, the bone with the highest phosphorus content was used as pilot sample. Varying concentrations of strontium were added to solutions of the ashed pilot samples to minimize phosphorus interference in the determination of calcium and magnesium using flame atomic absorption spectrophotometry operated on the air-acetylene mode. At least 6,000 ppm (0.6%) of strontium was required to give optimum results for calcium. The amount of magnesium obtained from the analysis was not affected by the addition of strontium. With the incorporation of strontium in the sample solution, all elements of interest can be determined in the same sample solution. Based on this, a procedure is proposed for the determination of calcium and other elements in bones. Average recoveries of spiked calcium and magnesium were 97.85% and 98.16%, respectively at the 95% confidence level. The coefficients of variation obtained for replicate determinations using one of the samples were 0.00% for calcium, lead and sodium, 2.93% for magnesium, 3.27% for iron and 3.92% for zinc at the concentration levels found in that sample. Results from the proposed procedure compared well with those from classical chemical methods at the 95% confidence level. It is evident that calcium phosphorus, magnesium and sodium which are the most abundant elements in the bones are distributed in varying amounts both in the different types of bones and different animal species, although the general trend is Ca > P > Na > Mg for each bone considered. The calcium - phosphorus ratio is generally 3:1. The work set out to propose an atomic absorption spectrometric method for the multi-element analysis of mammalian bones with a single sample preparation and to study the distribution pattern of these elements in the bones. (Author)

  5. Atomic nuclei decay modes by spontaneous emission of heavy ions

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Ivascu, M.; Sandulescu, A.

    1984-01-01

    The great majority of the known nuclei, including the so-called stable nuclides, are in fact metastable with respect to several modes of spontaneous superasymmetric splitting. If the lifetime against these processes is larger than 10 30 s, the phenomenon is not detectable with available experimental techniques, hence one can admit stability from the practical point of view. A model extended from the fission theory of alpha decay allows one to estimate the lifetimes and the branching ratios relatively to the alpha decay for these natural radioactivities. From a huge amount of systematical calculations it is concluded that the process should proceed with maximum intensity in the trans-lead nuclei, where the minimum lifetime is obtained for parent nuclei - heavy clusters leading to a magic ( 208 Pb) or almost daughter nucleus. More than 140 nuclides with atomic number smaller than 25 are possible candidates to be emitted from heavy nuclei, with half-life n the 10 10 -10 30 s range. The shell structure and pairing effects are clearly manifested in these new decay modes

  6. Environmental samples analysis by Atomic Absorption Spectrophotometry and Inductively Coupled Plasma-Optical Emission Spectroscopy

    International Nuclear Information System (INIS)

    Popescu, I.V.; Iordan, M.; Stihi, C.; Bancuta, A.; Busuioc, G.; Dima, G.; Ciupina, V.; Belc, M.; Vlaicu, Gh.; Marian, R.

    2002-01-01

    Biological samples are interesting from many aspects of environmental monitoring. By analyzing tree leaves conclusions can be drown regarding the metal loading in the growth medium. So that, starting from assumption that the pollution factors from environmental medium can modify the normal concentration of elements, we decided to control the presence of toxic elements and the deviation from normal state of elements in leaves of different trees from areas situated at different distances of pollution source. The aim of this work is to determine the elemental composition of tree leaves using Atomic Absorption Spectrophotometry (AAS) method and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) method. Using AAS spectrophotometer SHIMADZU we identified and determined the concentration of: Cd, Co, Cu, Zn, Mn, Cr, Fe, Se, Pb with an instrumental error less than 1% for most of the elements analyzed. The same samples were analyzed by ICP-OES spectrometer, BAIRD ICP2070-Sequential Plasma spectrometer. We identified and determined in leaves of different trees the concentration of Mg, Ca, and Sr with a precision less than 6%. (authors)

  7. Determination of lead in mother's milk by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Bandarchian, F.; Assadian, F

    2002-01-01

    With due attention to increasing air pollution specially the lead amount that is generated from gasoline burning in automobiles, it seems that it is necessary to control the amount of it continuously. Because Pb has an easy absorbability to body and also damages the nervous system. For this reason determination of it in mother's milk has a special importance. In this research, the milks of 15 mothers twice a day were examined and the concentration of Pb were determined by atomic absorption spectroscopy. In accordance the international organization, the permissible amount in body is 0.05 ppm. Fortunately, the obtained data was less than of it and it showed the absorbance of lead by babies is insignificant

  8. Noninvasive determination of optical lever sensitivity in atomic force microscopy

    International Nuclear Information System (INIS)

    Higgins, M.J.; Proksch, R.; Sader, J.E.; Polcik, M.; Mc Endoo, S.; Cleveland, J.P.; Jarvis, S.P.

    2006-01-01

    Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular cantilevers that does not require contact to be made with a surface. This noncontact approach utilizes the method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] to calibrate the spring constant of the cantilever in combination with the equipartition theorem [J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)] to determine the optical lever sensitivity. A comparison is presented between sensitivity values obtained from conventional static mode force curves and those derived using this noncontact approach for a range of different cantilevers in air and liquid. These measurements indicate that the method offers a quick, alternative approach for the calibration of the optical lever sensitivity

  9. Noninvasive determination of optical lever sensitivity in atomic force microscopy

    Science.gov (United States)

    Higgins, M. J.; Proksch, R.; Sader, J. E.; Polcik, M.; Mc Endoo, S.; Cleveland, J. P.; Jarvis, S. P.

    2006-01-01

    Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular cantilevers that does not require contact to be made with a surface. This noncontact approach utilizes the method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] to calibrate the spring constant of the cantilever in combination with the equipartition theorem [J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)] to determine the optical lever sensitivity. A comparison is presented between sensitivity values obtained from conventional static mode force curves and those derived using this noncontact approach for a range of different cantilevers in air and liquid. These measurements indicate that the method offers a quick, alternative approach for the calibration of the optical lever sensitivity.

  10. Double differential distributions of electron emission in ion-atom and electron-atom collisions using an electron spectrometer

    International Nuclear Information System (INIS)

    Misra, Deepankar; Thulasiram, K.V.; Fernandes, W.; Kelkar, Aditya H.; Kadhane, U.; Kumar, Ajay; Singh, Yeshpal; Gulyas, L.; Tribedi, Lokesh C.

    2009-01-01

    We study electron emission from atoms and molecules in collisions with fast electrons and heavy ions (C 6+ ). The soft collision electrons (SE), two center electron emission (TCEE), the binary encounter (BE) events and the KLL Auger lines along with the elastically scattered peaks (in electron collisions) are studied using a hemispherical electrostatic electron analyzer. The details of the measurements along with description of the spectrometer and data acquisition system are given. The angular distributions of the low energy (few eV) electrons in soft collisions and the binary encounter electrons at keV energies are compared with quantum mechanical models based on the first Born (B1) and the continuum distorted wave-Eikonal initial state approximation (CDW-EIS).

  11. Fourier transform infrared emission spectra of atomic rubidium: g- and h-states

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Ferus, Martin; Kubelík, Petr; Chernov, Vladislav E.; Zanozina, Ekaterina M.

    2012-01-01

    Roč. 45, č. 17 (2012), s. 175002 ISSN 0953-4075 R&D Projects: GA AV ČR IAAX00100903 Institutional support: RVO:61388955 Keywords : Fourier transform infrared emission spectra * atomic rubidium * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.031, year: 2012

  12. Exact results for emission from one and two atoms in an ideal cavity at multiphoton resonance

    International Nuclear Information System (INIS)

    Fam Le Kien; Shumovskij, A.S.; Tran Quang.

    1987-01-01

    The emission from the system of one or two two-level atoms in an ideal cavity with one mode at mutiphoton resonance is examined. Exact results for the two-time dipole correlation function and the time-dependent spectra of multiphoton-induced fluorescence are presented

  13. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 2

    Science.gov (United States)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  14. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 1

    Science.gov (United States)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  15. Atomic emission spectroscopy for the on-line monitoring of incineration processes

    NARCIS (Netherlands)

    Timmermans, E.A.H.; de Groote, F.P.J.; Jonkers, J.; Gamero, A.; Sola, A.; Mullen, van der J.J.A.M.

    2003-01-01

    A diagnostic measurement system based on atomic emission spectroscopy has been developed for the purpose of on-line monitoring of hazardous elements in industrial combustion gases. The aim was to construct a setup with a high durability for rough and variable experimental conditions, e.g. a strongly

  16. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    Science.gov (United States)

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  17. Characterization of near-infrared nonmetal atomic emission from an atmospheric helium microwave-induced plasma using a Fourier transform spectrophotometer

    International Nuclear Information System (INIS)

    Hubert, J.; Van Tra, H.; Chi Tran, K.; Baudais, F.L.

    1986-01-01

    A new approach for using Fourier transform spectroscopy (FTS) for the detection of atomic emission from an atmospheric helium plasma has been developed and the results obtained are described. Among the different types of plasma source available, the atmospheric pressure microwave helium plasma appears to be an efficient excitation source for the determination of nonmetal species. The more complete microwave plasma emission spectra of Cl, Br, I, S, O, P, C, N, and He in the near-infrared region were obtained and their corrected relative emission intensities are reported. This makes qualitative identification simple, and aids in the quantitative analysis of atomic species. The accuracy of the emission wavelengths obtained with the Fourier transform spectrophotometer was excellent and the resolution provided by the FTS allowed certain adjacent emission lines to be adequate for analytical applications

  18. Determination of molybdenum in flotation concentrates by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Ise, Kazuo

    1978-01-01

    Molybdenum was determined by atomic absorption spectrophotometry in 0.05 N ammoniacal solution after the decomposition of the concentrate with aqua regia. Negros ore from Philippines was used as a flotation feed, which contained chalcopyrites and calcium-magnesium minerals. Among the metals tested copper, iron and the alkaline earths interfered. Less than 50 ppm of copper yielded lower results for molybdenum. Higher results came out with more than 50 ppm of copper. In the presence of iron and citric acid (0.4 g/100 ml) which is a suppressor for hydroxide formation, a lower estimation resulted for molybdenum. Calcium interfered, lower results by 2 and >10% being obtained with respective 2.5 and 20 ppm of calcium. More than 20 ppm of magnesium behaved similarly. Sodium sulfate (0.5 g/100 ml) served as the suppressor for copper, iron and citric acid; 100 ppm each of copper and iron did not interfere in this way. Interferences due to calcium and magnesium (less than 60 ppm) was able to be masked by the addition of sodium silicate (200 ppm as silica). The analysis of flotation products and synthetic samples consisting of molybdenite, chalcopyrite, calcium chloride and magnesium sulfate revealed that the atomic absorption method can be applied to the analysis of the concentrates for molybdenum with an error of about 2%. (auth.)

  19. Determination of antimony by using tungsten trap atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Titretir, Serap [Department of Chemistry, Inoenue University, 44065 Malatya (Turkey); Kenduezler, Erdal [Department of Primary Education, Faculty of Education, Ahi Evran University, 40100 Kirsehir (Turkey); Arslan, Yasin [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Atatuerk University, 25240 Erzurum (Turkey); Kula, Ibrahim [Department of Chemistry, Mugla University, 48000 Mugla (Turkey); Bakirdere, Sezgin [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak (Turkey); Ataman, O. Yavuz. [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    An electrically heated tungsten coil was used as a trap in the determination of antimony. The technique consists of three steps. Initially, SbH{sub 3} is formed by hydride generation procedure; then the analyte species in vapor form are transported to W-coil trap heated at 370 deg. C. Following the preconcentration step, the trap is heated to 895 deg. C; analyte species are revolatilized and transported to the flame-heated quartz atom cell where atomization and the formation of signal take place. The experimental parameters were optimized both for trap and no-trap studies. The most important experimental parameters are concentrations of HCl and NaBH{sub 4} solutions, H{sub 2} and Ar gas flow rates, and collection and revolatilization temperatures of W-coil. Accuracy was tested using a certified reference material, waste water EU-L-1. Limit of detection for the system is 16 ng l{sup -1} using a sample of 36 ml collected in 4.0 min. Enhancement factor in sensitivity was 17.

  20. Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlioglu, Ipek; Korkmaz, Deniz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2007-01-15

    The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3{sigma} limit of detection was estimated as 0.053 {mu}g l{sup -1} for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat CRM-TMDW and Metals on Soil/Sediment 4, IRM-008.

  1. Flagging and correcting non-spectral matrix interferences with spatial emission profiles and gradient dilution in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Cheung, Yan; Schwartz, Andrew J.; Chan, George C.-Y.; Hieftje, Gary M.

    2015-01-01

    Matrix interference remains one of the most daunting challenges commonly encountered in inductively coupled plasma-atomic emission spectrometry (ICP-AES). In the present study, a method is described that enables identification and correction of matrix interferences in axial-viewed ICP-AES through a combination of spatial mapping and on-line gradient dilution. Cross-sectional emission maps of the plasma are used to indicate the presence of non-spectral (plasma-related and sample-introduction-related) matrix interferences. In particular, apparent concentrations of an analyte species determined at various radial locations in the plasma differ in the presence of a matrix interference, which allows the interference to be flagged. To correct for the interference, progressive, on-line dilution of the sample, performed by a gradient high-performance liquid-chromatograph pump, is utilized. The spatially dependent intensities of analyte emission are monitored at different levels of sample dilution. As the dilution proceeds, the matrix-induced signal variation is reduced. At a dilution where the determined concentrations become independent of location in the plasma, the matrix interference is minimized. - Highlights: • Non-spectral matrix interference in ICP-AES is flagged and minimized. • Emission from different locations of the plasma are collected simultaneously. • Spatially dependent determined concentrations indicate the presence of interference. • Gradient dilution is performed on both calibration standards and sample. • Optimal dilution factor to minimize interference is found as dilution increases

  2. Flagging and correcting non-spectral matrix interferences with spatial emission profiles and gradient dilution in inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Yan; Schwartz, Andrew J.; Chan, George C.-Y.; Hieftje, Gary M., E-mail: hieftje@indiana.edu

    2015-08-01

    Matrix interference remains one of the most daunting challenges commonly encountered in inductively coupled plasma-atomic emission spectrometry (ICP-AES). In the present study, a method is described that enables identification and correction of matrix interferences in axial-viewed ICP-AES through a combination of spatial mapping and on-line gradient dilution. Cross-sectional emission maps of the plasma are used to indicate the presence of non-spectral (plasma-related and sample-introduction-related) matrix interferences. In particular, apparent concentrations of an analyte species determined at various radial locations in the plasma differ in the presence of a matrix interference, which allows the interference to be flagged. To correct for the interference, progressive, on-line dilution of the sample, performed by a gradient high-performance liquid-chromatograph pump, is utilized. The spatially dependent intensities of analyte emission are monitored at different levels of sample dilution. As the dilution proceeds, the matrix-induced signal variation is reduced. At a dilution where the determined concentrations become independent of location in the plasma, the matrix interference is minimized. - Highlights: • Non-spectral matrix interference in ICP-AES is flagged and minimized. • Emission from different locations of the plasma are collected simultaneously. • Spatially dependent determined concentrations indicate the presence of interference. • Gradient dilution is performed on both calibration standards and sample. • Optimal dilution factor to minimize interference is found as dilution increases.

  3. Gas chromatography of organic microcontaminants using atomic emission and mass spectrometric detection combined in one instrument (GC-AED/MS)

    NARCIS (Netherlands)

    Mol, H.G.J.; Hankemeier, T.; Brinkman, U.A.T.

    1999-01-01

    This study describes the coupling of an atomic-emission detector and mass-spectrometric detector to a single gas chromatograph. Splitting of the column effluent enables simultaneous detection by atomic-emission detection (AED) and mass spectrometry (MS) and yields a powerful system for the target

  4. On the deviation from the sech2 superradiant emission law in a two-level atomic system

    International Nuclear Information System (INIS)

    Goncalves, A.E.

    1990-01-01

    The atomic superradiant emission is treated in the single particle mean field approximation. A single particle Hamiltonian, which represents a dressed two-level atom in a radiation field, can be obtained and it is verified that it describes the transient regime of the emission process. While the line shape emission for a bare atom follows the sech 2 law, for the dressed atom the line shape deviates appreciably from this law and it is verified that the deviation depends crucially on the ratio of the dynamic frequency shift to the transition frequency. This kind of deviation is observed in experimental results. (Author) [pt

  5. Determination of Lead in Blood by Atomic Absorption Spectrophotometry1

    Science.gov (United States)

    Selander, Stig; Cramér, Kim

    1968-01-01

    Lead in blood was determined by atomic absorption spectrophotometry, using a wet ashing procedure and a procedure in which the proteins were precipitated with trichloroacetic acid. In both methods the lead was extracted into isobutylmethylketone before measurement, using ammonium pyrrolidine dithiocarbamate as chelator. The simpler precipitation procedure was shown to give results identical with those obtained with the ashing technique. In addition, blood specimens were examined by the precipitation method and by spectral analysis, which method includes wet ashing of the samples, with good agreement. All analyses were done on blood samples from `normal' persons or from lead-exposed workers, and no additions of inorganic lead were made. The relatively simple protein precipitation technique gave accurate results and is suitable for the large-scale control of lead-exposed workers. PMID:5663425

  6. The determination of vanadium in brines by atomic absorption spectroscopy

    Science.gov (United States)

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  7. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Duo, E-mail: zhangduo10@gmail.com [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Li, Jiahua, E-mail: huajia_li@163.com [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Ding, Chunling; Yang, Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-05-21

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission. -- Highlights: ► Spontaneous emission properties of an atom embedded in PCs are investigated. ► Spectral-line enhancement, suppression and overlapping are observed. ► The results provide more degrees of freedom to control atomic spontaneous emission.

  8. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    International Nuclear Information System (INIS)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-01-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission. -- Highlights: ► Spontaneous emission properties of an atom embedded in PCs are investigated. ► Spectral-line enhancement, suppression and overlapping are observed. ► The results provide more degrees of freedom to control atomic spontaneous emission.

  9. Whither spectrochemical analysis: Inductively coupled plasma - Atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Fassel, V.A.

    1988-01-01

    On the basis of the seven proverbial ages of new physical analytical methodologies, ICP-AES has now passed through the initial five ages. Its present age may be characterized as mature, as represented by its general acceptance by the analytical community, by the evolution of standardized operating conditions and procedures, and by the automation of operations. Continuing evolutionary refinements and improvements in existing practices and theories can be expected, because intensive effort to achieve these goals is now underway. The driving forces behind these efforts will be enumerated and the problems being encountered will be summarized. In his closing remarks he comments on: (a) the impact that ICP-AES has had on the structure of the field of analytical chemistry and on the way trace elemental constituents are determined; and (b) where the action in ICP-AES is likely to be in the future

  10. Induced absorption and stimulated emission in a driven two-level atom

    International Nuclear Information System (INIS)

    Mavroyannis, C.

    1992-01-01

    We have considered the induced processes that occur in a driven two-level atom, where a laser photon is absorbed and emitted by the ground and by the excited states of the atom, respectively. In the low-intensity limit of the laser field, the induced spectra arising when a laser photon is absorbed by the ground state of the atom consist of two peaks describing induced absorption and stimulated-emission processes, respectively, where the former prevails over the latter. Asymmetry of the spectral lines occurs at off-resonance and its extent depends on the detuning of the laser field. The physical. process where a laser photon is emitted by the excited state is the reverse of that arising from the absorption of a laser photon by the ground state of the atom. The former differs from the latter in that the emission of a laser photon by the excited state occurs in the low frequency regime and that the stimulated-emission process prevails over that of the induced absorption. In this case, amplification of ultrashort pulses is likely to occur without the need of population inversion between the optical transitions. The computed spectra are graphically presented and discussed. (author)

  11. Determination of Lead in Urine by Atomic Absorption Spectrophotometry1

    Science.gov (United States)

    Selander, Stig; Cramé, Kim

    1968-01-01

    A method for the determination of lead in urine by means of atomic absorption spectrophotometry (AAS) is described. A combination of wet ashing and extraction with ammonium pyrrolidine dithiocarbamate into isobutylmethylketone was used. The sensitivity was about 0·02 μg./ml. for 1% absorption, and the detection limit was about 0·02 μg./ml. with an instrumental setting convenient for routine analyses of urines. Using the scale expansion technique, the detection limit was below 0·01 μg./ml., but it was found easier to determine urinary lead concentrations below 0·05 μg./ml. by concentrating the lead in the organic solvent by increasing the volume of urine or decreasing that of the solvent. The method was applied to fresh urines, stored urines, and to urines, obtained during treatment with chelating agents, of patients with lead poisoning. Urines with added inorganic lead were not used. The results agreed well with those obtained with a colorimetric dithizone extraction method (r = 0·989). The AAS method is somewhat more simple and allows the determination of smaller lead concentrations. PMID:5647975

  12. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  13. Decomposing Air Pollutant Emissions in Asia: Determinants and Projections

    OpenAIRE

    Rafaj, P.; Amann, M.

    2018-01-01

    High levels of air pollution pose an urgent social and public health challenge in many Asian regions. This study evaluates the role of key factors that determined the changes in emission levels in China, India and Japan over the past 25 years. While emissions of air pollutants have been declining in Japan since the 1990s, China and India have experienced a rapid growth in pollution levels in recent years. Around 2005, control measures for sulfur emissions started to deliver expected reduction...

  14. [Applications of atomic emission spectrum from liquid electrode discharge to metal ion detection].

    Science.gov (United States)

    Mao, Xiu-Ling; Wu, Jian; Ying, Yi-Bin

    2010-02-01

    The fast and precise detection of metal ion is an important research project concerning studies in diverse academic fields and different kinds of detecting technologies. In the present paper, the authors review the research on atomic emission spectrum based on liquid electrode discharge and its applications in the detection of metal ion. In the first part of this paper the principles and characteristics of the methods based on electrochemistry and spectroscopy were introduced. The methods of ion-selective electrode (ISE), anodic stripping voltammetry, atomic emission spectrum and atomic absorption spectrum were included in this part and discussed comparatively. Then the principles and characteristics of liquid electrode spectra for metal ion detection were introduced. The mechanism of the plasma production and the characteristics of the plasma spectrum as well as its advantages compared with other methods were discussed. Secondly, the authors divided the discharge system into two types and named them single liquid-electrode discharge and double-liquid electrode respectively, according to the number of the liquid electrode and the configuration of the discharge system, and the development as well as the present research status of each type was illustrated. Then the characteristics and configurations of the discharge systems including ECGD, SCGD, LS-APGD and capillary discharge were discussed in detail as examples of the two types. By taking advantage of the technology of atomic emission spectrum based on liquid electrode discharge, the detecting limit of heavy metals such as copper, mercury and argent as well as active metal ions including sodium, potass and magnesium can achieve microg x L(-1). Finally, the advantages and problems of the liquid-electrode discharge applied in detection of metal ion were discussed. And the applications of the atomic emission spectrum based on liquid electrode discharge were prospected.

  15. Superradiant cascade emissions in an atomic ensemble via four-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Jen, H.H., E-mail: sappyjen@gmail.com

    2015-09-15

    We investigate superradiant cascade emissions from an atomic ensemble driven by two-color classical fields. The correlated pair of photons (signal and idler) is generated by adiabatically driving the system with large-detuned light fields via four-wave mixing. The signal photon from the upper transition of the diamond-type atomic levels is followed by the idler one which can be superradiant due to light-induced dipole–dipole interactions. We then calculate the cooperative Lamb shift (CLS) of the idler photon, which is a cumulative effect of interaction energy. We study its dependence on a cylindrical geometry, a conventional setup in cold atom experiments, and estimate the maximum CLS which can be significant and observable. Manipulating the CLS of cascade emissions enables frequency qubits that provide alternative robust elements in quantum network. - Highlights: • Superradiance from a cascade atomic transition. • Correlated photon pair generation via four-wave mixing. • Dynamical light–matter couplings in a phased symmetrical state. • Cooperative Lamb shift in a cylindrical atomic ensemble.

  16. Temperature and emissivity determination of liquid steel S235

    International Nuclear Information System (INIS)

    Schöpp, H; Kozakov, R; Gött, G; Uhrlandt, D; Sperl, A; Wilhelm, G

    2012-01-01

    Temperature determination of liquid metals is difficult but a necessary tool for improving materials and processes such as arc welding in the metal-working industry. A method to determine the surface temperature of the weld pool is described. A TIG welding process and absolute calibrated optical emission spectroscopy are used. This method is combined with high-speed photography. 2D temperature profiles are obtained. The emissivity of the radiating surface has an important influence on the temperature determination. A temperature dependent emissivity for liquid steel is given for the spectral region between 650 and 850 nm. (paper)

  17. Temperature and emissivity determination of liquid steel S235

    Science.gov (United States)

    Schöpp, H.; Sperl, A.; Kozakov, R.; Gött, G.; Uhrlandt, D.; Wilhelm, G.

    2012-06-01

    Temperature determination of liquid metals is difficult but a necessary tool for improving materials and processes such as arc welding in the metal-working industry. A method to determine the surface temperature of the weld pool is described. A TIG welding process and absolute calibrated optical emission spectroscopy are used. This method is combined with high-speed photography. 2D temperature profiles are obtained. The emissivity of the radiating surface has an important influence on the temperature determination. A temperature dependent emissivity for liquid steel is given for the spectral region between 650 and 850 nm.

  18. Ultra fast atomic process in X-ray emission by inner-shell ionization

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Tajima, T

    1998-03-01

    An ultra-fast atomic process together with X-ray emission by inner-shell ionization using high intensity (10{sup 18} W/cm{sup 2}) short pulse (20fs) X-ray is studied. A new class of experiment is proposed and a useful pumping source is suggested. In this method, it is found that the gain value of X-ray laser amounts to larger than 1000(1/cm) with use of the density of 10{sup 22}/cm{sup 3} of carbon atom. Electron impact ionization effect and initial density effect as well as intensity of pumping source effect are also discussed. (author)

  19. Inductively coupled plasma--atomic emission spectrometry: trace elements in oil matrices

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Charlie Albert [Iowa State Univ., Ames, IA (United States)

    1977-12-01

    The simultaneous determination of up to 20 trace elements in various oil matrices by inductively coupled plasma-atomic emission spectrometry is reported. The oil matrices investigated were lubricating oils (for wear metals), fuel oil, centrifuged coal liquefaction product, crude soybean oil, and commercial edible oils. The samples were diluted with appropriate organic solvents and injected into the plasma as an aerosol generated by a pneumatic nebulization technique. Detection limits of the 28 elements studied ranged from 0.0006 to 9 μg/g with the majority falling in the 0.01 to 0.1 μg/g range. Analytical calibration curves were linear over at least two orders of magnitude and for some elements this linearity extended over 4.5 orders of magnitude. Relevant data on precision and accuracy are included. Because metals often occur as particles in lubricating oil and coal liquefaction products, the effect of particles on the analytical results was examined. Wear metal particles in used oil did not appear to affect the analytical results. However, incomplete recovery relative to organometallic reference solutions was obtained for iron particles with a nominal mean diameter of 3.0 μm suspended in oil. It was shown that the following factors contributed to incomplete recovery for the particles: settling of the suspended particles in the flask, a difference in nebulization efficiency between particle suspensions and organometallic solutions, and indications of incomplete vaporization of the larger particles in the plasma.

  20. Cobalt as chemical modifier to improve chromium sensitivity and minimize matrix effects in tungsten coil atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidnei G. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil); Donati, George L., E-mail: georgedonati@yahoo.com.br [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Santos, Luana N. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil); Jones, Bradley T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Nóbrega, Joaquim A. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil)

    2013-05-30

    Graphical abstract: -- Highlights: •Charge transfer reactions increase the population of Cr{sup +}. •Chromium ions and electrons recombine to form excited-state Cr atoms. •A 10-fold improvement in LOD is observed for Cr emission measurements. •The two-step ionization/excitation mechanism improves sensitivity and accuracy. •High concentrations of Co also minimize matrix effects. -- Abstract: Cobalt is used as chemical modifier to improve sensitivity and minimize matrix effects in Cr determinations by tungsten coil atomic emission spectrometry (WCAES). The atomizer is a tungsten filament extracted from microscope light bulbs. A solid-state power supply and a handheld CCD-based spectrometer are also used in the instrumental setup. In the presence of 1000 mg L{sup −1} Co, WCAES limit of detection for Cr (λ = 425.4 nm) is calculated as 0.070 mg L{sup −1}; a 10-fold improvement compared to determinations without Co modifier. The mechanism involved in such signal enhancement is similar to the one observed in ICP OES and ICP-MS determinations of As and Se in the presence of C. Cobalt increases the population of Cr{sup +} by charge transfer reactions. In a second step, Cr{sup +}/e{sup −} recombination takes place, which results in a larger population of excited-state Cr atoms. This alternative excitation route is energetically more efficient than heat transfer from atomizer and gas phase to analyte atoms. A linear dynamic range of 0.25–10 mg L{sup −1} and repeatability of 3.8% (RSD, n = 10) for a 2.0 mg L{sup −1} Cr solution are obtained with this strategy. The modifier high concentration also contributes to improving accuracy due to a matrix-matching effect. The method was applied to a certified reference material of Dogfish Muscle (DORM-2) and no statistically significant difference was observed between determined and certified Cr values at a 95% confidence level. Spike experiments with bottled water samples resulted in recoveries between 93% and

  1. Effect of Cs and Li atom adsorption on MgO: Secondary emission and work function

    International Nuclear Information System (INIS)

    Bagraev, N.T.; Borisov, V.L.

    1980-01-01

    Adsorption of Cs and Li atoms on the surface of single crystal magnesium oxide films has been investigated using Auger, LEED and contact difference techniques. A decreased work function for a single crystal MgO film grown on the Mo (100) face was observed to be accompanied by an increased secondary electron emission yield shown to be due to a larger escape depth for secondary electrons. LEED showed well ordered layers of adsorbed Cs on the MgO film surface. A model to explain the behaviour of Cs atoms on the film surface is proposed. It is shown that the stability of the Cs coating is not dependent on a prolonged bombardment of the film by incident electron beams of high current density. Depositing and implanting of thin single crystal MgO films with Li were found to result in an increased secondary electron emission yield, with Li adsorption on the MgO film surface being disordered. (orig.)

  2. Search for two-photon emission from 2S states of low-Z muonic atoms

    International Nuclear Information System (INIS)

    Carter, A.L.; Hincks, E.P.; Cox, C.R.; Dodson, G.W.; Eckhause, M.; Kane, J.R.; Rushton, A.M.; Siegel, R.T.; Welsh, R.E.; Hargrove, C.K.; Mes, H.; Dixit, M.S.; National Research Council of Canada, Ottawa, Ontario)

    1983-01-01

    A search for two-photon emission from 2S states of low-Z muonic atoms has been made. Intrinsic Ge detectors were positioned around target of Li, Be, B, or their hydrides, or a vessel containing B 2 H 6 , H 2 , or O 2 . Upper limits on the fraction of stopping muons which formed metastable 2S states range from approx.= 10 - 3 to 10 - 5 . (orig.)

  3. Search for two-photon emission from 2S states of low-Z muonic atoms

    Energy Technology Data Exchange (ETDEWEB)

    Carter, A.L.; Hincks, E.P. (Carleton Univ., Ottawa, Ontario (Canada). Dept. of Physics); Cox, C.R.; Dodson, G.W.; Eckhause, M.; Kane, J.R.; Rushton, A.M.; Siegel, R.T.; Welsh, R.E. (College of William and Mary, Williamsburg, VA (USA). Dept. of Physics); Hargrove, C.K.

    1983-05-12

    A search for two-photon emission from 2S states of low-Z muonic atoms has been made. Intrinsic Ge detectors were positioned around target of Li, Be, B, or their hydrides, or a vessel containing B/sub 2/H/sub 6/, H/sub 2/, or O/sub 2/. Upper limits on the fraction of stopping muons which formed metastable 2S states range from approximately = 10/sup -3/ to 10/sup -5/.

  4. Inductively coupled plasma for atomic emission spectroscopy at the Savannah River Plant

    International Nuclear Information System (INIS)

    Coleman, J.T.

    1986-01-01

    The Savannah River Plant atomic emission spectroscopy laboratory has been in operation for over 30 years. Routine analytical methods and instrumentation are being replaced with current technology. Laboratory renovation will include the installation of contained dual excitation sources (inductively coupled plasma and d-c arc) with a direct reading spectrometer. The instrument will be used to provide impurity analyses of plutonium, uranium, and other nuclear fuel cycle materials

  5. Angle and Spin Resolved Auger Emission Theory and Applications to Atoms and Molecules

    CERN Document Server

    Lohmann, Bernd

    2009-01-01

    The Auger effect must be interpreted as the radiationless counterpart of photoionization and is usually described within a two-step model. Angle and spin resolved Auger emission physics deals with the theoretical and numerical description, analysis and interpretation of such types of experiments on free atoms and molecules. This monograph derives the general theory applying the density matrix formalism and, in terms of irreducible tensorial sets, so called state multipoles and order parameters, for parameterizing the atomic and molecular systems, respectively. Propensity rules and non-linear dependencies between the angular distribution and spin polarization parameters are included in the discussion. The numerical approaches utilizing relativistic distorted wave (RDWA), multiconfigurational Dirac-Fock (MCDF), and Greens operator methods are described. These methods are discussed and applied to theoretical predictions, numerical results and experimental data for a variety of atomic systems, especially the rare...

  6. MAGIA - using atom interferometry to determine the Newtonian gravitational constant

    International Nuclear Information System (INIS)

    Stuhler, J; Fattori, M; Petelski, T; Tino, G M

    2003-01-01

    We describe our experiment MAGIA (misura accurata di G mediante interferometria atomica), in which we will use atom interferometry to perform a high precision measurement of the Newtonian gravitational constant G. Free-falling laser-cooled atoms in a vertical atomic fountain will be accelerated due to the gravitational potential of nearby source masses (SMs). Detecting this acceleration with techniques of Raman atom interferometry will enable us to assign a value to G. To suppress systematic effects we will implement a double-differential measurement. This includes launching two atom clouds in a gradiometer configuration and moving the SMs to different vertical positions. We briefly summarize the general idea of the MAGIA experiment and put it in the context of other high precision G-measurements. We present the current status of the experiment and report on analyses of the expected measurement accuracy

  7. Pyrolysis gas chromatographic atomic emission detection for sediments, coals and other petrochemical precursors

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, J.A.; Zeng, Y.D.; Uden, P.C.; Eglinton, T.I.; Ericson, I. (Massachusetts University, Amherst, MA (USA). Dept. of Chemistry)

    1992-09-01

    On-line flash pyrolysis coupled to a capillary gas chromatograph for the characterization of marine sediments, coals and other heterogeneous solid samples is described. A helium microwave-induced plasma is used for chromatographic detection by atomic emission spectrometry. Simultaneous multi-element detection is achieved with a photodiode array detector. The optical path of the gas chromatographic atomic emission detector is purged with helium, allowing simultaneous, sensitive detection of atomic emission from sulfur 181 nm, phosphorous 186 nm, arsenic 189 nm, selenium 196 nm and carbon 193 nm. Several sediment and coal samples have been analysed for their carbon, nitrogen, sulfur, oxygen, phosphorous, arsenic and selenium content. Qualitative information indicating the occurrence and distribution of these elements in the samples can be used to gauge the relative stage of diagenetic evolution of the samples and provide information on their depositional environment. In some instances the chromatographic behaviour of the compounds produced upon pyrolysis is improved through on-line alkylation. This on-line derivatization is achieved by adding liquid reagents to the pyrolysis probe or by adding liquid reagents to the pyrolysis probe or by adding solid reagents either to the solid sample or by packing the reagent in the injection port of the chromatograph.

  8. Spontaneous emission spectra and simulating multiple spontaneous generation coherence in a five-level atomic medium

    International Nuclear Information System (INIS)

    Li Jiahua; Liu Jibing; Qi Chunchao; Chen Aixi

    2006-01-01

    We investigate the features of the spontaneous emission spectra in a coherently driven cold five-level atomic system by means of a radio frequency (rf) or microwave field driving a hyperfine transition within the ground state. It is shown that a few interesting phenomena such as spectral-line narrowing, spectral-line enhancement, spectral-line suppression, and spontaneous emission quenching can be realized by modulating the frequency and intensity of the rf-driving field in our system. In the dressed-state picture of the coupling and rf-driving fields, we find that this coherently driven atomic system has three close-lying levels so that multiple spontaneously generated coherence (SGC) arises. Our considered atomic model can be found in real atoms, such as rubidium or sodium, so a corresponding experiment can be done to observe the expected phenomena related to SGC reported by Fountoulakis et al. [Phys. Rev. A 73, 033811 (2006)], since no rigorous conditions are required

  9. Neutron diffraction determination of mean-square atomic displacements

    International Nuclear Information System (INIS)

    Tibballs, J.E.; Feteris, S.M.; Barnea, Z.

    1981-01-01

    Integrated intensities for Bragg reflection of neutrons from single crystals of the III-V compounds, InAs and GaSb, have been measured at room temperature. The data were collected at two wavelengths, 0.947 A and 1.241 A, in order to establish the adequacy of a correction for moderate to severe anisotropic extinction. Data were also obtained for InAs at four temperatures from 408 K to 933 K. Corrections for thermal diffuse scattering were applied. The results were analysed in the one-particle potential approximation with terms to fourth-order in the atomic displacements u = (u 1 , u 2 , u 3 ). At 296 K, the mean-square components were determined for In, 0.0116(2)A 2 and As, 0.0102 (1)A 2 ; for Ga, 0.0120(3)A 2 and Sb, 0.0107(3)A 2 . The third-order coefficients for InAs are comparable with those for Si and Ge, those for GaSb with those for zinc chalcogenides. Non-harmonic behaviour in InAs is observed below 400 K

  10. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  11. Fast Excitation and Photon Emission of a Single-Atom-Cavity System

    International Nuclear Information System (INIS)

    Bochmann, J.; Muecke, M.; Langfahl-Klabes, G.; Erbel, C.; Weber, B.; Specht, H. P.; Moehring, D. L.; Rempe, G.

    2008-01-01

    We report on the fast excitation of a single atom coupled to an optical cavity using laser pulses that are much shorter than all other relevant processes. The cavity frequency constitutes a control parameter that allows the creation of single photons in a superposition of two tunable frequencies. Each photon emitted from the cavity thus exhibits a pronounced amplitude modulation determined by the oscillatory energy exchange between the atom and the cavity. Our technique constitutes a versatile tool for future quantum networking experiments

  12. Simultaneous determination of arsenic and antimony by hydride generation atomic fluorescence spectrometry with dielectric barrier discharge atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhi [Department of Chemistry, Key Laboratory for Atomic and Molecular Nanosciences of the Education Ministry, Tsinghua University, Beijing 100084 (China); Kuermaiti, Biekesailike [Department of Chemistry, Key Laboratory for Atomic and Molecular Nanosciences of the Education Ministry, Tsinghua University, Beijing 100084 (China); Products Quality Inspection Institute, Yili, Xinjiang 835000 (China); Wang Juan; Han Guojun; Zhang Sichun [Department of Chemistry, Key Laboratory for Atomic and Molecular Nanosciences of the Education Ministry, Tsinghua University, Beijing 100084 (China); Zhang Xinrong, E-mail: xrzhang@mail.tsinghua.edu.cn [Department of Chemistry, Key Laboratory for Atomic and Molecular Nanosciences of the Education Ministry, Tsinghua University, Beijing 100084 (China)

    2010-12-15

    Simultaneous determination of As and Sb by hydride generation atomic fluorescence spectrometry was developed with the dielectric barrier discharge plasma as the hydride atomizer. The low-temperature and atmospheric-pressure micro-plasma was generated in a quartz cylindrical configuration device, which was constructed by an axial internal electrode and an outer electrode surrounding outside of the tube. The optimization of the atomizer construction and parameters for hydride generation and fluorescence detection systems were carried out. Under the optimized conditions, the detection limits for As and Sb were 0.04 and 0.05 {mu}g L{sup -1}, respectively. In addition, the applicability of the present method was confirmed by the detection of As and Sb in reference materials of quartz sandstone (GBW07106) and argillaceous limestone (GBW07108). The present work provided a new approach to exploit the miniaturized hydride generation dielectric barrier discharge atomic fluorescence spectrometry system for simultaneous multi-element determination.

  13. Simultaneous determination of arsenic and antimony by hydride generation atomic fluorescence spectrometry with dielectric barrier discharge atomizer

    International Nuclear Information System (INIS)

    Xing Zhi; Kuermaiti, Biekesailike; Wang Juan; Han Guojun; Zhang Sichun; Zhang Xinrong

    2010-01-01

    Simultaneous determination of As and Sb by hydride generation atomic fluorescence spectrometry was developed with the dielectric barrier discharge plasma as the hydride atomizer. The low-temperature and atmospheric-pressure micro-plasma was generated in a quartz cylindrical configuration device, which was constructed by an axial internal electrode and an outer electrode surrounding outside of the tube. The optimization of the atomizer construction and parameters for hydride generation and fluorescence detection systems were carried out. Under the optimized conditions, the detection limits for As and Sb were 0.04 and 0.05 μg L -1 , respectively. In addition, the applicability of the present method was confirmed by the detection of As and Sb in reference materials of quartz sandstone (GBW07106) and argillaceous limestone (GBW07108). The present work provided a new approach to exploit the miniaturized hydride generation dielectric barrier discharge atomic fluorescence spectrometry system for simultaneous multi-element determination.

  14. Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers

    OpenAIRE

    Becker, Emilene M.; Rampazzo, Roger T.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Silva, Márcia M. da; Welz, Bernhard; Katskov, Dmitri A.

    2011-01-01

    Acesso restrito: Texto completo. In the present work a direct method for the determination of arsenic in petroleum derivatives has been developed, comparing the performance of a commercial transversely heated platform atomizer (THPA) with that of a transversely heated filter atomizer (THFA). The THFA results in a reduction of background absorption and an improved sensitivity as has been reported earlier for this atomizer. The mixture of 0.1% (m/v) Pd+0.03% (m/v) Mg+0.05% (v/v) Triton X-...

  15. Direct determination of beryllium, cadmium, lithium, lead and silver in thorium nitrate solution by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Thulasidas, S.K.; Kulkarni, M.J.; Porwal, N.K.; Page, A.G.; Sastry, M.D.

    1988-01-01

    An electrothermal atomization atomic absorption spectrometric (ET-AAS) method is developed for the direct determination of Ag, Be, Cd, Li and Pb in thorium nitrate solution. The method offers detection of sub-nanogram amounts of these analytes in 100-microgram thorium samples with a precision of around 10%. A number of spiked samples and pre-analyzed ThO 2 samples have been analyzed to evaluate the performance of the analytical methods developed here

  16. Determination of ultratrace elements in natural waters by solid-phase extraction and atomic spectrometry methods.

    Science.gov (United States)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Frache, Roberto

    2003-01-01

    A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min(-1), elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L(-1) using ETAAS and 12, 122, 3.4, 17, and 21 ng L(-1) using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-microg L(-1) concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater).

  17. Determination of ultratrace elements in natural waters by solid-phase extraction and atomic spectrometry methods

    Energy Technology Data Exchange (ETDEWEB)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Frache, Roberto [Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso, 31-16146, Genoa (Italy)

    2003-01-01

    A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min{sup -1}, elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L{sup -1} using ETAAS and 12, 122, 3.4, 17, and 21 ng L{sup -1} using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-{mu}g L{sup -1} concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater). (orig.)

  18. Ultratrace determination of lead in whole blood using electrothermal atomization laser-excited atomic fluorescence spectrometry.

    Science.gov (United States)

    Wagner, E P; Smith, B W; Winefordner, J D

    1996-09-15

    Laser-excited atomic fluorescence has been used to detect lead that was electrothermally atomized from whole blood in a graphite furnace. A 9 kHz repetition rate copper vapor laser pumped dye laser was used to excite the lead at 283.3 nm, and the resulting atomic fluorescence was detected at 405.8 nm. No matrix modification was used other than a 1:21 dilution of the whole blood with high-purity water. Using the atomic fluorescence peak area as the analytical measure and a background correction technique based upon a simultaneous measurement of the transmitted laser intensity, excellent agreement for NIST and CDC certified whole blood reference samples was obtained with aqueous standards. A limit of detection in blood of 10 fg/mL (100 ag absolute) was achieved.

  19. Quantum mechanical determination of atomic polarizabilities of ionic liquids.

    Science.gov (United States)

    Heid, Esther; Szabadi, András; Schröder, Christian

    2018-04-25

    The distribution of a molecule's polarizability to individual atomic sites is inevitable to develop accurate polarizable force fields. We present the direct quantum mechanical calculation of atomic polarizabilities of 27 common ionic liquids. The method is superior to previously published distribution routines based on large databases of the molecular polarizability, and enables the correct description of any ionic liquid and its peculiarities within the quantum mechanical framework.

  20. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    Science.gov (United States)

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  1. The use of double laser pulses for the atomic-emission spectral estimation of uranium content in biological samples

    International Nuclear Information System (INIS)

    Patapovich, M.P.; Umreiko, D.S.; Zajogin, A.P.; Buloichik, J.I.

    2012-01-01

    This paper is aimed at the development of the techniques for estimation of the uranium content in biological objects (hair) using the atomic-emission laser analysis with a sufficient accuracy and high processing rate. (authors)

  2. REVIEW: Spontaneous emission of an atom in the presence of nanobodies

    Science.gov (United States)

    Klimov, Vasilii V.; Ducloy, M.; Letokhov, V. S.

    2001-07-01

    The effect of nanobodies, i.e., the bodies whose size is small compared to the emission wavelength, on spontaneous emission of an atom located near them is considered. The results of calculations performed within the framework of quantum and classical electrodynamics are presented both in analytic and graphical forms and can be readily used for planning experiments and analysis of experimental data. It is shown that nanobodies can be used to control efficiently the rate of spontaneous transitions. Thus, an excited atom located near a nanocylinder or a nanospheroid pole, whose transition dipole moment is directed normally to the nanobody surface, can decay with the rate that is tens and hundreds times higher than the decay rate in a free space. In the case of some (negative) dielectric constants, the decay rate can increase by a factor of 105—106 and more. On the other hand, the decay of an excited atom whose transition dipole moment is directed tangentially to the nanobody surface substantially slows down. The probability of nonradiative decay of the excited state is shown to increase substantially in the presence of na-nobodies possessing losses.

  3. Halogenated salicylaldehyde azines: The heavy atom effect on aggregation-induced emission enhancement properties

    International Nuclear Information System (INIS)

    Chen, Xiao-tong; Tong, Ai-jun

    2014-01-01

    This study investigates the heavy-atom effect (HAE) on aggregation-induced emission enhancement (AIEE) properties of salicylaldehyde azines. For this purpose, a series of halogenated salicylaldehyde azine derivatives, namely, chloro-salicylaldehyde azine (1), bromo-salicylaldehyde azine (2) and iodo-salicylaldehyde azine (3) are synthesized. 1 and 2 display typical AIEE characteristics of salicylaldehyde azine compounds; whereas for the iodo-substituent in 3, is found to be effective “external” heavy atom quenchers to salicylaldehyde azine fluorescence in aggregated state. Based on its weak fluorescence in aggregated state and relative strong fluorescence in dispersed state, 3 can also be applied as a turn-on fluorescence probe for egg albumin detection attributed to hydrophobic interaction. -- Highlights: • This study investigates the heavy-atom effect (HAE) on aggregation-induced emission enhancement (AIEE) properties of salicylaldehyde azines. • Chloro- and bromo-salicylaldehyde display typical AIEE properties of salicylaldehyde azine, whereas the iodo-substitute quenches AIEE in aggregated state. • Iodo-salicylaldehyde can be applied as a turn-on fluorescence probe for egg albumin detection attributed to hydrophobic interaction

  4. On I(5577 Å and I (7620 Å auroral emissions and atomic oxygen densities

    Directory of Open Access Journals (Sweden)

    R. L. Gattinger

    1996-07-01

    Full Text Available A model of auroral electron deposition processes has been developed using Monte Carlo techniques to simulate electron transport and energy loss. The computed differential electron flux and pitch angle were compared with in situ auroral observations to provide a check on the accuracy of the model. As part of the energy loss process, a tally was kept of electronic excitation and ionization of the important atomic and molecular states. The optical emission rates from these excited states were computed and compared with auroral observations of η(3914 Å, η(5577 Å, η(7620 Å and η(N2VK. In particular, the roles played by energy transfer from N2(A3Σ+u and by other processes in the excitation of O(1S and O2(b1Σ+g were investigated in detail. It is concluded that the N2(A3Σ+u mechanism is dominant for the production of OI(5577 Å in the peak emission region of normal aurora, although the production efficiency is much smaller than the measured laboratory value; above 150 km electron impact on atomic oxygen is dominant. Atomic oxygen densities in the range of 0.75±0.25 MSIS-86 [O] were derived from the optical comparisons for auroral latitudes in mid-winter for various levels of solar and magnetic activity.

  5. Determination of the spatial characteristics of an RF electrodeless discharge by the method of emission tomography

    International Nuclear Information System (INIS)

    Denisova, N. V.; Revalde, G.; Skudra, A.

    2006-01-01

    The spatial distribution of the density of mercury atoms in the 7 3 S state in a spherical RF electrode-less gas-discharge lamp is reconstructed by the method of emission tomography. The local values of the corresponding emission coefficients, which are proportional to the density of mercury atoms in the 7 3 S state, are determined from integral (over the plasma volume) measurements of the lamp radiation at a wavelength of 546.1 nm with the help of an algorithm based on the maximum entropy method. The results obtained show that, for all of the operating modes under study, the profile of the density of mercury atoms in the 7 3 S state has a minimum in the center of the lamp and a maximum near its wall. At a generator current of 100 mA and cold-spot temperature of 41 deg. C, the density of mercury atoms in the 7 3 S state is observed to drop substantially both in the center of the lamp and near its wall, the density in the center being reduced to almost zero. An explanation of this phenomenon is proposed

  6. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-01-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities (∼∼ 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs

  7. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez, A.M.; Ortiz, M.; Campos, J.

    1995-09-01

    Absolute transition probabilities for lines of Cr II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. The plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. The light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 to 4100 A. The spectral resolution of the system was 0.2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sb alloys. To avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000K), electron densities (approx 10 ''16 cm''-3) and self-absorption coefficients have been obtained

  8. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    Science.gov (United States)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using

  9. Effect of atomic-state coherence and spontaneous emission on three-level dynamics

    International Nuclear Information System (INIS)

    Cardimona, D.A.

    1990-01-01

    For a three-level atom in the ssV configuration (i.e., having two excited states each dipole-coupled to a common ground state), we have found a particular linear combination of bare-atom states in which Rabi oscillations and their associated collapses and revivals do not occur. Moving to a dressed-state picture, we discover that this particular linear combination state is just that dressed state which is decoupled from all the field modes. It is a dressed state for which the transition dipole moments with the other dressed states are zero. The existence of this decoupled dressed state depends on the tuning of the dressing laser field, which in turn depends on the bare-atom excited-state dipole moments and energy-level separation. When we include spontaneous emission, the population decays from the other dressed states into this decoupled state and remains coherently trapped there, producing a system that experiences no dynamical behavior. This is exact for δ-function photon statistics (i.e., if there is no intensity uncertainty). The trapping becomes less perfect as the photon statistics are allowed to have a greater bandwidth. Also, if the applied field is tuned incorrectly, the spontaneous realignment of the atomic state amplitudes does not result in a totally decoupled dressed state, and the dynamics proceed normally

  10. Proton Induced X-Rays Emission (PIXE) and Atomic Absorption Spectrometry (AAS) applied in the environmental sample analysis

    International Nuclear Information System (INIS)

    Popescu, Ion V.; Iordan, M.; Stihi, C.; Bancuta, A.; Dima, G.; Busuioc, G.; Ciupina, V.; Belc, M.; Badica, T.

    2003-01-01

    The aim of this work is to determine the elemental composition of tree leaves using Proton-Induced X-Rays Emission (PIXE) and Atomic Absorption Spectrophotometry (AAS) methods. By PIXE Spectrometry we identified and determined the concentration of S, Cl, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu Zn, As, Br, Sr and by AAS method the concentration of elements: Cr, Mn, Fe, Co, Cu, Zn, Se, Cd. Pb was identified in only 2 samples from 29. For tree leave samples collected at a large distance to the polluting source the Sr concentration decreased and the Mg, Ca, Se, Zn and Fe concentrations increased. Also, we can observe a small affinity of these leaves for the environmental Pb which was detected for two samples at a small distance to polluting source. (authors)

  11. CHIANTI—AN ATOMIC DATABASE FOR EMISSION LINES. XII. VERSION 7 OF THE DATABASE

    International Nuclear Information System (INIS)

    Landi, E.; Del Zanna, G.; Mason, H. E.; Young, P. R.; Dere, K. P.

    2012-01-01

    The CHIANTI spectral code consists of an atomic database and a suite of computer programs to calculate the optically thin spectrum of astrophysical objects and carry out spectroscopic plasma diagnostics. The database includes atomic energy levels, wavelengths, radiative transition probabilities, collision excitation rate coefficients, and ionization and recombination rate coefficients, as well as data to calculate free-free, free-bound, and two-photon continuum emission. Version 7 has been released, which includes several new ions, significant updates to existing ions, as well as Chianti-Py, the implementation of CHIANTI software in the Python programming language. All data and programs are freely available at http://www.chiantidatabase.org, while the Python interface to CHIANTI can be found at http://chiantipy.sourceforge.net.

  12. CHIANTI-AN ATOMIC DATABASE FOR EMISSION LINES. XII. VERSION 7 OF THE DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Del Zanna, G.; Mason, H. E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Young, P. R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA, 22030 (United States); Dere, K. P. [School of Physics, Astronomy and Computational Sciences, MS 6A2, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2012-01-10

    The CHIANTI spectral code consists of an atomic database and a suite of computer programs to calculate the optically thin spectrum of astrophysical objects and carry out spectroscopic plasma diagnostics. The database includes atomic energy levels, wavelengths, radiative transition probabilities, collision excitation rate coefficients, and ionization and recombination rate coefficients, as well as data to calculate free-free, free-bound, and two-photon continuum emission. Version 7 has been released, which includes several new ions, significant updates to existing ions, as well as Chianti-Py, the implementation of CHIANTI software in the Python programming language. All data and programs are freely available at http://www.chiantidatabase.org, while the Python interface to CHIANTI can be found at http://chiantipy.sourceforge.net.

  13. Organic solvents as interferents in arsenic determination by hydride generation atomic absorption spectrometry with flame atomization

    Czech Academy of Sciences Publication Activity Database

    Karadjova, I.B.; Lampugnani, L.; Dědina, Jiří; D'Ulivo, A.; Onor, M.; Tsalev, D.L.

    2006-01-01

    Roč. 61, č. 5 (2006), s. 525-531 ISSN 0584-8547 R&D Projects: GA AV ČR IAA400310507 Institutional research plan: CEZ:AV0Z40310501 Keywords : hydride generation * atomic absorption spectrometry * interferences Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.092, year: 2006

  14. 134Cs emission probabilities determination by gamma spectrometry

    Science.gov (United States)

    de Almeida, M. C. M.; Poledna, R.; Delgado, J. U.; Silva, R. L.; Araujo, M. T. F.; da Silva, C. J.

    2018-03-01

    The National Laboratory for Ionizing Radiation Metrology (LNMRI/IRD/CNEN) of Rio de Janeiro performed primary and secondary standardization of different radionuclides reaching satisfactory uncertainties. A solution of 134Cs radionuclide was purchased from commercial supplier to emission probabilities determination of some of its energies. 134Cs is a beta gamma emitter with 754 days of half-life. This radionuclide is used as standard in environmental, water and food control. It is also important to germanium detector calibration. The gamma emission probabilities (Pγ) were determined mainly for some energies of the 134Cs by efficiency curve method and the Pγ absolute uncertainties obtained were below 1% (k=1).

  15. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    Science.gov (United States)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  16. Inductively coupled plasma-atomic emission spectrometry: analytical assessment of the technique at the beginning of the 90's

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1991-01-01

    The main application of the inductively coupled plasma (ICP) today is in atomic emission spectroscopy (AES), as an excitation spectrochemical source, although uses of an ICP for fluorescence as just an atomizer, and specially for mass spectrometry, as an ionization source, are rocketing in the last few years. Since its inception, only a quarter of a century ago, ICP-AES has rapidly evolved to one of the preferred routine analytical techniques for convenient determination of many elements with high speed, at low levels and in the most varied samples. Perhaps its comparatively high kinetic temperature (capable of atomizing virtually every compound of any sample), its high excitation and ionization temperatures, and its favourable spatial structure at the core of the ICP success. By now, the ICP-AES can be considered as having achieved maturity in that a huge amount of analytical problems can be tackled with this technique, while no major or fundamental changes have been adopted for several years. Despite this fact, important driving forces are still in operation to further improve the ICP-AES sensitivity, selectivity, precision, sample throughput, etc. Moreover, proposals to extend the scope of the technique to traditionally elusive fields (e.g. non-metals and organic compound analysis) are also appearing in the recent literature. In this paper the 'state of the art', the last developments and the expectations in trying to circumvent the limitations of the ICP-AES (on the light of literature data and personal experience) are reviewed. (author)

  17. Study of thermoelectron emission of oxidized tungsten sponge in cesium atom flow

    International Nuclear Information System (INIS)

    Tursunmetov, K.A.; Sabirov, A.K.

    1993-01-01

    Thermoelectron emission of a tungsten sponge with 30-40% porosity is studied. The tungsten sponge is produced of fine-grain tungsten powder (diameter - 1-2 μm) according to standard technology. It is shown that tungsten sponge oxidation at T=1000 K with subsequent heating in vacuum at T=1100 K allows one to obtain the minimal stable and reproducible work function at the level of 1.03-1.05 eV in a flux of cesium atoms. Estimations show that effective emitting surface is 15-20 times as much as the polycrystal surface

  18. Experimental evidence of state-selective charge transfer in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2004-01-01

    State-selective charge-transfer behavior was observed for Fe, Cr, Mn and Cu in inductively coupled plasma (ICP)-atomic emission spectrometry. Charge transfer from Ar + to Fe, Cr and Mn is state-selective because of inefficient collisional mixing of the quasiresonant charge-transfer energy levels with nearby levels. This low efficiency is the consequence of differences in electronic configuration of the core electrons. The reason for state-selective charge-transfer behavior to Cu is not clear, although a tentative explanation based on efficiency of intramultiplet and intermultiplet mixing for this special case is offered

  19. Measurement of visible and UV emission from Energetic Neutral Atom Precipitation (ENAP), on Spacelab

    Science.gov (United States)

    Tinsley, B. A.

    1980-01-01

    The charge exchange of plasmaspheric ions and exospheric H and O and of solar wind ions with exospheric and interplanetary H are sources of precipitating neutrals whose faint emission may be observed by the imaging spectrometric observatory during dark periods of the SL-1 orbit. Measurements of the interactions of these precipitating atoms with the thermosphere are needed to evaluate the heating and ionization effects on the atmosphere as well as the selective loss of i energetic ions from the sources (predominantly the ring current).

  20. Initial state dependence of low-energy electron emission in fast ion atom collisions

    International Nuclear Information System (INIS)

    Moshammer, R.; Schmitt, W.; Kollmus, H.; Ullrich, J.; Fainstein, P.D.; Hagmann, S.

    1999-06-01

    Single and multiple ionization of Neon and Argon atoms by 3.6 MeV/u Au 53+ impact has been explored in kinematically complete experiments. Doubly differential cross sections for low-energy electron emission have been obtained for defined charge state of the recoiling target ion and the receding projectile. Observed target specific structures in the electron continuum are attributable to the nodal structure of the initial bound state momentum distribution. The experimental data are in excellent accord with CDW-EIS single ionization calculations if multiple ionization is considered appropriately. (orig.)

  1. Quantitative criterion for quantum interference within spontaneous emission modification of a driven ladder atom

    International Nuclear Information System (INIS)

    Liu Jiaren; Zhang Zhiyi; Xiao George; Grover, C P

    2003-01-01

    The spontaneous emission spectrum of a ladder three-level atom with an upper transition driven by a coherent field is calculated under a universal model where various decays, any incoherent pumping and coherent driving are taken into account. The analytical expression for the spectrum profile is given on the basis of the quantum regression theorem. To our knowledge, it is the first time that the quantitative criterion condition Ω ab - γ ac vertical bar, under which quantum destructive interference induced by the coherent driving field occurs, is deduced for the modification of spontaneous emission from the middle level to the ground level. The roles and limits of incoherent pumping, coherent driving and experimental configuration are discussed for realizing the quantum interference and reducing the Doppler effects

  2. Optical emission studies of atomic and ionic species in the ionized sputter-deposition process of magnesium oxide thin films

    International Nuclear Information System (INIS)

    Matsuda, Y.; Koyama, Y.; Iwaya, M.; Shinohara, M.; Fujiyama, H.

    2005-01-01

    Planar magnetron (PM) power and ICP-RF power dependences of the optical emission intensities of excited atomic and ionic species in the reactive ionized sputter-deposition of magnesium oxide (MgO) thin films were investigated. With the increase in PM power at constant ICP-RF power, Mg I emission intensity increased and Ar I emission intensity gradually decreased. With the increase in ICP-RF power at constant PM power, the Mg I emission intensity increased at lower ICP-RF power and then gradually decreased at higher ICP-RF power; on the contrary, Ar I emission intensity monotonically increased. Emission intensity of atomic oxygen was negligibly small compared with those of Mg I and Ar I under the metallic sputtering mode condition

  3. Emission of H- fragments from collisions of OH+ ions with atoms and molecules

    International Nuclear Information System (INIS)

    Juhasz, Z.; Sulik, B.

    2010-01-01

    Compete text of publication follows. Detailed measurement of the kinematics of positive fragment ions from molecular collisions pro-vide useful information about the collision dynamics (see e.g. and references therein). In the present work, we turn our attention to negative fragments. Double differential emission spectra of negative charged particles have been measured in collisions of OH + ions with gas jets of Ar atoms and acetone (CH 3 -CO-CH 3 ) molecules at 7 keV impact energy. Among the emitted electrons, a relatively strong contribution of H - ions has been observed in both collision systems. According to a kinematic analysis, the observed H - ions were produced in close atom-atom collisions. For acetone, these ions originated from both the projectile and the target. The present ion impact energy range falls in the distal region of the Bragg peak. Therefore, a non negligible H - production in biological tissues could be relevant for ion therapy and for radiolysis in general. The present experiments were conducted at the 14.5 GHz Electron Cyclotron Resonance (ECR) ion source of the ARIBE facility, at the Grand Accelerateur National d'Ions Lourds (GANIL) in Caen, France. The molecular OH + ions were produced by introducing water vapor in the ECR plasma chamber. The extracted ions were collimated to a diameter of 2.5 mm before entering the collision chamber. In its center, the OH + projectiles crossed an effusive gas jet of either argon atoms or acetone molecules. In the collision area, the density of the gas target was typically of 10 13 cm -3 . The electrons and negative ions produced in the collision were detected by means of a single-stage spectrometer consisting of an electrostatic parallel-plate analyzer. Spectra taken at 30 deg observation angle are shown in Figure 1. Contributions from H - appear in clearly visible peaks. Kinematics shows that the peak at 410 eV in both panels is due emission of H - ions moving with nearly the projectile velocity. An H

  4. Use of electrothermal atomization for determining metallic impurities in nuclearly pure uranium compounds

    International Nuclear Information System (INIS)

    Franco, M.B.

    1986-01-01

    Atomic absorption spectrometry with electrothermal atomization was used for the determination of Al, Cd, Cr, Fe, Mn, Mo and Ni as impurities in uranium oxide samples. The determinations were performed in solubilized samples both with and without uranium separation as well as in solid samples. (Author) [pt

  5. Use of electrothermal atomization for determining metallic impurities in nuclearly pure uranium compounds

    International Nuclear Information System (INIS)

    Franco, M.B.

    1985-01-01

    Atomic absorption spectrometry with electrothermal atomization was used for the determination of Al, Cd, Cr, Fe, Mn, Mo and Ni as impurities in uranium oxide samples. The determinations were performed in solubilized samples both with and without uranium separation as well as in solid samples. (Author) [pt

  6. Spatial Dependent Spontaneous Emission of an Atom in a Semi-Infinite Waveguide of Rectangular Cross Section

    Science.gov (United States)

    Song, Hai-Xi; Sun, Xiao-Qi; Lu, Jing; Zhou, Lan

    2018-01-01

    We study a quantum electrodynamics (QED) system made of a two-level atom and a semi-infinite rectangular waveguide, which behaves as a perfect mirror in one end. The spatial dependence of the atomic spontaneous emission has been included in the coupling strength relevant to the eigenmodes of the waveguide. The role of retardation is studied for the atomic transition frequency far away from the cutoff frequencies. The atom-mirror distance introduces different phases and retardation times into the dynamics of the atom interacting resonantly with the corresponding transverse modes. It is found that the upper state population decreases from its initial as long as the atom-mirror distance does not vanish, and is lowered and lowered when more and more transverse modes are resonant with the atom. The atomic spontaneous emission can be either suppressed or enhanced by adjusting the atomic location for short retardation time. There are partial revivals and collapses due to the photon reabsorbed and re-emitted by the atom for long retardation time. Supported by National Natural Science Foundation of China under Grant Nos. 11374095, 11422540, 11434011, and 11575058, National Fundamental Research Program of China (the 973 Program) under Grant No. 2012CB922103, and Hunan Provincial Natural Science Foundation of China under Grant No. 11JJ7001

  7. Pollutant emissions of commercial and industrial wood furnaces; determination of emissions and emission reducing techniques

    International Nuclear Information System (INIS)

    Baumbach, G.; Angerer, M.

    1993-01-01

    Approximately 382.000 t of wood waste from production processes are fired in Baden-Wuerttemberg per year in 4345 furnaces with capacities of less than 1 MW (field of application of the ''1 BImSchV''). This corresponds to an energy consumption of 5600 TJ. The firings with a totally installed capacity of 594 MW are operated mainly by joiners, carpenters, in sawmills and furniture factories. Certainly there are typical differences between the diverse branches concerning the characteristics of the firings such as capacity, kind of firing, of fuel supply and heat generation. Because of lacking established emission factors, at present time the emissions of these furnaces cannot be calculated. Therefore field measurements are carried out at a representative selection of the registered installations. The emissions are measured in consideration of the usual ways of operation and the commonly used fuels. Supplementarily the compound of the emitted hydrocarbons and their dependence on completeness of the combustion as well as the compound and the grain size distribution of the particle emissions are investigated. (orig.) [de

  8. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  9. An Atomically Precise Au10 Ag2 Nanocluster with Red-Near-IR Dual Emission.

    Science.gov (United States)

    Lei, Zhen; Guan, Zong-Jie; Pei, Xiao-Li; Yuan, Shang-Fu; Wan, Xian-Kai; Zhang, Jin-Yuan; Wang, Quan-Ming

    2016-08-01

    A red-near-IR dual-emissive nanocluster with the composition [Au10 Ag2 (2-py-C≡C)3 (dppy)6 ](BF4 )5 (1; 2-py-C≡C is 2-pyridylethynyl, dppy=2-pyridyldiphenylphosphine) has been synthesized. Single-crystal X-ray structural analysis reveals that 1 has a trigonal bipyramidal Au10 Ag2 core that contains a planar Au4 (2-py-C≡C)3 unit sandwiched by two Au3 Ag(dppy)3 motifs. Cluster 1 shows intense red-NIR dual emission in solution. The visible emission originates from metal-to-ligand charge transfer (MLCT) from silver atoms to phosphine ligands in the Au3 Ag(dppy)3 motifs, and the intense NIR emission is associated with the participation of 2-pyridylethynyl in the frontier orbitals of the cluster, which is confirmed by a time-dependent density functional theory (TD-DFT) calculation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Trends in preconcentration procedures for metal determination using atomic spectrometry techniques

    International Nuclear Information System (INIS)

    Godoi Pereira, M. de; Arruda, M.A.Z.

    2003-01-01

    Methods for metal preconcentration are often described in the literature. However, purposes are often different, depending on whether the methods are applied in environmental, clinical or technological fields. The respective method needs to be efficient, give high sensitivity, and ideally also is selective which is useful when used in combination with atomic spectroscopy. This review presents the actual tendencies in metal preconcentration using techniques such as flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS), hydride generation atomic absorption spectrometry (HGAAS), inductively coupled plasma optical emission spectrometry (ICP OES) and inductively coupled plasma mass spectrometry (ICP-MS). Procedures based on related to electrochemical, coprecipitation/precipitation, liquid-liquid and solid-liquid extraction and atom trapping mechanisms are presented. (author)

  11. Projectile X-ray emission in relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Shadi Mohammad Ibrahim

    2010-03-16

    This work reports on the study of the projectile X-ray emission in relativistic ion-atom collisions. Excitation of K-shell in He-like uranium ions, electron capture into H-like uranium ions and Simultaneous ionization and excitation of initially He-like uranium ions have been studied using the experimental storage ring at GSI. For the K{sub {alpha}}{sub 1} and K{sub {alpha}}{sub 2} transitions originating from the excitation of the He-like uranium ions, no alignment was observed. In contrast, the Ly{sub {alpha}}{sub 1} radiation from the simultaneous ionization-excitation process of the He-like uranium ions shows a clear alignment. The experimental value leads to the inclusion of a magnetic term in the interaction potential. The capture process of target electrons into the highly-charged heavy ions was studied using H-like uranium ions at an incident energy of 220 MeV/u, impinging on N{sub 2} gas-target. It was shown that, the strongly aligned electrons captured in 2p{sub 3/2} level couple with the available 1s{sub 1/2} electron which shows no initial directional preference. The magnetic sub-state population of the 2p{sub 3/2} electron is redistributed according to the coupling rules to the magnetic sub-states of the relevant two-electron states. This leads to the large anisotropy in the corresponding individual ground state transitions contributing to the K{sub {alpha}}{sub 1} emission. From the K{sub {alpha}}{sub 1}/K{sub {alpha}}{sub 2} ratio, the current results show that the incoherent addition of the E1 and M2 transition components yield to an almost isotropic emission of the total K{sub {alpha}}{sub 1}. In contrast to the radiative electron capture, the experimental results for the K-shell single excitation of He-like uranium ions indicate that only the {sup 1}P{sub 1} level contributes to the K{sub {alpha}}{sub 1} transition. For this case, the anisotropy parameter {beta}{sub 20} was found to be -0.20{+-}0.03. This work also reports on the study of a two

  12. Determination of some toxic gaseous emissions at Ama Industrial ...

    African Journals Online (AJOL)

    Determination of some toxic gaseous emissions at Ama Industrial Complex, Enugu, south eastern Nigeria. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... A study of some gases emitted from three industries at Ama industrial complex, Nigeria, was carried out ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  13. Determination of trace elements in atomic absorption spectrophotometry. Study of the atomic cloud and atom generator. Application to the measurement of physical quantities

    International Nuclear Information System (INIS)

    Hircq, Bernard.

    1976-06-01

    After the description of the absorption cell the principal parameters are studied: argon flow rate in the cell, atomization temperature, cell geometry etc. The technique is applied to the measurement of impurities in uranium after deposition on a carbon filament. The atomic concentration distribution and the dimensions of the cloud generated by a graphite filament are then studied along the axes parallel to the filament and as a function of the various experimental parameters. From the determination of the cloud elevation rate it is possible to calculate the absolute atomic concentration, which allows certain physical quantities to be evaluated: oscillator force, Lorentz Widening, diffusion coefficient... The size and penetration depth of the deposit are then determined with an ionic microprobe and the distribution with a Castaing microprobe. The chemical transformations undergone by the uranium matrix during the heat cycles are studied by the X-ray method [fr

  14. Upgradation of an Apple IIe based DC arc atomic emission spectrometer to a PC based system

    International Nuclear Information System (INIS)

    Sampathkumar, R.; Ravindranath, S.V.G.; Patil, P.B.; Deshpande, S.S.; Saha, T.K.; Handu, V.K.

    2004-01-01

    The analysis of Uranium metal and its compounds used as reactor fuel for the presence of impurities especially Cd and B which have a high neutron capture cross section is routinely performed in Spectroscopy Division. The DC Arc Atomic Emission Spectrometer in the Division was employing an Apple IIe computer for performing the control and data acquisition jobs. The system was upgraded to a PC based data acquisition system and the necessary software to perform the spectro chemical analysis has been developed. This becomes necessary in a scenario where the commercially available Atomic Emission Spectrometers are no longer equipped with DC arc source. Also the Apple IIe computer which was performing the control and data acquisition has gone obsolete and its spares are no longer available. Therefore, to derive the benefits of using DC arc as excitation source the system was upgraded to a PC based system. This paper describes the upgraded system and the various software features relating to the mode of data acquisition, method of analysis, data processing etc. implemented as required by the analysts. (author)

  15. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: A comparative study

    International Nuclear Information System (INIS)

    Cabon, J.Y.; Giamarchi, P.; Le Bihan, A.

    2010-01-01

    Two methods available for direct determination of total Fe in seawater at low concentration level have been examined: electrothermal atomization atomic absorption spectrometry (ETAAS) and electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS). In a first part, we have optimized experimental conditions of ETAAS (electrothermal program, matrix chemical modification) for the determination of Fe in seawater by minimizing the chemical interference effects and the magnitude of the simultaneous background absorption signal. By using the best experimental conditions, a detection limit of 80 ng L -1 (20 μL, 3σ) for total Fe concentration was obtained by ETAAS. Using similar experimental conditions (electrothermal program, chemical modification), we have optimized experimental conditions for the determination of Fe by LEAFS. The selected experimental conditions for ETA-LEAFS: excitation wavelength (296.69 nm), noise attenuation and adequate background correction led to a detection limit (3σ) of 3 ng L -1 (i.e. 54 pM) for total Fe concentration with the use a 20 μL seawater sample. For the two methods, concentration values obtained for the analysis of Fe in a NASS-5 (0.2 μg L -1 ) seawater sample were in good agreement with the certified values.

  16. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: a comparative study.

    Science.gov (United States)

    Cabon, J Y; Giamarchi, P; Le Bihan, A

    2010-04-07

    Two methods available for direct determination of total Fe in seawater at low concentration level have been examined: electrothermal atomization atomic absorption spectrometry (ETAAS) and electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS). In a first part, we have optimized experimental conditions of ETAAS (electrothermal program, matrix chemical modification) for the determination of Fe in seawater by minimizing the chemical interference effects and the magnitude of the simultaneous background absorption signal. By using the best experimental conditions, a detection limit of 80 ng L(-1) (20 microL, 3sigma) for total Fe concentration was obtained by ETAAS. Using similar experimental conditions (electrothermal program, chemical modification), we have optimized experimental conditions for the determination of Fe by LEAFS. The selected experimental conditions for ETA-LEAFS: excitation wavelength (296.69 nm), noise attenuation and adequate background correction led to a detection limit (3sigma) of 3 ng L(-1) (i.e. 54 pM) for total Fe concentration with the use a 20 microL seawater sample. For the two methods, concentration values obtained for the analysis of Fe in a NASS-5 (0.2 microg L(-1)) seawater sample were in good agreement with the certified values. Copyright 2010 Elsevier B.V. All rights reserved.

  17. A comparison of simultaneous plasma, atomic absorption, and iron colorimetric determinations of major and trace constituents in acid mine waters

    Science.gov (United States)

    Ball, J.W.; Nordstrom, D. Kirk

    1994-01-01

    Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of

  18. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    International Nuclear Information System (INIS)

    Montaser, A.

    1993-01-01

    In this research, new high-temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. During the period January 1993--December 1993, emphasis was placed on (a) analytical investigations of atmospheric-pressure helium inductively coupled plasma (He ICP) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies; (b) simulation and computer modeling of plasma sources to predict their structure and fundamental and analytical properties without incurring the enormous cost of experimental studies; (c) spectrosopic imaging and diagnostic studies of high-temperature plasmas; (d) fundamental studies of He ICP discharges and argon-nitrogen plasma by high-resolution Fourier transform spectrometry; and (e) fundamental and analytical investigation of new, low-cost devices as sample introduction systems for atomic spectrometry and examination of new diagnostic techniques for probing aerosols. Only the most important achievements are included in this report to illustrate progress and obstacles. Detailed descriptions of the authors' investigations are outlined in the reprints and preprints that accompany this report. The technical progress expected next year is briefly described at the end of this report

  19. On I(5577 Å and I (7620 Å auroral emissions and atomic oxygen densities

    Directory of Open Access Journals (Sweden)

    R. L. Gattinger

    Full Text Available A model of auroral electron deposition processes has been developed using Monte Carlo techniques to simulate electron transport and energy loss. The computed differential electron flux and pitch angle were compared with in situ auroral observations to provide a check on the accuracy of the model. As part of the energy loss process, a tally was kept of electronic excitation and ionization of the important atomic and molecular states. The optical emission rates from these excited states were computed and compared with auroral observations of η(3914 Å, η(5577 Å, η(7620 Å and η(N2VK. In particular, the roles played by energy transfer from N2(A3Σ+u and by other processes in the excitation of O(1S and O2(b1Σ+g were investigated in detail. It is concluded that the N2(A3Σ+u mechanism is dominant for the production of OI(5577 Å in the peak emission region of normal aurora, although the production efficiency is much smaller than the measured laboratory value; above 150 km electron impact on atomic oxygen is dominant. Atomic oxygen densities in the range of 0.75±0.25 MSIS-86 [O] were derived from the optical comparisons for auroral latitudes in mid-winter for various levels of solar and magnetic activity.

  20. Determination of technetium by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Kaye, J.H.; Ballou, N.E.

    1978-01-01

    A detection limit of 6 x 10 -11 g has been achieved for measurement of technetium by graphite furnace atomic absorption spectrometry. A commercially available, demountable, hollow cathode lamp was used and both argon and neon were used as fill gases for the lamp. The range of applicability of the method, when the unresolved 2614.23 to 2615.87 A doublet is used for analysis, is from 60 pg to at least 3 ng of technetium per aliquot analyzed. 3 figures, 1 table

  1. Evaluation of a hydride generation-atomic fluorescence system for the determination of arsenic using a dielectric barrier discharge atomizer

    International Nuclear Information System (INIS)

    Zhu Zhenli; Liu Jixin; Zhang Sichun; Na Xing; Zhang Xinrong

    2008-01-01

    A new atomizer based on atmospheric pressure dielectric barrier discharge (DBD) plasma was specially designed for atomic fluorescence spectrometry (AFS) in order to be applied to the measurement of arsenic. The characteristics of the DBD atomizer and the effects of different parameters (power, discharge gas, gas flow rate, and KBH 4 concentration) were discussed in the paper. The DBD atomizer shows the following features: (1) low operation temperature (between 44 and 70 deg. C, depending on the operation conditions); (2) low power consumption; (3) operation at atmospheric pressure. The detection limit of As(III) using hydride generation (HG) with the proposed DBD-AFS was 0.04 μg L -1 . The analytical results obtained by the present method for total arsenic in reference materials, orchard leaves (SRM 1571) and water samples GBW(E) 080390, agree well with the certified values. The present HG-DBD-AFS is more sensitive and reliable for the determination of arsenic. It is a very promising technique allowing for field arsenic analysis based on atomic spectrometry

  2. Solid phase microextraction capillary gas chromatography combined with furnace atomization plasma emission spectrometry for speciation of mercury in fish tissues

    International Nuclear Information System (INIS)

    Grinberg, Patricia; Campos, Reinaldo C.; Mester, Zoltan; Sturgeon, Ralph E.

    2003-01-01

    The use of solid phase microextraction in conjunction with tandem gas chromatography-furnace atomization plasma emission spectrometry (SPME-GC-FAPES) was evaluated for the determination of methylmercury and inorganic mercury in fish tissue. Samples were digested with methanolic potassium hydroxide, derivatized with sodium tetraethylborate and extracted by SPME. After the SPME extraction, species were separated by GC and detected by FAPES. All experimental parameters were optimized for best separation and analytical response. A repeatability precision of typically 2% can be achieved with long-term (3 months) reproducibility precision of 4.3%. Certified Reference Materials DORM-2, DOLT-2 and TORT-2 from the National Research Council of Canada were analyzed to verify the accuracy of this technique. Detection limits of 1.5 ng g -1 for methylmercury and 0.7 ng g -1 for inorganic mercury in biological tissues were obtained

  3. Zinc, lead and copper in human teeth measured by induced coupled argon plasma atomic emission spectroscopy (ICP-AES)

    Energy Technology Data Exchange (ETDEWEB)

    Chew, L.T.; Bradley, D.A. E-mail: D.A.Bradley@exeter.ac.uk; Mohd, Y.; Jamil, M

    2000-11-15

    Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP-AES) has been used to determine Pb, Zn and Cu levels in 47 exfoliated human teeth (all of which required extraction for orthodontic reasons). Lead concentrations for the group were 1.7 {mu}g (g tooth mass){sup -1} to 40.5 {mu}g (g tooth mass){sup -1}, with a median of 9.8 {mu}g (g tooth mass){sup -1}. A median lead level in excess of the group value was found for the teeth of six lorry drivers who were included in the study. A more significant enhancement was found for the seven subjects whose age was in excess of 60 years. The median values for Zn and Cu were 123.0 and 0.6 {mu}g (g tooth mass){sup -1} respectively. Present values for tooth-Zn are lower than published data for other ethnic groups.

  4. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Latorre, C., E-mail: carlos.herrero@usc.es [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain); Alvarez Mendez, J.; Barciela Garcia, J.; Garcia Martin, S.; Pena Crecente, R.M. [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain)

    2012-10-24

    Highlights: Black-Right-Pointing-Pointer The use of CNTs as sorbent for metal species in solid phase extraction has been described. Black-Right-Pointing-Pointer Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. Black-Right-Pointing-Pointer Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes - due to their high adsorption and desorption capacities - have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  5. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    International Nuclear Information System (INIS)

    Herrero Latorre, C.; Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R.M.

    2012-01-01

    Highlights: ► The use of CNTs as sorbent for metal species in solid phase extraction has been described. ► Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. ► Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes – due to their high adsorption and desorption capacities – have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  6. Essays on the Determinants of Energy Related CO2 Emissions =

    Science.gov (United States)

    Moutinho, Victor Manuel Ferreira

    Overall, amongst the most mentioned factors for Greenhouse Gases (GHG) growth are the economic growth and the energy demand growth. To assess the determinants GHG emissions, this thesis proposed and developed a new analysis which links the emissions intensity to its main driving factors. In the first essay, we used the 'complete decomposition' technique to examine CO2 emissions intensity and its components, considering 36 economic sectors and the 1996-2009 periods in Portugal. The industry (in particular 5 industrial sectors) is contributing largely to the effects of variation of CO2 emissions intensity. We concluded, among others, the emissions intensity reacts more significantly to shocks in the weight of fossil fuels in total energy consumption compared to shocks in other variables. In the second essay, we conducted an analysis for 16 industrial sectors (Group A) and for the group of the 5 most polluting manufacturing sectors (Group B) based on the convergence examination for emissions intensity and its main drivers, as well as on an econometric analysis. We concluded that there is sigma convergence for all the effects with exception to the fossil fuel intensity, while gamma convergence was verified for all the effects, with exception of CO2 emissions by fossil fuel and fossil fuel intensity in Group B. From the econometric approach we concluded that the considered variables have a significant importance in explaining CO2 emissions and CO2 emissions intensity. In the third essay, the Tourism Industry in Portugal over 1996-2009 period was examined, specifically two groups of subsectors that affect the impacts on CO2 emissions intensity. The generalized variance decomposition and the impulse response functions pointed to sectors that affect tourism more directly, i. e. a bidirectional causality between the intensity of emissions and energy intensity. The effect of intensity of emissions is positive on energy intensity, and the effect of energy intensity on

  7. Selenium determination in biological material by atomic absorption spectrophotometry in graphite furnace and using vapor generation

    International Nuclear Information System (INIS)

    Carvalho Vidal, M. de F. de.

    1984-01-01

    The applicability of the atomic absorption spectrophotometry to the determination of selenium in biological material using vapor generation and electrothermal atomization in the graphite furnace was investigated. Instrumental parameters and the analytical conditions of the methods were studied. Decomposition methods for the samples were tested, and the combustion in the Wickbold apparatus was chosen. (author) [pt

  8. A laboratory manual for the determination of metals in water and wastewater by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Smith, R.

    1983-01-01

    This guide presents, in addition to a brief discussion of the basic principles and practical aspects of atomic absorption spectrophotometry, a scheme of analysis for the determination of 19 metals in water and wastewater, 16 by flame atomic absorption and 3 by vapour generation techniques. Simplicity, speed and accuracy were the main criteria considered in the selection of the various methods

  9. Locations of oxygen, nitrogen and carbon atoms in vanadium determined by neutron diffraction

    International Nuclear Information System (INIS)

    Hiraga, K.; Onozuka, T.; Hirabayashi, M.

    1977-01-01

    The occupation sites of oxygen, nitrogen, and carbon atoms dissolved interstitially in vanadium have been determined by means of neutron diffraction with use of single crystals of VOsub(0.032), VNsub(0.013) and VCsub(0.006). It is revealed that the interstitial atoms occupy, randomly, the octahedral sites in the b.c.c. host lattice of the three crystals. Neutron diffraction is advantageous for the present purpose, since the coherent scattering amplitudes of the solute atoms are much larger than that of the vanadium atom. (Auth.)

  10. {sup 134}Cs emission probabilities determination by gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M.C.M. de, E-mail: candida@cnen.gov.br [Comissão Nacional de Energia Nuclear (DINOR/CNEN), Riode Janeiro, RJ (Brazil); Poledna, R.; Delgado, J.U.; Silva, R.L.; Araujo, M.T.; Silva, C.J. da [Instituto de Radioproteção e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The National Laboratory for Ionizing Radiation Metrology (LNMRI/IRD/CNEN) of Rio de Janeiro performed primary and secondary standardization of different radionuclides reaching satisfactory uncertainties. A solution of {sup 134}Cs radionuclide was purchased from commercial supplier to emission probabilities determination of some of its energies. {sup 134}Cs is a beta gamma emitter with 754 days of half-life. This radionuclide is used as standard in environmental, water and food control. It is also important to germanium detector calibration.The gamma emission probabilities (Pγ) were determined mainly for some energies of the {sup 134}Cs by efficiency curve method and the Pγ absolute uncertainties obtained were below 1% (k=1). (author)

  11. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    Science.gov (United States)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-05-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.

  12. The method of intersecting spheres for determination of coordination numbers of atoms in crystal structures

    International Nuclear Information System (INIS)

    Serezhkin, V.N.; Buslaev, Yu.A.; Mikhajlov, Yu.N.

    1997-01-01

    New method for determination of coordination numbers (CN) of atoms in crystal structures, based on the model of interatomic interaction, within the frames whereof each atom is approximated by two spheres with the common center in the atom nuclei, is proposed. One of the spheres specifies conditionally isolated (chemically unbound) atom and its radius is a constant, which for atoms of the given chemical sort in the structure of any compound is equal to quasi-orbital Sleiter radius. The sphere of the other radius specifies chemically bound atom and coincides with the sphere, the volume whereof is equal to the volume of the Voronoj-Dirichlet polyhedron of the corresponding atom in the structure of the concrete crystal. Using a series of examples, workability of the given method for CN determination of atoms in structures of both simple substances and chemical compounds (alkali, transition metals, U, Th). Good agreement of the obtained results with the generally accepted CN s of atoms for the considered crystals is noted and a number of principal advantages of the new method, as compared to classical one of the CNs evaluation, is demonstrated

  13. Determination of silver in fresh water by atomic absorption spectrometry following flotation preconcentration by iron(III) collectors

    Energy Technology Data Exchange (ETDEWEB)

    Cundeva, K.; Stafilov, T. [Institute of Chemistry, Faculty of Science, St. Cyril and Methodius University, Skopje (Yugoslavia)

    1997-08-01

    Colloid precipitate flotation of silver from fresh water is applied for preconcentration and separation. Optimal conditions using hydrated iron(III) oxide and iron(III) tetramethylenedithiocarbamate as collectors were investigated. Various factors affecting the silver recovery, including collector mass, nature of the supporting electrolyte, pH of the working medium, electrokinetic potential of the collector particle surfaces, type of surfactant, induction time etc., were checked. Within the optimal pH range (5.5-6.5) silver was separated quantitatively (94.9- 100.0%) with 30 mg Fe(III) as collector. The content of silver was determined by electrothermal atomic absorption spectrometry and compared to that from inductively coupled plasma-atomic emission spectrometry. The detection limit of silver by the method described is 0.01 {mu}g/L. (orig.) With 2 figs., 3 tabs.

  14. Use of magnesium as a test element for inductively coupled plasma atomic emission spectrometry diagnosis

    International Nuclear Information System (INIS)

    Mermet, J.M.

    1991-01-01

    To optimize atomization and ionization processes in an inductively coupled plasma used as a source in atomic emission spectrometry, the Mg II 280.270-nm/Mg I 285-213-nm line intensity ratio is used. A theoretic ratio is calculated assuming a local thermodynamic equilibrium.A review of previously published experimental values of the ratio is given as a function of the parameters influencing the energy transfer between the plasma and injected species. In particular, the effects of the power, the carrier gas flow-rate, the i.d. of the torch injector, the use of a sheathing gas and the presence of hydrogen are described. Values of the ratio close to the theoretical values are obtained with a high power (>1.4 kW), a lower carrier gas flow-rate ( -1 ) and a large i.d. of the injector (>2 mm). This optimization can also be applied to the minimization of interference effects due to the presence of sodium. (author). 64 refs.; 9 figs.; 1 tab

  15. Evaluation of a method for the determination of chromium in urine by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Garcia, M.; Sardinas, O.; Castaneda, I.; Sanchez, R.

    1990-01-01

    A method for the determination of chromium in urine by atomic absorption spectrometry, using electrothermic atomization with pyrolytic graphite tubes, is proposed. The determinations are performed by standard addition. The method is applicable to biologic monitoring of populations with different degrees of exposition. It is also used in the analysis of chromium in sediments. Results of chromium in urine of a population group non-exposed to the metal are presented. 11 refs

  16. Time-dependent first-principles study of angle-resolved secondary electron emission from atomic sheets

    Science.gov (United States)

    Ueda, Yoshihiro; Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2018-02-01

    Angle-resolved secondary electron emission (ARSEE) spectra were analyzed for two-dimensional atomic sheets using a time-dependent first-principles simulation of electron scattering. We demonstrate that the calculated ARSEE spectra capture the unoccupied band structure of the atomic sheets. The excitation dynamics that lead to SEE have also been revealed by the time-dependent Kohn-Sham decomposition scheme. In the present study, the mechanism for the experimentally observed ARSEE from atomic sheets is elucidated with respect to both energetics and the dynamical aspects of SEE.

  17. Atomic imaging by x-ray-fluorescence holography and electron-emission holography: A comparative theoretical study

    International Nuclear Information System (INIS)

    Len, P.M.; Thevuthasan, S.; Fadley, C.S.; Kaduwela, A.P.; Van Hove, M.A.

    1994-01-01

    We consider from a theoretical viewpoint the direct imaging of atoms at and near the surfaces of solids by both x-ray-fluorescence holography (XFH) and electron-emission holography (EEH). The more ideal nature of x-ray scattering makes XFH images superior to those in single-energy EEH. The overlap of real and twin features for pairs of atoms at ±a can cause their XFH or EEH atomic images to cancel for certain combinations of wave vector and |a|. The relative merits of XFH and EEH for structure studies are considered

  18. Sub-microanalysis of solid samples with near-field enhanced atomic emission spectroscopy

    Science.gov (United States)

    Wang, Xiaohua; Liang, Zhisen; Meng, Yifan; Wang, Tongtong; Hang, Wei; Huang, Benli

    2018-03-01

    A novel approach, which we have chosen to name it as near-field enhanced atomic emission spectroscopy (NFE-AES), was proposed by introducing a scanning tunnelling microscope (STM) system into a laser-induced breakdown spectrometry (LIBS). The near-field enhancement of a laser-illuminated tip was utilized to improve the lateral resolution tremendously. Using the hybrid arrangement, pure metal tablets were analyzed to verify the performance of NFE-AES both in atmosphere and in vacuum. Due to localized surface plasmon resonance (LSPR), the incident electromagnetic field is enhanced and confined at the apex of tip, resulting in sub-micron scale ablation and elemental emission signal. We discovered that the signal-to-noise ratio (SNR) and the spectral resolution obtained in vacuum condition are better than those acquired in atmospheric condition. The quantitative capability of NFE-AES was demonstrated by analyzing Al and Pb in Cu matrix, respectively. Submicron-sized ablation craters were achieved by performing NFE-AES on a Si wafer with an Al film, and the spectroscopic information from a crater of 650 nm diameter was successfully obtained. Due to its advantage of high lateral resolution, NFE-AES imaging of micro-patterned Al lines on an integrated circuit of a SIM card was demonstrated with a sub-micron lateral resolution. These results reveal the potential of the NFE-AES technique in sub-microanalysis of solids, opening an opportunity to map chemical composition at sub-micron scale.

  19. nuclear and atomic methods applied in the determination of some

    African Journals Online (AJOL)

    NAA is a quantitative and qualitative method for the precise determination of a number of major, minor and trace elements in different types of geological, environmental and biological samples. It is based on nuclear reaction between neutron and target nuclei of a sample material. It is a useful method for the simultaneous.

  20. Determination of boron in sea water by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Horta, A.M.T.C.; Curtius, A.J.

    1978-01-01

    The chelation-extraction of boric acid with are acid solution of 2-ethyl-1,3 hexanediol in methy1-isobutye-ketone is studied. By this way a simple, quick and precise method for boron determination can be obtained [pt

  1. Position Dependent Spontaneous Emission Spectra of a Λ-Type Atomic System Embedded in a Defective Photonic Crystal

    International Nuclear Information System (INIS)

    Entezar, S. Roshan

    2012-01-01

    We investigate the position dependent spontaneous emission spectra of a Λ-type three-level atom with one transition coupled to the free vacuum reservoir and the other one coupled to a double-band photonic band gap reservoir with a defect mode in the band gap. It is shown that, for the atom at the defect location, we have a two-peak spectrum with a wide dark line due to the strong coupling between the atom and the defect mode. While, when the atom is far from the defect location (or in the absence of the defect mode), the spectrum has three peaks with two dark lines due to the coupling between the atom and the photonic band gap reservoir with the largest density of states near the band edges. On the other hand, we have a four-peak spectrum for the atom at the space in between. Moreover, the average spontaneous emission spectra of the atoms uniformly embedded in high dielectric or low dielectric regions are described. It is shown that the atoms embedded in high (low) dielectric regions far from the defect location, effectively couple to the modes of the lower (upper) photonic band. However, the atoms embedded in high dielectric or low dielectric regions at the defect location, are coupled mainly to the defect modes. While, the atoms uniformly embedded in high (low) dielectric regions with a normal distance from the defect location, are coupled to both of defect and lower (upper) photonic band modes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. First-principles dynamics treatment of light emission in collisions between alkali-metal atom and noble-gas atom collisions at 10keV

    Science.gov (United States)

    Pacheco, Alexander B.; Reyes, Andrés; Micha, David A.

    2006-12-01

    Collision-induced light emission during the interaction of an alkali-metal atom and a noble-gas atom is treated within a first-principles, or direct, dynamics approach that calculates a time-dependent electric dipole for the whole system, and spectral emission cross sections from its Fourier transform. These cross sections are very sensitive to excited diatomic potentials and a source of information on their shape. The coupling between electronic transitions and nuclear motions is treated with atomic pseudopotentials and an electronic density matrix coupled to trajectories for the nuclei. A recently implemented pseudopotential parametrization scheme is used here for the ground and excited states of the LiHe system, and to calculate state-to-state dipole moments. To verify the accuracy of our new parameters, we recalculate the integral cross sections for the LiHe system in the keV energy regime and obtain agreement with other results from theory and experiment. We further present results for the emission spectrum from 10keV Li(2s)+He collisions, and compare them to experimental values available in the region of light emitted at 300-900nm .

  3. The determination, by atomic-absorption spectrophotometry using electrothermal atomization, of platinum, palladium, rhodium, ruthenium, and iridium

    International Nuclear Information System (INIS)

    Haines, J.; Robert, R.V.D.

    1982-01-01

    A method that involves measurement by atomic-absorption spectrophotometry using electrothermal atomization has been developed for the determination of trace quantities of platinum, palladium, rhodium, ruthenium, and iridium in mineralogical samples. The elements are separated and concentrated by fusion, nickel sulphide being used as the collector, and the analyte elements are measured in the resulting acid solution. An organic extraction procedure was found to offer no advantages over the proposed method. Mutual interferences between the five platinum-group metals examined, as well as interferences from gold, silver, and nickel were determined. The accuracy of the measurement was established by the analysis of a platinum-ore reference material. The lower limits of determination of each of the analyte elements in a sample material are as follows: platinum 1,6μg/l, palladium 0,2μg/1, rhodium 0,5μg/l, ruthenium 3μg/l, and iridium 2,5μg/l. The relative standard deviations range from 0,05 for rhodium to 0.08 for iridium. The method, which is described in detail in the Appendix, is applicable to the determination of these elements in ores, tailings, and geological materials in which the total concentration of the noble metals is less than 1g/t

  4. Use of oxidative and reducing vapor generation for reducing the detection limits of iodine in biological samples by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Vtorushina, Eh.A.; Saprykin, A.I.; Knapp, G.

    2009-01-01

    Procedures of microwave combustion in an oxygen flow and microwave acid decomposition of biological samples were optimized for the subsequent determination of iodine. A new method was proposed for the generation of molecular iodine from periodate iona using hydrogen peroxide as a reductant. Procedures were developed for determining iodine in biological samples by inductively coupled plasma atomic emission spectrometry (ICP-AES) using oxidative and reducing vapor generation; these allowed the detection limit for iodine to be lowered by 3-4 orders of magnitude. The developed procedures were used to analyze certified reference materials of milk (Skim Milk Powder BCR 150) and seaweed (Sea Lettuce BCR 279) and a Supradyn vitamin complex

  5. Plasma-related matrix effects in inductively coupled plasma--atomic emission spectrometry by group I and group II matrix-elements

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Chan, W.-T.

    2003-01-01

    The effects of Na, K, Ca and Ba matrices on the plasma excitation conditions in inductively coupled plasma-atomic emission spectrometry (ICP-AES) were studied. Normalized relative intensity was used to indicate the extent of the plasma-related matrix effects. The group I matrices have no effects on the plasma excitation conditions. In contrast, the group II matrices depress the normalized relative intensities of some spectral lines. Specifically, the Group II matrices have no effects on the normalized relative intensity of atomic lines of low upper energy level (soft lines), but reduce the normalized relative intensity of some ionic lines and atomic lines of high energy level (hard lines). The Group II matrices seem to shift the Saha balance of the analytes only; no shift in the Boltzmann balance was observed experimentally. Moreover, for some ionic lines with sum of ionization and excitation potentials close to the ionization potential of argon (15.75 eV), the matrix effect is smaller than other ionic lines of the same element. The reduced matrix effects may be attributed qualitatively to charge transfer excitation mechanism of these ionic lines. Charge transfer reaction renders ionic emission lines from the quasi-resonant levels similar in characteristics of atomic lines. The contribution of charge transfer relative to excitation by other non-specific excitation mechanisms (via Saha balance and Boltzmann balance) determines the degree of atomic behavior of a quasi-resonant level. A significant conclusion of this study is that plasma-related matrix effect depends strongly on the excitation mechanism of a spectral line. Since, in general, more than one excitation mechanism may contribute to the overall excitation of an emission line, the observed matrix effects reflect the sum of the effects due to individual excitation mechanisms. Excitation mechanisms, in addition to the often-used total excitation energy, should be considered in matrix effect studies

  6. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  7. Determinants of Nitrous Oxide Emission from Agricultural Drainage Waters

    International Nuclear Information System (INIS)

    Reay, D. S.; Edwards, A. C.; Smith, K. A.

    2004-01-01

    Emissions of the powerful greenhouse gas nitrous oxide (N 2 O) from agricultural drainage waters are poorly quantified and its determinants are not fully understood. Nitrous oxide formation in agricultural soils is known to increase in response to N fertiliser application, but the response of N 2 O in field drainage waters is unknown. This investigation combined an intensive study of the direct flux of N 2 O from the surface of a fertilised barley field with measurement of dissolved N 2 O and nitrate (NO 3 ) concentrations in the same field's drainage waters. Dissolved N 2 O in drainage waters showed a clear response to field N fertilisation, following an identical pattern to direct N 2 O flux from the field surface. The range in N 2 O concentrations between individual field drains sampled on the same day was large, indicating considerable spatial variability exists at the farm scale. A consistent pattern of very rapid outgassing of the dissolved N 2 O in open drainage ditches was accentuated at a weir, where increased turbulence led to a clear drop in dissolved N 2 O concentration. This study underlines the need for carefully planned sampling campaigns wherever whole farm or catchment N 2 O emission budgets are attempted. It adds weight to the argument for the downward revision of the IPCC emission factor (EF 5 -g) for NO 3 in drainage waters

  8. Determinants of nitrous oxide emission from agricultural drainage waters

    International Nuclear Information System (INIS)

    Reay, D. S.; Edwards, A. C.; Smith, K. A.

    2005-01-01

    Emissions of the powerful greenhouse gas nitrous oxide (N 2 O) from agricultural drainage waters are poorly quantified and its determinants are not fully understood. Nitrous oxide formation in agricultural soils is known to increase in response to N fertiliser application, but the response of N 2 O in field drainage waters is unknown. This investigation combined an intensive study of the direct flux of N 2 O from the surface of a fertilised barley field with measurement of dissolved N 2 O and nitrate (NO 3 ) concentrations in the same field's drainage waters. Dissolved N 2 O in drainage waters showed a clear response to field N fertilisation, following an identical pattern to direct N 2 O flux from the field surface. The range in N 2 O concentrations between individual field drains sampled on the same day was large, indicating considerable spatial variability exists at the farm scale. A consistent pattern of very rapid outgassing of the dissolved N 2 O in open drainage ditches was accentuated at a weir, where increased turbulence led to a clear drop in dissolved N 2 O concentration. This study underlines the need for carefully planned sampling campaigns wherever whole farm or catchment N 2 O emission budgets are attempted. It adds weight to the argument for the downward revision of the IPCC emission factor (EF 5 -g) for NO 3 in drainage waters

  9. Determination of mercury in microwave-digested soil by laser-excited atomic fluorescence spectrometry with electrothermal atomization.

    Science.gov (United States)

    Pagano, S T; Smith, B W; Winefordner, J D

    1994-12-01

    A sample digestion procedure was developed which employs microwave heating of soil and sediment in concentrated nitric acid in a high-pressure closed vessel. Complete dissolution of mercury into the sample solution occurs within 5 min at 59 W/vessel without loss of analyte through overpressurization. Laser-excited atomic fluorescence spectrometry with electrothermal atomization (LEAFS-ETA) was used as the detection method. The scheme uses a two-step excitation, with lambda(1) = 253.7 nm and lambda(2) = 435.8 nm. Direct line fluorescence was measured at 546.2 nm. The absolute instrumental limit of detection was 14 fg; 1.4 pg/ml with a 10 mul sample injection. The recoveries of mercury in two spiked samples were 94 and 98%. The SRM 8406 (Mercury in River Sediment) was digested and analyzed for mercury, and the results (58.4 +/- 1.8 ng/g) agreed well with the reference value of 60 ng/g. The results obtained by LEAFS-ETA with microwave sample digestion are in good agreement with those found by cold vapor atomic absorption spectrometry with EPA Series Method 245.5 sample digestion, which is one of the most commonly used methods for the determination of mercury in soil.

  10. Imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry for determination of mercury in seawater.

    Science.gov (United States)

    Le Bihan, Alain; Cabon, Jean-Yves; Deschamps, Laure; Giamarchi, Philippe

    2011-06-15

    In this study, direct determination of mercury at the nanogram per liter level in the complex seawater matrix by imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry (ITR-ETA-LEAFS) is described. In the case of mercury, the use of a nonresonant line for fluorescence detection with only one laser excitation is not possible. For measurements at the 253.652 nm resonant line, scattering phenomena have been minimized by eliminating the simultaneous vaporization of salts and by using temporal resolution and the imaging mode of the camera. Electrothermal conditions (0.1 M oxalic acid as matrix modifier, low atomization temperature) have been optimized in order to suppress chemical interferences and to obtain a good separation of specific signal and seawater background signal. For ETA-LEAFS, a specific response has been obtained for Hg with the use of time resolution. Moreover, an important improvement of the detection limit has been obtained by selecting, from the furnace image, pixels collecting the lowest number of scattered photons. Using optimal experimental conditions, a detection limit of 10 ng L(-1) for 10 μL of sample, close to the lowest concentration level of total Hg in the open ocean, has been obtained.

  11. Photometric and emission-spectrometric determination of boron in steels

    International Nuclear Information System (INIS)

    Thierig, D.

    1982-01-01

    A method for the photometric determination of boron in unalloyed and alloyed steels is described, in which Curcumine is used as reagent. A separation of boron is not necessary. Limit of detection: 0.0003% B. The decomposition of boron nitride in the steel is achieved by heating the whole sample in fuming sulphuric acid/phosphoric acid. For the emission spectrometric investigation of solid steel samples and for the spectrochemical analysis of solutions with plasma excitation working parameters are given and possibilities of interferences are demonstrated. (orig.) [de

  12. A computational study on tuning the field emission and electronic properties of BN nanocones by impurity atom doping

    Science.gov (United States)

    Ahmadi, S.; Delir Kheirollahi Nezhad, P.; Hosseinian, A.; Vessally, E.

    2018-06-01

    We have inspected the effect of substituting a boron or nitrogen atom of a BN nanocone (BNNC) by two impurity atoms with lower and higher atomic numbers based on the density functional theory calculations. Our results explain the experimental observations in a molecular level. Orbital and partial density of states analyses show that the doping processes increase the electrical conductivity by creating new states within the gap of BNNC as follows: BeB > ON > CB > CN. The electron emission current from the surface of BNNC is improved after the CB and BeB dopings, and it is decreased by CN and ON dopings. The BeB and CN dopings make the BNNC a p-type semiconductor and the CB and ON dopings make it an n-type one in good agreement with the experimental results. The ON and BeB doping processes are suggested for the field emission current, and electrical conductivity enhancement, respectively.

  13. Differential electron emission in multi-charged ion atom collisions: Systematics for distant and close collisions

    International Nuclear Information System (INIS)

    DuBois, R.D.; Toburen, L.H.; Middendorf, M.E.; Jagutzki, O.

    1992-09-01

    Absolute doubly differential cross sections for electron emission are presented for 0.5 MeV/u multi-charged ion impact on helium, neon, and argon targets. For the helium target, Bq+, Cq+ (q = 2--5) and Oq+, Fq+ (q = 3--6) projectiles were studied; for neon and argon, only Cq+ (q = 2--5) projectiles were used. Electron emission for 10 degrees ≤ Θ ≤ 60 degrees was studied. The measured cross sections were assumed to scale as the square of an effective projectile charge, Z eff , which was determined as a function of emitted electron energy and angle. For distant collisions (low emitted electron energies), we find that Z eff ∼ q for small q and Z eff eff > Z and increases as q decreases. This is true for all angles and targets investigated

  14. Determination of ππ scattering lengths from measurement of π+π- atom lifetime

    International Nuclear Information System (INIS)

    Adeva, B.; Afanasyev, L.; Benayoun, M.; Benelli, A.; Berka, Z.; Brekhovskikh, V.; Caragheorgheopol, G.; Cechak, T.; Chiba, M.; Chliapnikov, P.V.; Ciocarlan, C.; Constantinescu, S.; Costantini, S.; Curceanu, C.; Doskarova, P.; Dreossi, D.; Drijard, D.; Dudarev, A.; Ferro-Luzzi, M.; Fungueirino Pazos, J.L.

    2011-01-01

    The DIRAC experiment at CERN has achieved a sizeable production of π + π - atoms and has significantly improved the precision on its lifetime determination. From a sample of 21 227 atomic pairs, a 4% measurement of the S-wave ππ scattering length difference |a 0 -a 2 |=(0.2533 -0.0078 +0.0080 | stat +0.0078 -0.0073 | syst )M π + -1 has been attained, providing an important test of Chiral Perturbation Theory.

  15. Determination of the radial distribution function with the tomographic atom probe

    International Nuclear Information System (INIS)

    Heinrich, A.; Al-Kassab, T.

    2004-01-01

    Full text: An algorithm for the determination of the radial distribution function (RDF) and the partial radial distribution function from tomographic atom probe data is introduced and some examples for its application are discussed. Homogeneous distribution of atoms can easily be determined from measured data. Using our algorithm, the lattice of simple cubic structures may be estimated solely from TAP data. The results for bcc and fcc alloys and metals will be presented. By evaluating the vicinity of each atom, information about order phenomena in multi component alloy can be retrieved including short range order. The advantage of determining the (partial) radial distribution functions for any sample with our algorithm is that all data can be derived by one single experiment whereas all other methods of determining a pRDF require one experiment for each pRDF. (author)

  16. Some problems connected with boron determination by atomic absorption spectroscopy and the sensitivity improvement

    Directory of Open Access Journals (Sweden)

    JELENA J. SAVOVIC

    2001-08-01

    Full Text Available Two atomizers were compared: an N2O–C2H2 flame and a stabilized U-shaped DC arc with aerosol supply. Both the high plasma temperature and the reducing atmosphere obtained by acetylene addition to the argon stream substantially increase the sensitivity of boron determination by atomic absorption spectroscopy (AAS when the arc atomizer is used. The results were compared with those for silicon as a control element. The experimental characteristic concentrations for both elements were compared with the computed values. The experimentally obtained characteristic concentration for boron when using the arc atomizer was in better agreement with the calculated value. It was estimated that the influence of stable monoxide formation on the sensitivity for both elements was about the same, but reduction of analyte and formation of non-volatile carbide particles was more important for boron, which is the main reason for the low sensitivity of boron determination using a flame atomizer. The use of an arc atomizer suppresses this interference and significantly improves the sensitivity of the determination.

  17. Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Emilene; Rampazzo, Roger T.; Dessuy, Morgana B. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R., E-mail: mgrvale@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Silva, Marcia M. da [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Welz, Bernhard [Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Katskov, Dmitri A. [Tshwane University of Technology (TUT), Faculty of Science, Chemistry Department, Pretoria 0001 (South Africa)

    2011-05-15

    In the present work a direct method for the determination of arsenic in petroleum derivatives has been developed, comparing the performance of a commercial transversely heated platform atomizer (THPA) with that of a transversely heated filter atomizer (THFA). The THFA results in a reduction of background absorption and an improved sensitivity as has been reported earlier for this atomizer. The mixture of 0.1% (m/v) Pd + 0.03% (m/v) Mg + 0.05% (v/v) Triton X-100 was used as the chemical modifier for both atomizers. The samples (naphtha, gasoline and petroleum condensate) were stabilized in the form of a three-component solution (detergentless microemulsion) with the sample, propan-1-ol and 0.1% (v/v) HNO{sub 3} in a ratio of 3.0:6.4:0.6. The characteristic mass of 13 pg found in the THFA was about a factor of two better than that of 28 pg obtained with the THPA; however, the limits of detection (LOD) and quantification (LOQ) were essentially the same for both atomizers (1.9 and 6.2 {mu}g L{sup -1}, respectively, for THPA, and 1.8 and 5.9 {mu}g L{sup -1}, respectively, for THFA) due to the increased noise observed with the THFA. A possible explanation for that is a partial blockage of the radiation from the hollow cathode lamp by the narrow inner diameter of this tube and the associated loss of radiation energy. Due to the lack of an appropriate certified reference material, recovery tests were carried out with inorganic and organic arsenic standards and the results were between 89% and 111%. The only advantage of the THFA found in this work was a reduction of the total analysis time by about 20% due to the 'hot injection' that could be realized with this furnace. The arsenic concentrations varied from < LOQ to 43.3 {mu}g L{sup -1} in the samples analyzed in this work.

  18. Determining Original Inventory Amount of Radioactive Substances from Unmonitored Radionuclide Emissions

    International Nuclear Information System (INIS)

    Hamilton, J.T.; Blunt, B.C.

    1999-01-01

    The purpose of this document is to determine the air emissions inventory of the Savannah River Site. To satisfy regulatory requirements, a new equation has been developed to determine original inventory amounts from unmonitored radionuclide emissions

  19. Determination of the Relative Atomic Masses of Metals by Liberation of Molecular Hydrogen

    Science.gov (United States)

    Waghorne, W. Earle; Rous, Andrew J.

    2009-01-01

    Students determine the relative atomic masses of calcium, magnesium, and aluminum by reaction with hydrochloric acid and measurement of the volume of hydrogen gas liberated. The experiment demonstrates stoichiometry and illustrates clearly that mass of the reagent is not the determinant of the amounts in chemical reactions. The experiment is…

  20. Determination of heavy metals in polar snow and ice by laser-excited atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Bolshov, M.A.; Boutron, C.F.

    1994-01-01

    The new laser-excited atomic fluorescence spectrometry technique offers unrivalled sensitivity for the determination of trace metals in a wide variety of samples. This has allowed the direct determination of Pb, Cd and Bi in Antarctic and Greenland snow and ice down to the sub pg/g level. (authors). 11 refs., 2 figs

  1. Revisiting the electrochemical impedance spectroscopy of magnesium with online inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Shkirskiy, Viacheslav; King, Andrew D; Gharbi, Oumaïma; Volovitch, Polina; Scully, John R; Ogle, Kevin; Birbilis, Nick

    2015-02-23

    The electrochemical impedance of reactive metals such as magnesium is often complicated by an obvious inductive loop with decreasing frequency of the AC polarising signal. The characterisation and ensuing explanation of this phenomenon has been lacking in the literature to date, being either ignored or speculated. Herein, we couple electrochemical impedance spectroscopy (EIS) with online atomic emission spectroelectrochemistry (AESEC) to simultaneously measure Mg-ion concentration and electrochemical impedance spectra during Mg corrosion, in real time. It is revealed that Mg dissolution occurs via Mg(2+) , and that corrosion is activated, as measured by AC frequencies less than approximately 1 Hz approaching DC conditions. The result of this is a higher rate of Mg(2+) dissolution, as the voltage excitation becomes slow enough to enable all Mg(2+) -enabling processes to adjust in real time. The manifestation of this in EIS data is an inductive loop. The rationalisation of such EIS behaviour, as it relates to Mg, is revealed for the first time by using concurrent AESEC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Light emission from sputtered or backscattered atoms on tungsten surfaces under ion irradiation

    International Nuclear Information System (INIS)

    Sakai, Yasuhiro; Nogami, Keisuke; Kato, Daiji; Sakaue, Hiroyuki A.; Kenmotsu, Takahiko; Furuya, Kenji; Motohashi, Kenji

    2013-01-01

    We measured the intensity of light emission from sputtered atoms on tungsten surfaces under the irradiations of Kr"+ ion and Ar"+ ion, as a function of the perpendicular distance from the surface. Using the analysis of decay curve, we estimated the mean vertical velocity component in direction normal to the surface. We found that the estimated mean velocity had much differences according to the excited state. For example, although the estimated mean vertical velocity component normal to the surface from the 400.9 nm line((5d"5(6S)6p "7p_4→(5d"5(6S)6s "7S_3 transition) was 5.6±1.7 km/sec, that from the 386.8 nm line((5d"4(6S)6p "7D_4→(5d"5(6S)6s "7S_4 transition) was 2.8±1.0 km/sec. However, for different projectiles and energies, we found no remarkable changes in the velocity. (author)

  3. Atomic emission spectroscopy for the on-line monitoring of incineration processes

    International Nuclear Information System (INIS)

    Timmermans, E.A.H.; Groote, F.P.J. de; Jonkers, J.; Gamero, A.; Sola, A.; Mullen, J.J.A.M. van der

    2003-01-01

    A diagnostic measurement system based on atomic emission spectroscopy has been developed for the purpose of on-line monitoring of hazardous elements in industrial combustion gases. The aim was to construct a setup with a high durability for rough and variable experimental conditions, e.g. a strongly fluctuating gas composition, a high gas temperature and the presence of fly ash and corrosive effluents. Since the setup is primarily intended for the analysis of combustion gases with extremely high concentrations of pollutants, not much effort has been made to achieve low detection limits. It was found that an inductively coupled argon plasma was too sensitive to molecular gas introduction. Therefore, a microwave induced plasma torch, compromising both the demands of a high durability and an effective evaporation and excitation of the analyte was used as excitation source. The analysis system has been installed at an industrial hazardous waste incinerator and successfully tested on combustion gases present above the incineration process. Abundant elements as zinc, lead and sodium could be easily monitored

  4. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    Science.gov (United States)

    Chan, George C. Y. [Bloomington, IN; Hieftje, Gary M [Bloomington, IN

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  5. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  6. Determination of inorganic beryllium species in the particulate matter of emissions and working areas

    Energy Technology Data Exchange (ETDEWEB)

    Profumo, A.; Spini, G.; Cucca, L.; Pesavento, M. [Dipartimento di Chimica Gen., Pavia (Italy)

    2002-07-01

    A sequential extraction procedure for separating and determining Be(0), soluble Be(II) inorganic compounds, BeO and beryllium silicates in samples, such as particulate matter of emissions and working areas, has been developed. The proposed procedure has been tested on synthetic samples prepared with the inorganic beryllium compounds, in the presence of atmospherical particulate matter sampled in a laboratory, previously checked for the absence of beryllium. The speciation was then repeated on a sample of fly ash deriving from a solid waste incinerator and on a reference material (Coal Fly ash SRM 1633a, by NIST), followed by an evaluation of matrix spiking and recovery analyses. Performing multiple analyses of the spiked samples assessed the repeatability of the procedure. Quantitative determinations have been made by inductively coupled plasma optical emission spectrometry (ICP-OES) and electrothermal atomic absorption spectrometry (ETAAS). The possible interferences of the most common ions have been investigated. The selective sequential extractions allow one to separate and to determine different inorganic beryllium species, to which a different toxicity and therefore, a different risk are related: it is the case for example of metallic beryllium and beryllium oxide.

  7. Characterization of polycyclic aromatic hydrocarbon emissions in the particulate and gas phase from smoldering mosquito coils containing various atomic hydrogen/carbon ratios

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tzu-Ting, E-mail: d89844001@ntu.edu.tw [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu 30015, Taiwan (China); Lin, Shaw-Tao [Department of Applied Chemistry, Providence University, No. 200 Chung-Chi Rd., Salu Dist., Taichung City 43301, Taiwan (China); Lin, Tser-Sheng [Department of Safety, Health, and Environmental Engineering, National United University, 2 Lien Da, Maioli 360, Taiwan (China); Chung, Hua-Yi [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu 30015, Taiwan (China)

    2015-02-15

    The polycyclic aromatic hydrocarbon emissions in particulate and gas phases generated from smoldering mosquito coils containing various atomic H/C ratios were examined. Five types of mosquito coils were burned in a test chamber with a total airflow rate of 8.0 L/min at a constant relative humidity and temperature. The concentrations of individual PAHs were determined using the GC/MS technique. Among the used mosquito coils, the atomic H/C ratio ranged from 1.23 to 1.57, yielding total mass, gaseous, and particulate PAH emission factors of 28.17–78.72 mg/g, 26,139.80–35,932.98 and 5735.22–13,431.51 ng/g, respectively. The various partitions of PAHs in the gaseous and particulate phases were in the ranges, 70.26–83.70% and 16.30–29.74% for the utilized mosquito coils. The carcinogenic potency of PAH emissions in the particulate phase (203.82–797.76 ng/g) was approximately 6.92–25.08 times higher than that of the gaseous phase (26.27–36.07 ng/g). Based on the analyses of PAH emissions, mosquito coils containing the lowest H/C ratio, a low oxygen level, and additional additives (i.e., CaCO{sub 3}) are recommended for minimizing the production of total PAH emission factors and carcinogenic potency. - Highlights: • PAHs emissions are influenced by mosquito coils containing various atomic H/C ratios. • The PAHs generated by burning mosquito coils mainly occur in the gaseous phase. • Total TEQ emission factors of PAHs mainly consisted of the particulate phase (> 87%). • The BaP and BaA accounted for 71.13–77.28% of the total TEQ emission factors. • Special PAH ratios were regarded as characteristic ratios for burning mosquito coil.

  8. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, H.; Krawczyk, M. [Politechn Poznanska, Poznan (Poland)

    2007-03-15

    The analytical performance of coupled hydride generation - integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H{sub 2}Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangernents (a water-cooled single silica tube, double-slotted quartz tube or an 'integrated trap') was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3{sigma}), was 0.9 ng mL{sup -1} for Te. For a 2 min in situ preconcentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% (n = 6) for Te. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  9. Determination of trace amounts of cadmium in sea water by a flameless atomic absorption method

    International Nuclear Information System (INIS)

    Yamazoe, Seigo; Oshima, Shozo

    1975-01-01

    Determination of trace amounts of cadmium in sea water has been developed by a flameless atomic absorption method using a carbon rod atomizer. Sea water is diluted with isopropyl alcohol and the white salt formed is removed by filtration, then the filtrate is fed to the instrument as a sample for measurement. A complete separation of the salt is not needed in this pre-treatment. The effect of the residual salt can be avoided by separating the atomic absorption of cadmium and the molecular absorption of the residual salt by means of controlling the temperature and the time of ashing and atomization of the sample in the carbon rod. The repeatability and the accuracy are 2.0--8.5% in the coefficient of variation and 0.8--5.3% respectively. (auth.)

  10. An indirect method for determining phosphorus in aluminium alloys by atomic-absorption spectrometry.

    Science.gov (United States)

    Bernal, J L; Del Nozal, M A; Deban, L; Aller, A J

    1981-07-01

    An indirect method is described for the determination of phosphorus in aluminium alloys. Ammonium molybdate is added to a solution of the aluminium alloy and the molybdophosphoric acid formed is selectively extracted into n-butyl acetate. The twelve molybdenum atoms associated with each phosphate ion are determined by direct atomic-absorption spectrometry with the n-butyl acetate phase in a nitrous oxide-acetylene flame, with measurement at 313.2 nm. The most suitable conditions have been established and the effect of other ions has been studied.

  11. Direct determination of selenoproteins in polyvinylidene difluoride membranes by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Sidenius, U; Gammelgaard, Bente

    2000-01-01

    A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual...... were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2-10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well...

  12. Determination of the attenuation map in emission tomography

    CERN Document Server

    Zaidi, H

    2002-01-01

    Reliable attenuation correction methods for quantitative emission computed tomography (ECT) require accurate delineation of the body contour and often necessitate knowledge of internal anatomical structure. Two broad classes of methods have been used to calculate the attenuation map referred to as "transmissionless" and transmission-based attenuation correction techniques. While calculated attenuation correction belonging to the first class of methods is appropriate for brain studies, more adequate methods must be performed in clinical applications where the attenuation coefficient distribution is not known a priori, and for areas of inhomogeneous attenuation such as the chest. Measured attenuation correction overcomes this problem and utilizes different approaches to determine this map including transmission scanning, segmented magnetic resonance images or appropriately scaled X-ray CT scans acquired either independently on separate or simultaneously on multimodality imaging systems. Combination of data acqu...

  13. Standard practice for analysis of aqueous leachates from nuclear waste materials using inductively coupled plasma-atomic emission spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice is applicable to the determination of low concentration and trace elements in aqueous leachate solutions produced by the leaching of nuclear waste materials, using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). 1.2 The nuclear waste material may be a simulated (non-radioactive) solid waste form or an actual solid radioactive waste material. 1.3 The leachate may be deionized water or any natural or simulated leachate solution containing less than 1 % total dissolved solids. 1.4 This practice should be used by analysts experienced in the use of ICP-AES, the interpretation of spectral and non-spectral interferences, and procedures for their correction. 1.5 No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-AES instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices...

  14. Comparison of ammonia emissions determined using different sampling methods

    Science.gov (United States)

    Dynamic, flow-through flux chambers are sometimes used to estimate ammonia emissions from livestock operations; however, ammonia emissions from the surfaces are affected by many factors which can be affected by the chamber. Ammonia emissions estimated using environmental flow-through chambers may be...

  15. Electrochemical preconcentration and hydride generation methods for trace determination of selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bye, R.

    1986-01-01

    The use of atomic absorption spectrometry in combination with two different preconcentration/separation techniques for the determination of trace concentrations of selenium is described. Electrochemical preconcentration onto a platinum electrode with a subsequent atomization of selenium is discussed briefly. Several parameters are considered such as the presence of depolarizers, and the temperature of the electrolyzed solutions. Special attention is payed to the efficiency of the atomization step, and a method to improve this is proposed. Applications of the technique to real samples are also reported. Secondly, the separation of the selenium as the volatile selenium hydride from the sample solution is considered. Several papers in this thesis deal with commonly occurring interferants as nickel and copper and with ways of minimizing or avoiding the interferring effects, whereas other papers relate to more theoretical aspects of the hydride generation process. New methods for the determination of selenium in technical samples with high contents of nickel and copper are also presented

  16. [Determination of trace cobalt in human urine by graphite furnace atomic absorption spectrometr].

    Science.gov (United States)

    Zhong, L X; Ding, B M; Jiang, D; Liu, D Y; Yu, B; Zhu, B L; Ding, L

    2016-05-20

    To establish a method to determine cobalt in human urine by graphite furnace atomic absorption spectrometry. Urine with 2% nitric acid diluted two-fold, to quantify the curve, graphite furnace atomic absorption spectrometric detection. Co was linear within 2.5~40.0 ng/ml with r>0.999. Spike experiment showed that Co received good recovery rate, which was 90.8%~94.8%. Intra-assay precisions were 3.2%~5.1% for Co, inter-assay precisions were 4.4%~5.2% for Co. The method by using graphite furnace atomic absorption spectrometr to determine urine Co was fast, accurate and with low matrix effect. It could meet the requirement in GBZ/T 210.5-2008.

  17. Separation of gold, palladium and platinum in chromite by anion exchange chromatography for inductively coupled plasma atomic emission spectrometric analysis

    International Nuclear Information System (INIS)

    Choi, Kwang Soon; Lee, Chang Heon; Park, Yeong Jae; Joe, Kih Soo; Kim, Won Ho

    2001-01-01

    A study has been carried out on the separation of gold, iridium, palladium, rhodium, ruthenium and platinum in chromite samples and their quantitative determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution condition of the minerals by fusion with sodium peroxide was optimized and chromatographic elution behavior of the rare metals was investigated by anion exchange chromatography. Spectral interference of chromium, a matrix of the minerals, was investigated on determination of gold. Chromium interfered on determination of gold at the concentration of 500 mg/L and higher. Gold plus trace amounts of iridium, palladium, rhodium and ruthenium, which must be preconcentrated before ICP-AES was separated by anion exchange chromatography after reducing Cr(VI) to Cr(III) by H 2 O 2 . AuCl - 4 retained on the resin column was selectively eluted with acetone- HNO 3 -H 2 O as an eluent. In addition, iridium, palladium, rhodium and ruthenium remaining on the resin column were eluted as a group with concentrated HCl. However, platinum was eluted with concentrated HNO 3 . The recovery yield of gold with acetone-HNO 3 -H 2 O was 100.7 ± 2.0 % , and the yields of palladium and platinum with concentrated HCl and HNO 3 were 96.1 ± 1.8% and 96.6 ± 1.3%, respectively. The contents of gold and platinum in a Mongolian chromite sample were 32.6 ± 2.2 μg/g and 1.6 ± 0.14 μg/g, respectively. Palladium was not detected

  18. Modification and control of the spontaneous emission from an M-type atom embedded in an anisotropic photonic crystal

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Lue Xinyou

    2011-01-01

    We describe the spontaneous emission properties of an M-type five-level atom embedded in a photonic crystal (PC), which is coherently driven by two external laser fields. It leads to two types of quantum interference: reservoir-induced interference and laser-induced interference. Considering different detunings of atomic transition frequencies from band edges, we reveal some interesting phenomena such as spectral-line enhancement, spectral-line suppression, spectral-line narrowing, reservoir-induced cancellation of spontaneous emission and the appearance of dark lines, which originate from the quantum interference effects and the control of external laser fields. These investigations suggest possible applications in quantum optics, optical communications and in the fabrication of novel optoelectronic devices.

  19. Synthesis and atomic structure determination of Al8V5 gamma-brass

    International Nuclear Information System (INIS)

    Mizutani, Uichiro

    2006-01-01

    Many structurally complex compounds like quasicrystals and their approximants are known to be stabilized at a particular electron per atom ratio e/a, regardless of constituent elements involved. This has been often referred to as the Hume-Rothery electron concentration rule. We consider the understanding of the Hume-Rothery stabilization mechanism to be best deepened by performing both ab initio LMTO-ASA and FLAPW band calculations for the complex compound whose atomic structure is experimentally determined. Admittedly, however, a computing time increases rapidly beyond practical level with increasing the number of atoms in a unit cell. Among various candidates, we chose a series of gamma-brasses containing 52 atoms in a unit cell by taking a full advantage of the facts that it exists in as many as 24 binary alloy systems and that its unit cell is just in size to be handled even in more time-consuming FLAPW method. We have so far studied the stability mechanism of Cu 5 Zn 8 and Cu 9 Al 4 , both being regarded as its prototype, and TM 2 Zn 11 gamma-brasses containing late transition elements TM=Fe, Co, Ni and Pd. In the present work, we chose the gamma-brass consisting of early transition metal element V and trivalent element Al. An almost single phase Al 8 V 5 gamma-brass was ultimately synthesized by overcoming metallurgical difficulties encountered. Its atomic structure was determined by using the Brandon model as a starting structure in the Rietveld structure analysis for powdered diffraction spectra taken at the beam line BL02B2 of 8 GeV synchrotron radiation facility, SPring-8, Japan. The atomic structure suitable for band calculations was then proposed by eliminating quenched-in chemical disorder, i.e., partial mixing of Al and V atoms at given sites with minimum sacrifice. (author)

  20. Elemental analysis using instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry: a comparative study

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Choi, Kwang Soon; Moon, Jong Hwa; Kim, Sun Ha; Lim, Jong Myoung; Kim, Young Jin; Quraishi, Shamshad Begum

    2003-05-01

    Elemental analyses for certified reference materials were carried out using instrumental neutron activation analysis and inductively coupled plasma-atomic emission spectrometry. Five Certified Reference Materials (CRM) were selected for the study on comparative analysis of environmental samples. The CRM are Soil (NIST SRM 2709), Coal fly ash (NIST SRM 1633a), urban dust (NIST SRM 1649a) and air particulate on filter media (NIST SRM 2783 and human hair (GBW 09101)

  1. Atomic data of Ti II from laser produced Ti plasmas by optical emission spectroscopy

    International Nuclear Information System (INIS)

    Refaie, A.I.; Farrag, A.A.; El Sharkawy, H.; El Sherbini, T.M.

    2005-06-01

    In the present study, the emission spectrum of titanium produced from laser induced plasma has been measured at different distances from the target. The Titanium target is irradiated by using the high power Q-switched Nd:YAG laser (λ=1064 nm) that generates energy 750 mJ/pulse of duration rate 6 ns and repetition rate 10 Hz in vacuum and at different distances. The variation of the distance from the target affects the measured plasma parameters, i.e. the electron density, the ion temperature and the velocity distribution. The electron density increases with the increase of the distance from the target. At a distance 0.6 mm from the target it decreases to 2.28·10 16 cm -3 . The temperature increases with the distance from the get until a distance of 1 mm, after that it decreases. It is found that the plasma velocity increases with the distance then it decreases again. Then, Energy levels and transition probabilities for 3d 2 4p →(3d 2 4s + 3d 3 ) lines have been determined by measurement of emission line intensities from an optically thin laser produced plasma of Ti II in vacuum. Calculations with intermediate coupling using Hartree-Fock wave functions have been carried out in order to place the experimental data on an absolute scale and also to evaluate the lifetimes. The plasma parameters in different regions of the plasma plume have been measured and used to obtain further transition probabilities. (author)

  2. Quantitative Determination of Arsenic in Bottled Drinking Water Using Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Guţu Claudia

    2013-10-01

    Full Text Available Background: Many studies have been performed in the past few years, to determine arsenic speciation in drinking water, food chain and environment, arsenic being a well-recognized carcinogenic and toxic agent mainly in its inorganic species. The instrumental techniques used for arsenic determination, such as hydride generation atomic absorption spectrometry (HGAAS, graphite furnace atomic absorption spectrometry (GFAAS and inductively coupled plasma mass spectrometry (ICP-MS, can provide a great sensitivity only on the total amount. Objective: The aim of this study was to develop a simple and rapid method and to analyze the concentration of total inorganic arsenic in bottled drinking water. Methods: Total arsenic was determined in samples from six different types of commercially available bottled drinking water using atomic absorption spectrometry with electrothermal or hydride generation vaporisation. All drinking water samples were acidified with 0.1M nitric acid to match the acidity of the standards. Results: The method was linear within the studied range (1-5 μg/L, R = 0.9943. The quantification limits for arsenic determination were 0.48 μg/L (HGAAS and 0.03 μg/L (GFAAS. The evaluated arsenic content in drinking water was within the accepted limits provided by law. Conclusions: A simple and sensitive method for the quantification of arsenic in drinking water using atomic absorbtion spectroscopy was described, which can be further used in toxicological studies. As an additional advantage, the system is very fast, efficient and environmental friendly

  3. Tungsten determination in heat resistant nickel-base-alloys by the method of atomic absorption

    International Nuclear Information System (INIS)

    Gregorczyk, S.; Wycislik, A.

    1980-01-01

    A method of atomic absorption was developed. It allows for the tungsten to be determined in heatresistant nickel-base-alloys within the range 0.01 to 7%. It consists in precipitating tungsten acid in the presence of alkaloids with its following decomposition by hydrofluoric acid in the teflon bomb. (author)

  4. Chemical modifiers in electrothermal atomic absorption determination of Platinum and Palladium containing preparations in blood serum

    Directory of Open Access Journals (Sweden)

    Аntonina Alemasova

    2012-11-01

    Full Text Available The biological liquids matrixes influence on the characteristic masses and repeatability of Pt and Pd electrothermal atomic absorption spectroscopy (ETAAS determination was studied. The chemical modifiers dimethylglyoxime and ascorbic acid for matrix interferences elimination and ETAAS results repeatability improvement were proposed while bioliquids ETAAS analysis, and their action mechanism was discussed.

  5. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  6. Analysis of bauxite by inductively coupled plasma-atomic emission spectroscopy

    Science.gov (United States)

    Barnes, Ramon M.; Mahanti, Himansu S.

    Methods are described for the analysis of bauxite by inductively coupled plasma (ICP) emission spectroscopy. Bauxite samples were dissolved either in HCl, HNO 3, and HF at 160°C in all-PTFE bomb or fused with NaOH. Spectral lines were selected after examination of experimental wavelength scans at each potential analyte wavelength. Limits of detection, background equivalent concentration, and analytical figures of merit were established. The accuracy of the method was confirmed by determining 17 elements in NBS-SRM bauxite samples. Silicon in HF solutions was analyzed using a modified ICP torch with a graphite injector tube, an inert nebulizer using PTFE capillary tubes, and a PTFE spray chamber.

  7. Flameless atomic absorption determination of ruthenium using a ''Saturn-1'' spectrophotometer

    International Nuclear Information System (INIS)

    Pichkov, V.N.; Sinitsyn, N.M.; Sadikova, F.G.; Govorova, M.I.; Yakshinskij, A.I.

    1980-01-01

    A flameless atomic absorption method is suggested for determining ruthenium in samples of complicated composition using a ''Saturn-1'' spectrophotometer with a L'vov graphite cuvette. The method was used for determining ruthenium in a copper-based sample (10 -3 % Ru) and in electrolyte slurries (10 -3 -10 -2 %). The limit of detection Csub(min, 0.95) = 3.0x10 -3 μg Ru/ml. Other platinum metals do not interfere [ru

  8. Method to determine the sticking coefficient of precursor molecules in atomic layer deposition

    International Nuclear Information System (INIS)

    Rose, M.; Bartha, J.W.

    2009-01-01

    A method to determine the sticking coefficient of precursor molecules used in atomic layer deposition (ALD) will be introduced. The sticking coefficient is an interesting quantity for comparing different ALD processes and reactors but it cannot be observed easily. The method relies on free molecular flow in nanoscale cylindrical holes. The sticking coefficient is determined for tetrakis(dimethylamino)titanium in combination with ozone. The proposed method can be applied independent of the type of reactor, precursor delivery system and precursors.

  9. Determination of {pi}{pi} scattering lengths from measurement of {pi}{sup +{pi}-} atom lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B. [Santiago de Compostela University (Spain); Afanasyev, L. [JINR Dubna (Russian Federation); Benayoun, M. [LPNHE des Universites Paris VI/VII, IN2P3-CNRS (France); Benelli, A. [Zurich University (Switzerland); Berka, Z. [Czech Technical University in Prague, Prague (Czech Republic); Brekhovskikh, V. [IHEP Protvino (Russian Federation); Caragheorgheopol, G. [IFIN-HH, National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Cechak, T. [Czech Technical University in Prague, Prague (Czech Republic); Chiba, M. [Tokyo Metropolitan University (Japan); Chliapnikov, P.V. [IHEP Protvino (Russian Federation); Ciocarlan, C.; Constantinescu, S. [IFIN-HH, National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Costantini, S. [Basel University (Switzerland); Curceanu, C. [IFIN-HH, National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Doskarova, P. [Czech Technical University in Prague, Prague (Czech Republic); Dreossi, D. [INFN, Sezione di Trieste and Trieste University, Trieste (Italy); Drijard, D., E-mail: Daniel.Drijard@cern.ch [CERN, Geneva (Switzerland); Dudarev, A. [JINR Dubna (Russian Federation); Ferro-Luzzi, M. [CERN, Geneva (Switzerland); Fungueirino Pazos, J.L. [Santiago de Compostela University (Spain)

    2011-10-05

    The DIRAC experiment at CERN has achieved a sizeable production of {pi}{sup +{pi}-} atoms and has significantly improved the precision on its lifetime determination. From a sample of 21 227 atomic pairs, a 4% measurement of the S-wave {pi}{pi} scattering length difference |a{sub 0}-a{sub 2}|=(0.2533{sub -0.0078}{sup +0.0080}|{sub stat}{sup +0.0078}{sub -0.0073}|{sub syst})M{sub {pi}}{sup +-1} has been attained, providing an important test of Chiral Perturbation Theory.

  10. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    Science.gov (United States)

    Xie, Jianming [San Diego, CA; Wang, Lei [San Diego, CA; Wu, Ning [Boston, MA; Schultz, Peter G [La Jolla, CA

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  11. Exploiting flow Injection and sequential injection schemes for trace metal determinations by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Determination of low or trace-level amounts of metals by electrothermal atomic absorption spectrometry (ETAAS) often requires the use of suitable preconcentration and/or separation procedures in order to attain the necessary sensitivity and selectivity. Such schemes are advantageously executed...... by superior performance and versatility. In fact, two approaches are conceivable: The analyte-loaded ion-exchange beads might either be transported directly into the graphite tube where they are pyrolized and the measurand is atomized and quantified; or the loaded beads can be eluted and the eluate forwarded...

  12. Atomic structure of large angle grain boundaries determined by quantitative X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Fitzsimmons, M.R.; Sass, S.L.

    1988-01-01

    Quantitative X-ray diffraction techniques have been used to determine the atomic structure of the Σ = 5 and 13 [001] twist boundaries in Au with a resolution of 0.09 Angstrom or better. The reciprocal lattices of these boundaries were mapped out using synchrotron radiation. The atomic structures were obtained by testing model structures against the intensity observations with a chi square analysis. The boundary structure were modeled using polyhedra, including octahedra, special configurations of tetrahedra and Archimedian anti-prisms, interwoven together by the boundary symmetry. The results of this work point to the possibility of obtaining general rules for grain boundary structure based on X-ray diffraction observations that give the atomic positions with high resolution

  13. Determination of dopant atomic positions with kinematical X-ray standing waves

    International Nuclear Information System (INIS)

    Walz, Bente

    2011-11-01

    Recent advances in the kinematic X-ray standing wave technique (KXSW) for the determination of the atomic coordinates and displacement parameters in nonperfect crystalline materials are described in this thesis. The methodology has been improved by considering three significant aspects: - the inclusion of weak multiple beam contributions - the excitation of secondary fluorescence in multiple-element samples - the influence of the crystal mosaicity on the fluorescence yield. The improvements allowed to successfully apply the method to investigate complex oxide materials of current interest for potential device applications. The thermally-induced interdiffusion of cobalt and manganese thin films on zinc oxide single crystals has been studied to determine which lattice sites are occupied preferentially. The data analysis revealed that after thermal diffusion the adsorbed atoms occupied zinc sites in the host lattice. The mean deviation of the cobalt atomic position from the zinc lattice site was comparable to the thermal displacement parameter of the zinc atoms. In the case of manganese a secondary phase was found on the surface. Measurements performed on LaSrMnO 4 provided new insight concerning the rotation of the oxygen octahedron around the manganese atoms and the concomitant displacements of the strontium and lanthanum atoms. It was found that the oxygen octahedra are rotated around the [100]-direction by 4,5 . The measurements in transmission geometry performed on titanium dioxide (rutile) demonstrated that KXSW measurements in the Laue geometry is a viable technique. By performing KXSW under grazing-incidence conditions it is possible to achieve depth resolution. The results clearly show that the extended KXSW technique is a versatile method for characterizing complex material systems. (orig.)

  14. Determination of cobalt in human biological liquids from electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dragan, Felicia [University of Oradea, Faculty of Medicine and Pharmacy, 29 N Jiga, 410028 Oradea (Romania); HIncu, Lucian [University of Medicine and Pharmacy ' Carol Davila' , Faculty of Pharmacy, 6 Traian Vuia, 020956 Bucuresti (Romania); Bratu, Ioan, E-mail: fdragan@uoradea.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    Problems and possibilities of the determination of Co in serum and urine samples by electrothermal atomic absorption spectrometry (ETAAS) are described. Optimal instrumental parameters as well as a suitable atomizer, calibration procedure and hydrogen peroxide as modifier are proposed for direct ETAAS measurement of Co in serum and urine. The detection limit achieved was 0.1 {mu}g L{sup -1} for both matrices and relative standard deviations varied in the range 5-20% depending on the Co concentration in the sample. The validity of the method was verified by the analyses of standard reference materials. For serum samples with Co content lower than the detection limit, a separation and preconcentration procedure based on liquid/liquid extraction is suggested prior to determination of Co in the organic phase by ETAAS. This procedure permits determination of 0.02 {mu}g L{sup -1} Co in serum samples with a relative standard deviation of 10-18%.

  15. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry — Critical review

    Energy Technology Data Exchange (ETDEWEB)

    Bings, N.H., E-mail: bings@uni-mainz.de; Orlandini von Niessen, J.O.; Schaper, J.N.

    2014-10-01

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally

  16. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry — Critical review

    International Nuclear Information System (INIS)

    Bings, N.H.; Orlandini von Niessen, J.O.; Schaper, J.N.

    2014-01-01

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally

  17. Inductively coupled plasma-atomic emission spectroscopy glovebox assembly system at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-01-01

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ''cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  18. The relation of double peaks, observed in quartz hydride atomizers, to the fate of free analyte atoms in the determination of arsenic and selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    D'Ulivo, Alessandro; Dedina, Jiri

    2002-01-01

    The mechanism at the origin of double peaks formation in quartz hydride atomizers were investigated by continuous flow hydride generation atomic absorption spectrometry. Arsenic and selenium were used as model analytes. The effect of atomization mode (flame-in-gas-shield (FIGS), miniature diffusion flame and double flame (DF)) and some experimental parameters as oxygen supply rate for microflame and the distance from atomization to free atoms detection point, were investigated on the shape of both analytical signals and calibration graphs. Rollover of calibration graphs and double peak formation are strictly related each to the other and could be observed only in FIGS atomizer mode under some particular conditions. A mechanism based on incomplete atomization of hydrides cannot explain the collected experimental evidences because the microflame of FIGS is able to produce quantitative atomization of large amount of hydrides even at supply rate of oxygen close to extinction threshold of microflame. The heterogeneous gas-solid reactions between finely dispersed particles, formed by free atom recombination, and the free atoms in the gaseous phase are at the origin of double peak formation

  19. Atomic absorption determination of iron and copper impurities in rare earth compounds

    International Nuclear Information System (INIS)

    Zelyukova, Yu.V.; Kravchenko, J.B.; Kucher, A.A.

    1978-01-01

    An extraction atomic absorption method for the determination of copper and iron impurities in rare earth compounds has been developed. The extraction separation of determined elements as hydroxy quinolinates with isobuthyl alcohol was used. It increased the sensitivity of these element determination and excluded the effect of the analysed sample. Cu, Te, Zn, Bi, Sn, In, Ga, Tl and the some other elements can be determined at pH 2.0-3.0 but rare earths are remained in an aqueous phase. The condition of the flame combustion does not change during the introduction of isobutyl extract but the sensitivity of the determination of the elements increased 2-3 times. The limit of Fe determination is 0.01 mg/ml and the limit of Cu determination is 0.014 mg/ml

  20. Matrix modifiers application during microimpurities determination in complex samples by electrothermal atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Bejzel', N.F.; Daaman, F.I.; Fuks-Pol', G.R.; Yudelevich, I.G.

    1993-01-01

    The review covers publications of primarily last 5 years and is devoted to the use of matrix modifiers (MM) for the determinations of trace impurities in complex samples by electrothermal atomic-absorption analysis. The role of MM in analytical process has been discussed as well as MM influence on all the elements of analytical system; factors, determining the effectiveness of MM action, the basis types of MM have been described. A great body of information is tabulated on the use of different MM for the determination of particular analysis in geological, medicobiological, technological, ecological samples and in pure materials and chemicals

  1. Matrix modification for determination of microimpurities in complex samples by electrothermal atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Bejzel', N.F.; Daaman, F.I.; Fuks-Pol', G.R.; Yudelevich, I.G.

    1993-01-01

    The review covers publications of primarily last 5 years and is devoted to the use of matrix modifiers (MM) for the determinations of trace impurities in complex samples by electrothermal atomic-absorption analysis. The role of MM in analytical process has been discussed as well as MM influence on all the elements of analytical system; factors, determining the effectiveness of MM action, the basis types of MM have been described. A great body of information is tabulated on the use of different MM for the determination of particular analysis in geological, medicobiological, technological, ecological samples and in pure materials and chemicals

  2. [Determination of mercury in Boletus impolitus by flow injection-atomic absorption spectrometry].

    Science.gov (United States)

    Li, Tao; Wang, Yuan-Zhong

    2008-04-01

    Various test conditions and effect factors for the determination of mercury by flow injection-atomic absorption spectrometry were discussed, and a method for the determination of mercury in Boletus impolitus has been developed. The linear range for mercury is 0-60 microg x L(-1). The relative standard deviation is less than 3.0%, and the recovery is 96%-107%. This method is simple, rapid and has been applied to the determination of mercury in Boletus impolitus samples with satisfactory results.

  3. Upgrade for detection system of JARREL ASH 70-000 atomic emission spectrography with source of arc - spark

    International Nuclear Information System (INIS)

    Santa Cruz D E; Grau F N; Bellavigna H J; Garavaglia R N; Fernandez R O; Servant R

    2012-01-01

    Methodologies used in spectrochemical analysis have showed breakthroughs in last decades due to the newest digital technologies. The simultaneous determination of multiple elements in a short time has been allowed by the development of solid state multichannel detectors. Since its beginning CNEA has developed several spectroscopic methodologies that have been applied to the area of fuels and specific materials of the nuclear activity. The Analytical Chemistry Department has an atomic emission spectrograph with a source of arc/spark whose focal length is 3.4 meters and a spectral dispersion from 2.5 to 5 A/mm. This equipment was originally equipped with photographic detection. This feature although allowed the simultaneous detection of multiple elements, their response (photographic plate) has been not linear and their data's treatment has been very complex. Two alternatives of digital detection have been examined: CCD2 and CMOS3 according to the progress achieved in the instrumentation that is applied to similar techniques. After exhaustive evaluation an arrangement of 9 linear CCD detectors located in the focal plane originally occupied by 2 x10 inch photographic plates was chosen. The software provided by the manufacturer has been insufficient for cover our analytical necessities due to the requirements of our instrumental application. This led to develop an own program for our applications. Today, our detection system includes an assembly of 7 detectors and an acquisition program with basic control that has been developed in-house. Calibration curves for some chemical elements have shown very promising results, the sensitivity has increased at least 10 times and an important improvement of accuracy of the measurements has also been achieved thanks to our modification. An upgrade with an associated database that will allow obtaining spectra in 3D configuration and extend the instrumental capabilities to second order is being prepared (author)

  4. Search for Fermi shuttle mechanisms in electron emission from atomic collision sequences

    International Nuclear Information System (INIS)

    Suarez, S.; Jung, M.; Rothard, H.; Schosnig, M.; Maier, R.; Clouvas, A.; Groeneveld, K.O.

    1994-01-01

    In electron spectra induced by slow heavy ion bombardment of solids a high energy tail can be observed, which is suggested to be explained by multiple collision sequences. In order to find those multiple collision effects like the ''Fermi shuttle'' acceleration mechanism we measured doubly differential electron emission cross sections for H + (33.5-700 keV) impact on different targets (He, Ne, C and Au) as a function of projectile energy and electron emission angle. We observed a surprising target dependence of the electron emission within the range of electron energies close to that of the binary encounter electrons for all observed angles of emission. (orig.)

  5. Atmospheric reactions of methylcyclohexanes with Cl atoms and OH radicals: determination of rate coefficients and degradation products.

    Science.gov (United States)

    Ballesteros, Bernabé; Ceacero-Vega, Antonio A; Jiménez, Elena; Albaladejo, José

    2015-04-01

    As the result of biogenic and anthropogenic activities, large quantities of chemical compounds are emitted into the troposphere. Alkanes, in general, and cycloalkanes are an important chemical class of hydrocarbons found in diesel, jet and gasoline, vehicle exhaust emissions, and ambient air in urban areas. In general, the primary atmospheric fate of organic compounds in the gas phase is the reaction with hydroxyl radicals (OH). The oxidation by Cl atoms has gained importance in the study of atmospheric reactions because they may exert some influence in the boundary layer, particularly in marine and coastal environments, and in the Arctic troposphere. The aim of this paper is to study of the atmospheric reactivity of methylcylohexanes with Cl atoms and OH radicals under atmospheric conditions (in air at room temperature and pressure). Relative kinetic techniques have been used to determine the rate coefficients for the reaction of Cl atoms and OH radicals with methylcyclohexane, cis-1,4-dimethylcyclohexane, trans-1,4-dimethylcyclohexane, and 1,3,5-trimethylcyclohexane at 298 ± 2 K and 720 ± 5 Torr of air by Fourier transform infrared) spectroscopy and gas chromatography-mass spectrometry (GC-MS) in two atmospheric simulation chambers. The products formed in the reaction under atmospheric conditions were investigated using a 200-L Teflon bag and employing the technique of solid-phase microextraction coupled to a GC-MS. The rate coefficients obtained for the reaction of Cl atoms with the studied compounds are the following ones (in units of 10(-10) cm(3) molecule(-1) s(-1)): (3.11 ± 0.16), (2.89 ± 0.16), (2.89 ± 0.26), and (2.61 ± 0.42), respectively. For the reactions with OH radicals the determined rate coefficients are (in units of 10(-11) cm(3) molecule(-1) s(-1)): (1.18 ± 0.12), (1.49 ± 0.16), (1.41 ± 0.15), and (1.77 ± 0.23), respectively. The reported error is twice the standard deviation. A detailed

  6. Surface and electron emission properties of hydrogen-free diamond-like carbon films investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Liu Dongping; Zhang, Sam; Ong, S.-E.; Benstetter, Guenther; Du Hejun

    2006-01-01

    In this study, we have deposited hydrogen-free diamond-like carbon (DLC) films by using DC magnetron sputtering of graphite target at various r.f. bias voltages. Surface and nanoscale emission properties of these DLC films have been investigated using a combination of atomic force microscopy (AFM)-based nanowear tests and conducting-AFM, by simultaneously measuring the topography and the conductivity of the samples. Nanowear tests show that these DLC films are covered with the thin (1.5-2.0 nm) graphite-like layers at surfaces. Compared to the film bulk structure, the graphite-like surface layers are more conductive. The graphite-like surface layers significantly influence the electron emission properties of these films. Low-energy carbon species can be responsible for the formation of graphite-like surface layers. Nanoscale electron emission measurements have revealed the inhomogeneous emission nature of these films. The low-field emission from these films can be attributed to the existence of sp 2 -configured nanoclusters inside the films

  7. Determination of vanadium in mussels by electrothermal atomic absorption spectrometry without chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Y.; Fernandez, P. [Centro de Control do Medio Marino, Peirao de Vilaxoan s/n, Vilagarcia de Arousa, 36611 Pontevedra (Spain); Gonzalez, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Quimica, 15706, Santiago de Compostela (Spain)

    2004-05-01

    A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 C and 2600 C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg{sup -1} (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg{sup -1} (wet weight). (orig.)

  8. Indirect determination of uranium by atomic-absorption spectrophotometry using an air-acetylene flame

    International Nuclear Information System (INIS)

    Alder, J.F.; Das, B.C.

    1977-01-01

    An indirect method has been developed for the determination of uranium by atomic-absorption spectrophotometry using an air-acetylene flame. Use is made of the reduction of copper(II) by uranium(IV) followed by complex formation of the copper(I) ions so produced with neocuproine (2,9-dimethyl-1,10-phenanthroline) and finally the determination of copper in this complex by atomic-absorption spectrophotometry. The results show that the method can be recommended, provided that care is taken to ensure the complete reduction of uranium(VI) to uranium(IV). The sensitivity of the method is 4.9 μg of uranium and the upper limit 500 μg without dilution. (author)

  9. Atomic absorption determination of vanadium in products of metallurgical production and mineral feed stock

    International Nuclear Information System (INIS)

    Polikarpova, N.V.; Panteleeva, E.Yu.

    1983-01-01

    Rapid and selective method of atomic absorption determination of vanadium in metallurgical process products and numerical feed stock is suggested. Buffering mixture of aluminium and phosphoric acid is used to suppress the effect of sample composition on the value of vanadium atomic absorption. The concentration of buffer components can vary from 400 up to 2000 μg/ml Al and from 2 up to 5% vol. H 3 PO 4 . The suggested mixture completely eli-- minates the strong chromium effect. The developed method was used for analyzing steels, alloys based on Mo, Ni, Ti, Cr, as well as titanium magnetite ores and concentrates. The method enables to determine from 0.05 up to 10% vanadium with 0.05-0.01 relative standard deviation, respectively

  10. Tandem on-line continuous separations for atomic spectroscopic indirect analysis: iodide determination by ICP-AES

    International Nuclear Information System (INIS)

    Garcia, A.M.; Sanchez Uria, J.E.; Sanz-Medel, A.; Quintero Ortega, M.C.; Bautista, J.C.

    1992-01-01

    A sensitive and selective indirect determination of iodide by inductively coupled plasma emission spectrometry (ICP-AES) based on the principle of tandem on-line continuous separations as an alternative means of introducing samples into plasmas is proposed. Iodide is continuously extracted as an ion-pair into xylene by mixing the sample with Hg(II) and dipyridil solutions. The organic phase (containing the analyte in [Hg(Dipy) 2 ]I 2 form) is on-line continuously mixed with NaBH 4 (in DMF) and acetic acid solutions. Mercury vapour continuously generated from this organic phase is separated in a classical U-type gas-liquid separation device. The system has been optimized for the continuous extraction of KI, for the direct generation of cold mercury vapour from xylene and for the final ICP-AES determination of mercury. The optimised method has been applied to the determination of iodide (detection limit 20 ng/ml of iodide) in table salt and in synthetic samples. Very good agreement between found and certified results was observed. The usefulness and convenience of such alternative sample chemical pretreatment/presentation to the ICP is thus demonstrated for indirect determinations to be carried out by atomic spectroscopy methods. (authors)

  11. Data correlation in on-line solid-phase extraction-gas chromatography-atomic emission/mass spectrometric detection of unknown microcontaminants

    NARCIS (Netherlands)

    Hankemeier, Th.; Rozenbrand, J.; Abhadur, M.; Vreuls, J.J.; Brinkman, U.A.Th.

    1998-01-01

    A procedure is described for the (non-target) screening of hetero-atom-containing compounds in tap and waste water by correlating data obtained by gas chromatography (GC) using atomic emission (AED) and mass selective (MS) detection. Solid-phase extraction (SPE) was coupled on-line to both GC

  12. Use of gradient dilution to flag and overcome matrix interferences in axial-viewing inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Cheung, Yan; Schwartz, Andrew J.; Hieftje, Gary M.

    2014-01-01

    Despite the undisputed power of inductively coupled plasma-atomic emission spectrometry (ICP-AES), its users still face serious challenges in obtaining accurate analytical results. Matrix interference is perhaps the most important challenge. Dilution of a matrix-containing sample is a common practice to reduce matrix interference. However, determining the optimal dilution factor requires tedious and time-consuming offline sample preparation, since emission lines and the effect of matrix interferences are affected differently by the dilution. The current study exploits this difference by employing a high-performance liquid chromatography gradient pump prior to the nebulizer to perform on-line mixing of a sample solution and diluent. Linear gradient dilution is performed on both the calibration standard and the matrix-containing sample. By ratioing the signals from two emission lines (from the same or different elements) as a function of dilution factor, the analyst can not only identify the presence of a matrix interference, but also determine the optimal dilution factor needed to overcome the interference. A ratio that does not change with dilution signals the absence of a matrix interference, whereas a changing ratio indicates the presence of an interference. The point on the dilution profile where the ratio stabilizes indicates the optimal dilution factor to correct the interference. The current study was performed on axial-viewing ICP-AES with o-xylene as the solvent

  13. Laser-induced fluorescence with an OPO system. Part II: direct determination of lead content in seawater by electrothermal atomization-laser-excited atomic fluorescence (ETA-LEAF).

    Science.gov (United States)

    Le Bihan, A; Lijour, Y; Giamarchi, P; Burel-Deschamps, L; Stephan, L

    2003-03-01

    Fluorescence was induced by coupling a laser with an optical parametric oscillator (OPO) to develop an analytical method for the direct determination of lead content, at ultra-trace level, in seawater by electrothermal atomization-laser-excited atomic fluorescence (ETA-LEAF). The optimization of atomization conditions, laser pulse energy, and mainly temporal parameters allowed us to reach a 3 fg detection limit (0.3 ng L(-1)) despite the low repetition rate of the device. The expected error on predicted concentrations of lead, at trace levels, in seawater was below 15%.

  14. Determination of arsenic in geological materials by electrothermal atomic-absorption spectrometry after hydride generation

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.; Welsch, E.P.

    1979-01-01

    Rock and soil samples are decomposed with HClO4-HNO3; after further treatment, arsine is generated and absorbed in a dilute silver nitrate solution. Aliquots of this solution are injected into a carbon rod atomizer. Down to 1 ppm As in samples can be determined and there are no significant interferences, even from chromium in soils. Good results were obtained for geochemical reference samples. ?? 1979.

  15. Determination of five trace elements in leaves in Nanfang sweet orange by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Li Fangqing

    2006-01-01

    The five trace elements of copper, zinc, manganese, iron and cobalt in leaves of Nanfang sweet orange are determined by flame atomic absorption spectrometry. The technique is simple, precise and sensitive. The effect of the type of digesting solution (mixed acid), the ratio of mixed acid, the volume of digesting solution and the time of digesting are investigated in details. The results show that leaves of Nanfang sweet orange contain higher amount of iron and zinc. (authors)

  16. On-line Incorporation of Cloud Point Extraction in Flame Atomic Absorption Spectrometric Determination of Silver

    OpenAIRE

    DALALI, Nasser; JAVADI, Nasrin; AGRAWAL, Yadvendra KUMAR

    2008-01-01

    A cloud point extraction method was incorporated into a flow injection system, coupled with flame atomic absorption spectrometry, for determination of trace amounts of silver. The analyte in the aqueous solution was acidified with 0.2 mol L-1 sulfuric acid and complexed with dithizone. The cloud point extraction was performed using the non-ionic surfactant Triton X-114. After obtaining the cloud point, the surfactant-rich phase containing the dithizonate complex was collected in a m...

  17. Integration of Solid-phase Extraction with Electrothermal Atomic Absorption Spectrometry for Determination of Trace Elements

    OpenAIRE

    NUKATSUKA, Isoshi; OHZEKI, Kunio

    2006-01-01

    An enrichment step in a sample treatment is essential for trace analysis to improve the sensitivity and to eliminate the matrix of the sample. Solid-phase extraction (SPE) is one of the widely used enrichment technique. Electrothermal atomic absorption spectrometry (ETAAS) is a well-established determination technique for trace elements. The integration of SPE with ETAAS leads to further improvement of sensitivity, an automation of the measurement and the economy in the sample size, amounts o...

  18. Determination of trace amounts of selenium in minerals and rocks by flemeless atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Capdevila, C.; Alduan, F.A.

    1980-01-01

    The determination of trace amounts of selenium in silicate rocks and feldspart by solvent extraction and graphite furnace atomic-absorption spectrometry has been studied. Sodium diethyl-ditiocarbamate and ammonium pyrrolidinedithiocarbamate have been tried as chelating agents. The best results are achieved when selenium is extracted into carbon tetrachloride as the sodium diethylditiocarbamate complex. The method allows to detect 0,75 ppm of selenium in the sample. Recoveries are about 100%. (author)

  19. Direct microcomputer controlled determination of zinc in human serum by flow injection atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Nielsen, Bent; Jensen, Arne

    1986-01-01

    A procedure is described for the direct determination of zinc in human serum by fully automated, microcomputer controlled flow injection atomic absorption spectrometry (Fl-AAS). The Fl system is pumpless, using the negative pressure created by the nebuliser. It only consists of a three-way valve......, programmable from the microcomputer, to control the sample volume. No pre-treatment of the samples is necessary. The limit of detection is 0.14 mg l–1, and only small amounts of serum (

  20. Determination of Cr(VI) and Cr(III) in urine and dextrose by inductively coupled plasma emission spectroscopy

    Science.gov (United States)

    Mianzhi, Zhuang; Barnes, Ramon M.

    The determination of Cr(VI) and Cr(III) in human urine and in commercial dextrose solution is performed by induclively coupled plasma-atomic emission spectroscopy after selective preconcentration of the chromium species at different pH values by poly(dithiocarbamate) and poly(acrylamidoxime) chelating resins. The chelating properties of these resins with chromium, including the kinetics of uptake and removal of Cr(III), and the influence of matrix concentrations were evaluated. Chromium in human urine was found to exist exclusively as Cr(III).

  1. Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions

    Science.gov (United States)

    Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.

    2017-10-01

    In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.

  2. Influence of asymmetries in the magnetic draping pattern at Titan on the emission of energetic neutral atoms

    Science.gov (United States)

    Kabanovic, Slawa; Feyerabend, Moritz; Simon, Sven; Meeks, Zachary; Wulms, Veit

    2018-03-01

    We model the emission of energetic neutral atoms (ENAs) that are generated by the interaction between energetic ions from Saturn's magnetosphere and neutrals from the upper atmosphere of the giant planet's largest moon Titan. The trajectories of the parent ions and the resulting ENA emission morphology are highly sensitive to the electromagnetic field configuration near the moon. We therefore compare the ENA emission pattern for spatially homogeneous fields to the emission obtained from a magnetohydrodynamic (MHD) and a hybrid (kinetic ions, fluid electrons) model of Titan's magnetospheric interaction, by computing the trajectories of several billion energetic test particles. While the MHD model takes into account the draping of the magnetic field lines around Titan, the hybrid approach also considers the significant asymmetries in the electromagnetic fields due to the large gyroradii of pick-up ions from Titan's ionosphere. In all three models, the upstream parameters correspond to the conditions during Cassini's TA flyby of Titan. The shape, magnitude, and location of the ENA emission maxima vary considerably between these three field configurations. The magnetic pile-up region at Titan's ramside deflects a large number of the energetic parent ions, thereby reducing the ENA flux. However, the draped magnetic field lines in Titan's lobes rotate the gyration planes of the incident energetic ions, thereby facilitating the observable ENA production. Overall, the ENA flux calculated for the MHD model is weaker than the emission obtained for the electromagnetic fields from the hybrid code. In addition, we systematically investigate the dependency of the ENA emission morphology on the energy of the parent ions and on the upstream magnetic field strength.

  3. Atomic-absorption determination of tantalum and niobium in ore concentrates

    International Nuclear Information System (INIS)

    Elinson, S.V.; Korovin, Yu.I.; Kuchumov, V.A.

    1975-01-01

    A flame atom-absorption method was developed for determining tantalum and niobium at their level greater than 5% in Ta-Nb ore concentrates. Flame was produced by a nitrous oxide-acetylene mixture. The optimal composition of a buffer (3 mg/ml) of iron was determined by the method of factorial planning of the experiment and steep ascention by gradient. The optimizing parameter in factorial planning was obtained from the difference of optical densities of Ta and Nb, by taking the average value for two solutions which had dissimilar total composition and which imitated the real composition of the ore concentrates, i.e., the value of (ΔD/Dsub(av))sub(Ta) or (ΔD/Dsub(av))sub(Nb). The optimization of analytical conditions corresponded to the condition (ΔD/Dsub(av))→ 0, which indicated that the chosen optimizing parameter also facilitated the attainment of maximum D values. The variation coefficient in the determination of Ta and Nb was respectively 0.8 and 1.4%. There was a good agreement between the results obtained in Ta analysis by the atom-absorption and the extraction-gravimetric methods, and in Nb analysis by the atom-absorption, differential spectrophotometric and x-ray fluorescence methods

  4. The relation of double peaks, observed in quartz hydride atomizers, to the fate of free atoms in the determination of arsenic and selenium by atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    D'Ulivo, A.; Dědina, Jiří

    2002-01-01

    Roč. 57, č. 12 (2002), s. 2069-2079 ISSN 0584-8547 R&D Projects: GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : hydride atomization * hydride generation * atomic absortion spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.695, year: 2002

  5. Atomic parity violation in heavy alkalis: detection by stimulated emission for cesium and traps for cold francium

    Energy Technology Data Exchange (ETDEWEB)

    Sanguinetti, St

    2004-07-01

    The present work deals with the recent advances of atomic spectroscopy experiments on cesium and francium, which aim at precise parity violation (PV) measurements in these atoms. Within the framework of a 'double-badged thesis', the candidate devoted himself on the one hand to the preliminary PV measurement (8% accuracy) of the present Cs experiment at the Kastler-Brossel laboratory in Paris and on the other hand to the preparation of a Fr radioactive atomic sample (production and trapping) at the LNL (INFN) in Italy. The two experiments are at very different stages. The measurements reported for cesium were actually made possible thanks to the work initiated in 1991, for the PV detection by stimulated emission. The Italian experiment is instead in a beginning stage: in order to probe the properties of francium, which is unstable, a number of atoms large enough has to be first produced and collected. The PV schemes which proved to be well suited for cesium are a solid starting point for the case of francium. (author)

  6. Determination of the neutral oxygen atom density in a plasma reactor loaded with metal samples

    Science.gov (United States)

    Mozetic, Miran; Cvelbar, Uros

    2009-08-01

    The density of neutral oxygen atoms was determined during processing of metal samples in a plasma reactor. The reactor was a Pyrex tube with an inner diameter of 11 cm and a length of 30 cm. Plasma was created by an inductively coupled radiofrequency generator operating at a frequency of 27.12 MHz and output power up to 500 W. The O density was measured at the edge of the glass tube with a copper fiber optics catalytic probe. The O atom density in the empty tube depended on pressure and was between 4 and 7 × 1021 m-3. The maximum O density was at a pressure of about 150 Pa, while the dissociation fraction of O2 molecules was maximal at the lowest pressure and decreased with increasing pressure. At about 300 Pa it dropped below 10%. The measurements were repeated in the chamber loaded with different metallic samples. In these cases, the density of oxygen atoms was lower than that in the empty chamber. The results were explained by a drain of O atoms caused by heterogeneous recombination on the samples.

  7. Speciation of mercury compounds by gas chromatography with atomic emission detection. Simultaneous optimization of a headspace solid-phase microextraction and derivatization procedure by use of chemometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Carro, A.M.; Neira, I.; Rodil, R.; Lorenzo, R. A. [Univ. Santiago de Compostela (Spain). Dpto. Quimica Analitica, Nutricion y Bromatologia

    2003-06-01

    A method is proposed for the extraction and determination of organomercury compounds and Hg(II) in seawater samples by headspace solid-phase microextraction (HS-SPME) combined with capillary gas chromatography-microwave-induced plasma atomic emission spectrometry. The mercury species were derivatized with sodium tetraphenylborate, sorbed on a polydimethylsiloxane-coated fused-silica fibre, and desorbed in the injection port of the GC, in splitless mode. Experimental design methodology was used to evaluate the effect of six HS-SPME-derivatization variables: sample volume, NaBPh{sub 4} volume, pH, sorption time, extraction-derivatization temperature, and rate of stirring. Use of a multicriterion decision-making approach, with the desirability function, enabled determination of the optimum working conditions of the procedure for simultaneous analysis of three mercury species. (orig.)

  8. Comparative use of different emission measurement approaches to determine methane emissions from a biogas plant

    DEFF Research Database (Denmark)

    Reinelt, Torsten; Delre, Antonio; Westerkamp, Tanja

    2017-01-01

    (corresponding to a methane loss of 0.6 and 2.1%) from team to team, depending on the number of measured emission points, operational state during the measurements and the measurement method applied. Taking the operational conditions into account, the deviation between different approaches and teams could......A sustainable anaerobic biowaste treatment has to mitigate methane emissions from the entire biogas production chain, but the exact quantification of these emissions remains a challenge. This study presents a comparative measurement campaign carried out with on-site and ground-based remote sensing...... measurement approaches conducted by six measuring teams at a Swedish biowaste treatment plant. The measured emissions showed high variations, amongst others caused by different periods of measurement performance in connection with varying operational states of the plant. The overall methane emissions measured...

  9. Impacts of nationally determined contributions on 2030 global greenhouse gas emissions: uncertainty analysis and distribution of emissions

    Science.gov (United States)

    Benveniste, Hélène; Boucher, Olivier; Guivarch, Céline; Le Treut, Hervé; Criqui, Patrick

    2018-01-01

    Nationally Determined Contributions (NDCs), submitted by Parties to the United Nations Framework Convention on Climate Change before and after the 21st Conference of Parties, summarize domestic objectives for greenhouse gas (GHG) emissions reductions for the 2025-2030 time horizon. In the absence, for now, of detailed guidelines for the format of NDCs, ancillary data are needed to interpret some NDCs and project GHG emissions in 2030. Here, we provide an analysis of uncertainty sources and their impacts on 2030 global GHG emissions based on the sole and full achievement of the NDCs. We estimate that NDCs project into 56.8-66.5 Gt CO2eq yr-1 emissions in 2030 (90% confidence interval), which is higher than previous estimates, and with a larger uncertainty range. Despite these uncertainties, NDCs robustly shift GHG emissions towards emerging and developing countries and reduce international inequalities in per capita GHG emissions. Finally, we stress that current NDCs imply larger emissions reduction rates after 2030 than during the 2010-2030 period if long-term temperature goals are to be fulfilled. Our results highlight four requirements for the forthcoming ‘climate regime’: a clearer framework regarding future NDCs’ design, an increasing participation of emerging and developing countries in the global mitigation effort, an ambitious update mechanism in order to avoid hardly feasible decarbonization rates after 2030 and an anticipation of steep decreases in global emissions after 2030.

  10. An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption

    NARCIS (Netherlands)

    Omenetto, N.; Winefordner, J.D.; Alkemade, C.T.J.

    An expression for the effect of self-absorption on the fluorescence and thermal emission intensities is derived by taking into account stimulated emission. A simple, idealized case is considered, consisting of a two level atomic system, in a flame, homogeneous with respect to temperature and

  11. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    Science.gov (United States)

    Chao, T.T.; Fishman, M. J.; Ball, J.W.

    1969-01-01

    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  12. Determination of Ca, Cu, Fe and Pb in sugarcane raw spirits by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Lorenzo, Magdalena; Reyes, Arlyn; Blanco, Idania; Vasallo, Maria C

    2010-01-01

    The determination of Ca, Cu, Fe and Pb in sugarcane raw spirits by atomic absorption spectrophotometry was carried out. For 20 μL injected sample, calibration within the 0,5-25,0 mg. L -1 Ca; 0,25-5,0 mg. L -1 Cu, Pb and Cu intervals were established using the ratios Cu, Ca, Fe and Pb absorbance versus analyte concentration, respectively. Typical linear correlations of r = 0,999 were obtained. The proposed method was applied for the direct determination of Ca, Cu, Fe and Pb in sugar cane spirits, and in samples. The results obtained were in accordance to those obtained at 95% confidence level

  13. Calculation of spontaneous emission from a V-type three-level atom in photonic crystals using fractional calculus

    International Nuclear Information System (INIS)

    Huang, Chih-Hsien; Hsieh, Wen-Feng; Wu, Jing-Nuo; Cheng, Szu-Cheng; Li, Yen-Yin

    2011-01-01

    Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing the system into the special cases whose results are consistent with the experimental observation. With accurate physical results and avoiding the complex integration for solving this optical system, we propose fractional calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics from the optical system with non-Markovian dynamics.

  14. Tin Content Determination in Canned Fruits and Vegetables by Hydride Generation Inductively Coupled Plasma Optical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    Sanda Rončević

    2012-01-01

    Full Text Available Tin content in samples of canned fruits and vegetables was determined by hydride generation inductively coupled plasma atomic emission spectrometry (HG-ICP-OES, and it was compared with results obtained by standard method of flame atomic absorption spectrometry (AAS. Selected tin emission lines intensity was measured in prepared samples after addition of tartaric acid and followed by hydride generation with sodium borohydride solution. The most favorable line at 189.991 nm showed the best detection limit (1.9 μg L−1 and limit of quantification (6.4 μg kg−1. Good linearity and sensitivity were established from time resolved analysis and calibration tests. Analytical accuracy of 98–102% was obtained by recovery study of spiked samples. Method of standard addition was applied for tin determination in samples from fully protected tinplate. Tin presence at low-concentration range was successfully determined. It was shown that tenth times less concentrations of Sn were present in protected cans than in nonprotected or partially protected tinplate.

  15. Comparative use of different emission measurement approaches to determine methane emissions from a biogas plant.

    Science.gov (United States)

    Reinelt, Torsten; Delre, Antonio; Westerkamp, Tanja; Holmgren, Magnus A; Liebetrau, Jan; Scheutz, Charlotte

    2017-10-01

    A sustainable anaerobic biowaste treatment has to mitigate methane emissions from the entire biogas production chain, but the exact quantification of these emissions remains a challenge. This study presents a comparative measurement campaign carried out with on-site and ground-based remote sensing measurement approaches conducted by six measuring teams at a Swedish biowaste treatment plant. The measured emissions showed high variations, amongst others caused by different periods of measurement performance in connection with varying operational states of the plant. The overall methane emissions measured by ground-based remote sensing varied from 5 to 25kgh -1 (corresponding to a methane loss of 0.6-3.0% of upgraded methane produced), depending on operating conditions and the measurement method applied. Overall methane emissions measured by the on-site measuring approaches varied between 5 and 17kgh -1 (corresponding to a methane loss of 0.6 and 2.1%) from team to team, depending on the number of measured emission points, operational state during the measurements and the measurement method applied. Taking the operational conditions into account, the deviation between different approaches and teams could be explained, in that the two largest methane-emitting sources, contributing about 90% of the entire site's emissions, were found to be the open digestate storage tank and a pressure release valve on the compressor station. Copyright © 2017. Published by Elsevier Ltd.

  16. Determination of cadmium in human urine by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Shimizu, Tokuo; Shijo, Yoshio; Sakai, Kaoru

    1981-01-01

    A trace amount of cadmium in human urine was determined by graphite furnace atomic absorption spectrometry. A urine sample (25 ml) was digested with 5 ml of HNO 3 and 30 ml of H 2 O 2 in a long-neck flask on a hot-plate (200 0 C), then diluted to 50 ml. The standard addition method was carried out before digesting. Ten μl of the resulted solution was injected into a tube treated with tungsten carbide, and the cadmium signal was measured with the ramp mode atomization. Interference induced by organic materials in urine was avoided by HNO 3 -H 2 O 2 digestion. Interference induced by inorganic salts could be reduced by 2-fold dilution and tungsten carbide treatment. The cadmium signal was separated sufficiently from the molecular absorption due to NaCl etc. by the ramp mode atomization. Since the blank level of H 2 O 2 was relatively high, the determination was limited to about 0.1 μg/l. The coefficient of variation was 1.76% at 0.36 μg/l in 24 h human urine (n = 4). The time required was (8 -- 10)h. The precision of this method was higher than those of direct methods, and the reasonable values of urine levels of cadmium were obtained. (author)

  17. The determination of magnesium in simulated PWR coolant by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gatford, C.; Torrance, K.

    1988-06-01

    The determination of magnesium in simulated PWR coolant has been investigated by graphite furnace atomic absorption spectrometry with atomization from a L'vov platform. The presence of boric acid in the coolant suppresses the magnesium absorption to such an extent that removal of the boron is necessary and three variations of a methyl borate volatilization technique for the in situ removal of boron from the sample platform were investigated. This work has shown that dilution of the sample with an equal volume of acidified methanol and volatilization of the methyl borate was adequate for the determination of magnesium in coolant samples containing up to 2000 mg 1 -1 of boron. In simulated coolant samples containing 25 and 4 μg 1 -1 of magnesium, positive biases of about 2 and 0.5 μg 1 -1 were measured and these errors were considered to be due to contamination. The limit of detection in the presence of 100 and 2000 mg 1 -1 boron were 0.14 and 0.93 μg 1 -1 respectively. These performance characteristics suggest the method is completely acceptable for monitoring the chemical purity of PWR coolant and associated waters containing boric acid. If, however, more precise analyses were to be required for research purposes then any significant improvement in the above figures would require increased purity of reagents, clean-room conditions to reduce contamination and a more versatile atomic absorption spectrophotometer. (author)

  18. Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe

    International Nuclear Information System (INIS)

    Kellogg, G.L.

    1981-01-01

    Three methods are discussed for determining the field emitter temperature during laser irradiation in the recently developed Pulsed Laser Atom Probe. A procedure based on the reduction of the lattice evaporation field with increasing emitter temperature is found to be the most convenient and reliable method between 60 and 500 K. Calibration curves (plots of the evaporation field versus temperature) are presented for dc and pulsed field evaporation of W, Mo, and Rh. These results show directly the important influence of the evaporation rate on the temperature dependence of the evaporation field. The possibility of a temperature calibration based on the ionic charge state distribution of field evaporated lattice atoms is also discussed. The shift in the charge state distributions which occurs when the emitter temperature is increased and the applied field strength is decreased at a constant rate of evaporation is shown to be due to the changing field and not the changing temperature. Nevertheless, the emitter temperature can be deduced from the charge state distribution for a specified evaporation rate. Charge state distributions as a function of field strength and temperature are presented for the same three materials. Finally, a preliminary experiment is reported which shows that the emitter temperature can be determined from field ion microscope observations of single atom surface diffusion over low index crystal planes. This last calibration procedure is shown to be very useful at higher temperatures (>600 K) where the other two methods become unreliable

  19. Rapid increase of near atomic resolution virus capsid structures determined by cryo-electron microscopy.

    Science.gov (United States)

    Ho, Phuong T; Reddy, Vijay S

    2018-01-01

    The recent technological advances in electron microscopes, detectors, as well as image processing and reconstruction software have brought single particle cryo-electron microscopy (cryo-EM) into prominence for determining structures of bio-molecules at near atomic resolution. This has been particularly true for virus capsids, ribosomes, and other large assemblies, which have been the ideal specimens for structural studies by cryo-EM approaches. An analysis of time series metadata of virus structures on the methods of structure determination, resolution of the structures, and size of the virus particles revealed a rapid increase in the virus structures determined by cryo-EM at near atomic resolution since 2010. In addition, the data highlight the median resolution (∼3.0 Å) and size (∼310.0 Å in diameter) of the virus particles determined by X-ray crystallography while no such limits exist for cryo-EM structures, which have a median diameter of 508 Å. Notably, cryo-EM virus structures in the last four years have a median resolution of 3.9 Å. Taken together with minimal sample requirements, not needing diffraction quality crystals, and being able to achieve similar resolutions of the crystal structures makes cryo-EM the method of choice for current and future virus capsid structure determinations. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Utilization of electrodeposition for electrothermal atomic absorption spectrometry determination of gold

    International Nuclear Information System (INIS)

    Konecna, Marie; Komarek, Josef

    2007-01-01

    Gold was determined by electrothermal atomic absorption spectrometry after electrochemical preconcentration on the graphite ridge probe used as a working electrode and sample support. The probe surface was electrochemically modified with Pd, Re and the mixture of both. The electrolysis of gold was performed under galvanostatic control at 0.5 mA. Maximum pyrolysis temperature for the probe surface modified with Pd was 1200 deg. C, with Re 1300 deg. C. The relative standard deviation for the determination of 2 μg l -1 Au was not higher than 5.6% (n = 8) for 2 min electrodeposition. The sensitivity of gold determination was reproducible for 300 electrodeposition and atomization cycles. When the probe surface was modified with a mixture of Pd and Re the detection limit was 31 ng l -1 for 2 min electrodeposition, 3.7 ng l -1 for 30 min, 1.5 ng l -1 for 1 h and 0.4 ng l -1 for 4 h electrodeposition, respectively. The procedure was applied to the determination of gold in river water samples. The relative standard deviation for the determination of 2.5 ng l -1 Au at 4 h electrodeposition time at 0.5 mA was 7.5%

  1. The determination, by atomic-absorption spectrophotometry, of impurities in manganese dioxide

    International Nuclear Information System (INIS)

    Balaes, G.E.E.; Robert, R.V.D.

    1981-01-01

    This report describes various methods for the determination of impurities in electrolytic manganese dioxide by atomic-absorption spectrophotometry (AAS). The sample is dissolved in a mixture of acids, any residue being ignited and retreated with acid. Several AAS methods were applied so that the analysis required to meet the specifications could be attained. These involved conventional flame AAS, AAS with electrothermal atomization (ETA), hydride generation coupled with AAS, and cold-vapour AAS. Of the elements examined, copper, iron, zinc, and lead can be determined direct with confidence with or without corrections based on recoveries obtained from spiked solutions. Nickel can be determined direct by use of the method of standard additions, and copper, nickel, and lead by ETA with the method of standard additions. Arsenic and antimony are determined by hydride generation coupled with AAS, and mercury by cold-vapour AAS. The precision of analysis (relative standard deviation) is generally less than 0,050. Values were obtained for aluminium, molybdenum, magnesium, sodium, copper, chromium, and cadmium, but the accuracy of these determinations has not been fully established

  2. A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE

    International Nuclear Information System (INIS)

    Bhardwaj, Anil; Raghuram, Susarla

    2012-01-01

    The green (5577 Å) and red-doublet (6300, 6364 Å) lines are prompt emissions of metastable oxygen atoms in the 1 S and 1 D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H 2 O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O( 1 S) and O( 1 D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H 2 O to the green (red) line emission is 30%-70% (60%-90%), while CO 2 and CO are the next potential sources contributing 25%-50% ( 1 S) to O( 1 D) would be around 0.03 (±0.01) if H 2 O is the main source of oxygen lines, whereas it is ∼0.6 if the parent is CO 2 . Our calculations suggest that the yield of O( 1 S) production in the photodissociation of H 2 O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  3. A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Anil; Raghuram, Susarla, E-mail: bhardwaj_spl@yahoo.com, E-mail: anil_bhardwaj@vssc.gov.in, E-mail: raghuramsusarla@gmail.com [Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695022 (India)

    2012-03-20

    The green (5577 Angstrom-Sign ) and red-doublet (6300, 6364 Angstrom-Sign ) lines are prompt emissions of metastable oxygen atoms in the {sup 1}S and {sup 1}D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H{sub 2}O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O({sup 1}S) and O({sup 1}D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H{sub 2}O to the green (red) line emission is 30%-70% (60%-90%), while CO{sub 2} and CO are the next potential sources contributing 25%-50% (<5%). The ratio of the photoproduction rate of O({sup 1} S) to O({sup 1} D) would be around 0.03 ({+-}0.01) if H{sub 2}O is the main source of oxygen lines, whereas it is {approx}0.6 if the parent is CO{sub 2}. Our calculations suggest that the yield of O({sup 1} S) production in the photodissociation of H{sub 2}O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  4. Dependence of ion - photon emission characteristics on the concentration of implanted atoms of the bombarding beam

    International Nuclear Information System (INIS)

    Belykh, S.F.; Evtukhov, R.N.; Redina, I.V.; Ferleger, V.Kh.

    1989-01-01

    Results of experiment, where Dy + beams, its spraying products emitting intensively optical radiation with continuous spectrum (CSR), are used for tantalum surface bombardment, are presented. The given experiment allowed one to separate the scattered particle CSR contribution and was conducted under controlled beam n atom concentration on the target surface. E 0 energy and j 0 dysprosium ion flux density made up respectively 3.5 keV and 3x10 5 Axcm -2 . The obtained result analysis has shown that a notable dependence of spectrum type on n value is detected. Dy scattered atoms to not emit CSR. The main contribution to CSR is made by sprayed particles, containing dysprosium atoms

  5. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mosher, D.; De Groot, J.S.

    1996-01-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays in 5-MA Saturn discharges is reported. The timing of multiple implosions and the thermal x-ray spectra (1 to 10 keV) agree with 2D radiation-hydrocode simulations. Nonthermal x-ray emission (10 to 100 keV) correlates with pinch spots distributed along the z-axis. The similarities of the measured nonthermal spectrum, yield, and pinch-spot emission with those of 0.8-MA, single-exploded-wire discharges on Gamble-II suggest a common nonthermal-production mechanism. Nonthermal x-ray yields are lower than expected from current scaling of Gamble II results, suggesting that implosion geometries are not as efficient as single-wire geometries for nonthermal x-ray production. The instabilities, azimuthal asymmetries, and inferred multiple implosions that accompany the implosion geometry lead to larger, more irregular pinch spots, a likely reason for reduced nonthermal efficiency. A model for nonthermal-electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas combined with 1D hydrocode simulations of Saturn compact loads predicts weak nonthermal x-ray emission. (author). 3 figs., 10 refs

  6. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mosher, D.; De Groot, J.S.

    1996-01-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays in 5-MA Saturn discharges is reported. The timing of multiple implosions and the thermal x-ray spectra (1 to 10 keV) agree with 2D radiation-hydrocode simulations. Nonthermal x-ray emission (10 to 100 keV) correlates with pinch spots distributed along the z-axis. The similarities of the measured nonthermal spectrum, yield, and pinch-spot emission with those of 0.8-MA, single- exploded-wire discharges on Gamble-II suggest a common nonthermal- production mechanism. Nonthermal x-ray yields are lower than expected from current scaling of Gamble II results, suggesting that implosion geometries are not as efficient as single-wire geometries for nonthermal x-ray production. The instabilities, azimuthal asymmetries, and inferred multiple implosions that accompany the implosion geometry lead to larger, more irregular pinch spots, a likely reason for reduced nonthermal efficiency. A model for nonthermal-electron acceleration across magnetic fields in highly- collisional, high-atomic-number plasmas combined with 1D hydrocode simulations of Saturn compact loads predicts weak nonthermal x-ray emission

  7. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    International Nuclear Information System (INIS)

    Bulanov, Alexey V.; Nagorny, Ivan G.

    2015-01-01

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission in fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained

  8. Determination of metallic impurities in raw materials for radioisotope production by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Roca, M.; Alvarez, F.; Capdevila, C.

    1969-01-01

    Atomic absorption spectrometry has been used for the determination of traces of calcium in scandium oxide, copper in zinc, iron in cobalt oxide, manganese In ferric oxide, nickel in copper and zinc in gallium oxide. The influences on the sensitivities arising from the hollow cathode currents, the gas pressures and the acid concentrations have been considered. A study of the interferences from the metallic matrices has also been performed, the interference due to the absorption of the manganese radiation by the atoms of iron being the most outstanding . In order to remove the interfering elements and increase sensitivity, pre-concentration methods have been tested. The addition methods has also been used. (Author) 14 refs

  9. Determination of 17 impurity elements in nuclear quality uranium compounds by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Andonie, O.; Smith, L.A.; Cornejo, S.

    1985-01-01

    A method is described for the determination of 17 elements (Al, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, V and Zn) in the ppm level, in nuclearly pure uranium compounds by flame atomic absorption spectroscopy. The analysis is performed by first dissolving the uranium sample in nitric acid and then extracting the uranium with tributyl phosphate solution. The aqueous phase, free of uranium, which contains the elements to analyze is inspirated into the flame of an atomic absorption spectrophotometer using air-acetylene or nitrous oxide-acetylene flame according to the element in study. This method allows to extract the uranium selectively in more than 99.0% and the recovery of the elements sudied was larger 90% (for K) to 100% (for Cr). The sensitivity of the method vary from 0.096 μg/g U (for Cd) to 5.5 μg/g U (for Na). (Author)

  10. Experimental determination of the x-ray atomic fundamental parameters of nickel

    Science.gov (United States)

    Ménesguen, Y.; Lépy, M.-C.; Hönicke, P.; Müller, M.; Unterumsberger, R.; Beckhoff, B.; Hoszowska, J.; Dousse, J.-Cl; Błachucki, W.; Ito, Y.; Yamashita, M.; Fukushima, S.

    2018-02-01

    The x-ray atomic properties of nickel (Ni) were investigated in a unique approach combining different experimental techniques to obtain new, useful and reliable values of atomic fundamental parameters for x-ray spectrometric purposes and for comparison with theoretical predictions. We determined the mass attenuation coefficients in an energy range covering the L- and K-absorption edges, the K-shell fluorescence yield and the Kβ/Kα and Kβ1, 3/Kα1, 2 transition probability ratios. The obtained line profiles and linewidths of the Kα and Kβ transitions in Ni can be considered as the contribution of the satellite lines arising from the [KM] shake processes suggested by Deutsch et al (1995 Phys. Rev. A 51 283) and Ito et al (2016 Phys. Rev. A 94 042506). Comparison of the new data with several databases showed good agreement, but also discrepancies were found with existing tabulated values.

  11. Determining the emissivity of pig skin for accurate infrared thermography

    DEFF Research Database (Denmark)

    Sørensen, Dennis D.; Clausen, Sønnik; Mercer, James B.

    2014-01-01

    for the ear base (p euthanasia) tended to be lower (p = 0.06) compared with the emissivity of the skin areas when perfused with blood. The results of this study confirm that it is valid to use the human skin...

  12. Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry.

    Science.gov (United States)

    Donati, George L; Pharr, Kathryn E; Calloway, Clifton P; Nóbrega, Joaquim A; Jones, Bradley T

    2008-09-15

    Cadmium concentrations in human urine are typically at or below the 1 microgL(-1) level, so only a handful of techniques may be appropriate for this application. These include sophisticated methods such as graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry. While tungsten coil atomic absorption spectrometry is a simpler and less expensive technique, its practical detection limits often prohibit the detection of Cd in normal urine samples. In addition, the nature of the urine matrix often necessitates accurate background correction techniques, which would add expense and complexity to the tungsten coil instrument. This manuscript describes a cloud point extraction method that reduces matrix interference while preconcentrating Cd by a factor of 15. Ammonium pyrrolidinedithiocarbamate and Triton X-114 are used as complexing agent and surfactant, respectively, in the extraction procedure. Triton X-114 forms an extractant coacervate surfactant-rich phase that is denser than water, so the aqueous supernatant is easily removed leaving the metal-containing surfactant layer intact. A 25 microL aliquot of this preconcentrated sample is placed directly onto the tungsten coil for analysis. The cloud point extraction procedure allows for simple background correction based either on the measurement of absorption at a nearby wavelength, or measurement of absorption at a time in the atomization step immediately prior to the onset of the Cd signal. Seven human urine samples are analyzed by this technique and the results are compared to those found by the inductively coupled plasma mass spectrometry analysis of the same samples performed at a different institution. The limit of detection for Cd in urine is 5 ngL(-1) for cloud point extraction tungsten coil atomic absorption spectrometry. The accuracy of the method is determined with a standard reference material (toxic metals in freeze-dried urine) and the determined values agree with

  13. 40 CFR 63.9322 - How do I determine the emission capture system efficiency?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false How do I determine the emission... Cells/Stands Testing and Initial Compliance Requirements § 63.9322 How do I determine the emission... efficiency measurement must consist of three test runs. Each test run must be at least 3 hours in duration or...

  14. 30 CFR 72.503 - Determination of emissions; filter maintenance; definition of “introduced”.

    Science.gov (United States)

    2010-07-01

    ... on the piece of diesel-powered equipment in question. (c) In lieu of the laboratory tests required by... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Determination of emissions; filter maintenance...-Underground Areas of Underground Coal Mines § 72.503 Determination of emissions; filter maintenance...

  15. Hydride generation-atomic absorption spectrometry for determination of trace arsenic in draining waste water of uranium hydrometallurgical plant

    International Nuclear Information System (INIS)

    Sun Suqing; Sun Shiying; Xue Jingxia

    1986-01-01

    The arsenate is reduced to the arsenite by potassium iodide-sulfourea in dilute sulphuric acid. Then the arsenite is reduced to arsine by sodium borohydride. The arsine carried into silica tube atomizer by nitrogen is atomized at 920 deg C and determined by the homemade atomic absorption instrument. It is shown that the sensitivity of the mentioned method is 0.2 ng/ml (1% absorption). The recovery is 88-103% and the relative standard deviation is ≤ 10%

  16. Determination of Non-Maxwellian Electron Energy Distributions in Low-Pressure Plasmas by Using the Optical Emission Spectroscopy and a Collisional-Radiative Model

    International Nuclear Information System (INIS)

    Zhu Ximing; Pu Yikang

    2011-01-01

    A Maxwellian electron energy distribution function (EEDF) is often assumed when using the optical emission line-ratio method to determine the electron temperature in low-temperature plasmas. However, in many cases, non-Maxwellian EEDFs can be formed due to the non-local electron heating or the inelastic-collisional energy loss processes. In this work, with a collisional-radiative model, we propose an approach to obtain the non-Maxwellian EEDF with a 'two-temperature structure' from the emission line-ratios of Paschen 2p levels of argon and krypton atoms. For applications of this approach in reactive gas (CF 4 , O 2 , etc) discharges that contain argon and krypton, recommendations of some specific emission line-ratios are provided, according to their sensitivities to the EEDF variation. The kinetic processes of the relevant excited atoms are also discussed in detail. (cai awardee's article)

  17. Two photon emission by hydrogen-like atoms in high temperature plasmas

    International Nuclear Information System (INIS)

    Costescu, A.; Manzatu, I.; Dinu, C.; Mihailescu, I.N.

    1981-08-01

    New exact solutions and a rather simple polynomial expression of the power emitted in the two photon transition from a metastable 2s state to the ground state of a hydrogen-like atom were infered with the aid of the Coulomb Green's function method. It was shown that the two photon decay represents under certain circumstances a significant power loss mechanism. (authors)

  18. 40 CFR 63.3555 - How do I determine the outlet THC emissions and add-on control device emission destruction or...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true How do I determine the outlet THC.../outlet Concentration Option § 63.3555 How do I determine the outlet THC emissions and add-on control... section to determine either the outlet THC emissions or add-on control device emission destruction or...

  19. CHIANTI—AN ATOMIC DATABASE FOR EMISSION LINES. XIII. SOFT X-RAY IMPROVEMENTS AND OTHER CHANGES

    International Nuclear Information System (INIS)

    Landi, E.; Young, P. R.; Dere, K. P.; Del Zanna, G.; Mason, H. E.

    2013-01-01

    The CHIANTI spectral code consists of two parts: an atomic database and a suite of computer programs in Python and IDL. Together, they allow the calculation of the optically thin spectrum of astrophysical objects and provide spectroscopic plasma diagnostics for the analysis of astrophysical spectra. The database includes atomic energy levels, wavelengths, radiative transition probabilities, collision excitation rate coefficients, ionization, and recombination rate coefficients, as well as data to calculate free-free, free-bound, and two-photon continuum emission. Version 7.1 has been released, which includes improved data for several ions, recombination rates, and element abundances. In particular, it provides a large expansion of the CHIANTI models for key Fe ions from Fe VIII to Fe XIV to improve the predicted emission in the 50-170 Å wavelength range. All data and programs are freely available at http://www.chiantidatabase.org and in SolarSoft, while the Python interface to CHIANTI can be found at http://chiantipy.sourceforge.net.

  20. The design and characteristics of direct current glow discharge atomic emission source operated with plain and hollow cathodes

    International Nuclear Information System (INIS)

    Qayyum, A.; Mahmood, M.I.

    2008-01-01

    A compact direct current glow discharge atomic emission source has been designed and constructed for analytical applications. This atomic emission source works very efficiently at a low-input electrical power. The design has some features that make it distinct from that of the conventional Grimm glow discharge source. The peculiar cathode design offered greater flexibility on size and shape of the sample. As a result the source can be easily adopted to operate in Plain or Hollow Cathode configuration. I-V and spectroscopic characteristics of the source were compared while operating it with plain and hollow copper cathodes. It was observed that with hollow cathode, the source can be operated at a less input power and generates greater Cu I and Cu II line intensities. Also, the intensity of Cu II line rise faster than Cu I line with argon pressure for both cathodes. But the influence of pressure on Cu II lines was more significant when the source is operated with hollow cathode

  1. Optimal Fluorescence Waveband Determination for Detecting Defective Cherry Tomatoes Using a Fluorescence Excitation-Emission Matrix

    Directory of Open Access Journals (Sweden)

    In-Suck Baek

    2014-11-01

    Full Text Available A multi-spectral fluorescence imaging technique was used to detect defective cherry tomatoes. The fluorescence excitation and emission matrix was used to measure for defects, sound surface and stem areas to determine the optimal fluorescence excitation and emission wavelengths for discrimination. Two-way ANOVA revealed the optimal excitation wavelength for detecting defect areas was 410 nm. Principal component analysis (PCA was applied to the fluorescence emission spectra of all regions at 410 nm excitation to determine the emission wavelengths for defect detection. The major emission wavelengths were 688 nm and 506 nm for the detection. Fluorescence images combined with the determined emission wavebands demonstrated the feasibility of detecting defective cherry tomatoes with >98% accuracy. Multi-spectral fluorescence imaging has potential utility in non-destructive quality sorting of cherry tomatoes.

  2. Research as a guide for curriculum development: An example from introductory spectroscopy. II. Addressing student difficulties with atomic emission spectra

    Science.gov (United States)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-02-01

    This is the second of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. Paper I describes how several conceptual and reasoning difficulties were identified among university students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. This second article (Paper II) illustrates how findings from this research informed the development of a tutorial that led to improvement in student understanding of atomic emission spectra.

  3. Radiation trapping in atomic absorption spectroscopy at lead determination in different matricies

    International Nuclear Information System (INIS)

    El-Gohary, Z.

    2005-01-01

    The determination of lead by flame atomic absorption analysis in the presence of Sn and Fe atoms and different matrices such as OH and SO 3 was investigated with the objective of understanding the spectral interference processes at the analytical lines 283.31 nm for a wide range of concentration. The radiation trapping factor was interpreted and evaluated assuming Voigt distribution of the atomic and rotational lines in the flame. The radiation trapping factor was increased by increasing the number density (plasma of the absorbing medium is optically thick). In plasma, there is a certain point of equilibrium between the trapping and the escaping of radiation, which is relevant to 50% of absorption. The spectral background interference can cause a variation of the number density at equilibrium point as a result of the degree of overlap with the analytical line. The spectral background interference can be easily avoided by using another resonance absorption line for the analysis. The chemical modification of the matrix is applied to minimize the interference effect. Nitric acid, ammonium nitrate and magnesium nitrate are most commonly recommended as matrix modifiers

  4. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer.

    Science.gov (United States)

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-06-20

    Atomization conditions for antimony hydride in the plasma atomizer based on a dielectric barrier discharge (DBD) with atomic absorption spectrometric detection were optimized. Argon was found as the best discharge gas under a flow rate of 50 mL min - 1 while the DBD power was optimum at 30 W. Analytical figures of merit including interference study of As, Se and Bi have been subsequently investigated and the results compared to those found in an externally heated quartz tube atomizer (QTA). The limit of detection (LOD) reached in DBD (0.15 ng mL -1  Sb) is comparable to that observed in QTA (0.14 ng mL -1  Sb). Finally, possibility of Sb preconcentration by stibane in situ trapping in a DBD atomizer was studied. For trapping time of 300 s, the preconcentration efficiency and LOD, respectively, were 103 ± 2% and 0.02 ng mL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    Science.gov (United States)

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  6. Determination of cadmium in seawater by chelate vapor generation atomic fluorescence spectrometry

    Science.gov (United States)

    Sun, Rui; Ma, Guopeng; Duan, Xuchuan; Sun, Jinsheng

    2018-03-01

    A method for the determination of cadmium in seawater by chelate vapor generation (Che-VG) atomic fluorescence spectrometry is described. Several commercially available chelating agents, including ammonium pyrrolidine dithiocarbamate (APDC), sodium dimethyl dithiocarbamate (DMDTC), ammonium dibutyl dithiophosphate (DBDTP) and sodium O,O-diethyl dithiophosphate (DEDTP), are compared with sodium diethyldithiocarbamate (DDTC) for the Che-VG of cadmium, and results showed that DDTC and DEDTP had very good cadmium signal intensity. The effect of the conditions of Che-VG with DDTC on the intensity of cadmium signal was investigated. Under the optimal conditions, 85 ± 3% Che-VG efficiency is obtained for cadmium. The detection limit (3σ) obtained in the optimal conditions was 0.19 ng ml- 1. The relative standard deviation (RSD, %) for ten replicate determinations at 2 ng ml- 1 Cd was 3.42%. The proposed method was successfully applied to the ultratrace determination of cadmium in seawater samples by the standard addition method.

  7. [Graphite furnace atomic absorption spectrometry for determination of thallium in blood].

    Science.gov (United States)

    Zhang, Q L; Gao, G

    2016-04-20

    Colloidal palladium was used as chemical modifier in the determination of blood thallium by graphite furnace atomic absorption spectrometry. Blood samples were precipitated with 5% (V/V)nitric acid, and then determined by GFAAS with colloidal palladium used as a chemical modifier. 0.2% (W/V)sodium chloride was added in the standard series to improve the matrix matching between standard solution and sample. The detection limit was 0.2 μg/L. The correlation coefficient was 0.9991. The recoveries were between 93.9% to 101.5%.The relative standard deviations were between 1.8% to 2.7%.The certified reference material of whole blood thallium was determined and the result was within the reference range Conclusion: The method is accurate, simple and sensitive, and it can meet the needs of detection thallium in blood entirely.

  8. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    Science.gov (United States)

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  9. Automated atomic absorption spectrometric determination of total arsenic in water and streambed materials

    Science.gov (United States)

    Fishman, M.

    1977-01-01

    An automated method to determine both inorganic and organic forms of arsenic In water, water-suspended mixtures, and streambed materials Is described. Organic arsenic-containing compounds are decomposed by either ultraviolet radiation or by suHurlc acid-potassium persulfate digestion. The arsenic liberated, with Inorganic arsenic originally present, is reduced to arsine with sodium borohydrlde. The arable Is stripped from the solution with the aid of nitrogen and Is then decomposed In a tube furnace heated to 800 ??C which Is placed in the optical path of an atomic absorption spectrometer. Thirty samples per hour can be analyzed to levels of 1 ??g arsenic per liter.

  10. Atomic absorption determination of metals in soils using ultrasonic sample preparation

    International Nuclear Information System (INIS)

    Chmilenko, F.A.; Smityuk, N.M.; Baklanov, A.N.

    2002-01-01

    It was shown that ultrasonic treatment accelerates sample preparation of soil extracts from chernozem into different solvents by a factor of 6 to 60. These extracts are used for the atomic absorption determination of soluble species of Cd, Co, Cr, Cu, Ni, Pb, and Zn. The optimum ultrasound parameters (frequency, intensity, and treatment time) were found for preparing soil extracts containing analytes in concentrations required in agrochemical procedures. Different extractants used to extract soluble heavy metals from soils of an ordinary chernozem type in agrochemical procedures using ultrasonic treatment were classified in accordance with the element nature [ru

  11. Interference between radiative emission and autoionization in the decay of excited states of atoms

    International Nuclear Information System (INIS)

    Armstrong, L. Jr.; Theodosiou, C.E.; Wall, M.J.

    1978-01-01

    An excited state of an atom which can autoionize can also undergo radiative decay. We consider the interaction between the final states resulting from these two modes of decay, and its effects on such quantities as the fluorescence yield of the excited state, excitation profile of the excited state, and the spectra of the emitted photons and electrons. It is shown that the fraction of decays of the excited state resulting in a photon (fluorescence yield) is particularly sensitive to the details of the final-state interaction. In lowest order in the final-state interaction, the fluorescence yield is increased by a factor (1 + 1/q 2 ) from the traditional value, where q is the Fano q parameter relating to the excited state and the final atomic state

  12. Spontaneous light emission by atomic hydrogen: Fermi's golden rule without cheating

    Science.gov (United States)

    Debierre, V.; Durt, T.; Nicolet, A.; Zolla, F.

    2015-10-01

    Focusing on the 2 p- 1 s transition in atomic hydrogen, we investigate through first order perturbation theory the time evolution of the survival probability of an electron initially taken to be in the excited (2 p) state. We examine both the results yielded by the standard dipole approximation for the coupling between the atom and the electromagnetic field - for which we propose a cutoff-independent regularisation - and those yielded by the exact coupling function. In both cases, Fermi's golden rule is shown to be an excellent approximation for the system at hand: we found its maximal deviation from the exact behaviour of the system to be of order 10-8 /10-7. Our treatment also yields a rigorous prescription for the choice of the optimal cutoff frequency in the dipole approximation. With our cutoff, the predictions of the dipole approximation are almost indistinguishable at all times from the exact dynamics of the system.

  13. Electron emission induced by atomic collisions in gaseous targets and solids

    International Nuclear Information System (INIS)

    Meckbach, W.

    1988-01-01

    In this work, it is considered only the process of single collision with gaseous targets. The possible inelastic processes are: excitation and ionization of both, target and incident beam. The attention was concentrated to the processes of direct ionization which may give rise to electron emission. (A.C.A.S.) [pt

  14. Terrestrial energetic neutral atom emissions and the ground-based geomagnetic indices: First daylong observations by IBEX

    Science.gov (United States)

    Ogasawara, K.; Dayeh, M. A.; Fuselier, S. A.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2017-12-01

    We report daylong continuous observations of bright terrestrial energetic neutral atom (ENA) emissions in the energy of 0.5-6.0 keV by Interstellar Boundary Explorer (IBEX). The unique vantage point of IBEX, 48 Earth radii (Re) from the dawn/dusk side, made an unprecedented long duration monitoring of ENAs possible from almost stable locations. This type of observation is difficult with the other ENA imager satellites since they are orbiting closer to the Earth in shorter periods. The studied energy range is unique due to the coverage of the transition from the solar wind plasma to the magnetospheric particles with a single sensor. In addition, the Coulomb decay becomes important for the protons with energy less than 1 keV. In order to minimize contamination from the sub-solar magnetosphere or the cusp emissions, we focused on two events when the auroral electrojet (AE) index exceeded 300 nT in this study. We will also show the ENA images from Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) in support of the IBEX observations. We found a significant correlation between the observed ENA profile and the AE indices, whose correlation coefficients were maximized at >0.75 for >1.4 keV energy. There are systematic differences between two events in terms of AU, AL, and Asy-H correlations: One event has the stronger AU correlation than AL and the Asy-H correlation, suggesting partial ring current contribution. The other has the stronger AL correlation than AU without Asy-H correlation, which suggests substorm related ENA emissions. On the contrary, we could not find a meaningful correlation with Sym-H for these two events. The other important finding is the decay time of these ENA emissions. The observed e-folding decay time, 2 to 4 hours for most of the energy bands, was a little shorter than the conventional ring-current decay time (typically >6 hours) expected from the charge exchange and the field-line curvature effect, suggesting the stronger effect of the

  15. Methods of Temperature and Emission Measure Determination of Coronal Loops

    Science.gov (United States)

    Cirtain, J. W.; Schmelz, J. T.; Martens, P. C. H.

    2002-05-01

    Recent observational results from both SOHO-EIT and TRACE indicate that coronal loops are isothermal along their length (axially). These results are obtained from a narrowband filter ratio method that assumes that the plasma is isothermal along the line of sight (radially). However, these temperatures vary greatly from those derived from differential emission measure (DEM) curves produced from spectral lines recorded by SOHO-CDS. The DEM results indicate that the loops are neither axially nor radially isothermal. This discrepancy was investigated by Schmelz et al. (2001). They chose pairs of iron lines from the same CDS data set to mimic the EIT and TRACE loop results. Ratios of different lines gave different temperatures, indicating that the plasma was not radially isothermal. In addition the results indicated that the loop was axially isothermal, even though the DEM analysis of the same data showed this result to be false. Here we have analyzed the EIT data for the CDS loop published by Schmelz et al. (2001). We took the ratios of the 171-to-195 and 195-to-284 filter data, and made temperature maps of the loop. The results indicate that the loop is axially isothermal, but different temperatures were found for each pair of filters. Both ratio techniques force the resultant temperature to lie within the range where the response functions (for filters) or the emissivity functions (for lines) overlap; isothermal loops are therefore a byproduct of the analysis. This conclusion strengthens support for the idea that temperature and emission measure results from filter ratio methods may be misleading or even drastically wrong. This research was funded in part by the NASA/TRACE MODA grant for Montana State University. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783.

  16. [Research on the method of copper converting process determination based on emission spectrum analysis].

    Science.gov (United States)

    Li, Xian-xin; Liu, Wen-qing; Zhang, Yu-jun; Si, Fu-qi; Dou, Ke; Wang, Feng-ping; Huang, Shu-hua; Fang, Wu; Wang, Wei-qiang; Huang, Yong-feng

    2012-05-01

    A method of copper converting process determination based on PbO/PbS emission spectrum analysis was described. According to the known emission spectrum of gas molecules, the existence of PbO and PbS was confirmed in the measured spectrum. Through the field experiment it was determined that the main emission spectrum of the slag stage was from PbS, and the main emission spectrum of the copper stage was from PbO. The relative changes in PbO/PbS emission spectrum provide the method of copper converting process determination. Through using the relative intensity in PbO/PbS emission spectrum the copper smelting process can be divided into two different stages, i.e., the slag stage (S phase) and the copper stage (B phase). In a complete copper smelting cycle, a receiving telescope of appropriate view angle aiming at the converter flame, after noise filtering on the PbO/PbS emission spectrum, the process determination agrees with the actual production. Both the theory and experiment prove that the method of copper converting process determination based on emission spectrum analysis is feasible.

  17. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer

    Czech Academy of Sciences Publication Activity Database

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-01-01

    Roč. 1010, JUN (2018), s. 11-19 ISSN 0003-2670 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * Stibane * atomization and preconcentration Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  18. Determination of radioactive emission origins based on analyses of isotopic composition

    International Nuclear Information System (INIS)

    Devell, L.

    1987-01-01

    The nature of radioactivity emissions can be determined through gamma spectroscopy of air samples with good precision, which means that the type of source of the emission may be found, e.g. nuclear weapons test, of nuclear power plant accident. Combined with information on wind trajectories it is normally possible to recognize time and area for the emission. In this preliminary study, the knowledge of and preparedness for such measurements are described. (L.E.)

  19. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    Science.gov (United States)

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  20. System and process for determining the basis weight of a low atomic number material in a mixture with a higher atomic number material

    International Nuclear Information System (INIS)

    Hegland, P.; Dahlquist, J.

    1985-01-01

    A process for determining the relative quantity of low atomic energy material mixed with a higher atomic energy material is carried out by directing a first and second beam of x-rays into the mixture. The process includes transmitting x-rays directly to detectors to set one criterion, shielding the detectors from the x-ray sources to set another criterion and then passing samples of known relative composition to provide data for storage and calibration carrying out the process of mixtures to be measured

  1. Alternative approaches to correct interferences in the determination of boron in shrimps by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pasias, I.N.; Pappa, Ch.; Katsarou, V.; Thomaidis, N.S., E-mail: ntho@chem.uoa.gr; Piperaki, E.A.

    2014-02-01

    The aim of this study is to propose alternative techniques and methods in combination with the classical chemical modification to correct the major matrix interferences in the determination of boron in shrimps. The performance of an internal standard (Ge) for the determination of boron by the simultaneous multi-element atomic absorption spectrometry was tested. The use of internal standardization increased the recovery from 85.9% to 101% and allowed a simple correction of errors during sampling preparation and heating process. Furthermore, a new preparation procedure based on the use of citric acid during digestion and dilution steps improved the sensitivity of the method and decreased the limit of detection. Finally, a comparative study between the simultaneous multi-element atomic absorption spectrometry with a longitudinal Zeeman-effect background correction system, equipped with a transversely-heated graphite atomizer and the single element atomic absorption spectrometry with a D{sub 2} background correction system, equipped with an end-heated graphite atomizer was undertaken to investigate the different behavior of boron in both techniques. Different chemical modifiers for the determination of boron were tested with both techniques. Ni-citric acid and Ca were the optimal chemical modifiers when simultaneous multi-element atomic absorption spectrometry and single-element atomic absorption spectrometry were used, respectively. By using the single-element atomic absorption spectrometry, the calculated characteristic mass was 220 pg and the calculated limit of detection was 370 μg/kg. On the contrary, with simultaneous multi-element atomic absorption spectrometry, the characteristic mass was 2200 pg and the limit of detection was 5.5 mg/kg. - Highlights: • New approaches were developed to cope with interferences of B determination by ETAAS • Ge was used as internal standard for the determination of B by simultaneous ETAAS • Citric acid was used during

  2. Estimation of the time scale of last chance alpha emission using an ''atomic clock''

    International Nuclear Information System (INIS)

    Gallamore, L.; Sarantites, D.G.; Charity, R.J.; Nicolis, N.G.; Sobotka, L.G.; Beene, J.R.; Halbert, M.L.; Varner, R.L.

    1994-01-01

    The probability of filling a K-vacancy, created on the incoming part of the collision, before α-particle emission is used to time the decay of Yb compound nuclei. These nuclei were produced in the fusion reaction 250 MeV 60 Ni+ 100 Mo. In general the nuclear decays are too fast to be timed by this clock, however, α-particle emitting compound nucleus states have lifetimes sufficiently long for this technique to work when both the α-particle has low energy and the compound nucleus spin is large. This supports the existence of last, or near last, chance α-particle emission in the deexcitation of high spin compound nuclei

  3. The method of atomic absorption spectrophotometry for determining of cadmium in fruit and vegetable products

    International Nuclear Information System (INIS)

    Brzozowska, B.

    1977-01-01

    The method of atomic absorption with the technique of standard addition was used for determination of cadmium in the following tinned products: green peas, cut bean pods, sorel, stewed black currants, greengage plums, orange juice. The products were dry mineralized. Each mineralizate was divided into three portions, known amounts of cadmium were added to two portions and all portions were supplemented to a defined volume. Determinations were performed using a Pye Unicam SP 90 A spectrophotometer and they served as a base for plotting a curve in the system: absorbance - concentration of added metal. The curve was extrapolated to zero absorbance for reading directly the content of the metal in the product. This content was in the range from 10 to 80 μg/kg at variance coefficient 5-15% and the recovery was 80-130%. (author)

  4. On-line determination of manganese in solid seafood samples by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yebra, M.C.; Moreno-Cid, A.

    2003-01-01

    Manganese is extracted on-line from solid seafood samples by a simple continuous ultrasound-assisted extraction system (CUES). This system is connected to an on-line manifold, which permits the flow-injection flame atomic absorption spectrometric determination of manganese. Optimisation of the continuous leaching procedure is performed by an experimental design. The proposed method allows the determination of manganese with a relative standard deviation of 0.9% for a sample containing 23.4 μg g -1 manganese (dry mass). The detection limit is 0.4 μg g -1 (dry mass) for 30 mg of sample and the sample throughput is ca. 60 samples per hour. Accurate results are obtained by measuring TORT-1 certified reference material. The procedure is finally applied to mussel, tuna, sardine and clams samples

  5. Liquid-Liquid Extraction and Determination of Trace Elements in Iron Minerals by Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Taseska, Milena; Stafilov, Trajche; Makreski, Petre; Jacimovic, Radojko; Jovanovski, Gligor

    2006-01-01

    Various trace elements (cadmium, chromium, cobalt, nickel, manganese) in some iron minerals were determined by flame (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). The studied minerals were chalcopyrite (CuFeS 2 ), hematite (Fe 2 O 3 ) and pyrite (FeS 2 ). To avoid the interference of iron, a method for liquid-liquid extraction of iron and determination of investigated elements in the inorganic phase was proposed. Iron was extracted by diisopropyl ether in hydrochloride acid solution and the extraction method was optimized. Some parameters were obtained to be significantly important: Fe mass in the sample should not exceed 0.3 g, the optimal concentration of HCI should be 7.8 mol 1 -1 and ratio of the inorganic and organic phase should be 1: 1. The procedure was verified by the method of standard additions and by its applications to reference standard samples. The investigated minerals originate from various mines in the Republic of Macedonia. (Author)

  6. Levels of trace elements in different varieties of wheat determined by Atomic Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Mohamed, A.E.; Taha, G.M.

    2003-01-01

    Trace elements Ag, Au, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were determined in six wheat samples purchased from the open market in different localities (Egypt, Saudi Arabia, Yemen, Oman, Dubai and Australia). The dried powdered samples were decomposed in HNO3-HClO4 acids mixtures and elements were determined using recording atomic absorption spectrophotometer. The results were within the safety baseline of all the assayed elements. Certified biological standards, Brown's Kale (BK), Orchard Leaves (OL) and tomato leaves (TOML) were used to assure the accuracy of results. However, Co, Pb and Sr were absent from samples except the Egyptian samples. The obtained databases were statistically treated. Several significant and strong positive correlation coefficients (r=0.506-1.00) between the groups of elements were observed. On the other hand, strong negative correlations (r=0.492-0.873) between another group of elements were also shown. (author)

  7. Determination of trace amounts of tin in geological materials by atomic absorption spectrometry

    Science.gov (United States)

    Welsch, E.P.; Chao, T.T.

    1976-01-01

    An atomic absorption method is described for the determination of traces of tin in rocks, soils, and stream sediments. A dried mixture of the sample and ammonium iodide is heated to volatilize tin tetraiodide -which is then dissolved in 5 % hydrochloric acid, extracted into TOPO-MIBK, and aspirated into a nitrous oxide-acetylene flame. The limit of determination is 2 p.p.m. tin and the relative standard deviation ranges from 2 to 14 %. Up to 20 % iron and 1000 p.p.m. Cu, Pb, Zn, Mn, Hg, Mo, V, or W in the sample do not interfere. As many as 50 samples can be easily analyzed per man-day. ?? 1976.

  8. Flame and flameless atomic-absorption determination of tellurium in geological materials

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.; Hubert, A.E.

    1978-01-01

    The sample is digested with a solution of hydrobromic acid and bromine and the excess of bromine is expelled. After dilution of the solution to approximately 3 M in hydrobromic acid, ascorbic acid is added to reduce iron(III) before extraction of tellurium into methyl isobutyl ketone (MIBK). An oxidizing air-acetylene flame is used to determine tellurium in the 0.1-20 ppm range. For samples containing 4-200 ppb of tellurium, a carbon-rod atomizer is used after the MIBK extract has been washed with 0.5 M hydrobromic acid to remove the residual iron. The flame procedure is useful for rapid preliminary monitoring, and the flameless procedure can determine tellurium at very low concentrations. ?? 1978.

  9. Experimental study of the electron-atom Bremsstrahlung emission in an argon plasma jet

    International Nuclear Information System (INIS)

    Ranson, P.; Vallee, O.; Chapelle, J.

    1977-01-01

    Electron-neutral atom bremsstrahlung is studied between 0.4 μm and 5 μm in a decaying argon plasma jet; in visible and infra-red range, some discrepancies appear between experimental results and theoretical calculations of different authors (Geltman, Stallcop). In the infra-red, the discrepancy can be partly explained because theoretical elastic cross sections are higher than experimental values in the vicinity of the Ramsauer minimum. In the visible range, a very small amount of fast electrons due to superelastic and recombination collisions explain the observed discrepancy [fr

  10. X-Ray Emission from a Merger Remnant, NGC 7252 (the ``Atoms-for-Peace'' Galaxy)

    Science.gov (United States)

    Awaki, Hisamitsu; Matsumoto, Hironori; Tomida, Hiroshi

    2002-03-01

    We observed a nearby merger remnant NGC 7252 with the X-ray satellite ASCA and detected X-ray emission with the X-ray flux of (1.8+/-0.3)×10-13 ergs s-1 cm-2 in the 0.5-10 keV band. This corresponds to the X-ray luminosity of 8.1×1040 ergs s-1. The X-ray emission is well described with a two-component model: a soft component with kT=0.72+/-0.13 keV and a hard component with kT>5.1 keV. Although NGC 7252 is referred to as a dynamically young protoelliptical, the 0.5-4 keV luminosity of the soft component is about 2×1040 ergs s-1, which is low for an early-type galaxy. The ratio of LX/LFIR suggests that the soft component originated from the hot gas due to star formation. Its low luminosity can be explained by the gas ejection from the galaxy as galaxy winds. Our observation reveals the existence of hard X-ray emission with the 2-10 keV luminosity of 5.6×1040 ergs s-1. This may indicate the existence of nuclear activity or an intermediate-mass black hole in NGC 7252.

  11. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M.

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E c , below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E c . These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production

  12. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  13. Calculations of recombination rates for cold 4He atoms from atom-dimer phase shifts and determination of universal scaling functions

    International Nuclear Information System (INIS)

    Shepard, J. R.

    2007-01-01

    Three-body recombination rates for cold 4 He are calculated with a method which exploits the simple relationship between the imaginary part of the atom-dimer elastic scattering phase shift and the S-matrix for recombination. The elastic phase shifts are computed above breakup threshold by solving a three-body Faddeev equation in momentum space with inputs based on a variety of modern atom-atom potentials. Recombination coefficients for the HFD-B3-FCII potential agree very well with the only previously published results. Since the elastic scattering and recombination processes for 4 He are governed by 'Efimov physics', they depend on universal functions of a scaling variable. The computed recombination coefficients for potentials other than HFD-B3-FCII make it possible to determine these universal functions

  14. Determination of mercury, lead and cadmium in water by the CRA-atomic absorption spectrophotometry with solvent extraction

    International Nuclear Information System (INIS)

    Shim, Y.B.; Won, M.S.; Kim, C.J.

    1980-01-01

    The method of CRA-atomic absorption spectrophotometer with solvent extraction for the determination of mercury, lead and cadmium in water was studied. The optimum extracting conditions for CRA-atomic absorption spectrophotometry were the following: the complexes of mercury, lead and cadmium with dithizone were separated from the aqueous solution and concentrated into the 10 ml chloroform solution. Back extraction was performed; the concentrated mercury, lead and cadmium was extracted from the chloroform solution into the 10 ml 6-normal aqueous hydrochloric acid solution. In this case, recovery ratios were the following: mercury was 94.7%, lead 97.7% and cadmium 103.6%. The optimum operating conditions for the determination of mercury, lead and cadmium by the CRA-atomic absorption spectrophotometry also were investigated to test the dry step, ash step and atomization step for each metal. The experimental results of standard addition method were the following: the determination limit of each metal within 6% relative deviation was that lead was 0.04 ppb, and cadmium 0.01 ppb. Especially, mercury has been known impossible to determine by CRA-atomic absorption spectrophotometry until now. But in this study, mercury can be determined with CRA-atomic absorption spectrophotometer. Its determination limit was 4 ppb within 8% relative deviation. (author)

  15. Emission Channeling Studies on the Behaviour of Light Alkali Atoms in Wide-Band-Gap Semiconductors

    CERN Multimedia

    Recknagel, E; Quintel, H

    2002-01-01

    % IS342 \\\\ \\\\ A major problem in the development of electronic devices based on diamond and wide-band-gap II-VI compound semiconductors, like ZnSe, is the extreme difficulty of either n- or p-type doping. The only reports of successful n-type doping of diamond involves ion implanted Li, which was found to be an intersititial donor. Recent theoretical calculations suggest that Na, P and N dopant atoms are also good candidates for n-type doping of diamond. No experimental evidence has been obtained up to now, mainly because of the complex and partly unresolved defect situation created during ion implantation, which is necessary to incorporate potential donor atoms into diamond. \\\\ \\\\In the case of ZnSe, considerable effort has been invested in trying to fabricate pn-junctions in order to make efficient, blue-light emitting diodes. However, it has proved to be very difficult to obtain p-type ZnSe, mainly because of electrical compensation related to background donor impurities. Li and Na are believed to be ampho...

  16. Continuous flow hydride generation-atomic fluorescence spectrometric determination and speciation of arsenic in wine

    Energy Technology Data Exchange (ETDEWEB)

    Karadjova, Irina B. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria); Lampugnani, Leonardo [C.N.R. Istituto per i processi chimico-fisici, Area della Ricerca di Pisa, Via Moruzzi 1, 56124 Pisa (Italy)]. E-mail: lampugnani@ipcf.cnr.it; Onor, Massimo [C.N.R. Istituto per i processi chimico-fisici, Area della Ricerca di Pisa, Via Moruzzi 1, 56124 Pisa (Italy); D' Ulivo, Alessandro [C.N.R. Istituto per i processi chimico-fisici, Area della Ricerca di Pisa, Via Moruzzi 1, 56124 Pisa (Italy); Tsalev, Dimiter L. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria)

    2005-07-15

    Methods for the atomic fluorescence spectrometric (AFS) determination of total arsenic and arsenic species in wines based on continuous flow hydride generation (HG) with atomization in miniature diffusion flame (MDF) are described. For hydride-forming arsenic, L-cysteine is used as reagent for pre-reduction and complexation of arsenite, arsenate, monomethylarsonate and dimethylarsinate. Concentrations of hydrochloric acid and tetrahydroborate are optimized in order to minimize interference by ethanol. Procedure permits determination of the sum of these four species in 5-10-fold diluted samples with limit of detection (LOD) 0.3 and 0.6 {mu}g l{sup -1} As in white and red wines, respectively, with precision between 2% and 8% RSD at As levels within 0.5-10 {mu}g l{sup -1}. Selective arsine generation from different reaction media is used for non-chromatographic determination of arsenic species in wines: citrate buffer at pH 5.1 for As(III); 0.2 mol l{sup -1} acetic acid for arsenite + dimethylarsinate (DMA); 8 mol l{sup -1} HCl for total inorganic arsenic [As(III) + As(V)]; and monomethylarsonate (MMA) calculated by difference. Calibration with aqueous and ethanol-matched standard solutions of As(III) is used for 10- and 5-fold diluted samples, respectively. The LODs are 0.4 {mu}g l{sup -1} for As(III) and 0.3 {mu}g l{sup -1} for the other three As species and precision is within 4-8% RSDs. Arsenic species in wine were also determined by coupling of ion chromatographic separation on an anion exchange column and HG-flame AFS detection. Methods were validated by means of recovery studies and comparative analyses by HG-AFS and electrothermal atomic absorption spectrometry after microwave digestion. The LODs were 0.12, 0.27, 0.15 and 0.13 {mu}g l{sup -1} (as As) and RSDs were 2-6%, 5-9%, 3-7% and 2-5% for As(III), As(V), MMA and DMA arsenic species, respectively. Bottled red and white wines from Bulgaria, Republic of Macedonia and Italy were analyzed by non

  17. Continuous flow hydride generation-atomic fluorescence spectrometric determination and speciation of arsenic in wine

    International Nuclear Information System (INIS)

    Karadjova, Irina B.; Lampugnani, Leonardo; Onor, Massimo; D'Ulivo, Alessandro; Tsalev, Dimiter L.

    2005-01-01

    Methods for the atomic fluorescence spectrometric (AFS) determination of total arsenic and arsenic species in wines based on continuous flow hydride generation (HG) with atomization in miniature diffusion flame (MDF) are described. For hydride-forming arsenic, L-cysteine is used as reagent for pre-reduction and complexation of arsenite, arsenate, monomethylarsonate and dimethylarsinate. Concentrations of hydrochloric acid and tetrahydroborate are optimized in order to minimize interference by ethanol. Procedure permits determination of the sum of these four species in 5-10-fold diluted samples with limit of detection (LOD) 0.3 and 0.6 μg l -1 As in white and red wines, respectively, with precision between 2% and 8% RSD at As levels within 0.5-10 μg l -1 . Selective arsine generation from different reaction media is used for non-chromatographic determination of arsenic species in wines: citrate buffer at pH 5.1 for As(III); 0.2 mol l -1 acetic acid for arsenite + dimethylarsinate (DMA); 8 mol l -1 HCl for total inorganic arsenic [As(III) + As(V)]; and monomethylarsonate (MMA) calculated by difference. Calibration with aqueous and ethanol-matched standard solutions of As(III) is used for 10- and 5-fold diluted samples, respectively. The LODs are 0.4 μg l -1 for As(III) and 0.3 μg l -1 for the other three As species and precision is within 4-8% RSDs. Arsenic species in wine were also determined by coupling of ion chromatographic separation on an anion exchange column and HG-flame AFS detection. Methods were validated by means of recovery studies and comparative analyses by HG-AFS and electrothermal atomic absorption spectrometry after microwave digestion. The LODs were 0.12, 0.27, 0.15 and 0.13 μg l -1 (as As) and RSDs were 2-6%, 5-9%, 3-7% and 2-5% for As(III), As(V), MMA and DMA arsenic species, respectively. Bottled red and white wines from Bulgaria, Republic of Macedonia and Italy were analyzed by non-chromatographic and chromatographic procedures and the As

  18. Detection of atomic and molecular hydrogen in post-discharge by resonant multi-photo-ionisation. Determination of absolute atomic densities

    International Nuclear Information System (INIS)

    Persuy, Philippe

    1990-01-01

    Within the frame of studies on devices for physical vapour deposition, and on phenomena leading to these depositions, this research thesis reports the development of a laser-diagnosis based on the phenomenon of resonant multi-photo-ionisation, and an attempt to obtain from it values of the absolute concentration of atomic hydrogen. After some recalls on the diversity of multi-photon phenomena, their theoretical and experimental evolutions, and on the particular role of hydrogen, the author reports experiments performed at 307.7 and 364.7 nm which respectively addressed the post-discharge detection of molecular hydrogen and of atomic hydrogen. A model is presented which addresses the interaction volume, and results of experiments of atom multi-photo-ionisation are reported. One of the results of this model is an assessment of the cross-section of the excitation with three photons of the hydrogen atom. This result is then used to determine the absolute density of atoms in fundamental state for different discharge conditions. Finally, the author presents the calculation software and some curve examples displaying the evolution of the number of ions and of excited states within the interaction volume [fr

  19. Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1976-01-01

    An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.

  20. Accuracy and Precision in Elemental Analysis of Environmental Samples using Inductively Coupled Plasma-Atomic Emission Spectrometry

    International Nuclear Information System (INIS)

    Quraishi, Shamsad Begum; Chung, Yong-Sam; Choi, Kwang Soon

    2005-01-01

    Inductively Coupled Plasma-Atomic Emission Spectrometry followed by micro-wave digestion have been performed on different environmental Certified Reference Materials (CRMs). Analytical results show that accuracy and precision in ICP-AES analysis were acceptable and satisfactory in case of soil and hair CRM samples. The relative error of most of the elements in these two CRMs is within 10% with few exceptions and coefficient of variation is also less than 10%. Z-score as an analytical performance was also within the acceptable range (±2). ICP-AES was found as an inadequate method for Air Filter CRM due to incomplete dissolution, low concentration of elements and very low mass of the sample. However, real air filter sample could have been analyzed with high accuracy and precision by increasing sample mass during collection. (author)

  1. Spontaneous emission spectrum from a V-type three-level atom in a double-band photonic crystal

    International Nuclear Information System (INIS)

    Zhang Han Zhuang; Tang Sing Hai; Dong Po; He Jun

    2002-01-01

    The spontaneous emission spectrum from a V-type three-level atom embedded in a double-band photonic band gap (PBG) material has been investigated for the first time. Most interestingly it is shown that there is not only a black dark line, but also a narrow spontaneous line near the edges of the double photonic band. The positions of the dark line and narrow spontaneous line are near the transition from an empty upper level to a lower level. The lines stem from destructive and constructive quantum interferences, which induce population transfer between the two upper levels, in the PBG reservoirs. The effects of system parameters on the interference have been discussed in detail

  2. The hydrogen atom-deuterium molecule reaction: Experimental determination of product quantum state distributions

    International Nuclear Information System (INIS)

    Rinnen, K.

    1989-01-01

    The H + H 2 atom exchange reaction (and its isotopic analogs) is the simplest neutral bimolecular chemical reaction because of the small number of electrons in the system and the lightness of the nuclei. The H 3 potential energy surface (PES) is the most accurately known reactive surface (LSTH surface); there have been both quasiclassical trajectory (QCT) and quantal calculations performed on it. This is one of the few systems for which theory is ahead of experiment, and many theoretical predictions await experimental comparison. The H + D 2 → HD + D reaction is studied using thermal D 2 (∼298 K) and translationally hot hydrogen atoms. Photolysis of HI at 266 nm generates H atoms with center-of-mass collision energies of 1.3 and 0.55 eV, both of which are above the classical reaction barrier of 0.42 eV. The rovibrational population distribution of the molecular product is measured by (2+1) resonance-enhanced multiphoton ionization (REMPI). A major effort has been directed toward calibrating the (2+1) REMPI detection procedure, to determine quantitatively the relationship between ion signals and relative quantum state populations for HD. An effusive, high-temperature nozzle has been constructed to populate thermally the high rovibrational levels observed in the reaction. The results are compared to theoretical calculations of the E,F 1 Σ g + - X 1 Σ g + two-photon transition moments. For the H + D 2 reaction, the populations of all energetically accessible HD product levels are measured. Specifically, the following levels are observed: HD(v = 0, J = 0-15), HD(v = 1, J = 0-12), and HD(v = 2, J = 0-8). Of the available energy, 73% is partitioned into product translation, 18% into HD rotation, and 9% into HD vibration

  3. Filling of double vacancy in the K atomic shell with emission of one single photon

    International Nuclear Information System (INIS)

    Jalbert, G.

    1978-12-01

    A method was developed to calculate the transition rate for two-electron one-photon K(sub αα) transition (2s 2p → 1s 2 ). The method was tested for Ni with two K-shell vacancies in the initial state. The (sub αα) rate is calculated within the framework of a single system formed by the atom and the radiation. The transition is originated in the interactiion between the parts of that system. In the dipole approximation, the transition rate is obtained from the second order term of the time dependente perturbation theory. Hartree-Fock-Slater wave functions were used in the calculations for Ni. The results are compared with the available theoretical and experimental information. (Author) [pt

  4. Atomic scale properties of magnetic Mn-based alloys probed by emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys on the atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  5. Determination of OB/OD/SF Emission Factors Using Unmanned Aerial Systems

    Science.gov (United States)

    A presentation to the Demilitarization Symposium. This proposal will present the methods of tethered aerostat and unmanned aerial system for collection of plume samples and determination of emission factors form open burning, open detonation, and static firing for weapon demilita...

  6. Determination of the power of multielement aerosol composition emission from distant industrial sources

    International Nuclear Information System (INIS)

    Popova, S.A.; Kutsenogij, K.P.; Chankina, O.V.

    2008-01-01

    The results from the monitoring of the temporal variability of the multielement composition of atmospheric aerosols are presented. They are used to determine the emission power of a series of elements from distant sources.

  7. Electron density and effective atomic number (Zeff) determination through x-ray Moiré deflectometry

    Science.gov (United States)

    Valdivia Leiva, Maria Pia; Stutman, Dan; Finkenthal, Michael

    2014-10-01

    Talbot-Lau based Moiré deflectometry is a powerful density diagnostic capable of delivering refraction information and attenuation from a single image, through the accurate detection of X-ray phase-shift and intensity. The technique is able to accurately measure both the real part of the index of refraction δ (directly related to electron density) and the attenuation coefficient μ of an object placed in the x-ray beam. Since the atomic number Z (or Zeff for a composite sample) is proportional to these quantities, an elemental map of the effective atomic number can be obtained with the ratio of the phase and the absorption image. The determination of Zeff from refraction and attenuation measurements with Moiré deflectometry could be of high interest in various fields of HED research such as shocked materials and ICF experiments as Zeff is linked, by definition, to the x-ray absorption properties of a specific material. This work is supported by U.S. DoE/NNSA Grant No. 435 DENA0001835.

  8. Atomic absorption determination of ultratrace tellurium in rocks utilizing high sensitivity sampling systems

    International Nuclear Information System (INIS)

    Beaty, R.D.

    1973-01-01

    The sampling boat and the graphite furnace were shown to possess the required sensitivity to detect tellurium at ultratrace levels, in a variety of sample types, by atomic absorption. In the sampling boat approach, tellurium in sample solutions is chemically separated and concentrated by extraction into methyl isobutyl ketone before measurement. For samples exhibiting extraction interferences or excessively high background absorption, a preliminary separation of tellurium by coprecipitation with selenium is described. Using this technique, tellurium can be quantitatively detected down to 5 nanograms and linear response is observed to 100 nanograms. Relative standard deviations of better than 7 percent are achieved for 50 nanograms of tellurium. For samples that have a tellurium content below the detection limits of the sampling boat, the graphite furnace is used for atomization. By this method, as little as 0.07 nanograms of tellurium can be detected, and a precision of 1 percent relative standard deviation is achievable at the 5 nanogram level. A routinely applicable procedure was developed for determining tellurium in rocks, using the graphite furnace, after a hydrofluoric acid decomposition of the sample. Using this procedure, tellurium data were obtained on 20 different rocks, and the significance of this new information is discussed. (Diss. Abstr. Int., B)

  9. Determination of trace elements in ground water by two preconcentration methods using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Elhag, A. Y.

    2004-01-01

    This is a comparative study between two different methods of preconcentration done to separate the trace elements cadmium, nickel. chromium, manganese, copper, zinc, and lead in drinking (ground) water samples taken from different locations in Gezira State, central Sudan (the map); these methods are (coprecipitation) with aluminium hydroxide and by Ammonium Pyrrolidine Dithiocarbamate (APDC) using Methyl Isobutyl Ketone (MIBK) as an organic solvent; and subsequent analysis by Atomic Absorption Spectrometry (AAS) for both methods. The result of comparison showed the superiority of the (APDC) coprecipitation method over the aluminium hydroxide coprecipitation method in the total percentage recoveries of the studied trace elements in drinking (ground) water samples, such results confirm previous studies. This study also involves direct analysis of these water samples by atomic absorption spectrometry to determine the concentrations of trace elements Cadmium, Nickel, Chromium, Manganese, Copper, Zinc and Lead and compare it to the corresponding guide line values described by the World Health Organization and the maximum concentrations of trace elements in drinking water permitted by the Sudanese Standards and Metrology Organizations (SSMO), where the concentrations of some elements in some samples were found to be different than the described values by both of the organizations. The study includes a trial to throw light on the effect of the proximity of the water samples sources to the Blue Nile river on its trace elements concentrations; no relation was proved to exist in that respect.(Author)

  10. Multipumping flow system for improving hydride generation atomic fluorescence spectrometric determinations

    International Nuclear Information System (INIS)

    Lopez-Garcia, Ignacio; Ruiz-Alcaraz, Irene; Hernandez-Cordoba, Manuel

    2006-01-01

    The advantages of using membrane micropumps rather than peristaltic pumps to introduce both sample and reagent solutions for hydride generation atomic fluorescence spectrometry are discussed. Arsenic was used as a test analyte to check the performance of the proposed manifold. Sample and reagent consumption was reduced 8-9 fold compared with continuous mode measurements made with peristaltic pumps, with no deterioration in sensitivity. The calibration graph was linear in the 0.05 to 2.5 μg l -1 As range using peak area as the analytical signal and maximum gain in the detector setting. A limit of detection (3σ) of 0.02 μg l -1 and relative standard deviation values close to 2% for 10 independent measurements of a 1 μg l -1 As solution were obtained. The sampling frequency increased from 45 to 102 h -1 with the subsequent saving in carrier gas used and reduction in wastes generated. The instrumental modification, which could be used for other elements currently determined by atomic fluorescence spectrometry, will permit hydride generators of more reduced dimensions to be constructed

  11. Determination of Ar metastable atom densities in Ar and Ar/H2 inductively coupled low-temperature plasmas

    International Nuclear Information System (INIS)

    Fox-Lyon, N; Knoll, A J; Oehrlein, G S; Franek, J; Demidov, V; Koepke, M; Godyak, V

    2013-01-01

    Ar metastable atoms are important energy carriers and surface interacting species in low-temperature plasmas that are difficult to quantify. Ar metastable atom densities (N Ar,m ) in inductively coupled Ar and Ar/H 2 plasmas were obtained using a model combining electrical probe measurements of electron density (N e ) and temperature (T e ), with analysis of spectrally resolved Ar plasma optical emission based on 3p → 1s optical emission ratios of the 419.8 nm line to the 420.1 nm line. We present the variation of N Ar,m as the Ar pressure and the addition of H 2 to Ar are changed comparatively to recent adsorption spectroscopy measurements. (paper)

  12. Study on the application of electrothermal atomization atomic absorption spectrometry for the determination of metallic Cu, Pb, Zn, Cd traces in sea water samples

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Dung; Doan Thanh Son; Tran Thi Ngoc Diep

    2004-01-01

    The trace amount of some heavy metallic elements (Cu, Zn, Pb, Cd) in sea water samples were determined directly (without separation) and quantitatively by using Electro-Thermal Atomization Atomic Absorption Spectrometry (ETA-AAS). The effect of mainly major constituents such as Na, Mg, Ca, K, and the mutual effect of the trace elements, which were present in the matrix on the absorption intensity of each analyzed element was studied. The adding of a certain chemical modification for each trace element was also investigated in order to eliminate the overall effect of the background during the pyrolysis and atomization. The sea water sample after fitrating through a membrane with 0.45 μm-hole size was injected in to the graphite tube via an autosampler (MPE50). The absorption intensity of each element was then measured on the VARIO-6 under the optimum parameters for spectrometer such as: maximum wavelength, current of hollow cathode lamp, and that for graphite furnace such as dry temperature, pyrolysis temperature, atomization temperature, ect. The analytical procedures were set-up and applied for the determination of these above mentioned elements in the synthesized sea water sample and in the real sea water samples with high precision and accuracy. (author)

  13. Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap.

    Science.gov (United States)

    Demirtaş, İlknur; Bakırdere, Sezgin; Ataman, O Yavuz

    2015-06-01

    Flame atomic absorption spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity; because it is a simple and economical technique for determination of metals. In recent years, atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of µg/mL, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of the atom traps used to improve sensitivity. In atom trapping mode of SQT, analyte is trapped on-line in SQT for few minutes using ordinary sample aspiration, followed by the introduction of a small volume of organic solvent to effect the revolatilization and atomization of analyte species resulting in a transient signal. This system is economical, commercially available and easy to use. In this study, a sensitive analytical method was developed for the determination of lead with the help of SQT atom trapping flame atomization (SQT-AT-FAAS). 574 Fold sensitivity enhancement was obtained at a sample suction rate of 3.9 mL/min for 5.0 min trapping period with respect to FAAS. Organic solvent was selected as 40 µL of methyl isobutyl ketone (MIBK). To obtain a further sensitivity enhancement inner surface of SQT was coated with several transition metals. The best sensitivity enhancement, 1650 fold enhancement, was obtained by the Ta-coated SQT-AT-FAAS. In addition, chemical nature of Pb species trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. Raman spectrometric results indicate that tantalum is coated on SQT surface in the form of Ta2O5. XPS studies revealed that the oxidation state of Pb in species trapped on both bare and Ta coated SQT surfaces is +2. For the accuracy check, the analyses of standard reference material were performed by use of SCP SCIENCE EnviroMAT Low (EU-L-2) and results for Pb were to be in good agreement with

  14. Determination of calcium in Mashhad city tap water by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mashhadian, N.V.

    2012-01-01

    Summary: Calcium in drinking water is one of the sources of calcium that may contribute significantly to the daily calcium intake. In this study, the samples of tap water were randomly taken from five zones of Mashhad city. Calcium concentration was determined by flame atomic absorption spectrometry (FAAS) technique. The precision of the method was evaluated. The CV% of 6 replicate determinations at 5 macro g/ml Ca was 4.2 in one day and 4.5, among 6 consecutive days. The recovery of spiked samples (98.7%) also showed that the proposed method is reliable for the determination of amounts of calcium in water samples. The mean of calcium in tap water in the city of Mashhad was 52.61+-12.91 (SD) macro g/ml. At present, the amount of calcium in Mashhad tap waters is within the national standard. However, due to the climate and environmental changes, determination of calcium in tap water of Mashhad in different seasons is recommended. (author)

  15. Determination of iron in natural and mineral waters by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    ROLANDAS KAZLAUSKAS

    2004-05-01

    Full Text Available Simple methods for the determination of Fe in natural and mineral waters by flame atomic absorption spectrometry (AAS are suggested. The results of the investigation of selectivity of the proposed AAS method proved that this procedure is not affected by high concentrations of other metals. The calibration graph for iron was linear at levels near the detection limit up to at least 0.10 mg ml-1. For the determination of microamounts of iron in mineral waters, an extraction AAS technique was developed. Iron was retained as Fe-8-oxyquinoline complex and extracted into chloroform. The optimal conditions for the extraction of the iron complex were determined. The AAS method was applied to the determination of Fe in mineral waters and natural waters from different areas of Lithuania. The accuracy of the developed method was sufficient and evaluated in comparison with a photometric method. The obtained results demonstrated that the procedure could be successfully applied for the analysis of water samples with satisfactory accuracy.

  16. Line-emission cross sections for the charge-exchange reaction between fully stripped carbon and atomic hydrogen in tokamak plasma

    International Nuclear Information System (INIS)

    Ida, K.; Kato, T.

    1992-01-01

    Line-emission cross sections of the charge-exchange reaction between fully stripped carbon and atomic hydrogen are measured in the energy range of 18 - 38 keV/amu in tokamak plasmas. The energy dependence of the emission cross sections for the transition of Δn = 8 - 7 and Δn = 7 - 6 and their ratios are compared with theoretical calculations. (author)

  17. Distorted wave models applied to electron emission study in ion-atom collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Fainstein, P.D.

    1989-01-01

    The electron emission from different atoms induced by impact of multicharged bare ions at intermediate and high energies is studied. To perform these studies, the continuum distorted wave-eikonal initial state model is used. With this distorted wave model, analytical expressions are obtained for the transition amplitudes as a function of the transverse momentum transfer for hydrogen targets in an arbitrary initial state and for every any orbital of a multielectronic target represented as a linear combination of Slater type orbitals. With these expressions, the different cross sections which are compared with the experimental data available are numerically calculated. The results obtained for different targets and projectiles and the comparison with other theoretical models and experimental data allows to explain the electron emission spectra and to predict new effects which have not been measured so far. The results of the present work permit to view the ionization process as the evolution of the active electron in the combined field of the target and projectile nuclei. (Author) [es

  18. Buffer choice and effects of sample composition examined by experiment planning methods for determination of molybdenum by atomic absorption with a flame atomizer

    International Nuclear Information System (INIS)

    Zav'yalkov, P.I.; Danishehvskii, A.L.; Rakita, R.A.; Yakshinskii, A.I.

    1986-01-01

    The authors use orthogonal experiment planning to define the optimum form of buffer and to establish the effects of sample composition since there are high levels of cation and anion interference in the atomic-absorption determination of molybdenum. A spectroscopic buffer has been identified (HCLO 4 + NH 4 Cl mixture), which eliminates the interference from the elements tested and improves the analytical characteristics in determining molybdenum. A model has been formulated enabling one to estimate the buffer performance and the effects of the components on the determination of molybdenum. The model enables one to forecast the expected order of the effect without performing additional experiments

  19. Unambiguous determination of H-atom positions: comparing results from neutron and high-resolution X-ray crystallography.

    Science.gov (United States)

    Gardberg, Anna S; Del Castillo, Alexis Rae; Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew P; Myles, Dean A A

    2010-05-01

    The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.

  20. Determination of pi pi scattering lengths from measurement of pi(+)pi(-) atom lifetime

    Czech Academy of Sciences Publication Activity Database

    Adeva, B.; Afanasyev, L.; Benayoun, M.; Hons, Zdeněk

    2011-01-01

    Roč. 704, 1-2 (2011), s. 24-29 ISSN 0370-2693 R&D Projects: GA ČR GAP203/10/0310 Institutional research plan: CEZ:AV0Z10480505 Keywords : DIRAC experiment * Elementary atom * Pionium atom Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.955, year: 2011

  1. Sites of Au atoms in Sn crystals as determined by channeling

    International Nuclear Information System (INIS)

    Miller, J.W.; Gemmell, D.S.; Holland, R.E.; Poizat, J.C.; Worthington, J.N.; Loess, R.E.

    1974-01-01

    The position of Au atoms diffused into Sn monocrystals has been studied by channeling and backscattering of 2.5-MeV Ne ions. For equilibrium conditions at 217 0 C, Au atoms are found almost entirely in substitutional positions, so that the unusually fast diffusion of Au in Sn most likely arises from a small fraction of Au atoms migrating interstitially

  2. X-ray spectrum determination of elements with low atomic number with use of electron microscope

    International Nuclear Information System (INIS)

    Smirnov, V.N.

    1982-01-01

    Separate assemblies of a commercial analytical electron microscope-microanalyzer EMMA-2 have been modified to study objects, containing elements with the atomic number Z=5-9, in particular: 1) the range of changing the accelerating voltages is expanded to be in the range of 25 down to 10 kV with 5 kV interval. 2) image intensifier using microchannel plate MKP-40-19 is applied; 3) for elements of carbon, oxygen, boron, nitrogen type a unit with flow-type proportional counter is used. The sensitivity of carbon- and oxygen determination in carbides and oxides is 0.15-0.3% at the measurement time of 100 s. Results of microanalysis of the particles of B 2 O 3 , Al 2 O 3 , SiO 2 , Fe 2 O 3 , Fe 3 C, WC for the contents of oxygen and carbon are presented

  3. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)

    2011-10-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90{sup o} (x=0.99 A{sup -1}). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z{sub eff}) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z{sub eff} of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  4. Combined discrete nebulization and microextraction process for molybdenum determination by flame atomic absorption spectrometry (FAAS)

    International Nuclear Information System (INIS)

    Oviedo, Jenny A.; Jesus, Amanda M.D. de; Fialho, Lucimar L.; Pereira-Filho, Edenir R.

    2014-01-01

    Simple and sensitive procedures for the extraction/preconcentration of molybdenum based on vortex-assisted solidified floating organic drop microextraction (VA-SFODME) and cloud point combined with flame absorption atomic spectrometry (FAAS) and discrete nebulization were developed. The influence of the discrete nebulization on the sensitivity of the molybdenum preconcentration processes was studied. An injection volume of 200 μ resulted in a lower relative standard deviation with both preconcentration procedures. Enrichment factors of 31 and 67 and limits of detection of 25 and 5 μ L -1 were obtained for cloud point and VA-SFODME, respectively. The developed procedures were applied to the determination of Mo in mineral water and multivitamin samples. (author)

  5. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    International Nuclear Information System (INIS)

    Antoniassi, M.; Conceicao, A.L.C.; Poletti, M.E.

    2011-01-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90 o (x=0.99 A -1 ). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z eff ) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z eff of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  6. Alternative set of conditions for molybdenum determination by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Edgar, R.M.

    1975-01-01

    In comparing a newly developed procedure with that recommended by Perkin--Elmer, et al., (Analytical Methods for Atomic Absorption Spectrophotometry, Perkin--Elmer Corp., Norwalk, Conn. 1973) two areas were found in which the new procedure appeared more suitable for Mo determination. If Cr is present in concentrations greater than 100 ppM, the recommended procedure results in an enhancement effect on Mo absorption. This erroneously high result is eliminated when the new procedure is followed. In the recommended procedure, when the sample has to be dissolved in hydrofluoric acid and Al is added to help eliminate interferences, the acid combines with the Al to form insoluble aluminum fluoride. The part that Al plays in eliminating interferences is lessened, because it is no longer in solution

  7. Determination of cadmium in bovine tissue by spectrophotometry of atomic absorption

    International Nuclear Information System (INIS)

    Gonzalez Zeledon, Mauricio

    2004-01-01

    The present work utilized the suggested method by Food Safety and Inspection Service (FSIS) for the analysis of cadmium in animal tissue, it was adapted by the Toxicology's Laboratory of MAG, where the project was organized. This method consist of a burning of sample and the instrumental analysis by means of the atomic absorption's technique. In the study there were determined parameters of carrying out of the analytical methodology, it was getting the following values: linearity : 0,020 -1,0 mg/L; homogeneity of the model: homoscedastic; limit of detection (LD) : 0,0049 mg/kg (4,9 μg/Kg); limit of quantification (LC): 0,016 μg/L (16 mg/kg); sensibility of calibration: 0,243 A * L/gm; analytical sensibility: 105 L/mg; instrumental repetitively: [es

  8. Determination of heavy metals impurities in low and medium atomic weight matrices

    International Nuclear Information System (INIS)

    Paiano, Silvestre; Prado Souza, Rose M.G. do

    1997-01-01

    Heavy materials have a mass attenuation coefficient in the energy interval from 100 to 400 KeV substantially higher than those corresponding to light and medium atomic weight matrices. They also show, in the same energy range, a more pronounced energy variation of this parameter. In a few cases, this property can be used for the determination of the concentration of impurities constituted by heavy metals in a lighter matrix. An Ytterbium gamma-ray source, which has several energy peaks in the considered interval, is used to supply a number of energy pairs from which the density of impurities can be found without the use of reference materials. (author). 1 ref., 4 figs

  9. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    Science.gov (United States)

    Antoniassi, M.; Conceição, A. L. C.; Poletti, M. E.

    2011-10-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90° ( x=0.99 Å -1). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number ( Zeff) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Zeff of breast tissues, which are mainly related to the elemental composition of carbon ( Z=6) and oxygen ( Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  10. [Determination of inorganic elements in different parts of Sonchus oleraceus L by flame atomic absorption spectrometry].

    Science.gov (United States)

    Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi

    2007-06-01

    Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.

  11. Determination of Aluminum in Dialysis Concentrates by Atomic Absorption Spectrometry after Coprecipitation with Lanthanum Phosphate.

    Science.gov (United States)

    Selvi, Emine Kılıçkaya; Şahin, Uğur; Şahan, Serkan

    2017-01-01

    This method was developed for the determination of trace amounts of aluminum(III) in dialysis concentrates using atomic absorption spectrometry after coprecipitation with lanthanum phosphate. The analytical parameters that influenced the quantitative coprecipitation of analyte including amount of lanthanum, amount of phosfate, pH and duration time were optimized. The % recoveries of the analyte ion were in the range of 95-105 % with limit of detection (3s) of 0.5 µg l -1 . Preconcentration factor was found as 1000 and Relative Standard Deviation (RSD) % value obtained from model solutions was 2.5% for 0.02 mg L -1 . The accuracy of the method was evaluated with standard reference material (CWW-TMD Waste Water). The method was also applied to most concentrated acidic and basic dialysis concentrates with satisfactory results.

  12. Determination of Te in soldering tin using continuous flowing electrochemical hydride generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Jiang Xianjuan; Gan Wuer; Han Suping; He Youzhao

    2008-01-01

    An electrochemical hydride generation system was developed for the detection of Te by coupling an electrochemical hydride generator with atomic fluorescence spectrometry. Since TeH 2 is unstable and easily decomposes in solution, a reticular W filament cathode was used in the present system. The TeH 2 generated on the cathode surface was effectively driven out by sweeping gas from the cathode chamber. In addition, a low temperature electrochemical cell (10 deg. C) was applied to reduce the decomposition of TeH 2 in solution. The limit of detection (LOD) was 2.2 ng ml -1 and the relative standard deviation (RSD) was 3.9% for nine consecutive measurements of standard solution. This method was successfully employed for determination of Te in soldering tin material

  13. Detection of metal ions by atomic emission spectroscopy from liquid-electrode discharge plasma

    International Nuclear Information System (INIS)

    Wu Jian; Yu Jing; Li Jun; Wang Jianping; Ying Yibin

    2007-01-01

    In this paper, the discharge ignited in a capillary connecting two beakers filled with electrolyte solution is investigated. During the experiment, an external electrical voltage is applied through two platinum electrodes dipped in the beakers. A gas bubble forms inside the capillary when the applied voltage is higher than 1000 V. Since the beakers are tilted slightly, after generation, the bubble moves slowly to the uphill outlet of the capillary due to buoyancy. When the bubble reaches the end of the capillary, it cracks and a bright discharge is ignited. The emission spectra of the discharge plasma are related to the metal ions dissolved in the solution and thus can be used for metal ion detection. An application of the system to measurement of water hardness is shown

  14. Atomic Emission Spectra Diagnosis and Electron Density Measurement of Semiconductor Bridge (SCB) Plasma

    International Nuclear Information System (INIS)

    Feng Hongyan; Zhu Shunguan; Zhang Lin; Wan Xiaoxia; Li Yan; Shen Ruiqi

    2010-01-01

    Emission spectra of a semiconductor bridge (SCB) plasma in a visible range was studied in air. The electron density was measured in a conventional way from the broadening of the A1 I 394.4 nm Stark width. Based on the Saha equation, a system for recording the intensity of Si I 390.5 nm and Si II 413.1 nm was designed. With this technique, the SCB plasma electron density was measured well and accurately. Moreover, the electron density distribution Vs time was acquired from one SCB discharge. The individual result from the broadening of the Al I 394.4 nm Stark width and Saha equation was all in the range of 10 15 cm -3 to 10 16 cm -3 . Finally the presumption of the local thermodynamic equilibrium (LTE) condition was validated.

  15. Determination of tin in biological reference materials by atomic absorption spectrophotometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Chiba, M.; Iyengar, V.; Gills, T.

    1991-01-01

    Because of a lack of reliable analytical techniques for the determination of tin in biological materials, there have been no reference materials certified for this element. However, the authors' experience has shown that it is feasible to use both atomic absorption and nuclear activation techniques at least for selected matrices. Therefore, an investigation was undertaken to determine tin in several biological materials such as non-fat milk powder (NBS-SRM-1549), citrus leaves (NBS-SRM-1572), total diet (NIST-SRM-1548), mixed diet (NBS-RM-8431), and USDIET-I by atomic absorption spectrophotometry (AAS) and neutron activation analysis (NAA). AAS-ashed samples were extracted with MIBK and assayed using a Perkin Elmer model 5000 apparatus. NAA was carried out by irradiating the samples at the NIST reactor in the RT-4 facility and counting with the help of a Ge(Li) detector connected to a multichannel analyzer. The concentration of tin measured by both AAS and NAA agree well for USDIET-I, total diet, citrus leaves and non-fat milk powder (the concentration ranges for tin in these matrices were from 0.0025 to 3.8 micro g/g). However, in the case of mixed diet (RM-8431), the mean values found were 47 ± 5.6 (n = 19) by AAS and 55.5 ± 2.5 (n = 6) by INAA. Since RM-8431 is not certified it is difficult to draw conclusions. For apple and peach leaves, a distillation step was required. The results were apple leaves 0.085 ± 0.015 (n = 10) by AAS and < 0.2 (n = 3) by RNAA; for peach leaves 0.077 ± 0.02 (n = 9) by AAS and < 0.1 (n = 3) by RNAA. All concentrations are expressed in micro g/g dry weight

  16. Determination of the Kinematics of the Qweak Experiment and Investigation of an Atomic Hydrogen Moller Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Valerie M. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-01-01

    The Qweak experiment has tested the Standard Model through making a precise measurement of the weak charge of the proton (QpW). This was done through measuring the parity-violating asymmetry for polarized electrons scattering off of unpolarized protons. The parity-violating asymmetry measured is directly proportional to the four-momentum transfer (Q^2) from the electron to the proton. The extraction of QpW from the measured asymmetry requires a precise Q^2 determination. The Qweak experiment had a Q^2 = 24.8 ± 0.1 m(GeV^2) which achieved the goal of an uncertainty of <= 0.5%. From the measured asymmetry and Q^2, QpW was determined to be 0.0719 ± 0.0045, which is in good agreement with the Standard Model prediction. This puts a 7.5 TeV lower limit on possible "new physics". This dissertation describes the analysis of Q^2 for the Qweak experiment. Future parity-violating electron scattering experiments similar to the Qweak experiment will measure asymmetries to high precision in order to test the Standard Model. These measurements will require the beam polarization to be measured to sub-0.5% precision. Presently the electron beam polarization is measured through Moller scattering off of a ferromagnetic foil or through using Compton scattering, both of which can have issues reaching this precision. A novel Atomic Hydrogen Moller Polarimeter has been proposed as a non-invasive way to measure the polarization of an electron beam via Moller scattering off of polarized monatomic hydrogen gas. This dissertation describes the development and initial analysis of a Monte Carlo simulation of an Atomic Hydrogen Moller Polarimeter.

  17. Determination of halogens by flame emission of metal halogenides

    International Nuclear Information System (INIS)

    Henrion, G.; Marquardt, D.; Stoecker, B.

    1979-01-01

    The A-B systems InF, InCl, InBr, and InI have been excited by laminar H 2 -N 2 flames in order to dermine individual halogens or their mixtures qualitatively or quantitatively. In optimizing the fuel gas composition two different behavior patterns have been found for band intensities, which are correlated with binding energies of InX (X = halogen). The low temperature of the flame leads to complicated matrix effects which first of all result from effects on excitation and from competitive reactions. In general, cations cause a decreased intensity. Therefore, salts have to be converted into hydrohalide acids by ion exchange. Qualitative determinations of individual halogens are possible at a 500 to 50,000fold excess of the others, whereas quantitative determinations can be performed at a 100 to 5,000fold excess in 10 -4 molar solutions with errors of 2 to 10 per cent. (author)

  18. Determination of interstitial oxygen atom position in U2N3+xOy by near edge structure study

    Science.gov (United States)

    Jiang, A. K.; Zhao, Y. W.; Long, Z.; Hu, Y.; Wang, X. F.; Yang, R. L.; Bao, H. L.; Zeng, R. G.; Liu, K. Z.

    2018-06-01

    The determination of interstitial oxygen atom site in U2N3+xOy film could facilitate the understanding of the oxidation mechanism of α-U2N3 and the effect of U2N3+xOy on anti-oxidation. By comparing the similarities and variances between N K edge and O K edge electron energy loss spectra (EELS) for oxidized α-U2N3 and UO2, the present work looks at the local structure of nitrogen and oxygen atoms in U2N3+xOy film, identifying the most possible position of interstitial O atom.

  19. Determination of cadmium in real water samples by flame atomic absorption spectrometry after cloud point extraction

    International Nuclear Information System (INIS)

    Naeemullah, A.; Kazi, T.G.

    2011-01-01

    Water pollution is a global threat and it is the leading world wide cause of death and diseases. The awareness of the potential danger posed by heavy metals to the ecosystems and in particular to human health has grown tremendously in the past decades. Separation and preconcentration procedures are considered of great importance in analytical and environmental chemistry. Cloud point is one of the most reliable and sophisticated separation methods for determination of traces quantities of heavy metals. Cloud point methodology was successfully employed for preconcentration of trace quantities of cadmium prior to their determination by flame atomic absorption spectrometry (FAAS). The metals react with 8-hydroxquinoline in a surfactant Triton X-114 medium. The following parameters such as pH, concentration of the reagent and Triton X-114, equilibrating temperature and centrifuging time were evaluated and optimized to enhance the sensitivity and extraction efficiency of the proposed method. Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation and the cadmium content was measured by FAAS. The validation of the procedure was carried out by spiking addition methods. The method was applied for determination of Cd in water samples of different ecosystems (lake and river). (author)

  20. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.