Sample records for atomic collision cascades

  1. Computer simulation of electronic excitation in atomic collision cascades

    Energy Technology Data Exchange (ETDEWEB)

    Duvenbeck, A.


    The impact of an keV atomic particle onto a solid surface initiates a complex sequence of collisions among target atoms in a near-surface region. The temporal and spatial evolution of this atomic collision cascade leads to the emission of particles from the surface - a process usually called sputtering. In modern surface analysis the so called SIMS technology uses the flux of sputtered particles as a source of information on the microscopical stoichiometric structure in the proximity of the bombarded surface spots. By laterally varying the bombarding spot on the surface, the entire target can be scanned and chemically analyzed. However, the particle detection, which bases upon deflection in electric fields, is limited to those species that leave the surface in an ionized state. Due to the fact that the ionized fraction of the total flux of sputtered atoms often only amounts to a few percent or even less, the detection is often hampered by rather low signals. Moreover, it is well known, that the ionization probability of emitted particles does not only depend on the elementary species, but also on the local environment from which a particle leaves the surface. Therefore, the measured signals for different sputtered species do not necessarily represent the stoichiometric composition of the sample. In the literature, this phenomenon is known as the Matrix Effect in SIMS. In order to circumvent this principal shortcoming of SIMS, the present thesis develops an alternative computer simulation concept, which treats the electronic energy losses of all moving atoms as excitation sources feeding energy into the electronic sub-system of the solid. The particle kinetics determining the excitation sources are delivered by classical molecular dynamics. The excitation energy calculations are combined with a diffusive transport model to describe the spread of excitation energy from the initial point of generation. Calculation results yield a space- and time-resolved excitation

  2. Topics in atomic collision theory

    CERN Document Server

    Geltman, Sydney; Brueckner, Keith A


    Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessar

  3. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.


    instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use...... of accelerators for producing intense positron pulses will be discussed in the context of atomic physics experiments....

  4. Sixteenth International Conference on the physics of electronic and atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B. (eds.)


    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  5. Atomic-cascade experiment with detection of the recoil atom

    Energy Technology Data Exchange (ETDEWEB)

    Huelga, S.F. (Dept. de Fisica, Univ. de Oviedo (Spain)); Ferrero, M. (Dept. de Fisica, Univ. de Oviedo (Spain)); Santos, E. (Dept. de Fisica Moderna, Univ. de Cantabria (Spain))


    Bell's inequalities cannot be violated in atomic-cascade experiments, even with ideal apparatus, due to the three-body character of the atomic decay. Here we propose a new experiment that would block this loophole by means of a suitable selection of an ensemble of photon pairs. A threshold value for the quantum efficiency is found which may allow the discrimination between quantum mechanics and local-hidden-variables theories. Experimental requirements for performing such a test are discussed. (orig.).

  6. Electron-Atom Collisions in Gases (United States)

    Kraftmakher, Yaakov


    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  7. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F


    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  8. Atom trap loss, elastic collisions, and technology (United States)

    Booth, James


    The study of collisions and scattering has been one of the most productive approaches for modern physics, illuminating the fundamental structure of crystals, surfaces, atoms, and sub-atomic particles. In the field of cold atoms, this is no less true: studies of cold atom collisions were essential to the production of quantum degenerate matter, the formation of cold molecules, and so on. Over the past few years it has been my delight to investigate elastic collisions between cold atoms trapped in either a magneto-optical trap (MOT) or a magnetic trap with hot, background gas in the vacuum environment through the measurement of the loss of atoms from the trap. Motivated by the goal of creating cold atom-based technology, we are deciphering what the trapped atoms are communicating about their environment through the observed loss rate. These measurements have the advantages of being straightforward to implement and they provide information about the underlying, fundamental inter-atomic processes. In this talk I will present some of our recent work, including the observation of the trap depth dependence on loss rate for argon-rubidium collisions. The data follow the computed loss rate curve based on the long-range Van der Waals interaction between the two species. The implications of these findings are exciting: trap depths can be determined from the trap loss measurement under controlled background density conditions; observation of trap loss rate in comparison to models for elastic, inelastic, and chemical processes can lead to improved understanding and characterization of these fundamental interactions; finally the marriage of cold atoms with collision modeling offers the promise of creating a novel pressure sensor and pressure standard for the high and ultra-high vacuum regime.

  9. Re-solution of xenon clusters in plutonium dioxide under the collision cascade impact: A molecular dynamics simulation (United States)

    Seitov, D. D.; Nekrasov, K. A.; Kupryazhkin, A. Ya.; Gupta, S. K.; Akilbekov, A. T.


    The interaction of xenon clusters with the collision cascades in the PuO2 crystals is investigated using the molecular dynamics simulation and the approximation of the pair interaction potentials. The potentials of interaction of Xe atoms with the surrounding particles in the crystal lattice are suggested, that are valid in the range of high collision energies. The cascades created by the recoil 235U ions formed as the plutonium α-decay product are considered, and the influence of such cascades on the structure of the xenon clusters is analyzed. It is shown, that the cascade-cluster interaction leads to release of the xenon atoms from the clusters and their subsequent re-solution in the crystal bulk.

  10. Applied atomic and collision physics special topics

    CERN Document Server

    Massey, H S W; Bederson, Benjamin


    Applied Atomic Collision Physics, Volume 5: Special Topics deals with topics on applications of atomic collisions that were not covered in the first four volumes of the treatise. The book opens with a chapter on ultrasensitive chemical detectors. This is followed by separate chapters on lighting, magnetohydrodynamic electrical power generation, gas breakdown and high voltage insulating gases, thermionic energy converters, and charged particle detectors. Subsequent chapters deal with the operation of multiwire drift and proportional chambers and streamer chambers and their use in high energy p

  11. Positronium collisions with rare-gas atoms

    CERN Document Server

    Gribakin, G F; Wilde, R S; Fabrikant, I I


    We calculate elastic scattering of positronium (Ps) by the Xe atom using the recently developed pseudopotential method [Fabrikant I I and Gribakin G F 2014 Phys. Rev. A 90 052717] and review general features of Ps scattering from heavier rare-gas atoms: Ar, Kr and Xe. The total scattering cross section is dominated by two contributions: elastic scattering and Ps ionization (break-up). To calculate the Ps ionization cross sections we use the binary-encounter method for Ps collisions with an atomic target. Our results for the ionization cross section agree well with previous calculations carried out in the impulse approximation. Our total Ps-Xe cross section, when plotted as a function of the projectile velocity, exhibits similarity with the electron-Xe cross section for the collision velocities higher than 0.8 a.u., and agrees very well with the measurements at Ps velocities above 0.5 a.u.

  12. Molecular dynamics and binary collision modeling of the primary damage state of collision cascades

    DEFF Research Database (Denmark)

    Heinisch, H.L.; Singh, B.N.


    Quantitative information on defect production in cascades in copper obtained from recent molecular dynamics simulations is compared to defect production information determined earlier with a model based on the binary collision approximation (BCA). The total numbers of residual defects......, the fractions of them that are mobile, and the sizes of immobile clusters compare favorably, especially when the termination conditions of the two simulations are taken into account. A strategy is laid out for integrating the details of the cascade quenching phase determined by MD into a BCA-based model...

  13. MD simulation of atomic displacement cascades near chromium-rich clusters in FeCr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonchev, M., E-mail: [Ulyanovsk State University, Research Institute of Technology, 42 Leo Tolstoy St., 432970 Ulyanovsk (Russian Federation); Svetukhin, V. [Ulyanovsk State University, Research Institute of Technology, 42 Leo Tolstoy St., 432970 Ulyanovsk (Russian Federation); Gaganidze, E. [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe (Germany)


    The paper reports simulation of cascades in Fe–9 at.%Cr binary alloy containing chromium-rich clusters. The simulation is performed by the molecular dynamics method at the initial temperature of 300 K and primary knock-on atom energy of 15 and 20 keV. Spherical clusters containing 95 at.% of Cr with diameter of 1–5 nm have been considered. The properties of cascade evolution in the presence of chromium-rich cluster are studied. It is shown that these clusters tend to dissolve in collision cascades. However, clusters with diameter of ⩾3 nm exhibit only slight modifications and can be considered stable. Parameters of small (1–2 nm) clusters can change significantly and, in some cases, a 1 nm cluster can be totally dissolved.

  14. Spin Dependent Collision of Ultracold Metastable Atoms

    CERN Document Server

    Uetake, Satoshi; Doyle, John M; Takahashi, Yoshiro


    Spin-polarized metastable atoms of ultracold ytterbium are trapped at high density and their inelastic collisional properties are measured. We reveal that in collisions of Yb(3P2) with Yb(1S0) there is relatively weak inelastic loss, but with a significant spin-dependence consistent with Zeeman sublevel changes as being the dominant decay process. This is in strong contrast to our observations of Yb(3P2)-Yb(3P2) collisional loss, which are, at low field, much more rapid and have essentially no spin dependence. Our results give a guideline to use the 3P2 states in many possible applications.

  15. Polarization, alignment, and orientation in atomic collisions

    CERN Document Server

    Andersen, Nils


    This book covers polarization, alignment, and orientation effects in atomic collisions induced by electron, heavy particle, or photon impact. The first part of the book presents introductory chapters on light and particle polarization, experimental and computational methods, and the density matrix and state multipole formalism. Examples and exercises are included. The second part of the book deals with case studies of electron impact and heavy particle excitation, electron transfer, impact ionization, and autoionization. A separate chapter on photo-induced processes by new-generation light sources has been added. The last chapter discusses related topics and applications. Part III includes examples of charge clouds and introductory summaries of selected seminal papers of tutorial value from the early history of the field (1925 – 1975). The book is a significant update to the previous (first) edition, particularly in experimental and computational methods, the inclusion of key results obtained during the pas...

  16. On the Treatment of l-changing Proton-hydrogen Rydberg Atom Collisions (United States)

    Vrinceanu, Daniel; Onofrio, Roberto; Sadeghpour, Hossein


    Energy-conserving, angular momentum-changing collisions between protons and highly excited Rydberg hydrogen atoms are important for precise understanding of the primordial recombination cascade, and the elemental abundance.Early approaches to l-changing collisions used perturbation theory for only dipole-allowed (Δl = ±1) transitions. An exact non-perturbative quantum mechanical treatment is possible, but it comes at computational cost for highly excited Rydberg states. In this note we show how to obtain a semi-classical limit that is accurate and simple, and develop further physical insights afforded by the non-perturbative quantum mechanical treatment.

  17. Condensed matter applied atomic collision physics, v.4

    CERN Document Server

    Datz, Sheldon


    Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc

  18. Atom Collision-Induced Resistivity of Carbon Nanotubes

    National Research Council Canada - National Science Library

    Hugo E. Romero; Kim Bolton; Arne Rosén; Peter C. Eklund


    We report the observation of unusually strong and systematic changes in the electron transport in metallic single-walled carbon nanotubes that are undergoing collisions with inert gas atoms or small molecules...

  19. Gas lasers applied atomic collision physics, v.3

    CERN Document Server

    McDaniel, E W


    Applied Atomic Collision Physics, Volume 3: Gas Lasers describes the applications of atomic collision physics in the development of many types of gas lasers. Topics covered range from negative ion formation in gas lasers to high-pressure ion kinetics and relaxation of molecules exchanging vibrational energy. Ion-ion recombination in high-pressure plasmas is also discussed, along with electron-ion recombination in gas lasers and collision processes in chemical lasers.Comprised of 14 chapters, this volume begins with a historical summary of gas laser developments and an overview of the basic ope

  20. High Rydberg atoms: a nanoscale electron collisions laboratory (United States)

    Dunning, F. Barry


    Atoms in which one electron is excited to a state of large principal quantum number n, termed Rydberg atoms, are physically very large. The average separation between the excited electron and core ion is such that, in collisions with neutral targets, they behave not as an atom but rather as a pair of independent particles. Studies of collision processes that are dominated by the electron/target interaction can provide information on electron/molecule scattering at energies that extend down to a few microelectronvolts. Collisions with attaching targets can lead to ion formation through electron capture in a binary interaction between the excited electron and target molecule. Capture leads to creation of transient, excited parent negative ions that may subsequently dissociate, undergo autodetachment, or be "stabilized" by intramolecular vibrational relaxation. New insights into each of these processes, and into the lifetime of the intermediate (on a ps timescale), can be obtained by measuring the angular and velocity distributions of the positive and/or negative ions produced in Rydberg atom collisions. Collisions with Rydberg atoms also provide a novel source of dipole-bound negative ions, and have demonstrated the importance of dipole-supported real and virtual states in superelastic electron scattering from polar targets. These applications of Rydberg atoms will be discussed together with some recent results. Research supported by the National Science Foundation and the Robert A. Welch Foundation.

  1. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, P. [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Becker, H.-W. [RUBION, Ruhr-University Bochum (Germany); Williams, G.V.M. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Hübner, R.; Heinig, K.-H. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Markwitz, A., E-mail: [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand)


    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C{sub 3}H{sub 6} deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  2. Resonant two-electron processes in ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zavodszky, P.A. E-mail:; Richard, P.; Bhalla, C.P


    A review of some of the recent results in an effort to obtain electron-ion differential scattering cross sections using fast ion-atom collisions is given. In the projectile frame, if we neglect the effects from the target nucleus, the ion-atom collision can be described as an electron-ion scattering process where the energy distribution of the impinging quasi-free electrons is determined by the Compton-profile of the target. In this electron scattering model (ESM), in addition to the direct electron scattering, doubly excited state formation of the projectile ion is also possible. This is a resonant process in which the doubly excited states can subsequently decay by ejecting Auger-electrons. We have studied elastic, inelastic and superelastic electron scattering as a function of incoming electron energy by observing the outgoing electron energy in the ion-atom collision emission spectra.

  3. Accurate classical short-range forces for the study of collision cascades in Fe-Ni-Cr (United States)

    Béland, Laurent Karim; Tamm, Artur; Mu, Sai; Samolyuk, German D.; Osetsky, Yuri N.; Aabloo, Alvo; Klintenberg, Mattias; Caro, Alfredo; Stoller, Roger E.


    The predictive power of a classical molecular dynamics simulation is largely determined by the physical validity of its underlying empirical potential. In the case of high-energy collision cascades, it was recently shown that correctly modeling interactions at short distances is necessary to accurately predict primary damage production. An ab initio based framework is introduced for modifying an existing embedded-atom method FeNiCr potential to handle these short-range interactions. Density functional theory is used to calculate the energetics of two atoms approaching each other, embedded in the alloy, and to calculate the equation of state of the alloy as it is compressed. The pairwise terms and the embedding terms of the potential are modified in accordance with the ab initio results. Using this reparametrized potential, collision cascades are performed in Ni50Fe50, Ni80Cr20 and Ni33Fe33Cr33. The simulations reveal that alloying Ni and NiCr to Fe reduces primary damage production, in agreement with some previous calculations. Alloying Ni and NiFe to Cr does not reduce primary damage production, in contradiction with previous calculations.

  4. Characterization of non-Lorentzian line shapes in atom-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dehesa, J.S. (Granada Univ. (Spain). Dept. de Fisica Nuclear; Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Kernphysik)

    Two different characterizations of the spectral line shape in the core region of resonance lines of atoms perturbed by other atoms in terms of 1) its moments about the origin and 2) its frequency moments are given. Simple expressions relating the line width and the asymmetry parameter of these collision-broadened lines with two of these moments are obtained. These expressions might lead to a new experimental determination of the average time of duration of atom-atom collisions since the involved moments are measurable.

  5. Spectroscopic measurement of the softness of ultracold atomic collisions (United States)

    Coslovsky, Jonathan; Afek, Gadi; Mil, Alexander; Almog, Ido; Davidson, Nir


    The softness of elastic atomic collisions, defined as the average number of collisions each atom undergoes until its energy decorrelates significantly, can have a considerable effect on the decay dynamics of atomic coherence. In this paper we combine two spectroscopic methods to measure these dynamics and obtain the collisional softness of ultracold atoms in an optical trap: Ramsey spectroscopy to measure the energy decorrelation rate and echo spectroscopy to measure the collision rate. We obtain a value of 2.5(3) for the collisional softness, in good agreement with previously reported numerical molecular-dynamics simulations. This fundamental quantity is used to determine the s -wave scattering lengths of different atoms but has not been directly measured. We further show that the decay dynamics of the revival amplitudes in the echo experiment has a transition in its functional decay. The transition time is related to the softness of the collisions and provides yet another way to approximate it. These conclusions are supported by Monte Carlo simulations of the full echo dynamics. The methods presented here can allow measurement of a generalized softness parameter for other two-level quantum systems with discrete spectral fluctuations.

  6. Multiple electron capture in close ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Schlachter, A.S.; Stearns, J.W.; Berkner, K.H.; Bernstein, E.M.; Clark, M.W.; DuBois, R.D.; Graham, W.G.; Morgan, T.J.; Mueller, D.W.; Stockli, M.P.; Tanis, J.A.; Woodland, W.T. (Lawrence Berkeley Lab., CA (USA); Western Michigan Univ., Kalamazoo, MI (USA); Pacific Northwest Lab., Richland, WA (USA); Queen' s Univ., Belfast, Northern Ireland (UK); Wesleyan Univ., Middletown, CT (USA); University of North Tex


    Collisions in which a fast highly charged ion passes within the orbit of K electron of a target gas atom are selected by emission of a K x-ray from the projectile or target. Measurement of the projectile charge state after the collision, in coincidence with the K x-ray, allows measurement of the charge-transfer probability during these close collisions. When the projectile velocity is approximately the same as that of target electrons, a large number of electrons can be transferred to the projectile in a single collision. The electron-capture probability is found to be a linear function of the number of vacancies in the projectile L shell for 47-MeV calcium ions in an Ar target. 18 refs., 9 figs.

  7. Non-Elastic Processes in Atom Rydberg-Atom Collisions: Review of ...

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... Inour previous research, it has been demonstrated that inelastic processes in atom Rydberg-atom collisions, such as chemi-ionization and ( n − n ′ ) mixing, should be considered together. Here we will review the present state-of-the-art and the actual problems. In this context, we will consider the influence ...

  8. Effect of collision cascades on dislocations in tungsten: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Fu, B.Q., E-mail: [Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065 (China); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Fitzgerald, S.P. [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Hou, Q.; Wang, J.; Li, M. [Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065 (China)


    Highlights: • A cascde near a dislocation promotes climb motion. • Kinks induced by cascade facilitate the dipoles motion toward the cascade. • Shearing of dipole is dependent on PKA energy, position, direction, and dipole width. - Abstract: Tungsten (W) is the prime candidate material for the divertor and other plasma-facing components in DEMO. The point defects (i.e. vacancies and self-interstitials) produced in collision cascades caused by incident neutrons aggregate into dislocation loops (and voids), which strongly affect the mechanical properties. The point defects also interact with existing microstructural features, and understanding these processes is crucial for modelling the long term microstructural evolution of the material under fusion conditions. In this work, we performed molecular dynamics simulations of cascades interacting with initially straight edge dislocation dipoles. It was found that the residual vacancy number usually exceeds the residual interstitial number for cascades interacting with vacancy type dipoles, but for interstitial type dipoles these are close. We observed that a cascade near a dislocation promotes climb, i.e. it facilitates the movement of point defects along the climb direction. We also observed that the dislocations move easily along the glide direction, and that kinks are formed near the centre of the cascade, which then facilitate the movement of the dipoles. Some dipoles are sheared off by the cascade, and this is dependent on PKA energy, position, direction, and the width of dipole.

  9. Theory of Electronic, Atomic and Molecular Collisions. (United States)


    rare gas atoms (Section TV, Publications, No. 29). A strong forward peak and rapid angular variation, essentially a Fraunhofer diffraction pattern... triangular finite elements. Correct threshold behavior is built in by using momentum or wave number k as independent variables, and by starting the first...element at the continuum threshold. Since each triangular element has a finite and continuous HUbert transform, a smooth fit is obtained to both real

  10. Use of atomic hydrogen source in collision: technological challenges (United States)

    Hovey, R. T.; Vargas, E. L.; Panchenko, D. I.; Rivas, D. A.; Andrianarijaona, V. M.


    Atomic hydrogen was extensively studied in the past due to its obvious fundamental aspect. Also, quite few investigations were dedicated to atomic hydrogen sources because the results of experimental investigations on systems involving H would provide very rigorous tests for theoretical models. But even if atomic hydrogen sources are currently widespread in experimental physics, their uses in experiments on collisions are still very challenging mainly due to threefold problem. First, there is the difficulty to create H in the laboratory in sufficiently large number densities. Second, there is the strain to adjust the velocities of the produced atomic hydrogens. And third, there is the toil to control the internal energies of these atomic hydrogens. We will present an outline of different techniques using atomic hydrogen sources in collisions, which could be found in the literatures, such as merged-beam technique, gas cell technique, and trap, and propose an experiment scheme using a turn-key atomic hydrogen source that experiments such as charge transfer could benefit from. This work is supported by the National Science Foundation under Grant No. PHY-1068877.

  11. Circular Dichroism in Laser-Assisted Ion-Atom Collisions (United States)

    Feuerstein, Bernold; Thumm, Uwe


    We investigate theoretically the effects of a strong laser field on the dynamics of ion-atom collisions. The time-dependent Schrödinger equation is solved on a numerical grid for a reduced dimensionality model of the scattering system. The single active electron system is confined to the two dimensions of the scattering plane, which also includes the laser electric field vector. This allows the study of the influence of the laser intensity and polarization (linear, circular, elliptic) on the collision dynamics (capture and ionization probabilities) The projectile follows a classical trajectory with impact parameter b. We found a strong circular dirchroism in the capture probability P(b) for slow proton-hydrogen collisions. First results will be presented and discussed. Supported in part by NSF (grant PHY-0071035) and Division of Chemical Sciences, Office of Basic Energy Scienes, Office of Energy Research, US DOE.

  12. Half-Collision Studies of Excited Metal Atom - Molecule Interactions (United States)

    Kleiber, P. D.; Chen, J.; Wong, T. H.


    We report on state-resolved studies of excited state molecular dynamics, including both reactive and nonreactive (energy transfer) processes using half-collision techniques. Scattering state spectroscopy is used to investigate electronic orbital alignment effects on the reactive quenching of excited p-state alkali and alkaline earth metal atoms in collisions with hydrogen and methane. These experiments give information about the shape of the Born-Oppenheimer potential energy surfaces for the collision complex, and about the nonadiabatic interactions that couple the surfaces. Experimental results indicate two distinct reaction mechanisms are operative in the alkali metal-hydrogen quenching system. In complementary experiments, the spectroscopy and dissociation dynamics of weakly bound metal ion-hydrocarbon bimolecular complexes are studied using photofragmentation spectroscopic techniques in a tandem time-of- flight mass spectrometer. Results suggest that the quenching mechanism involves metal ion activation of the hydrocarbon bonds througha bond- stretch insertion process.

  13. Atomic collision databases and data services -- A survey

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R. [Oak Ridge National Lab., TN (United States). Controlled Fusion Atomic Data Center


    Atomic collision databases and data services constitute an important resource for scientific and engineering applications such as astrophysics, lighting, materials processing, and fusion energy, as well as an important knowledge base for current developments in atomic collision physics. Data centers and research groups provide these resources through a chain of efforts that include producing and collecting primary data, performing evaluation of the existing data, deducing scaling laws and semiempirical formulas to compactly describe and extend the data, producing the recommended sets of data, and providing convenient means of maintaining, updating, and disseminating the results of this process. The latest efforts have utilized modern database, storage, and distribution technologies including the Internet and World Wide Web. Given here is an informal survey of how these resources have developed, how they are currently characterized, and what their likely evolution will lead them to become in the future.

  14. Energy distributions for ionization in ion-atom collisions

    CERN Document Server

    Amaya-Tapia, A


    In this paper we discuss how through the process of applying the Fourier transform to solutions of the Schr\\"odinger equation in the Close Coupling approach, good results for the ionization differential cross section in energy for electrons ejected in ion-atom collisions are obtained. The differential distributions are time dependent and through their time average, the comparison with experimental and theoretical data reported in the literature can be made. The procedure is illustrated with reasonable success in two systems, $p+H$ and $p+He$, and is expected to be extended without inherent difficulties to more complex systems. This allows advancing in the understanding of the calculation of ionization processes in ion-atom collisions.

  15. Atomic collisions involving C60 and collective excitation (United States)

    Tribedi, L. C.; Kelkar, A. H.


    Here we review and discuss some of our recent investigations on collective excitation in a free C60 molecule and its influence on the atomic collisions. In particular, emphasis has been given for collisions with fast highly charged ions. It is demonstrated, from the charge-state-dependence studies of recoil-ion spectra, that the plasmon excitation plays a dominant role in the single and double ionization process. The observed linear charge-state-dependence is in contrast to the expected behavior predicted by ion-atom collisions models. This behavior was observed for different projectiles and at different energies. The time-of-flight recoil-ion mass spectroscopy experiments involve 1-5 MeV/u C, O, F and Si ion beams with different charge states, ranging between 4+ and 14+. In addition, the influence of the collective excitation on the electron capture process was also investigated. The wake-field induced Stark-mixing and splitting of sub-levels of projectile-ions following electron capture from C60 carries signature of the collective plasmon excitation. For the electron capture studies X-ray spectroscopic technique was used for collisions with bare and dressed S and Cl ion beams. The results on the TOF data on fullerene target obtained in last few years will be summarized.

  16. Saturation Effect of Projectile Excitation in Ion-Atom Collisions (United States)

    Mukoyama, Takeshi; Lin, Chii-Dong

    Calculations of projectile K-shell electron excitation cross sections for He-like ions during ion-atom collisions have been performed in the distortion approximation by the use of Herman-Skillman wave functions. The calculated results are compared with the experimental data for several targets. The excitation cross sections deviate from the first-Born approximation and show the saturation effect as a function of target atomic number. This effect can be explained as the distortion of the projectile electronic states by the target nucleus.


    Energy Technology Data Exchange (ETDEWEB)

    Belluzzi, Luca [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); Landi Degl’Innocenti, Egidio [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50125 Firenze (Italy); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)


    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.

  18. Measurements of scattering processes in negative ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kvale, T.J.


    This Technical Progress Report describes the progress made on the research objectives during the past twelve months. This research project is designed to provide measurements of various scattering processes which occur in H{sup {minus}} collisions with atomic (specifically, noble gas and atomic hydrogen) targets at intermediate energies. These processes include: elastic scattering,single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H{sup {minus}} is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements in progress will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion-atom collisions. This series of experiments required the construction of a new facility and the initial ion beam was accelerated through the apparatus in April 1991.

  19. Formation of positron-atom bound states in collisions between Rydberg Ps and neutral atoms

    CERN Document Server

    Swann, A R; Deller, A; Gribakin, G F


    Predicted twenty years ago, positron binding to neutral atoms has not yet been observed experimentally. A new scheme is proposed to detect positron-atom bound states by colliding Rydberg positronium (Ps) with neutral atoms. Estimates of the charge-transfer-reaction cross section are obtained using the first Born approximation for a selection of neutral atom targets and a wide range of incident Ps energies and principal quantum numbers. We also estimate the corresponding Ps ionization cross section. The accuracy of the calculations is tested by comparison with earlier predictions for Ps charge transfer in collisions with hydrogen and antihydrogen. We describe an existing Rydberg Ps beam suitable for producing positron-atom bound states and estimate signal rates based on the calculated cross sections and realistic experimental parameters. We conclude that the proposed methodology is capable of producing such states and of testing theoretical predictions of their binding energies.

  20. The Screening Effect in Electromagnetic Production of Electron Positron Pairs in Relativistic Nucleus-Atom Collisions (United States)

    Wu, Jianshi; Derrickson, J. H.; Parnell, T. A.; Strayer, M. R.


    We study the screening effects of the atomic electrons in the electromagnetic production of electron-positron pairs in relativistic nucleus-atom collisions for fixed target experiments. Our results are contrasted with those obtained in bare collisions, with particular attention given to its dependence on the beam energy and the target atom.

  1. Production of dimeson atoms in high-energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Afanasyev, L.; Gevorkyan, S.; Voskresenskaya, O. [Joint Institute for Nuclear Research, Dubna (Russian Federation)


    The production of two-meson electromagnetic bound states and free meson pairs π{sup +}π{sup -}, K{sup +}K{sup -}, π{sup +}K{sup -+} in relativistic collisions has been considered. It is shown that using of exact Coulomb wave functions for dimeson atom (DMA) allows one to calculate the yield of discrete states with the desired accuracy. The relative probabilities of production of DMA and meson pairs in the free state are estimated. The amplitude of DMA transition from 1S to 2P state, which is essential for the pionium Lamb shift measurements, has been obtained. (orig.)

  2. Classical theory of atomic collisions - The first hundred years

    Energy Technology Data Exchange (ETDEWEB)

    Grujic, Petar V., E-mail: [Institute of Physics, P.O. Box 57, 11000 Belgrade (Serbia)


    Classical calculations of the atomic processes started in 1911 with famous Rutherford's evaluation of the differential cross section for {alpha} particles scattered on foil atoms . The success of these calculations was soon overshadowed by the rise of Quantum Mechanics in 1925 and its triumphal success in describing processes at the atomic and subatomic levels. It was generally recognized that the classical approach should be inadequate and it was neglected until 1953, when the famous paper by Gregory Wannier appeared, in which the threshold law for the single ionization cross section behaviour by electron impact was derived. All later calculations and experimental studies confirmed the law derived by purely classical theory. The next step was taken by Ian Percival and collaborators in 60s, who developed a general classical three-body computer code, which was used by many researchers in evaluating various atomic processes like ionization, excitation, detachment, dissociation, etc. Another approach was pursued by Michal Gryzinski from Warsaw, who started a far reaching programme for treating atomic particles and processes as purely classical objects . Though often criticized for overestimating the domain of the classical theory, results of his group were able to match many experimental data. Belgrade group was pursuing the classical approach using both analytical and numerical calculations, studying a number of atomic collisions, in particular near-threshold processes. Riga group, lead by Modris Gailitis , contributed considerably to the field, as it was done by Valentin Ostrovsky and coworkers from Sanct Petersbourg, who developed powerful analytical methods within purely classical mechanics . We shall make an overview of these approaches and show some of the remarkable results, which were subsequently confirmed by semiclassical and quantum mechanical calculations, as well as by the experimental evidence. Finally we discuss the theoretical and epistemological

  3. Single electron capture in fast ion-atom collisions (United States)

    Milojević, Nenad


    Single-electron capture cross sections in collisions between fast bare projectiles and heliumlike atomic systems are investigated by means of the four-body boundary-corrected first Born (CB1-4B) approximation. The prior and post transition amplitudes for single charge exchange encompassing symmetric and asymmetric collisions are derived in terms of twodimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. The dielectronic interaction V12 = 1/r12 = 1/|r1 - r2| explicitly appears in the complete perturbation potential Vf of the post transition probability amplitude T+if. An illustrative computation is performed involving state-selective and total single capture cross sections for the p - He (prior and post form) and He2+, Li3+Be4+B5+C6+ - He (prior form) collisions at intermediate and high impact energies. We have also studied differential cross sections in prior and post form for single electron transfer from helium by protons. The role of dynamic correlations is examined as a function of increased projectile energy. Detailed comparisons with the measurements are carried out and the obtained theoretical cross sections are in reasonable agreement with the available experimental data.

  4. Superradiant emission from a cascade atomic ensemble by positive-P phase space method simulation (United States)

    Jen, Hsiang-Hua


    We numerically simulate the superradiant emission properties from an atomic ensemble with cascade level configuration. The correlated spontaneous emissions (signal then idler fields) are initiated by quantum fluctuations of the ensemble. We apply the positive-P phase space method to investigate the dynamics of the atoms and counter-propagating emissions in the four-wave mixing condition. The light field intensities are calculated, and the signal-idler correlation function is studied for different optical depths of the atomic ensemble. Shorter correlation time scale for a denser atomic ensemble implies a broader spectral window required to store or retrieve the idler pulse.

  5. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction (United States)

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.


    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  6. Fast ion-atom and ion-molecule collisions

    CERN Document Server


    The principal goal of this book is to provide state-of-the art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this fiel...

  7. Atoms-for-Peace: A Galactic Collision in Action (United States)


    European Southern Observatory astronomers have produced a spectacular new image of the famous Atoms-for-Peace galaxy (NGC 7252). This galactic pile-up, formed by the collision of two galaxies, provides an excellent opportunity for astronomers to study how mergers affect the evolution of the Universe. Atoms-for-Peace is the curious name given to a pair of interacting and merging galaxies that lie around 220 million light-years away in the constellation of Aquarius. It is also known as NGC 7252 and Arp 226 and is just bright enough to be seen by amateur astronomers as a very faint small fuzzy blob. This very deep image was produced by ESO's Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. A galaxy collision is one of the most important processes influencing how our Universe evolves, and studying them reveals important clues about galactic ancestry. Luckily, such collisions are long drawn-out events that last hundreds of millions of years, giving astronomers plenty of time to observe them. This picture of Atoms-for-Peace represents a snapshot of its collision, with the chaos in full flow, set against a rich backdrop of distant galaxies. The results of the intricate interplay of gravitational interactions can be seen in the shapes of the tails made from streams of stars, gas and dust. The image also shows the incredible shells that formed as gas and stars were ripped out of the colliding galaxies and wrapped around their joint core. While much material was ejected into space, other regions were compressed, sparking bursts of star formation. The result was the formation of hundreds of very young star clusters, around 50 to 500 million years old, which are speculated to be the progenitors of globular clusters. Atoms-for-Peace may be a harbinger of our own galaxy's fate. Astronomers predict that in three or four billion years the Milky Way and the Andromeda Galaxy will collide, much as has happened with Atoms-for-Peace. But don

  8. PREFACE: XXVIth International Conference on Photonic, Electronic and Atomic Collisions (United States)

    Orel, Ann; Starace, Anthony F.; Nikolić, Dragan; Berrah, Nora; Gorczyca, Thomas W.; Kamber, Emanuel Y.; Tanis, John A.


    The XXVIth International Conference on Photonic, Electronic and Atomic Collisions was held on the campus of Western Michigan University (WMU) in Kalamazoo during 22-28 July 2009. Kalamazoo, the home of a major state university amid pleasant surroundings, was a delightful place for the conference. The 473 scientific participants, 111 of whom were students, had many fruitful discussions and exchanges that contributed to the success of the conference. Participants from 43 countries made the conference truly international in scope. The 590 abstracts that were presented on the first four days formed the heart of the conference and provided ample opportunity for discussion. This change, allowing the conference to end with invited talks, was a departure from the format used at previous ICPEAC gatherings in which the conferences ended with a poster session. The abstracts were split almost equally between the three main conference areas, i.e., photonic, electronic, and atomic collisions, and the posters were distributed across the days of the conference so that approximately equal numbers of abstracts in the different areas were scheduled for each day. Of the total number of presented abstracts, 517 of these are included in this proceedings volume, the first time that abstracts have been published by ICPEAC. There were 5 plenary lectures covering the different areas of the conference: Paul Corkum (University of Ottawa) talked on attosecond physics with atoms and molecules, Serge Haroche (Collège de France) on non-destructive photon counting, Toshiyuki Azuma (Tokyo Metropolitan University) on resonant coherent excitation of highly-charged ions in crystals, Eva Lindroth (Stockholm University) on atomic structure effects, and Alfred Müller (Justus Liebig University) on resonance phenomena in electron- and photon-ion collisions. Two speakers gave very illuminating public lectures that drew many people from the local area, as well as conference participants: Patricia Dehmer

  9. Understanding Molecular Ion-Neutral Atom Collisions for the Production of Ultracold Molecular Ions (United States)


    Understanding Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions In the last five years, the study of ultracold...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 molecular ion, quantum chemistry, atom ion interaction...Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions Report Title In the last five years, the study of ultracold molecular

  10. Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface

    CERN Document Server

    Kumar, Ravi; Chormaic, Síle Nic


    Ultrathin optical fibres integrated into cold atom setups are proving to be ideal building blocks for atom-photon hybrid quantum networks. Such optical nanofibres (ONF) can be used for the demonstration of nonlinear optics and quantum interference phenomena in atomic media. Here, we report on the observation of multilevel cascaded electromagnetically induced transparency (EIT) using an optical nanofibre to interface cold $^{87}$Rb atoms through the intense evanescent fields that can be achieved at ultralow probe and coupling powers. Both the probe (at 780 nm) and the coupling (at 776 nm) beams propagate through the nanofibre. The observed multipeak transparency spectra of the probe beam could offer a method for simultaneously slowing down multiple wavelengths in an optical nanofibre or for generating ONF-guided entangled beams, showing the potential of such an atom-nanofibre system for quantum information. We also demonstrate all-optical-switching in the all fibred system using the obtained EIT effect.

  11. MD simulation of atomic displacement cascades in Fe-10 at.%Cr binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonchev, M., E-mail: tikhonchev@sv.ulsu.r [Ulyanovsk State University, Leo Tolstoy Str., 42, Ulyanovsk 432970 (Russian Federation); Joint Stock Company, ' State Scientific Center Research Institute of Atomic Reactors' , 433510 Dimitrovgrad-10 (Russian Federation); Svetukhin, V.; Kadochkin, A. [Ulyanovsk State University, Leo Tolstoy Str., 42, Ulyanovsk 432970 (Russian Federation); Gaganidze, E. [Forschungszentrum Karlsruhe, IMF II, 3640, D-76021 Karlsruhe (Germany)


    Molecular dynamics simulation of atomic displacement cascades up to 20 keV has been performed in Fe-10 at.%Cr binary alloy at a temperature of 600 K. The N-body interatomic potentials of Finnis-Sinclair type were used. According to the obtained results the dependence of 'surviving' defects amount is well approximated by power function that coincides with other researchers' results. Obtained cascade efficiency for damage energy in the range from 10 to 20 keV is approx0.2 NRT that is slightly higher than for pure alpha-Fe. In post-cascade area Cr fraction in interstitials is in range 2-5% that is essentially lower than Cr content in the base alloy. The results on size and amount of vacancy and interstitial clusters generated in displacement cascades are obtained. For energies of 2 keV and higher the defect cluster average size increases and it is well approximated by a linear dependence on cascade energy both for interstitials and vacancies.

  12. Potential Energy Curves and Collisions Integrals of Air Components. 2; Interactions Involving Ionized Atoms (United States)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)


    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  13. Hydrogen sulphide in cardiovascular system: A cascade from interaction between sulphur atoms and signalling molecules. (United States)

    Wang, Ming-Jie; Cai, Wen-Jie; Zhu, Yi-Chun


    As a gasotransmitter, hydrogen sulphide exerts its extensive physiological and pathophysiological effects in mammals. The interaction between sulphur atoms and signalling molecules forms a cascade that modulates cellular functions and homeostasis. In this review, we focus on the signalling mechanism underlying the effect of hydrogen sulphide in the cardiovascular system and metabolism as well as the biological relevance to human diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Quantum-mechanical calculations of cross sections for electron collisions with atoms and molecules

    CERN Document Server

    Bartschat, Klaus; Zatsarinny, Oleg


    An overview of quantum-mechanical methods to generate cross-section data for electron collisions with atoms and molecules is presented. Particular emphasis is placed on the time-independent close-coupling approach, since it is particularly suitable for low-energy collisions and also allows for systematic improvements as well as uncertainty estimates. The basic ideas are illustrated with examples for electron collisions with argon atoms and methane. For many atomic systems, such as e-Ar collisions, highly reliable cross sections can now be computed with quantified uncertainties. On the other hand, while electron collision calculations with molecules do provide key input data for plasma models, the methods and computer codes presently used require further development to make these inputs robust.

  15. Ultracold collisions of mixed atoms in optical dipole trap loaded from a dark magneto-optical trap (United States)

    Zhao, Yanting; Gong, Ting; Li, Zhonghao; Ji, Zhonghua; Zhang, Xiang; Xiao, Liantuan; Jia, Suotang


    We study the cold collisions of mixed atoms in an optical dipole trap (ODT), which are loaded from a dark magneto-optical trap (MOT). A comprehensive, phenomenological rate equation is presented to derive the ultracold homonuclear and heteronuclear collision rates in loading and holding procedures. Our results show that the cold atoms in the dark MOT can provide a much better stable, initial atomic sample than MOT. The dependence of the heteronuclear collision rate on the trap depth is attributed to the hyperfine-changing collision by the ODT laser with a broad linewidth. The processes of deriving the collision rate are also universal for other kinds of atoms or even molecules.

  16. Time-of-Flight Experiments in Molecular Motion and Electron-Atom Collision Kinematics (United States)

    Donnelly, Denis P.; And Others


    Describes a set of experiments for an undergraduate laboratory which demonstrates the relationship between velocity, mass, and temperature in a gas. The experimental method involves time-of-flight measurements on atoms excited to metastable states by electron impact. Effects resulting from recoil in the electron-atom collision can also be…

  17. A spectroscopic study of hydrogen atom and molecule collision. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kielkopf, John F.


    The fundamental processes which occur in low-energy collisions of excited states of the hydrogen atom with other neutral atoms, protons, and electrons in dense plasmas were investigated in this project. Theoretical and experimental results for the Lyman and Balmer series are described here, including references to recent publications resulting from this project.

  18. Quasi-free electron-ion scattering in ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.; Bhalla, C.; Hagmann, S.; Zavodszky, P. [Kansas State Univ., Manhattan, KS (United States). J.R. MacDonald Lab.


    The electron scattering model, ESM, for ion-atom collisions refers to the scattering of a quasi-free (loosely-bound) target electron in the field of a highly charged projectile ion. Many atomic processes have been successfully described by the ESM, which relates a differential scattering cross section for an ion-atom collision process to the cross section for the corresponding pure electron-ion collision process. The following processes have been studied in ion-atom collisions: resonant and non-resonant electron-ion elastic scattering, resonant and non-resonant inelastic electron-ion scattering, and dielectronic recombination. Recently, features have been observed in electron double differential cross sections from ion-atom collisions that have been attributed to ``super elastic`` electron-ion scattering, and intra-atomic double electron scattering in the case of molecular targets. Also, evidence for triply-excited states formed by resonance excitation has been observed. A survey of the results of these studies and the status of this field of research will be presented. (orig.) 31 refs.

  19. Contribution of electron-atom collisions to the plasma conductivity of noble gases (United States)

    Rosmej, S.; Reinholz, H.; Röpke, G.


    We present an approach which allows the consistent treatment of bound states in the context of dc conductivity in dense partially ionized noble gas plasmas. Besides electron-ion and electron-electron collisions, further collision mechanisms owing to neutral constituents are taken into account. Especially at low temperatures of 104to105 K, electron-atom collisions give a substantial contribution to the relevant correlation functions. We suggest an optical potential for the description of the electron-atom scattering which is applicable for all noble gases. The electron-atom momentum-transfer cross section is in agreement with experimental scattering data. In addition, the influence of the medium is analyzed, the optical potential is advanced including screening effects. The position of the Ramsauer minimum is influenced by the plasma. Alternative approaches for the electron-atom potential are discussed. Good agreement of calculated conductivity with experimental data for noble gas plasmas is obtained.

  20. Time-evolution of many active electrons in slow ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Runge, K.; Micha, D.A.


    The previously developed Eikonal/Time-dependent Hartree-Fock method is applied to slow ionic and atomic collisions involving many active electrons. The electronic density matrix is written in a basis of traveling atomic orbitals including s, p, and d-type atomic basis functions. One- and two-electron integrals are calculated in a static basis and transformed to the traveling basis. Electronic orbital polarization parameters are calculated during the collision to determine the degree of electonic orientation and alignment as a function of time. This method is currently being applied to slow collisions of hydrogen, alkali, alkali earth and rare gas atoms and ions, to calculate the time evolution of electronic energy and charge transfer, as well as orbital polarization.

  1. Characterization of charge-exchange collisions between ultracold 6Li atoms and 40Ca+ ions (United States)

    Saito, R.; Haze, S.; Sasakawa, M.; Nakai, R.; Raoult, M.; Da Silva, H.; Dulieu, O.; Mukaiyama, T.


    We investigate the energy dependence and the internal-state dependence of the charge-exchange collision cross sections in a mixture of 6Li atoms and 40Ca+ ions. Deliberately excited ion micromotion is used to control collision energy of atoms and ions. The energy dependence of the charge-exchange collision cross section obeys the Langevin model in the temperature range of the current experiment, and the measured magnitude of the cross section is correlated to the internal state of the 40Ca+ ions. Revealing the relationship between the charge-exchange collision cross sections and the interaction potentials is an important step toward the realization of the full quantum control of the chemical reactions at an ultralow-temperature regime.

  2. Atomic collision and spectroscopy experiments with ultra-low-energy antiprotons

    CERN Document Server

    Torii, Hiroyuki A; Toyoda, Hiroshi; Imao, Hiroshi; Kuroda, Naofumi; Varentsov, Victor L; Yamazaki, Yasunori


    Antiproton, the antiparticle of proton, is a unique projectile in the study of atomic collision physics, which can be treated theoretically either as a 'negative proton' or a 'heavy electron'. Atomic capture of an antiproton will result in formation of a highly excited exotic atom. Antiprotonic helium atom has been studied intensively by means of precision laser spectroscopy, which has led to a stringent determination of antiproton mass and charge to a level of ppb. Comparison of these values with those of proton gives one of the best tests of CPT invariance, the most fundamental symmetry in physics. However, the dynamic processes of antiproton capture remain unclarified. With an aim to produce an antiproton beam at atomic-physics energies for 'pure' collision experiments, we have so far developed techniques to decelerate, cool and confine antiprotons in vacuo, using a sequential combination of the Antiproton Decelerator (AD) at CERN, a Radio-Frequency Quadrupole Decelerator (RFQD), and an electromagnetic tra...

  3. Lectures on ion-atom collisions from nonrelativistic to relativistic velocities

    CERN Document Server

    Eichler, Jörg


    Atomic collisions offer some unique opportunities to study atomic structure and reaction mechanisms in experiment and theory, especially for projectiles of high atomic number provided by modern accelerators. The book is meant as an introduction into the field and provides some basic theoretical understanding of the atomic processes occurring when a projectile hits another atom. It also furnishes the tools for a mathematical description, however, without going deeper into the technical details, which can be found in the literature given. With this aim, the focus is on reactions, in which only a single active electron participates. Collisional excitation, ionization and charge transfer are discussed for collision velocities ranging from slow to comparable to thespeed of light. For the highest projectile velocities, energy can be converted into mass, so that electron-positron pairs are created. In addition to the systematic treatment, a theoretical section specializes on electron-electroncorrelations and three...

  4. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions. Updated 1997

    Energy Technology Data Exchange (ETDEWEB)

    Tawara, H.


    Following our previous compilations (IPPJ-AM-45 (1986), NIFS-DATA-7 (1990), NIFS-DATA-20 (1993)), bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1954-1996 are listed in the order of the publication year. For easy finding of the references for a combination of collision partners, a simple list is provided. (author)

  5. K-Vacancy Production in the Collision of Highly Charged Relativistic Ions With Heavy Atoms




    A general expression for the cross section of the inelastic collision of relativistic highly charged ion with heavy (relativistic) atoms is obtained using the generalized eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides with a known exact one. As an application of the obtained result, probability and cross section of the K-vacany production in the U92+ - U91+ collision are calculated.

  6. Quasiclassical trajectory study of fast H-atom collisions with acetylene. (United States)

    Han, Yong-Chang; Sharma, Amit R; Bowman, Joel M


    Translationally hot H collisions with the acetylene are investigated using quasiclassical trajectory calculations, on a recent full-dimensional ab initio-based potential energy surface. Three outcomes are focused on: non-reactive energy transfer via prompt collisions, non-reactive energy transfer via the formation of the vinyl complex, and reactive chemical H-atom exchange, also via complex formation. The details of these outcomes are presented and correlated with the collision lifetime. Large energy transfer is found via complex formation, which can subsequently decay back to reactants, a non-reactive event, or to new products, a reactive event. For the present system, these two events are experimentally indistinguishable.

  7. On the treatment of ℓ-changing proton-hydrogen Rydberg atom collisions (United States)

    Vrinceanu, D.; Onofrio, R.; Sadeghpour, H. R.


    Energy-conserving, angular momentum changing collisions between protons and highly excited Rydberg hydrogen atoms are important for precise understanding of atomic recombination at the photon decoupling era and the elemental abundance after primordial nucleosynthesis. Early approaches to ℓ-changing collisions used perturbation theory only for dipole-allowed (Δℓ = ±1) transitions. An exact non-perturbative quantum mechanical treatment is possible, but it comes at a computational cost for highly excited Rydberg states. In this paper, we show how to obtain a semiclassical limit that is accurate and simple, and develop further physical insights afforded by the non-perturbative quantum mechanical treatment.

  8. Cross-sections for neutral atoms and molecules collisions with charged spherical nanoparticle

    CERN Document Server

    Shneider, M N


    The paper presents cross sections for collisions of neutral atoms/molecules with a charged nanoparticle, which is the source of the dipole potential. The accuracy of the orbital limited motion (OLM) approximation is estimated. It is shown that simple analytical formulas for the atoms/molecules and heat fluxes, obtained in the OLM approximation, give an error of not more than 15%, and are applicable in all reasonable range of nanoparticles and weakly ionized plasma parameters.

  9. A simple nonbinary scattering model applicable to atomic collisions is crystals at 1ow energies

    DEFF Research Database (Denmark)

    Andersen, Hans Henrik; Sigmund, Peter


    the projectile and each ring atom is described by a Born-Mayer potential, and the scattering is assumed to be elastic and governed by the classical equations of motion. Because of symmetry, the problem can be reduced to plane motion of a particle in a potential of elliptic symmetry. The elliptic force field...... the elliptic to the spherical potential are investigated. Special attention is paid to proper definitions of collision time and collision length which are important in collisions in crystals. Limitations to classical scattering arising from the uncertainty principle prove to be more serious than assumed...... previously. Inelastic contributions to the energy loss can easily be included. The oscillator forces binding lattice atoms turn out to influence the scattering process only at very small energies. The validity of the so-called momentum approximation and a related perturbation method are also investigated....

  10. Spin-axis relaxation in spin-exchange collisions of alkali-metal atoms (United States)

    Kadlecek, S.; Walker, T.; Walter, D. K.; Erickson, C.; Happer, W.


    We present calculations of spin-relaxation rates of alkali-metal atoms due to the spin-axis interaction acting in binary collisions between the atoms. We show that for the high-temperature conditions of interest here, the spin-relaxation rates calculated with classical-path trajectories are nearly the same as those calculated with the distorted-wave Born approximation. We compare these calculations to recent experiments that used magnetic decoupling to isolate spin relaxation due to binary collisions from that due to the formation of triplet van der Waals molecules. The values of the spin-axis coupling coefficients deduced from measurements of binary collision rates are consistent with those deduced from molecular decoupling experiments, and follow a physically plausible scaling law for the spin-axis coupling coefficients.

  11. Experimental investigation of atomic collisions in time scales varying from nanosecond to microseconds

    Energy Technology Data Exchange (ETDEWEB)

    Glover, R D; Laban, D E; Matherson, K J; Wallace, W; Sang, R T, E-mail: [Centre for Quantum Dynamics, Griffith University, Nathan, Queensland 4111 (Australia)


    We present the results from two experiments investigating collisions that differ in time scale by three orders of magnitude. The first experiment enables the determination of absolute total collision cross sections using a technique that measures a change in the loss rate of trapped atoms from a magneto optical trap (MOT). We also investigate light assisted collision processes between cold metastable neon atoms in the {sup 3}P{sub 2} metastable state within the MOT. A catalysis laser is scanned in frequency across the {sup 3}P{sub 2} - {sup 3}D{sub 3} cooling transition and the ionization rate was observed. Ionization spectra are obtained which demonstrate a dependence on the magnetic sublevels of the transition that the catalysis laser is exciting.

  12. Cluster excitation and ionization in high velocity collisions:the atomic approach


    Mezdari, Férid; Wohrer-Béroff, Karine; Chabot, Marin


    NIM; The independent atom and electron model [1] is introduced in a quantum context and associated approximations tentatively estimated. Confrontation of the model to measured ionization and excitation cross sections of small ionic carbon clusters Cn+ in collisions with helium at an impact velocity of 2.6 a.u is presented.

  13. Collision between two ortho-positronium (Ps) atoms: A four-body ...

    Indian Academy of Sciences (India)

    The elastic collision between two ortho-positronium (e.g. S = 1 ) atoms is studied using an {\\it ab-initio} static exchange model (SEM) in the centre of mass (CM) frame by considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly.

  14. Line broadening in a photoionization spectrometer due to elastic electron--atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Butikov, E.I.; Mishchenko, E.D.; Tumarkin, Y.N.


    Line broadening in a photoionization spectrometer due to elastic collisions between photoelectrons and atoms of the working gas is considered. Expressions are obtained for the stationary electron energy distribution function and for the initial part of the current-voltage characteristic in the case of monochromatic ionizing radiation for intensities of the retarding field close to the initial photoelectron energy.


    NARCIS (Netherlands)



    An attempt is made to identify the most important mechanisms responsible for the rearrangement of electrons during collisions between multiply charged ions and atoms at keV energies. It is discussed to which extent the influence of binding energy, angular momentum of heavy particles and electrons,

  16. Light assisted collisions with cold metastable neon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Glover, R D; Laban, D E; Sang, R T, E-mail: [Centre for Quantum Dynamics, Griffith University, Brisbane, QLD 4111 (Australia)


    Control of the combined Penning and associative ionization cross section is demonstrated with cold ({approx}1mK) metastable Ne (3s{sup 3}P{sub 2}) atoms in a magneto-optical trap (MOT). By illuminating the trapped atoms with a near resonant probe laser beam, increased ionization rates are observed at several detunings. The probe beam is swept through a region from +500MHz to -500MHz. The increase in the Penning and associative ionization cross section is observed in both the red and blue regions of the spectrum.

  17. Atomic Spectroscopy and Collisions Using Slow Antiprotons \\\\ ASACUSA Collaboration

    CERN Multimedia

    Matsuda, Y; Lodi-rizzini, E; Kuroda, N; Schettino, G; Hori, M; Pirkl, W; Mascagna, V; Malbrunot, C L S; Yamazaki, Y; Eades, J; Simon, M; Massiczek, O; Sauerzopf, C; Nagata, Y; Knudsen, H; Uggerhoj, U I; Mc cullough, R W; Toekesi, K M; Venturelli, L; Widmann, E; Zmeskal, J; Kanai, Y; Hayano, R; Kristiansen, H; Todoroki, K; Bartel, M A; Moller, S P; Charlton, M; Leali, M; Diermaier, M; Kolbinger, B


    ASACUSA (\\underline{A}tomic \\underline{S}pectroscopy \\underline{A}nd \\underline{C}ollisions \\underline{U}sing \\underline{S}low \\underline{A}ntiprotons) is a collaboration between a number of Japanese and European research institutions, with the goal of studying bound and continuum states of antiprotons with simple atoms.\\\\ Three phases of experimentation are planned for ASACUSA. In the first phase, we use the direct $\\overline{p}$ beam from AD at 5.3 MeV and concentrate on the laser and microwave spectroscopy of the metastable antiprotonic helium atom, $\\overline{p}$He$^+$, consisting of an electron and antiproton bound by the Coulomb force to the helium nucleus. Samples of these are readily created by bringing AD antiproton beam bunches to rest in helium gas. With the help of techniques developed at LEAR for resonating high precision laser beams with antiproton transitions in these atoms, ASACUSA achieved several of these first-phase objectives during a few short months of AD operation in 2000. Six atomic tr...

  18. Photon emission spectroscopy of ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, B.


    Emission cross sections for the 1snp{sup 1}P{sub 1}-levels have been measured by photon emission spectroscopy for the collision systems He{sup +} + He at 10 keV and He{sup 2+} + He at 10-35 keV. Photon spectra of Krypton (Kr VIII) and Xenon (Xe V - IX) have also been obtained using 10q keV beams of Kr{sup q+} (q=7-9) and Xe{sup q+} (q=5-9) colliding with Helium and Argon. The Lifetimes of 3p{sup 2}P-levels in Na-like Nb are reported together with lifetime for the 3s3p{sup 3}P{sub 1}-level in Mg-like Ni, Kr, Y, Zr and Nb where this level has an intercombination transition to the ground state. 45 refs, 20 figs.

  19. Laser Assisted Free-Free Transition in Electron - Atom Collision (United States)

    Sinha, C.; Bhatia, A. K.


    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  20. Transformation theory and translation factors in inelastic atomic collisions (United States)

    Schmid, G. B.


    It is shown through the use of transformation theory that unique semiclassical atomic scattering states which obey the asymptotic conditions of formal scattering theory can be derived by transforming 'nontraveling' atomic states, ie., states whose coordinate variables are referred to a stationary origin, to frames at rest with respect to the incoming or outgoing particles. An overview of the problem of properly defining such scattering states is presented. The operator which carries out the necessary transformation from inertial to noninertial frames is derived and its properties are discussed. The relation of this transformation operator to the 'translation factor' discussed in the literature is presented. The application of this operator to transform the time-dependent Schroedinger equation from an inertial to a noninertial frame is presented and shown to introduce new terms in the resulting equation. The implications of these new terms to scattering problems are discussed.

  1. PACIAE 2.0: An updated parton and hadron cascade model (program) for the relativistic nuclear collisions (United States)

    Sa, Ben-Hao; Zhou, Dai-Mei; Yan, Yu-Liang; Li, Xiao-Mei; Feng, Sheng-Qin; Dong, Bao-Guo; Cai, Xu


    We have updated the parton and hadron cascade model PACIAE for the relativistic nuclear collisions, from based on JETSET 6.4 and PYTHIA 5.7 to based on PYTHIA 6.4, and renamed as PACIAE 2.0. The main physics concerning the stages of the parton initiation, parton rescattering, hadronization, and hadron rescattering were discussed. The structures of the programs were briefly explained. In addition, some calculated examples were compared with the experimental data. It turns out that this model (program) works well. Program summaryProgram title: PACIAE version 2.0 Catalogue identifier: AEKI_v1_0 Program summary URL: Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, No. of lines in distributed program, including test data, etc.: 297 523 No. of bytes in distributed program, including test data, etc.: 2 051 274 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: DELL Studio XPS and others with a FORTRAN 77 or GFORTRAN compiler Operating system: Unix/Linux RAM: 1 G words Word size: 64 bits Classification: 11.2 Nature of problem: The Monte Carlo simulation of hadron transport (cascade) model is successful in studying the observables at final state in the relativistic nuclear collisions. However the high p suppression, the jet quenching (energy loss), and the eccentricity scaling of v etc., observed in high energy nuclear collisions, indicates the important effect of the initial partonic state on the final hadronic state. Therefore better parton and hadron transport (cascade) models for the relativistic nuclear collisions are highly required. Solution method: The parton and hadron cascade model PACIAE is originally based on the JETSET 7.4 and PYTHIA 5.7. The PYTHIA model has been updated to PYTHIA 6.4 with the additions of new physics, the improvements in existing physics, and the

  2. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology (United States)

    Bartschat, Klaus; Kushner, Mark J.


    Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology-based society.

  3. Nonradiative charge transfer in collisions of protons with rubidium atoms (United States)

    Yan, Ling-Ling; Qu, Yi-Zhi; Liu, Chun-Hua; Zhang, Yu; Wang, Jian-Guo; Buenker, Robert J.


    The nonradiative charge-transfer cross sections for protons colliding with Rb(5s) atoms are calculated by using the quantum-mechanical molecularorbital close-coupling method in an energy range of 10-3 keV-10 keV. The total and state-selective charge-transfer cross sections are in good agreement with the experimental data in the relatively low energy region. The importance of rotational coupling for chargetransfer process is stressed. Compared with the radiative charge-transfer process, nonradiative charge transfer is a dominant mechanism at energies above 15 eV. The resonance structures of state-selective charge-transfer cross sections arising from the competition among channels are analysed in detail. The radiative and nonradiative charge-transfer rate coefficients from low to high temperature are presented.

  4. Penning collisions of laser-cooled metastable helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Dos Santos, F.; Leonard, J.; Sinatra, A.; Wang, Junmin; Leduc, M. [Dept. de Physique, Ecole Normale Superieure, Paris (France); Perales, F. [Lab. de Physique des Lasers, Univ. Paris-Nord, Villetaneuse (France); Saverio Pavone, F. [Dept. of Physics, Univ. of Perugia, Via Pascoli, Perugia (Italy); Lens and INFM, Firenze (Italy); Rasel, E. [Univ. Hannover (Germany); Unnikrishnan, C.S. [TIFR, Mumbai (India)


    We present experimental results on the two-body loss rates in a magneto-optical trap of metastable helium atoms. Absolute rates are measured in a systematic way for several laser detunings ranging from -5 to -30 MHz and at different intensities, by monitoring the decay of the trap fluorescence. The dependence of the two-body loss rate coefficient {beta} on the excited state (2{sup 3}P{sub 2}) and metastable state (2{sup 3}S{sub 1}) populations is also investigated. From these results we infer a rather uniform rate constant K{sub sp} = (1{+-}0.4) x 10{sup -7} cm{sup 3}/s. (orig.)

  5. Applications of beam-foil spectroscopy to atomic collisions in solids (United States)

    Sellin, I. A.


    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  6. Quantum-mechanical theory including angular momenta analysis of atom-atom collisions in a laser field (United States)

    Devries, P. L.; George, T. F.


    The problem of two atoms colliding in the presence of an intense radiation field, such as that of a laser, is investigated. The radiation field, which couples states of different electronic symmetry, is described by the number state representation while the electronic degrees of freedom (plus spin-orbit interaction) are discussed in terms of a diabatic representation. The total angular momentum of the field-free system and the angular momentum transferred by absorption (or emission) of a photon are explicitly considered in the derivation of the coupled scattering equations. A model calculation is discussed for the Xe + F collision system.

  7. Corresponding aspects of strong-field multiquantum processes and ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, K.; Gibson, G.; Jara, H.; Luk, T.S.; McIntyre, I.A.; McPherson, A.; Rosman, R.; Solem, J.C.; Rhodes, C.K. (Lab. for Atomic, Molecular, and Radiation Physics, Dept. of Physics, Univ. of Illinois at Chicago, P.O. Box 4348, Chicago, IL (US))


    Corresponding aspects of multiphoton processes and ion-atom collisions are explored. With a simple model, a set of relationships is derived which relate the radiative power, frequency, and pulse width governing multiphoton coupling to the corresponding variables of ion charge, collisional velocity, and impact parameter involved in collisional reactions. Comparisons of spectral data in the extreme ultraviolet region for Ne, Ar, Kr, and Xe produced by collisional excitation and subpicosecond ultraviolet laser irradiation indicate approximate conformance with the expectations stemming from this analysis. These results suggest that, for ultraviolet radiation, this approach may be useful in understanding the gross features of the strong-field multiquantum interaction over the range of intensity spanning from --10/sup 16/ W/cm/sup 2/ to --10/sup 21/ W/cm/sup 2/. Collisional data on transfer ionization occurring in ion-atom collisions are also used to estimate the conditions under which multiphoton processes should be appreciably influenced by multielectron motions.

  8. Atomic excitation and molecular dissociation by low energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Weyland, Marvin


    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.

  9. Van der Waals universality in homonuclear atom-dimer elastic collisions

    CERN Document Server

    Giannakeas, P


    The universal aspects of atom-dimer elastic collisions are investigated within the framework of Faddeev equations. The two-body interactions between the neutral atoms are approximated by the separable potential approach. Our analysis considers a pure van der Waals potential tail as well as soft-core van der Waals interactions permitting us in this manner to address the universally general features of atom-dimer resonant spectra. In particular, we show that the atom-dimer resonances are solely associated with the {\\it excited} Efimov states. Furthermore, the positions of the corresponding resonances for a soft-core potentials with more than 5 bound states are in good agreement with the corresponding results from an infinitely deep pure van der Waals tail potential.

  10. Bibliography of atomic and molecular excitation in heavy particle collisions, 1950--1975

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, S.W.; Thomas, E.W.; Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Kirkpatrick, M.I.; McDaniel, E.W.; Phaneuf, R.A. (eds.)


    This annotated bibliography lists published work on atomic and molecular excitation in heavy particle collisions for the period 1950 to 1975. Sources include scientific journals, abstract compilations, conference proceedings, books, and reports. The bibliography is arranged alphabetically by author. Each entry indicates whether the work was experimental or theoretical, what energy range was covered, and what reactants were investigated. Following the bibliographical listing are indexes of reactions and authors.

  11. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla


    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  12. Quantum chaos in ultracold collisions of gas-phase erbium atoms. (United States)

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana


    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  13. Collisions of low-energy antiprotons and protons with atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Luehr, Armin


    Antiproton (anti p) collisions have evolved to a powerful tool for the testing of dynamic electron correlations in atoms and molecules. While advances in the understanding of anti p collisions with the simplest one- and two-electron atoms, H and He, have been achieved experiment and theory did not agree for low-energy anti p+He collisions (<40 keV), stimulating a vivid theoretical activity. On the other hand, only very few theoretical anti p studies can be found considering molecular as well as other atomic targets, in contrast to proton (p) collisions. This is in particular true for anti p impacts on H{sub 2} despite its fundamental role in representing the simplest two-electron molecule. The obtained results may be useful for the anti p experiments at CERN (e.g., antihydrogen production) and in particular for the facility design of low-energy anti p storage rings (e.g., at FLAIR) where a precise knowledge of the anti p interaction with the dominant residual-gas molecule H{sub 2} is needed. In this work a nonperturbative, time-dependent numerical approach is developed which describes ionization and excitation of atoms or molecules by either anti p or p impact based on the impact-parameter method. A spectral close-coupling method is employed for solving the time-dependent Schroedinger equation in which the scattering wave function is expanded in (effective) one- or two-electron eigenstates of the target. This includes for the first time a full two-electron, two-center description of the H{sub 2} molecule in anti p collisions. The radial part of the one-electron eigenstates is expanded in B splines while the two-electron basis is obtained with a configurationinteraction approach. Calculations are performed for anti p collisions with H, H{sub 2}{sup +}, and H{sub 2} as well as with He and alkali-metal atoms Li, Na, K, and Rb. Additionally, data are obtained for p collisions with H{sub 2}, Li, Na, and K. The developed method is tested and validated by detailed

  14. A model for energy transfer in collisions of atoms with highly excited molecules. (United States)

    Houston, Paul L; Conte, Riccardo; Bowman, Joel M


    A model for energy transfer in the collision between an atom and a highly excited target molecule has been developed on the basis of classical mechanics and turning point analysis. The predictions of the model have been tested against the results of trajectory calculations for collisions of five different target molecules with argon or helium under a variety of temperatures, collision energies, and initial rotational levels. The model predicts selected moments of the joint probability distribution, P(Jf,ΔE) with an R(2) ≈ 0.90. The calculation is efficient, in most cases taking less than one CPU-hour. The model provides several insights into the energy transfer process. The joint probability distribution is strongly dependent on rotational energy transfer and conservation laws and less dependent on vibrational energy transfer. There are two mechanisms for rotational excitation, one due to motion normal to the intermolecular potential and one due to motion tangential to it and perpendicular to the line of centers. Energy transfer is found to depend strongly on the intermolecular potential and only weakly on the intramolecular potential. Highly efficient collisions are a natural consequence of the energy transfer and arise due to collisions at "sweet spots" in the space of impact parameter and molecular orientation.

  15. Will Allis Prize for the Study of Ionized Gases Lecture: Electron and Photon Collisions with Atoms and Molecules (United States)

    Burke, Philip G.


    After a brief historical introduction this talk will review the broad range of collision processes involving electron and photon collisions with atoms and molecules that are now being considered. Their application in the analysis of astronomical spectra, atmospheric observations and laboratory plasmas will be considered. The talk will review the R-matrix computational method which has been widely used by international collaborations and by other scientists in the field to obtain accurate scattering amplitudes and cross sections of importance in these applications. Results of some recent calculations of electron and photon collisions with atoms and molecules will be presented. In conclusion some challenges for future research will be briefly discussed.

  16. Electron capture by fluorinated fullerene anions in collisions with Xe atoms

    DEFF Research Database (Denmark)

    Boltalina, OV; Hvelplund, P; Jørgensen, Thomas J. D.


    Electron capture by 50-keV fluorinated fullerene anions (C60Fn- 18collisions with Xe atoms, The relative importance of nondissociative vs dissociative electron capture was found to depend strongly on the ion pro...... production method and on the number of attached F atoms. The absolute size of the cross section similar to 10(-16) cm(2) has been modeled within the over-the-barrier model......Electron capture by 50-keV fluorinated fullerene anions (C60Fn- 18atoms, The relative importance of nondissociative vs dissociative electron capture was found to depend strongly on the ion...

  17. Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions (United States)

    Shortt, Brian; Chutjian, Ara; Orient, Otto


    A method of making more-complex molecules from simpler ones has emerged as a by-product of an experimental study in outer-space atom/surface collision physics. The subject of the study was the formation of CO2 molecules as a result of impingement of O atoms at controlled kinetic energies upon cold surfaces onto which CO molecules had been adsorbed. In this study, the O/CO system served as a laboratory model, not only for the formation of CO2 but also for the formation of other compounds through impingement of rapidly moving atoms upon molecules adsorbed on such cold interstellar surfaces as those of dust grains or comets. By contributing to the formation of increasingly complex molecules, including organic ones, this study and related other studies may eventually contribute to understanding of the origins of life.

  18. Cooling, collisions and coherence of cold cesium atoms in a trap (United States)

    Chin, Cheng

    Dynamics and interactions of atoms at low temperatures are quantum-mechanical in nature. Quantized motion in an optical trap can be resolved and manipulated by Raman transitions. A new cooling scheme, Raman-sideband cooling, is developed by pumping the atoms to the lowest vibrational level which dramatically reduces the temperature. After adiabatically releasing the atoms into the free space, a phase space density of 1/25 is observed, a factor of 104 improvement over the conventional optical molasses. After cooling, up to 3 × 108 cesium atoms are transferred into a far-detuned dipole trap with a density as high as 1013cm -3. Multiple Feshbach resonances are discovered when the Cs 2 molecular bound states are tuned into degeneracy with the scattering state. The S-wave scattering length, which parameterizes the low energy scattering processes, varies dispersively about the Feshbach resonances and results in the observed collision anomalies. Based on the Feshbach spectroscopy, the cesium long range interactions are determined quantitatively for the first time: C6 = 6859(25)a.u., C8 = 8.6(8) × 10 5a.u., as = 280.37(12)a0, at = 2437(25)a 0 and Sc = 2.6(5). When cold atoms are individually trapped and isolated in 3D optical lattices, they are immune from the collision events and a long coherence time is expected. Precision measurements on the electron's electric dipole moment and a scalable quantum computation scheme are proposed based on cold atoms in an optical lattice.

  19. Rotationally inelastic collisions of excited NaK and NaCs molecules with noble gas and alkali atom perturbers (United States)

    Jones, J.; Richter, K.; Price, T. J.; Ross, A. J.; Crozet, P.; Faust, C.; Malenda, R. F.; Carlus, S.; Hickman, A. P.; Huennekens, J.


    We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A)1Σ+ electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A)1Σ+ state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A)1Σ+ molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A)1Σ+ with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A)1Σ+ with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very

  20. Coordinate space translation technique for simulation of electronic process in the ion-atom collision. (United States)

    Wang, Feng; Hong, Xuhai; Wang, Jian; Kim, Kwang S


    Recently we developed a theoretical model of ion-atom collisions, which was made on the basis of a time-dependent density functional theory description of the electron dynamics and a classical treatment of the heavy particle motion. Taking advantage of the real-space grid method, we introduce a "coordinate space translation" technique to allow one to focus on a certain space of interest such as the region around the projectile or the target. Benchmark calculations are given for collisions between proton and oxygen over a wide range of impact energy. To extract the probability of charge transfer, the formulation of Lüdde and Dreizler [J. Phys. B 16, 3973 (1983)] has been generalized to ensemble-averaging application in the particular case of O((3)P). Charge transfer total cross sections are calculated, showing fairly good agreements between experimental data and present theoretical results.

  1. Collisions at thermal energy between metastable hydrogen atoms and hydrogen molecules: Total and differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Vassilev, G.; Perales, F.; Miniatura, C.; Robert, J.; Reinhardt, J.; Vecchiocattivi, F.; Baudon, J. (Paris-13 Univ., 93 - Villetaneuse (France). Lab. de Physique des Lasers)


    A metastable hydrogen (deuterium) atom source in which groundstate atoms produced by a RF discharge dissociator are bombarded by electrons, provides a relatively large amount of slow metastable atoms (velocity 3-5 km/s). Total integral cross sections for H{sup *}(D{sup *})(2s)+H{sub 2}(X{sup 1}{Sigma}{sub g}{sup +}, {nu}=0) collisions have been measured in a wide range of relative velocity (2,5-30 km/s), by using the attenuation method. A significant improvement of accuracy is obtained, with respect to previous measurements, at low relative velocities. Total cross sections for H{sup *} and D{sup *}, as functions of the relative velocity, are different, especially in the low velocity range. H{sup *}+H{sub 2} total differential cross sections have also been measured, with an angular spread of 3.6deg, for two different collision energy distributions, centered respectively at 100 meV and 390 meV. A first attempt of theoretical analysis of the cross sections, by means of an optical potential, is presented. (orig.).

  2. Quenching of the resonance 5s(3P1) state of krypton atoms in collisions with krypton and helium atoms (United States)

    Zayarnyi, D. A.; L'dov, A. Yu; Kholin, I. V.


    The processes of collision quenching of the resonance 5s[3/2]1o(3P1) state of the krypton atom are studied by the absorption probe method in electron-beam-excited high-pressure He - Kr mixtures with a low content of krypton. The rate constants of plasmochemical reactions Kr* + Kr + He → Kr*2 + He [(4.21 ± 0.42) × 10-33 cm6 s-1], Kr* + 2He → HeKr* + He [(4.5 ± 1.2) × 10-36 cm6 s-1] and Kr* + He → products + He [(2.21 ± 0.22) × 10-15 cm3 s-1] are measured for the first time. The rate constants of similar reactions are refined for krypton in the metastable 5s[3/2]2o (3P2) state.

  3. Scattering of NH3 and ND3 with rare gas atoms at low collision energy. (United States)

    Loreau, J; van der Avoird, A


    We present a theoretical study of elastic and rotationally inelastic collisions of NH3 and ND3 with rare gas atoms (He, Ne, Ar, Kr, Xe) at low energy. Quantum close-coupling calculations have been performed for energies between 0.001 and 300 cm(-1). We focus on collisions in which NH3 is initially in the upper state of the inversion doublet with j = 1, k = 1, which is the most relevant in an experimental context as it can be trapped electrostatically and Stark-decelerated. We discuss the presence of resonances in the elastic and inelastic cross sections, as well as the trends in the inelastic cross sections along the rare gas series and the differences between NH3 and ND3 as a colliding partner. We also demonstrate the importance of explicitly taking into account the umbrella (inversion) motion of NH3 in order to obtain accurate scattering cross sections at low collision energy. Finally, we investigate the possibility of sympathetic cooling of ammonia using cold or ultracold rare gas atoms. We show that some systems exhibit a large ratio of elastic to inelastic cross sections in the cold regime, which is promising for sympathetic cooling experiments. The close-coupling calculations are based on previously reported ab initio potential energy surfaces for NH3-He and NH3-Ar, as well as on new, four-dimensional, potential energy surfaces for the interaction of ammonia with Ne, Kr, and Xe, which were computed using the coupled-cluster method and large basis sets. We compare the properties of the potential energy surfaces corresponding to the interaction of ammonia with the various rare gas atoms.

  4. Distorted wave theories for dressed-ion-atom collisions with GSZ projectile potentials

    Energy Technology Data Exchange (ETDEWEB)

    Monti, J M; Rivarola, R D [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario (Argentina); Fainstein, P D, E-mail: [Comision Nacional de EnergIa Atomica, Centro Atomico Bariloche, 8400 San Carlos de Bariloche (Argentina)


    The continuum distorted wave and the continuum distorted wave-eikonal initial state approximations for electron emission in ion-atom collisions are generalized to the case of dressed projectiles. The interaction between the dressed projectile and the active electron is represented by the analytic Green-Sellin-Zachor (GSZ) potential. Doubly differential cross sections as a function of the emitted electron energy and angle are computed. The region of the binary encounter peak is analysed in detail. Interference structures appear in agreement with the experimental data and are interpreted as arising from the coherent interference between short- and long-range scattering amplitudes.

  5. Fine-structure transitions of interstellar atomic sulfur and silicon induced by collisions with helium. (United States)

    Lique, F; Kłos, J; Le Picard, S D


    Atomic sulfur and silicon are important constituents of the interstellar matter and are both used as tracers of the physical conditions in interstellar shocks and outflows. We present an investigation of the spin-orbit (de-)excitation of S((3)P) and Si((3)P) atoms induced by collisions with helium with the aim to improve the determination of atomic sulfur and silicon abundances in the interstellar medium from S and Si emission spectra. Quantum-mechanical calculations have been performed in order to determine rate coefficients for the fine-structure transitions in the 5-1000 K temperature range. The scattering calculations are based on new highly correlated ab initio potentials. The theoretical results show that the (de-)excitation of Si is much faster than that of S. The rate coefficients deduced from this study are in good agreement with previous experimental and theoretical findings despite some deviations at low temperatures. From the computation of critical densities defined as the ratios between Einstein coefficients and the sum of the relevant collisional de-excitation rate coefficients, we show that local thermodynamic equilibrium conditions are not fulfilled for analyzing S and Si emission spectra observed in the interstellar medium. Hence, the present rate coefficients will be extremely useful for the accurate determination of interstellar atomic sulfur and silicon abundances.

  6. Forward electron production in heavy ion-atom and ion-solid collisions

    Energy Technology Data Exchange (ETDEWEB)

    Sellin, I.A.


    A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v/sub p/ in both speed and direction. In ion-atom collisions, the electrons originate from capture to low-lying, projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and from loss to those low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities, and exhibit full widths half maxima roughly proportional to v/sub p/ (neglecting target-shell effects, which are sometimes strong). A close examination of recent ELC data shows that ELC cusps are instead nearly symmetric, with widths nearly independent on v/sub p/ in the velocity range 6 to 18 a.u., a result only recently predicted by theory. Convoy electron cusps produced in heavy ion-solid collisions at MeV/u energies exhibit approximately velocity-independent widths very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and of target material, it is found that the yields in polycrystalline targets exhibit a strong dependence on projectile Z and velocity. While attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, our measured dependences of cusp shape and yield on projectile charge state and energy are inconsistent with the predictions of available theories. 10 references, 8 figures, 1 table.

  7. Electron-atom collision studies using optically state selected beams. Progress report, May 15, 1987--May 14, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Celotta, R.J.; Kelley, M.H.


    This report discusses progress made during the current contract period on the authors research program to study collisions between spin-polarized electrons and optically prepared atoms. The objective of this work is to stimulate a deeper theoretical understanding of the electron-atom interaction by providing more complete experimental measurements on colliding systems. By preparing the internal states of the collision partners before scattering, they are able to extract substantially more information about the scattering process than is available from more conventional measurements of differential cross sections. The authors are principally interested in observing the role played by spin in low energy electron-atom collisions. The additional information provided by these spin-dependent measurements can greatly enhance understanding of both exchange and the spin-orbit interaction in the scattering process. They have made substantial progress in the past three years in their measurements both of elastic and superelastic scattering of spin-polarized electrons from optically pumped sodium.

  8. Adiabatic Variational Theory for Cold Atom-Molecule Collisions: Application to a Metastable Helium Atom Colliding with ortho- and para-Hydrogen Molecules. (United States)

    Pawlak, Mariusz; Shagam, Yuval; Klein, Ayelet; Narevicius, Edvardas; Moiseyev, Nimrod


    We recently developed an adiabatic theory for cold molecular collision experiments. In our previous application of this theory ( Pawlak, M.; et al. J. Chem. Phys. 2015 , 143 , 074114 ), we assumed that during the experiment the collision of an atom with a diatom takes place when the diatom is in the ground rotational state and is located in a plane. In this paper, we present how the variational approach of the adiabatic theory for low-temperature collision experiments can be used for the study a 5D collision between the atom and the diatomic molecule with no limitations on its rotational quantum states and no plane restrictions. Moreover, we show here the dramatic differences in the measured reaction rates of He(23S1) + ortho/para-H2 → He(1s2) + ortho/para-H2+ + e- resulting from the anisotropic long-range interactions in the reaction. In collisions of metastable helium with molecular hydrogen in the ground rotational state, the isotropic potential term dominates the dynamics. When the collision is with molecular hydrogen in the first excited rotational state, the nonisotropic interactions play an important role in the dynamics. The agreement of our results with the latest experimental findings ( Klein , A. ; et al. Nat. Phys. 2017 , 13 , 35 - 38 ) is very good.

  9. Atomic-scale simulation of dust grain collisions: Surface chemistry and dissipation beyond existing theory (United States)

    Quadery, Abrar H.; Doan, Baochi D.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K.


    The early stages of planet formation involve steps where submicron-sized dust particles collide to form aggregates. However, the mechanism through which millimeter-sized particles aggregate to kilometer-sized planetesimals is still not understood. Dust grain collision experiments carried out in the environment of the Earth lead to the prediction of a 'bouncing barrier' at millimeter-sizes. Theoretical models, e.g., Johnson-Kendall-Roberts and Derjaguin-Muller-Toporov theories, lack two key features, namely the chemistry of dust grain surfaces, and a mechanism for atomic-scale dissipation of energy. Moreover, interaction strengths in these models are parameterized based on experiments done in the Earth's environment. To address these issues, we performed atomic-scale simulations of collisions between nonhydroxylated and hydroxylated amorphous silica nanoparticles. We used the ReaxFF approach which enables modeling chemical reactions using an empirical potential. We found that nonhydroxylated nanograins tend to adhere with much higher probability than suggested by existing theories. By contrast, hydroxylated nanograins exhibit a strong tendency to bounce. Also, the interaction between dust grains has the characteristics of a strong chemical force instead of weak van der Waals forces. This suggests that the formation of strong chemical bonds and dissipation via internal atomic vibration may result in aggregation beyond what is expected based on our current understanding. Our results also indicate that experiments should more carefully consider surface conditions to mimic the space environment. We also report results of simulations with molten silica nanoparticles. It is found that molten particles are more likely to adhere due to viscous dissipation, which supports theories that suggest aggregation to kilometer scales might require grains to be in a molten state.

  10. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process. (United States)

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A


    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  11. Cascade Problems in Some Atomic Lifetime Measurements at a Heavy-Ion Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E; Hoffmann, J; Krantz, C; Wolf, A; Ishikawa, Y; Santana, J


    Lifetimes of 3s{sup 2}3p{sup k} ground configuration levels of Al-, Si-, P-, and S-like ions of Be, Co, and Ni have been measured at a heavy-ion storage ring. Some of the observed decay curves show strong evidence of cascade repopulation from specific 3d levels that feature lifetimes in the same multi-millisecond range as the levels of the ground configuration.

  12. 2nd International Symposium "Atomic Cluster Collisions : Structure and Dynamics from the Nuclear to the Biological Scale"

    CERN Document Server

    Solov'yov, Andrey; ISACC 2007; Latest advances in atomic cluster collisions


    This book presents a 'snapshot' of the most recent and significant advances in the field of cluster physics. It is a comprehensive review based on contributions by the participants of the 2nd International Symposium on Atomic Cluster Collisions (ISACC 2007) held in July 19-23, 2007 at GSI, Darmstadt, Germany. The purpose of the Symposium is to promote the growth and exchange of scientific information on the structure and properties of nuclear, atomic, molecular, biological and complex cluster systems studied by means of photonic, electronic, heavy particle and atomic collisions. Particular attention is devoted to dynamic phenomena, many-body effects taking place in cluster systems of a different nature - these include problems of fusion and fission, fragmentation, collective electron excitations, phase transitions, etc.Both the experimental and theoretical aspects of cluster physics, uniquely placed between nuclear physics on the one hand and atomic, molecular and solid state physics on the other, are discuss...

  13. Hard collisions of few keV diatomic molecular ions with atomic gas targets: Collision induced dissociation and target ionization

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nora G; Sayler, A M; McKenna, J; Gaire, B; Zohrabi, M; Berry, Ben; Carnes, K D; Ben-Itzhak, I [J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS 66506 (United States); Wolff, Wania, E-mail: ibi@phys.ksu.ed [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21945-970, RJ (Brazil)


    Target ionization in close encounters between few keV simple diatomic molecular ions and noble gas targets have been studied experimentally. Some of the projectile molecular ions fragment as a result of these violent collisions while others remain bound despite undergoing a 'hard' collision. The measured momenta shed light on the mechanisms responsible for this behavior.

  14. Neutron spallation source and the Dubna Cascade Code

    Indian Academy of Sciences (India)

    Neutron multiplicity per incident proton, /, in collision of high energy proton beam with voluminous Pb and W targets has been estimated from the Dubna Cascade Code and compared with the available experimental data for the purpose of benchmarking of the code. Contributions of various atomic and nuclear processes ...

  15. Atoms, molecules and optical physics 2. Molecules and photons - Spectroscopy and collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V. (Germany)


    This is the second volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 2 introduces lasers and quantum optics, while the main focus is on the structure of molecules and their spectroscopy, as well as on collision physics as the continuum counterpart to bound molecular states. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  16. Rovibrational excitation of HD in collisions with atomic and molecular hydrogen (United States)

    Flower, D. R.; Roueff, E.


    We have computed cross-sections and rate coefficients for rovibrational transitions in HD, induced by collisions with atomic and molecular hydrogen. We employed fully quantum-mechanical methods and the potential of Boothroyd et al. for H-HD, and that of Schwenke for H2-HD. The rate coefficients for vibrational relaxation v=1->0 of HD are compared with the corresponding values for H2. The influence of vibrationally excited channels on the rate coefficients for rotational transitions within the v=0 vibrational ground state of HD is shown to be small at T=500K, where T is the kinetic temperature. The rate coefficients, for 100

  17. Recent theoretical studies of slow collisions between plasma impurity ions and H or He atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, W. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Theoretische Physik; Tawara, H.


    We review recent progress in theoretical studies of slow collisions between light plasma impurity ions and atomic hydrogen or helium. We start with a brief overview of theory work that has been done by various groups in the past. We then proceed to discuss work that is published in the last two years. For the systems of Be{sup 2+}-He, Be{sup 4+}-He and C{sup 5+}-He we present yet unpublished work of our own. All of this work broadens our knowledge about systems that are of interest for the fusion community. Some of the new information is found to be at variance with what is known from other sources and hence needs further analysis. (author)

  18. Replacement collision sequence studies in iron

    CERN Document Server

    Hou, M; Becquart, C S


    The properties of replacement collision sequences (RCS) in iron and their contribution to radiation damage are studied as they are generated in atomic collision cascades with the binary collision approximation Marlowe. Length distributions of RCS in collision cascades generated by primaries with a couple of ten keV kinetic energies are predicted short. Whatever the interatomic potential employed, at least 90% of the generated RCS have a length of no more than three successive collisions, whatever the directions. This property was found for all the known phases of iron at standard pressure (bcc and fcc). The RCS length distributions are not significantly influenced by the temperature nor by the accurate form of the model describing the energy loss in RCS. Close to 50% of the stable Frenkel pairs (FP) created result from RCS that are shorter than the vacancy-interstitial recombination distance estimated on the basis of molecular dynamics calculations. The other half results from longer RCS (about five successiv...

  19. Differential electron-Cu{sup 5+} elastic scattering cross sections extracted from electron emission in ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C.; Hagmann, S.; Bhalla, C.P.; Grabbe, S.R.; Cocke, C.L.; Richard, P. [J. R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506 (United States); Liao, C. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)


    We present a method of deriving energy and angle-dependent electron-ion elastic scattering cross sections from doubly differential cross sections for electron emission in ion-atom collisions. By analyzing the laboratory frame binary encounter electron production cross sections in energetic ion-atom collisions, we derive projectile frame differential cross sections for electrons elastically scattered from highly charged projectile ions in the range between 60{degree} and 180{degree}. The elastic scattering cross sections are observed to deviate strongly from the Rutherford cross sections for electron scattering from bare nuclei. They exhibit strong Ramsauer-Townsend electron diffraction in the angular distribution of elastically scattered electrons, providing evidence for the strong role of screening played in the collision. Experimental data are compared with partial-wave calculations using the Hartree-Fock model. {copyright} {ital 1999} {ital The American Physical Society}

  20. The interaction of hyperthermal argon atoms with CO-covered Ru: Scattering and collision-induced desorption

    NARCIS (Netherlands)

    Ueta, H.; Gleeson, M. A.; Kleyn, A. W.


    Hyperthermal Ar atoms were scattered under grazing incidence (theta(i) = 60 degrees) from a CO-saturated Ru(0001) surface held at 180 K. Collision-induced desorption involving the ejection of fast CO (similar to 1 eV) occurs. The angularly resolved in-plane CO desorption distribution has a peak

  1. Cross section database for collision processes of helium atom with charged particles. 1. Electron impact processes

    Energy Technology Data Exchange (ETDEWEB)

    Ralchenko, Yu.V.; Janev, R.K.; Kato, T. [National Inst. for Fusion Science, Toki, Gifu (Japan); Fursa, D.V.; Bray, I. [Flinder Univ., Adelaide (Australia); Heer, F.J. de [FOM Institute for Atomic and Molecular Physics, Amsterdam (Netherlands)


    A comprehensive and critically assessed cross section database for the inelastic collision processes of ground state and excited helium atoms colliding with electrons, protons and multiply-charged ions has been prepared at the Data and Planning Center at NIFS. The present report describes the first part of the database containing the recommended data for electron impact excitation and ionization of neutral helium. An states (atomic terms) with n {<=} 4 are treated individually while the states with n > 4 are considered degenerate. For the processes involving transitions to and from n > 4 levels, suitable cross section scaling relations are presented. For a large number of electron impact transitions, both from the ground and excited states, new convergent close coupling (CCC) calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in a graphical form. (author)

  2. Probing resonant energy transfer in collisions of ammonia with Rydberg helium atoms by microwave spectroscopy (United States)

    Zhelyazkova, V.; Hogan, S. D.


    We present the results of experiments demonstrating the spectroscopic detection of Förster resonance energy transfer from NH3 in the X1A1 ground electronic state to helium atoms in 1sns 3S1 Rydberg levels, where n = 37 and n = 40. For these values of n, the 1sns 3S1 → 1snp 3PJ transitions in helium lie close to resonance with the ground-state inversion transitions in NH3 and can be tuned through resonance using electric fields of less than 10 V/cm. In the experiments, energy transfer was detected by direct state-selective electric field ionization of the 3S1 and 3PJ Rydberg levels and by monitoring the population of the 3DJ levels following pulsed microwave transfer from the 3PJ levels. Detection by microwave spectroscopic methods represents a highly state selective, low-background approach to probing the collisional energy transfer process and the environment in which the atom-molecule interactions occur. The experimentally observed electric-field dependence of the resonant energy transfer process, probed both by direct electric field ionization and by microwave transfer, agrees well with the results of calculations performed using a simple theoretical model of the energy transfer process. For measurements performed in zero electric field with atoms prepared in the 1s40s 3S1 level, the transition from a regime in which a single energy transfer channel can be isolated for detection to one in which multiple collision channels begin to play a role has been identified as the NH3 density was increased.

  3. Cascade morphology transition in bcc metals. (United States)

    Setyawan, Wahyu; Selby, Aaron P; Juslin, Niklas; Stoller, Roger E; Wirth, Brian D; Kurtz, Richard J


    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N(F) ~ E(MD)(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, μ, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of μ as a function of displacement threshold energy, E(d), is presented for bcc metals.

  4. Cascade morphology transition in bcc metals


    Setyawan, Wahyu; Selby, Aaron P.; Juslin, Niklas; Stoller, Roger E; Wirth, Brian D.; Kurtz, Richard J.


    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, $b$, in the defect production curve as a function of cascade energy ($N_F \\sim E_{MD}^b$). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, $\\mu$, between the high- and the l...

  5. Cold collisions of polyatomic molecular radicals with S-state atoms in a magnetic field: an ab initio study of He + CH2(X) collisions. (United States)

    Tscherbul, T V; Grinev, T A; Yu, H-G; Dalgarno, A; Kłos, Jacek; Ma, Lifang; Alexander, Millard H


    We develop a rigorous quantum mechanical theory for collisions of polyatomic molecular radicals with S-state atoms in the presence of an external magnetic field. The theory is based on a fully uncoupled space-fixed basis set representation of the multichannel scattering wave function. Explicit expressions are presented for the matrix elements of the scattering Hamiltonian for spin-1/2 and spin-1 polyatomic molecular radicals interacting with structureless targets. The theory is applied to calculate the cross sections and thermal rate constants for spin relaxation in low-temperature collisions of the prototypical organic molecule methylene [CH(2)(X(3)B(1))] with He atoms. To this end, two accurate three-dimensional potential energy surfaces (PESs) of the He-CH(2)(X(3)B(1)) complex are developed using the state-of-the-art coupled-cluster method including single and double excitations along with a perturbative correction for triple excitations and large basis sets. Both PESs exhibit shallow minima and are weakly anisotropic. Our calculations show that spin relaxation in collisions of CH(2), CHD, and CD(2) molecules with He atoms occurs at a much slower rate than elastic scattering over a large range of temperatures (1 μK-1 K) and magnetic fields (0.01-1 T), suggesting excellent prospects for cryogenic helium buffer-gas cooling of ground-state ortho-CH(2)(X(3)B(1)) molecules in a magnetic trap. Furthermore, we find that ortho-CH(2) undergoes collision-induced spin relaxation much more slowly than para-CH(2), which indicates that magnetic trapping can be used to separate nuclear spin isomers of open-shell polyatomic molecules.

  6. Fragmentation of neutral carbon clusters formed by high velocity atomic collision; Fragmentation d'agregats de carbone neutres formes par collision atomique a haute vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, G


    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  7. The rate coefficients for the processes of (n - n')-mixing in collisions of Rydberg atoms H*(n) with H(1s) atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlov, A A [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Ignjatovic, Lj M [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Djuric, Z [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom); Ljepojevic, N N [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom)


    This paper presents the results of semi-classical calculations of rate coefficients of (n - n')-mixing processes in collisions of Rydberg atoms H*(n) with H(1s) atoms. These processes have been modelled by the mechanism of the resonant energy exchange within the electron component of the H*(n) + H collisional system. The calculations of the rate coefficients, based on this model, were performed for the series of principal quantum numbers, n and n', and atomic, T{sub a}, and electronic, T{sub e}, temperatures. It was shown that these processes can be of significant influence on the populations of Rydberg atoms in weakly ionized plasmas (ionization degree {approx}<10{sup -4}), and therefore have to be included in appropriate models of such plasmas.

  8. Scaling of particle production with number of participants in high-energy A+A collisions in the parton-cascade model

    CERN Document Server

    Srivastava, D K


    In view of the recent WA98 data of pi /sup 0/ spectra from central Pb +Pb collisions at the CERN SPS, we analyze the production of neutral pions for A+A collisions across the periodic table at square root (s) =17 AGeV and 200 AGeV within the framework of the parton-cascade model for relativistic heavy ion collisions. The multiplicity of the pions (having p/sub T/ > 0.5 GeV) in the central rapidity region, is seen to scale as ~(N/sub part/)/sup alpha /, where N/sub part/ is the number of participating nucleons, which we have approximated as 2 A for central collisions of identical nuclei. We argue that the deviation of alpha ( equivalent to 1.2) from unity may have its origin in the multiple scattering suffered by the partons. We also find that the constant of proportionality in the above scaling relation increases substantially in going from SPS to RHIC energies. This would imply that the (semi)hard partonic activity becomes a much cleaner signal above the soft particle production at the higher energy of RHIC,...

  9. Atomic data on inelastic processes in low-energy manganese-hydrogen collisions (United States)

    Belyaev, Andrey K.; Voronov, Yaroslav V.


    Aims: The aim of this paper is to calculate cross sections and rate coefficients for inelastic processes in low-energy Mn + H and Mn+ + H- collisions, especially, for processes with high and moderate rate coefficients. These processes are required for non-local thermodynamic equilibrium (non-LTE) modeling of manganese spectra in cool stellar atmospheres, and in particular, for metal-poor stars. Methods: The calculations of the cross sections and the rate coefficients were performed by means of the quantum model approach within the framework of the Born-Oppenheimer formalism, that is, the asymptotic semi-empirical method for the electronic MnH molecular structure calculation followed by the nonadiabatic nuclear dynamical calculation by means of the multichannel analytic formulas. Results: The cross sections and the rate coefficients for low-energy inelastic processes in manganese-hydrogen collisions are calculated for all transitions between 21 low-lying covalent states and one ionic state. We show that the highest values of the cross sections and the rate coefficients correspond to the mutual neutralization processes into the final atomic states Mn(3d54s(7S)5s e 6S), Mn(3d54s(7S)5p y 8P°), Mn(3d54s(7S)5s e 8S), Mn(3d54s(7S)4d e 8D) [the first group], the processes with the rate coefficients (at temperature T = 6000 K) of the values 4.38 × 10-8, 2.72 × 10-8, 1.98 × 10-8, and 1.59 × 10-8 cm3/ s, respectively, that is, with the rate coefficients exceeding 10-8 cm3/ s. The processes with moderate rate coefficients, that is, with values between 10-10 and 10-8 cm3/ s include many excitation, de-excitation, mutual neutralization and ion-pair formation processes. In addition to other processes involving the atomic states from the first group, the processes from the second group include those involving the following atomic states: Mn(3d5(6S)4s4p (1P°) y 6P°), Mn(3d54s(7S)4d e 6D), Mn(3d54s(7S)5p w 6P°), Mn(3d5(4P)4s4p (3P°) y 6D°), Mn(3d5(4G)4s4p (3P°) y 6F

  10. Pion correlations as a function of atomic mass in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, A.D.


    The method of two pion interferometry was used to obtain source-size and lifetime parameters for the pions produced in heavy ion collisions. The systems used were 1.70 {center dot} A GeV {sup 56}Fe + Fe, 1.82 {center dot} A GeV {sup 40}Ar + KCl and 1.54 {center dot} A GeV {sup 93}Nb + Nb, allowing for a search for dependences on the atomic number. Two acceptances (centered, in the lab., at {approximately} 0{degrees} and 45{degrees}) were used for each system, allowing a search for dependences on the viewing angle. The correlation functions were calculated by comparing the data samples to background (or reference) samples made using the method of event mixing, where pions from different events are combined to produce a data sample in which the Bose-Einstein correlation effect is absent. The effect of the correlation function on the background samples is calculated, and a method for weighting the events to remove the residual correlation effect is presented. The effect of the spectrometer design on the measured correlation functions is discussed, as are methods for correcting for these effects during the data analysis. 58 refs., 39 figs., 18 tabs.

  11. Collisions of electrons with hydrogen atoms I. Package outline and high energy code (United States)

    Benda, Jakub; Houfek, Karel


    Being motivated by the applied researchers' persisting need for accurate scattering data for the collisions of electrons with hydrogen atoms, we developed a computer package-Hex-that is designed to provide trustworthy results for all basic discrete and continuous processes within non-relativistic framework. The package consists of several computational modules that implement different methods, valid for specific energy regimes. Results of the modules are kept in a common database in the unified form of low-level scattering data (partial-wave T-matrices) and accessed by an interface program which is able to produce various derived quantities like e.g. differential and integral cross sections. This article is the first one of a series of articles that are concerned with the implementation and testing of the modules. Here we give an overview of their structure and present (a) the command-line interface program hex-db that can be also easily compiled into a derived code or used as a backend for a web-page form and (b) simple illustrative module specialized for high energies, hex-dwba, that implements distorted and plane wave Born approximation.

  12. Three-body dynamical interference in electron and positron collision with positronium atom

    Directory of Open Access Journals (Sweden)

    E Ghanbari Adivi


    Full Text Available In this project, the Faddeev-Watson-Lovelace (FWL formalism is generalized to large scattering angles. The angular range includes 0-180 degrees. Using this method, the charge transfer differential cross-sections are calculated, in a second-order approximation, for collision of energetic positrons and electrons with neutral positronium atoms. In this approximation, the rearrangement amplitude contains two first-order and three second-order partial amplitudes. The first first-order term is the Born amplitude in a first-order approximation. The second one corresponds to capturing the transferred particle without perturbing the state of this particle. This term, in fact, describes a knock-on process. Since the masses of the particles and the absolute values of their charges are equal, one expects that the second-order terms be similar in magnitude. This aspect causes the instructive interference of the partial amplitudes in some angles and destructive interference in some others. However, it is predicted that these amplitudes have local maxima in direction of the recoiling of the projectile. In order to investigate this situation, the second-order partial amplitudes are calculated and their relations with the parity of the initial and final states of the scattering system are analyzed. In particular, the role of dynamical interference of these partial amplitudes in creation of the kinematical peak and the peak corresponding to the knock-on scattering in angular distribution of the differential cross sections is investigated.

  13. PREFACE: XXIX International Conference on Photonic, Electronic, and Atomic Collisions (ICPEAC2015) (United States)

    Díaz, C.; Rabadán, I.; García, G.; Méndez, L.; Martín, F.


    The 29th International Conference on Photonic, Electronic and Atomic Collisions (XXIX ICPEAC) was held at the Palacio de Congresos ''El Greco'', Toledo, Spain, on 22-28 July, 2015, and was organized by the Universidad Autónoma de Madrid (UAM) and the Consejo Superior de Investigaciones Científicas (CSIC). ICPEAC is held biannually and is one of the most important international conferences on atomic and molecular physics. The topic of the conference covers the recent progresses in photonic, electronic, and atomic collisions with matter. With a history back to 1958, ICPEAC came to Spain in 2015 for the very first time. UAM and CSIC had been preparing the conference for six years, ever since the ICPEAC International General Committee made the decision to hold the XXIX ICPEAC in Toledo. The conference gathered 670 participants from 52 countries and attracted 854 contributed papers for presentation in poster sessions. Among the latter, 754 are presented in issues 2-12 of this volume of the Journal of Physics Conference Series. In addition, five plenary lectures, including the opening one by the Nobel laureate Prof. Ahmed H. Zewail and the lectures by Prof. Maciej Lewenstein, Prof. Paul Scheier, Prof. Philip H. Bucksbaum, and Prof. Stephen J. Buckman, 62 progress reports and 26 special reports were presented following the decision of the ICPEAC International General Committee. Detailed write-ups of most of the latter are presented in issue 1 of this volume, constituting a comprehensive tangible record of the meeting. On the occasion of the International Year of Light (IYL2015) and with the support of the Fundación Española para la Ciencia y la Tecnología (FECYT), the program was completed with two public lectures delivered by the Nobel laureate Prof. Serge Haroche and the Príncipe de Asturias laureate Prof. Pedro M. Echenique on, respectively, ''Fifty years of laser revolutions in physics'rquot; and ''The sublime usefulness of useless science''. Also a

  14. Collisions of energetic particles with atoms, molecules & solids: A theoretical study (United States)

    Quashie, Edwin Exam

    The detailed knowledge of the accurate ion-solid interaction is at the heart of many technological applications such as nuclear safety, applied material science, medical physics and fusion and fission applications. Its accurate evaluation poses an enormous challenge due to the need of incorporating electronic structure, bound states, size effects, basis sets, and the quantum classical aspects of the problem. Most recent approaches relying on the fitting to experimental data or phenomenological model, fail to describe the ion-solid interaction properly (see [S. N. Markin, D. Primetzhofer, M. Spitz, and P. Bauer, Phys. Rev. B 80 (2009)]) for slow ions. A general Time-Dependent Density Functional Theory (TDDFT) is used in this thesis to evaluate electron-dynamics easily. For the first time a unified theory is proposed to describe the ion-solid interaction accurately over several orders of magnitude in the ion velocities, unveiling different regimes that before were only partially seen by separate experiments and rarely by any level of existing theory. We identified an electronic stopping which in the band-regime produces a quantum friction that is nonlinear with a power-law with an exponent ˜1.5. At low velocity this nonlinear effect will provide a new impetus for experimental investigations and an improve microscopic models of electron-ion dissipative dynamics. Our study will potentially impact both the experimental and theoretical research in condensed matter. We have applied our developed theory to study stopping of H+ in Cu. The target Cu comprises complicated band structure and this system will help to understand radiation of matter, both in its experimental understanding and also in the modeling of the process, for example in the context of damped molecular dynamics for the simulation of radiation cascades. At this present stage in the field of ion-solid interactions and quantum dissipative dynamics, our findings remain very significant. The same techniques are

  15. Projectile X-ray emission in relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Shadi Mohammad Ibrahim


    This work reports on the study of the projectile X-ray emission in relativistic ion-atom collisions. Excitation of K-shell in He-like uranium ions, electron capture into H-like uranium ions and Simultaneous ionization and excitation of initially He-like uranium ions have been studied using the experimental storage ring at GSI. For the K{sub {alpha}}{sub 1} and K{sub {alpha}}{sub 2} transitions originating from the excitation of the He-like uranium ions, no alignment was observed. In contrast, the Ly{sub {alpha}}{sub 1} radiation from the simultaneous ionization-excitation process of the He-like uranium ions shows a clear alignment. The experimental value leads to the inclusion of a magnetic term in the interaction potential. The capture process of target electrons into the highly-charged heavy ions was studied using H-like uranium ions at an incident energy of 220 MeV/u, impinging on N{sub 2} gas-target. It was shown that, the strongly aligned electrons captured in 2p{sub 3/2} level couple with the available 1s{sub 1/2} electron which shows no initial directional preference. The magnetic sub-state population of the 2p{sub 3/2} electron is redistributed according to the coupling rules to the magnetic sub-states of the relevant two-electron states. This leads to the large anisotropy in the corresponding individual ground state transitions contributing to the K{sub {alpha}}{sub 1} emission. From the K{sub {alpha}}{sub 1}/K{sub {alpha}}{sub 2} ratio, the current results show that the incoherent addition of the E1 and M2 transition components yield to an almost isotropic emission of the total K{sub {alpha}}{sub 1}. In contrast to the radiative electron capture, the experimental results for the K-shell single excitation of He-like uranium ions indicate that only the {sup 1}P{sub 1} level contributes to the K{sub {alpha}}{sub 1} transition. For this case, the anisotropy parameter {beta}{sub 20} was found to be -0.20{+-}0.03. This work also reports on the study of a two

  16. Rearrangement reactions in ion-ion and ion-atom collisions: results and problems

    Energy Technology Data Exchange (ETDEWEB)

    Presnyakov, L.P. [Lebedev Physical Institute, Moscow (Russian Federation); Tawara, H.


    Recent experimental and theoretical results are discussed for ionic collisions with large cross sections at intermediate and small energies of the relative motion. Single- and double-electron removal from H{sup -} ions in slow collisions with other ions is considered in more details. The theoretical methods are discussed from the viewpoint of general requirements of scattering theory. (author)

  17. VNI version 4.1. Simulation of high-energy particle collisions in QCD: Space-time evolution of e{sup +}e{sup {minus}}...A + B collisions with parton-cascades, cluster-hadronization, final-state hadron cascades

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, K.; Longacre, R. [Brookhaven National Lab., Upton, NY (United States). Physics Dept.; Srivastava, D.K. [Variable Energy Cyclotron Centre, Calcutta (India)


    VNI is a general-purpose Monte-Carlo event-generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme, as well as the development of hadron cascades after hadronization. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time-development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position-space, momentum-space and color-space. The parton-evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi)hard interactions in QCD, involving 2 {r_arrow} 2 parton collisions, 2 {r_arrow} 1 parton fusion processes, and 1 {r_arrow} 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. Finally, the cascading of produced prehadronic clusters and of hadrons includes a multitude of 2 {r_arrow} n processes, and is modeled in parallel to the parton cascade description. This paper gives a brief review of the physics underlying VNI, as well as a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including simple examples), annotates input and control parameters, and discusses output data provided by it.

  18. INCAS: an analytical model to describe displacement cascades (United States)

    Jumel, Stéphanie; Claude Van-Duysen, Jean


    REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricité de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.

  19. INCAS: an analytical model to describe displacement cascades

    Energy Technology Data Exchange (ETDEWEB)

    Jumel, Stephanie E-mail:; Claude Van-Duysen, Jean E-mail:


    REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricite de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.

  20. Atomic scattering in the diffraction limit: electron transfer in keV Li+-Na(3s, 3p) collisions

    DEFF Research Database (Denmark)

    Poel, Mike van der; Nielsen, C.V.; Rybaltover, M.


    We measure angle differential cross sections (DCS) in Li+ + Na --> Li + Na+ electron transfer collisions in the 2.7-24 keV energy range. We do this with a newly constructed apparatus which combines the experimental technique of cold target recoil ion momentum spectroscopy with a laser-cooled target...... of the de Broglie wavelength lambda(dB) = 150 fm at a velocity v = 0.20 au and the effective atomic diameter for electron capture 2R = 20 au. Parallel AO and MO semiclassical coupled-channel calculations of the Na(3s, 3p) --> Li(2s, 2p) state-to-state collision amplitudes have been performed, and quantum...

  1. Anisotropy and linear polarization of radiative processes in energetic ion-atom collisions; Untersuchung zur Anisotropie und linearen Polarisation radiativer Prozesse in energiereichen Ion-Atom-Stoessen

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Guenter


    In the present thesis the linear polarization of radiation emitted in energetic ion-atom collisions at the ESR storage ring was measured by applying a novel type of position, timing and energy sensitive X-ray detector as a Compton polarimeter. In contrast to previous measurements, that mainly concentrate on studies of the spectral and angular distribution, the new detectors allowed the first polarization study of the Ly-{alpha}{sub 1} radiation (2p{sub 3/2}{yields}1s{sub 1/2}) in U{sup 91+}. Owing to the high precision of the polarimeters applied here, the experimental results indicate a significant depolarization of the Ly-{alpha}{sub 1} radiation caused by the interference of the E1 and M2 transition branches. Moreover, the current investigation shows that measurements of the linear polarization in combination with angular distribution studies provide a model-independent probe for the ratio of the E1 and M2 transition amplitudes and, consequently, of the corresponding transition probabilities. In addition, a first measurement of the linear polarization as well as an angular distribution study of the electron-nucleus Bremsstrahlung arising from ion-atom collisions was performed. The experimental results obtained were compared to exact relativistic calculations and, in case of the Bremsstrahlung, to a semirelativistic treatment. In general, good agreement was found between theoretical predictions and experimental findings. (orig.)

  2. Effects of autoionization in electron loss from heliumlike highly charged ions in fast collisions with atomic particles (United States)

    Lyashchenko, K. N.; Andreev, O. Yu.; Voitkiv, A. B.


    We study theoretically single-electron loss from the ground state of a heliumlike highly charged ion in fast collisions with an atomic particle (a nucleus or an atom), focusing on electron emission energies where the so-called excitation-autoionization channel of electron loss becomes of importance. The presence of this channel leads to the appearance of sharp structures in the energy distribution of the emitted electrons and may also noticeably influence the angular distributions of the emission in the vicinity of autoionization resonances. We performed calculations for electron loss from Ca18 +(1 s2) and Zn28 +(1 s2) in 100 MeV/u collisions with neon. It is shown that two qualitatively different subchannels (which involve either one or two interactions between the electrons of the ion and the incident atomic particle) substantially contribute to excitation-autoionization and take active part in the interference with the direct channel of electron loss; however, they practically do not interfere with each other. Our consideration also shows that the account of QED corrections is important for an accurate description of electron loss even from relatively light heliumlike HCIs.

  3. Charge breeding investigation in EBIS/T and collision study of ions with cold atoms for HITRAP

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Alexey


    Highly charged ions (HCI) at low velocities or at rest are interesting systems for various atomic physics experiments. For investigations on HCI of heavy stable or radioactive nuclides the HITRAP (Highly charged Ion TRAP) decelerator facility has been set up at GSI to deliver cooled beams of HCI at an energy of 5 keV/q. The HCI are produced in a stripper foil at relativistic energies and are decelerated in several steps at ESR storage ring and HITRAP before they are delivered to experimental setups. One of the experiments is the investigation of multi-electron charge exchange in collisions of heavy HCI with cold atoms using novel MOTRIMS technique. Collision experiments on light ions from an ECR ion source colliding with cold atoms in a MOT have been performed and the results are described. An electron beam ion trap (EBIT) has been tested and optimized for commissioning of the HITRAP physics experiments. The process of charge breeding in the EBIT has been successfully studied with gaseous elements and with an alkaline element injected from an external ion source. (orig.)

  4. Measurements of scattering processes in negative ion-atom collisions. Technical progress report, 1 September 1991--31 August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kvale, T.J.


    This Technical Progress Report describes the progress made on the research objectives during the past twelve months. This research project is designed to provide measurements of various scattering processes which occur in H{sup {minus}} collisions with atomic (specifically, noble gas and atomic hydrogen) targets at intermediate energies. These processes include: elastic scattering,single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H{sup {minus}} is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements in progress will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion-atom collisions. This series of experiments required the construction of a new facility and the initial ion beam was accelerated through the apparatus in April 1991.

  5. The fifth international symposium ''atomic cluster collisions''. ISACC 2011. Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)



    The Fifth International Symposium ''Atomic Cluster Collisions'' (ISACC 2011) will take place in July 21-25, 2011 in Berlin, Germany. The venue of the meeting will be the St.-Michaels-Heim a lovely place located within a garden area of Berlin-Grunewald. The ISACC 2011 is organized by the Fritz-Haber-Institute of the Max- Planck Society along with the King Saud University, Rhiyadh and by the Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany. ISACC started as the international symposium on atomic cluster collisions in St. Petersburg, Russia in 2003. The second ISACC was held at the GSI, Darmstadt, Germany in 2007. Both first and second symposia were satellites of the International Conferences on Photonic Electronic and Atomic Collisions (ICPEAC). The third ISACC has returned to St. Petersburg, Russia in 2008. The last ISACC took place in Ann Arbor, again as a satellite meeting of the ICPEAC. Initially the symposium was mainly focused on dynamics of atomic clusters, especially in atomic cluster collisions, but since then its scope has been widened significantly to include dynamics of nanosystems, biomolecules, and macromolecules with the emphasis on the similarity of numerous essential clustering phenomena arising in different branches of physics, chemistry, and biology. After the four ISACC meetings it has become clear that there is a need for an interdisciplinary conference covering a broad range of topics related to the Dynamics of Systems on a Nanoscale. Therefore in 2010 it was decided to expand upon this series of meetings with a new conference organized under the new title ''Dynamics of Systems on the Nanoscale'', the DySoN Conference, since this title better reflects the interdisciplinary character of the earlier ISACC meetings embracing all the topics of interest under a common theme. The first DySoN Conference took place in Rome, Italy in 2010. The fifth ISACC symposium will be again a

  6. Precision measurements of cross sections of inelastic processes realized in collisions of alkali metal ions with atoms of rare gases

    CERN Document Server

    Lomsadze, R A; Mosulishvili, N O; Kezerashvili, R Ya


    This work presents a multifaceted experimental study of collisions of Na$^{+}$ and K$^{+}$ ions in the energy range 0.5 -- 10 keV with He and Ar atoms. Absolute cross sections for charge-exchange, ionization, stripping and excitation were measured using a refined version of the transfer electric field method, angle- and energy-dependent collection of product ions, energy loss, and optical spectroscopy. The experimental data and the schematic correlation diagrams have been employed to analyze and determine the mechanisms for these processes.

  7. Vibrational and cascade dissociation of H{sub 2}{sup +} ions by collision with gas molecules; Dissociation vibrationnelle et dissociation en cascade d'ions H{sub 2}{sup +} par collisions avec les molecules d'un gaz

    Energy Technology Data Exchange (ETDEWEB)

    Verveer, P. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires


    Protons produced by collisional dissociation of H{sub 2}{sup +} ions have an energy spectrum with a narrow central peak. For a part the protons in this peak are produced by vibrational dissociation and for another part by a cascade of two collisions. For H{sub 2}{sup +} ions of 50 to 150 keV the cross section for vibrational dissociation is about 4.1 10{sup -19} cm{sup 2}/molecule in hydrogen and 1.1 10{sup -18} cm{sup 2}/molecule in argon. (author) [French] Les protons resultant de la dissociation par collisions d'ions H{sub 2}{sup +} dans un gaz ont un spectre d'energie qui presente un pic central tres etroit. Les protons dans ce pic proviennent, pour une part de la dissociation vibrationnelle et pour l'autre part d'une suite de deux collisions. Dans le domaine d'energie des ions H{sub 2}{sup +} de 50 a 150 keV la section efficace de dissociation vibrationnel vaut 4.1 10{sup -19} cm{sup 2}/molecule pour l'hydrogene et 1,1 10{sup -18} cm{sup 2}/molecule pour l'argon.

  8. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2 (United States)

    Dubreuil, B.; Harnafi, M.


    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5-13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 AṦ are measured; they increase with n as opposed to the plateau observed for Li* colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n-->n' changing processes with large cross sections (10-100 AṦ) are also observed even in the case of large electronic energy change (ΔEnn'>103 cm-1). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes.

  9. Observation of double resonant laser induced transitions in the $v = n - l - 1 = 2$ metastable cascade of antiprotonic helium-4 atoms

    CERN Document Server

    Hayano, R S; Tamura, H; Torii, H A; Hori, Masaki; Maas, F E; Morita, N; Kumakura, M; Sugai, I; Hartmann, F J; Daniel, H; Von Egidy, T; Ketzer, B; Pohl, R; Horváth, D; Eades, John; Widmann, E; Yamazaki, T


    A new laser-induced resonant transition in the $v=n-l-1=2$ metastable cascade of antiprotonic $^4$He atoms has been found by using a double resonance technique. This was done by setting the first laser to the already known 470.724 nm resonance ($(n,l)=(37,34)\\rightarrow (36,33)$), while the $(38,35)\\rightarrow (37,34)$ transition was searched for with the second laser. The resonant transition was found at wavelength of 529.622$\\pm$0.003 nm, showing excellent agreement with a recent prediction of Korobov.

  10. Quenching of krypton atoms in the metastable 5s (3P2) state in collisions with krypton and helium atoms (United States)

    Zayarnyi, D. A.; L'dov, A. Yu; Kholin, I. V.


    We have used the absorption probe method to study the processes of collisional quenching of the metastable 5s [3/2]o2(3P2) state of the krypton atom in electron-beam-excited high-pressure He - Kr mixtures with a low content of krypton. The rate constants of plasma-chemical reactions Kr* + Kr + He → Kr*2+He [(2.88 +/- 0.29) × 10-33 cm6 s-1], Kr* + 2He → HeKr* + He [(4.6 +/- 1.3) × 10-36 cm6 s-1] and Kr* + He → products + He [(1.51 +/- 0.15) × 10-15 cm3 s-1] are measured for the first time. The rate constants of similar reactions in the Ar - Kr mixture are refined.

  11. Inelastic processes in collisions of lithium positive ions with hydrogen anions and atoms (United States)

    Belyaev, Andrey K.; Yakovleva, Svetlana A.; Kraemer, Wolfgang P.


    Inelastic processes in the low-energy collisions Li3+ + H-, Li2+ + H, Li2+ + H- and Li+ + H are investigated for all collisional channels with the excited ionic lithium states Li2+ ( nl) and Li+ (1 s nl) up to and including the corresponding ion-pair states for the temperature range 1000-20 000 K. For all possible processes in the Li3+ + H- and Li2+ + H collisions inelastic cross sections and rate coefficients are calculated for the transitions between the ion-pair channel Li3+ + H- and the 35 below lying contributing Li2+ ( nl) + H channels. It is found that the highest values of cross sections and rate coefficients are obtained for the recombination processes and their inverse, the ion-pair formation processes, involving the Li2+ (3 l), Li2+ (4 l), and Li2+ (5 l) states. For the processes in the Li2+ + H- and Li+ + H collisions, cross sections and rate coefficients are calculated for all transitions between 34 Li+ (1 s nl) + H channels lying below Li2+ + H- plus this ion-pair channel. In this case the highest rate coefficients correspond to the recombination processes with the Li+(1 s3 l 1,3 L) and Li+(1 s4 l 1,3 L) final states, as well as their inverse processes of ion-pair production. Rate coefficient values for these most efficient processes are rather high, of the order of 10-8 cm3/s. This leads to total recombination rate coefficients in Li3+ + H- and Li2+ + H- collisions with values larger than 10-7 cm3/s.

  12. Quasiclassical treatment of the Auger effect in slow ion-atom collisions (United States)

    Frémont, F.


    A quasiclassical model based on the resolution of Hamilton equations of motion is used to get evidence for Auger electron emission following double-electron capture in 150-keV N e10 ++He collisions. Electron-electron interaction is taken into account during the collision by using pure Coulombic potential. To make sure that the helium target is stable before the collision, phenomenological potentials for the electron-nucleus interactions that simulate the Heisenberg principle are included in addition to the Coulombic potential. First, single- and double-electron captures are determined and compared with previous experiments and theories. Then, integration time evolution is calculated for autoionizing and nonautoionizing double capture. In contrast with single capture, the number of electrons originating from autoionization slowly increases with integration time. A fit of the calculated cross sections by means of an exponential function indicates that the average lifetime is 4.4 ×10-3a .u . , in very good agreement with the average lifetime deduced from experiments and a classical model introduced to calculate individual angular momentum distributions. The present calculation demonstrates the ability of classical models to treat the Auger effect, which is a pure quantum effect.

  13. Quantum-kinetic modeling of electron release in low-energy surface collisions of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Marbach, Johannes


    In this work we present a theoretical description of electron release in the collision of atomic and molecular projectiles with metallic and especially dielectric surfaces. The associated electron yield, the secondary electron emission coefficient, is an important input parameter for numerical simulations of dielectric barrier discharges and other bounded low-temperature gas discharges. The available reference data for emission coefficients is, however, very sparse and often uncertain, especially for molecular projectiles. With the present work we aim to contribute to the filling of these gaps by providing a flexible and easy-to-use model that allows for a convenient calculation of the emission coefficient and related quantities for a wide range of projectile-surface systems and the most dominant reaction channels.

  14. Collisions of electrons with hydrogen atoms II. Low-energy program using the method of the exterior complex scaling (United States)

    Benda, Jakub; Houfek, Karel


    While collisions of electrons with hydrogen atoms pose a well studied and in some sense closed problem, there is still no free computer code ready for ;production use;, that would enable applied researchers to generate necessary data for arbitrary impact energies and scattering transitions directly if absent in on-line scattering databases. This is the second article on the Hex program package, which describes a new computer code that is, with a little setup, capable of solving the scattering equations for energies ranging from a fraction of the ionization threshold to approximately 100 eV or more, depending on the available computational resources. The program implements the exterior complex scaling method in the B-spline basis.

  15. Monte Carlo calculation of collisions of directionally-incident electrons on highly excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Kazuki; Fujimoto, Takasi [Kyoto Univ., Graduate School of Engineering, Kyoto (Japan)


    We treat classically the n-, l- and m{sub r}-changing transitions and ionization. Excitation cross sections against the final state energy continue smoothly to the 'ionization cross sections'. The steady state populations determined by elastic collisions among the degenerate states in the same n level show higher populations in the m{sub 1}=0 states, suggesting positive polarizations of Lyman lines emitted from plasmas having directional electrons. For ionization, the two outgoing electrons have large relative angles, suggesting reduced three body recombination rates for these plasmas. (author)

  16. Absolute fragmentation cross sections in atom-molecule collisions : Scaling laws for non-statistical fragmentation of polycyclic aromatic hydrocarbon molecules

    NARCIS (Netherlands)

    Chen, T.; Gatchell, M.; Stockett, M. H.; Alexander, J. D.; Zhang, Y.; Rousseau, P.; Domaracka, A.; Maclot, S.; Delaunay, R.; Adoui, L.; Huber, B. A.; Schlathölter, T.; Schmidt, H. T.; Cederquist, H.; Zettergren, H.


    We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH+) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections

  17. Cascade morphology transition in bcc metals

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Wahyu; Selby, A.; Juslin, Niklas; Stoller, Roger E.; Wirth, Brian D.; Kurtz, Richard J.


    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, $b$, in the defect production curve as a function of cascade energy ($N_F$$ \\sim$$E_{MD}^b$). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, $\\mu$, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of $\\mu$ as a function of displacement threshold energy, $E_d$, is presented for bcc metals.

  18. Close-Coupling R-Matrix Approach to Simulating Ion-Atom Collisions for Accelerator Applications

    CERN Document Server

    Stoltz, Peter


    We have implemented an R-matrix close coupling approach to calculate capture, ionization, stripping and excitation cross-sections for 0.5 to 8.0 MeV K+ incident on Ar. This is relevant to the High Current Experiment at Lawrence Berkley National Laboratory. These cross sections are used to model accelerator particle dynamics where background gasses can interfere with beam quality. This code is a semi-classical approach that uses quantum mechanics to describe the particle interactions and uses classical mechanics to describe the nuclei trajectories. We compare a hydrogenic approximation for K+ with a pseudo-potential approach. Further we are developing a variational approach to quickly determine the best pseudo-potential parameters. Since many R-Matrix computationalists use this pseudo-potential approach, this approach will be useful for helping generate cross sections for any collision system.

  19. Hydrogen Atom Collision Processes in Cool Stellar Atmospheres: Effects on Spectral Line Strengths and Measured Chemical Abundances in Old Stars (United States)

    Barklem, Paul S.


    The precise measurement of the chemical composition of stars is a fundamental problem relevant to many areas of astrophysics. State-of-the-art approaches attempt to unite accurate descriptions of microphysics, non-local thermodynamic equilibrium (non-LTE) line formation and 3D hydrodynamical model atmospheres. In this paper I review progress in understanding inelastic collisions of hydrogen atoms with other species and their influence on spectral line formation and derived abundances in stellar atmospheres. These collisions are a major source of uncertainty in non-LTE modelling of spectral lines and abundance determinations, especially for old, metal-poor stars, which are unique tracers of the early evolution of our galaxy. Full quantum scattering calculations of direct excitation processes X(nl) + H leftrightarrow X(n'l') + H and charge transfer processes X(nl) + H leftrightarrow X+ + H- have been done for Li, Na and Mg [1,2,3] based on detailed quantum chemical data, e.g. [4]. Rate coefficients have been calculated and applied to non-LTE modelling of spectral lines in stellar atmospheres [5,6,7,8,9]. In all cases we find that charge transfer processes from the first excited S-state are very important, and the processes affect measured abundances for Li, Na and Mg in some stars by as much as 60%. Effects vary with stellar parameters (e.g. temperature, luminosity, metal content) and so these processes are important not only for accurate absolute abundances, but also for relative abundances among dissimilar stars.

  20. Towards sympathetic cooling of large molecules: cold collisions between benzene and rare gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, P; Tennyson, J; Barker, P F [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)], E-mail:


    This paper reports on calculations of collisional cross sections for the complexes X-C{sub 6}H{sub 6} (X={sup 3}He, {sup 4}He, Ne) at temperatures in the range 1 {mu}K-10 K and shows that relatively large cross sections in the 10{sup 3}-10{sup 5} A{sup 2} range are available for collisional cooling. Both elastic and inelastic processes are considered in this temperature range. The calculations suggest that sympathetically cooling benzene to microkelvin temperatures is feasible using these co-trapped rare gas atoms in an optical trap.

  1. Quantum mechanical theory of a structured atom-diatom collision system - A + BC/1-Sigma/ (United States)

    Devries, P. L.; George, T. F.


    The problem of a 2-p state atom colliding with a singlet sigma state diatom, which involves multiple potential surfaces, is investigated. Within a diabatic representation for the electronic degrees of freedom (plus spin-orbit interaction), coupled scattering equations are derived in both space-fixed and body-fixed coordinate systems. Coefficients, analogous to Percival-Seaton coefficients, are obtained. Approximations to the exact equations, including angular momenta decoupling approximations, are discussed for both the space-fixed and body-fixed formalisms.

  2. Electrically tuned F\\"orster resonances in collisions of NH$_3$ with Rydberg He atoms


    Zhelyazkova, V.; Hogan, S D


    Effects of weak electric fields on resonant energy transfer between NH$_3$ in the X $^1$A$_1$ ground electronic state, and Rydberg He atoms in triplet states with principal quantum numbers $n = 36$-$41$ have been studied in a crossed beam apparatus. For these values of $n$, electric-dipole transitions between the Rydberg states that evolve adiabatically to the $|ns\\rangle$ and $|np\\rangle$ states in zero electric field can be tuned into resonance with the ground-state inversion transitions in...

  3. Electrically tuned Forster resonances in collisions of NH3 with Rydberg He atoms


    Zhelyazkova, V.; Hogan, S D


    The effects of weak electric fields on resonant energy transfer between NH3 in the X 1 A1 ground electronic state and Rydberg He atoms in triplet states with principal quantum numbers n = 36–41 have been studied in a crossed-beam apparatus. For these values of n, electric dipole transitions between the Rydberg states that evolve adiabatically to the |ns and |np states in zero electric field can be tuned into resonance with the ground-state inversion transitions in NH3 using ele...

  4. Grazing incidence collisions of ions and atoms with surfaces: from charge exchange to atomic diffraction; Collisions rasantes d'ions ou d'atomes sur les surfaces: de l'echange de charge a la diffraction atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P


    This thesis reports two studies about the interaction with insulating surfaces of keV ions or atoms under grazing incidence. The first part presents a study of charge exchange processes occurring during the interaction of singly charged ions with the surface of NaCl. In particular, by measuring the scattered charge fraction and the energy loss in coincidence with electron emission, the neutralization mechanism is determined for S{sup +}, C{sup +}, Xe{sup +}, H{sup +}, O{sup +}, Kr{sup +}, N{sup +}, Ar{sup +}, F{sup +}, Ne{sup +} and He{sup +}. These results show the importance of the double electron capture as neutralization process for ions having too much potential energy for resonant capture and not enough for Auger neutralization. We have also studied the ionisation of the projectile and of the surface, and the different Auger-like neutralization processes resulting in electron emission, population of conduction band or excited state. For oxygen scattering, we have measured an higher electron yield in coincidence with scattered negative ion than with scattered atom suggesting the transient formation above the surface of the oxygen doubly negative ion. The second study deals with the fast atom diffraction, a new phenomenon observed for the first time during this work. Due to the large parallel velocity, the surface appears as a corrugated wall where rows interfere. Similarly to the Thermal Atom Scattering the diffraction pattern corresponds to the surface potential and is sensitive to vibrations. We have study the H-NaCl and He-LiF atom-surface potentials in the 20 meV - 1 eV range. This new method offers interesting perspectives for surface characterisation. (author)

  5. Unraveling low-resolution structural data of large biomolecules by constructing atomic models with experiment-targeted parallel cascade selection simulations. (United States)

    Peng, Junhui; Zhang, Zhiyong


    Various low-resolution experimental techniques have gained more and more popularity in obtaining structural information of large biomolecules. In order to interpret the low-resolution structural data properly, one may need to construct an atomic model of the biomolecule by fitting the data using computer simulations. Here we develop, to our knowledge, a new computational tool for such integrative modeling by taking the advantage of an efficient sampling technique called parallel cascade selection (PaCS) simulation. For given low-resolution structural data, this PaCS-Fit method converts it into a scoring function. After an initial simulation starting from a known structure of the biomolecule, the scoring function is used to pick conformations for next cycle of multiple independent simulations. By this iterative screening-after-sampling strategy, the biomolecule may be driven towards a conformation that fits well with the low-resolution data. Our method has been validated using three proteins with small-angle X-ray scattering data and two proteins with electron microscopy data. In all benchmark tests, high-quality atomic models, with generally 1-3 Å from the target structures, are obtained. Since our tool does not need to add any biasing potential in the simulations to deform the structure, any type of low-resolution data can be implemented conveniently.

  6. Perfect/complete scattering experiments probing quantum mechanics on atomic and molecular collisions and coincidences

    CERN Document Server

    Kleinpoppen, Hans; Grum-Grzhimailo, Alexei N


    The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter.  The feasibility of such perfect' and-or `complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory.  It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment `complete'.  The language of the related theory is the language of quantum mechanical amplitudes and their relative phases.  This book captures the spi...

  7. Observation of correlated atom pairs in spontaneous four wave mixing of two colliding Bose-Einstein condensates; Observation de paires d'atomes correles au travers de la collision de deux condensats de Bose-Einstein

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, A


    In this thesis, we report on the observation of pairs of correlated atoms produced in the collision of two Bose-Einstein condensates of metastable helium. Three laser beams perform a Raman transfer which extracts the condensate from the magnetic trap and separates it into two parts with opposite mean momenta. While the condensates propagate, elastic scattering of pairs of atoms occurs, whose momenta satisfy energy and momentum conservation laws. Metastable helium atoms large internal energy allows the use of a position-sensitive, single-atom detector which permits a three-dimensional reconstruction of the scattered atoms'momenta. The statistics of these momenta show correlations for atoms with opposite momenta. The measured correlation volume can be understood from the uncertainty-limited momentum spread of the colliding condensates. This interpretation is confirmed by the observation of the momentum correlation function for two atoms scattered in the same direction. This latter effect is a manifestation of the Hanbury Brown-Twiss effect for indistinguishable bosons. Such a correlated-atom-pair source is a first step towards experiments in which one would like to confirm the pairs'entanglement. (author)

  8. GEANT4 hadronic cascade models analysis of proton and charged pion transverse momentum spectra from p plus Cu and Pb collisions at 3, 8, and 15 GeV/c

    CERN Document Server

    Abdel-Waged, Khaled; Uzhinskii, V V


    We describe how various hadronic cascade models, which are implemented in the GEANT4 toolkit, describe proton and charged pion transverse momentum spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c, recently measured in the hadron production (HARP) experiment at CERN. The Binary, ultrarelativistic quantum molecular dynamics (UrQMD) and modified FRITIOF (FTF) hadronic cascade models are chosen for investigation. The first two models are based on limited (Binary) and branched (UrQMD) binary scattering between cascade particles which can be either a baryon or meson, in the three-dimensional space of the nucleus, while the latter (FTF) considers collective interactions between nucleons only, on the plane of impact parameter. It is found that the slow (p(T) 0.3 GeV/c) proton spectra are not strongly affected by the differences between the FTF and UrQMD models. It is also shown that the UrQMD and FTF combined with Binary (FTFB) models could reproduce both proton and charged pion spectra from p + Cu and Pb...

  9. Free Ion Formation in K(np) Rydberg Atom Collisions at Low-to-Intermediate n: Velocity Dependence of Product Ion Properties. (United States)

    Parthasarathy, R.; Suess, L.; Liu, Y.; Dunning, F. B.


    Post-attachment interactions between the product ion pair formed through electron transfer in collisions between Rydberg atoms and attaching molecules become important at low-to-intermediate n. These effects are investigated by controlling the collision energy through use of velocity selected K(np) Rydberg atoms and by measuring the lifetime of the product ions using a Penning ion trap. In the case of SF_6, where electron transfer leads to production of a valence-bound parent anion, analysis of the data points to significant internal-to-translational energy transfer in post-attachment interactions. This results in an n- and velocity-dependent increase of the fraction of product ion pairs that is able to separate and stabilizes the product ions against autodetachment. In contrast, no similar effects are observed following K(np)/CH_3CN collisions, which lead to the formation of dipole-bound parent anions. The reasons for this marked difference in behavior, which provides a new signature for the creation of dipole-bound anions, will be discussed.

  10. Neutron spallation source and the Dubna cascade code

    CERN Document Server

    Kumar, V; Goel, U; Barashenkov, V S


    Neutron multiplicity per incident proton, n/p, in collision of high energy proton beam with voluminous Pb and W targets has been estimated from the Dubna cascade code and compared with the available experimental data for the purpose of benchmarking of the code. Contributions of various atomic and nuclear processes for heat production and isotopic yield of secondary nuclei are also estimated to assess the heat and radioactivity conditions of the targets. Results obtained from the code show excellent agreement with the experimental data at beam energy, E < 1.2 GeV and differ maximum up to 25% at higher energy. (author)

  11. Real-time study of the adiabatic energy loss in an atomic collision with a metal cluster. (United States)

    Baer, Roi; Siam, Nidal


    Gas-phase hydrogen atoms are accelerated towards metallic surfaces in their vicinity. As it approaches the surface, the velocity of an atom increases and this motion excites the metallic electrons, causing energy loss to the atom. This dissipative dynamics is frequently described as atomic motion under friction, where the friction coefficient is obtained from ab initio calculations assuming a weak interaction and slow atom. This paper tests the aforementioned approach by comparing to a real-time Ehrenfest molecular dynamics simulation of such a process. The electrons are treated realistically using standard approximations to time-dependent density functional theory. We find indeed that the electronic excitations produce a friction-like force on the atom. However, the friction coefficient strongly depends on the direction of the motion of the atom: it is large when the atom is moving towards the cluster and much smaller when the atom is moving away. It is concluded that a revision of the model for energy dissipation at metallic surfaces, at least for clusters, may be necessary. (c) 2004 American Institute of Physics

  12. A time-dependent wave packet approach to atom-diatom reactive collision probabilities - Theory and application to the H + H2(J = 0) system (United States)

    Neuhauser, Daniel; Baer, Michael; Judson, Richard S.; Kouri, Donald J.


    This paper describes a new approach to the study of atom-diatom reactive collisions in three dimensions employing wave packets and the time-dependent Schroedinger equation. The method uses a projection operator approach to couple the inelastic and reactive portions of the total wave function and optical potentials to circumvent the necessity of using product arrangement coordinates. Reactive transition probabilities are calculated from the state resolved flux of the wave packet as it leaves the interaction region in the direction of the reactive arrangement channel. The present approach is used to obtain such vibrationally resolved probabilities for the three-dimensional H + H2 (J = 0) hydrogen exchange reaction, using a body-fixed system of coordinates.

  13. Study of elementary transfer mechanisms during a collision between a swift multi-charged heavy ion and a neutral atom; Etude des mecanismes elementaires de transfert d`energie au cours d`une collision entre un ion lourd rapide multi-charge et un atome neutre

    Energy Technology Data Exchange (ETDEWEB)

    Jardin, P. [Caen Univ., 14 (France)


    This work is dedicated to the study of the energy transfer mechanisms which occur during a collision between a swift multicharged heavy ion and a neutral atom. The elementary energy energy transfer mechanisms (scattering, excitation, ionization, capture) and their consequences on the target velocity after the collision (recoil velocity) are recalled in the first chapter. In the case of small projectile diffusion angles, we show that the recoil velocity component, transverse to the incident projectile direction, results principally from the diffusion mechanism, while the longitudinal component is due essentially to the mass transfer and the inelastic energy transfer mechanisms. Since the target recoil velocities are very small, we have built an experimental set-up which reduces the impreciseness on their measurement due to the target thermal spread using, as targets, cooled atoms of a supersonic jet (temperature < 1 K). The association of time of flight and localisation techniques allows us, for each ionised target atom, to determine the three recoil velocity components with a very good accuracy (a few tens of meters per second). In chapter three, we describe the data analysis method. And then we present in the last chapter the results we have obtained for the collision systems Xe{sup 44+}(6.7 MeV/A) + Ar => Xe{sup 44} + Ar{sup q+}+qe{sup -} (q ranging from 1 to 7); Xe{sup 44+} (6.7 MeV/A) + He => Xe{sup 44+} He{sup 1+,2+}+1e{sup -},2e{sup -}. We show that it is possible to interpret the recoil velocity in terms of kinetic energy transferred to the target and to the electrons ejected from the target. (author) 44 refs.

  14. Differential and total excitation cross sections in the collision of protons with He atoms at intermediate and high energies under a three body formalism

    Directory of Open Access Journals (Sweden)

    R Fathi


    Full Text Available  A three-body model is devised to study differential and total cross sections for the excitation of helium atom under impact of energetic protons. The actual process is a four body one but in the present model the process is simplified into a three-body one. In this model, an electron of helium atom is assumed to be inactive and only one electron of the atom is active. Therefore, the active electron is assumed to be in an atomic state with a potential of the nucleus, T, being screened by the inactive electron, e, and, thus, an effective charge of Ze. As a result, the ground state, 11S, or the excited states, 21S and 21P, wave function of the active electron is deduced from similar hydrogenic wave functions assuming effective charge, Ze for the combined nucleus (T+e. In this three-body model, the Faddeev-Watson-Lovelace formalism for excitation channel is used to calculate the transition amplitude. In the first order approximation, electronic and nuclear interaction is assumed in the collision to be A(1e= and A(1n=, respectively. Here, A(1, Txy, |i> and |f> are the first order transition amplitude, the transition matrix for the interaction between particles x and y, the initial state and the final state, respectively. The transition matrix for the first order electronic interaction implemented into A(1e is approximated as the corresponding two-body interaction, Vxy. In order to calculate first order nuclear amplitude A(1n, the near-the-shell form of transition matrix TPT is used. Calculations are performed in the energy range of 50 keV up to 1MeV. The results are then compared with those of theoretical and experimental works in the literature.

  15. Differential electron-ion elastic scattering cross sections extracted from ion-atom collisions of 0.53 MeV/u Cu{sup 5+} on H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C. [Kansas State Univ., Manhattan, KS (United States). J.R. MacDonald Lab.]|[Jet Propulsion Lab., Pasadena, CA (United States); Hagmann, S.; Bhalla, C.P.; Grabbe, S.R. [Kansas State Univ., Manhattan, KS (United States). J.R. MacDonald Lab.


    A method of extracting electron-ion elastic scattering cross sections from ion-atom collisions has been developed. By analyzing the binary encounter electron (BEe) production in energetic ion-atom collisions, which is due to loosely bound target electrons ionized through direct, hard collisions with the projectile ions, differential cross sections of electrons elastic scattered from highly charged ions are derived for a broad range of scattering angles. The cross sections are observed to deviate strongly from the Rutherford cross sections, and immediately yielded an electron diffraction in angular distribution of elastically scattered electrons. Experimental data are compared with a partial-wave treatment using the Hartree-Fock model. (orig.). 19 refs.

  16. International Conference on the Physics of Electronic and Atomic Collisions (14th) Held in Palo Alto, California on 24-30 July 1985 (Electronic and Atomic Collisions. Invited Papers) (United States)


    1982) 6) H Schmidt, A. Bahring and R Witte, Z. Phys. D, Atoms, Molecules, Clusters, submitted 7) H Herzberg , Spectra of Diatomic Molecules, van...1963) 43. 3) P. R. Brooks, W. Lichten, and R. Reno, Phys. Rev. A 4, (1971) 2217. 4) G. Herzberg , Sci. Light (Tokyo) 16, (1967) 14. 5) 0. K...MULTICHANNEL THEORY OF MOLECULAR DISSOCIATION Paul S. JULIENNE and Frederick H. MIES Molecular*Spectroscopy Division, National Bureau of Standards

  17. Search for a Multi-Higgs Boson Cascade in $W^+W^− b\\bar{b}$ events with the ATLAS detector in pp collisions at √s = 8 TeV

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Aefsky, Scott; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahmadov, Faig; Ahsan, Mahsana; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Astbury, Alan; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Bittner, Bernhard; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Caso, Carlo; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coelli, Simone; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Colas, Jacques; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costa Batalha Pedro, Rute; Costanzo, Davide; Côté, David; Cottin, Giovanna; Courneyea, Lorraine; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Crispin Ortuzar, Mireia; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliot, Frederic; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Dwuznik, Michal; Ebke, Johannes; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giunta, Michele; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haefner, Petra; Hageboeck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jeng, Geng-yuan; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koenig, Sebastian; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Dörthe; Ludwig, Inga; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lundberg, Johan; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madar, Romain; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mazzanti, Marcello; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Molfetas, Angelos; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisin, Hernan; Reisinger, Ingo; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schroer, Nicolai; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Joel; Snyder, Scott; Sobie, Randall; Socher, Felix; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sood, Alexander; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Whittington, Denver; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz


    A search is presented for new particles in an extension to the Standard Model that includes a heavy Higgs boson ($H^0$), an intermediate charged Higgs boson (H±), and a light Higgs boson ($h^0$). The analysis searches for events involving the production of a single heavy neutral Higgs boson which decays to the charged Higgs boson and a W boson, where the charged Higgs boson subsequently decays into a W boson and the lightest neutral Higgs boson decaying to a bottom-antibottom-quark pair. Such a cascade results in a W-boson pair and a bottom–antibottom-quark pair in the final state. Events with exactly one lepton, missing transverse momentum, and at least four jets are selected from a data sample corresponding to an integrated luminosity of 20.3 fb$^{-1}$, collected by the ATLAS detector in proton-proton collisions at √s = 8 TeV at the LHC. The data are found to be consistent with Standard Model predictions, and 95% confidence level upper limits are set on the product of cross-section and branching ratio....

  18. Correction of the first Born approximation for ion-atom collision in excitation channel by multi-channel eikonal formalism

    Directory of Open Access Journals (Sweden)

    reza fathi


    Full Text Available In the present work has been tried to do a generalized formalism of semi-classical method used in ion-atom impact. One of the current method to calculation of the differential and total cross section for ion-atom impact at high energy range is the first Born approximation because of the simplicity of its calculations, but not necessarily sufficiently accurate. In particular this approximation in the excitation channel take into account orthogonality of the initial and the final state wave functions of the bound subsystem and then disappears inter-nuclear effect in the calculations and offers the poor picture for viewing impact process. Also in this approximation the most important coupling has been considered between the initial and the final state. However the close-coupling method because of some restrictions in high impact energies is unusable. Therefore the aim of this work is correction the first Born approximation by implemented the multi-channel eikonal formalism. At last it will be shown that by simplifying this generalized theory it can be achieved a number of current formalism in terms of ion-atom impact.

  19. Atomic Number Dependence of Hadron Production at Large Transverse Momentum in 300 GeV Proton--Nucleus Collisions (United States)

    Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.


    In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.

  20. Calculations of H2O microwave line broadening in collisions with He atoms - Sensitivity to potential energy surfaces (United States)

    Green, Sheldon; Defrees, D. J.; Mclean, A. D.


    Theoretical computations of broadening parameters are reported for three microwave lines of H2O in a bath of He atoms. The potential-energy surfaces employed are corrected for basis-set superposition error, and their reliability is checked by repeating the calculations with a different basis set for orbital expansion. The results are presented in extensive tables and discussed in detail. The corrections applied are shown to have a significant impact on the accuracy of the room-temperature broadenings determined: 8.9 sq A for the 22.2-GHz line, 11.8 sq A for the 183,3-GHz line, and 10.0 sq A for the 380.2-GHz line, in good agreement with published experimental data. The importance of collisional broadening for the atmospheric transmission of radiation and for remote-sensing applications is indicated.

  1. Learning Cascading

    CERN Document Server

    Covert, Michael


    This book is intended for software developers, system architects and analysts, big data project managers, and data scientists who wish to deploy big data solutions using the Cascading framework. You must have a basic understanding of the big data paradigm and should be familiar with Java development techniques.

  2. Quantum dynamics through a wave packet method to study electron-hydrogen and atom-dihydrogen collisions; Dynamique quantique par une methode de paquets d'ondes. Etude des collisions electron-hydrogene et atome-dihydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, L


    The thesis concerns the development and implementation of numerical methods for solving the time-dependent Schroedinger equation. We first considered the case of electron-hydrogen scattering. The originality of our method is the use of a non-uniform radial grid defined by a Schwarz interpolation based on a Coulomb reference function. This grid allows many hydrogen bound states and associated matrix elements of various operators to be reproduced to machine accuracy. The wave function is propagated in time using a Split-Operator method. The efficiency of our method allows the wave function to be propagated out to large distances for all partial waves. We obtain excitation and ionization cross sections in excellent agreement with the best experimental and theoretical data. We subsequently adapted the method and the program package to study reactive atom-dihydrogen scattering. The wave packet is described using product Jacobi coordinates on a regular grid of radial coordinates combined with a basis of Legendre polynomials for the angular part (partial wave S). The wave function is analysed using a time-to-energy Fourier transform, which provides results over the energy range covered by the initial wave packet in one calculation. The method was first tested on the quasi-direct (F,H2) reaction and then applied to the indirect (C(1D),H2)reaction. The state-to-state reaction probabilities are in good agreement with those obtained by a time-independent approach. In particular, the strongly resonant structure of the (C(1D),H2) reaction probabilities is well reproduced. (author)

  3. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions (United States)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam


    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  4. Experimental study on the kinetically induced electronic excitation in atomic collisional cascades; Experimentelle Untersuchung zur kinetisch induzierten elektronischen Anregung in atomaren Stosskaskaden

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, S.


    the present thesis deals with the ion-collision-induced electronic excitation of metallic solids. For this for the first time metal-insulator-metal layer systems are used for the detection of this electronic excitation. The here applied aluminium/aluminium oxide/silver layer sytems have barrier heights of 2.4 eV on the aluminium respectively 3.3 eV on the silver side. With the results it could uniquely be shown that the electronic excitation is generated by kinetic processes, this excitation dependenc on the kinetic energy of the colliding particles, and the excitation dependes on the charge state of the projectile.

  5. PREFACE: International Symposium on (e,2e), Double Photoionization and Related Topics & 15th International Symposium on Polarization and Correlation in Electronic and Atomic Collisions (United States)

    Martin, Nicholas L. S.; deHarak, Bruno A.


    From 30 July to 1 August 2009, over a hundred scientists from 18 countries attended the International Symposium on (e,2e), Double Photoionization and Related Topics and the 15th International Symposium on Polarization and Correlation in Electronic and Atomic Collisions which were held at the W T Young Library of the University of Kentucky, USA. Both conferences were satellite meetings of the XXVI International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC) held in Kalamazoo, Michigan, USA, 21-28 July 2009. These symposia covered a broad range of experimental and theoretical topics involving excitation, ionization (single and multiple), and molecular fragmentation, of a wide range of targets by photons and charged particles (polarized and unpolarized). Atomic targets ranged from hydrogen to the heavy elements and ions, while molecular targets ranged from H2 to large molecules of biological interest. On the experimental front, cold target recoil ion momentum spectroscopy (COLTRIMS), also known as the Reaction Microscope because of the complete information it gives about a wide variety of reactions, is becoming commonplace and has greatly expanded the ability of researchers to perform previously inaccessible coincidence experiments. Meanwhile, more conventional spectrometers are also advancing and have been used for increasingly sophisticated and exacting measurements. On the theoretical front great progress has been made in the description of target states, and in the scattering calculations used to describe both simple and complex reactions. The international nature of collaborations between theorists and experimentalists is exemplified by, for example, the paper by Ren et al which has a total of 13 authors of whom the experimental group of six is from Heidelberg, Germany, one theoretical group is from Australia, with the remainder of the theoreticians coming from several different institutions in the United States. A total of 52 invited talks and

  6. Expenditure Cascades


    Frank, R; Levine, A.; Dijk, O.


    Prevailing economic models of consumer behavior completely ignore the well-documented link between context and evaluation. We propose and test a theory that explicitly incorporates this link. Changes in one group's spending shift the frame of reference that defines consumption standards for others just below them on the income scale, giving rise to expenditure cascades. Our model, a descendant of James Duesenberry's relative income hypothesis, predicts the observed ways in which individual sa...

  7. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu (United States)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin


    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  8. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin, E-mail:


    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  9. The influence of (n-n{sup '})-mixing processes in He*(n)+He(1s{sup 2}) collisions on He*(n) atoms' populations in weakly ionized helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlov, A.A. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia and Montenegro); Ignjatovic, Lj.M. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia)], E-mail:; Sreckovic, V.A. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia); Djuric, Z. [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom)


    The results of semi-classical calculations of rate coefficients of (n-n{sup '})-mixing processes due to collisions of Rydberg atoms He*(n) with He(1s{sup 2}) atoms are presented. It is assumed that these processes are caused by the resonant energy exchange within the electron component of He*(n)+He collision system. The method is realized through the numerical simulation of the (n-n{sup '})-mixing processes, and is applied for calculations of the corresponding rate coefficients. The calculations are performed for the principal quantum numbers n,n{sup '} in ranges 4{<=}natom and electron temperatures, T{sub a},T{sub e}, in domains 5000K{<=}T{sub a}{<=}T{sub e}{<=}20000K. It is shown that the (n-n{sup '})-mixing processes can significantly influence the populations of Rydberg atoms in non-equilibrium weakly ionized helium plasmas with ionization degree {approx}10{sup -4}. Therefore, these processes have to be included in the appropriate models of such plasmas.

  10. A combination method for simulation of secondary knock-on atoms of boron carbide induced by neutron irradiation in SPRR-300

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian-Chun [Key Laboratory of Radiation Physics and Technology of Education Ministry of China, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Feng, Qi-Jie; Liu, Xian-Kun [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Zhan, Chang-Yong [Key Laboratory of Radiation Physics and Technology of Education Ministry of China, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Zou, Yu, E-mail: [Key Laboratory of Radiation Physics and Technology of Education Ministry of China, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Liu, Yao-Guang [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China)


    A multiscale sequence of simulation should be used to predict properties of materials under irradiation. Binary collision theory and molecular dynamics (MDs) method are commonly used to characterize the displacement cascades induced by neutrons in a material. In order to reduce the clock time spent for the MD simulation of damages induced by high-energy primary knock-on atoms (PKAs), the damage zones were split into sub-cascade according to the sub-cascade formation criteria. Two well-known codes, Geant4 and TRIM, were used to simulate high-energy PKA-induced cascades in B{sub 4}C and then produce the secondary knock-on atom (SKA) energy spectrum. It has been found that both high-energy primary knock-on B and C atoms move a long range in the boron carbide. These atoms produce sub-cascades at the tip of trajectory. The energy received by most of the SKAs is <10 keV, which can be used as input to reduce the clock time spent for MD simulation.

  11. Atom Skimmers and Atom Lasers Utilizing Them (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.


    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  12. Universal bosonic tetramers of dimer-atom-atom structure


    Deltuva, A.


    Unstable four-boson states having an approximate dimer-atom-atom structure are studied using momentum-space integral equations for the four-particle transition operators. For a given Efimov trimer the universal properties of the lowest associated tetramer are determined. The impact of this tetramer on the atom-trimer and dimer-dimer collisions is analyzed. The reliability of the three-body dimer-atom-atom model is studied.

  13. Cold collisions of heavy 2Σ molecules with alkali-metal atoms in a magnetic field: Ab initio analysis and prospects for sympathetic cooling of SrOH (+2Σ) by Li (2S) (United States)

    Morita, Masato; Kłos, Jacek; Buchachenko, Alexei A.; Tscherbul, Timur V.


    We use accurate ab initio and quantum scattering calculations to explore the prospects for sympathetic cooling of the heavy molecular radical SrOH (2Σ+) by ultracold Li atoms in a magnetic trap. Our ab initio calculations show that the chemical reaction between spin-polarized Li and SrOH, which occurs on the triplet Li-SrOH potential energy surface (PES), is strongly endothermic and hence energetically forbidden at ultralow temperatures. The chemical reaction Li (2S) +SrOH (2Σ+) →Sr (1S) +LiOH (1Σ+) occurs barrierlessly on the singlet PES and is exothermic by 2505 cm-1. A two-dimensional PES for the triplet electronic state of Li-SrOH is calculated ab initio using the partially spin-restricted coupled cluster method with single, double, and perturbative triple excitations and a large correlation-consistent basis set. The highly anisotropic PES has a deep global minimum in the skewed Li-HOSr geometry with De=4932 cm-1 and saddle points in collinear configurations. Our quantum scattering calculations predict low spin-relaxation rates in fully spin-polarized Li + SrOH collisions with the ratios of elastic to inelastic collision rates well in excess of 100 over a wide range of magnetic fields (1-1000 G) and collision energies (10-5 to 0.1 K), suggesting favorable prospects for sympathetic cooling of SrOH molecules with spin-polarized Li atoms in a magnetic trap. We find that spin relaxation in Li + SrOH collisions occurs via a direct mechanism mediated by the magnetic dipole-dipole interaction between the electron spins of Li and SrOH, and that the indirect (spin-rotation) mechanism is strongly suppressed. The upper limit to the Li + SrOH reaction rate coefficient calculated for the singlet PES using adiabatic capture theory is found to decrease from 4 ×10-10cm3 /s to a limiting value of 3.5 ×10-10cm3 /s with decreasing temperature from 0.1 K to 1 μ K .

  14. Parton-hadron cascade approach at SPS and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    A parton-hadron cascade model which is the extension of hadronic cascade model incorporating hard partonic scattering based on HIJING is presented to describe the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with HIJING and VNI. Baryon density, energy density and temperature for RHIC are calculated within this model. (author)

  15. Population of metastable ionic states in electron-capture collisions

    Energy Technology Data Exchange (ETDEWEB)

    Seim, W.; Mueller, A.; Salzborn, E.


    The population of metastable states of singly and doubly charged rare-gas ions created by electron capture in keV ion-atom collisions is investigated by means of a subsequent electron stripping or capture collision.

  16. Search for a multi-Higgs boson cascade in W+W−bb¯ events with the ATLAS detector in pp collisions at √s = 8 TeV

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abajyan, T.; Abbott, B.; Böhm, Jan; Chudoba, Jiří; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Dos Santos, D.R.; Růžička, P.; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Vrba, Václav


    Roč. 89, č. 3 (2014), "032002-1"-"032002-11" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : CERN * charged particle * Higgs particle * heavy * transverse momentum * missing-energy * p p scattering * cascade * ATLAS * branching ratio Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  17. Electronic structures of 1-adamantanol, cyclohexanol and cyclohexanone and anisotropic interactions with He*(2{sup 3}S) atoms: collision-energy-resolved Penning ionization electron spectroscopy combined with quantum chemistry calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tian Shanxi; Kishimoto, Naoki; Ohno, Koichi


    He I ultraviolet photoelectron spectra and He*(2{sup 3}S) Penning ionization electron spectra have been measured for 1-adamantanol, cyclohexanol and cyclohexanone. Four stable isomeric conformers of cyclohexanol were predicted by Becke's three-parameter hybrid density functional B3LYP/6-31+G(d,p) calculations. Since the orbital reactivity in Penning ionizations is simply related to the electron density extending outside the molecular surface, the theoretical Penning ionization electron spectra were synthesized using the calculated molecular orbital wave functions and ionization potentials. They were in good agreement with the experimental spectra except for the low-electron-energy bands. Collision energy dependence of partial ionization cross sections for the oxygen lone pair orbitals exhibited that there are strong steric hindrances by the neighboring hydrogen atoms in 1-adamantanol and cyclohexanol.

  18. D/sup -/ production by multiple charge-transfer collisions of low-energy D ions and atoms in cesium vapor

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B. Jr.; Willmann, P.A.; Schlachter, A.S.


    The production of D/sup -/ by multiple charge-transfer collisions of a D/sup +/ beam in a cesium-vapor target is considered for D/sup +/ energies above 300 eV. The cross sections relevant to D/sup -/ formation are obtained by a least-squares fit of three-charge-state differential equations to experimental yield curves. Implications for production of intense negative-ion beams are discussed, and speculations are made about extrapolation to lower engeries.

  19. International Conference on the Physics of Electronic and Atomic Collisions (16th), Held in New York, NY on 26 July-1 August 1989. Third Conference Program (United States)


    468 Wed 101 V.J. Montemayor and G. Schiwietz Low-Energy Limit Corrections To The Electronic Stopping Power 469 Wed 102 Equation For Ions N. Ozturk, A.J...Collision System C6 + On He 443 Thu 121 K. Scmner, N. Stotterfoht, V. Montemayor , C.C. Havener, J.K. Swenson, R.A. Phaneuf and F.W. Meyer K-Shell...169 Approximation Hernann Marxer and John S. Briggs Classical Trajectory Monte Carlo Description Of The Dynamical Formation 600 Thu 170 And Structure

  20. Supernumerary rainbows in the angular distribution of scattered projectiles for grazing collisions of fast atoms with a LiF(001) surface. (United States)

    Schüller, A; Winter, H


    Fast atoms with keV energies are scattered under a grazing angle of incidence from a clean and flat LiF(001) surface. For scattering along low index azimuthal directions within the surface plane ("axial surface channeling") we observe pronounced peak structures in the angular distributions for scattered projectiles that are attributed to "supernumerary rainbows." This phenomenon can be understood in the framework of quantum scattering only and is observed here up to projectile energies of 20 keV. We demonstrate that the interaction potential and, in particular, its corrugation for fast atomic projectiles at surfaces can be derived with a high accuracy.

  1. Cross section measurements of the processes occurring in the fragmentation of H{sub n}{sup +} (3 {<=} n {<=} 35) hydrogen clusters induced by high speed (60 keV/u) collisions on helium atoms; Mesure des sections efficaces des differents processus intervenant dans la fragmentation d`agregats d`hydrogene H{sub n}{sup +} (3 {<=} n {<=} 35) induite par collision a haute vitesse (60 keV/u) sur un atome d`helium

    Energy Technology Data Exchange (ETDEWEB)

    Louc, Sandrine [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)


    Different processes involved in the fragmentation of ionised hydrogen clusters H{sub 3} + (H{sub 2}){sub (n-3)/2} (n = 5-35) have been studied in the same experiment: the fragmentation of the cluster is induced by the collision with an helium atom at high velocity ({approx_equal} c/100). The collision is realised in reversed kinematic - clusters are accelerated - which allows the detection of neutral and charged fragments. The different channels of fragmentation are identified by using coincidence techniques. For all the cluster sizes studied the capture cross sections of one electron of the target by the cluster is equal to the capture cross section of the H{sub 3}{sup +} ion. In the same way, the dissociation cross section of the H{sub 3}{sup +} core of the cluster does not depend on cluster size. These fragmentation processes are due to the interaction of H{sub 3}{sup +} core of the cluster and the helium atom without ionization of another component of the cluster. On the contrary, the cross sections of loss of one, two and three molecules by the cluster and the dissociation cross section of the cluster in all its molecular components depends strongly on the cluster size. This dependence is different from the one measured for the metastable decay of the cluster. Thus, the process of loss of molecules induced by a collision should correspond to a different dissociation mechanism. In regard of the singularities observed for the size dependence, the H{sub 9}{sup +}, H{sub 15}{sup +}, H{sub 19}{sup +} and H{sub 29}{sup +} clusters could be the `core` of the biggest clusters. These observation are in agreement with the size effects of smaller magnitude observed for the dissociation cross section (all the processes). The values of the cross section for the process of at least one ionization of the cluster indicate that about 80% of the fragmentation events result from this process. (author) 114 refs., 74 figs., 9 tabs.

  2. Cold molecules, collisions and reactions (United States)

    Hecker Denschlag, Johannes


    I will report on recent experiments of my group where we have been studying the formation of ultracold diatomic molecules and their subsequent inelastic/reactive collisions. For example, in one of these experiments we investigate collisions of triplet Rb2 molecules in the rovibrational ground state. We observe fast molecular loss and compare the measured loss rates to predictions based on universality. In another set of experiments we investigate the formation of (BaRb)+ molecules after three-body recombination of a single Ba+ ion with two Rb atoms in an ultracold gas of Rb atoms. Our investigations indicate that the formed (BaRb)+ molecules are weakly bound and that several secondary processes take place ranging from photodissociation of the (BaRb)+ molecule to reactive collisions with Rb atoms. I will explain how we can experimentally distinguish these processes and what the typical reaction rates are. Support from the German Research foundation DFG and the European Community is acknowledged.

  3. Control of the 133 cesium cold collisions, search for a variation of the fine structure constant using a dual rubidium-cesium atomic fountain; Controle des collisions froides du cesium {sup 133}Cs: tests de la variation de la constante de structure fine a l'aide d'une fontaine atomique double rubidium-cesium

    Energy Technology Data Exchange (ETDEWEB)

    Marion, H


    We developed a method of measurement of the frequency shift due to the collisions between cold atoms. This is the main systematic limitation for the accuracy of the Cs{sup 133} based fountains ({approx} 10{sup -15} in relative frequency). Consequently, we can measure this effect near 0.5% This opens prospects for improvements of the fountains performances in term of accuracy until 10{sup -16}. The fountain has also obtained a stability about 10{sup -14} at 1 s. We discovered for the first time, at very low magnetic field (5 {+-} 1 mG), Feshbach resonances. We also took a new absolute measurement of the hyperfine transition of the Rb{sup 87}, which is the most precise ever carried out and is used now as definition for the secondary standard. By comparing this value with those measured the previous years, we could carry out a test of the stability of the fine structure constant on the level of 10{sup -15} /yr. We led local comparisons between atomic fountains and the other fountains of the laboratory. Most stable it is unrolled with a combined stability of 5.10{sup -14} at 1 s. The behavior of the difference of the two clocks goes like white frequency noise up to 3.10{sup -16}. The assessment of the dual fountain accuracy budget has been evaluated at 7.10{sup -16} for the cesium part and 8.10{sup -16} for the rubidium part. We contributed to the realization of the scale of International Atomic Time, by series of calibrations of hydrogen masers. An atomic comparison of fountain by satellite links was tested between our laboratory and our German counterpart. This measurement has determined the good agreement between the two clocks. (author)

  4. The energy cascade from warm dark matter decays (United States)

    Valdés, M.; Ferrara, A.


    We use a set of Monte Carlo simulations to follow the cascade produced by a primary electron of energy Ein in the intergalactic medium. We choose Ein = 3-10 keV as expected from the decay of one of the most popular warm dark matter (WDM) candidates, sterile neutrinos. Our simulation takes into account processes previously neglected such as free-free interactions with ions and recombinations, and uses the best available cross-sections for collisional ionizations and excitations with H and He and for electron-electron collisions. We precisely derive the fraction of the primary electron energy that heats the gas, ionizes atoms and produces line and continuum photons as a function of the ionization fraction. Handy fitting formulae for all the above energy depositions are provided. By keeping track of the individual photons, we can distinguish between photons in the Lyα resonance and those with energy E radiation emitted by neutral H, which will probably become detectable at z > 6 in the near future by the next generation radio interferometers.

  5. Collision Mechanics

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Servis, D.P.; Zhang, Shengming


    The first section of the present report describes the procedures that are being programmed at DTU for evaluation of the external collision dynamics. Then follows a detailed description of a comprehensive finite element analysis of one collision scenario for MS Dextra carried out at NTUA. The last...

  6. Spin-exchange frequency shift in a cesium atomic fountain

    NARCIS (Netherlands)

    Tiesinga, E.; Verhaar, B.J.; Stoof, H.T.C.; Bragt, D. van


    In connection with experiments aiming at the improvement of the cesium atomic beam clock by means of a fountain of laser-cooled cesium atoms, we present expressions for the line shift and line broadening due to collisions between cesium atoms. The coherent collision cross sections occurring in these

  7. collision zone of an ISR

    CERN Multimedia

    This is a collision region from the world’s first proton collider, the Intersecting Storage Rings. The ISR was used at CERN from 1971-84 to study proton-proton collisions at the highest energy then available (60GeV). When operational, ISR collision regions were surrounded by detectors as shown in the photo. In 1972, the surprising discovery of fragments flying out sideways from head-on proton-proton collisions was the first evidence of quark-quark scattering inside the colliding protons . This was similar to Rutherford’s observation in 1911 of alpha particles scattering off the tiny nucleus inside atoms of gold. The ISR beamtubes had to be as empty as outer space, a vacuum 100 000 times better than other CERN machines at the time.

  8. Collision region of the ISR

    CERN Multimedia


    This is a collision region from the world’s first proton collider, the Intersecting Storage Rings. The ISR was used at CERN from 1971-84 to study proton-proton collisions at the highest energy then available (60GeV). When operational, ISR collision regions were surrounded by detectors as shown in the photo. In 1972, the surprising discovery of fragments flying out sideways from head-on proton-proton collisions was the first evidence of quark-quark scattering inside the colliding protons . This was similar to Rutherford’s observation in 1911 of alpha particles scattering off the tiny nucleus inside atoms of gold. The ISR beamtubes had to be as empty as outer space, a vacuum 100 000 times better than other CERN machines at the time.

  9. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.


    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  10. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.


    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  11. Advective collisions


    Andersson, B.; Gustavsson, K.; Mehlig, B.; Wilkinson, M.


    Small particles advected in a fluid can collide (and therefore aggregate) due to the stretching or shearing of fluid elements. This effect is usually discussed in terms of a theory due to Saffman and Turner [J. Fluid Mech., 1, 16-30, (1956)]. We show that in complex or random flows the Saffman-Turner theory for the collision rate describes only an initial transient (which we evaluate exactly). We obtain precise expressions for the steady-state collision rate for flows with small Kubo number, ...

  12. Howling about Trophic Cascades (United States)

    Kowalewski, David


    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  13. Collisional Losses from a Light-Force Atom Trap (United States)

    Sesko, D.; Walker, T.; Monroe, C.; Gallagher, A.; Wieman, C.

    We have studied the collisional loss rates for very cold cesium atoms held in a spontaneous-force optical trap. In contrast with previous work, we find that collisions involving excitation by the trapping light fields are the dominant loss mechanism. We also find that hyperfine-changing collisions between atoms in the ground state can be significant under some circumstances.

  14. Muonium/muonic hydrogen formation in atomic hydrogen

    Indian Academy of Sciences (India)

    Abstract. The muonium/muonic hydrogen atom formation in µ±–H collisions is in- vestigated, using a two-state approximation in a time dependent formalism. It is found that muonium cross-section results are similar to the cross-section results obtained for positronium formation in e+–H collision. Muonic hydrogen atom ...

  15. Aspects of microstructure evolution under cascade damage conditions

    DEFF Research Database (Denmark)

    Singh, B.N.; Golubov, S.I.; Trinkaus, H.


    The conventional theoretical models describing the damage accumulation, particularly void swelling, under cascade damage conditions do not include treatments of important features such as intracascade clustering of self-interstitial atoms (SIAs) and one-dimensional glide of SIA clusters produced...

  16. The influence of the internal displacement cascades structure on the growth of point defect clusters in radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Becquart, C.S. [Laboratoire de Metalurgie Physique et Genie des Materiaux, UMR 8517, Universite Lille-1, F-59655 Villeneuve d' Ascq Cedex (France)]. E-mail:; Domain, C. [Laboratoire de Metalurgie Physique et Genie des Materiaux, UMR 8517, Universite Lille-1, F-59655 Villeneuve d' Ascq Cedex (France); EDF-R and D Dpt Materiaux et Mecanique des Composants, Les renardieres, F-77818 Moret sur Loing Cedex (France); Malerba, L. [SCK.CEN, Reactor Materials Research Unit, B-2400 Mol (Belgium); Hou, M. [Physique des Solides Irradies et des Nanostructures CP234, Universite Libre de Bruxelles, Bd du Triomphe, B-1050 Brussels (Belgium)


    Displacement cascades obtained by full molecular dynamics and in its binary collision approximation, as well as random point defect distributions, all having similar overall morphologies, are used as input for long-term radiation damage simulation by an object kinetic Monte Carlo method in {alpha}-iron. This model treats naturally point defect fluxes on cascades regions, resulting from cascades generated in other regions, in a realistic way. This study shows the significant effect of the internal structure of displacement cascades and, in particular, SIA agglomeration on the long-term evolution of defect cluster growth under irradiation.

  17. Cold Collisions in a Molecular Synchrotron (United States)

    van der Poel, Aernout P. P.; Zieger, Peter C.; van de Meerakker, Sebastiaan Y. T.; Loreau, Jérôme; van der Avoird, Ad; Bethlem, Hendrick L.


    We study collisions between neutral, deuterated ammonia molecules (ND3 ) stored in a 50 cm diameter synchrotron and argon atoms in copropagating supersonic beams. The advantages of using a synchrotron in collision studies are twofold: (i) By storing ammonia molecules many round-trips, the sensitivity to collisions is greatly enhanced; (ii) the collision partners move in the same direction as the stored molecules, resulting in low collision energies. We tune the collision energy in three different ways: by varying the velocity of the stored ammonia packets, by varying the temperature of the pulsed valve that releases the argon atoms, and by varying the timing between the supersonic argon beam and the stored ammonia packets. These give consistent results. We determine the relative, total, integrated cross section for ND3+Ar collisions in the energy range of 40 - 140 cm-1 , with a resolution of 5 - 10 cm-1 and an uncertainty of 7%-15%. Our measurements are in good agreement with theoretical scattering calculations.

  18. Treatment of the electrons-photons cascade in the high energy gamma transport; Traitement de la cascade electrons - photons dans le transport des gammas de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Riz, D


    The electrons-photons cascade is an important phenomena occurring in gamma transport. This phenomena called also Bremsstrahlung happens whenever electrons, produced in a photon-atom interaction, trigger emission of photons while slowing down in the matter. Some previous calculations have shown that in particular circumstances, a flux of photons going through a lead plate can be multiplied by 3 when Bremsstrahlung is taken into account. This work is dedicated to a new method developed in CEA to take into account Bremsstrahlung in any gamma transport code using multigroup constants. An electron or a positron produced by an incident photon {gamma} will move till it has lost all its energy in collisions or in emissions of Bremsstrahlung {gamma}'. The path of the electron is short so all the Bremsstrahlung {gamma}' are assumed to be produced at the point of creation of the electron or positron. The result of this method is the knowledge of a transfer probability {gamma}{yields}{gamma}' that can be used in classical gamma transport codes. (A.C.)

  19. Cascades in helical turbulence

    CERN Document Server

    Ditlevsen, P D


    The existence of a second quadratic inviscid invariant, the helicity, in a turbulent flow leads to coexisting cascades of energy and helicity. An equivalent of the four-fifth law for the longitudinal third order structure function, which is derived from energy conservation, is easily derived from helicity conservation cite{Procaccia,russian}. The ratio of dissipation of helicity to dissipation of energy is proportional to the wave-number leading to a different Kolmogorov scale for helicity than for energy. The Kolmogorov scale for helicity is always larger than the Kolmogorov scale for energy so in the high Reynolds number limit the flow will always be helicity free in the small scales, much in the same way as the flow will be isotropic and homogeneous in the small scales. A consequence is that a pure helicity cascade is not possible. The idea is illustrated in a shell model of turbulence.

  20. The degenerate-internal-states approximation for cold collisions

    NARCIS (Netherlands)

    Maan, A.C.; Tiesinga, E.; Stoof, H.T.C.; Verhaar, B.J.


    The Degenerate-Internal-States approximation as well as its first-order correction are shown to provide a convenient method for calculating elastic and inelastic collision amplitudes for low temperature atomic scattering.

  1. Fractal Levy correlation cascades

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo [Department of Technology Management, Holon Institute of Technology, Holon 58102 (Israel); Klafter, Joseph [School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)


    The correlation structure of a wide class of random processes, driven by stable non-Gaussian Levy noise sources, is explored. Since these noises are of infinite variance, correlations cannot be measured via auto-covariance functions. Exploiting the underlying Poissonian structure of Levy noises, we present a cascade of 'Poissonian correlation functions' which characterize the correlation structure and the process distribution of the processes under consideration. The theory developed is applied to various examples including motions, Ornstein-Uhlenbeck and moving-average processes, and fractional motions and noises-all driven by stable non-Gaussian Levy noises. (fast track communication)

  2. Cascading Corruption News

    DEFF Research Database (Denmark)

    Damgaard, Mads


    Through a content analysis of 8,800 news items and six months of front pages in three Brazilian newspapers, all dealing with corruption and political transgression, this article documents the remarkable skew of media attention to corruption scandals. The bias is examined as an information...... phenomenon, arising from systemic and commercial factors of Brazil’s news media: An information cascade of news on corruption formed, destabilizing the governing coalition and legitimizing the impeachment process of Dilma Rousseff. As this process gained momentum, questions of accountability were disregarded...

  3. Role of spontaneous emission in ultracold two-color optical collisions (United States)

    Sukenik, C. I.; Walker, T.


    We have observed violet photon emission resulting from energy-pooling collisions between ultracold Rb atoms illuminated by two colors of near-resonant infrared laser light. We have used this emission as a probe of doubly excited state ultracold collision dynamics. By varying the detuning of the lasers, we have clearly identified the effect of spontaneous emission on the collision process.

  4. Atomic physics with highly charged ions. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.


    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  5. Electron capture and ionization processes in high velocity Cn+, C-Ar and Cn+, C-He collisions


    Labaigt, G; Jorge, A; Illescas, C; Béroff, K; Dubois, A; Pons, B; Chabot, M


    International audience; Single and double electron capture as well as projectile single and multiple ionization processes occurring in 125keV/u Cn+-He, Ar collisions have been studied experimentally and theoretically for 1 ≤ n ≤ 5. The Independent atom and electron (IAE) model has been used to describe the cluster-atom collision. The ion/atom-atom probabilities required for the IAE simulations have been determined by classical trajectory Monte Carlo (CTMC) and semiclassical atomic orbital clo...

  6. Transport-reaction model for defect and carrier behavior within displacement cascades in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R.; Myers, Samuel Maxwell,


    A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defects within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.

  7. Magnetic trapping of cold bromine atoms. (United States)

    Rennick, C J; Lam, J; Doherty, W G; Softley, T P


    Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.

  8. Global Lambda hyperon polarization in nuclear collisions

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Federičová, P.; Harlenderová, A.; Kocmánek, Martin; Kvapil, J.; Lidrych, J.; Rusňák, Jan; Rusňáková, O.; Šaur, Miroslav; Šimko, Miroslav; Šumbera, Michal; Trzeciak, B. A.


    Roč. 548, č. 7665 (2017), č. článku 23004. ISSN 0028-0836 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * heavy ion collisions * vorticity Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 40.137, year: 2016

  9. Chirality in molecular collision dynamics (United States)

    Lombardi, Andrea; Palazzetti, Federico


    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  10. Cascade Distillation System Development (United States)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah


    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  11. Unsteady turbulence cascades. (United States)

    Goto, Susumu; Vassilicos, J C


    We have run a total of 311 direct numerical simulations (DNSs) of decaying three-dimensional Navier-Stokes turbulence in a periodic box with values of the Taylor length-based Reynolds number up to about 300 and an energy spectrum with a wide wave-number range of close to -5/3 power-law dependence at the higher Reynolds numbers. On the basis of these runs, we have found a critical time when (i) the rate of change of the square of the integral length scale turns from increasing to decreasing, (ii) the ratio of interscale energy flux to high-pass filtered turbulence dissipation changes from decreasing to very slowly increasing in the inertial range, (iii) the signature of large-scale coherent structures disappears in the energy spectrum, and (iv) the scaling of the turbulence dissipation changes from the one recently discovered in DNSs of forced unsteady turbulence and in wind tunnel experiments of turbulent wakes and grid-generated turbulence to the classical scaling proposed by G. I. Taylor [Proc. R. Soc. London, Ser. A 151, 421 (1935)1364-502110.1098/rspa.1935.0158] and A. N. Kolmogorov [Dokl. Akad. Nauk SSSR 31, 538 (1941)]. Even though the customary theoretical basis for this Taylor-Kolmogorov scaling is a statistically stationary cascade where large-scale energy flux balances dissipation, this is not the case throughout the entire time range of integration in all our DNS runs. The recently discovered dissipation scaling can be reformulated physically as a situation in which the dissipation rates of the small and large scales evolve together. We advance two hypotheses that may form the basis of a theoretical approach to unsteady turbulence cascades in the presence of large-scale coherent structures.

  12. Determination of Atomic Data Pertinent to the Fusion Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Reader, J.


    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  13. Theory of Electron-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Donald C


    Collisions of electrons with atoms and ions play a crucial role in the modeling and diagnostics of fusion plasmas. In the edge and divertor regions of magnetically confined plasmas, data for the collisions of electrons with neutral atoms and low charge-state ions are of particular importance, while in the inner region, data on highly ionized species are needed. Since experimental measurements for these collisional processes remain very limited, data for such processes depend primarily on the results of theoretical calculations. Over the period of the present grant (January 2006 - August 2009), we have made additional improvements in our parallel scattering programs, generated data of direct fusion interest and made these data available on The Controlled Fusion Atomic Data Center Web site at Oak Ridge National Laboratory. In addition, we have employed these data to do collsional-radiative modeling studies in support of a variety of experiments with magnetically confined fusion plasmas.

  14. Molecular dynamics simulation of radiation damage cascades in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Buchan, J. T. [Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6845 (Australia); Robinson, M. [Nanochemistry Research Institute, Curtin University, Perth, Western Australia 6845 (Australia); Christie, H. J.; Roach, D. L.; Ross, D. K. [Physics and Materials Research Centre, School of Computing, Science and Engineering, University of Salford, Salford, Greater Manchester M5 4WT (United Kingdom); Marks, N. A. [Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6845 (Australia); Nanochemistry Research Institute, Curtin University, Perth, Western Australia 6845 (Australia)


    Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%.

  15. MCDF calculations of Auger cascade processes (United States)

    Beerwerth, Randolf; Fritzsche, Stephan


    We model the multiple ionization of near-neutral core-excited atoms where a cascade of Auger processes leads to the emission of several electrons. We utilize the multiconfiguration Dirac-Fock (MCDF) method to generate approximate wave functions for all fine-structure levels and to account for all decays between them. This approach allows to compute electron spectra, the population of final-states and ion yields, that are accessible in many experiments. Furthermore, our approach is based on the configuration interaction method. A careful treatment of correlation between electronic configurations enables one to model three-electron processes such as an Auger decay that is accompanied by an additional shake-up transition. Here, this model is applied to the triple ionization of atomic cadmium, where we show that the decay of inner-shell 4p holes to triply-charged final states is purely due to the shake-up transition of valence 5s electrons. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  16. Inferring network structure from cascades (United States)

    Ghonge, Sushrut; Vural, Dervis Can


    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  17. Cascade Mountain Range in Oregon (United States)

    Sherrod, David R.


    The Cascade mountain system extends from northern California to central British Columbia. In Oregon, it comprises the Cascade Range, which is 260 miles long and, at greatest breadth, 90 miles wide (fig. 1). Oregon’s Cascade Range covers roughly 17,000 square miles, or about 17 percent of the state, an area larger than each of the smallest nine of the fifty United States. The range is bounded on the east by U.S. Highways 97 and 197. On the west it reaches nearly to Interstate 5, forming the eastern margin of the Willamette Valley and, farther south, abutting the Coast Ranges. 

  18. Three-body collision contributions to recombination and collision-induced dissociation. 1: Cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Pack, R.T.; Walker, R.B.; Kendrick, B.K.


    Atomic and molecular recombination and collision-induced dissociation (CID) reactions comprise two of the most fundamental types of chemical reactions. They are important in all gas phase chemistry; for example, about half of the 196 reactions identified as important in combustion chemistry are recombination or CID reactions. Many of the current chemical kinetics textbooks and kinetics papers treat atomic and molecular recombination and CID as occurring only via sequences of two-body collisions. Actually, there is considerable evidence from experiment and classical trajectory calculations for contributions by true three-body collisions to the recombination of atomic and diatomic radicals, and that evidence is reviewed. Then, an approximate quantum method treating both two-body and three-body collisions simultaneously and on equal footing is used to calculate cross sections for the reaction Ne{sub 2} + H {rightleftharpoons} Ne + Ne + H. The results provide clear quantum evidence that direct three-body collisions do contribute significantly to recombination and CID.

  19. Quasimolecular emission near the Xe(5p 56s 1,3 P 1 - 5p 6 1 S 0) and Kr (4p 55s 1,3 P 1 - 4p 6 1 S 0) resonance lines induced by collisions with He atoms (United States)

    Alekseeva, O. S.; Devdariani, A. Z.; Grigorian, G. M.; Lednev, M. G.; Zagrebin, A. L.


    This study is devoted to the theoretical investigation of the quasimolecular emission of Xe*-He and Kr*-He collision pairs near the Xe (5p 56s 1,3 P 1 - 5p 6 1 S 0) and Kr (4p 55s 1,3 P 1 - 4p 6 1 S 0) resonance atomic lines. The potential curves of the quasimolecules Xe(5p 56s) + He and Kr(4p 55s) + He have been obtained with the use of the effective Hamiltonian and pseudopotential methods. Based on these potential curves the processes of quasimolecular emission of Xe*+He and Kr*+He mixtures have been considered and the spectral distributions I(ħΔω) of photons emitted have been obtained in the framework of quasistatic approximation.

  20. Cascading effects following intervention. (United States)

    Patterson, Gerald R; Forgatch, Marion S; Degarmo, David S


    Four different sources for cascade effects were examined using 9-year process and outcome data from a randomized controlled trial of a preventive intervention using the Parent Management Training-Oregon Model (PMTO™). The social interaction learning model of child antisocial behavior serves as one basis for predicting change. A second source addresses the issue of comorbid relationships among clinical diagnoses. The third source, collateral changes, describes events in which changes in one family member correlate with changes in another. The fourth component is based on the long-term effects of reducing coercion and increasing positive interpersonal processes within the family. New findings from the 9-year follow-up show that mothers experienced benefits as measured by standard of living (i.e., income, occupation, education, and financial stress) and frequency of police arrests. It is assumed that PMTO reduces the level of coercion, which sets the stage for a massive increase in positive social interaction. In effect, PMTO alters the family environment and thereby opens doors to healthy new social environments.

  1. Injectorless quantum cascade lasers (United States)

    Katz, Simeon; Vizbaras, Augustinas; Meyer, Ralf; Amann, Markus-Christian


    This review focuses on recent progress on injectorless quantum cascade lasers, an increasingly attractive approach in comparison to the "classical" injectorbased concepts. This particularly holds for the wavelength range between 7 and 12 μm, where fundamental vibrational modes of many important molecules exist, so that sensor systems for medical, industrial and military applications highly benefit from these laser sources. The atmospheric transmission window between 8 and 12 μm, with very low damping, also enables free space applications like communication, military countermeasures, and environmental sensors. Injectorless devices operate closer to the original design principle for intersubband lasers as suggested by Suris and Kazarinov [Sov. Phys. Semicond. 5, 707 (1971)]. Therefore, a short description of their features is given in comparison to injectorbased devices. Within recent years, injectorless devices have seen rapid improvement in performance. Best injectorless devices reach threshold current densities of 450 A/cm2 at 300 K, a factor of 1.6 smaller than that for the best injectorbased devices. Their output efficiency has also increased from 2% to more than 7% within the last 2 years, reaching comparable levels and making the injectorless device concept competitive and very attractive for applications.

  2. Collision Repair Campaign (United States)

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  3. Anomalons, honey, and glue in nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gyulassy, M.


    In these lectures, selected topics in nuclear collisions in the energy range 10/sup -1/ to 10/sup 3/ GeV per nucleon are discussed. The evidence for anomalous projectile fragments with short mean free paths is presented. Theoretical speculations on novel topological nuclear excitation and on quark-nuclear complexes in connection with anomalons are discussed. Recent tests for pion field instabilities are presented. Then evidence for collective nuclear flow phenomena are reviewed. Global event analysis and cascade simulations are presented. We address the question of whether nuclear flow is like viscous honey. Finally, the criteria for the production of a quark-gluon plasma are discussed. Nuclear stopping power and longitudinal growth at high energies are considered. Results from cosmic ray data show that nuclear collision at TeV per nucleon energies are likely to product a plasma.

  4. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)


    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  5. Atomic Physics

    CERN Document Server

    Foot, Christopher J


    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  6. Cascade dynamics on complex networks.


    Hackett, Adam W.


    peer-reviewed The network topologies on which many natural and synthetic systems are built provide ideal settings for the emergence of complex phenomena. One well-studied manifestation of this, called a cascade or avalanche, is observed when interactions between the components of a system allow an initially localized effect to propagate globally. For example, the malfunction of technological systems like email networks or electrical power grids is often attributable to a cascade o...

  7. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.


    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  8. The blue light indicator in rubidium 5S-5P-5D cascade excitation (United States)

    Raja, Waseem; Ali, Md. Sabir; Chakrabarti, Alok; Ray, Ayan


    The cascade system has played an important role in contemporary research areas related to fields like Rydberg excitation, four wave mixing and non-classical light generation, etc. Depending on the specific objective, co or counter propagating pump-probe laser experimental geometry is followed. However, the stepwise excitation of atoms to states higher than the first excited state deals with increasingly much fewer number of atoms even compared to the population at first excited level. Hence, one needs a practical indicator to study the complex photon-atom interaction of the cascade system. Here, we experimentally analyze the case of rubidium 5S → 5P → 5D as a specimen of two-step excitation and highlight the efficacy of monitoring one branch, which emits 420 nm, of associated cascade decay route 5D → 6P → 5S, as an effective monitor of the coherence in the system.

  9. Collisional Cooling of Light Ions by Cotrapped Heavy Atoms. (United States)

    Dutta, Sourav; Sawant, Rahul; Rangwala, S A


    We experimentally demonstrate cooling of trapped ions by collisions with cotrapped, higher-mass neutral atoms. It is shown that the lighter ^{39}K^{+} ions, created by ionizing ^{39}K atoms in a magneto-optical trap (MOT), when trapped in an ion trap and subsequently allowed to cool by collisions with ultracold, heavier ^{85}Rb atoms in a MOT, exhibit a longer trap lifetime than without the localized ^{85}Rb MOT atoms. A similar cooling of trapped ^{85}Rb^{+} ions by ultracold ^{133}Cs atoms in a MOT is also demonstrated in a different experimental configuration to validate this mechanism of ion cooling by localized and centered ultracold neutral atoms. Our results suggest that the cooling of ions by localized cold atoms holds for any mass ratio, thereby enabling studies on a wider class of atom-ion systems irrespective of their masses.

  10. Interband Cascade Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui Q. [Univ. of Oklahoma, Norman, OK (United States); Santos, Michael B. [Univ. of Oklahoma, Norman, OK (United States); Johnson, Matthew B. [Univ. of Oklahoma, Norman, OK (United States)


    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  11. Atomic and molecular beams production and collimation

    CERN Document Server

    Lucas, Cyril Bernard


    Atomic and molecular beams are employed in physics and chemistry experiments and, to a lesser extent, in the biological sciences. These beams enable atoms to be studied under collision-free conditions and allow the study of their interaction with other atoms, charged particles, radiation, and surfaces. Atomic and Molecular Beams: Production and Collimation explores the latest techniques for producing a beam from any substance as well as from the dissociation of hydrogen, oxygen, nitrogen, and the halogens.The book not only provides the basic expressions essential to beam design but also offers

  12. Production of Hydrated Metal Ions by Fast Ion or Atom Beam Sputtering. Collision-Induced Dissociation and Successive Hydration Energies of Gaseous Cu+ with 1-4 Water Molecules

    NARCIS (Netherlands)

    Magnera, Thomas F.; David, Donald E.; Stulik, Dusan; Orth, Robert G.; Jonkman, Harry T.; Michl, Josef


    Low-temperature sputtering of frozen aqueous solutions of metal salts, of hydrated crystalline transition-metal salts, of frosted metal surfaces, and of frosted metal salts with kiloelectronvolt energy rare gas atoms or ions produces copious amounts of cluster ions, among which M+(H2O)n and/or

  13. Global Λ hyperon polarization in nuclear collisions (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; de La Barca Sánchez, M. Calderón; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.


    The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have yet been found. Since vorticity represents a local rotational structure of the fluid, spin-orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark-gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. These data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that

  14. Particle energy cascade in the intergalactic medium (United States)

    Valdés, M.; Evoli, C.; Ferrara, A.


    We study the development of high-energy (Ein new code MEDEA (Monte Carlo Energy Deposition Analysis) which includes Bremsstrahlung and inverse Compton (IC) processes, along with H/He collisional ionizations and excitations, and electron-electron collisions. The cascade energy partition into heating, excitations and ionizations depends primarily not only on the IGM ionized fraction, xe, but also on redshift, z, due to IC on cosmic microwave background (CMB) photons. While Bremsstrahlung is unimportant under most conditions, IC becomes largely dominant at energies Ein >= 1 MeV. The main effect of IC at injection energies Ein = 1 GeV CMB photons are preferentially upscattered within the X-ray spectrum (hν > 104 eV) and can free stream to the observer. Complete tables of the fractional energy depositions as a function of redshift, Ein and ionized fraction are given. Our results can be used in many astrophysical contexts, with an obvious application related to the study of decaying/annihilating dark matter (DM) candidates in the high-z Universe.

  15. Cascaded failures in weighted networks (United States)

    Mirzasoleiman, Baharan; Babaei, Mahmoudreza; Jalili, Mahdi; Safari, Mohammadali


    Many technological networks can experience random and/or systematic failures in their components. More destructive situations can happen if the components have limited capacity, where the failure in one of them might lead to a cascade of failures in other components, and consequently break down the structure of the network. In this paper, the tolerance of cascaded failures was investigated in weighted networks. Three weighting strategies were considered including the betweenness centrality of the edges, the product of the degrees of the end nodes, and the product of their betweenness centralities. Then, the effect of the cascaded attack was investigated by considering the local weighted flow redistribution rule. The capacity of the edges was considered to be proportional to their initial weight distribution. The size of the survived part of the attacked network was determined in model networks as well as in a number of real-world networks including the power grid, the internet in the level of autonomous system, the railway network of Europe, and the United States airports network. We found that the networks in which the weight of each edge is the multiplication of the betweenness centrality of the end nodes had the best robustness against cascaded failures. In other words, the case where the load of the links is considered to be the product of the betweenness centrality of the end nodes is favored for the robustness of the network against cascaded failures.

  16. Non-thermodynamic approach to including bombardment-induced post-cascade redistribution of point defects in dynamic Monte Carlo code

    CERN Document Server

    Ignatova, V A; Katardjiev, I V


    The redistribution of the elements as a result of atomic relocations produced by the ions and the recoils due to the ballistic and transport processes is investigated by making use of a dynamic Monte Carlo code. Phenomena, such as radiation-enhanced diffusion (RED) and bombardment-induced segregation (BIS) triggered by the ion bombardment may also contribute to the migration of atoms within the target. In order to include both RED and BIS in the code, we suggest an approach which is considered as an extension of the binary collision approximation, i.e. it takes place 'simultaneously' with the cascade and acts as a correction to the particle redistribution for low energies. Both RED and BIS models are based on the common approach to treat the transport processes as a result of a random migration of point defects (vacancies and interstitials) according to a probability given by a pre-defined Gaussian. The models are tested and the influence of the diffusion and segregation is illustrated in the cases of 12 keV ...

  17. Collision Risk and Damage after Collision

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Hansen, Peter Friis; Nielsen, Lars Peter


    The paper presents a new and complete procedure for calculation of ship-ship collision rates on specific routes and the hull damage caused by such collisions.The procedure is applied to analysis of collision risks for Ro-Ro pasenger vessels. Given a collision the spatial probability distribution...... of the damage risk is calculated by a numerical procedure. These directly calculated distributions for hull damages are subsequently approximated by analytical expressions suited for probabilistic damage stability calculations similar to the procedure described in IMO regulation A.265.Numerical results...... are presented for threee different Ro-Ro passenger vessels of length 98 m 150 m and 180 m, respectively operating at three different routes. These routes are the Danish Great Belt route, a Finland-Sweden route and the Dover-Calais route....

  18. Collision frequency of Lennard–Jones fluids at high densities by ...

    Indian Academy of Sciences (India)

    We showed that during collision, the time spent by an atom in the fields of force of other atoms is so small compared with its relaxation time, leading to a possible reduction in local velocity autocorrelation between atoms. Keywords. Viscosity; diffusion; molecular dynamics; theory of simple liquids. PACS Nos 51.20.+d; 61.20.

  19. Linear Atom Guides: Guiding Rydberg Atoms and Progress Toward an Atom Laser (United States)

    Traxler, Mallory A.

    In this thesis, I explore a variety of experiments within linear, two-wire, magnetic atom guides. Experiments include guiding of Rydberg atoms; transferring between states while keeping the atoms contained within the guide; and designing, constructing, and testing a new experimental apparatus. The ultimate goal of the atom guiding experiments is to develop a continuous atom laser. The guiding of 87Rb 59D5/2 Rydberg atoms is demonstrated. The evolution of the atoms is driven by the combined effects of dipole forces acting on the center-of-mass degree of freedom as well as internal-state transitions. Time delayed microwave and state-selective field ionization, along with ion detection, are used to investigate the evolution of the internal-state distribution as well as the Rydberg atom motion while traversing the guide. The observed decay time of the guided-atom signal is about five times that of the initial state. A population transfer between Rydberg states contributes to this lengthened lifetime, and also broadens the observed field ionization spectrum. The population transfer is attributed to thermal transitions and, to a lesser extent, initial state-mixing due to Rydberg-Rydberg collisions. Characteristic signatures in ion time-of-flight signals and spatially resolved images of ion distributions, which result from the coupled internal-state and center-of-mass dynamics, are discussed. Some groups have used a scheme to make BECs where atoms are optically pumped from one reservoir trap to a final state trap, irreversibly transferring those atoms from one trap to the other. In this context, transfer from one guided ground state to another is studied. In our setup, before the atoms enter the guide, they are pumped into the | F = 1, mF = --1> state. Using two repumpers, one tuned to the F = 1 → F' = 0 transition (R10) and the other tuned to the F = 1 → F' = 2 transition (R12), the atoms are pumped between these guided states. Magnetic reflections within the guide


    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Heinisch, Howard L.; Kurtz, Richard J.; Wirth, Brian D.


    Molecular dynamics simulation was employed to investigate the irradiation damage properties of bulk tungsten at 1025 K (0.25 melting temperature). A comprehensive data set of primary cascade damage was generated up to primary knock-on atom (PKA) energies 100 keV. The dependence of the number of surviving Frenkel pairs (NFP) on the PKA energy (E) exhibits three different characteristic domains presumably related to the different cascade morphologies that form. The low-energy regime < 0.2 keV is characterized by a hit-or-miss type of Frenkel pair (FP) production near the displacement threshold energy of 128 eV. The middle regime 0.3 – 30 keV exhibits a sublinear dependence of log(NFP) vs log(E) associated with compact cascade morphology with a slope of 0.73. Above 30 keV, the cascade morphology consists of complex branches or interconnected damage regions. In this extended morphology, large interstitial clusters form from superposition of interstitials from nearby damage regions. Strong clustering above 30 keV results in a superlinear dependence of log(NFP) vs log(E) with a slope of 1.365. At 100 keV, an interstitial cluster of size 92 and a vacancy cluster of size 114 were observed.

  1. Atomic physics

    CERN Document Server

    Born, Max


    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  2. Early Atomism

    Indian Academy of Sciences (India) Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  3. Macroscopic and microscopic description of HE-HI collisions; classical equations of motion calculations. [Rapidity, cross sections, central and noncentral collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A. R.


    The study of high energy heavy ion reactions includes the three principle a priori approaches used for central collisions, namely, hydrodynamics, cascade--Boltzman equation, and the classical equations of motion. While no clearly justified central or near central collisions are found, the classical equations of motion are used to illustrate some general features of these reactions. It is expected that the hot nuclear matter produced in such collisions is a dense, viscous, and thermally conductive fluid with important nonequilibrium and nonclassical features, rapidity, distribution, noncentral collisions, potential dependent effects for a given two-body scattering, and c.m. cross sections for a central collision with given parameters are among the properties considered. 12 references. (JFP)

  4. Non-equilibrium properties of interatomic potentials in cascade simulations in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Sand, A.E., E-mail: [Department of Physics, P.O. Box 43, FI-00014, University of Helsinki (Finland); Dequeker, J.; Becquart, C.S. [Unité Matériaux et Transformations, UMET, UMR 8207, Université de Lille 1, F-59655, Villeneuve d’Ascq (France); Domain, C. [EDF-R& D, Département MMC, Les renardières, F-77818, Moret sur Loing (France); Nordlund, K. [Department of Physics, P.O. Box 43, FI-00014, University of Helsinki (Finland)


    The reliability of atomistic simulations of primary radiation damage hinges on the quality of the interatomic potential. However, irradiation induced collision cascades involve strongly non-equilibrium processes, and thus depend on properties of potentials not usually included in the potential fitting. Here, we compare the predictions of five interatomic potentials for tungsten in cascade simulations with primary knock-on energies ranging from threshold energies for defect production, up to 200 keV. The highest energies represent the energetic recoils induced by the 14 MeV fusion neutron irradiation. We further compare properties related to dynamic collisions predicted by the different potentials to DFT calculations, to assess the accuracy of these predictions. We also present two hardened versions of a recent EAM-type potential, and demonstrate explicitly the importance of carefully adjusting the range of the potential at interaction distances smaller than those included in the fitting of potentials to equilibrium properties.

  5. Supersymmetric cascade decays at NLO

    Energy Technology Data Exchange (ETDEWEB)

    Popenda, Eva; Muehlleitner, Margarete; Hangst, Christian [KIT, Institut fuer Theoretische Physik (Germany); Kraemer, Michael [RWTH Aachen University, Institut fuer Theoretische Teilchenphysik und Kosmologie (Germany); Spira, Michael [Paul Scherrer Institut, Theory Group LTP (Switzerland)


    The search for supersymmetric particles and determination of their properties is a major task at the LHC and is based on the analysis of the cascade decay chains in which SUSY particles are produced. This project aims at improving predictions for SUSY cascade decays through the inclusion of higher-order corrections in the production and decay processes and by embedding them in a fully flexible Monte Carlo program. In this talk we report on the progress of the implementation of squark pair production followed by the decay into a quark and the lightest neutralino including supersymmetric QCD corrections at next-to-leading order in a completely differential form.

  6. Bosonic cascades of indirect excitons (United States)

    Nalitov, A. V.; De Liberato, S.; Lagoudakis, P.; Savvidis, P. G.; Kavokin, A. V.


    Recently, the concept of the terahertz bosonic cascade laser (BCL) based on a parabolic quantum well (PQW) embedded in a microcavity was proposed. We refine this proposal by suggesting transitions between indirect exciton (IX) states as a source of terahertz emission. We explicitly propose a structure containing a narrow-square QW and a wide-parabolic QW for the realisation of a bosonic cascade. Advantages of this type of structures are in large dipole matrix elements for terahertz transitions and in long exciton radiative lifetimes which are crucial for realisation of threshold and quantum efficiency BCLs.

  7. Low Saturation Intensities in Two-Photon Ultracold Collisions (United States)

    Sukenik, C. I.; Hoffmann, D.; Bali, S.; Walker, T.


    We have observed violet photon emission resulting from energy-pooling collisions between ultracold Rb atoms illuminated by two colors of near-resonant infrared laser light. We have used this emission as a probe of doubly excited state ultracold collision dynamics. We have observed the lowest saturation intensity for light-induced ultracold collisions seen to date which we identify as due to depletion of incoming ground state flux. We have also varied the detuning of the lasers which allows us to clearly identify the effect of spontaneous emission and optical shielding.

  8. LEXUS heavy ion collisions

    CERN Document Server

    Sang Yong Jeon


    We use a Glauber-like approach to describe very energetic nucleus- nucleus collisions as a sequence of binary nucleon-nucleon collisions. No free parameters are needed: all the information comes from simple parametrizations of nucleon-nucleon collision data. Produced mesons are assumed not to interact with each other or with the original baryons. Comparisons are made to published experimental measurements of baryon rapidity and transverse momentum distributions, negative hadron rapidity and transverse momentum distributions, average multiplicities of pions, kaons, hyperons, and antihyperons, and zero degree energy distributions for sulfur-sulfur collisions at 200 GeV/c per nucleon and for lead-lead collisions at 158 GeV/c per nucleon. Good agreement is found except that the number of strange particles produced, especially antihyperons, is too small compared with experiment. We call this model LEXUS: Linear EXtrapolation of Ultrarelativistic nucleon-nucleon Scattering to heavy ion collisions. (11 refs).

  9. Solar System Evolution through Planetesmial Collisions (United States)

    Trierweiler, Isabella; Laughlin, Greg


    Understanding planet formation is crucial to unraveling the history of our Solar System. Refining our theory of planet formation has become particularly important as the discovery of exoplanet systems through missions like Kepler have indicated that our system is incredibly unique. Compared to other systems around Sun-like stars, we are missing a significant amount of mass in the inner region of our solar system.A leading explanation for the low mass of the terrestrial planets is Jupiter’s Grand Tack. In this theory, the existence of the rocky planets is thought to be the result of the migration of Jupiter through the inner solar system. This migration could spark a collisional cascade of planetesimals, allowing planetesimals to drift inwards and shepherd an original set of massive planets into the Sun, thus explaining the absence of massive planets in our current system. The remnants of the planetesimals would them become the building blocks for a new generation of smaller, rocky planets.Using the N-body simulator REBOUND, we investigate the dynamics of the Grand Tack. We focus in particular on collisional cascades, which are thought to cause the inward planetesimal drift. We first modify the simulator to account for fragmentation outcomes in planetesimal collisions. Modeling disks of varying initial conditions, we then characterize the disk conditions needed to begin a cascade and shed light on the solar system’s dynamics just prior to the formation of the terrestrial planets.

  10. Positronium impact ionization of Alkali atoms

    CERN Document Server

    Ghosh, D


    Target ionization processes of alkali atoms by Positronium impact are investigated. Calculations are performed in the frame work of model potential formalism using the Coulomb distorted eikonal approximation. Interesting qualitative features are noted both in the scattered Ps and the ejected electron distributions in differential as well as double differential levels of the collision cross sections.

  11. Midair Collisions: Aeromedical Considerations. (United States)


  12. Trapping cold ground state argon atoms. (United States)

    Edmunds, P D; Barker, P F


    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  13. Cascaded logic gates in nanophotonic plasmon networks

    National Research Council Canada - National Science Library

    Wei, Hong; Wang, Zhuoxian; Tian, Xiaorui; Käll, Mikael; Xu, Hongxing


    ... integrated logic units and cascade devices have not been reported. Here we demonstrate that a plasmonic binary NOR gate, a 'universal logic gate', can be realized through cascaded OR and NOT gates in four-terminal plasmonic nanowire networks...

  14. Cascade Support Vector Machines with Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    Oliver Kramer


    Full Text Available Cascade support vector machines have been introduced as extension of classic support vector machines that allow a fast training on large data sets. In this work, we combine cascade support vector machines with dimensionality reduction based preprocessing. The cascade principle allows fast learning based on the division of the training set into subsets and the union of cascade learning results based on support vectors in each cascade level. The combination with dimensionality reduction as preprocessing results in a significant speedup, often without loss of classifier accuracies, while considering the high-dimensional pendants of the low-dimensional support vectors in each new cascade level. We analyze and compare various instantiations of dimensionality reduction preprocessing and cascade SVMs with principal component analysis, locally linear embedding, and isometric mapping. The experimental analysis on various artificial and real-world benchmark problems includes various cascade specific parameters like intermediate training set sizes and dimensionalities.

  15. Activation Cascading in Sign Production (United States)

    Navarrete, Eduardo; Peressotti, Francesca; Lerose, Luigi; Miozzo, Michele


    In this study, we investigated how activation unfolds in sign production by examining whether signs that are not produced have their representations activated by semantics (cascading of activation). Deaf signers were tested with a picture-picture interference task. Participants were presented with pairs of overlapping pictures and named the green…

  16. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers. (United States)

    Lu, Feng; Belkin, Mikhail A


    We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.

  17. Dynamics robustness of cascading systems.

    Directory of Open Access Journals (Sweden)

    Jonathan T Young


    Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it

  18. In-cascade ionization effects on defect production in 3C silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Haizhou [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA; Zhang, Yanwen [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Weber, William J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA


    Understanding how energy deposited in electronic and atomic subsystems may affect defect dynamics is a long-standing fundamental challenge in materials research. The coupling of displacement cascades and in-cascade ionization-induced annealing are investigated in silicon carbide (SiC). A delayed damage accumulation under ion irradiation is revealed with a linear dependence as a function of both increasing ionization and increasing ratio of electronic to nuclear energy deposition. An in-cascade healing mechanism is suggested with a low threshold value of electronic energy loss (~1.0 keV nm-1). The in-cascade ionization effects must be considered in predicting radiation performance of SiC.

  19. Cascaded Bragg scattering in fiber optics. (United States)

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G


    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  20. Davisson-Germer Prize in Atomic or Surface Physics Talk: Few-body processes in the quantum limit (United States)

    Greene, Chris


    Recent theoretical studies of low energy collisions and resonant processes will be reviewed. These include the process of molecular dissociation induced by electron collision, and the role of universal Efimov physics in collisions of three or four atoms in an ultracold gas. The role of experiment in testing and advancing our understanding of these few-body studies will also be discussed.

  1. Multiple production of mesons in Au+Au and Pb+Pb collisions

    CERN Document Server

    Guptaroy, P; Bhattacharya, D P; Bhattacharya, S


    The study presented here pertains to the model-based analyses for production of some important charged secondaries in lead-lead and gold-gold collisions at AGS, SPS and RHIC energies. We examine the role of a particular version of the Sequential Chain Model (SCM) in interpreting the data on the production of only the secondary mesons of the most abundant variety in relativistic nucleus-nucleus collisions. The initial results derived for basic pp collisions have been transformed into the corresponding cases for nucleus-nucleus collisions through the appropriate physical-mathematical formalisms. The agreement between the model of choice and the measured data for the most important varieties of mesons in the two above-stated nuclear collisions could so far be rated to be barely modest. This is presumably due to our neglect of the effects of rescattering and cascading, while we choose to obtain only the first-order results in the initial attempt. (47 refs).

  2. Review of quantum collision dynamics in Debye plasmas

    Directory of Open Access Journals (Sweden)

    R.K. Janev


    Full Text Available Hot, dense plasmas exhibit screened Coulomb interactions, resulting from the collective effects of correlated many-particle interactions. In the lowest particle correlation order (pair-wise correlations, the interaction between charged plasma particles reduces to the Debye–Hückel (Yukawa-type potential, characterized by the Debye screening length. Due to the importance of Coulomb interaction screening in dense laboratory and astrophysical plasmas, hundreds of theoretical investigations have been carried out in the past few decades on the plasma screening effects on the electronic structure of atoms and their collision processes employing the Debye–Hückel screening model. The present article aims at providing a comprehensive review of the recent studies in atomic physics in Debye plasmas. Specifically, the work on atomic electronic structure, photon excitation and ionization, electron/positron impact excitation and ionization, and excitation, ionization and charge transfer of ion-atom/ion collisions will be reviewed.

  3. Controlling interactions between highly magnetic atoms with Feshbach resonances. (United States)

    Kotochigova, Svetlana


    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  4. Collisional cascading - The limits of population growth in low earth orbit (United States)

    Kessler, Donald J.


    Random collisions between made-made objects in earth orbit will lead to a significant source of orbital debris, but there are a number of uncertainties in these models, and additional analysis and data are required to fully characterize the future environment. However, the nature of these uncertainties are such that while the future environment is uncertain, the fact that collisions will control the future environment is less uncertain. The data that already exist is sufficient to show that cascading collisions will control the future debris environment with no, or very minor increases in the current low-earth-orbit population. Two populations control this process: explosion fragments and expended rocket bodies and payloads. Practices are already changing to limit explosions in low earth orbit; it is necessary to begin limiting the number of expended rocket bodies and payloads in orbit.

  5. Observation of CH A (sup 2)Delta approaches X (sup 2)Pi(sub r) and B (sup 2)Sigma(sup -) approaches X (sup 2)Pi(sub r) emissions in gas-phase collisions of fast O((sup 3)P) atoms with acetylene (United States)

    Orient, O. J.; Chutjian, A.; Murad, E.


    Optical emissions in single-collision, beam-beam reactions of fast (3-22 eV translational energy) O(P-3) atoms with C2H2 have been measured in the wavelength range 300-850 nm. Two features were observed, one with a peak wavelength at 431 nm, corresponding to the CH A (sup 2)Delta yields X (sup 2)Pi(sub r) transition, and a second weaker emission in the range 380-400 nm corresponding to the B (sup 2)Sigma(sup -) yields X (sup 2)Pi(sub r) transition. Both the A yields X and B yields X emissions were fit to a synthetic spectrum of CH(A) at a vibrational temperature T(sub v) of 10,000 K (0.86 eV) and a rotational temperature T(r) of approximately 5000 K (0.43 eV); and CH(B) to T(sub v) = 2500 K (0.22 eV) and T(sub r) = 1000 K (0.09 eV). The energy threshold for the A yields X emission was measured to be 7.3 +/- 0.4 eV (lab) or 4.5 +/- 0.2 eV (c.m.). This agrees with the energy threshold of 7.36 eV (lab) for the reaction O(P-3) + C2H2 yields CH(A) + HCO.

  6. Bankruptcy cascades in interbank markets.

    Directory of Open Access Journals (Sweden)

    Gabriele Tedeschi

    Full Text Available We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank's liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable.

  7. Thermal cascaded lattice Boltzmann method

    CERN Document Server

    Fei, Linlin


    In this paper, a thermal cascaded lattice Boltzmann method (TCLBM) is developed in combination with the double-distribution-function (DDF) approach. A density distribution function relaxed by the cascaded scheme is employed to solve the flow field, and a total energy distribution function relaxed by the BGK scheme is used to solve temperature field, where two distribution functions are coupled naturally. The forcing terms are incorporated by means of central moments, which is consistent with the previous force scheme [Premnath \\emph{et al.}, Phys. Rev. E \\textbf{80}, 036702 (2009)] but the derivation is more intelligible and the evolution process is simpler. In the method, the viscous heat dissipation and compression work are taken into account, the Prandtl number and specific-heat ratio are adjustable, the external force is considered directly without the Boussinesq assumption, and the low-Mach number compressible flows can also be simulated. The forcing scheme is tested by simulating a steady Taylor-Green f...

  8. Lens Coupled Quantum Cascade Laser (United States)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)


    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  9. Atomic theories

    CERN Document Server

    Loring, FH


    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  10. Turbulence: does energy cascade exist?

    CERN Document Server

    Josserand, Christophe; Lehner, Thierry; Pomeau, Yves


    To answer the question whether a cascade of energy exists or not in turbulence, we propose a set of correlation functions able to test if there is an irreversible transfert of energy, step by step, from large to small structures. These tests are applied to real Eulerian data of a turbulent velocity flow, taken in the wind grid tunnel of Modane, and also to a prototype model equation for wave turbulence. First we demonstrate the irreversible character of the flow by using multi-time correlation function at a given point of space. Moreover the unexpected behavior of the test function leads us to connect irreversibility and finite time singularities (intermittency). Secondly we show that turbulent cascade exists, and is a dynamical process, by using a test function depending on time and frequency. The cascade shows up only in the inertial domain where the kinetic energy is transferred more rapidly (on average) from the wavenumber $k_{1}$ to $k_{2}$ than from $k_{1}$ to $k'_{2}$ larger than $k_{2}$.

  11. Partial wave analysis of oriented collisions (United States)

    Harris, A. L.; Amami, S.; Saxton, T.; Madison, D. H.


    We present fully differential cross sections (FDCSs) for two collision processes with oriented atoms. The first collision is electron-impact ionization of oriented Mg (3p), and the second collision is electron-impact excitation-ionization (EI) of helium with an oriented final state He+(2p0) ion. Surprisingly, the theoretical functional form of the FDCS is the same for both processes, despite the fact that the only physical similarity is an oriented excited state in both processes. We present FDCS as a function of orientation angle and ejected electron angle for both ionization of oriented Mg(3p) and EI of helium in order to explore possible physical similarities between the two processes. We examine the contributions to the FDCS of individual partial waves of the ionized electron and projectile. For the ionization of oriented Mg, we show that the FDCS are dominated by larger partial waves of the ejected electron, with the dominant partial waves having a dependence on scattering angle and outgoing electron energy sharing. For the EI process, the FDCS is dominated by the L = 2 partial wave, independent of scattering angle or energy sharing. Also, for EI it is possible to have angular momentum transferred from either the target helium atom or the incident projectile.

  12. Radiative distortion of kinematic edges in cascade decays

    Directory of Open Access Journals (Sweden)

    M. Beneke


    Full Text Available Kinematic edges of cascade decays of new particles produced in high-energy collisions may provide important constraints on the involved particles' masses. For the exemplary case of gluino decay g˜→qq¯χ˜ into a pair of quarks and a neutralino through a squark resonance, we study the hadronic invariant mass distribution in the vicinity of the kinematic edge. We perform a next-to-leading order calculation in the strong coupling αs and the ratio of squark width and squark mass Γq˜/mq˜, based on a systematic expansion in Γq˜/mq˜. The separation into hard, collinear and soft contributions elucidates the process-dependent and universal features of distributions in the edge region, represented by on-shell decay matrix elements, universal jet functions and a soft function that depends on the resonance propagator and soft Wilson lines.

  13. Atomic Power

    African Journals Online (AJOL)

    Atomic Power. By Denis Taylor: Dr. Taylor was formerly Chief UNESCO Advisor at the University. College, Nairobi, Kenya and is now Professor of Electrical Engineering in the Uni- versity of ... method of producing radioactive isotopes, which are materials .... the sealing and the pressure balancing, all can be carried out ...

  14. Depolarizing collisions with hydrogen: Neutral and singly ionized alkaline earths

    Energy Technology Data Exchange (ETDEWEB)

    Manso Sainz, Rafael; Ramos, Andrés Asensio; Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Roncero, Octavio; Sanz-Sanz, Cristina [Instituto de Física Fundamental (IFF-CSIC), CSIC, Serrano 123, E-28006 Madrid (Spain); Aguado, Alfredo, E-mail: [Departamento de Química Física, Unidad Asociada UAM-CSIC, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, E-28049 Madrid (Spain)


    Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We consider depolarizing rates on the lowest levels of neutral and singly ionized alkali earths Mg I, Sr I, Ba I, Mg II, Ca II, and Ba II, due to collisions with H°. We compute ab initio potential curves of the atom-H° system and solve the quantum mechanical dynamics. From the scattering amplitudes, we calculate the depolarizing rates for Maxwellian distributions of colliders at temperatures T ≤ 10,000 K. A comparative analysis of our results and previous calculations in the literature is completed. We discuss the effect of these rates on the formation of scattering polarization patterns of resonant lines of alkali earths in the solar atmosphere, and their effect on Hanle effect diagnostics of solar magnetic fields.

  15. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)


    Apr 29, 2015 ... Transport models for relativistic heavy-ion collisions at Relativistic Heavy Ion Collider and Large Hadron Collider. Subrata Pal. Volume 84 Issue 5 May 2015 pp ... Subrata Pal1. Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  16. Development of a new experimental setup for studying collisions of ...

    Indian Academy of Sciences (India)

    Development of a new electron-recoil ion/photon coincidence setup for investigating some of the electron induced collision processes, such as electron bremsstrahlung, electron backscattering, innershell excitation and multiple ionization of target atoms/molecules in bombardment of electrons having energies from 2.0 keV ...

  17. Ionization-induced laser-driven QED cascade in noble gases (United States)

    Artemenko, I. I.; Kostyukov, I. Yu.


    A formula for the ionization rate in an extremely intense electromagnetic field is proposed and used for numerical study of QED cascades in noble gases in the field of two counterpropagating laser pulses. It is shown that the number of the electron-positron pairs produced in the cascade increases with the atomic number of the gas, where the gas density is taken to be inversely proportional to the atomic number. While most of the electrons produced in the laser pulse front are expelled by the ponderomotive force from the region occupied by the strong laser field, there is a small portion of electrons staying in the laser field for a long time until the instance when the laser field is strong enough for cascading. This mechanism is relevant for all gases. For high-Z gases there is an additional mechanism associated with the ionization of inner shells at the instance when the laser field is strong enough for cascading. The role of both mechanisms for cascade initiation is revealed.

  18. Molecular processes in plasmas collisions of charged particles with molecules

    CERN Document Server

    Itikawa, Yukikazu


    Molecular Processes in Plasmas describes elementary collision processes in plasmas, particularly those involving molecules or molecular ions. Those collision processes (called molecular processes) maintain plasmas, produce reactive species and emissions, and play a key role in energy balance in plasmas or more specifically in determining the energy distribution of plasma particles. Many books on plasma physics mention the elementary processes, but normally rather briefly. They only touch upon the general feature or fundamental concept of the collision processes. On the other hand, there are many books on atomic and molecular physics, but most of them are too general or too detailed to be useful to people in the application fields. The present book enumerates all the possible processes in the collisions of electrons, as well as ions, with molecules. For each process, a compact but informative description of its characteristics is given together with illustrative examples. Since the author has much experience a...

  19. Monte Carlo simulation of excitation and ionization collisions with complexity reduction (United States)

    Le, Hai P.; Yan, Bokai; Caflisch, Russel E.; Cambier, Jean-Luc


    Kinetic simulation of plasmas with detailed excitation and ionization collisions presents a significant computational challenge due to the multiscale feature of the collisional rates. In the present work, we propose a complexity reduction method based on atomic level grouping for modeling excitation and ionization collisions. High order of accuracy of the reduction method is realized by allowing an internal distribution within each group. We apply the reduction method to the standard Monte Carlo collision algorithm to model an atomic Hydrogen plasma. Numerical results suggest that the stiffness of the collisional kinetics can be significantly reduced with minimal loss in accuracy.

  20. SMARTER Collision avoidance

    National Research Council Canada - National Science Library

    Keith Burton


    .... By 1981, researchers had developed the Traffic Collision Avoidance System, or TCAS, a box of electronics and software that transmits a radar signal that interrogates transponders on nearby planes...

  1. From collisions to clusters

    DEFF Research Database (Denmark)

    Loukonen, Ville; Bork, Nicolai; Vehkamaki, Hanna


    The clustering of sulphuric acid with base molecules is one of the main pathways of new-particle formation in the Earth's atmosphere. First step in the clustering process is likely the formation of a (sulphuric acid)1(base)1(water)n cluster. Here, we present results from direct first......-principles molecular dynamics collision simulations of (sulphuric acid)1(water)0, 1 + (dimethylamine) → (sulphuric acid)1(dimethylamine)1(water)0, 1 cluster formation processes. The simulations indicate that the sticking factor in the collisions is unity: the interaction between the molecules is strong enough...... to overcome the possible initial non-optimal collision orientations. No post-collisional cluster break up is observed. The reasons for the efficient clustering are (i) the proton transfer reaction which takes place in each of the collision simulations and (ii) the subsequent competition over the proton...

  2. Electron-molecule collisions

    CERN Document Server

    Takayanagi, Kazuo


    Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop­ ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiat...

  3. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Burke, D.L.


    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  4. Atomic arias (United States)

    Crease, Robert P.


    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  5. Atomic rivals

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B.


    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  6. Interatomic Coulombic decay cascades in multiply excited neon clusters (United States)

    Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.


    In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation. PMID:27917867

  7. Collision-induced dissociation of aflatoxins. (United States)

    Tóth, Katalin; Nagy, Lajos; Mándi, Attila; Kuki, Ákos; Mézes, Miklós; Zsuga, Miklós; Kéki, Sándor


    The aflatoxin mycotoxins are particularly hazardous to health when present in food. Therefore, from an analytical point of view, knowledge of their mass spectrometric properties is essential. The aim of the present study was to describe the collision-induced dissociation behavior of the four most common aflatoxins: B1, B2, G1 and G2. Protonated aflatoxins were produced using atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) combined with high-performance liquid chromatography (HPLC). For the tandem mass spectrometry (MS/MS) experiments nitrogen was used as the collision gas and the collision energies were varied in the range of 9-44 eV (in the laboratory frame). The major APCI-MS/MS fragmentations of protonated aflatoxins occurred at 30 eV collision energy. The main fragmentation channels were found to be the losses of a series of carbon monoxide molecules and loss of a methyl radical, leading to the formation of radical-type product ions. In addition, if the aflatoxin molecule contained an ether- or lactone-oxygen atom linked to a saturated carbon atom, loss of a water molecule was observed from the [M + H](+) ion, especially in the case of aflatoxins G1 and G2. A relatively small modification in the structure of aflatoxins dramatically altered the fragmentation pathways and this was particularly true for aflatoxins B1 and B2. Due to the presence of a C = C double bond connected to the ether group in aflatoxin B1 no elimination of water was observed but, instead, formation of radical-type product ions occurred. Fragmentation of protonated aflatoxin B1 yielded the most abundant radical-type cations. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Palladium-Catalyzed Atom-Transfer Radical Cyclization at Remote Unactivated C(sp3)-H Sites: Hydrogen-Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates. (United States)

    Ratushnyy, Maxim; Parasram, Marvin; Wang, Yang; Gevorgyan, Vladimir


    A novel mild, visible-light-induced palladium-catalyzed hydrogen atom translocation/atom-transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5-HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo- and heterocyclic structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magentized Weakly Collisional Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.


    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  10. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.


    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  11. Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Continetti, R.E.; Balko, B.A.; Lee, Y.T.


    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H/sub 2/ /minus/> DH + H and the substitution reaction D + C/sub 2/H/sub 2/ /minus/> C/sub 2/HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs.

  12. Azobenzene-functionalized cascade molecules

    DEFF Research Database (Denmark)

    Archut, A.; Vogtle, F.; De Cola, L.


    Cascade molecules bearing up to 32 azobenzene groups in the periphery have been prepared from poly(propylene imine) dendrimers and N-hydroxysuccinimide esters. The dendritic azobenzene species show similar isomerization properties as the corresponding azobenzene monomers. The all-E azobenzene...... shows there is so far no effective steric constraint towards photoisomerism on increasing dimension (generation) of the dendrimer, The first attempts to use dendrimers for holography materials are described: It is shown that holographic gratings with diffraction efficiencies up to about 20 % can...

  13. Disaster Mythology and Availability Cascades

    Directory of Open Access Journals (Sweden)

    Lisa Grow Sun


    Full Text Available Sociological research conducted in the aftermath of natural disasters has uncovered a number of “disaster myths” – widely shared misconceptions about typical post-disaster human behavior. This paper discusses the possibility that perpetuation of disaster mythology reflects an “availability cascade,” defined in prior scholarship as a “self-reinforcing process of collective belief formation by which an expressed perception triggers a chain reaction that gives the perception increasing plausibility through its rising availability in public discourse.” (Kuran and Sunstein 1999. Framing the spread of disaster mythology as an availability cascade suggests that certain tools may be useful in halting the myths’ continued perpetuation. These tools include changing the legal and social incentives of so-called “availability entrepreneurs” – those principally responsible for beginning and perpetuating the cascade, as well as insulating decision-makers from political pressures generated by the availability cascade. This paper evaluates the potential effectiveness of these and other solutions for countering disaster mythology. Las investigaciones sociológicas realizadas tras los desastres naturales han hecho evidentes una serie de “mitos del desastre”, conceptos erróneos ampliamente compartidos sobre el comportamiento humano típico tras un desastre. Este artículo analiza la posibilidad de que la perpetuación de los mitos del desastre refleje una “cascada de disponibilidad”, definida en estudios anteriores como un “proceso de auto-refuerzo de la formación de una creencia colectiva, a través del que una percepción expresada produce una reacción en cadena que hace que la percepción sea cada vez más verosímil, a través de una mayor presencia en el discurso público” (Kuran y Sunstein 1999. Enmarcar la propagación de los mitos del desastre como una cascada de disponibilidad sugiere que ciertas herramientas pueden ser


    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ouliang [Oracle Corporation, Redwood Shores, CA (United States); Gary, S. Peter [Space Science Institute, Boulder, CO (United States); Wang, Joseph, E-mail:, E-mail:, E-mail: [University of Southern California, Los Angeles, CA (United States)


    We present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta β {sub e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.

  15. Contingency Analysis of Cascading Line Outage Events

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L Baldwin; Magdy S Tawfik; Miles McQueen


    As the US power systems continue to increase in size and complexity, including the growth of smart grids, larger blackouts due to cascading outages become more likely. Grid congestion is often associated with a cascading collapse leading to a major blackout. Such a collapse is characterized by a self-sustaining sequence of line outages followed by a topology breakup of the network. This paper addresses the implementation and testing of a process for N-k contingency analysis and sequential cascading outage simulation in order to identify potential cascading modes. A modeling approach described in this paper offers a unique capability to identify initiating events that may lead to cascading outages. It predicts the development of cascading events by identifying and visualizing potential cascading tiers. The proposed approach was implemented using a 328-bus simplified SERC power system network. The results of the study indicate that initiating events and possible cascading chains may be identified, ranked and visualized. This approach may be used to improve the reliability of a transmission grid and reduce its vulnerability to cascading outages.

  16. Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments. (United States)

    Premnath, Kannan N; Banerjee, Sanjoy


    Cascaded lattice Boltzmann method (cascaded-LBM) employs a class of collision operators aiming to stabilize computations and remove certain modeling artifacts for simulation of fluid flow on lattice grids with sizes arbitrarily larger than the smallest physical dissipation length scale [Geier, Phys. Rev. E 63, 066705 (2006)]. It achieves this and distinguishes from other collision operators, such as in the standard single or multiple relaxation-time approaches, by performing relaxation process due to collisions in terms of moments shifted by the local hydrodynamic fluid velocity, i.e., central moments, in an ascending order by order at different relaxation rates. In this paper, we propose and derive source terms in the cascaded-LBM to represent the effect of external or internal forces on the dynamics of fluid motion. This is essentially achieved by matching the continuous form of the central moments of the source or forcing terms with its discrete version. Different forms of continuous central moments of sources, including one that is obtained from a local Maxwellian, are considered in this regard. As a result, the forcing terms obtained in this formulation are Galilean invariant by construction. To alleviate lattice artifacts due to forcing terms in the emergent macroscopic fluid equations, they are proposed as temporally semi-implicit and second order, and the implicitness is subsequently effectively removed by means of a transformation to facilitate computation. It is shown that the impressed force field influences the cascaded collision process in the evolution of the transformed distribution function. The method of central moments along with the associated orthogonal properties of the moment basis completely determines the analytical expressions for the source terms as a function of the force and macroscopic velocity fields. In contrast to the existing forcing schemes, it is found that they involve higher-order terms in velocity space. It is shown that the

  17. Low energy heavy particle collisions relevant to gas divertor physics

    Energy Technology Data Exchange (ETDEWEB)

    Onda, Kunizo [Science Univ. of Tokyo (Japan)


    Cross sections for rotational and vibrational excitations of H{sub 2} molecules caused by impact of electron, proton, H atom, H{sub 2}, H{sub 2}{sup +}, or H{sup -} are compared with one another and reviewed for rotational excitations by examining an interaction potential between collision partners. It is pointed out what are difficulties in theoretical approaches to collision of atoms with H{sub 2} molecules initially in vibrationally and rotationally excited states. A theoretical approach developed by our group, which aims quantum mechanically to investigate vibrationally inelastic scattering, exchange reaction, or dissociation of molecule in vibrationally excited states collided with an atom or its ion, is presented. Newly obtained dissociation cross sections of H{sub 2} in vibrationally excited states by He impact are presented and compared in magnitude with those of H{sub 2} caused by electron impact. (author)

  18. Physics of interband cascade lasers (United States)

    Vurgaftman, I.; Bewley, W. W.; Merritt, C. D.; Canedy, C. L.; Kim, C. S.; Abell, J.; Meyer, J. R.; Kim, M.


    The interband cascade laser (ICL) is a unique device concept that combines the effective parallel connection of its multiple-quantum-well active regions, interband active transitions, and internal generation of electrons and holes at a semimetallic interface within each stage of the device. The internal generation of carriers becomes effective under bias, and the role of electrical injection is to replenish the carriers consumed by recombination processes. Major strides have been made toward fundamentally understanding the rich and intricate ICL physics, which has in turn led to dramatic improvements in the device performance. In this article, we review the physical principles of the ICL operation and designs of the active region, electron and hole injectors, and optical waveguide. The results for state-of- the-art ICLs spanning the 3-6 μm wavelength range are also briefly reviewed. The cw threshold input powers at room temperature are more than an order of magnitude lower than those for quantum cascade lasers throughout the mid-IR spectral range. This will lengthen battery lifetimes and greatly relax packaging and size/weight requirements for fielded sensing systems.

  19. Lifespans of Cascade Arc volcanoes (United States)

    Calvert, A. T.


    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  20. A Semisupervised Cascade Classification Algorithm

    Directory of Open Access Journals (Sweden)

    Stamatis Karlos


    Full Text Available Classification is one of the most important tasks of data mining techniques, which have been adopted by several modern applications. The shortage of enough labeled data in the majority of these applications has shifted the interest towards using semisupervised methods. Under such schemes, the use of collected unlabeled data combined with a clearly smaller set of labeled examples leads to similar or even better classification accuracy against supervised algorithms, which use labeled examples exclusively during the training phase. A novel approach for increasing semisupervised classification using Cascade Classifier technique is presented in this paper. The main characteristic of Cascade Classifier strategy is the use of a base classifier for increasing the feature space by adding either the predicted class or the probability class distribution of the initial data. The classifier of the second level is supplied with the new dataset and extracts the decision for each instance. In this work, a self-trained NB∇C4.5 classifier algorithm is presented, which combines the characteristics of Naive Bayes as a base classifier and the speed of C4.5 for final classification. We performed an in-depth comparison with other well-known semisupervised classification methods on standard benchmark datasets and we finally reached to the point that the presented technique has better accuracy in most cases.

  1. A stochastic cascade model for Auger-electron emitting radionuclides. (United States)

    Lee, Boon Q; Nikjoo, Hooshang; Ekman, Jörgen; Jönsson, Per; Stuchbery, Andrew E; Kibédi, Tibor


    To benchmark a Monte Carlo model of the Auger cascade that has been developed at the Australian National University (ANU) against the literature data. The model is applicable to any Auger-electron emitting radionuclide with nuclear structure data in the format of the Evaluated Nuclear Structure Data File (ENSDF). Schönfeld's algorithms and the BrIcc code were incorporated to obtain initial vacancy distributions due to electron capture (EC) and internal conversion (IC), respectively. Atomic transition probabilities were adopted from the Evaluated Atomic Data Library (EADL) for elements with atomic number, Z = 1-100. Atomic transition energies were evaluated using a relativistic Dirac-Fock method. An energy-restriction protocol was implemented to eliminate energetically forbidden transitions from the simulations. Calculated initial vacancy distributions and average energy spectra of (123)I, (124)I, and (125)I were compared with the literature data. In addition, simulated kinetic energy spectra and frequency distributions of the number of emitted electrons and photons of the three iodine radionuclides are presented. Some examples of radiation spectra of individual decays are also given. Good agreement with the published data was achieved except for the outer-shell Auger and Coster-Kronig transitions. Nevertheless, the model needs to be compared with experimental data in a future study.

  2. Charge Exchange X-Ray Emission due to Highly Charged Ion Collisions with H, He, and H2: Line Ratios for Heliospheric and Interstellar Applications (United States)

    Cumbee, R. S.; Mullen, P. D.; Lyons, D.; Shelton, R. L.; Fogle, M.; Schultz, D. R.; Stancil, P. C.


    The fundamental collisional process of charge exchange (CX) has been established as a primary source of X-ray emission from the heliosphere, planetary exospheres, and supernova remnants. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly excited, high-charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays. To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, molecular-orbital close-coupling, and classical trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics. X-ray spectra were computed for collisions of bare and H-like C to Al ions with H, He, and H2 with results compared to available experimental data. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant and the heliosphere are shown as examples with ion velocity dependence.

  3. Measurements of hadron mean free path for the particle-producing collisions in nuclear matter (United States)

    Strugalski, Z.


    It is not obvious a priority that the cross-section for a process in hadron collisions with free nucleons is the same as that for the process in hadron collisions with nucleons inside a target nucleus. The question arises: what is the cross-section for a process in a hadron collision with nucleon on inside the atomic nucleus. The answer to it must be found in experiments. The mean free path for particle-producing collisions of pions in nuclear matter is determined experimentally using pion-xenon nucleus collisions at 3.5 GeV/c momentum. Relation between the mean free path in question lambda sub in nucleons fm squared and the cross-section in units of fm squared/nucleon for collisions of the hadron with free nucleon is: lambda sub i = k/cross section sub i, where k = 3.00 plus or minus 0.26.

  4. The role of final-state correlations in recombination of atomic hydrogen

    NARCIS (Netherlands)

    Stoof, H.T.C.; Goey, L.P.H. de; Verhaar, B.J.; Glöckle, W.


    We calculate the rate-constant for recombination in the bulk of a spin-polarized atomic hydrogen gas. We use an exact initial state and include the most essential collision aspects of the final state, except for rearrangement.

  5. Atomic physics of strongly correlated systems. Progress report, 1 August 1980-31 July 1981

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.D.


    Studies of electron correlations of doubly-excited electrons in hyperspherical coordinates, and differential and total cross sections for charge transfer and ionization in fast ion-atom collisions are reported. (GHT)

  6. Relative-velocity distributions for two effusive atomic beams in counterpropagating and crossed-beam geometries

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke


    Formulas are presented for calculating the relative velocity distributions in effusive, orthogonal crossed beams and in effusive, counterpropagating beams experiments, which are two important geometries for the study of collision processes between atoms. In addition formulas for the distributions...

  7. Crystal structures and atomic model of NADPH oxidase

    NARCIS (Netherlands)

    Magnani, Francesca; Nenci, Simone; Fananas, Elisa Millana; Ceccon, Marta; Romero, Elvira; Fraaije, Marco W.; Mattevi, Andrea


    NADPH oxidases (NOXs) are the only enzymes exclusively dedicated to reactive oxygen species (ROS) generation. Dysregulation of these polytopic membrane proteins impacts the redox signaling cascades that control cell proliferation and death. We describe the atomic crystal structures of the catalytic

  8. Suprathermal oxygen atoms in the Martian upper atmosphere: Contribution of the proton and hydrogen atom precipitation (United States)

    Shematovich, V. I.


    This is a study of the kinetics and transport of hot oxygen atoms in the transition region (from the thermosphere to the exosphere) of the Martian upper atmosphere. It is assumed that the source of the hot oxygen atoms is the transfer of momentum and energy in elastic collisions between thermal atmospheric oxygen atoms and the high-energy protons and hydrogen atoms precipitating onto the Martian upper atmosphere from the solar-wind plasma. The distribution functions of suprathermal oxygen atoms by the kinetic energy are calculated. It is shown that the exosphere is populated by a large number of suprathermal oxygen atoms with kinetic energies up to the escape energy 2 eV; i.e., a hot oxygen corona is formed around Mars. The transfer of energy from the precipitating solar-wind plasma protons and hydrogen atoms to the thermal oxygen atoms leads to the formation of an additional nonthermal escape flux of atomic oxygen from the Martian atmosphere. The precipitation-induced escape flux of hot oxygen atoms may become dominant under the conditions of extreme solar events, such as solar flares and coronal mass ejections, as shown by recent observations onboard NASA's MAVEN spacecraft (Jakosky et al., 2015).

  9. Power quality enhancement using cascaded multilevel inverter ...

    African Journals Online (AJOL)

    This paper investigates mitigation of current harmonics using different configuration of cascaded multilevel inverter based shunt hybrid active power filter (SHAPF) and to improve power quality of the system. The main objective of this paper is to develop and analyze the compensation characteristics of cascaded multilevel ...

  10. Cascading disaster models in postburn flash flood (United States)

    Fred May


    A useful method of modeling threats from hazards and documenting their disaster causation sequences is called “cascading threat modeling.” This type of modeling enables emergency planners to address hazard and risk assessments systematically. This paper describes a cascading threat modeling and analysis process. Wildfire and an associated postburn flash flood disaster...

  11. Cascade Harvest’ red raspberry (United States)

    Cascade Harvest’ is a new floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). ‘Cascade Harvest’ produces a high yield of large, firm fruit suited to machine harves...

  12. Atomic data for controlled fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Ray, J.A.; Ricci, E.; Wilker, M.I.; McDaniel, E.W.; Thomas, E.W.; Gilbody, H.B.


    Presented is an evaluated graphical and tabular compilation of atomic and molecular cross sections of interest to controlled thermonuclear research. The cross sections are tabulated and graphed as a function of energy for collision processes involving heavy particles, electrons, and photons with atoms and ions. Also included are sections on data for particle penetration through macroscopic matter, particle transport properties, particle interactions with surfaces, and pertinent charged particle nuclear cross sections and reaction rates. In most cases estimates have been made of the data accuracy.

  13. About the Collision Repair Campaign (United States)

    EPA developed the Collision Repair Campaign to focus on meaningful risk reduction in the Collision Repair source sector to complement ongoing community air toxics work and attain reductions at a faster rate.

  14. Premiere production d'atomes d'antimatiere au CERN

    CERN Multimedia

    CERN Press Office. Geneva


    In September 1995, Prof. Walter Oelert and an international team from J lich IKP-KFA, Erlangen-Nuernberg University, GSI Darmstadt and Genoa University succeeded for the first time in synthesising atoms of antimatter from their constituent antiparticles. Nine of these atoms were produced in collisions between antiprotons and xenon atoms over a period of three weeks. Each one remained in existence for about forty billionths of a second, travelled at nearly the speed of light over a path of ten metres and then annihilated with ordinary matter. The annihilation produced the signal which showed that the anti-atoms had been created.

  15. Suppressing cascades of load in interdependent networks

    CERN Document Server

    Brummitt, Charles D; Leicht, E A


    Understanding how interdependence among systems affects cascading behaviors is increasingly important across many fields of science and engineering. Inspired by cascades of load shedding in coupled electric grids and other infrastructure, we study the Bak-Tang-Wiesenfeld sandpile model on modular random graphs and on graphs based on actual, interdependent power grids. Starting from two isolated networks, adding some connectivity between them is beneficial, for it suppresses the largest cascades in each system. Too much interconnectivity, however, becomes detrimental for two reasons. First, interconnections open pathways for neighboring networks to inflict large cascades. Second, as in real infrastructure, new interconnections increase capacity and total possible load, which fuels even larger cascades. Using a multi-type branching process and simulations we show these effects and estimate the optimal level of interconnectivity that balances their tradeoffs. Such equilibria could allow, for example, power grid ...

  16. MAPK cascades in guard cell signal transduction

    Directory of Open Access Journals (Sweden)

    Yuree eLee


    Full Text Available Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.

  17. Adiabatic theory for anisotropic cold molecule collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, Mariusz [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń (Poland); Shagam, Yuval; Narevicius, Edvardas [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Moiseyev, Nimrod [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Physics, Technion–Israel Institute of Technology, Haifa 32000 (Israel)


    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  18. Nuclear Stopping in Central Au+Au Collisions at RHIC Energies

    Directory of Open Access Journals (Sweden)

    Ying Yuan


    Full Text Available Nuclear stopping in central Au+Au collisions at relativistic heavy-ion collider (RHIC energies is studied in the framework of a cascade mode and the modified ultrarelativistic quantum molecular dynamics (UrQMD transport model. In the modified mode, the mean field potentials of both formed and “preformed” hadrons (from string fragmentation are considered. It is found that the nuclear stopping is increasingly influenced by the mean-field potentials in the projectile and target regions with the increase of the reaction energy. In the central region, the calculations of the cascade model considering the modifying factor can describe the experimental data of the PHOBOS collaboration.

  19. Ice particle collisions (United States)

    Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael


    Granular interactions of ice occur in a range of geophysical, astrophysical and industrial applications. For example, Saturn's Rings are composed of icy particles from micrometers to kilometres in size - inertial and yet too small to interact gravitationally. In clouds, ice crystals are smashed to pieces before they re-aggregate to for snow floccules in a process that is very much open to interpretation. In a granular flow of ice particles, the energy spent in collisions can lead to localized surface changes and wetting, which in turn can promote aggregation. To understand the induced wetting and its effects, we present two novel experimental methods which provide snippets of insight into the collisional behaviour of macroscopic ice particles. Experiment 1: Microgravity experiments provide minute details of the contact between the ice particles during the collision. A diamagnetic levitation technique, as alternative to the parabolic flight or falling tower experiments, was used to understand the collisional behaviour of individual macroscopic icy bodies. A refrigerated cylinder, that can control ambient conditions, was inserted into the bore of an 18 Tesla superconducting magnet and cooled to -10°C. Initial binary collisions were created, where one 4 mm ice particle was levitated in the magnet bore whilst another particle was dropped vertically from the top of the bore. The trajectories of both particles were captured by high speed video to provide the three-dimensional particle velocities and track the collision outcome. Introducing complexity, multiple particles were levitated in the bore and an azimuthal turbulent air flow introduced, allowing the particles to collide with other particles within a coherent fluid structure (mimicking Saturn's rings, or an eddy in a cloud). In these experiments, a sequence of collisions occur, each one different to the previous one due to the changes in surface characteristics created by the collisions themselves. Aggregation

  20. Experimental study of flow through compressor Cascade

    Directory of Open Access Journals (Sweden)

    Satyam Panchal


    Full Text Available The objective of this research work is to study the behaviour of flow at the inlet, within the blade passage and at the exit of a compressor cascade. For this purpose, a cascade with six numbers of aerofoil blades was designed and constructed. The cascade was fitted on the cascade test tunnel. Out of six blades two were instrumented for measuring the pressure distribution on the pressure and suction surface. The blades had a parabolic camber line, with a maximum camber position at 40% of the chord from the leading edge of the blade. The profile of the blade was C4, height of the blade was 160 mm, chord length was 80 mm, camber angle was 45° and stagger angle was 30°. Similarly, the length of the cascade was 300 mm, span was 160 mm, pitch was 60 mm, the actual chord of the cascade was 80 mm, the axial chord of the cascade was 70 mm, the stagger angle of the cascade was 30° and the pitch-chord ratio was 0.75. The data was taken and analyzed at −500% of the axial chord before the cascade, −25% of the axial chord before the leading edge, 25%, 50%, 75% and 150% of the axial chord from the leading edge of the blade. The readings were taken from the cascade wall to the mid span position along the pitch wise direction. The angle of incidence was also changed during the experiment and varied from i=−50°, −30°, −10° to 5°.

  1. Spacecraft Collision Avoidance (United States)

    Bussy-Virat, Charles

    The rapid increase of the number of objects in orbit around the Earth poses a serious threat to operational spacecraft and astronauts. In order to effectively avoid collisions, mission operators need to assess the risk of collision between the satellite and any other object whose orbit is likely to approach its trajectory. Several algorithms predict the probability of collision but have limitations that impair the accuracy of the prediction. An important limitation is that uncertainties in the atmospheric density are usually not taken into account in the propagation of the covariance matrix from current epoch to closest approach time. The Spacecraft Orbital Characterization Kit (SpOCK) was developed to accurately predict the positions and velocities of spacecraft. The central capability of SpOCK is a high accuracy numerical propagator of spacecraft orbits and computations of ancillary parameters. The numerical integration uses a comprehensive modeling of the dynamics of spacecraft in orbit that includes all the perturbing forces that a spacecraft is subject to in orbit. In particular, the atmospheric density is modeled by thermospheric models to allow for an accurate representation of the atmospheric drag. SpOCK predicts the probability of collision between two orbiting objects taking into account the uncertainties in the atmospheric density. Monte Carlo procedures are used to perturb the initial position and velocity of the primary and secondary spacecraft from their covariance matrices. Developed in C, SpOCK supports parallelism to quickly assess the risk of collision so it can be used operationally in real time. The upper atmosphere of the Earth is strongly driven by the solar activity. In particular, abrupt transitions from slow to fast solar wind cause important disturbances of the atmospheric density, hence of the drag acceleration that spacecraft are subject to. The Probability Distribution Function (PDF) model was developed to predict the solar wind speed

  2. Collisions of carbon and oxygen ions with electrons, H, H/sub 2/ and He: Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Phaneuf, R.A.; Janev, R.K.; Pindzola, M.S.


    This report provides a handbook for fusion research of recommended cross-section and rate-coefficient data for collisions of carbon and oxygen ions with electrons, hydrogen atoms and molecules, and helium atoms. Published experimental and theoretical data have been collected and evaluated, and recommended data are presented in tabular, graphical, and parametrized form. Processes considered include exciation, ionization, and charge exchange at collision energies appropriate to applications in fusion-energy research.

  3. Numerical modeling of microchannel gas flows in the transition flow regime via cascaded lattice Boltzmann method

    CERN Document Server

    Liu, Qing


    As a numerically accurate and computationally efficient mesoscopic numerical method, the lattice Boltzmann (LB) method has achieved great success in simulating microscale rarefied gas flows. In this paper, an LB method based on the cascaded collision operator is presented to simulate microchannel gas flows in the transition flow regime. The Bosanquet-type effective viscosity is incorporated into the cascaded lattice Boltzmann (CLB) method to account for the rarefaction effects. In order to gain accurate simulations and match the Bosanquet-type effective viscosity, the combined bounce-back/specular-reflection scheme with a modified second-order slip boundary condition is employed in the CLB method. The present method is applied to study gas flow in a microchannel with periodic boundary condition and gas flow in a long microchannel with pressure boundary condition over a wide range of Knudsen numbers. The predicted results, including the velocity profile, the mass flow rate, and the non-linear pressure deviatio...

  4. High Atom Number in Microsized Atom Traps (United States)


    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  5. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.


    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  6. Droplet collisions in turbulence

    NARCIS (Netherlands)

    Oldenziel, G.


    Liquid droplets occur in many natural phenomena and play an important role in a large number of industrial applications. One of the distinct properties of droplets as opposed to solid particles is their ability to merge, or coalesce upon collision. Coalescence of liquid drops is of importance in for


    CERN Multimedia

      A very special moment.  On 23rd November, 19:40 we recorded our first collisions with 450GeV beams well centred in CMS.   If you have any comments / suggestions please contact Karl Aaron GILL (Editor)

  8. Vocal Fold Collision Modeling

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas; Misztal, M. K.


    When vocal folds vibrate at normal speaking frequencies, collisions occurs. The numerics and formulations behind a position-based continuum model of contact is an active field of research in the contact mechanics community. In this paper, a frictionless three-dimensional finite element model of t...

  9. Collisions in soccer kicking

    DEFF Research Database (Denmark)

    Andersen, Thomas Bull; Dörge, Henrik C.; Thomsen, Franz Ib


    An equation to describe the velocity of the soccer ball after the collision with a foot was derived. On the basis of experimental results it was possible to exclude certain factors and only describe the angular momentum of the system, consisting of the shank, the foot and the ball, leading...

  10. Galilean invariance in the exponential model of atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    del Pozo, A.; Riera, A.; Yaez, M.


    Using the X/sup n//sup +/(1s/sup 2/)+He/sup 2+/ colliding systems as specific examples, we study the origin dependence of results in the application of the two-state exponential model, and we show the relevance of polarization effects in that study. Our analysis shows that polarization effects of the He/sup +/(1s) orbital due to interaction with X/sup (//sup n//sup +1)+/ ion in the exit channel yield a very small contribution to the energy difference and render the dynamical coupling so strongly origin dependent that it invalidates the basic premises of the model. Further study, incorporating translation factors in the formalism, is needed.

  11. Collisions between low-energy antihydrogen and atoms

    CERN Document Server

    Armour, E A G; Liu, Y; Martin, G D R


    Antihydrogen is currently the subject of great interest as cold H has recently been prepared at CERN by the ATHENA and ATRAP projects. This work is described elsewhere in this volume. In this paper, we describe a calculation that we have carried out recently for very low-energy HH scattering using the Kohn variational method and including three rearrangement channels in addition to the elastic channel. We also consider the He-H system and give a progress report on the calculation that we are currently carrying out for this system.

  12. Directed flow in heavy-ion collisions at NICA: What is interesting to measure?

    Energy Technology Data Exchange (ETDEWEB)

    Bravina, L.V. [University of Oslo, Department of Physics, Oslo (Norway); National Research Nuclear University ' ' MEPhI' ' , (Moscow Engineering Physics Institute), Moscow (Russian Federation); Goethe University, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany); Zabrodin, E.E. [University of Oslo, Department of Physics, Oslo (Norway); Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , (Moscow Engineering Physics Institute), Moscow (Russian Federation); Goethe University, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany)


    We study the formation of the directed flow of hadrons in nuclear collisions at energies between AGS and SPS in Monte Carlo cascade model. The slope of the proton flow at midrapidity tends to zero (softening) with increasing impact parameter of the collision. For very peripheral topologies this slope becomes negative (antiflow). The effect is caused by rescattering of hadrons in remnants of the colliding nuclei. Since the softening of the proton flow can be misinterpreted as indication of the presence of quark-gluon plasma, we propose several measurements at NICA facility which can help one to distinguish between the cases with and without the plasma formation. (orig.)

  13. New trends in atomic and molecular physics advanced technological applications

    CERN Document Server


    The field of Atomic and Molecular Physics (AMP) has reached significant advances in high–precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy , astrophysics , fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) To...

  14. Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator

    NARCIS (Netherlands)

    Kloosterman, J.L.; Hayton, D.J.; Ren, Y.; Kao, T.Y.; Hovenier, J.N.; Gao, J.R.; Klapwijk, T.M.; Hu, Q.; Walker, C.K.; Reno, J.L.


    We report on a heterodyne receiver designed to observe the astrophysically important neutral atomic oxygen [OI] line at 4.7448?THz. The local oscillator is a third-order distributed feedback quantum cascade laser operating in continuous wave mode at 4.741?THz. A quasi-optical, superconducting NbN

  15. Effect of Time Dependent Coupling on the Dynamical Properties of the Nonlocal Correlation Between Two Three-Level Atoms (United States)

    Abdel-Khalek, S.; A. Halawani, S. H.; Obada, A.-S. F.


    In this article, we present the analytical solution for the pair of entangled two three-level atoms in the cascade configuration with and without the atomic motion effect. The effects of time dependent coupling and photon multiplicity on the evolution of the nonlocal correlation between the two atoms are examined. It is shown that the amount of atom-atom entanglement increases for one photon transition when the atomic motion effect is considered. Also, the entanglement between the two atoms decreases by increasing the photons multiplicity when the time dependent coupling effect is ignored. Finally, the results explored very important phenomena such as entanglement sudden death and entanglement sudden birth.

  16. Proposal for Monitoring Within the Centrifuge Cascades of Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, David R.


    Safeguards are technical measures implemented by the International Atomic Energy Agency (IAEA) to independently verify that nuclear material is not diverted from peaceful purposes to weapons (IAEA, 2017a). Safeguards implemented at uranium enrichment facilities (facilities hereafter) include enrichment monitors (IAEA, 2011). Figure 1 shows a diagram of how a facility could be monitored. The use of a system for monitoring within centrifuge cascades is proposed.

  17. MAPK cascade signalling networks in plant defence. (United States)

    Pitzschke, Andrea; Schikora, Adam; Hirt, Heribert


    The sensing of stress signals and their transduction into appropriate responses is crucial for the adaptation and survival of plants. Kinase cascades of the mitogen-activated protein kinase (MAPK) class play a remarkably important role in plant signalling of a variety of abiotic and biotic stresses. MAPK cascade-mediated signalling is an essential step in the establishment of resistance to pathogens. Here, we describe the most recent insights into MAPK-mediated pathogen defence response regulation with a particular focus on the cascades involving MPK3, MPK4 and MPK6. We also discuss the strategies developed by plant pathogens to circumvent, inactivate or even 'hijack' MAPK-mediated defence responses.

  18. Computational fluid dynamics / Monte Carlo simulation of dusty gas flow in a "rotor-stator" set of airfoil cascades (United States)

    Tsirkunov, Yu. M.; Romanyuk, D. A.


    A dusty gas flow through two, moving and immovable, cascades of airfoils (blades) is studied numerically. In the mathematical model of two-phase gas-particle flow, the carrier gas is treated as a continuum and it is described by the Navier-Stokes equations (pseudo-DNS (direct numerical simulation) approach) or the Reynolds averaged Navier-Stokes (RANS) equations (unsteady RANS approach) with the Menter k-ω shear stress transport (SST) turbulence model. The governing equations in both cases are solved by computational fluid dynamics (CFD) methods. The dispersed phase is treated as a discrete set of solid particles, the behavior of which is described by the generalized kinetic Boltzmann equation. The effects of gas-particle interaction, interparticle collisions, and particle scattering in particle-blade collisions are taken into account. The direct simulation Monte Carlo (DSMC) method is used for computational simulation of the dispersed phase flow. The effects of interparticle collisions and particle scattering are discussed.

  19. Potential energy curves and collision integrals of air components (United States)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)


    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances with an emphasis on the accuracy that is obtainable. Results for interactions, e.g. N+N, N+O, O+O, and H+N2 will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  20. Mount Rainier active cascade volcano (United States)


    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  1. Cavity electromagnetically induced transparency with Rydberg atoms (United States)

    Bakar Ali, Abu; Ziauddin


    Cavity electromagnetically induced transparency (EIT) is revisited via the input probe field intensity. A strongly interacting Rydberg atomic medium ensemble is considered in a cavity, where atoms behave as superatoms (SAs) under the dipole blockade mechanism. Each atom in the strongly interacting Rydberg atomic medium (87 Rb) follows a three-level cascade atomic configuration. A strong control and weak probe field are employed in the cavity with the ensemble of Rydberg atoms. The features of the reflected and transmitted probe light are studied under the influence of the input probe field intensity. A transparency peak (cavity EIT) is revealed at a resonance condition for small values of input probe field intensity. The manipulation of the cavity EIT is reported by tuning the strength of the input probe field intensity. Further, the phase and group delay of the transmitted and reflected probe light are studied. It is found that group delay and phase in the reflected light are negative, while for the transmitted light they are positive. The magnitude control of group delay in the transmitted and reflected light is investigated via the input probe field intensity.

  2. Resilience and Regime Shifts: Assessing Cascading Effects

    National Research Council Canada - National Science Library

    Kinzig, Ann P; Ryan, Paul; Etienne, Michel; Allison, Helen; Elmqvist, Thomas; Walker, Brian H


    .... "Cascading thresholds," i.e., the tendency of the crossing of one threshold to induce the crossing of other thresholds, often lead to very resilient, although often less desirable, alternative states.

  3. Substrate-emitting ring interband cascade lasers (United States)

    Holzbauer, Martin; Szedlak, Rolf; Detz, Hermann; Weih, Robert; Höfling, Sven; Schrenk, Werner; Koeth, Johannes; Strasser, Gottfried


    We demonstrate interband cascade lasers fabricated into ring-shaped cavities with vertical light emission through the substrate at a wavelength of λ ≈ 3.7 μm. The out-coupling mechanism is based on a metallized second-order distributed feedback grating. At room-temperature, a pulsed threshold current-density of 0.75 kA/cm2 and a temperature-tuning rate of 0.3 nm/°C are measured. In contrast to the azimuthal polarization of ring quantum cascade lasers, we observe a radial polarization of the projected nearfield of ring interband cascade lasers. These findings underline the fundamental physical difference between light generation in interband and intersubband cascade lasers, offering new perspectives for device integration.

  4. Space-time structure of particle production in high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, Naohiko; Ohnishi, Akira [Hokkaido Univ., Sapporo (Japan); Nara, Yasushi; Maruyama, Tomoyuki


    Space-Time structure of freeze-out of produced particles in relativistic nucleus-nucleus collisions are studied in the framework of two different cascade models, either with or without higher baryonic resonances. While higher excited baryonic resonances do not influence the spatial source size of freeze-out point, the freeze-out time distribution is shifted to be later by these resonances. (author)

  5. "Bohr's Atomic Model." (United States)

    Willden, Jeff


    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  6. Three-dimensional imaging of atomic four-body processes

    CERN Document Server

    Schulz, M; Fischer, D; Kollmus, H; Madison, D H; Jones, S; Ullrich, J


    To understand the physical processes that occur in nature we need to obtain a solid concept about the 'fundamental' forces acting between pairs of elementary particles. it is also necessary to describe the temporal and spatial evolution of many mutually interacting particles under the influence of these forces. This latter step, known as the few-body problem, remains an important unsolved problem in physics. Experiments involving atomic collisions represent a useful testing ground for studying the few-body problem. For the single ionization of a helium atom by charged particle impact, kinematically complete experiments have been performed since 1969. The theoretical analysis of such experiments was thought to yield a complete picture of the basic features of the collision process, at least for large collision energies. These conclusions are, however, almost exclusively based on studies of restricted electron-emission geometries. We report three- dimensional images of the complete electron emission pattern for...

  7. Compression limits in cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw


    Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....

  8. Cascade of links in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yeqian; Sun, Bihui [Department of Management Science, School of Government, Beijing Normal University, 100875 Beijing (China); Zeng, An, E-mail: [School of Systems Science, Beijing Normal University, 100875 Beijing (China)


    Cascading failure is an important process which has been widely used to model catastrophic events such as blackouts and financial crisis in real systems. However, so far most of the studies in the literature focus on the cascading process on nodes, leaving the possibility of link cascade overlooked. In many real cases, the catastrophic events are actually formed by the successive disappearance of links. Examples exist in the financial systems where the firms and banks (i.e. nodes) still exist but many financial trades (i.e. links) are gone during the crisis, and the air transportation systems where the airports (i.e. nodes) are still functional but many airlines (i.e. links) stop operating during bad weather. In this letter, we develop a link cascade model in complex networks. With this model, we find that both artificial and real networks tend to collapse even if a few links are initially attacked. However, the link cascading process can be effectively terminated by setting a few strong nodes in the network which do not respond to any link reduction. Finally, a simulated annealing algorithm is used to optimize the location of these strong nodes, which significantly improves the robustness of the networks against the link cascade. - Highlights: • We propose a link cascade model in complex networks. • Both artificial and real networks tend to collapse even if a few links are initially attacked. • The link cascading process can be effectively terminated by setting a few strong nodes. • A simulated annealing algorithm is used to optimize the location of these strong nodes.

  9. Collision Probability Analysis

    DEFF Research Database (Denmark)

    Hansen, Peter Friis; Pedersen, Preben Terndrup


    It is the purpose of this report to apply a rational model for prediction of ship-ship collision probabilities as function of the ship and the crew characteristics and the navigational environment for MS Dextra sailing on a route between Cadiz and the Canary Islands.The most important ship and crew...... characteristics are: ship speed, ship manoeuvrability, the layout of the navigational bridge, the radar system, the number and the training of navigators, the presence of a look out etc. The main parameters affecting the navigational environment are ship traffic density, probability distributions of wind speeds...... probability, i.e. a study of the navigator's role in resolving critical situations, a causation factor is derived as a second step.The report documents the first step in a probabilistic collision damage analysis. Future work will inlcude calculation of energy released for crushing of structures giving...

  10. Nonlinear energy transfer and current sheet development in localized Alfvén wavepacket collisions in the strong turbulence limit (United States)

    Verniero, J. L.; Howes, G. G.; Klein, K. G.


    In space and astrophysical plasmas, turbulence is responsible for transferring energy from large scales driven by violent events or instabilities, to smaller scales where turbulent energy is ultimately converted into plasma heat by dissipative mechanisms. The nonlinear interaction between counterpropagating Alfvén waves, denoted Alfvén wave collisions, drives this turbulent energy cascade, as recognized by early work with incompressible magnetohydrodynamic (MHD) equations. Recent work employing analytical calculations and nonlinear gyrokinetic simulations of Alfvén wave collisions in an idealized periodic initial state have demonstrated the key properties that strong Alfvén wave collisions mediate effectively the transfer of energy to smaller perpendicular scales and self-consistently generate current sheets. For the more realistic case of the collision between two initially separated Alfvén wavepackets, we use a nonlinear gyrokinetic simulation to show here that these key properties persist: strong Alfvén wavepacket collisions indeed facilitate the perpendicular cascade of energy and give rise to current sheets. Furthermore, the evolution shows that nonlinear interactions occur only while the wavepackets overlap, followed by a clean separation of the wavepackets with straight uniform magnetic fields and the cessation of nonlinear evolution in between collisions, even in the gyrokinetic simulation presented here which resolves dispersive and kinetic effects beyond the reach of the MHD theory.

  11. Success probability of atom-molecule sympathetic cooling: A statistical approach (United States)

    Morita, Masato; Krems, Roman; Tscherbul, Timur


    Sympathetic cooling with ultracold atoms is a promising route toward creating colder and denser ensembles of polar molecules at temperatures below 1 mK. Rigorous quantum scattering calculations can be carried out to identify atom-molecule collision systems with suitable collisional properties for sympathetic cooling experiments. The accuracy of such calculations is limited by the uncertainties of the underlying ab initio interaction potentials. To overcome these limitations, we introduce a statistical approach based on cumulative probability distributions for the ratio of elastic-to-inelastic collision cross sections, from which the success probability of atom-molecule sympathetic cooling can be estimated. Our analysis shows that, for a range of experimentally relevant collision systems, the cumulative probabilities are not sensitive to the number of rotational states in the basis set, potentially leading to a dramatic reduction of the computational cost of simulating cold molecular collisions in external fields.

  12. Depression of reactivity by the collision energy in the single barrier H + CD4 -> HD + CD3 reaction. (United States)

    Zhang, Weiqing; Zhou, Yong; Wu, Guorong; Lu, Yunpeng; Pan, Huilin; Fu, Bina; Shuai, Quan; Liu, Lan; Liu, Shu; Zhang, Liling; Jiang, Bo; Dai, Dongxu; Lee, Soo-Ying; Xie, Zhen; Xie, Zeng; Braams, Bastiaan J; Bowman, Joel M; Collins, Michael A; Zhang, Dong H; Yang, Xueming


    Crossed molecular beam experiments and accurate quantum scattering calculations have been carried out for the polyatomic H + CD(4) --> HD + CD(3) reaction. Unprecedented agreement has been achieved between theory and experiments on the energy dependence of the integral cross section in a wide collision energy region that first rises and then falls considerably as the collision energy increases far over the reaction barrier for this simple hydrogen abstraction reaction. Detailed theoretical analysis shows that at collision energies far above the barrier the incoming H-atom moves so quickly that the heavier D-atom on CD(4) cannot concertedly follow it to form the HD product, resulting in the decline of reactivity with the increase of collision energy. We propose that this is also the very mechanism, operating in many abstraction reactions, which causes the differential cross section in the backward direction to decrease substantially or even vanish at collision energies far above the barrier height.

  13. Fragmentation processes of OCS in collision with highly charged ions (United States)

    Matsumoto, J.; Tezuka, T.; Fukutome, A.; Karimi, R.; Wales, B.; Sanderson, J. H.; Shiromaru, H.


    Fragmentation of (OCS)3+ and (OCS)4+ produced by 120 keV Ar8+ collision was studied by using a position-sensitive time-of-flight (PS-TOF) method. We identified stepwise processes involving CO2+ and CS2+ metastable species as well as the concerted process (simultaneous breakup of the two bonds). For the (OCS)4+ events, the stepwise processes were found for fragmentation channels containing a doubly-charged terminal atom.

  14. Scattering of muonic hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mulhauser, F. [Universite de Fribourg (Switzerland); Adamczak, A. [Institute of Nuclear Physics (Poland); Beer, G.A. [University of Victoria (Canada); Bystritsky, V.M. [Joint Institute for Nuclear Research (Russian Federation); Filipowicz, M. [Institute of Physics and Nuclear Techniques (Poland); Fujiwara, M.C. [University of British Columbia (Canada); Huber, T.M. [Gustavus Adolphus College (United States); Jacot-Guillarmod, R. [Universite de Fribourg (Switzerland); Kammel, P. [University of California (United States); Kim, S.K. [Jeonbuk National University (Korea, Republic of); Knowles, P. [Universite de Fribourg (Switzerland); Kunselman, A.R. [University of Wyoming (United States); Maier, M. [University of Victoria (Canada); Markushin, V.E. [Paul Scherrer Institute (Switzerland); Marshall, G.M. [TRIUMF (Canada); Olin, A. [University of Victoria (Canada); Petitjean, C. [Paul Scherrer Institute (Switzerland); Porcelli, T.A. [University of Victoria (Canada); Stolupin, V.A. [Joint Institute for Nuclear Research (Russian Federation); Wozniak, J. [Institute of Physics and Nuclear Techniques (Poland)] (and others)


    Our measurement compares the energy dependence of the scattering cross-sections of muonic deuterium and tritium on hydrogen molecules for collisions in the energy range 0.1-45 eV. A time-of-flight method was used to measure the scattering cross-section as a function of the muonic atom beam energy and shows clearly the Ramsauer-Townsend effect. The results are compared with theoretical calculations by using Monte Carlo simulations. The molecular pd{mu} and pt{mu} formation creates background processes. We measure the formation rates in solid hydrogen by detecting the 5.5 MeV (pd{mu}) and 19.8 MeV (pt{mu}) {gamma}-rays emitted during the subsequent nuclear fusion processes.

  15. The role of multiple parton collisions in hadron collisions

    CERN Document Server

    Walker, W D


    We have examined charged multiplicities arising from p-p and p-p collisions over the range of center of mass energies from 30 GeV to 1800 GeV. We find that a portion of each distribution does obey KNO scaling. Those parts of the distributions that do not scale are the result of multiparton collisions. Results from experiment E735 show not only double but also triple parton collisions. These multiparton collisions seem to account for a large part of the increase in the cross section in this energy domain. (4 refs).

  16. Teach us atom structure

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Suh Yeon


    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  17. Playing pinball with atoms. (United States)

    Saedi, Amirmehdi; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Harold J W


    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely controlling the tip current and distance we make two atom pairs behave like the flippers of an atomic-sized pinball machine. This atomic scale mechanical device exhibits six different configurations.

  18. High density matter in AGS, SPS and RHIC collisions: Proceedings. Volume 9

    Energy Technology Data Exchange (ETDEWEB)



    This 1-day workshop focused on phenomenological models regarding the specific question of the maximum energy density achievable in collisions at AGS, SPS and RHIC. The idea was to have 30-minute (or less) presentations of each model--but not the model as a whole, rather then that strongly narrowed to the above physics question. The key topics addressed were: (1) to estimate the energy density in heavy-ion collisions within a model, and to discuss its physical implications; (2) to suggest experimental observables that may confirm the correctness of a model approach--with respect to the energy density estimate; (3) to compare with existing data from AGS and SPS heavy-ion collisions, and to give predictions for the future RHIC experiments. G. Ogilvie started up the workshop with a critical summary of experimental manifestations of high-density matter at the AGS, and gave a personal outlook on RHIC physics. R. Mattiello talked about his newly developed hadron cascade model for applications to AGS and SPS collisions. Next, D. Kharzeev gave a nice introduction of the Glauber approach to high-energy collisions and illustrated the predictive power of this approach in nucleus-nucleus collisions at the SPS. It followed S. Vance with a presentation of the baryon-junction model to explain the observed baryon stopping phenomenon in collisions of heavy nuclei. S. Bass continued with a broad perspective of the UrQMD model, and provided insight into the details of the microscopic dynamical features of nuclear collisions at high energy. J. Sandweiss and J. Kapusta addressed the interesting aspect of photon production in peripherical nuclear collisions due to intense electromagnetic bremstrahlung by the highly charged, fast moving ions. Finally, H. Sorge closed up the one-day workshop with a presentation of his recent work with the RQMD model. This report consists of a summary and vugraphs of the presentations.

  19. Road rage and collision involvement. (United States)

    Mann, Robert E; Zhao, Jinhui; Stoduto, Gina; Adlaf, Edward M; Smart, Reginald G; Donovan, John E


    To assess the contribution of road rage victimization and perpetration to collision involvement. The relationship between self-reported collision involvement and road rage victimization and perpetration was examined, based on telephone interviews with a representative sample of 4897 Ontario adult drivers interviewed between 2002 and 2004. Perpetrators and victims of both any road rage and serious road rage had a significantly higher risk of collision involvement than did those without road rage experience. This study provides epidemiological evidence that both victims and perpetrators of road rage experience increased collision risk. More detailed studies of the contribution of road rage to traffic crashes are needed.

  20. Robustness of localized DNA strand displacement cascades. (United States)

    Teichmann, Mario; Kopperger, Enzo; Simmel, Friedrich C


    Colocalization can strongly alter the kinetics and efficiency of chemical processes. For instance, in DNA-templated synthesis unfavorable reactions are sped up by placing reactants into close proximity onto a DNA scaffold. In biochemistry, clustering of enzymes has been demonstrated to enhance the reaction flux through some enzymatic cascades. Here we investigate the effect of colocalization on the performance of DNA strand displacement (DSD) reactions, an important class of reactions utilized in dynamic DNA nanotechnology. We study colocalization by immobilizing a two-stage DSD reaction cascade comprised of a “sender” and a “receiver” gate onto a DNA origami platform. The addition of a DNA (or RNA) input strand displaces a signal strand from the sender gate, which can then transfer to the receiver gate. The performance of the cascade is found to vary strongly with the distance between the gates. A cascade with an intermediate gate distance of ≈20 nm exhibits faster kinetics than those with larger distances, whereas a cascade with smaller distance is corrupted by excessive intraorigami leak reactions. The 20 nm cascade is found to be considerably more robust with respect to a competing reaction, and implementation of multiple receiver gates further increases this robustness. Our results indicate that for the 20 nm distance a fraction of signal strands is transferred locally to a receiver gate on the same platform, probably involving direct physical contact between the gates. The performance of the cascade is consistent with a simple model that takes “local” and “global” transfer processes into account.

  1. Low-energy measurements of electron capture by multicharged ions from excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Havener, C.C. (Oak Ridge National Laboratory, Oak Ridge, Tennesse 37831-6372 (United States)); Haque, M.A. (Alcorn State University, Lorman, Mississippi 39096 (United States)); Smith, A.C.H. (University College London, WC1E 6BT (United Kingdom)); Urbain, X. (Universite Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium)); Zeijlmans van Emmichoven, P.A. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6372 (United States) Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, Tennessee 37831-6374 (United States))


    For very low collision energies electron capture from excited hydrogen by multicharged ions is characterized by enormous cross sections, the predicted maximum being comparable to the geometric size of the Rydberg atom. The ion-atom merged-beams technique is being used to study these collisions for the variety of charge states and the wide range of energies (0.1 to 1000 eV/amu) accessible to the apparatus. A neutral D beam containing a Rydberg atom population proportional to 1/n[sup 3] is produced by collisional electron detachment of 8 keV D[sup [minus

  2. The dynamics of milk droplet-droplet collisions (United States)

    Finotello, Giulia; Kooiman, Roeland F.; Padding, Johan T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.


    Spray drying is an important industrial process to produce powdered milk, in which concentrated milk is atomized into small droplets and dried with hot gas. The characteristics of the produced milk powder are largely affected by agglomeration, combination of dry and partially dry particles, which in turn depends on the outcome of a collision between droplets. The high total solids (TS) content and the presence of milk proteins cause a relatively high viscosity of the fed milk concentrates, which is expected to largely influence the collision outcomes of drops inside the spray. It is therefore of paramount importance to predict and control the outcomes of binary droplet collisions. Only a few studies report on droplet collisions of high viscous liquids and no work is available on droplet collisions of milk concentrates. The current study therefore aims to obtain insight into the effect of viscosity on the outcome of binary collisions between droplets of milk concentrates. To cover a wide range of viscosity values, three milk concentrates (20, 30 and 46% TS content) are investigated. An experimental set-up is used to generate two colliding droplet streams with consistent droplet size and spacing. A high-speed camera is used to record the trajectories of the droplets. The recordings are processed by Droplet Image Analysis in MATLAB to determine the relative velocities and the impact geometries for each individual collision. The collision outcomes are presented in a regime map dependent on the dimensionless impact parameter and Weber ( We) number. The Ohnesorge ( Oh) number is introduced to describe the effect of viscosity from one liquid to another and is maintained constant for each regime map by using a constant droplet diameter ( d ˜ 700 μ m). In this work, a phenomenological model is proposed to describe the boundaries demarcating the coalescence-separation regimes. The collision dynamics and outcome of milk concentrates are compared with aqueous glycerol

  3. Theoretical atomic physics for fusion. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Pindzola, M.S.


    The understanding of electron-ion collision processes in plasmas remains a key factor in the ultimate development of nuclear fusion as a viable energy source for the nation. The 1993--1995 research proposal delineated several areas of research in electron-ion scattering theory. In this report the author summarizes his efforts in 1995. The main areas of research are: (1) electron-impact excitation of atomic ions; (2) electron-impact ionization of atomic ions; and (3) electron-impact recombination of atomic ions.

  4. Atom loss resonances in a Bose-Einstein condensate. (United States)

    Langmack, Christian; Smith, D Hudson; Braaten, Eric


    Atom loss resonances in ultracold trapped atoms have been observed at scattering lengths near atom-dimer resonances, at which Efimov trimers cross the atom-dimer threshold, and near two-dimer resonances, at which universal tetramers cross the dimer-dimer threshold. We propose a new mechanism for these loss resonances in a Bose-Einstein condensate of atoms. As the scattering length is ramped to the large final value at which the atom loss rate is measured, the time-dependent scattering length generates a small condensate of shallow dimers coherently from the atom condensate. The coexisting atom and dimer condensates can be described by a low-energy effective field theory with universal coefficients that are determined by matching exact results from few-body physics. The classical field equations for the atom and dimer condensates predict narrow enhancements in the atom loss rate near atom-dimer resonances and near two-dimer resonances due to inelastic dimer collisions.

  5. Electron loss and transfer for 20-110-keV iodine-rare-gas collisions (United States)

    Hird, B.; Orakzai, M. W.; Rahman, F.


    Atomic cross sections have been measured for the loss and transfer of an electron during a collision between a neutral iodine atom and a rare-gas atom. The neutral iodine beam, with energy between 20 to 110 keV, was unlikely to contain a significant mixture of metastable-state atoms because it was produced by neutralizing a negative-iodine-ion beam. The σ0+ cross section is largest for the argon and krypton targets, not for xenon, as might have been expected. The σ0- cross section is very small for the light targets and only becomes appreciable for xenon at the highest energy used.

  6. Energy and centrality dependences of charged multiplicity density in relativistic nuclear collisions

    CERN Document Server

    Sá Ben-Hao; Tai, A; Zhou Dai Mei; Sa, Ben-Hao; Tai, An; Zhou, Dai-Mei


    Using a hadron and string cascade model, JPCIAE, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic $p+\\bar p$ experimental data and the PHOBOS and PHENIX $Au+Au$ data at $\\sqrt s_{nn}$=130 GeV could be reproduced fairly well without retuning the model parameters. The predictions for full RHIC energy $Au+Au$ collisions and for $Pb+Pb$ collisions at the ALICE energy were given. Participant nucleon distributions were calculated based on different methods. It was found that the number of participant nucleons, $$, is not a well defined variable both experimentally and theoretically. Therefore, it is inappropriate to use charged particle pseudorapidity density per participant pair as a function of $$ for distinguishing various theoretical models.

  7. Fast atom diffraction for grazing scattering of Ne atoms from a LiF(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M.S., E-mail: [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Schueller, A.; Winter, H. [Institut fuer Physik, Humboldt Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin-Adlershof (Germany); Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)


    Angular distributions of fast Ne atoms after grazing collisions with a LiF(0 0 1) surface under axial surface channeling conditions are experimentally and theoretically studied. We use the surface eikonal approximation to describe the quantum interference of scattered projectiles, while the atom-surface interaction is represented by means of a pairwise additive potential, including the polarization of the projectile atom. Experimental data serve as a benchmark to investigate the performance of the proposed potential model, analyzing the role played by the projectile polarization.

  8. Fast metastable hydrogen atoms from H2 molecules: twin atoms

    Directory of Open Access Journals (Sweden)

    Trimèche A.


    Full Text Available It is a difficult task to obtain “twin atoms”, i.e. pairs of massive particles such that one can perform experiments in the same fashion that is routinely done with “twin photons”. One possible route to obtain such pairs is by dissociating homonuclear diatomic molecules. We address this possibility by investigating the production of metastable H(2s atoms coming from the dissociation of cold H2 molecules produced in a Campargue nozzle beam crossing an electron beam from a high intensity pulsed electron gun. Dissociation by electron impact was chosen to avoid limitations of target molecular excited states due to selection rules. Detectors placed several centimeters away from the collision center, and aligned with respect to possible common molecular dissociation channel, analyze the neutral fragments as a function of their time-of-flight (TOF through Lyman-α detection. Evidence for the first time observed coincidence of pairs of H(2s atoms obtained this way is presented.

  9. Rb atomic magnetometer toward EDM experiment with laser cooled francium atoms (United States)

    Inoue, Takeshi; Ando, Shun; Aoki, Takahiro; Arikawa, Hiroshi; Harada, Ken-Ichi; Hayamizu, Tomohiro; Ishikawa, Taisuke; Itoh, Masatoshi; Kato, Ko; Kawamura, Hirokazu; Sakamoto, Kosuke; Uchiyama, Aiko; Asahi, Koichiro; Yoshimi, Akihiro; Sakemi, Yasuhiro


    A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield. We prepared the cell coated with an anti-relaxation material and measured the relaxation time. A degauss of the shield was performed to eliminate the residual field. We will report the present status of the magnetometer. A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield

  10. Molecular collision theory

    CERN Document Server

    Child, M S


    This high-level monograph offers an excellent introduction to the theory required for interpretation of an increasingly sophisticated range of molecular scattering experiments. There are five helpful appendixes dealing with continuum wavefunctions, Green's functions, semi-classical connection formulae, curve-crossing in the momentum representation, and elements of classical mechanics.The contents of this volume have been chosen to emphasize the quantum mechanical and semi-classical nature of collision events, with little attention given to purely classical behavior. The treatment is essentiall

  11. Fragments detection of the Ar{sup +} collision in air; Deteccion de fragmentos de la colision de Ar{sup +} en aire

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro V, F. J. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Fuentes M, B. E. [UNAM, Facultad de Ciencias, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Yousif, F. B. [Universidad Autonoma del Estado de Morelos, Facultad de Ciencias, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos (Mexico); Roa N, J. A. E., E-mail: [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Departamento de Ciencias Basicas, Av. San Pablo Xalpa No. 1802, Col. Reynosa Tamaulipas, 02200 Mexico D. F. (Mexico)


    The different components of a lineal accelerator of particles to low energy that will be used in experiments of atomic and molecular collisions are described. By means of the technique of flight time the fragments of the collision of positive ions were identified in gases. In this work values of some parameters are presented guided to optimize the operation of the accelerator, as well as preliminary data of the collision of argon ions in air. (Author)

  12. Control the fear atomic

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Gwan [I and Book, Seoul (Korea, Republic of)


    This book has a lot of explanation of nuclear energy with articles. Their titles are the bad man likes atomic, the secret of atom, nuclear explosion, NPT?, the secret of uranium fuel rod, nuclear power plant vs nuclear bomb, I hate atomic, keep plutonium in control, atomic in peace and find out alternative energy.

  13. Effect of cascade remnants on freely migrating defects in Cu-1% Au alloys

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, A.; Rehn, L.E.; Baldo, P.M.; Funk, L. [Argonne National Lab., IL (United States). Materials Science Div.


    The effects of cascade remnants on Freely Migrating Defects (FMD) were studied by measuring Radiation-Induced Segregation (RIS) in Cu-1%Au at 400degC during simultaneous irradiation with 1.5-MeV He and (400-800)-keV heavy ions (Ne, Ar or Cu). The large RIS observed during 1.5-MeV He-only irradiation was dramatically suppressed under simultaneous heavy ion irradiation. For Cu simultaneous irradiation, the suppression disappeared immediately after the Cu irradiation ceased, while for simultaneous inert gas (Ne or Ar) irradiation, the suppression persisted after the ion beam was turned off. These results demonstrate that the displacement cascades created by heavy ions introduce additional annihilation sites, which reduce the steady-state FMD concentrations. As the cascade remnants produced by Cu ions are thermally unstable at 400degC, the RIS suppression occurs only during simultaneous irradiation. On the other hand, the inert gas atoms which accumulate in the specimen apparently stabilize the cascade remnants, allowing the suppression to persist. (author)

  14. MAP kinase cascades in Arabidopsis innate immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt; Roux, Milena Edna; Petersen, Morten


    Plant mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate...... immune responses. In the model Arabidopsis, molecular genetic evidence implicates a number of MAPK cascade components in PAMP signaling, and in responses to immunity-related phytohormones such as ethylene, jasmonate, and salicylate. In a few cases, cascade components have been directly linked...... to the transcription of target genes or to the regulation of phytohormone synthesis. Thus MAPKs are obvious targets for bacterial effector proteins and are likely guardees of resistance proteins, which mediate defense signaling in response to the action of effectors, or effector-triggered immunity. This mini...

  15. Bifurcations analysis of turbulent energy cascade

    Energy Technology Data Exchange (ETDEWEB)

    Divitiis, Nicola de, E-mail:


    This note studies the mechanism of turbulent energy cascade through an opportune bifurcations analysis of the Navier–Stokes equations, and furnishes explanations on the more significant characteristics of the turbulence. A statistical bifurcations property of the Navier–Stokes equations in fully developed turbulence is proposed, and a spatial representation of the bifurcations is presented, which is based on a proper definition of the fixed points of the velocity field. The analysis first shows that the local deformation can be much more rapid than the fluid state variables, then explains the mechanism of energy cascade through the aforementioned property of the bifurcations, and gives reasonable argumentation of the fact that the bifurcations cascade can be expressed in terms of length scales. Furthermore, the study analyzes the characteristic length scales at the transition through global properties of the bifurcations, and estimates the order of magnitude of the critical Taylor-scale Reynolds number and the number of bifurcations at the onset of turbulence.

  16. Seeded QED cascades in counterpropagating laser pulses. (United States)

    Grismayer, T; Vranic, M; Martins, J L; Fonseca, R A; Silva, L O


    The growth rates of seeded QED cascades in counterpropagating lasers are calculated with first-principles two- and three-dimensional QED-PIC (particle-in-cell) simulations. The dependence of the growth rate on the laser polarization and intensity is compared with analytical models that support the findings of the simulations. The models provide insight regarding the qualitative trend of the cascade growth when the intensity of the laser field is varied. A discussion about the cascade's threshold is included, based on the analytical and numerical results. These results show that relativistic pair plasmas and efficient conversion from laser photons to γ rays can be observed with the typical intensities planned to operate on future ultraintense laser facilities such as ELI or Vulcan.

  17. Emergence of event cascades in inhomogeneous networks

    CERN Document Server

    Onaga, Tomokatsu


    There is a commonality among contagious diseases, tweets, urban crimes, nuclear reactions, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states for the case of the weaker interaction are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, frequent crimes, or large fluctuations in nuclear reactions, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlli...

  18. Epidemic and Cascading Survivability of Complex Networks

    DEFF Research Database (Denmark)

    Manzano, Marc; Calle, Eusebi; Ripoll, Jordi


    Our society nowadays is governed by complex networks, examples being the power grids, telecommunication networks, biological networks, and social networks. It has become of paramount importance to understand and characterize the dynamic events (e.g. failures) that might happen in these complex...... networks. For this reason, in this paper, we propose two measures to evaluate the vulnerability of complex networks in two different dynamic multiple failure scenarios: epidemic-like and cascading failures. Firstly, we present epidemic survivability ( ES ), a new network measure that describes...... the vulnerability of each node of a network under a specific epidemic intensity. Secondly, we propose cascading survivability ( CS ), which characterizes how potentially injurious a node is according to a cascading failure scenario. Then, we show that by using the distribution of values obtained from ES and CS...

  19. Epidemic and Cascading Survivability of Complex Networks

    CERN Document Server

    Manzano, Marc; Ripoll, Jordi; Fagertun, Anna Manolova; Torres-Padrosa, Victor; Pahwa, Sakshi; Scoglio, Caterina


    Our society nowadays is governed by complex networks, examples being the power grids, telecommunication networks, biological networks, and social networks. It has become of paramount importance to understand and characterize the dynamic events (e.g. failures) that might happen in these complex networks. For this reason, in this paper, we propose two measures to evaluate the vulnerability of complex networks in two different dynamic multiple failure scenarios: epidemic-like and cascading failures. Firstly, we present \\emph{epidemic survivability} ($ES$), a new network measure that describes the vulnerability of each node of a network under a specific epidemic intensity. Secondly, we propose \\emph{cascading survivability} ($CS$), which characterizes how potentially injurious a node is according to a cascading failure scenario. Then, we show that by using the distribution of values obtained from $ES$ and $CS$ it is possible to describe the vulnerability of a given network. We consider a set of 17 different compl...

  20. Outer Dynamics of Ship Collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup


    The purpose is to present analysis procedures for the motion of ships during ship-ship collisions and for ship collisions with offshore structures. The aim is to estimate that part of the lost kinetic energy which will have to be absorbed by rupture and plastic damage of the colliding structures....

  1. Unlimited Damage Accumulation in Metallic Materials Under Cascade-Damage Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Barashev, Aleksandr [University of Liverpool; Golubov, Stanislav I [ORNL


    Most experiments on neutron or heavy-ion cascade-produced irradiation of pure metals and metallic alloys demonstrate unlimited void growth as well as development of the dislocation structure. In contrast, the theory of radiation damage predicts saturation of void swelling at sufficiently high irradiation doses and, accordingly, termination of accumulation of interstitial-type defects. It is shown in the present paper that, under conditions of steady production of one-dimensionally (1-D) mobile clusters of self-interstitial atoms (SIAs) in displacement cascades, any one of the following three conditions can result in indefinite damage accumulation. First, if the fraction of SIAs generated in the clustered form is smaller than some finite value of the order of the dislocation bias factor. Second, if solute, impurity or transmuted atoms form atmospheres around voids and repel the SIA clusters. Third, if spatial correlations between voids and other defects, such as second-phase precipitates and dislocations, exist that provide shadowing of voids from the SIA clusters. The driving force for the development of such correlations is the same as for void lattice formation and is argued to be always present under cascade-damage conditions. It is emphasised that the mean-free path of 1-D migrating SIA clusters is typically at least an order of magnitude longer than the average distance between microstructural defects; hence spatial correlations on the same scale should be taken into consideration. A way of developing a predictive theory is discussed. An interpretation

  2. Piscivores, Trophic Cascades, and Lake Management

    Directory of Open Access Journals (Sweden)

    Ray W. Drenner


    Full Text Available The concept of cascading trophic interactions predicts that an increase in piscivore biomass in lakes will result in decreased planktivorous fish biomass, increased herbivorous zooplankton biomass, and decreased phytoplankton biomass. Though often accepted as a paradigm in the ecological literature and adopted by lake managers as a basis for lake management strategies, the trophic cascading interactions hypothesis has not received the unequivocal support (in the form of rigorous experimental testing that might be expected of a paradigm. Here we review field experiments and surveys, testing the hypothesis that effects of increasing piscivore biomass will cascade down through the food web yielding a decline in phytoplankton biomass. We found 39 studies in the scientific literature examining piscivore effects on phytoplankton biomass. Of the studies, 22 were confounded by supplemental manipulations (e.g., simultaneous reduction of nutrients or removal of planktivores and could not be used to assess piscivore effects. Of the 17 nonconfounded studies, most did not find piscivore effects on phytoplankton biomass and therefore did not support the trophic cascading interactions hypothesis. However, the trophic cascading interactions hypothesis also predicts that lake systems containing piscivores will have lower phytoplankton biomass for any given phosphorus concentration. Based on regression analyses of chlorophyll�total phosphorus relationships in the 17 nonconfounded piscivore studies, this aspect of the trophic cascading interactions hypothesis was supported. The slope of the chlorophyll vs. total phosphorus regression was lower in lakes with planktivores and piscivores compared with lakes containing only planktivores but no piscivores. We hypothesize that this slope can be used as an indicator of “functional piscivory” and that communities with extremes of functional piscivory (zero and very high represent classical 3- and 4-trophic level

  3. A Changing Wind Collision (United States)

    Nazé, Yaël; Koenigsberger, Gloria; Pittard, Julian M.; Parkin, Elliot Ross; Rauw, Gregor; Corcoran, Michael F.; Hillier, D. John


    We report on the first detection of a global change in the X-ray emitting properties of a wind–wind collision, thanks to XMM-Newton observations of the massive Small Magellenic Cloud (SMC) system HD 5980. While its light curve had remained unchanged between 2000 and 2005, the X-ray flux has now increased by a factor of ∼2.5, and slightly hardened. The new observations also extend the observational coverage over the entire orbit, pinpointing the light-curve shape. It has not varied much despite the large overall brightening, and a tight correlation of fluxes with orbital separation is found without any hysteresis effect. Moreover, the absence of eclipses and of absorption effects related to orientation suggests a large size for the X-ray emitting region. Simple analytical models of the wind–wind collision, considering the varying wind properties of the eruptive component in HD 5980, are able to reproduce the recent hardening and the flux-separation relationship, at least qualitatively, but they predict a hardening at apastron and little change in mean flux, contrary to observations. The brightness change could then possibly be related to a recently theorized phenomenon linked to the varying strength of thin-shell instabilities in shocked wind regions. Based on XMM-Newton and Chandra data.

  4. Collision in space (United States)

    Ellis, S. R.


    On June 25, 1997, the Russian supply spacecraft Progress 234 collided with the Mir space station, rupturing Mir's pressure hull, throwing it into an uncontrolled attitude drift, and nearly forcing evacuation of the station. Like many high-profile accidents, this collision was the consequence of a chain of events leading to the final piloting errors that were its immediate cause. The discussion in this article does not resolve the relative contributions of the actions and decisions in this chain. Neither does it suggest corrective measures, many of which are straightforward and have already been implemented by the National Aeronautics and Space Administration (NASA) and the Russian Space Agency. Rather, its purpose is to identify the human factors that played a pervasive role in the incident. Workplace stress, fatigue, and sleep deprivation were identified by NASA as contributory factors in the Mir-Progress collision (Culbertson, 1997; NASA, forthcoming), but other contributing factors, such as requiring crew to perform difficult tasks for which their training is not current, could potentially become important factors in future situations.

  5. Interaction of slow and highly charged ions with surfaces: formation of hollow atoms

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N.; Grether, M.; Spieler, A.; Niemann, D. [Hahn-Meitner Institut, Berlin (Germany). Bereich Festkoerperphysik; Arnau, A.


    The method of Auger spectroscopy was used to study the interaction of highly charged ions with Al and C surfaces. The formation of hollow Ne atoms in the first surface layers was evaluated by means of a Density Functional theory including non-linear screening effects. The time-dependent filling of the hollow atom was determined from a cascade model yielding information about the structure of the K-Auger spectra. Variation of total intensities of the L- and K-Auger peaks were interpreted by the cascade model in terms of attenuation effects on the electrons in the solid. (author)

  6. Ship Collision and Grounding Analysis

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup


    It is the purpose of the paper to present a review of prediction and analysis tools for collision and grounding analyses and to outline a probabilistic procedure whereby these tools can be used by the maritime industry to develop performance based rules to reduce the risk associated with human, e......, environmental and economic costs of collision and grounding events. The main goal of collision and grounding research should be to identify the most economic risk control options associated with prevention and mitigation of collision and grounding events......It is the purpose of the paper to present a review of prediction and analysis tools for collision and grounding analyses and to outline a probabilistic procedure whereby these tools can be used by the maritime industry to develop performance based rules to reduce the risk associated with human...

  7. Volcano geodesy in the Cascade arc, USA (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin


    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  8. Robustness of networks against cascading failures (United States)

    Dou, Bing-Lin; Wang, Xue-Guang; Zhang, Shi-Yong


    Inspired by other related works, this paper proposes a non-linear load-capacity model against cascading failures, which is more suitable for real networks. The simulation was executed on the B-A scale-free network, E-R random network, Internet AS level network, and the power grid of the western United States. The results show that the model is feasible and effective. By studying the relationship between network cost and robustness, we find that the model can defend against cascading failures better and requires a lower investment cost when higher robustness is required.

  9. Robustness of network controllability in cascading failure (United States)

    Chen, Shi-Ming; Xu, Yun-Fei; Nie, Sen


    It is demonstrated that controlling complex networks in practice needs more inputs than that predicted by the structural controllability framework. Besides, considering the networks usually faces to the external or internal failure, we define parameters to evaluate the control cost and the variation of controllability after cascades, exploring the effect of number of control inputs on the controllability for random networks and scale-free networks in the process of cascading failure. For different topological networks, the results show that the robustness of controllability will be stronger through allocating different control inputs and edge capacity.

  10. Volcano geodesy in the Cascade arc, USA (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben


    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  11. Reversible simulations of elastic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Perumalla, Kalyan S.; Protopopescu, Vladimir A.


    Consider a system of N identical hard spherical particles moving in a d-dimensional box and undergoing elastic, possibly multi-particle, collisions. We develop a new algorithm that recovers the pre-collision state from the post-collision state of the system, across a series of consecutive collisions, \\textit{with essentially no memory overhead}. The challenge in achieving reversibility for an n-particle collision (where, in general, n<< N) arises from the presence of nd-d-1 degrees of freedom (arbitrary angles) during each collision, as well as from the complex geometrical constraints placed on the colliding particles. To reverse the collisions in a traditional simulation setting, all of the particular realizations of these degrees of freedom (angles) during the forward simulation must be tracked. This requires memory proportional to the number of collisions, which grows very fast with N and d, thereby severely limiting the \\textit{de facto} applicability of the scheme. This limitation is addressed here by first performing a pseudo-randomization of angles, which ensures determinism in the reverse path for any values of n and d. To address the more difficult problem of geometrical and dynamic constraints, a new approach is developed which correctly samples the constrained phase space. Upon combining the pseudo-randomization with correct phase space sampling, perfect reversibility of collisions is achieved, as illustrated for n<=3, d=2, and n=2, d=3. This result enables, for the first time, reversible simulations of elastic collisions with essentially zero memory accumulation. In principle, the approach presented here could be generalized to larger values of n, which would be of definite interest for molecular dynamics simulations at high densities.

  12. Trapping of molecular Oxygen together with Lithium atoms

    CERN Document Server

    Akerman, Nitzan; Segev, Yair; Bibelnik, Natan; Narevicius, Julia; Narevicius, Edvardas


    We demonstrate simultaneous deceleration and trapping of a cold atomic and molecular mixture. This is the first step towards studies of cold atom-molecule collisions at low temperatures as well as application of sympathetic cooling. Both atoms and molecules are cooled in a supersonic expansion and are loaded into a moving magnetic trap which brings them to rest via the Zeeman interaction from an initial velocity of 375 m/s. We use a beam seeded with molecular Oxygen, and entrain it with Lithium atoms by laser ablation prior to deceleration. The deceleration ends with loading of the mixture into a static quadrupole trap, which is generated by two permanent magnets. We estimate $10^9$ trapped O$_2$ molecules and $10^5$ Li atoms with background pressure limited lifetime on the order of 1 second. With further improvements to Lithium entrainment we expect that sympathetic cooling of molecules is within reach.

  13. Calculation of tin atomic data and plasma properties.

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, V.; Tolkach, V.; Hassanein, A.


    This report reviews the major methods and techniques we use in generating basic atomic and plasma properties relevant to extreme ultraviolet (EUV) lithography applications. The basis of the work is the calculation of the atomic energy levels, transitions probabilities, and other atomic data by various methods, which differ in accuracy, completeness, and complication. Later on, we calculate the populations of atomic levels and ion states in plasmas by means of the collision-radiation equilibrium (CRE) model. The results of the CRE model are used as input to the thermodynamic functions, such as pressure and temperature from the internal energy and density (equation of state), electric resistance, thermal conduction, and other plasma properties. In addition, optical coefficients, such as emission and absorption coefficients, are generated to resolve a radiation transport equation (RTE). The capabilities of our approach are demonstrated by generating the required atomic and plasma properties for tin ions and plasma within the EUV region near 13.5 nm.

  14. Implementing quantum electrodynamics with ultracold atomic systems (United States)

    Kasper, V.; Hebenstreit, F.; Jendrzejewski, F.; Oberthaler, M. K.; Berges, J.


    We discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic 23Na and fermionic 6Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson-fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose-Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system’s parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable.

  15. Incomplete optical shielding in cold sodium atom traps (United States)

    Yurovsky, Vladimir; Ben-Reuven, Abraham


    A simple two-channel model, based on the semiclassical Landau-Zener (LZ) approximation, with averaging over angle-dependent exponents, is proposed as a fast means for accounting for the incomplete optical shielding of collisions, as observed in recent experiments conducted by Weiner and co-workers on ultracold sodium-atom traps, and its dependence on the laser polarization. The model yields a reasonably good agreement with the recent quantum close-coupling calculations of Julienne and co-workers. The remaining discrepancy between both theories and the data is qualitatively attributed to a partial overlap of the collision ranges at which loss processes and optical shielding occur.

  16. Gaseous Electronics Tables, Atoms, and Molecules

    CERN Document Server

    Raju, Gorur Govinda


    With the constant emergence of new research and application possibilities, gaseous electronics is more important than ever in disciplines including engineering (electrical, power, mechanical, electronics, and environmental), physics, and electronics. The first resource of its kind, Gaseous Electronics: Tables, Atoms, and Molecules fulfills the author's vision of a stand-alone reference to condense 100 years of research on electron-neutral collision data into one easily searchable volume. It presents most--if not all--of the properly classified experimental results that scientists, researchers,

  17. Laser Cooling and Trapping of Neutral Atoms (United States)


    Weiner, Dept of Chemistry, University of Maryland.) Studies of ultra cold collisions in traps can probe the lowest energy interactions of atoms but are...Ramsey resonance. The experimental set up is shown in fig. 10. VL.-Abt) T ~5cm :- TE, avity 9.2GH,7input/ =. molasses VL molasses fluorecence " TOF~~ sinl...implies that there is a rich resonant structure to be probed by superimposing a separately tunable laser on the trap laser. Unfortunately, we cannot tune

  18. Diffusion mobility of the hydrogen atom with allowance for the anharmonic attenuation of migrating atom state

    Energy Technology Data Exchange (ETDEWEB)

    Kashlev, Y.A., E-mail:


    Evolution of vibration relaxation of hydrogen atoms in metals with the close-packed lattice at high and medium temperatures is investigated based on non-equilibrium statistical thermodynamics, in that number on using the retarded two-time Green function method. In accordance with main kinetic equation – the generalized Fokker- Plank- Kolmogorov equation, anharmonism of hydrogen atoms vibration in potential wells does not make any contribution to collision effects. It influences the relaxation processes at the expense of interference of fourth order anharmonism with single-phonon scattering on impurity hydrogen atoms. Therefore, the total relaxation time of vibration energy of system metal-hydrogen is written as a product of two factors: relaxation time of system in harmonic approximation and dimensionless anharmonic attenuation of quantum hydrogen state.

  19. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  20. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J


    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  1. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J


    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  2. Mechanisms for decoration of dislocations by small dislocation loops under cascade damage conditions

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, B.N.; Foreman, A.J.E.


    In metals under cascade damage conditions, dislocations are frequently found to be decorated with a high density of small clusters of self-interstitial atoms (SIAs) in the form of dislocation loops, particularly during the early stages of the microstructural evolution in well annealed pure metals....... This effect may arise as a result of either (a) migration and enhanced agglomeration of single SIAs in the form of loops in the strain field of the dislocation or (b) glide and trapping of SIA loops (produced directly in the cascades) in the strain field of the dislocation, In the present paper, both...... of these possibilities are examined. It is shown that the strain field of the dislocation causes a SIA depletion in the compressive as well as in the dilatational region resulting in a reduced rather than enhanced agglomeration of SIAs. (SIA depletion may, however, induce enhanced vacancy agglomeration near dislocations...

  3. Gene regulation by MAP kinase cascades

    DEFF Research Database (Denmark)

    Fiil, Berthe Katrine; Petersen, Klaus; Petersen, Morten


    Mitogen-activated protein kinase (MAPK) cascades are signaling modules that transduce extracellular stimuli to a range of cellular responses. Research in yeast and metazoans has shown that MAPK-mediated phosphorylation directly or indirectly regulates the activity of transcription factors. Plant ...... gene expression....

  4. Multilevel Inverter by Cascading Industrial VSI

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Pedersen, John Kim


    by a standard triphase IGBT inverter module. Thus, a high fault tolerance is being achieved and the output transformer requirement is eliminated. A staggered space-vector modulation technique applicable to three-phase cascaded voltage-source inverter topologies is also demonstrated. Both computer simulations...

  5. Criticality in a cascading failure blackout model

    Energy Technology Data Exchange (ETDEWEB)

    Nedic, Dusko P.; Kirschen, Daniel S. [University of Manchester (United Kingdom). School of Electrical and Electronic Engineering; Dobson, Ian [University of Wisconsin, Madison, WI (United States). ECE Department; Carreras, Benjamin A.; Lynch, Vickie E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)


    We verify and examine criticality in a 1000 bus network with an AC blackout model that represents many of the interactions that occur in cascading failure. At the critical loading there is a sharp rise in the mean blackout size and a power law probability distribution of blackout size that indicates a significant risk of large blackouts. (author)

  6. Geothermal research, Oregon Cascades: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Priest, G.R.; Black, G.L.


    Previous USDOE-funded geothermal studies have produced an extensive temperature gradient and heat flow data base for the State of Oregon. One of the important features identified as a result of these studies is a rapid transition from heat flow values on the order of 40 mW/m/sup 2/ in the Willamette Valley and Western Cascades to values of greater than or equal to100 mW/m/sup 2/ in the High Cascades and the eastern portion of the Western Cascades. These data indicate that the Cascade Range in Oregon has potential as a major geothermal province and stimulated much of the later work completed by government agencies and private industry. Additional data generated as a result of this grant and published in DOGAMI Open-File Report 0-86-2 further define the location and magnitude of this transition zone. In addition, abundant data collected from the vicinity of Breitenbush and Austin Hot Springs have permitted the formulation of relatively detailed models of these hydrothermal systems. These models are published in DOGAMI Open-File Report 0-88-5. Task 1.2 of the Deliverables section of Amendment M001 is fulfilled by DOGAMI publication GMS-48, Geologic map of the McKenzie Bridge quadrangle, Lane County, Oregon. This map was printed in October, 1988, and is part of the final submission to USDOE. 8 refs.

  7. The Attention Cascade Model and Attentional Blink (United States)

    Shih, Shui-I


    An attention cascade model is proposed to account for attentional blinks in rapid serial visual presentation (RSVP) of stimuli. Data were collected using single characters in a single RSVP stream at 10 Hz [Shih, S., & Reeves, A. (2007). "Attentional capture in rapid serial visual presentation." "Spatial Vision", 20(4), 301-315], and single words,…

  8. Quantum Cascade Lasers in Biomedical Infrared Imaging. (United States)

    Bird, Benjamin; Baker, Matthew J


    Technological advances, namely the integration of quantum cascade lasers (QCLs) within an infrared (IR) microscope, are enabling the development of valuable label-free biomedical-imaging tools capable of targeting and detecting salient chemical species within practical clinical timeframes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nonconforming finite elements and the Cascade iteration

    NARCIS (Netherlands)

    Stevenson, R.


    We derive sucient conditions under which the Cascade iteration applied to nonconforming nite element discretizations yields an optimal solver. Key ingredients are optimal error estimates of such discretizations, which we therefore study in detail. We derive a new, ecient modied Morley nite element

  10. Cascade Training and Teachers' Professional Development. (United States)

    Hayes, David


    Examines the experience of a nationwide inservice teacher development project in Sri Lanka that aims to remedy the potential deficiencies of cascade models of teacher development. Shows how project training and development strategies that are context sensitive, collaborative, and reflexive seek to involve teachers in managing their own…

  11. Cascading effects of overfishing marine systems

    NARCIS (Netherlands)

    Scheffer, M.; Carpenter, S.; Young, de B.


    Profound indirect ecosystem effects of overfishing have been shown for coastal systems such as coral reefs and kelp forests. A new study from the ecosystem off the Canadian east coast now reveals that the elimination of large predatory fish can also cause marked cascading effects on the pelagic food

  12. Modeling and simulation of cascading contingencies (United States)

    Zhang, Jianfeng

    This dissertation proposes a new approach to model and study cascading contingencies in large power systems. The most important contribution of the work involves the development and validation of a heuristic analytic model to assess the likelihood of cascading contingencies, and the development and validation of a uniform search strategy. We model the probability of cascading contingencies as a function of power flow and power flow changes. Utilizing logistic regression, the proposed model is calibrated using real industry data. This dissertation analyzes random search strategies for Monte Carlo simulations and proposes a new uniform search strategy based on the Metropolis-Hastings Algorithm. The proposed search strategy is capable of selecting the most significant cascading contingencies, and it is capable of constructing an unbiased estimator to provide a measure of system security. This dissertation makes it possible to reasonably quantify system security and justify security operations when economic concerns conflict with reliability concerns in the new competitive power market environment. It can also provide guidance to system operators about actions that may be taken to reduce the risk of major system blackouts. Various applications can be developed to take advantage of the quantitative security measures provided in this dissertation.

  13. Cooperative Retransmissions Through Collisions

    CERN Document Server

    Qureshi, Jalaluddin; Foh, Chuan Heng


    Interference in wireless networks is one of the key capacity-limiting factors. Recently developed interference-embracing techniques show promising performance on turning collisions into useful transmissions. However, the interference-embracing techniques are hard to apply in practical applications due to their strict requirements. In this paper, we consider utilising the interference-embracing techniques in a common scenario of two interfering sender-receiver pairs. By employing opportunistic listening and analog network coding (ANC), we show that compared to traditional ARQ retransmission, a higher retransmission throughput can be achieved by allowing two interfering senders to cooperatively retransmit selected lost packets at the same time. This simultaneous retransmission is facilitated by a simple handshaking procedure without introducing additional overhead. Simulation results demonstrate the superior performance of the proposed cooperative retransmission.

  14. Consumers’ Collision Insurance Decisions

    DEFF Research Database (Denmark)

    Austin, Laurel; Fischhoff, Baruch

    Using interviews with 74 drivers, we elicit and analyse how people think about collision coverage and, more generally, about insurance decisions. We compare the judgments and behaviours of these decision makers to the predictions of a range of theoretical models: (a) A model developed by Lee (2007......), which refines EU theory to incorporate income and predicts that property insurance is a normal good; (b) a mental accounting model based on the idea that consumers budget their income across consumption categories (Thaler, 1985); and (c) the baseline, classic EU theory, which predicts that insurance...... is an inferior good (Mossin, 1968). The behaviour reported by subjects in our study suggests that insurance is a normal good, while their verbal reports reveal desires to balance two conflicting goals in deductible decisions, keeping premiums “affordable” and keeping deductibles “affordable,” which suggests...

  15. Cascade theory in isotopic separation processes; Theorie des cascades en separation isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, J.P.


    Three main areas are developed within the scope of this work: - the first one is devoted to fundamentals: separative power, value function, ideal cascade and square cascade. Applications to two main cases are carried out, namely: Study of binary isotopic mix, Study of processes with a small enrichment coefficient. - The second one is devoted to cascade coupling -high-flux coupling (more widely used and better known) as well as low-flux coupling are presented and compared to one another. - The third one is an outlook on problems linked to cascade transients. Those problem are somewhat intricate and their interest lies mainly into two areas: economics where the start-up time may have a large influence on the interests paid during the construction and start-up period, military productions where the start-up time has a direct bearing on the production schedule. (author). 50 figs. 3 annexes. 12 refs. 6 tabs.

  16. Higher-order Kerr effect and harmonic cascading in gases


    Bache, Morten; Eilenberger, Falk; Minardi, Stefano


    The higher-order Kerr effect (HOKE) has recently been advocated to explain measurements of the saturation of the nonlinear refractive index in gases. Here we show that cascaded third-harmonic generation results in an effective fifth-order nonlinearity that is negative and significant. Higher-order harmonic cascading will also occur from the HOKE, and the cascading contributions may significantly modify the observed nonlinear index change. At lower wavelengths, cascading increases the HOKE sat...

  17. A Modeling Framework for System Restoration from Cascading Failures


    Chaoran Liu; Daqing Li; Enrico Zio; Rui Kang


    System restoration from cascading failures is an integral part of the overall defense against catastrophic breakdown in networked critical infrastructures. From the outbreak of cascading failures to the system complete breakdown, actions can be taken to prevent failure propagation through the entire network. While most analysis efforts have been carried out before or after cascading failures, restoration during cascading failures has been rarely studied. In this paper, we present a modeling f...

  18. Exploring cascading outages and weather via processing historic data


    Dobson, Ian; Carrington, NichelleLe K.; Zhou, Kai; Wang, Zhaoyu; Carreras, Benjamin A.; Reynolds-Barredo, Jose M.


    We describe some bulk statistics of historical initial line outages and the implications for forming contingency lists and understanding which initial outages are likely to lead to further cascading. We use historical outage data to estimate the effect of weather on cascading via cause codes and via NOAA storm data. Bad weather significantly increases outage rates and interacts with cascading effects, and should be accounted for in cascading models and simulations. We suggest how weather effe...

  19. On Impact Mechanics in Ship Collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming


    The purpose of this paper is to present analytical, closed-form expressions for the energy released for crushing and the impact impulse during ship collisions. Ship-ship collisions, ship collisions with rigid walls and ship collisions with flexible offshore structures are considered. The derived ...

  20. Gyrokinetic linearized Landau collision operator

    DEFF Research Database (Denmark)

    Madsen, Jens


    The full gyrokinetic electrostatic linearized Landau collision operator is calculated including the equilibrium operator, which represents the effect of collisions between gyrokinetic Maxwellian particles. First, the equilibrium operator describes energy exchange between different plasma species......, which is important in multiple ion-species plasmas. Second, the equilibrium operator describes drag and diffusion of the magnetic field aligned component of the vorticity associated with the E×B drift. Therefore, a correct description of collisional effects in turbulent plasmas requires the equilibrium...... operator, even for like-particle collisions....

  1. AtomPy: An Open Atomic Data Curation Environment for Astrophysical Applications

    Directory of Open Access Journals (Sweden)

    Claudio Mendoza


    Full Text Available We present a cloud-computing environment, referred to as AtomPy, based on Google-Drive Sheets and Pandas (Python Data Analysis Library DataFrames to promote community-driven curation of atomic data for astrophysical applications, a stage beyond database development. The atomic model for each ionic species is contained in a multi-sheet workbook, tabulating representative sets of energy levels, A-values and electron impact effective collision strengths from different sources. The relevant issues that AtomPy intends to address are: (i data quality by allowing open access to both data producers and users; (ii comparisons of different datasets to facilitate accuracy assessments; (iii downloading to local data structures (i.e., Pandas DataFrames for further manipulation and analysis by prospective users; and (iv data preservation by avoiding the discard of outdated sets. Data processing workflows are implemented by means of IPython Notebooks, and collaborative software developments are encouraged and managed within the GitHub social network. The facilities of AtomPy are illustrated with the critical assessment of the transition probabilities for ions in the hydrogen and helium isoelectronic sequences with atomic number Z ≤ 10.

  2. Calculation of transonic flow in radial turbine blade cascade (United States)

    Petr, Straka


    Numerical modeling of transonic centripetal turbulent flow in radial blade cascade is described in this paper. Attention is paid to effect of the outlet confusor on flow through the radial blade cascade. Parameters of presented radial blade cascade are compared with its linear representation

  3. Hollow Anode Cascading Plasma Focus | Alabraba | Journal of the ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... Using the 3-phase model for each focus event, the 9-phase, two solid disc auxiliary anode cascading plasma focus has been extended to include holes at the center of each cascade anode (hereafter referred to as hollow anode cascading focus) with a view of ...

  4. Ionization and fragmentation modes of nucleobases after collisions with multiply charged ions

    NARCIS (Netherlands)

    Hoekstra, R.; Morgenstern, R.; Schlathoelter, T.


    We studied multiply charged ion (MCI) induced ionization, excitation and fragmentation of the nucleobases uracil and thymine. Ions of different charge state at velocities between 0.2 and 0.4 atomic units were used as projectiles. By means of time-of-flight spectrometry of the collision products in a

  5. Atomic vapor density monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sewall, N.; Harris, W.; Beeler, R.; Wooldridge, J.; Chen, H.L.


    This report presents information on the Atomic Vapor Density Monitor (AVDM) system that measures the density of a vapor by measuring the absorption of light from a swept-wavelength laser that passes through an atomic vapor stream.

  6. Estimating inelastic heavy-particle-hydrogen collision data. I. Simplified model and application to potassium-hydrogen collisions (United States)

    Belyaev, Andrey K.; Yakovleva, Svetlana A.


    Aims: We derive a simplified model for estimating atomic data on inelastic processes in low-energy collisions of heavy-particles with hydrogen, in particular for the inelastic processes with high and moderate rate coefficients. It is known that these processes are important for non-LTE modeling of cool stellar atmospheres. Methods: Rate coefficients are evaluated using a derived method, which is a simplified version of a recently proposed approach based on the asymptotic method for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: The rate coefficients are found to be expressed via statistical probabilities and reduced rate coefficients. It turns out that the reduced rate coefficients for mutual neutralization and ion-pair formation processes depend on single electronic bound energies of an atom, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to potassium-hydrogen collisions. For the first time, rate coefficients are evaluated for inelastic processes in K+H and K++H- collisions for all transitions from ground states up to and including ionic states. Tables with calculated data are only available at the CDS via anonymous ftp to ( or via

  7. Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters (United States)

    Roy, Dibyendu


    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation). PMID:23948782

  8. On impact mechanics in ship collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming


    The purpose of this paper is to present analytical, closed-form expressions for the energy released for crushing and the impact impulse during ship collisions. Ship–ship collisions, ship collisions with rigid walls and ship collisions with flexible offshore structures are considered. The derived...... of illustrative examples are presented. The procedure presented in the paper is well suited for inclusion in a probabilistic calculation model for damage of ship structures due to collisions....

  9. Collision attack against Tav-128 hash function (United States)

    Hariyanto, Fajar; Hayat Susanti, Bety


    Tav-128 is a hash function which is designed for Radio Frequency Identification (RFID) authentication protocol. Tav-128 is expected to be a cryptographically secure hash function which meets collision resistance properties. In this research, a collision attack is done to prove whether Tav-128 is a collision resistant hash function. The results show that collisions can be obtained in Tav-128 hash function which means in other word, Tav-128 is not a collision resistant hash function.

  10. Atomic Spectra Database (ASD) (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  11. Playing Pinball with Atoms

    NARCIS (Netherlands)

    Saedi, A.; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Henricus J.W.


    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely

  12. Neuromorphic UAS Collision Avoidance Project (United States)

    National Aeronautics and Space Administration — Using biologically-inspired neuromorphic optic flow algorithms is a novel approach in collision avoidance for UAS. Traditional computer vision algorithms rely on...

  13. Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers. (United States)

    Lycett-Brown, Daniel; Luo, Kai H


    A recently developed forcing scheme has allowed the pseudopotential multiphase lattice Boltzmann method to correctly reproduce coexistence curves, while expanding its range to lower surface tensions and arbitrarily high density ratios [Lycett-Brown and Luo, Phys. Rev. E 91, 023305 (2015)PLEEE81539-375510.1103/PhysRevE.91.023305]. Here, a third-order Chapman-Enskog analysis is used to extend this result from the single-relaxation-time collision operator, to a multiple-relaxation-time cascaded collision operator, whose additional relaxation rates allow a significant increase in stability. Numerical results confirm that the proposed scheme enables almost independent control of density ratio, surface tension, interface width, viscosity, and the additional relaxation rates of the cascaded collision operator. This allows simulation of large density ratio flows at simultaneously high Reynolds and Weber numbers, which is demonstrated through binary collisions of water droplets in air (with density ratio up to 1000, Reynolds number 6200 and Weber number 440). This model represents a significant improvement in multiphase flow simulation by the pseudopotential lattice Boltzmann method in which real-world parameters are finally achievable.

  14. Anisotropy and polarization in charge changing collisions of C4+ with Na(3s) and laser aligned Na(3p)

    NARCIS (Netherlands)

    Hoekstra, R; Morgenstern, R; Olson, RE


    Absolute cross sections for C3+(6-->5) emission at 465.7 nm after collisions of C4+ ions with ground state Na(3s) and laser excited aligned Na(Sp) atoms are measured over the collision energy range of 3-7 keV amu(-1). For Na(3s) polarizations are observed by measuring the linear polarization of the

  15. Quantum Cascade Lasers Modulation and Applications (United States)

    Luzhansky, Edward

    The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is

  16. Multifragmentation in Au + Au collisions studied with AMD-V

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Akira [Tohoku Univ., Sendai (Japan). Faculty of Science


    AMD-V is an optimum model for calculation of multifragmentation in Au + Au collisions. AMD-V consider anti-symmetry of incident nucleus, target nucleus and fragments, furthermore, it treat the quantum effect to exist many channels in the intermediate and final state. 150 and 250 MeV/nucleon incident energy were used in the experiments. The data of multifragment atom in {sup 197}Au + {sup 197}Au collisions was reproduced by AMD-V calculation using Gognny force, corresponding to the imcompressibility of nuclear substance K = 228 MeV and its mean field depend on momentum. When other interaction (SKG 2 force, corresponding to K = 373 KeV) was used an mean field does not depend on momentum, the calculation results could not reproduce the experimental values, because nucleus and deuteron were estimated too large and {alpha}-particle and intermediate fragments estimated too small. (S.Y.)

  17. Primary populations of metastable antiprotonic $^{4}He$ and $^{3}He$ atoms

    CERN Document Server

    Hori, Masaki; Hayano, R S; Ishikawa, T; Sakuguchi, J; Tasaki, T; Widmann, E; Yamaguchi, H; Torii, H A; Juhász, B; Horváth, D; Yamazaki, T


    Initial population distributions of metastable antiprotonic **4He and **3He atoms over principal and angular momentum quantum numbers were investigated using laser spectroscopy. The total fractions of antiprotons captured into the metastable states of the atoms were deduced. Cascade calculations were performed using the measure populations to reproduce the delayed annihilation time spectrum. Results showed agreement between the simulated and measured spectra. (Edited abstract) 30 Refs.

  18. Higher-order Kerr effect and harmonic cascading in gases

    DEFF Research Database (Denmark)

    Bache, Morten; Eilenberger, Falk; Minardi, Stefano


    The higher-order Kerr effect (HOKE) has recently been advocated to explain measurements of the saturation of the nonlinear refractive index in gases. Here we show that cascaded third-harmonic generation results in an effective fifth-order nonlinearity that is negative and significant. Higher......-order harmonic cascading will also occur from the HOKE, and the cascading contributions may significantly modify the observed nonlinear index change. At lower wavelengths, cascading increases the HOKE saturation intensity, while for longer wavelengths cascading will decrease the HOKE saturation intensity....

  19. Higher-order Kerr effect and harmonic cascading in gases. (United States)

    Bache, Morten; Eilenberger, Falk; Minardi, Stefano


    The higher-order Kerr effect (HOKE) has recently been advocated to explain measurements of the saturation of the nonlinear refractive index in gases. Here we show that cascaded third-harmonic generation results in an effective fifth-order nonlinearity that is negative and significant. Higher-order harmonic cascading will also occur from the HOKE, and the cascading contributions may significantly modify the observed nonlinear index change. At lower wavelengths, cascading increases the HOKE saturation intensity, while for longer wavelengths cascading will decrease the HOKE saturation intensity.

  20. European Group for Atomic Spectroscopy. Summaries of contributions, eleventh annual conference, Paris-Orsay, July 10-13, 1979

    Energy Technology Data Exchange (ETDEWEB)


    Summaries are presented of talks given at the eleventh conference of the European group for atomic spectroscopy. Topics covered include: lifetimes; collisions; line shape; hyperfine structure; isotope shifts; saturation spectroscopy; Hanle effect; Rydberg levels; quantum beats; helium and helium-like atoms; metrology; and molecules. (GHT)

  1. Atomization characteristics of a prefilming airblast atomizer (United States)

    Hayashi, Shigeru; Koito, Atsushi; Hishiki, Manabu


    The size distribution of water test sprays generated by a prefilming airblast atomizer used for aeroengines was measured in swirling and non-swirling flows with the well established laser scattering particle sizing technique. Atomizing air velocity (or pressure difference) was varied in a range wider than the conditions of actual engines. The Sauter Mean Diameter (SMD) decreased at approximately a 1.5 power of the atomizing air velocity, being a higher velocity index than the previously reported values of 1 to 1.2. It was unexpectedly found that the effect of the liquid/air flow ratio was small. Since swirling flow increased the SMD at lower air velocities yet decreased it at higher ones, it is suggested that the reverse flow near the nozzle pintle adversely affects atomization.

  2. Single atom electrochemical and atomic analytics (United States)

    Vasudevan, Rama

    In the past decade, advances in electron and scanning-probe based microscopies have led to a wealth of imaging and spectroscopic data with atomic resolution, yielding substantial insight into local physics and chemistry in a diverse range of systems such as oxide catalysts, multiferroics, manganites, and 2D materials. However, typical analysis of atomically resolved images is limited, despite the fact that image intensities and distortions of the atoms from their idealized positions contain unique information on the physical and chemical properties inherent to the system. Here, we present approaches to data mine atomically resolved images in oxides, specifically in the hole-doped manganite La5/8Ca3/8MnO3, on epitaxial films studied by in-situ scanning tunnelling microscopy (STM). Through application of bias to the STM tip, atomic-scale electrochemistry is demonstrated on the manganite surface. STM images are then further analyzed through a suite of algorithms including 2D autocorrelations, sliding window Fourier transforms, and others, and can be combined with basic thermodynamic modelling to reveal relevant physical and chemical descriptors including segregation energies, existence and strength of atomic-scale diffusion barriers, surface energies and sub-surface chemical species identification. These approaches promise to provide tremendous insights from atomically resolved functional imaging, can provide relevant thermodynamic parameters, and auger well for use with first-principles calculations to yield quantitative atomic-level chemical identification and structure-property relations. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE. Research was conducted at the Center for Nanophase Materials Sciences, which also provided support and is a DOE Office of Science User Facility.

  3. Multilevel Atomic Coherent States and Atomic Holomorphic Representation (United States)

    Cao, Chang-Qi; Haake, Fritz


    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  4. Optical traps for ultracold metastable helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, Juliette [LKB ENS, Paris (France)


    One of the main characteristics of metastable helium atoms is their high internal energy (20 eV). This energy can be released when a metastable atom hits a surface, ejecting one electron. Therefore, using a Channeltron Electron Multiplier (CEM), one can detect atoms with a time resolution of up to 5 ns. However, this high internal energy raises the problem of inelastic Penning ionizations, following: He{sup *}+He{sup *}{yields}He+He{sup +}+e{sup *}. This process has a rate of the order of 10 x 10 cm{sup 3} cot s{sup -}1 but is reduced by four orders of magnitude if the atoms are spin polarized due to total spin conservation. We report on the progress of the set up of a dipole trap for ultracold metastable helium using a red detuned fiber laser at 1560 nm. One of the aims of this optical trap is to release the constraint on the magnetic field value. We plan to measure the magnetic field dependance of inelastic collision rates for temperatures smaller than 10 {mu}K. In a spin polarized gas of helium, the spin-spin interaction produces spin relaxation and relaxation induced Penning ionization if the polarization condition is no longer maintained. We also present the development of a optical lattices in 1D and later in 3D. We intend to monitor the Penning ionization rate in order to follow the real-time dynamics of the superfluid-Mott insulator quantum phase transition.

  5. Cascade Apartments: Deep Energy Multifamily Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mattheis, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kunkle, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Howard, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lubliner, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  6. Cascade Apartments: Deep Energy Multifamily Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, A. [Washington State Univ. Energy Program, Olympia, WA (United States); Mattheis, L. [Washington State Univ. Energy Program, Olympia, WA (United States); Kunkle, R. [Washington State Univ. Energy Program, Olympia, WA (United States); Howard, L. [Washington State Univ. Energy Program, Olympia, WA (United States); Lubliner, M. [Washington State Univ. Energy Program, Olympia, WA (United States)


    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions: 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  7. Regimes of turbulence without an energy cascade

    CERN Document Server

    Barenghi, C F; Baggaley, A W


    Experiments and numerical simulations of turbulent $^4$He and $^3$He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum tu...

  8. Cascaded Multicell Trans-Z-Source Inverters

    DEFF Research Database (Denmark)

    Li, Ding; Chiang Loh, Poh; Zhu, Miao


    strictly be small to prevent overvoltages caused by switching of their winding currents. To avoid these related problems, cascaded trans-Z-source inverters are proposed. They use multiple magnetic cells in an alternately cascading pattern rather than a single magnetic cell with large turns ratio....... Simulation and experimental results have shown that the multicell inverters can produce the same high-voltage gain, while keeping currents and voltages of the components low. The inverters can also step down their output voltages like a traditional voltage-source inverter without compromising waveform......Inverters with high-output voltage gain usually face the problem of high-input current flowing through their components. The problem might further be exaggerated if the inverters use high-frequency magnetic devices like transformers or coupled inductors. Leakage inductances of these devices must...

  9. Cascaded impedance networks for NPC inverter

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang


    Multilevel inverters are getting more and more attracted because they have better output waveform quality and lower semiconductor voltage stress. The Z-source NPC is a kind of single stage multilevel inverter which has the ability of voltage boost. But the boost capability is relatively low when...... they are subject to the renewable sources. To date, three distinct types of impedance networks can be summarized for implementing a hybrid source impedance network, which can in principle be combined and cascaded before connected to a NPC inverter by proposed two ways. The resulting cascaded impedance network NPC...... would have a higher output voltage gain. It is anticipated that it would help the formed inverters find applications in photovoltaic and other renewable systems, where a high voltage gain is usually requested. Experimental testing has already been conducted and verifies the theory....

  10. Cascaded trans-z-source inverters

    DEFF Research Database (Denmark)

    Li, Ding; Loh, Poh Chiang; Zhu, Miao


    Z-source inverter is a recently proposed single-stage inverter with added voltage-boost capability for complementing the usual voltage-buck operation of a traditional voltage-source inverter. As long as the transformer element added in to the z-source concept, a trans-z-source inverter with one...... transformer and one capacitor is reported recently. This paper has adapted the cascaded concept into the trans-z-source and trans-quasi-z-source inverters to extend each to the cascaded topologies before combination is made with allowing more sources embedded which reduces the capacitor voltage and enhanced...... the compatibility for distributed sources. Unlike existing techniques, voltage stresses within the proposed inverters are better distributed among the passive components. Theoretical analysis for explaining these operating features has already been discussed before simulation were performed and an experimental...

  11. Supersonic Chordwise Bending Flutter in Cascades (United States)


    bonding agent was injected via hypodermic needles after the blade tabs were properly inserted, The integrity and repeatability of the mounting of the conjunction with NASTRAN predictions and supersonic cascade aerodynamic computa- tions. Comparisons between theory and experiment are discussed. DD...explored by using the theory of .ieferences 3 and 4 to calculate the aero- dynamic damping for a typical chordwise blade deformation (Reference 6 and

  12. How do cilia organize signalling cascades? (United States)

    Nachury, Maxence V


    Cilia and flagella are closely related centriole-nucleated protrusions of the cell with roles in motility and signal transduction. Two of the best-studied signalling pathways organized by cilia are the transduction cascade for the morphogen Hedgehog in vertebrates and the mating pathway that initiates gamete fusion in the unicellular green alga Chlamydomonas reinhardtii. What is the role of cilia in these signalling transduction cascades? In both Hedgehog and mating pathways, all signalling intermediates have been found to localize to cilia, and, for some signalling factors, ciliary localization is regulated by pathway activation. Given a concentration factor of three orders of magnitude provided by translocating a protein into the cilium, the compartment model proposes that cilia act as miniaturized reaction tubes bringing signalling factors and processing enzymes in close proximity. On the other hand, the scaffolding model views the intraflagellar transport machinery, whose primary function is to build cilia and flagella, as a molecular scaffold for the mating transduction cascade at the flagellar membrane. While these models may coexist, it is hoped that a precise understanding of the mechanisms that govern signalling inside cilia will provide a satisfying answer to the question 'how do cilia organize signalling?'. This review covers the evidence supporting each model of signalling and outlines future directions that may address which model applies in given biological settings. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Cascade laser applications: trends and challenges (United States)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves


    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  14. Analysis of cascading failure in gene networks

    Directory of Open Access Journals (Sweden)

    Shudong eWang


    Full Text Available It is an important subject to research the functional mechanism of cancer-related genes make in formation and development of cancers. The modern methodology of data analysis plays a very important role for deducing the relationship between cancers and cancer-related genes and analyzing functional mechanism of genome. In this research, we construct mutual information networks using gene expression profiles of glioblast and renal in normal condition and cancer conditions. We investigate the relationship between structure and robustness in gene networks of the two tissues using a cascading failure model based on betweenness centrality. Define some important parameters such as the percentage of failure nodes of the network, the average size-ratio of cascading failure and the cumulative probability of size-ratio of cascading failure to measure the robustness of the networks. By comparing control group and experiment groups, we find that the networks of experiment groups are more robust than that of control group. The gene that can cause large scale failure is called structural key gene (SKG. Some of them have been confirmed to be closely related to the formation and development of glioma and renal cancer respectively. Most of them are predicted to play important roles during the formation of glioma and renal cancer, maybe the oncogenes, suppressor genes, and other cancer candidate genes in the glioma and renal cancer cells. However, these studies provide little information about the detailed roles of identified cancer genes.

  15. Pulsed metastable atom source for low vapour-pressure metals

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Urena, A.; Verdasco Costales, E. (Universidad Complutense de Madrid (Spain). Facultad de Quimica); Saez Rabanos, V. (Universidad Politecnica de Madrid (Spain). Escuela Tecnica Superior de Ingenieros Industriales)


    The basic design and most relevant experimental conditions of a pulsed metastable atomic-beam oven are described. The stainless steel oven is suitable for vaporising metals and salts up to around 1400 K producing intense beams of metastable alkaline-earth atoms when pulsed or continuous wave low voltage discharges are used. Several applications using atomic calcium in its {sup 3}P and {sup 1}D electronic state are reported. The beam characterisation and discharge efficiency have been measured by time-of-flight or laser-induced fluorescence techniques. In addition, a method of changing the metastable n{sup 3}P/n{sup 1}D ratio, by raising the oven temperature, is described which looks very promising for the study of electronic selectivity in reactive collision processes. Finally several spectroscopic applications for atomic and molecular beam determinations are reported. (author).

  16. Transitions between hyperfine-structure states of the 2s metastable muonic hydrogen in collision processes

    Energy Technology Data Exchange (ETDEWEB)

    Czaplinski, W.


    Hyperfine effects in the symmetric collisions of the 2s metastable muonic hydrogen with hydrogen atoms: (p{mu}){sub 2s} + H, (d{mu}){sub 2s} + D, (t{mu}){sub 2s} + t are presented. Elastic and spin-flip cross sections for the scattering of The 2s muonic atoms are calculated in the two-level approximation as a function of collision energy. The corresponding formulae are derived with inclusion of electron screening and Lamb-shift between 2s and 2p energy levels of the muonic atom. The obtained spin-flip cross sections are about two orders of magnitude higher than their ground state counterparts and are much more influenced by electron screening. The rates of the spin-flip transitions are also calculated and are found to be about three orders of magnitude higher than the decay rate of the 2s state. (author). 65 refs, 15 figs, 4 tabs.

  17. Estimating inelastic heavy-particle - hydrogen collision data. II. Simplified model for ionic collisions and application to barium-hydrogen ionic collisions (United States)

    Belyaev, Andrey K.; Yakovleva, Svetlana A.


    Aims: A simplified model is derived for estimating rate coefficients for inelastic processes in low-energy collisions of heavy particles with hydrogen, in particular, the rate coefficients with high and moderate values. Such processes are important for non-local thermodynamic equilibrium modeling of cool stellar atmospheres. Methods: The derived method is based on the asymptotic approach for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: It is found that the rate coefficients are expressed via statistical probabilities and reduced rate coefficients. It is shown that the reduced rate coefficients for neutralization and ion-pair formation processes depend on single electronic bound energies of an atomic particle, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to barium-hydrogen ionic collisions. For the first time, rate coefficients are evaluated for inelastic processes in Ba+ + H and Ba2+ + H- collisions for all transitions between the states from the ground and up to and including the ionic state. Tables with calculated data are only available at the CDS via anonymous ftp to ( or via

  18. The effect of atoms excited by electron beam on metal evaporation

    CERN Document Server

    Xie Guo Feng; Ying Chun Tong


    In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases

  19. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations


    Cvitas, Marko T.; Soldan, Pavel; Hutson, Jeremy M.


    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  20. Effect of strain field on displacement cascade in tungsten studied by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gao, N., E-mail: [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Z.G., E-mail: [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gao, X. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); He, W.H. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cui, M.H.; Pang, L.L.; Zhu, Y.B. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)


    Using atomistic methods, the coupling effect of strain field and displacement cascade in body-centered cubic (BCC) tungsten is directly simulated by molecular dynamics (MD) simulations at different temperatures. The values of the hydrostatic and uniaxial (parallel or perpendicular to primary knock-on atom (PKA) direction) strains are from −2% to 2% and the temperature is from 100 to 1000 K. Because of the annealing effect, the influence of strain on radiation damage at low temperature has been proved to be more significant than that at high temperature. When the cascade proceeds under the hydrostatic strain, the Frenkel Pair (FP) production, the fraction of defect in cluster and the average size of the defect cluster, all increase at tensile state and decrease at compressive state. When the cascade is under uniaxial strain, the effect of strain parallel to PKA direction is less than the effect of hydrostatic strain, while the effect of strain perpendicular to PKA direction can be negligible. Under the uniaxial strain along 〈1 1 1〉 direction, the SIA and SIA cluster is observed to orientate along the strain direction at tensile state and the uniaxial compressive strain with direction perpendicular to 〈1 1 1〉 has led to the similar preferred nucleation. All these results indicate that under irradiation, the tensile state should be avoided for materials used in nuclear power plants.

  1. Effect of strain field on displacement cascade in tungsten studied by molecular dynamics simulation (United States)

    Wang, D.; Gao, N.; Wang, Z. G.; Gao, X.; He, W. H.; Cui, M. H.; Pang, L. L.; Zhu, Y. B.


    Using atomistic methods, the coupling effect of strain field and displacement cascade in body-centered cubic (BCC) tungsten is directly simulated by molecular dynamics (MD) simulations at different temperatures. The values of the hydrostatic and uniaxial (parallel or perpendicular to primary knock-on atom (PKA) direction) strains are from -2% to 2% and the temperature is from 100 to 1000 K. Because of the annealing effect, the influence of strain on radiation damage at low temperature has been proved to be more significant than that at high temperature. When the cascade proceeds under the hydrostatic strain, the Frenkel Pair (FP) production, the fraction of defect in cluster and the average size of the defect cluster, all increase at tensile state and decrease at compressive state. When the cascade is under uniaxial strain, the effect of strain parallel to PKA direction is less than the effect of hydrostatic strain, while the effect of strain perpendicular to PKA direction can be negligible. Under the uniaxial strain along direction, the SIA and SIA cluster is observed to orientate along the strain direction at tensile state and the uniaxial compressive strain with direction perpendicular to has led to the similar preferred nucleation. All these results indicate that under irradiation, the tensile state should be avoided for materials used in nuclear power plants.

  2. Galaxy collisions: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.; Smith, B.F.


    Collisions of spherical galaxies were studied in a series of numerical experiments to see what happens when galaxies collide. Each experiment starts with two model galaxies, each consisting of 50,000 stars, moving toward each other along a specified orbit. Th series of experiments provides a systematic sampling of the parameter space spanned by the initial orbital energy and the initial angular momentum. Deeply penetrating collisions are emphasized. The collisions reported here scale to relative velocities as great as 500 km s/sup -1/, well into the range for collisions within clusters of galaxies. We find: (1) The galaxies contract momentarily to about half their original sizes shortly after close passage. This means that (a) the galaxies have ample time to respond dynamically during close passage; (b) energy first transfers into coherent mass flows within each galaxy; (c) in turn, (a) means that the impulsive and restricted three-body approximations, in which the response is ignored, are not valid for collisions of 1000 km s/sup -1/ or less. (2) The initial galaxies blend into a single dynamical system while they are near each other. This means that concepts such as energy transfer from orbital motion to internal degrees of freedom are not well defined until long after close approach, when two density maxima are well separated and each has settled down to a reasonably steady state.

  3. Automatic Collision Avoidance Technology (ACAT) (United States)

    Swihart, Donald E.; Skoog, Mark A.


    This document represents two views of the Automatic Collision Avoidance Technology (ACAT). One viewgraph presentation reviews the development and system design of Automatic Collision Avoidance Technology (ACAT). Two types of ACAT exist: Automatic Ground Collision Avoidance (AGCAS) and Automatic Air Collision Avoidance (AACAS). The AGCAS Uses Digital Terrain Elevation Data (DTED) for mapping functions, and uses Navigation data to place aircraft on map. It then scans DTED in front of and around aircraft and uses future aircraft trajectory (5g) to provide automatic flyup maneuver when required. The AACAS uses data link to determine position and closing rate. It contains several canned maneuvers to avoid collision. Automatic maneuvers can occur at last instant and both aircraft maneuver when using data link. The system can use sensor in place of data link. The second viewgraph presentation reviews the development of a flight test and an evaluation of the test. A review of the operation and comparison of the AGCAS and a pilot's performance are given. The same review is given for the AACAS is given.

  4. Correlations and Entanglement of Microwave Photons Emitted in a Cascade Decay (United States)

    Gasparinetti, Simone; Pechal, Marek; Besse, Jean-Claude; Mondal, Mintu; Eichler, Christopher; Wallraff, Andreas


    We use a three-level artificial atom in the ladder configuration as a source of correlated, single microwave photons of different frequency. The artificial atom, a transmon-type superconducting circuit, is driven at the two-photon transition between ground and second-excited state, and embedded into an on-chip switch that selectively routes different-frequency photons into different spatial modes. Under continuous driving, we measure power cross-correlations between the two modes and observe a crossover between strong antibunching and superbunching, typical of cascade decay, and an oscillatory pattern as the drive strength becomes comparable to the radiative decay rate. By preparing the source in a superposition state using an excitation pulse, we achieve deterministic generation of entangled photon pairs, as demonstrated by nonvanishing phase correlations and more generally by joint quantum state tomography of the two itinerant photonic modes.

  5. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant


    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  6. Single atom microscopy. (United States)

    Zhou, Wu; Oxley, Mark P; Lupini, Andrew R; Krivanek, Ondrej L; Pennycook, Stephen J; Idrobo, Juan-Carlos


    We show that aberration-corrected scanning transmission electron microscopy operating at low accelerating voltages is able to analyze, simultaneously and with single atom resolution and sensitivity, the local atomic configuration, chemical identities, and optical response at point defect sites in monolayer graphene. Sequential fast-scan annular dark-field (ADF) imaging provides direct visualization of point defect diffusion within the graphene lattice, with all atoms clearly resolved and identified via quantitative image analysis. Summing multiple ADF frames of stationary defects produce images with minimized statistical noise and reduced distortions of atomic positions. Electron energy-loss spectrum imaging of single atoms allows the delocalization of inelastic scattering to be quantified, and full quantum mechanical calculations are able to describe the delocalization effect with good accuracy. These capabilities open new opportunities to probe the defect structure, defect dynamics, and local optical properties in 2D materials with single atom sensitivity.

  7. Solar Spectroscopy: Atomic Processes (United States)

    Mason, H.; Murdin, P.


    A Greek philosopher called DEMOCRITUS (c. 460-370 BC) first introduced the concept of atoms (which means indivisible). His atoms do not precisely correspond to our atoms of today, which are not indivisible, but made up of a nucleus (protons with positive charge and neutrons which have no charge) and orbiting electrons (with negative charge). Indeed, in the solar atmosphere, the temperature is suc...

  8. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J


    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  9. Cascading Multi-Hop Reservation and Transmission in Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jae-Won Lee


    Full Text Available The long propagation delay in an underwater acoustic channel makes designing an underwater media access control (MAC protocol more challenging. In particular, handshaking-based MAC protocols widely used in terrestrial radio channels have been known to be inappropriate in underwater acoustic channels, because of the inordinately large latency involved in exchanging control packets. Furthermore, in the case of multi-hop relaying in a hop-by-hop handshaking manner, the end-to-end delay significantly increases. In this paper, we propose a new MAC protocol named cascading multi-hop reservation and transmission (CMRT. In CMRT, intermediate nodes between a source and a destination may start handshaking in advance for the next-hop relaying before handshaking for the previous node is completed. By this concurrent relaying, control packet exchange and data delivery cascade down to the destination. In addition, to improve channel utilization, CMRT adopts a packet-train method where multiple data packets are sent together by handshaking once. Thus, CMRT reduces the time taken for control packet exchange and accordingly increases the throughput. The performance of CMRT is evaluated and compared with that of two conventional MAC protocols (multiple-access collision avoidance for underwater (MACA-U and MACA-U with packet trains (MACA-UPT. The results show that CMRT outperforms other MAC protocols in terms of both throughput and end-to-end delay.

  10. Collision matrix for Leo satellites (United States)

    McKnight, Darren; Lorenzen, Gary

    The Low Earth Orbit (LEO) is becoming cluttered with thousands of satellites, rocket bodies, and a variety of space garbage. This collection of objects crossing paths at speeds on the order of 10 km/s is creating an increasing collision hazard to many operational systems. The effect that the destruction of LEO satellites will have on other users of the near-Earth environment is of great concern. A model is examined which quantifies the effect of one satellite fragmentation on neighboring satellites. This model is used to evaluate the interdependent hazard to a series of satellite systems. A number of space system fragmentation events are numerically simulated and the collision hazard to each is tabulated. Once all satellites in the matrix have been fragmented separately, a complete collision hazard representation can be depicted. This model has potential for developing an enhanced understanding of a number of aspects of the growing debris hazard in LEO.

  11. QCD in heavy ion collisions

    CERN Document Server

    Iancu, Edmond


    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  12. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan


    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  13. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y


    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  14. Outreach Materials for the Collision Repair Campaign (United States)

    The Collision Repair Campaign offers outreach materials to help collision repair shops reduce toxic air exposure. Materials include a DVD, poster, training video, and materials in Spanish (materiales del outreach en español).

  15. Collision Risk Analysis for HSC

    DEFF Research Database (Denmark)

    Urban, Jesper; Pedersen, Preben Terndrup; Simonsen, Bo Cerup


    High Speed Craft (HSC) have a risk profile, which is distinctly different from conventional ferries. Due to different hull building material, structural layout, compartmentation and operation, both frequency and consequences of collision and grounding accidents must be expected to be different from...... conventional ships. To reach a documented level of safety, it is therefore not possible directly to transfer experience with conventional ships. The purpose of this paper is to present new rational scientific tools to assess and quantify the collision risk associated with HSC transportation. The paper...

  16. Collision Analysis for MS DEXTRA

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming


    It is a major challenge for the maritime community to develop probability-based procedures for design against collision and grounding events. To quantify the risks involved in ship traffic in specific geographic areas implies that probabilities as well as inherent consequences of various collisio...... the more long term goal to develop probability-based codes for design against collision and grounding events, similar to the present development towards the use of reliability-based procedures for strength design of ships subjected to the traditional environmental loads....

  17. The influence of collisions on the temporary shape of stimulated echo hologram in gas (United States)

    Akhmedshina, E. N.; Nefediev, L. A.; Garnaeva, G. I.; Shigapova, E. D.


    In this paper, we investigate the influence of collisions with the change of particle velocity direction in a gas on the reproduction of the temporary shape of the object laser pulse in the stimulated echo hologram response. Due to such collisions, the frequency shifts of the radiation of atoms in the gas randomly vary (spectral diffusion within the heterogeneously broadened line). It is shown, that such diffusion leads to the not correlated heterogeneous broadening in the gas at the different time intervals and the partial loss of system phase memory, which results in a partial loss of retrieved information encoded in the temporal form of the object laser pulse.

  18. Heat cascading regenerative sorption heat pump (United States)

    Jones, Jack A. (Inventor)


    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  19. A laser-cooled cesium fountain frequency standard and a measurement of the frequency shift due to ultra-cold collisions (United States)

    Gibble, Kurt; Kasapi, Steven; Chu, Steven


    A frequency standard based on an atomic fountain of cesium atoms may have an accuracy of 10(exp -16) due to longer interaction times and smaller anticipated systematic errors. All of the known systematic effects that now limit the accuracy of the Cs frequency standard increase either linearly or as some higher power of the atom's velocity. The one systematic frequency shift which is dramatically different is the frequency shift due to the collisions between the laser cooled atoms. At a temperature of a few micro-K, the de Broglie wavelength (lambda(sub deB) = h/p, where h is Planck's constant and p is the momentum of the atom) is much larger than the scale of the interatomic potential. Under these conditions the collision cross sections can be as large as (lambda(sub deB)(sup 2))/Pi and the frequency shift due to these collisions was recently calculated. In our Cs atomic fountain, we laser cooled and trapped 10(exp 10) Cs atoms in 0.4 s. By shifting the frequencies of the laser beams, the atoms were launched upwards at 2.5 m/s and a fraction of the atoms were optically pumped into the F=3 ground state. The unwanted atoms in the F=4 ground state were removed from the fountain with radiation pressure from a laser beam tuned to excite only those atoms. The Cs atoms in the F=3 state traveled ballistically upwards, were excited by the microwave cavity, and then returned back through the same cavity in the atomic fountain configuration. By varying the cold atom density, a density dependent shift of -12.9 +/- 0.7 mHz or -1.4 x 10-12 for an average fountain density of (2.7 +/- 1.5) 10(exp 9) atoms/cm(sup 3) was measured.

  20. The identification of a cascade hypernucleus

    CERN Document Server

    Mondal, A S; Husain, A; Kasim, M M


    In a systematic search for rare hypernuclear species in nuclear emulsion exposed to 3.0 GeV/c K/sup -/-mesons at the CERN PS, an event with three connecting stars has been observed. The two secondary stars are most probably due to the decay of a cascade hypernucleus according to the following channel: /sub Xi //sup -13/-C to /sub Lambda //sup 8 /Be+/sub Lambda //sup 5/He+Q. The binding energy of the Xi - hypernucleus is B/sub Xi /-(/sub Xi //sup 13/-C)=(18.1+or-3.2) MeV. (11 refs).