WorldWideScience

Sample records for atomic clusters analysis

  1. Fusion and fission of atomic clusters: recent advances

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2005-01-01

    We review recent advances made by our group in finding optimized geometries of atomic clusters as well as in description of fission of charged small metal clusters. We base our approach to these problems on analysis of multidimensional potential energy surface. For the fusion process we have...... developed an effective scheme of adding new atoms to stable cluster geometries of larger clusters in an efficient way. We apply this algorithm to finding geometries of metal and noble gas clusters. For the fission process the analysis of the potential energy landscape calculated on the ab initio level...... of theory allowed us to obtain very detailed information on energetics and pathways of the different fission channels for the Na^2+_10 clusters....

  2. Atomic cluster collisions

    Science.gov (United States)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  3. Three-atom clusters

    International Nuclear Information System (INIS)

    Pen'kov, F.M.

    1998-01-01

    The Born-Oppenheimer approximation is used to obtain an equation for the effective interaction in three atoms bound by a single electron. For low binding energies in an 'electron + atom' pair, long-range forces arise between the atoms, leading to bound states when the size of the three-atom cluster is a few tens of angstrom. A system made of alkali-metal atoms is considered as an example

  4. Determination of atomic cluster structure with cluster fusion algorithm

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2005-01-01

    We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters.......We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters....

  5. Giant light enhancement in atomic clusters

    International Nuclear Information System (INIS)

    Gadomsky, O. N.; Gadomskaya, I. V.; Altunin, K. K.

    2009-01-01

    We show that the polarizing effect of the atoms in an atomic cluster can lead to full compensation of the radiative damping of excited atomic states, a change in the sign of the dispersion of the atomic polarizability, and giant light enhancement by the atomic cluster.

  6. Detecting and extracting clusters in atom probe data: A simple, automated method using Voronoi cells

    International Nuclear Information System (INIS)

    Felfer, P.; Ceguerra, A.V.; Ringer, S.P.; Cairney, J.M.

    2015-01-01

    The analysis of the formation of clusters in solid solutions is one of the most common uses of atom probe tomography. Here, we present a method where we use the Voronoi tessellation of the solute atoms and its geometric dual, the Delaunay triangulation to test for spatial/chemical randomness of the solid solution as well as extracting the clusters themselves. We show how the parameters necessary for cluster extraction can be determined automatically, i.e. without user interaction, making it an ideal tool for the screening of datasets and the pre-filtering of structures for other spatial analysis techniques. Since the Voronoi volumes are closely related to atomic concentrations, the parameters resulting from this analysis can also be used for other concentration based methods such as iso-surfaces. - Highlights: • Cluster analysis of atom probe data can be significantly simplified by using the Voronoi cell volumes of the atomic distribution. • Concentration fields are defined on a single atomic basis using Voronoi cells. • All parameters for the analysis are determined by optimizing the separation probability of bulk atoms vs clustered atoms

  7. Clusters of atoms and molecules theory, experiment, and clusters of atoms

    CERN Document Server

    1994-01-01

    Clusters of Atoms and Molecules is devoted to theoretical concepts and experimental techniques important in the rapidly expanding field of cluster science. Cluster properties are dicussed for clusteres composed of alkali metals, semiconductors, transition metals, carbon, oxides and halides of alkali metals, rare gases, and neutral molecules. The book is composed of several well-integrated treatments all prepared by experts. Each contribution starts out as simple as possible and ends with the latest results so that the book can serve as a text for a course, an introduction into the field, or as a reference book for the expert.

  8. Structures of 38-atom gold-platinum nanoalloy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yee Pin; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atoms are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.

  9. Clustering of Helium Atoms at a ½

    NARCIS (Netherlands)

    Berg, F. v.d.; Heugten, W. v.; Caspers, L.M.; Veen, A. v.; Hosson, J.Th.M. de

    1977-01-01

    Atomistic calculations on a ½<111>{110} edge dislocation show a restricted tendency of clustering of helium atom along this dislocation. Clusters with up to 4 helium atoms have been studied. A cluster with 3 helium proved to be most stable.

  10. The multi-scattering-Xα method for analysis of the electronic structure of atomic clusters

    International Nuclear Information System (INIS)

    Bahurmuz, A.A.; Woo, C.H.

    1984-12-01

    A computer program, MSXALPHA, has been developed to carry out a quantum-mechanical analysis of the electronic structure of molecules and atomic clusters using the Multi-Scattering-Xα (MSXα) method. The MSXALPHA program is based on a code obtained from the University of Alberta; several improvements and new features were incorporated to increase generality and efficiency. The major ones are: (1) minimization of core memory usage, (2) reduction of execution time, (3) introduction of a dynamic core allocation scheme for a large number of arrays, (4) incorporation of an atomic program to generate numerical orbitals used to construct the initial molecular potential, and (5) inclusion of a routine to evaluate total energy. This report is divided into three parts. The first discusses the theory of the MSXα method. The second gives a detailed description of the program, MSXALPHA. The third discusses the results of calculations carried out for the methane molecule (CH 4 ) and a four-atom zirconium cluster (Zr 4 )

  11. Electronic and atomic impacts on large clusters

    International Nuclear Information System (INIS)

    Gspann, J.

    1982-01-01

    Describing first the generation and properties of molecular beams of large Van der Waals clusters such as speed distribution, cluster size distribution, and internal temperature of the clusters, the review then features the results of electronic impacts on large clusters: metastable electronic cluster excitations, ejection of positive cluster ions of less than 100 atoms from much larger parent clusters, and ionization of the large clusters. Atomic impacts at thermal energies are treated with respect to the scattering cross section of the clusters, their drag coefficient in free molecular flow, and the peculiarities of impacts on helium clusters of either isotope. (Auth.)

  12. The atomic structure of transition metal clusters

    International Nuclear Information System (INIS)

    Riley, S.J.

    1995-01-01

    Chemical reactions are used to probe the atomic (geometrical) structure of isolated clusters of transition metal atoms. The number of adsorbate molecules that saturate a cluster, and/or the binding energy of molecules to cluster surfaces, are determined as a function of cluster size. Systematics in these properties often make it possible to propose geometrical structures consistent with the experimental observations. We will describe how studies of the reactions of cobalt and nickel clusters with ammonia, water, and nitrogen provide important and otherwise unavailable structural information. Specifically, small (less than 20 atoms) clusters of cobalt and nickel atoms adopt entirely different structures, the former having packing characteristic of the bulk and the latter having pentagonal symmetry. These observations provide important input for model potentials that attempt to describe the local properties of transition metals. In particular, they point out the importance of a proper treatment of d-orbital binding in these systems, since cobalt and nickel differ so little in their d-orbital occupancy

  13. On clusters and clustering from atoms to fractals

    CERN Document Server

    Reynolds, PJ

    1993-01-01

    This book attempts to answer why there is so much interest in clusters. Clusters occur on all length scales, and as a result occur in a variety of fields. Clusters are interesting scientifically, but they also have important consequences technologically. The division of the book into three parts roughly separates the field into small, intermediate, and large-scale clusters. Small clusters are the regime of atomic and molecular physics and chemistry. The intermediate regime is the transitional regime, with its characteristics including the onset of bulk-like behavior, growth and aggregation, a

  14. Atomically precise cluster catalysis towards quantum controlled catalysts

    International Nuclear Information System (INIS)

    Watanabe, Yoshihide

    2014-01-01

    Catalysis of atomically precise clusters supported on a substrate is reviewed in relation to the type of reactions. The catalytic activity of supported clusters has generally been discussed in terms of electronic structure. Several lines of evidence have indicated that the electronic structure of clusters and the geometry of clusters on a support, including the accompanying cluster-support interaction, are strongly correlated with catalytic activity. The electronic states of small clusters would be easily affected by cluster–support interactions. Several studies have suggested that it is possible to tune the electronic structure through atomic control of the cluster size. It is promising to tune not only the number of cluster atoms, but also the hybridization between the electronic states of the adsorbed reactant molecules and clusters in order to realize a quantum-controlled catalyst. (review)

  15. Unraveling the atomic structure of ultrafine iron clusters

    KAUST Repository

    Wang, Hongtao

    2012-12-18

    Unraveling the atomic structures of ultrafine iron clusters is critical to understanding their size-dependent catalytic effects and electronic properties. Here, we describe the stable close-packed structure of ultrafine Fe clusters for the first time, thanks to the superior properties of graphene, including the monolayer thickness, chemical inertness, mechanical strength, electrical and thermal conductivity. These clusters prefer to take regular planar shapes with morphology changes by local atomic shuffling, as suggested by the early hypothesis of solid-solid transformation. Our observations differ from observations from earlier experimental study and theoretical model, such as icosahedron, decahedron or cuboctahedron. No interaction was observed between Fe atoms or clusters and pristine graphene. However, preferential carving, as observed by other research groups, can be realized only when Fe clusters are embedded in graphene. The techniques introduced here will be of use in investigations of other clusters or even single atoms or molecules.

  16. Fragmentation of neutral carbon clusters formed by high velocity atomic collision

    International Nuclear Information System (INIS)

    Martinet, G.

    2004-05-01

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  17. Metal cluster compounds - chemistry and importance; clusters containing isolated main group element atoms, large metal cluster compounds, cluster fluxionality

    International Nuclear Information System (INIS)

    Walther, B.

    1988-01-01

    This part of the review on metal cluster compounds deals with clusters containing isolated main group element atoms, with high nuclearity clusters and metal cluster fluxionality. It will be obvious that main group element atoms strongly influence the geometry, stability and reactivity of the clusters. High nuclearity clusters are of interest in there own due to the diversity of the structures adopted, but their intermediate position between molecules and the metallic state makes them a fascinating research object too. These both sites of the metal cluster chemistry as well as the frequently observed ligand and core fluxionality are related to the cluster metal and surface analogy. (author)

  18. Percolation approach for atomic and molecular cluster formation

    International Nuclear Information System (INIS)

    Knospe, O.; Seifert, G.

    1987-12-01

    We apply a percolation approach for the theoretical analysis of mass spectra of molecular microclusters obtained by adiabatic expansion technique. The evolution of the shape of the experimental size distributions as function of stagnation pressure and stagnation temperature are theoretically reproduced by varying the percolation parameter. Remaining discrepancies between theory and experiment are discussed. In addition, the even-odd alternation as well as the 'magic' shell structure within metallic, secondary ion mass spectra are investigated by introducing statistical weights for the cluster formation probabilities. Shell correction energies of atomic clusters as function of cluster-size are deduced from the experimental data. (orig.)

  19. Absorption of femtosecond laser pulses by atomic clusters

    International Nuclear Information System (INIS)

    Lin Jingquan; Zhang Jie; Li Yingjun; Chen Liming; Lu Tiezheng; Teng Hao

    2001-01-01

    Energy absorption by Xe, Ar, He atomic clusters are investigated using laser pulses with 5 mJ energy in 150 fs duration. Experimental results show that the size of cluster and laser absorption efficiency are strongly dependent on several factors, such as the working pressure of pulse valve, atomic number Z of the gas. Absorption fraction of Xe clusters is as high as 45% at a laser intensity of 1 x 10 15 W/cm 2 with 20 x 10 5 Pa gas jet backing pressure. Absorption of the atomic clusters is greatly reduced by introducing pre-pulses. Ion energy measurements confirm that the efficient energy deposition results in a plasma with very high ion temperature

  20. Melting of size-selected gallium clusters with 60-183 atoms.

    Science.gov (United States)

    Pyfer, Katheryne L; Kafader, Jared O; Yalamanchali, Anirudh; Jarrold, Martin F

    2014-07-10

    Heat capacities have been measured as a function of temperature for size-selected gallium cluster cations with between 60 and 183 atoms. Almost all clusters studied show a single peak in the heat capacity that is attributed to a melting transition. The peaks can be fit by a two-state model incorporating only fully solid-like and fully liquid-like species, and hence no partially melted intermediates. The exceptions are Ga90(+), which does not show a peak, and Ga80(+) and Ga81(+), which show two peaks. For the clusters with two peaks, the lower temperature peak is attributed to a structural transition. The melting temperatures for clusters with less than 50 atoms have previously been shown to be hundreds of degrees above the bulk melting point. For clusters with more than 60 atoms the melting temperatures decrease, approaching the bulk value (303 K) at around 95 atoms, and then show several small upward excursions with increasing cluster size. A plot of the latent heat against the entropy change for melting reveals two groups of clusters: the latent heats and entropy changes for clusters with less than 94 atoms are distinct from those for clusters with more than 93 atoms. This observation suggests that a significant change in the nature of the bonding or the structure of the clusters occurs at 93-94 atoms. Even though the melting temperatures are close to the bulk value for the larger clusters studied here, the latent heats and entropies of melting are still far from the bulk values.

  1. Giant resonances in free atoms and in clusters

    International Nuclear Information System (INIS)

    Brechignac, C.; Connerade, J.P.

    1994-01-01

    A review of recent developments in the study of giant resonances in free atoms and in clusters is presented, with particular emphasis on the transition from free atoms to atoms in the condensed phase. Giant resonances in alkali and related metallic clusters due to the excitation of closed shells of delocalized electrons are also reviewed and the relation between different types of collective oscillations is discussed. (author)

  2. Atomic cluster physics: new challenges for theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Walter [Frankfurt Institute for Advanced Studies, Max-von-Laue Str. 1, Frankfurt am Main 60438 (Germany); Solov' yov, Andrey [Frankfurt Institute for Advanced Studies, Max-von-Laue Str. 1, Frankfurt am Main 60438 (Germany)

    2005-08-01

    A brief introduction to atomic cluster physics, the inter-disciplinary field, which developed fairly successfully during last years, is presented. A review of recent achievements in the detailed ab initio description of structure and properties of atomic clusters and complex molecules is given. The main trends of development in the field are discussed and some of its new focuses are outlined. Particular attention is devoted to the role of quantum and many-body phenomena in the formation of complex multi-atomic systems and the methods of theoretical investigation of their specific properties. The role of the simplified model approaches accurately developed from the fundamental physical principles is stressed. Various illustrations are made for sodium, magnesium clusters, fullerenes and clusters of noble gas atoms.

  3. Platinum clusters with precise numbers of atoms for preparative-scale catalysis.

    Science.gov (United States)

    Imaoka, Takane; Akanuma, Yuki; Haruta, Naoki; Tsuchiya, Shogo; Ishihara, Kentaro; Okayasu, Takeshi; Chun, Wang-Jae; Takahashi, Masaki; Yamamoto, Kimihisa

    2017-09-25

    Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5-13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt 10 ) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.The catalytic activity of a noble metal nanocluster is tied to its atomicity. Here, the authors report an atom-precise, fully scalable synthesis of platinum clusters from molecular ring precursors, and show that a variation of only one atom can dramatically change a cluster's reactivity.

  4. Exploring the atomic structure of 1.8 nm monolayer-protected gold clusters with aberration-corrected STEM

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J. [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Lahtinen, Tanja; Salorinne, Kirsi [Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Häkkinen, Hannu [Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Palmer, Richard E., E-mail: richardepalmerwork@yahoo.com [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2017-05-15

    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au{sub 144}(SCH{sub 2}CH{sub 2}Ph){sub 60} provided by two different research groups. The MP Au clusters were “weighed” by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123–151 atoms, only 3% of clusters matched the theoretically predicted Au{sub 144}(SR){sub 60} structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. - Highlights: • Chemically synthesised gold clusters were “weighed” by atom counting to get true size. • Image simulations show a few percent of clusters have the predicted atomic structure. • But a specific ring-dot feature indicates local icosahedral order in many clusters.

  5. Controllable irregular melting induced by atomic segregation in bimetallic clusters with fabricating different initial configurations

    International Nuclear Information System (INIS)

    Li Guojian; Liu Tie; Wang Qiang; Lue Xiao; Wang Kai; He Jicheng

    2010-01-01

    The melting process of Co, Co-Cu and Co-Ni clusters with different initial configurations is studied in molecular dynamics by a general embedded atom method. An irregular melting, at which energy decreases as the temperature increase near the melting point, is found in the onion-like Co-Cu-Co clusters, but not in the mixed Co-Cu and onion-like Co-Ni-Co clusters. From the analysis of atomic distributions and energy variation, the results indicate the irregular melting is induced by Cu atomic segregation. Furthermore, this melting can be controlled by doping hetero atoms with different surface energies and controlling their distributions.

  6. Reactivity Control of Rhodium Cluster Ions by Alloying with Tantalum Atoms.

    Science.gov (United States)

    Mafuné, Fumitaka; Tawaraya, Yuki; Kudoh, Satoshi

    2016-02-18

    Gas phase, bielement rhodium and tantalum clusters, RhnTam(+) (n + m = 6), were prepared by the double laser ablation of Rh and Ta rods in He carrier gas. The clusters were introduced into a reaction gas cell filled with nitric oxide (NO) diluted with He and were subjected to collisions with NO and He at room temperature. The product species were observed by mass spectrometry, demonstrating that the NO molecules were sequentially adsorbed on the RhnTam(+) clusters to form RhnTam(+)NxOx (x = 1, 2, 3, ...) species. In addition, oxide clusters, RhnTam(+)O2, were also observed, suggesting that the NO molecules were dissociatively adsorbed on the cluster, the N atoms migrated on the surface to form N2, and the N2 molecules were released from RhnTam(+)N2O2. The reactivity, leading to oxide formation, was composition dependent: oxide clusters were dominantly formed for the bielement clusters containing both Rh and Ta atoms, whereas such clusters were hardly formed for the single-element Rhn(+) and Tam(+) clusters. DFT calculations indicated that the Ta atoms induce dissociation of NO on the clusters by lowering the dissociation energy, whereas the Rh atoms enable release of N2 by lowering the binding energy of the N atoms on the clusters.

  7. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    Science.gov (United States)

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.

  8. Phase behavior of the 38-atom Lennard-Jones cluster

    International Nuclear Information System (INIS)

    Sehgal, Ray M.; Maroudas, Dimitrios; Ford, David M.

    2014-01-01

    We have developed a coarse-grained description of the phase behavior of the isolated 38-atom Lennard-Jones cluster (LJ 38 ). The model captures both the solid-solid polymorphic transitions at low temperatures and the complex cluster breakup and melting transitions at higher temperatures. For this coarse model development, we employ the manifold learning technique of diffusion mapping. The outcome of the diffusion mapping analysis over a broad temperature range indicates that two order parameters are sufficient to describe the cluster's phase behavior; we have chosen two such appropriate order parameters that are metrics of condensation and overall crystallinity. In this well-justified coarse-variable space, we calculate the cluster's free energy landscape (FEL) as a function of temperature, employing Monte Carlo umbrella sampling. These FELs are used to quantify the phase behavior and onsets of phase transitions of the LJ 38 cluster

  9. Classical plasma dynamics of Mie-oscillations in atomic clusters

    Science.gov (United States)

    Kull, H.-J.; El-Khawaldeh, A.

    2018-04-01

    Mie plasmons are of basic importance for the absorption of laser light by atomic clusters. In this work we first review the classical Rayleigh-theory of a dielectric sphere in an external electric field and Thomson’s plum-pudding model applied to atomic clusters. Both approaches allow for elementary discussions of Mie oscillations, however, they also indicate deficiencies in describing the damping mechanisms by electrons crossing the cluster surface. Nonlinear oscillator models have been widely studied to gain an understanding of damping and absorption by outer ionization of the cluster. In the present work, we attempt to address the issue of plasmon relaxation in atomic clusters in more detail based on classical particle simulations. In particular, we wish to study the role of thermal motion on plasmon relaxation, thereby extending nonlinear models of collective single-electron motion. Our simulations are particularly adopted to the regime of classical kinetics in weakly coupled plasmas and to cluster sizes extending the Debye-screening length. It will be illustrated how surface scattering leads to the relaxation of Mie oscillations in the presence of thermal motion and of electron spill-out at the cluster surface. This work is intended to give, from a classical perspective, further insight into recent work on plasmon relaxation in quantum plasmas [1].

  10. Unraveling the atomic structure of ultrafine iron clusters

    KAUST Repository

    Wang, Hongtao; Li, Kun; Yao, Yingbang; Wang, Qingxiao; Cheng, Yingchun; Schwingenschlö gl, Udo; Zhang, Xixiang; Yang, Wei

    2012-01-01

    Unraveling the atomic structures of ultrafine iron clusters is critical to understanding their size-dependent catalytic effects and electronic properties. Here, we describe the stable close-packed structure of ultrafine Fe clusters for the first

  11. SASP - Symposium on atomic, cluster and surface physics `94

    Energy Technology Data Exchange (ETDEWEB)

    Maerk, T D; Schrittwieser, R; Smith, D

    1994-12-31

    This international symposium (Founding Chairman: W. Lindinger, Innsbruck) is one in a continuing biennial series of conferences which seeks to promote the growth of scientific knowledge and its effective exchange among scientists in the field of atomic, molecular, cluster and surface physics and related areas. The symposium deals in particular with interactions between ions, electrons, photons, atoms, molecules, and clusters and their interactions with surfaces. (author).

  12. Deposition of size-selected atomic clusters on surfaces

    International Nuclear Information System (INIS)

    Carroll, S.J.

    1999-06-01

    This dissertation presents technical developments and experimental and computational investigations concerned with the deposition of atomic clusters onto surfaces. It consists of a collection of papers, in which the main body of results are contained, and four chapters presenting a subject review, computational and experimental techniques and a summary of the results presented in full within the papers. Technical work includes the optimization of an existing gas condensation cluster source based on evaporation, and the design, construction and optimization of a new gas condensation cluster source based on RF magnetron sputtering (detailed in Paper 1). The result of cluster deposition onto surfaces is found to depend on the cluster deposition energy; three impact energy regimes are explored in this work. (1) Low energy: n clusters create a defect in the surface, which pins the cluster in place, inhibiting cluster diffusion at room temperature (Paper V). (3) High energy: > 50 eV/atom. The clusters implant into the surface. For Ag 20 -Ag 200 clusters, the implantation depth is found to scale linearly with the impact energy and inversely with the cross-sectional area of the cluster, with an offset due to energy lost to the elastic compression of the surface (Paper VI). For smaller (Ag 3 ) clusters the orientation of the cluster with respect to the surface and the precise impact site play an important role; the impact energy has to be 'focused' in order for cluster implantation to occur (Paper VII). The application of deposited clusters for the creation of Si nanostructures by plasma etching is explored in Paper VIII. (author)

  13. Direct atomic imaging and density functional theory study of the Au24Pd1 cluster catalyst.

    Science.gov (United States)

    Bruma, A; Negreiros, F R; Xie, S; Tsukuda, T; Johnston, R L; Fortunelli, A; Li, Z Y

    2013-10-21

    In this study we report a direct, atomic-resolution imaging of calcined Au24Pd1 clusters supported on multiwall carbon nanotubes by employing aberration-corrected scanning transmission electron microscopy. Using gold atoms as mass standards, we confirm the cluster size to be 25 ± 2, in agreement with the Au24Pd1(SR)18 precursor used in the synthesis. Concurrently, a Density-Functional/Basin-Hopping computational algorithm is employed to locate the low-energy configurations of free Au24Pd1 cluster. Cage structures surrounding a single core atom are found to be favored, with a slight preference for Pd to occupy the core site. The cluster shows a tendency toward elongated arrangements, consistent with experimental data. The degree of electron transfer from the Pd dopant to Au is quantified through a Löwdin charge analysis, suggesting that Pd may act as an electron promoter to the surrounding Au atoms when they are involved in catalytic reactions.

  14. Enhanced Electromagnetic and Chemical/Biological Sensing. Properties of Atomic Cluster-Derived Materials

    National Research Council Canada - National Science Library

    Schatz, George

    2003-01-01

    The Center for Atomic Clusters-derived Materials performed a broad range of research concerned with synthesizing, characterizing and utilizing atomic and molecular clusters, nanoparticles and nanomaterial...

  15. Atoms, molecules, clusters and synchrotron radiation

    International Nuclear Information System (INIS)

    Kui Rexi; Ju Xin

    1995-01-01

    The importance of synchrotron radiation, especially the third generation synchrotron radiation light source, in atomic, molecular and cluster physics is discussed and some views are presented on new methods which may become available for research in the above fields

  16. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    International Nuclear Information System (INIS)

    Chen, Wanghua; Roca i Cabarrocas, Pere; Pareige, Philippe; Castro, Celia; Xu, Tao; Grandidier, Bruno; Stiévenard, Didier

    2015-01-01

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process

  17. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanghua; Roca i Cabarrocas, Pere [Laboratoire de Physique des Interfaces et Couches Minces (LPICM), UMR 7647, CNRS, Ecole Polytechnique, 91128 Palaiseau (France); Pareige, Philippe; Castro, Celia [Groupe de Physique des Matériaux (GPM), Université et INSA de Rouen, UMR 6634, CNRS, Av. de l' Université, BP 12, 76801 Saint Etienne du Rouvray (France); Xu, Tao; Grandidier, Bruno; Stiévenard, Didier [Institut d' Electronique et de Microélectronique et de Nanotechnologies (IEMN), UMR 8520, CNRS, Département ISEN, 41 bd Vauban, 59046 Lille Cedex (France)

    2015-09-14

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process.

  18. Model study in chemisorption: atomic hydrogen on beryllium clusters

    International Nuclear Information System (INIS)

    Bauschlicher, C.W. Jr.

    1976-08-01

    The interaction between atomic hydrogen and the (0001) surface of Be metal has been studied by ab initio electronic structure theory. Self-consistent-field (SCF) calculations have been performed using minimum, optimized minimum, double zeta and mixed basis sets for clusters as large as 22 Be atoms. The binding energy and equilibrium geometry (the distance to the surface) were determined for 4 sites. Both spatially restricted (the wavefunction was constrained to transform as one of the irreducible representations of the molecular point group) and unrestricted SCF calculations were performed. Using only the optimized minimum basis set, clusters containing as many as 22 beryllium atoms have been investigated. From a variety of considerations, this cluster is seen to be nearly converged within the model used, providing the most reliable results for chemisorption. The site dependence of the frequency is shown to be a geometrical effect depending on the number and angle of the bonds. The diffusion of atomic hydrogen through a perfect beryllium crystal is predicted to be energetically unfavorable. The cohesive energy, the ionization energy and the singlet-triplet separation were computed for the clusters without hydrogen. These quantities can be seen as a measure of the total amount of edge effects. The chemisorptive properties are not related to the total amount of edge effects, but rather the edge effects felt by the adsorbate bonding berylliums. This lack of correlation with the total edge effects illustrates the local nature of the bonding, further strengthening the cluster model for chemisorption. A detailed discussion of the bonding and electronic structure is included. The remaining edge effects for the Be 22 cluster are discussed

  19. Genetic algorithm optimization of atomic clusters

    International Nuclear Information System (INIS)

    Morris, J.R.; Deaven, D.M.; Ho, K.M.; Wang, C.Z.; Pan, B.C.; Wacker, J.G.; Turner, D.E.; Iowa State Univ., Ames, IA

    1996-01-01

    The authors have been using genetic algorithms to study the structures of atomic clusters and related problems. This is a problem where local minima are easy to locate, but barriers between the many minima are large, and the number of minima prohibit a systematic search. They use a novel mating algorithm that preserves some of the geometrical relationship between atoms, in order to ensure that the resultant structures are likely to inherit the best features of the parent clusters. Using this approach, they have been able to find lower energy structures than had been previously obtained. Most recently, they have been able to turn around the building block idea, using optimized structures from the GA to learn about systematic structural trends. They believe that an effective GA can help provide such heuristic information, and (conversely) that such information can be introduced back into the algorithm to assist in the search process

  20. Atomic interaction with quantum fluid clusters: cross-jet deflection of 3He- and 4He-clusters

    International Nuclear Information System (INIS)

    Gspann, J.; Vollmar, H.

    1977-01-01

    The authors have studied earlier the velocity dependence of the total scattering of Cs atomic beams by 4 He-cluster beams, in comparison with corresponding experiments with N 2 - and Ne-cluster beams. Only with the 4 He-cluster beams a deficiency in the effective total scattering compared to the expected behaviour has been observed which was largest near 200 m/s of relative velocity. However, it is difficult to estimate, and therefore still a matter of investigation, to which extent this effect could be attributed to the presence of a small amount of uncondensed helium atoms in the cluster beam. In this paper a first account is given on an experimental study of the drag coefficients in free molecular flow of helium clusters of either isotope. The drag coefficients describe the respective efficiencies of linear momentum transfer onto the clusters and are found to be appreciably lower for helium than for nitrogen clusters which is ascribed to the fluidity of the helium clusters. (Auth.)

  1. High Intensity Femtosecond XUV Pulse Interactions with Atomic Clusters: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, Todd [Univ. of Texas, Austin, TX (United States). Center for High Energy Density Science

    2016-10-12

    We propose to expand our recent studies on the interactions of intense extreme ultraviolet (XUV) femtosecond pulses with atomic and molecular clusters. The work described follows directly from work performed under BES support for the past grant period. During this period we upgraded the THOR laser at UT Austin by replacing the regenerative amplifier with optical parametric amplification (OPA) using BBO crystals. This increased the contrast of the laser, the total laser energy to ~1.2 J , and decreased the pulse width to below 30 fs. We built a new all reflective XUV harmonic beam line into expanded lab space. This enabled an increase influence by a factor of 25 and an increase in the intensity by a factor of 50. The goal of the program proposed in this renewal is to extend this class of experiments to available higher XUV intensity and a greater range of wavelengths. In particular we plan to perform experiments to confirm our hypothesis about the origin of the high charge states in these exploding clusters, an effect which we ascribe to plasma continuum lowering (ionization potential depression) in a cluster nano-­plasma. To do this we will perform experiments in which XUV pulses of carefully chosen wavelength irradiate clusters composed of only low-Z atoms and clusters with a mixture of this low-­Z atom with higher Z atoms. The latter clusters will exhibit higher electron densities and will serve to lower the ionization potential further than in the clusters composed only of low Z atoms. This should have a significant effect on the charge states produced in the exploding cluster. We will also explore the transition of explosions in these XUV irradiated clusters from hydrodynamic expansion to Coulomb explosion. The work proposed here will explore clusters of a wider range of constituents, including clusters from solids. Experiments on clusters from solids will be enabled by development we performed during the past grant period in which we constructed and

  2. Chemically induced magnetism in atomically precise gold clusters.

    Science.gov (United States)

    Krishna, Katla Sai; Tarakeshwar, Pilarisetty; Mujica, Vladimiro; Kumar, Challa S S R

    2014-03-12

    Comparative theoretical and experimental investigations are reported into chemically induced magnetism in atomically-precise, ligand-stabilized gold clusters Au25 , Au38 and Au55 . The results indicate that [Au25 (PPh3 )10 (SC12 H25 )5 Cl2 ](2+) and Au38 (SC12 H25 )24 are diamagnetic, Au25 (SC2 H4 Ph)18 is paramagnetic, and Au55 (PPh3 )12 Cl6 , is ferromagnetic at room temperature. Understanding the magnetic properties resulting from quantum size effects in such atomically precise gold clusters could lead to new fundamental discoveries and applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Equilibrium structure and atomic vibrations of Nin clusters

    Science.gov (United States)

    Borisova, Svetlana D.; Rusina, Galina G.

    2017-12-01

    The equilibrium bond lengths and binding energy, second differences in energy and vibrational frequencies of free clusters Nin (2 ≤ n ≤ 20) were calculated with the use of the interaction potential obtained in the tight-binding approximation (TBA). The results show that the minimum vibration frequency plays a significant role in the evaluation of the dynamic stability of the clusters. A nonmonotonic dependence of the minimum vibration frequency of clusters on their size and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 are demonstrated. This result agrees with the theoretical and experimental data on stable structures of small metallic clusters.

  4. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2006-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  5. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2008-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  6. The interaction of super-intense ultra-short laser pulse and micro-clusters with large atomic clusters

    International Nuclear Information System (INIS)

    Miao Jingwei; Yang Chaowen; An Zhu; Yuan Xuedong; Sun Weiguo; Luo Xiaobing; Wang Hu; Bai Lixing; Shi Miangong; Miao Lei; Zhen Zhijian; Gu Yuqin; Liu Hongjie; Zhu Zhouseng; Sun Liwei; Liao Xuehua

    2007-01-01

    The fusion mechanism of large deuterium clusters (100-1000 Atoms/per cluster) in super-intense ultra-short laser pulse field, Coulomb explosions of micro-cluster in solids, gases and Large-size clusters have been studied using the interaction of a high-intensity femtosecond laser pulses with large deuterium clusters, collision of high-quality beam of micro-cluster from 2.5 MV van de Graaff accelerator with solids, gases and large clusters. The experimental advance of the project is reported. (authors)

  7. Plasmon excitations in doped square-lattice atomic clusters

    Science.gov (United States)

    Wang, Yaxin; Yu, Ya-Bin

    2017-12-01

    Employing the tight-binding model, we theoretically study the properties of the plasmon excitations in doped square-lattice atomic clusters. The results show that the dopant atoms would blur the absorption spectra, and give rise to extra plasmon resonant peaks as reported in the literature; however, our calculated external-field induced oscillating charge density shows that no obvious evidences indicate the so-called local mode of plasmon appearing in two-dimensional-doped atomic clusters, but the dopants may change the symmetry of the charge distribution. Furthermore, we show that the disorder of the energy level due to dopant makes the absorption spectrum has a red- or blue-shift, which depends on the position of impurities; disorder of hopping due to dopant makes a blue- or red-shift, a larger (smaller) hopping gives a blue-shift (red-shift); and a larger (smaller) host-dopant and dopant-dopant intersite coulomb repulsion induces a blue-shift (red-shift).

  8. Electrodeposition of Isolated Platinum Atoms and Clusters on Bismuth-Characterization and Electrocatalysis.

    Science.gov (United States)

    Zhou, Min; Dick, Jeffrey E; Bard, Allen J

    2017-12-06

    We describe a method for the electrodeposition of an isolated single Pt atom or small cluster, up to 9 atoms, on a bismuth ultramicroelectrode (UME). This deposition was immediately followed by electrochemical characterization via the hydrogen evolution reaction (HER) that occurs readily on the electrodeposited Pt but not on Bi. The observed voltammetric current plateau, even for a single atom, which behaves as an electrode, allows the estimation of deposit size. Pt was plated from solutions of femtomolar PtCl 6 2- , which allowed precise control of the arrival of ions and thus the plating rate on the Bi UME, to one ion every few seconds. This allowed the atom-by-atom fabrication of isolated platinum deposits, ranging from single atoms to 9-atom clusters. The limiting currents in voltammetry gave the size and number of atoms of the clusters. Given the stochasticity of the plating process, we show that the number of atoms plated over a given time (10 and 20 s) follows a Poisson distribution. Taking the potential at a certain current density as a measure of the relative rate of the HER, we found that the potential shifted positively as the size increased, with single atoms showing the largest overpotentials compared to bulk Pt.

  9. Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates

    International Nuclear Information System (INIS)

    Vandamme, N; Janssens, E; Vanhoutte, F; Lievens, P; Haesendonck, C van

    2003-01-01

    We systematically studied the influence of the substrate on the shape, mobility, and stability of deposited gold clusters. The Au n clusters were produced in a laser vaporization source and deposited with low kinetic energy (∼0.4 eV/atom) on atomically flat substrates (graphite, mica, and gold and silver films on mica) under UHV conditions. Their size distribution is probed with time-of-flight mass spectrometry and ranges from dimers to several hundreds of atoms. Scanning probe microscopy is used to characterize the deposited clusters and the formation of islands by cluster aggregation. On all substrates, Au n islands can be clearly distinguished and the islands are flattened despite the small impact energy. The shape and size of the island configurations are strongly system dependent. Gold clusters deposited on Au(111) and Ag(111) films grown on mica do not aggregate, but deform due to strong cluster-substrate interactions. The clusters tend to grow epitaxially on these surfaces. On graphite and on mica, deposited clusters do diffuse and aggregate. On the graphite surface, large ramified islands are formed by juxtaposition of small islands and trapping of the clusters at the step edges. On the other hand, the diffusion of the clusters on mica results in a total coalescence of the Au n clusters into compact islands

  10. Helium clusters as cold, liquid matrix for the laser spectroscopy of silver atoms, silver clusters and C60 fullerenes

    International Nuclear Information System (INIS)

    Hoffmann, K.

    1999-01-01

    One of the main obstacles in the study of gas phase metal clusters is their high temperature. Even cooling in a seeded beam is only of limited used, since the condensation continuously releases energy into the system. As a consequence, spectroscopic studies of free metal clusters typically yield broad structures, which are interpreted as plasma resonances of a free electron gas. An experiment on ionic sodium clusters has shown that low temperatures lead to a narrowing of the absorption bands and the appearance of additional structure, that can not be explained within the free electron model. Thus the need for cold clusters is evident. In principle the deposition of metal clusters into inert matrices eliminates the temperature problem but it can also inflict strong changes on the electronic spectra. Droplets of liquid helium serve as a much more gentle matrix that avoids many of the above problems. In this thesis the new technique of helium droplet spectroscopy is presented as a tool for the study of extremely cold metal clusters. Clusters of silver up to a mass greater than 7000 amu have been produced by pickup of single atoms by a beam of helium droplets. The droplets are formed in a supersonic expansion. The cluster's binding energy is removed by evaporative cooling and the system remains at 0.4 K. The doped droplets are probed by laser spectroscopy with a depletion technique or resonant two photon ionization. We were able to measure the first UV absorption spectrum of metal atoms (silver) inside helium droplets. Another experiment shows that a small fraction of the captured silver atoms resides on the surface of the droplet like alkali atoms. In a two photon process previously unobserved s- and d-Rydberg states of the free silver atom (20 left angle n left angle 80) were excited. The silver atoms, initially embedded in the helium droplets, are found to move to the surface and desorb when excited to the broadened 5p level. This is the first result showing laser

  11. Effects on energetic impact of atomic clusters with surfaces

    International Nuclear Information System (INIS)

    Popok, V.N.; Vuchkovich, S.; Abdela, A.; Campbell, E.E.B.

    2007-01-01

    A brief state-of-the-art review in the field of cluster ion interaction with surface is presented. Cluster beams are efficient tools for manipulating agglomerates of atoms providing control over the synthesis as well as modification of surfaces on the nm-scale. The application of cluster beams for technological purposes requires knowledge of the physics of cluster-surface impact. This has some significant differences compared to monomer ion - surface interactions. The main effects of cluster-surface collisions are discussed. Recent results obtained in experiments on silicon surface nanostructuring using keV-energy implantation of inert gas cluster ions are presented and compared with molecular dynamics simulations. (authors)

  12. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    Science.gov (United States)

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  13. Cluster protein structures using recurrence quantification analysis on coordinates of alpha-carbon atoms of proteins

    International Nuclear Information System (INIS)

    Zhou Yu; Yu Zuguo; Anh, Vo

    2007-01-01

    The 3-dimensional coordinates of alpha-carbon atoms of proteins are used to distinguish the protein structural classes based on recurrence quantification analysis (RQA). We consider two independent variables from RQA of coordinates of alpha-carbon atoms, %determ1 and %determ2, which were defined by Webber et al. [C.L. Webber Jr., A. Giuliani, J.P. Zbilut, A. Colosimo, Proteins Struct. Funct. Genet. 44 (2001) 292]. The variable %determ2 is used to define two new variables, %determ2 1 and %determ2 2 . Then three variables %determ1, %determ2 1 and %determ2 2 are used to construct a 3-dimensional variable space. Each protein is represented by a point in this variable space. The points corresponding to proteins from the α, β, α+β and α/β structural classes position into different areas in this variable space. In order to give a quantitative assessment of our clustering on the selected proteins, Fisher's discriminant algorithm is used. Numerical results indicate that the discriminant accuracies are very high and satisfactory

  14. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    International Nuclear Information System (INIS)

    Liu Xuan; Ito, Haruhiko; Torikai, Eiko

    2012-01-01

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li n , Na n , K n , Rb n , and Cs n with n = 2–8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  15. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuan, E-mail: liu.x.ad@m.titech.ac.jp; Ito, Haruhiko [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology (Japan); Torikai, Eiko [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi (Japan)

    2012-08-15

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li{sub n}, Na{sub n}, K{sub n}, Rb{sub n}, and Cs{sub n} with n = 2-8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  16. Atomic and electronic structure of neutral and charged SinOm clusters

    International Nuclear Information System (INIS)

    Nayak, S.K.; Rao, B.K.; Khanna, S.N.; Jena, P.

    1998-01-01

    Using molecular orbital approach and the generalized gradient approximation in the density functional theory, we have calculated the equilibrium geometries, binding energies, ionization potentials, and vertical and adiabatic electron affinities of Si n O m clusters (n≤6,m≤12). The calculations were carried out using both Gaussian and numerical form for the atomic basis functions. Both procedures yield very similar results. The bonding in Si n O m clusters is characterized by a significant charge transfer between the Si and O atoms and is stronger than in conventional semiconductor clusters. The bond distances are much less sensitive to cluster size than seen for metallic clusters. Similarly, calculated energy gaps between the highest occupied and lowest unoccupied molecular orbital (HOMO-LUMO) of (SiO 2 ) n clusters increase with size while the reverse is the norm in most clusters. The HOMO-LUMO gap decreases as the oxygen content of a Si n O m cluster is lowered eventually approaching the visible range. The photoluminescence and strong size dependence of optical properties of small silica clusters could thus be attributed to oxygen defects. copyright 1998 American Institute of Physics

  17. Migration mechanisms of self-interstitial atoms and their clusters in Fe-Cr alloys

    International Nuclear Information System (INIS)

    Terentyev, D.; Malerba, L.

    2006-06-01

    The mobility of self-interstitial atoms (SIAs) and their clusters in pure iron and iron-chromium alloys was studied by atomic scale modelling techniques. Molecular dynamics (MD) was used to simulate thermally activated motion, i.e. diffusion, and its mechanisms whereas molecular statics was used to estimate energies of interactions of SIA and SIA clusters with Cr-impurities. It is shown that the presence of Cr atoms reduces the diffusivity of SIAs and their clusters in a non monotonic way with increasing Cr concentration. The main reason for this reduction is the presence of a long-range attractive interaction between self-interstitials in the crowdion configuration and Cr atoms. The migration mechanisms behind this effect are discussed relying on the results obtained from the MD simulations. (author)

  18. Giant metal sputtering yields induced by 20-5000 keV/atom gold clusters

    International Nuclear Information System (INIS)

    Andersen, H.H.; Brunelle, A.; Della-Negra, S.; Depauw, J.; Jacquet, D.; Le Beyec, Y.

    1997-01-01

    Very large non-linear effects have been found in cluster-induced metal sputtering over a broad projectile energy interval for the first time. Recently available cluster beams from tandem accelerators have allowed sputtering yield measurements to be made with Au 1 to Au 5 from 20 keV/atom to 5 MeV/atom. The cluster-sputtering yield maxima were found at the same total energy but not at the same energy/atom as expected. For Au 5 a yield as high as 3000 was reached at 150 keV/atom while the Au 1 yield was only 55 at the same velocity. The Sigmund-Claussen thermal spike theory, which fits published data at low energy, cannot reproduce our extended new data set. (author)

  19. Clustering of germanium atoms in silica glass responsible for the 3.1 eV emission band studied by optical absorption and X-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Yoshida, Tomoko; Muto, Shunsuke; Yuliati, Leny; Yoshida, Hisao; Inada, Yasuhiro

    2009-01-01

    Correlation between the 3.1 eV emission band and local atomic configuration was systematically examined for Ge + implanted silica glass by UV-vis optical absorption spectroscopy and X-ray absorption fine structure (XAFS) analysis. The 2.7 eV emission band, commonly observed in defective silica, was replaced by the sharp and intense 3.1 eV emission band for the Ge + fluence > 2 x 10 16 cm -2 , in which UV-vis absorption spectra suggested clustering of Ge atoms with the size ∼1 nm. XAFS spectroscopy indicated that the Ge atoms were under coordinated with oxygen atoms nearly at a neutral valence state on average. The present results are consistent with the previous ESR study but imply that the small Ge clusters rather than the O=Ge: complexes (point defects) are responsible for the 3.1 eV emission band.

  20. On the electronic and geometrical structures of small atomic clusters

    International Nuclear Information System (INIS)

    Malrieu, J.P.; Maynau, D.

    1987-01-01

    This paper recalls the main challenges and difficulties of the theoretical study of small clusters of atoms. It briefly summarizes some informations concerning rare-gas clusters and clusters of normal elements such as C or Si. The main discussion is devoted to the small clusters of the simplest metal (Li), comparing the agreement and discrepancies between two crude models - the jellium model and the tight-binding one - with the most refined ab initio calculations. 28 refs

  1. Quantum-statistical mechanics of an atom-dimer mixture: Lee-Yang cluster expansion approach

    International Nuclear Information System (INIS)

    Ohkuma, Takahiro; Ueda, Masahito

    2006-01-01

    We use the Lee-Yang cluster expansion method to study quantum-statistical properties of a mixture of interconvertible atoms and dimers, where the dimers form in a two-body bound state of the atoms. We point out an infinite series of cluster diagrams whose summation leads to the Bose-Einstein condensation of the dimers below a critical temperature. Our theory captures some important features of a cold atom-dimer mixture such as interconversion of atoms and dimers and properties of the mixture at the unitarity limit

  2. Self-diffusion dynamic behavior of atomic clusters on Re(0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu, E-mail: wangyuhu2001cn@yahoo.com.cn [Department of Applied Physics, Hunan University, Changsha 410082 (China); Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2009-08-15

    Using molecular dynamics simulations and a modified analytic embedded atom potential, the self-diffusion dynamics of rhenium atomic clusters up to seven atoms on Re(0 0 0 1) surface have been studied in the temperature ranges from 600 K to 1900 K. The simulation time varies from 20 ns to 200 ns according to the cluster sizes and the temperature. The heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center, and diffusion prefactors D{sub 0} and activation energies E{sub a} are derived from the Arrhenius relation. It is found that the Arrhenius relation of the adatom can be divided into two parts at different temperature range. The activation energy of clusters increases with the increasing of the atom number in clusters. The prefactor of the heptamer is 2-3 orders of magnitude higher than a usual prefactor because of a large number of nonequivalent diffusion processes. The trimer and heptamer are the nuclei at different temperature range according to the nucleation theory.

  3. Quantitative atom probe analysis of nanostructure containing clusters and precipitates with multiple length scales

    International Nuclear Information System (INIS)

    Marceau, R.K.W.; Stephenson, L.T.; Hutchinson, C.R.; Ringer, S.P.

    2011-01-01

    A model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered in this study. It has recently been shown that the addition of the GP zones to such microstructures can lead to significant increases in strength without a decrease in the uniform elongation. In this study, atom probe tomography (APT) has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. Recent nuclear magnetic resonance (NMR) analysis has clearly shown strain-induced dissolution of the GP zones, which is supported by the current APT data with additional spatial information. There is significant repartitioning of Cu from the GP zones into the solid solution during deformation. A new approach for cluster finding in APT data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features in the solid solution solute as a function of applied strain. -- Research highlights: → A new approach for cluster finding in atom probe tomography (APT) data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features with multiple length scales. → In this study, a model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered. → APT has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. → It is clearly shown that there is strain-induced dissolution of the GP zones with significant repartitioning of Cu from the GP zones into the solid solution during deformation.

  4. Resistance–temperature relation and atom cluster estimation of In–Bi system melts

    International Nuclear Information System (INIS)

    Geng, Haoran; Wang Zhiming; Zhou Yongzhi; Li Cancan

    2012-01-01

    Highlights: ► A testing device was adopted to measure the electrical resistivity of In–Bi system melts. ► A basically linear relation exists between the resistivity and temperature of In x Bi 100−x melts in measured temperature range. ► Based on Novakovic's assumption, the content of InBi atomic cluster in In x Bi 100−x melt is estimated with ρ ≈ ρ InBi x InBi + ρ m (1 − x InBi ) equation. - Abstract: A testing device for the resistivity of high-temperature melt was adopted to measure the l resistivity of In–Bi system melts at different temperatures. It can be concluded from the analysis and calculation of the experimental results that the resistivity of In x Bi 100−x (x = 0–100) melt is in linear relationship with temperature within the experiment temperature range. The resistivity of the melt decreases with the increasing content of In. The fair consistency of resistivity of In–Bi system melt is found in the heating and cooling processes. On the basis of Novakovic's assumption, we approximately estimated the content of InBi atom clusters in In x Bi 100−x melts with the resistivity data by equation ρ ≈ ρ InBi x InBi + ρ m (1 − x InBi ). In the whole components interval, the content corresponds well with the mole fraction of InBi clusters calculated by Novakovic in the thermodynamic approach. The mole fraction of InBi type atom clusters in the melts reaches the maximum at the point of stoichiometric composition In 50 Bi 50 .

  5. Gold atomic cluster mediated electrochemical aptasensor for the detection of lipopolysaccharide.

    Science.gov (United States)

    Posha, Biyas; Nambiar, Sindhu R; Sandhyarani, N

    2018-03-15

    We have constructed an aptamer immobilized gold atomic cluster mediated, ultrasensitive electrochemical biosensor (Apt/AuAC/Au) for LPS detection without any additional signal amplification strategy. The aptamer self-assemble onto the gold atomic clusters makes Apt/AuAC/Au an excellent platform for the LPS detection. Differential pulse voltammetry and EIS were used for the quantitative LPS detection. The Apt/AuAC/Au sensor offers an ultrasensitive and selective detection of LPS down to 7.94 × 10 -21 M level with a wide dynamic range from 0.01 attomolar to 1pM. The sensor exhibited excellent selectivity and stability. The real sample analysis was performed by spiking the diluted insulin sample with various concentration of LPS and obtained recovery within 2% error value. The sensor is found to be more sensitive than most of the literature reports. The simple and easy way of construction of this sensor provides an efficient and promising detection of an even trace amount of LPS. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Optical properties of an atom in the presence of a two-nanosphere cluster

    International Nuclear Information System (INIS)

    Klimov, Vasilii V; Guzatov, D V

    2007-01-01

    The optical properties of an atom located near a cluster of two arbitrarily arranged nanospheres of an arbitrary composition are studied. Changes in the spontaneous decay rates of excited states and emission frequency shifts are considered for different orientations of the dipole moment and different positions of the atom with respect to the cluster. It is shown that a two-nanosphere cluster can be used to control efficiently the spontaneous decay rates of excited states of the atom by changing the distance between spheres. It is found that spontaneous decay rates of the excited states of an atom located between silver nanospheres and having the dipole moment directed along the axis connecting the centres of spheres can increase by a factor of 10 5 and more when nanospheres are brought closer together. (invited paper)

  7. Generation of even harmonics in a relativistic laser plasma of atomic clusters

    International Nuclear Information System (INIS)

    Krainov, V.P.; Rastunkov, V.S.

    2004-01-01

    It is shown that the irradiation of atomic clusters by a superintense femtosecond laser pulse gives rise to various harmonics of the laser field. They arise as a result of elastic collisions of free electrons with atomic ions inside the clusters in the presence of the laser filed. The yield of even harmonics whose electromagnetic field is transverse is attributed to the relativism of the motion of electrons and the consideration of their drift velocity associated with the internal ionization of atoms and atomic ions of a cluster. These harmonics are emitted in the same direction as odd harmonics. The conductivities and electromagnetic fields of the harmonics are calculated. The generation efficiency of the harmonics slowly decreases as the harmonic number increases. The generation of even harmonics ceases when the drift velocity of electrons becomes equal to zero and only the oscillation velocity of electrons is nonzero. The results can also be applied to the irradiation of solid-state targets inside a skin layer

  8. Characterization of Radiation-Induced Clustering using Atom Probe Tomography in Nuclear Structural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyeong Geun; Lim, Sang Yeob; Chang, Kun Ok; Ha, Jin Hyung; Kwon, Jun Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The degradations include the change in mechanical properties, which are related to the microstructure evolution caused by irradiation. The most widely used tool for the imaging irradiated microstructure is transmission electron microscopy (TEM). The composition of irradiation defects can be analyzed using X-ray spectroscopy (EDS) equipped in the TEM. However, composition characterization of the nano-sized irradiation defects in the matrix is limited due to the beam broadening of TEM and the overlapping of the probed volume during EDS analysis. Recently, Atom probe tomography (APT) has been introduced to the characterization of irradiation defects. APT provides sub-nano scale position of atoms and the chemical composition of a selected volume. SS316 irradiated with Fe ions at above 300 .deg. C caused significant clustering and segregation of Si and Ni at defect sinks. The neutron irradiated low alloy steel showed similar clustering of Ni and Si. The approach of using APT was demonstrated to be well suited for discovering the structure of irradiation defects and performing quantitative analysis in nuclear materials irradiated at high temperature.

  9. Atomic size effect on the formation of ionized cluster beam epitaxy in Lennard-Jones systems

    International Nuclear Information System (INIS)

    Hsieh Horngming; Averback, R.S.

    1991-01-01

    Ionized cluster beam deposition is studied by molecular dynamics simulations in which the atomic size of incident cluster atoms is different from the size of substrate atoms. Lennard-Jones interatomic potentials are used for the two-component system. The results provide the morphologies of the overlayers for various atomic sizes and are compared to simulation results of molecular beam epitaxy. (orig.)

  10. Application of Delaunay tessellation for the characterization of solute-rich clusters in atom probe tomography

    International Nuclear Information System (INIS)

    Lefebvre, W.; Philippe, T.; Vurpillot, F.

    2011-01-01

    This work presents an original method for cluster selection in Atom Probe Tomography designed to be applied to large datasets. It is based on the calculation of the Delaunay tessellation generated by the distribution of atoms of a selected element. It requires a single input parameter from the user. Furthermore, no prior knowledge of the material is needed. The sensitivity of the proposed Delaunay cluster selection is demonstrated by its application on simulated APT datasets. A strong advantage of the proposed methodology is that it is reinforced by the availability of an analytical model for the distribution of Delaunay cells circumspheres, which is used to control the accuracy of the cluster selection procedure. Another advantage of the Delaunay cluster selection is the direct calculation of a sharp envelope for each identified cluster or precipitate, which leads to the more appropriate morphology of the objects as they are reconstructed in the APT dataset. -- Research Highligthts: →Original method for cluster selection in Atom Probe Tomography. →Delaunay tessellation generated by the distribution of solute atoms. →Direct calculation of a sharp envelope for each identified cluster or precipitate. →Delaunay cluster selection demonstrated by its application on simulated APT datasets.

  11. Similarities and Differences Between Atomic Nuclei and Clusters: Toward a Unified Development of Cluster Science. Proceedings

    International Nuclear Information System (INIS)

    Abe, Y.; Arai, I.; Lee, S.; Yabana, K.

    1998-01-01

    These proceedings represent papers presented at the symposium on Similarities and Differences Between Atomic Nuclei and Clusters held in Tsukuba, Japan in July, 1997. A wide range of topics were covered including the quantum and thermal properties of free clusters to high energy impacts of clusters on solid surfaces. Fullerenes and carbon clusters chemistry was discussed in some detail. This symposium brought together scientists from many disciplines: nuclear and solid state physicists, chemists, and material scientists. There are 62 papers in the proceedings and 3 have been abstracted for the Energy Science and Technology database

  12. Correlation between the resistivity and the atomic clusters in liquid Cu-Sn alloys

    Science.gov (United States)

    Jia, Peng; Zhang, Jinyang; Hu, Xun; Li, Cancan; Zhao, Degang; Teng, XinYing; Yang, Cheng

    2018-05-01

    The liquid structure of CuxSn100-x (x = 0, 10, 20, 33, 40, 50, 60, 75, 80 and 100) alloys with atom percentage were investigated with resistivity and viscosity methods. It can be found from the resistivity data that the liquid Cu75Sn25 and Cu80Sn20 alloys had a negative temperature coefficient of resistivity (TCR), and liquid Cu75Sn25 alloy had a minimum value of -9.24 μΩ cm K-1. While the rest of liquid Cu-Sn alloys had a positive TCR. The results indicated that the Cu75Sn25 atomic clusters existed in Cu-Sn alloys. In addition, the method of calculating the percentage of Cu75Sn25 atomic clusters was established on the basis of resistivity theory and the law of conservation of mass. The Cu75Sn25 alloy had a maximum volume of the atomic clusters and a highest activation energy. The results further proved the existence of Cu75Sn25 atomic clusters. Furthermore, the correlation between the liquid structure and the resistivity was established. These results provide a useful reference for the investigation of liquid structure via the sensitive physical properties to the liquid structure.

  13. Atomic and electronic structure of clusters from car-Parrinello method

    International Nuclear Information System (INIS)

    Kumar, V.

    1994-06-01

    With the development of ab-initio molecular dynamics method, it has now become possible to study the static and dynamical properties of clusters containing up to a few tens of atoms. Here I present a review of the method within the framework of the density functional theory and pseudopotential approach to represent the electron-ion interaction and discuss some of its applications to clusters. Particular attention is focussed on the structure and bonding properties of clusters as a function of their size. Applications to clusters of alkali metals and Al, non-metal - metal transition in divalent metal clusters, molecular clusters of carbon and Sb are discussed in detail. Some results are also presented on mixed clusters. (author). 121 refs, 24 ifigs

  14. Electronic and atomic structure of the AlnHn+2 clusters

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; Alonso, J.A.

    2008-01-01

    The electronic and atomic structure of the family of hydrogenated Al clusters AlnHn+2 with n=4-11 has been studied using the density functional theory with the generalized gradient approximation (GGA) for exchange and correlation. All these clusters have substantial gaps between the highest...... a polyhedron of n vertices and n H atoms form strong H-Al terminal bonds; one pair of electrons is involved in each of those bonds. The remaining n+1 electron pairs form a delocalized cloud over the surface of the Al cage. The clusters fulfilling the Wade-Mingos rule have wider HOMO-LUMO gaps...... and are chemically more stable. The trends in the gap have some reflections in the form of the photoabsorption spectra, calculated in the framework of time-dependent density functional theory using the GGA single-particle energies and orbitals and a local density approximation exchange-correlation kernel....

  15. Photoelectron imaging, probe of the dynamics: from atoms... to clusters

    International Nuclear Information System (INIS)

    Lepine, F.

    2003-06-01

    This thesis concerns the study of the deexcitation of clusters and atoms by photoelectron imaging. The first part is dedicated to thermionic emission of a finite size system. A 3-dimensional imaging setup allows us to measure the time evolution of the kinetic energy spectrum of electrons emitted from different clusters (W n - , C n - , C 60 ). Then we have a direct access to the fundamental quantities which characterize this statistical emission: the temperature of the finite heat bath and the decay rate. The second part concerns the ionization of atomic Rydberg states placed in a static electric field. We performed the first experiment of photoionization microscopy which allows us to obtain a picture which is the macroscopic projection of the electronic wave function. Then we have access to the detail of the photoionization and particularly to the quantum properties of the electron usually confined at the atomic scale. (author)

  16. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    Science.gov (United States)

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  17. The fifth international symposium ''atomic cluster collisions''. ISACC 2011. Book of Abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    The Fifth International Symposium ''Atomic Cluster Collisions'' (ISACC 2011) will take place in July 21-25, 2011 in Berlin, Germany. The venue of the meeting will be the St.-Michaels-Heim a lovely place located within a garden area of Berlin-Grunewald. The ISACC 2011 is organized by the Fritz-Haber-Institute of the Max- Planck Society along with the King Saud University, Rhiyadh and by the Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany. ISACC started as the international symposium on atomic cluster collisions in St. Petersburg, Russia in 2003. The second ISACC was held at the GSI, Darmstadt, Germany in 2007. Both first and second symposia were satellites of the International Conferences on Photonic Electronic and Atomic Collisions (ICPEAC). The third ISACC has returned to St. Petersburg, Russia in 2008. The last ISACC took place in Ann Arbor, again as a satellite meeting of the ICPEAC. Initially the symposium was mainly focused on dynamics of atomic clusters, especially in atomic cluster collisions, but since then its scope has been widened significantly to include dynamics of nanosystems, biomolecules, and macromolecules with the emphasis on the similarity of numerous essential clustering phenomena arising in different branches of physics, chemistry, and biology. After the four ISACC meetings it has become clear that there is a need for an interdisciplinary conference covering a broad range of topics related to the Dynamics of Systems on a Nanoscale. Therefore in 2010 it was decided to expand upon this series of meetings with a new conference organized under the new title ''Dynamics of Systems on the Nanoscale'', the DySoN Conference, since this title better reflects the interdisciplinary character of the earlier ISACC meetings embracing all the topics of interest under a common theme. The first DySoN Conference took place in Rome, Italy in 2010. The fifth ISACC symposium will be again a satellite of the ICPEAC. The ISACC 2011 will

  18. High-accuracy coupled cluster calculations of atomic properties

    Energy Technology Data Exchange (ETDEWEB)

    Borschevsky, A. [School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel and Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0745 Auckland (New Zealand); Yakobi, H.; Eliav, E.; Kaldor, U. [School of Chemistry, Tel Aviv University, 69978 Tel Aviv (Israel)

    2015-01-22

    The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm{sup −1}, the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues.

  19. High-accuracy coupled cluster calculations of atomic properties

    International Nuclear Information System (INIS)

    Borschevsky, A.; Yakobi, H.; Eliav, E.; Kaldor, U.

    2015-01-01

    The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm −1 , the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues

  20. The adsorption of helium atoms on small cationic gold clusters.

    Science.gov (United States)

    Goulart, Marcelo; Gatchell, Michael; Kranabetter, Lorenz; Kuhn, Martin; Martini, Paul; Gitzl, Norbert; Rainer, Manuel; Postler, Johannes; Scheier, Paul; Ellis, Andrew M

    2018-04-04

    Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.

  1. Electronic relaxation dynamics of a metal atom deposited on argon cluster

    International Nuclear Information System (INIS)

    Awali, Slim

    2014-01-01

    This thesis is a study on the interaction between electronically excited atomic states and a non-reactive environment. We have theoretically and experimentally studied situations where a metal atom (Ba or K) is placed in a finite size environment (argon cluster). The presence of the medium affects the electronic levels of the atom. On the other side, the excitation of the atom induces a relaxation dynamics of the electronic energy through the deformation of the cluster. The experimental part of this work focuses on two aspects: the spectroscopy and the dynamics. In both cases a first laser electronically excites the metal atom and the second ionizes the excited system. The observable is the photoelectron spectrum recorded after photoionization and possibly information on the photoion which are also produced. This pump/probe technique, with also two lasers, provide the ultrafast dynamic when the lasers pulses used are of ultrashort (60 fs). The use of nanosecond lasers leads to resonance spectroscopic measurement, unresolved temporally, which give information on the position of the energy levels of the studied system. From a theoretical point-of-view, the excited states of M-Ar n were calculated at the ab initio level, using large core pseudo-potential to limit the active electrons of the metal to valence electrons. The study of alkali metals (potassium) is especially well adapted to this method since only one electron is active. The ab-initio calculation and a Monte-Carlo simulation where coupled to optimize the geometry of the KAr n (n = 1-10) cluster when K is in the ground state of the neutral and the ion, or excited in the 4p or 5s state. Calculations were also conducted in collaboration with B. Gervais (CIMAP, Caen) on KAr n clusters having several tens of argon atoms. Absorption spectra were also calculated. From an experimental point-of-view, we were able to characterize the excited states of potassium and barium perturbed by the clusters. In both cases a

  2. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    International Nuclear Information System (INIS)

    Wu, Xia; Wu, Genhua

    2014-01-01

    Highlights: • A high efficient method for optimization of atomic clusters is developed. • Its performance is studied by optimizing Lennard-Jones clusters and Ag clusters. • The method is proved to be quite efficient. • A new Ag 61 cluster with stacking-fault face-centered cubic motif is found. - Abstract: Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag 61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron

  3. Ab initio random structure search for 13-atom clusters of fcc elements

    International Nuclear Information System (INIS)

    Chou, J P; Hsing, C R; Wei, C M; Cheng, C; Chang, C M

    2013-01-01

    The 13-atom metal clusters of fcc elements (Al, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) were studied by density functional theory calculations. The global minima were searched for by the ab initio random structure searching method. In addition to some new lowest-energy structures for Pd 13 and Au 13 , we found that the effective coordination numbers of the lowest-energy clusters would increase with the ratio of the dimer-to-bulk bond length. This correlation, together with the electronic structures of the lowest-energy clusters, divides the 13-atom clusters of these fcc elements into two groups (except for Au 13 , which prefers a two-dimensional structure due to the relativistic effect). Compact-like clusters that are composed exclusively of triangular motifs are preferred for elements without d-electrons (Al) or with (nearly) filled d-band electrons (Ni, Pd, Cu, Ag). Non-compact clusters composed mainly of square motifs connected by some triangular motifs (Rh, Ir, Pt) are favored for elements with unfilled d-band electrons. (paper)

  4. Thermodynamics of small clusters of atoms: A molecular dynamics simulation

    DEFF Research Database (Denmark)

    Damgaard Kristensen, W.; Jensen, E. J.; Cotterill, Rodney M J

    1974-01-01

    The thermodynamic properties of clusters containing 55, 135, and 429 atoms have been calculated using the molecular dynamics method. Structural and vibrational properties of the clusters were examined at different temperatures in both the solid and the liquid phase. The nature of the melting...... transition was investigated, and a number of properties, such as melting temperature, latent heat of melting, and premelting phenomena, were found to vary with cluster size. These properties were also found to depend on the structure of the solid phase. In this phase the configuration of lowest free energy...

  5. Energetics and self-diffusion behavior of Zr atomic clusters on a Zr(0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2009-09-15

    Using a molecular dynamics method and a modified analytic embedded atom potential, the energetic and the self-diffusion dynamics of Zr atomic clusters up to eight atoms on {alpha}-Zr(0 0 0 1) surface have been studied. The simulation temperature ranges from 300 to 1100 K and the simulation time varies from 20 to 40 ns. It's found that the heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center and the present diffusion coefficients for clusters exhibit an Arrhenius behavior. The Arrhenius relation of the single adatom can be divided into two parts in different temperature range because of their different diffusion mechanisms. The migration energies of clusters increase with increasing the number of atoms in cluster. The differences of the prefactors also come from the diverse diffusion mechanisms. On the facet of 60 nm, the heptamer can be the nuclei in the crystal growth below 370 K.

  6. Impact and spreading behavior of cluster atoms bombarding substrates

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Te-Hua, E-mail: fang.tehua@msa.hinet.net [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China); Kang, Shao-Hui; Liao, Jia-Hung [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China)

    2009-12-15

    The purpose of this study is to investigate the behavior of copper cluster atoms bombarding a substrate using molecule dynamics based on tight-binding second moment approximation (TB-SMA) potential. The simulated results show that a crater on the substrate surface was created by the impact of the clusters. The variations of kinetic energy of cluster bombardments can be divided into three stages. At the initial impact level, the kinetic energies of the clusters and the substrate were constant. Then, the system went into a sluggish stage of energy variation, in which the kinetic energy of the clusters reduced. In the final stage, the kinetic energy of the system became stable. The high slip vector region around the crater had a disorder damage zone. The symmetry-like cross-slip occurred beneath the top layer of the substrate along the <1 1 0> orientations. The spreading index, temperature, and potential functions that affect the bombardments are also discussed.

  7. Impact and spreading behavior of cluster atoms bombarding substrates

    International Nuclear Information System (INIS)

    Fang, Te-Hua; Kang, Shao-Hui; Liao, Jia-Hung

    2009-01-01

    The purpose of this study is to investigate the behavior of copper cluster atoms bombarding a substrate using molecule dynamics based on tight-binding second moment approximation (TB-SMA) potential. The simulated results show that a crater on the substrate surface was created by the impact of the clusters. The variations of kinetic energy of cluster bombardments can be divided into three stages. At the initial impact level, the kinetic energies of the clusters and the substrate were constant. Then, the system went into a sluggish stage of energy variation, in which the kinetic energy of the clusters reduced. In the final stage, the kinetic energy of the system became stable. The high slip vector region around the crater had a disorder damage zone. The symmetry-like cross-slip occurred beneath the top layer of the substrate along the orientations. The spreading index, temperature, and potential functions that affect the bombardments are also discussed.

  8. Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement

    International Nuclear Information System (INIS)

    Dahms, Sven O.; Kuester, Miriam; Streb, Carsten; Roth, Christian; Sträter, Norbert; Than, Manuel E.

    2013-01-01

    A new approach is presented that allows the efficient localization and orientation of heavy-atom cluster compounds used in experimental phasing by a molecular replacement procedure. This permits the calculation of meaningful phases up to the highest resolution of the diffraction data. Heavy-atom clusters (HA clusters) containing a large number of specifically arranged electron-dense scatterers are especially useful for experimental phase determination of large complex structures, weakly diffracting crystals or structures with large unit cells. Often, the determination of the exact orientation of the HA cluster and hence of the individual heavy-atom positions proves to be the critical step in successful phasing and subsequent structure solution. Here, it is demonstrated that molecular replacement (MR) with either anomalous or isomorphous differences is a useful strategy for the correct placement of HA cluster compounds. The polyoxometallate cluster hexasodium α-metatungstate (HMT) was applied in phasing the structure of death receptor 6. Even though the HA cluster is bound in alternate partially occupied orientations and is located at a special position, its correct localization and orientation could be determined at resolutions as low as 4.9 Å. The broad applicability of this approach was demonstrated for five different derivative crystals that included the compounds tantalum tetradecabromide and trisodium phosphotungstate in addition to HMT. The correct placement of the HA cluster depends on the length of the intramolecular vectors chosen for MR, such that both a larger cluster size and the optimal choice of the wavelength used for anomalous data collection strongly affect the outcome

  9. 2nd International Symposium "Atomic Cluster Collisions : Structure and Dynamics from the Nuclear to the Biological Scale"

    CERN Document Server

    Solov'yov, Andrey; ISACC 2007; Latest advances in atomic cluster collisions

    2008-01-01

    This book presents a 'snapshot' of the most recent and significant advances in the field of cluster physics. It is a comprehensive review based on contributions by the participants of the 2nd International Symposium on Atomic Cluster Collisions (ISACC 2007) held in July 19-23, 2007 at GSI, Darmstadt, Germany. The purpose of the Symposium is to promote the growth and exchange of scientific information on the structure and properties of nuclear, atomic, molecular, biological and complex cluster systems studied by means of photonic, electronic, heavy particle and atomic collisions. Particular attention is devoted to dynamic phenomena, many-body effects taking place in cluster systems of a different nature - these include problems of fusion and fission, fragmentation, collective electron excitations, phase transitions, etc.Both the experimental and theoretical aspects of cluster physics, uniquely placed between nuclear physics on the one hand and atomic, molecular and solid state physics on the other, are discuss...

  10. Inner-shell spectroscopy and exchange interaction of Rydberg electrons bound by singly and doubly charged Kr and Xe atoms in small clusters

    International Nuclear Information System (INIS)

    Nagasaka, Masanari; Hatsui, Takaki; Setoyama, Hiroyuki; Ruehl, Eckart; Kosugi, Nobuhiro

    2011-01-01

    Surface-site resolved Kr 3d 5/2 -1 5p and 3d 5/2 -1 6p and Xe 4d 5/2 -1 6p and 4d 5/2 -1 7p Rydberg excited states in small van der Waals Kr and Xe clusters with a mean size of = 15 are investigated by X-ray absorption spectroscopy. Furthermore, surface-site resolved Kr 4s -2 5p, 4s -2 6p, and 4s -1 4p -1 5p shakeup-like Rydberg states in small Kr clusters are investigated by resonant Auger electron spectroscopy. The exchange interaction of the Rydberg electron with the surrounding atoms and the induced polarization of the surrounding atoms in the singly and doubly ionized atoms are deduced from the experimental spectra to analyze different surface-site contributions in small clusters, assuming that the corner, edge, face, and bulk sites have 3, 5-6, 8, and 12 nearest neighbor atoms. These energies are almost proportional to the number of the nearest neighbor atoms. The present analysis indicates that small Kr and Xe clusters with = 15 have an average or mixture structure between the fcc-like cubic and icosahedron-like spherical structures.

  11. Ab initio study of neutral (TiO2)n clusters and their interactions with water and transition metal atoms

    International Nuclear Information System (INIS)

    Çakır, D; Gülseren, O

    2012-01-01

    We have systematically investigated the growth behavior and stability of small stoichiometric (TiO 2 ) n (n = 1-10) clusters as well as their structural, electronic and magnetic properties by using the first-principles plane wave pseudopotential method within density functional theory. In order to find out the ground state geometries, a large number of initial cluster structures for each n has been searched via total energy calculations. Generally, the ground state structures for the case of n = 1-9 clusters have at least one monovalent O atom, which only binds to a single Ti atom. However, the most stable structure of the n = 10 cluster does not have any monovalent O atom. On the other hand, Ti atoms are at least fourfold coordinated for the ground state structures for n ≥ 4 clusters. Our calculations have revealed that clusters prefer to form three-dimensional structures. Furthermore, all these stoichiometric clusters have nonmagnetic ground state. The formation energy and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for the most stable structure of (TiO 2 ) n clusters for each n have also been calculated. The formation energy and hence the stability increases as the cluster size grows. In addition, the interactions between the ground state structure of the (TiO 2 ) n cluster and a single water molecule have been studied. The binding energy (E b ) of the H 2 O molecule exhibits an oscillatory behavior with the size of the clusters. A single water molecule preferably binds to the cluster Ti atom through its oxygen atom, resulting an average binding energy of 1.1 eV. We have also reported the interaction of the selected clusters (n = 3, 4, 10) with multiple water molecules. We have found that additional water molecules lead to a decrease in the binding energy of these molecules to the (TiO 2 ) n clusters. Finally, the adsorption of transition metal (TM) atoms (V, Co and Pt) on the n = 10 cluster has been

  12. Observation of isolated carbon atoms and the study of their mobility on Pt clusters by NMR

    International Nuclear Information System (INIS)

    Wang, P.; Ansermet, J.; Slichter, C.P.; Sinfelt, J.H.

    1985-01-01

    The authors have used NMR to determine the structure of surface species after the C-C bond scission of adsorbed acetylene and ethylene on Pt clusters produced by heating the samples to 690 K. They have found the species to be predominantly isolated carbon atoms adsorbed on Pt surfaces. They have studied the mobility of adsorbed carbon atoms from motional narrowing of the 13 C line shapes and motion-induced shortening of the spin-lattice relaxation times. They have found that the carbon atoms on Pt clusters are very mobile, their activation energy of 7 +- 1 kcal/mole for translational motion being less than half that of CO on Pt clusters

  13. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd, E-mail: gerd.meyer@uni-koeln.de

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  14. Fragmentation of atomic clusters: A theoretical study

    International Nuclear Information System (INIS)

    Lopez, M.J.; Jellinek, J.

    1994-01-01

    Collisionless fragmentation of nonrotating model n-atom metal clusters (n=12, 13, and 14) is studied using isoergic molecular-dynamics simulations. Minimum-energy paths for fragmentation are mapped out as functions of the distance between the centers of mass of the fragments. These paths provide information on the fragmentation energies for the different fragmentation channels. Fragmentation patterns (distributions of the fragmentation channel probabilities) and global and channel-specific fragmentation rate constants are computed and analyzed as functions of the internal energy and of the size of the clusters. The trends derived from the dynamics are compared with those obtained using the RRK and TST statistical approaches. The dynamics of the fragmentation process is analyzed in terms of characteristic quantities such as the distance between the centers of mass of the fragments, their relative translational energy, and their interaction energy, all considered as functions of time

  15. Fragmentation of neutral carbon clusters formed by high velocity atomic collision; Fragmentation d'agregats de carbone neutres formes par collision atomique a haute vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, G

    2004-05-01

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  16. Spin magnetic moments from single atoms to small Cr clusters

    Energy Technology Data Exchange (ETDEWEB)

    Boeglin, C.; Decker, R.; Bulou, H.; Scheurer, F.; Chado, I. [IPCMS-GSI - UMR 7504, 67037 Strasbourg Cedex (France); Ohresser, P. [LURE, 91405 Orsay (France); Dhesi, S.S. [ESRF, BP 220, 38043 Grenoble Cedex (France); Present permanent address: Diamond Light Source, Chilton, Didcot OX11 0QX (United Kingdom); Gaudry, E. [LMCP, 4, place Jussieu, 75252 Paris (France); Lazarovits, B. [CCMS, T.U. Vienna, Gumpendorfstr. 1a, 1060 Wien (Austria)

    2005-07-01

    Morphology studies at the first stages of the growth of Cr/Au(111) are reported and compared to the magnetic properties of the nanostructures. We analyze by Scanning Tunneling Microscopy and Low Energy Electron Diffraction the Cr clusters growth between 200 K and 300 K. In the early stages of the growth the morphology of the clusters shows monoatomic high islands located at the kinks of the herringbone reconstructed Au(111) surface. By X-ray Magnetic Circular Dichroism performed on the Cr L{sub 2,3} edges it is shown that the temperature dependent morphology strongly influences the magnetic properties of the Cr clusters. We show that in the sub-monolayer regime Cr clusters are antiferromagnetic and paramagnetic when the size reaches the atomic limit. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Effect of solute atom concentration on vacancy cluster formation in neutron-irradiated Ni alloys

    Science.gov (United States)

    Sato, Koichi; Itoh, Daiki; Yoshiie, Toshimasa; Xu, Qiu; Taniguchi, Akihiro; Toyama, Takeshi

    2011-10-01

    The dependence of microstructural evolution on solute atom concentration in Ni alloys was investigated by positron annihilation lifetime measurements. The positron annihilation lifetimes in pure Ni, Ni-0.05 at.%Si, Ni-0.05 at.%Sn, Ni-Cu, and Ni-Ge alloys were about 400 ps even at a low irradiation dose of 3 × 10 -4 dpa, indicating the presence of microvoids in these alloys. The size of vacancy clusters in Ni-Si and Ni-Sn alloys decreased with an increase in the solute atom concentration at irradiation doses less than 0.1 dpa; vacancy clusters started to grow at an irradiation dose of about 0.1 dpa. In Ni-2 at.%Si, irradiation-induced segregation was detected by positron annihilation coincidence Doppler broadening measurements. This segregation suppressed one-dimensional (1-D) motion of the interstitial clusters and promoted mutual annihilation of point defects. The frequency and mean free path of the 1-D motion depended on the solute atom concentration and the amount of segregation.

  18. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the ^{199}Hg Atom.

    Science.gov (United States)

    Sahoo, B K; Das, B P

    2018-05-18

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P,T-odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P,T-odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to ^{199}Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  19. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the 199Hg Atom

    Science.gov (United States)

    Sahoo, B. K.; Das, B. P.

    2018-05-01

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P ,T -odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P ,T -odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to 199Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  20. An easy-to-use method for measuring the flux of free atoms in a cluster beam

    International Nuclear Information System (INIS)

    Cuvellier, J.; Binet, A.

    1988-01-01

    A method is proposed to measure the flux of free atoms remaining in a beam of clusters. The time-of-flight (TOF) of an Ar beam containing clusters was analysed for this purpose using an electron impact + quadrupole mass spectrometer as detector. When considering TOF's with mass settings at Ar + , a double mode structure was observed. The slow component was interpreted as coming from Ar clusters that fragment as Ar + in the ionization chamber of the detector. The rapid mode in the TOF's was linked to the free atoms remaining in the Ar beam. Evaluating the area of this mode allowed one to measure the flux of free atoms in the Ar beam. The method is not restricted to measurements on Ar beams

  1. Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement.

    Science.gov (United States)

    Dahms, Sven O; Kuester, Miriam; Streb, Carsten; Roth, Christian; Sträter, Norbert; Than, Manuel E

    2013-02-01

    Heavy-atom clusters (HA clusters) containing a large number of specifically arranged electron-dense scatterers are especially useful for experimental phase determination of large complex structures, weakly diffracting crystals or structures with large unit cells. Often, the determination of the exact orientation of the HA cluster and hence of the individual heavy-atom positions proves to be the critical step in successful phasing and subsequent structure solution. Here, it is demonstrated that molecular replacement (MR) with either anomalous or isomorphous differences is a useful strategy for the correct placement of HA cluster compounds. The polyoxometallate cluster hexasodium α-metatungstate (HMT) was applied in phasing the structure of death receptor 6. Even though the HA cluster is bound in alternate partially occupied orientations and is located at a special position, its correct localization and orientation could be determined at resolutions as low as 4.9 Å. The broad applicability of this approach was demonstrated for five different derivative crystals that included the compounds tantalum tetradecabromide and trisodium phosphotungstate in addition to HMT. The correct placement of the HA cluster depends on the length of the intramolecular vectors chosen for MR, such that both a larger cluster size and the optimal choice of the wavelength used for anomalous data collection strongly affect the outcome.

  2. Nanophase materials assembled from atomic clusters

    International Nuclear Information System (INIS)

    Siegel, R.W.

    1989-09-01

    The preparation of atomic clusters of metals and ceramics by means of the gas-condensation method, followed by their in situ consolidation under high-vacuum conditions, has recently led to the synthesis of a new class of ultrafine-grained materials for which their physics is intimately coupled with their application. These nanophase materials, with 2 to 20 nm grain sizes, appear to have properties that are often rather different from conventional materials, and also processing characteristics that are greatly improved. The nanophase synthesis method described here should enable the design of materials heretofore unavailable, with improved or unique properties, based upon an understanding of the physics of these new materials. 23 refs., 8 figs

  3. Nanophase materials assembled from atomic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, R.W.

    1989-09-01

    The preparation of atomic clusters of metals and ceramics by means of the gas-condensation method, followed by their in situ consolidation under high-vacuum conditions, has recently led to the synthesis of a new class of ultrafine-grained materials for which their physics is intimately coupled with their application. These nanophase materials, with 2 to 20 nm grain sizes, appear to have properties that are often rather different from conventional materials, and also processing characteristics that are greatly improved. The nanophase synthesis method described here should enable the design of materials heretofore unavailable, with improved or unique properties, based upon an understanding of the physics of these new materials. 23 refs., 8 figs.

  4. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

    International Nuclear Information System (INIS)

    Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A.; Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P.

    2015-01-01

    Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering

  5. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A., E-mail: rao28@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P., E-mail: michael.moody@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-02-16

    Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering.

  6. Cluster growing process and a sequence of magic numbers

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2003-01-01

    demonstrate that in this way all known global minimum structures of the Lennard-Jones (LJ) clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence for the clusters of noble gas atoms......We present a new theoretical framework for modeling the cluster growing process. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system, and absorbing its energy at each step, we find cluster growing paths up to the cluster sizes of more than 100 atoms. We...

  7. A cluster expansion model for predicting activation barrier of atomic processes

    International Nuclear Information System (INIS)

    Rehman, Tafizur; Jaipal, M.; Chatterjee, Abhijit

    2013-01-01

    We introduce a procedure based on cluster expansion models for predicting the activation barrier of atomic processes encountered while studying the dynamics of a material system using the kinetic Monte Carlo (KMC) method. Starting with an interatomic potential description, a mathematical derivation is presented to show that the local environment dependence of the activation barrier can be captured using cluster interaction models. Next, we develop a systematic procedure for training the cluster interaction model on-the-fly, which involves: (i) obtaining activation barriers for handful local environments using nudged elastic band (NEB) calculations, (ii) identifying the local environment by analyzing the NEB results, and (iii) estimating the cluster interaction model parameters from the activation barrier data. Once a cluster expansion model has been trained, it is used to predict activation barriers without requiring any additional NEB calculations. Numerical studies are performed to validate the cluster expansion model by studying hop processes in Ag/Ag(100). We show that the use of cluster expansion model with KMC enables efficient generation of an accurate process rate catalog

  8. Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters

    International Nuclear Information System (INIS)

    Oka, Yurie; Yanao, Tomohiro; Koon, Wang Sang

    2015-01-01

    This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internal centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions

  9. Ultrahigh-sensitive detection of molecules produced in catalytic reactions by uni-atomic-composition bi-element clusters supported on solid substrate

    International Nuclear Information System (INIS)

    Yasumatsu, H; Fukui, N

    2013-01-01

    An apparatus has been developed for measuring catalytic activities of uni-atomic-composition bi-element clusters supported on a solid substrate. The cluster sample is prepared by irradiating a cluster-ion beam having the uni-atomic composition onto the substrate on a soft-landing condition in an ultra-high vacuum. The catalytic activity is measured by temperature-programmed desorption (TPD) mass analysis. Molecules at a density as low as 3 cm −3 have been detected with an ultrahigh-sensitive TPD mass spectrometer consisting of a cylindrical electron gun, a quadrupole mass filter and a micro-channel-plate ion-detector. The high reproducibility has been achieved by careful calibration of the TPD mass spectrometer. As a benchmark example, thermal oxidation of CO catalysed on Pt 30 disks supported on a silicon surface was studied. The CO 2 products have been successfully observed at the Pt 30 density as low as 3 × 10 12 clusters in a circular area of 8 mm in diameter at the ramping rate of the sample temperature as low as 0.3 K s −1 .

  10. Investigation of modulus hardening of various co-clusters in aged Al-Cu-Mg-Ag alloy by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Song [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Liu, Zhiyi, E-mail: liuzhiyi@csu.edu.cn [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Ying, Puyou; Wang, Jian; Li, Junlin [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China)

    2016-06-21

    The modulus hardening capability of various co-clusters in a low Cu/Mg ratio Al-Cu-Mg-Ag alloy aged at 165 °C is investigated by quantitative atom probe tomography analysis. Prolonged aging from 5 min to 2 h leads to the simultaneous increase in the critical shear stress of both Mg-Ag and Cu-Mg co-clusters. Regardless of the higher shear modulus of Cu-Mg co-clusters, calculation results show that Mg-Ag co-clusters possess a greater modulus hardening capability than Cu-Mg co-clusters, suggesting its primary contribution to the rapid hardening at the early aging stage. As aging extends from 30 min to 2 h, the increment in the critical shear stress of Mg-Ag co-clusters is lower than that of Cu-Mg co-clusters due to the precipitation of high density Ω phase. In addition, the shear modulus of Mg-Ag co-clusters is generally independent on its size at each investigated condition.

  11. Investigation of modulus hardening of various co-clusters in aged Al-Cu-Mg-Ag alloy by atom probe tomography

    International Nuclear Information System (INIS)

    Bai, Song; Liu, Zhiyi; Ying, Puyou; Wang, Jian; Li, Junlin

    2016-01-01

    The modulus hardening capability of various co-clusters in a low Cu/Mg ratio Al-Cu-Mg-Ag alloy aged at 165 °C is investigated by quantitative atom probe tomography analysis. Prolonged aging from 5 min to 2 h leads to the simultaneous increase in the critical shear stress of both Mg-Ag and Cu-Mg co-clusters. Regardless of the higher shear modulus of Cu-Mg co-clusters, calculation results show that Mg-Ag co-clusters possess a greater modulus hardening capability than Cu-Mg co-clusters, suggesting its primary contribution to the rapid hardening at the early aging stage. As aging extends from 30 min to 2 h, the increment in the critical shear stress of Mg-Ag co-clusters is lower than that of Cu-Mg co-clusters due to the precipitation of high density Ω phase. In addition, the shear modulus of Mg-Ag co-clusters is generally independent on its size at each investigated condition.

  12. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    International Nuclear Information System (INIS)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q.

    2007-01-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10 -5 -1x10 -2 dpa at KUR, and 8x10 -3 -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High concentration of alloying

  13. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q. [Kyoto Univ., Research Reactor Institute, Osaka (Japan)

    2007-07-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10{sup -5}-1x10{sup -2} dpa at KUR, and 8x10{sup -3} -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High

  14. Cluster analysis for applications

    CERN Document Server

    Anderberg, Michael R

    1973-01-01

    Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o

  15. Spectra of matrix isolated metal atoms and clusters

    International Nuclear Information System (INIS)

    Meyer, B.

    1977-01-01

    The matrix isolation spectra of all of the 40 presently known atomic metal species show strong matrix effects. The transition energies are increased, and the bands are broad and exhibit splitting of sublevels which are degenerate in the gas phase. Several models have been proposed for splitting of levels, but basic effects are not yet understood, and spectra cannot be predicted, yet it is possible to correlate gas phase and matrix in many of the systems. Selective production of diatomics and clusters via thermal and optical annealing of atomic species can be monitored by optical spectra, but yields spectroscopically complex systems which, however, especially in the case of transition metals, can be used as precursors in novel chemical reactions. A combination of absorption, emission, ir, Raman, ESR, and other methods is now quickly yielding data which will help correlate the increasing wealth of existing data. 55 references, 6 figures

  16. The fifth international symposium ''atomic cluster collisions''. ISACC 2011. Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Fifth International Symposium ''Atomic Cluster Collisions'' (ISACC 2011) will take place in July 21-25, 2011 in Berlin, Germany. The venue of the meeting will be the St.-Michaels-Heim a lovely place located within a garden area of Berlin-Grunewald. The ISACC 2011 is organized by the Fritz-Haber-Institute of the Max- Planck Society along with the King Saud University, Rhiyadh and by the Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany. ISACC started as the international symposium on atomic cluster collisions in St. Petersburg, Russia in 2003. The second ISACC was held at the GSI, Darmstadt, Germany in 2007. Both first and second symposia were satellites of the International Conferences on Photonic Electronic and Atomic Collisions (ICPEAC). The third ISACC has returned to St. Petersburg, Russia in 2008. The last ISACC took place in Ann Arbor, again as a satellite meeting of the ICPEAC. Initially the symposium was mainly focused on dynamics of atomic clusters, especially in atomic cluster collisions, but since then its scope has been widened significantly to include dynamics of nanosystems, biomolecules, and macromolecules with the emphasis on the similarity of numerous essential clustering phenomena arising in different branches of physics, chemistry, and biology. After the four ISACC meetings it has become clear that there is a need for an interdisciplinary conference covering a broad range of topics related to the Dynamics of Systems on a Nanoscale. Therefore in 2010 it was decided to expand upon this series of meetings with a new conference organized under the new title ''Dynamics of Systems on the Nanoscale'', the DySoN Conference, since this title better reflects the interdisciplinary character of the earlier ISACC meetings embracing all the topics of interest under a common theme. The first DySoN Conference took place in Rome, Italy in 2010. The fifth ISACC symposium will be again a

  17. Cluster size selectivity in the product distribution of ethene dehydrogenation on niobium clusters.

    Science.gov (United States)

    Parnis, J Mark; Escobar-Cabrera, Eric; Thompson, Matthew G K; Jacula, J Paul; Lafleur, Rick D; Guevara-García, Alfredo; Martínez, Ana; Rayner, David M

    2005-08-18

    Ethene reactions with niobium atoms and clusters containing up to 25 constituent atoms have been studied in a fast-flow metal cluster reactor. The clusters react with ethene at about the gas-kinetic collision rate, indicating a barrierless association process as the cluster removal step. Exceptions are Nb8 and Nb10, for which a significantly diminished rate is observed, reflecting some cluster size selectivity. Analysis of the experimental primary product masses indicates dehydrogenation of ethene for all clusters save Nb10, yielding either Nb(n)C2H2 or Nb(n)C2. Over the range Nb-Nb6, the extent of dehydrogenation increases with cluster size, then decreases for larger clusters. For many clusters, secondary and tertiary product masses are also observed, showing varying degrees of dehydrogenation corresponding to net addition of C2H4, C2H2, or C2. With Nb atoms and several small clusters, formal addition of at least six ethene molecules is observed, suggesting a polymerization process may be active. Kinetic analysis of the Nb atom and several Nb(n) cluster reactions with ethene shows that the process is consistent with sequential addition of ethene units at rates corresponding approximately to the gas-kinetic collision frequency for several consecutive reacting ethene molecules. Some variation in the rate of ethene pick up is found, which likely reflects small energy barriers or steric constraints associated with individual mechanistic steps. Density functional calculations of structures of Nb clusters up to Nb(6), and the reaction products Nb(n)C2H2 and Nb(n)C2 (n = 1...6) are presented. Investigation of the thermochemistry for the dehydrogenation of ethene to form molecular hydrogen, for the Nb atom and clusters up to Nb6, demonstrates that the exergonicity of the formation of Nb(n)C2 species increases with cluster size over this range, which supports the proposal that the extent of dehydrogenation is determined primarily by thermodynamic constraints. Analysis of

  18. Structure and physical properties of silicon clusters and of vacancy clusters in bulk silicon

    International Nuclear Information System (INIS)

    Sieck, A.

    2000-01-01

    In this thesis the growth-pattern of free silicon clusters and vacancy clusters in bulk silicon is investigated. The aim is to describe and to better understand the cluster to bulk transition. Silicon structures in between clusters and solids feature new interesting physical properties. The structure and physical properties of silicon clusters can be revealed by a combination of theory and experiment, only. Low-energy clusters are determined with different optimization techniques and a density-functional based tight-binding method. Additionally, infrared and Raman spectra, and polarizabilities calculated within self-consistent field density-functional theory are provided for the smaller clusters. For clusters with 25 to 35 atoms an analysis of the shape of the clusters and the related mobilities in a buffer gas is given. Finally, the clusters observed in low-temperature experiments are identified via the best match between calculated properties and experimental data. Silicon clusters with 10 to 15 atoms have a tricapped trigonal prism as a common subunit. Clusters with up to about 25 atoms follow a prolate growth-path. In the range from 24 to 30 atoms the geometry of the clusters undergoes a transition towards compact spherical structures. Low-energy clusters with up to 240 atoms feature a bonding pattern strikingly different from the tetrahedral bonding in the solid. It follows that structures with dimensions of several Angstroem have electrical and optical properties different from the solid. The calculated stabilities and positron-lifetimes of vacancy clusters in bulk silicon indicate the positron-lifetimes of about 435 ps detected in irradiated silicon to be related to clusters of 9 or 10 vacancies. The vacancies in these clusters form neighboring hexa-rings and, therefore, minimize the number of dangling bonds. (orig.)

  19. Photoelectron imaging, probe of the dynamics: from atoms... to clusters; Imagerie de photoelectrons, sonde de la dynamique: des atomes... aux agregats

    Energy Technology Data Exchange (ETDEWEB)

    Lepine, F

    2003-06-15

    This thesis concerns the study of the deexcitation of clusters and atoms by photoelectron imaging. The first part is dedicated to thermionic emission of a finite size system. A 3-dimensional imaging setup allows us to measure the time evolution of the kinetic energy spectrum of electrons emitted from different clusters (W{sub n}{sup -}, C{sub n}{sup -}, C{sub 60}). Then we have a direct access to the fundamental quantities which characterize this statistical emission: the temperature of the finite heat bath and the decay rate. The second part concerns the ionization of atomic Rydberg states placed in a static electric field. We performed the first experiment of photoionization microscopy which allows us to obtain a picture which is the macroscopic projection of the electronic wave function. Then we have access to the detail of the photoionization and particularly to the quantum properties of the electron usually confined at the atomic scale. (author)

  20. Clustered field evaporation of metallic glasses in atom probe tomography

    International Nuclear Information System (INIS)

    Zemp, J.; Gerstl, S.S.A.; Löffler, J.F.; Schönfeld, B.

    2016-01-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3 nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different – as yet unknown – physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. - Highlights: • Field evaporation of metallic glasses is heterogeneous on a scale of up to 3 nm. • Amount of clustered evaporation depends on ion species and temperature. • Length scales of clustered evaporation and correlative evaporation are similar.

  1. Clustering analysis

    International Nuclear Information System (INIS)

    Romli

    1997-01-01

    Cluster analysis is the name of group of multivariate techniques whose principal purpose is to distinguish similar entities from the characteristics they process.To study this analysis, there are several algorithms that can be used. Therefore, this topic focuses to discuss the algorithms, such as, similarity measures, and hierarchical clustering which includes single linkage, complete linkage and average linkage method. also, non-hierarchical clustering method, which is popular name K -mean method ' will be discussed. Finally, this paper will be described the advantages and disadvantages of every methods

  2. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  3. Chemical inhomogeneity in InxGa1-xN and ZnO. A HRTEM study on atomic scale clustering

    International Nuclear Information System (INIS)

    Bartel, T.P.

    2008-01-01

    Nanostructuration as well as the nucleation and growth of nanoparticles pervades the development of modern materials and devices. Quantitative high resolution transmission electron microscopy (HRTEM) is currently being developed for a structural and chemical analysis at an atomic scale. It is used in this thesis to study the chemical inhomogeneity and clustering in In x Ga 1-x N, InN and ZnO. A methodology for reliable quantitative HRTEM is rst de ned: it necessitates a damage free sample, the avoidance of electron beam damage and the control of microscope instabilities. With these conditions satis ed, the reliability of quantitative HRTEM is demonstrated by an accurate measurement of lattice relaxation in a thin TEM sample. Clustering in an alloy can then be distinguished from a random distribution of atoms. In In x Ga 1-x N for instance, clustering is detected for concentrations x>0.1. The sensitivity is insufficient to determine whether clustering is present for lower concentrations. HRTEM allows to identify the amplitude and the spatial distribution of the decomposition which is attributed to a spinodal decomposition. In InN, nanometer scale metallic indium inclusions are detected. With decreasing size of the metallic clusters, the photoluminescence of the sample shifts towards the infrared. This indicates that the inclusions may be responsible for the infrared activity of InN. Finally, ZnO grown homoepitaxially on zinc-face and oxygen-face substrates is studied. The O-face epilayer is strained whereas the Zn-face epilayer is almost strain free and has a higher crystalline quality. Quantitative analysis of exit wave phases is in good agreement with simulations, but the signal to noise ratio needs to be improved for the detection of single point defects. (orig.)

  4. Characterization of atom clusters in irradiated pressure vessel steels and model alloys

    International Nuclear Information System (INIS)

    Auger, P.; Pareige, P.; Akamatsu, M.; Van Duysen, J.C.

    1993-12-01

    In order to characterize the microstructural evolution of the iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions and, for comparison, low copper model alloys irradiated with neutrons and electrons have been studied. The characterization has been carried out mainly thanks to small angle neutron scattering and atom probe experiments. Both techniques lead to the conclusion that clusters develop with irradiations. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex. Solute atoms like Ni, Mn and Si, sometimes associated with Cu, segregate as ''clouds'' more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs

  5. Theory of small atomic-like 2D dust clusters

    International Nuclear Information System (INIS)

    Amiranashvili, Sh.G.; Gousein-zade, N.G.; Tsytovich, V.N.

    2002-01-01

    In several experiments atom-like dust clusters with parabolic confining potential were observed [1-3]. Here we present a general theory of 2D clusters confined by (1/2)m dω 0 2 r2 potential with arbitrary pair interaction potential depending on the inter-dust distance. It describes the equilibrium conditions, normal modes, their frequencies and possible instabilities of clusters with arbitrary N number of grains. The mono-layer clusters can have 2N frequencies of oscillations in the cluster plane among which 3 modes are trivial (ω = 0 and double degenerate frequency of oscillation in the potential well). The 2N - 3 non-trivial modes are considered. For example, for square dust cluster with potential V(r) the equilibrium is described by ω 0 2 = -(4/m) [V'(√(2)R) + V'(2R)], the frequency of radial oscillations is ω2 = (16R2/m) [V''(√(2)R) + 2V''(2R)], the two single modes frequencies are ω2 (32R2/m)V''(2R); ω2 = (16R2/m)V''(√(2)r) and one double degenerated mode frequency is ω2 = (1/m) [V'√(2)R) - V'(2R) + 4R2V''(√(2)R)] where ' corresponds to the differentiation of the potential V(r) with respect to √(r). The general stability criterion was found and investigated for N ≥ 4. The pair interaction potential V(r) is considered as a sum of different attraction and repulsion terms , including that which describe the non-screened collective and non collective attraction, the screened non-Coulomb interaction and the non-screened repulsion. The collective non-screened potential causes the absence of equilibria at certain dust cluster sizes. For screened Coulomb potential Vc(r) = (Z d 2 e2αscr/r)exp(-r/λscr) the clusters with the size R are considered. The pentagon cluster is found to be stable for R < 3.3λscr and the clusters with N ≥ 6 are found to be always unstable. The measurements of the frequencies of the cluster modes, the thresholds of cluster equilibria and the stability of the clusters can be used for detection of the dust

  6. MD simulation of atomic displacement cascades near chromium-rich clusters in FeCr alloy

    International Nuclear Information System (INIS)

    Tikhonchev, M.; Svetukhin, V.; Gaganidze, E.

    2013-01-01

    The paper reports simulation of cascades in Fe–9 at.%Cr binary alloy containing chromium-rich clusters. The simulation is performed by the molecular dynamics method at the initial temperature of 300 K and primary knock-on atom energy of 15 and 20 keV. Spherical clusters containing 95 at.% of Cr with diameter of 1–5 nm have been considered. The properties of cascade evolution in the presence of chromium-rich cluster are studied. It is shown that these clusters tend to dissolve in collision cascades. However, clusters with diameter of ⩾3 nm exhibit only slight modifications and can be considered stable. Parameters of small (1–2 nm) clusters can change significantly and, in some cases, a 1 nm cluster can be totally dissolved

  7. MD simulation of atomic displacement cascades near chromium-rich clusters in FeCr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonchev, M., E-mail: tikhonchev@sv.ulsu.ru [Ulyanovsk State University, Research Institute of Technology, 42 Leo Tolstoy St., 432970 Ulyanovsk (Russian Federation); Svetukhin, V. [Ulyanovsk State University, Research Institute of Technology, 42 Leo Tolstoy St., 432970 Ulyanovsk (Russian Federation); Gaganidze, E. [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe (Germany)

    2013-11-15

    The paper reports simulation of cascades in Fe–9 at.%Cr binary alloy containing chromium-rich clusters. The simulation is performed by the molecular dynamics method at the initial temperature of 300 K and primary knock-on atom energy of 15 and 20 keV. Spherical clusters containing 95 at.% of Cr with diameter of 1–5 nm have been considered. The properties of cascade evolution in the presence of chromium-rich cluster are studied. It is shown that these clusters tend to dissolve in collision cascades. However, clusters with diameter of ⩾3 nm exhibit only slight modifications and can be considered stable. Parameters of small (1–2 nm) clusters can change significantly and, in some cases, a 1 nm cluster can be totally dissolved.

  8. Ab initio study of the structural, magnetic, and electronic properties of copper and silver clusters and their alloys with one palladium atom

    Directory of Open Access Journals (Sweden)

    S. J Hashemifar

    2015-01-01

    Full Text Available In this paper, the structural, magnetic, and electronic properties of two- to nine-atom copper and silver clusters and their alloys with one palladium atom are investigated by using full-potential all-electron density functional computations. After calculating minimized energy of several structural isomers of every nanocluster, it is argued that the small size nanoclusters (up to size of 6, ‎ prefer planar structures, while by increasing size a 2D-3D structural transformation is observed. The structural transformation of pure and copper-palladium clusters occurs in the size of seven and that of silver-palladium cluster in happens at the size of six. The calculated second difference and dissociation energies confirm that the two- and eight- atom pure clusters and three- and seven- atom alloyed clusters are magic clusters. The electronic and magnetic properties of stable isomers are calculated and considered after applying many body based GW correction.

  9. Transport, dissociation and rotation of small self-interstitial atom clusters in tungsten

    International Nuclear Information System (INIS)

    Zhou, W.H.; Zhang, C.G.; Li, Y.G.; Zeng, Z.

    2014-01-01

    Numerical calculations have been performed to study the thermal motion of self-interstitial atom (SIA) clusters in tungsten (W). Molecular dynamics simulations show that SIA clusters exhibit a fast one-dimensional (1D) motion along the close packed 〈1 1 1〉 direction accompanied by a significant mass transport in this direction. A low frequency vibration mode is identified and considered to assist the motion of SIAs. The migration energy of SIA clusters are weakly dependent on their size in the average value of 0.019 eV, which is due to the strong interaction between SIAs revealed by calculating the potential energy curve of artificially moving the SIAs along 〈1 1 1〉 direction as well as nudged elastic band (NEB) method. The rotation process of SIA cluster is studied by activation–relaxation technique and the results show that SIA cluster presents complex rotation process. Our results on the motion SIA cluster may provide updated understanding on the performance decay of materials related to SIA defects

  10. The role of electron localization in the atomic structure of transition-metal 13-atom clusters: the example of Co13, Rh13, and Hf13.

    Science.gov (United States)

    Piotrowski, Maurício J; Piquini, Paulo; Cândido, Ladir; Da Silva, Juarez L F

    2011-10-14

    The crystalline structure of transition-metals (TM) has been widely known for several decades, however, our knowledge on the atomic structure of TM clusters is still far from satisfactory, which compromises an atomistic understanding of the reactivity of TM clusters. For example, almost all density functional theory (DFT) calculations for TM clusters have been based on local (local density approximation--LDA) and semilocal (generalized gradient approximation--GGA) exchange-correlation functionals, however, it is well known that plain DFT fails to correct the self-interaction error, which affects the properties of several systems. To improve our basic understanding of the atomic and electronic properties of TM clusters, we report a DFT study within two nonlocal functionals, namely, the hybrid HSE (Heyd, Scuseria, and Ernzerhof) and GGA+U functionals, of the structural and electronic properties of the Co(13), Rh(13), and Hf(13) clusters. For Co(13) and Rh(13), we found that improved exchange-correlation functionals decrease the stability of open structures such as the hexagonal bilayer (HBL) and double simple-cubic (DSC) compared with the compact icosahedron (ICO) structure, however, DFT-GGA, DFT-GGA+U, and DFT-HSE yield very similar results for Hf(13). Thus, our results suggest that the DSC structure obtained by several plain DFT calculations for Rh(13) can be improved by the use of improved functionals. Using the sd hybridization analysis, we found that a strong hybridization favors compact structures, and hence, a correct description of the sd hybridization is crucial for the relative energy stability. For example, the sd hybridization decreases for HBL and DSC and increases for ICO in the case of Co(13) and Rh(13), while for Hf(13), the sd hybridization decreases for all configurations, and hence, it does not affect the relative stability among open and compact configurations.

  11. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    Science.gov (United States)

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. Copyright © 2015. Published by Elsevier Inc.

  12. Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis

    International Nuclear Information System (INIS)

    Rao, B.K.; Jena, P.

    1999-01-01

    Density-functional theory with generalized gradient approximation for the exchange-correlation potential has been used to calculate the global equilibrium geometries and electronic structure of neutral, cationic, and anionic aluminum clusters containing up to 15 atoms. The total energies of these clusters are then used to study the evolution of their binding energy, relative stability, fragmentation channels, ionization potential, and vertical and adiabatic electron affinities as a function of size. The geometries are found to undergo a structural change from two dimensional to three dimensional when the cluster contains 6 atoms. An interior atom emerges only when clusters contain 11 or more atoms. The geometrical changes are accompanied by corresponding changes in the coordination number and the electronic structure. The latter is reflected in the relative concentration of the s and p electrons of the highest occupied molecular orbital. Aluminum behaves as a monovalent atom in clusters containing less than seven atoms and as a trivalent atom in clusters containing seven or more atoms. The binding energy evolves monotonically with size, but Al 7 , Al 7 + , Al 7 - , Al 11 - , and Al 13 - exhibit greater stability than their neighbors. Although the neutral clusters do not conform to the jellium model, the enhanced stability of these charged clusters is demonstrated to be due to the electronic shell closure. The fragmentation proceeds preferably by the ejection of a single atom irrespective of the charge state of the parent clusters. While odd-atom clusters carry a magnetic moment of 1μ B as expected, clusters containing even number of atoms carry 2μ B for n≤10 and 0 ampersand hthinsp;μ B for n>10. The calculated results agree very well with all available experimental data on magnetic properties, ionization potentials, electron affinities, and fragmentation channels. The existence of isomers of Al 13 cluster provides a unique perspective on the anomaly in the

  13. First-principle study of silicon cluster doped with rhodium: Rh{sub 2}Si{sub n} (n = 1–11) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai; Luo, Chang Geng; Li, Hua Yang [Department of Physics, Nanyang Normal University, Nanyang 473061 (China); Lu, Cheng, E-mail: lucheng@calypso.cn [Department of Physics, Nanyang Normal University, Nanyang 473061 (China); State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Li, Gen Quan; Lu, Zhi Wen [Department of Physics, Nanyang Normal University, Nanyang 473061 (China)

    2015-06-15

    The geometries, stabilities and electronic properties of rhodium-doped silicon clusters Rh{sub 2}Si{sub n} (n = 1–11) have been systematically studied by using density functional calculations at the B3LYP/GENECP level. The optimized results show that the lowest-energy isomers of Rh{sub 2}Si{sub n} clusters favor three-dimensional structures for n = 2–11. Based on the averaged binding energy, fragmentation energy, second-order energy difference and HOMO-LUMO energy gap, the stabilities of Rh{sub 2}Si{sub n} (n = 1–11) clusters have been analyzed. The calculated results suggest that the Rh{sub 2}Si{sub 6} cluster has the strongest relative stability and the doping with rhodium atoms can reduce the chemical stabilities of Si{sub n} clusters. The natural population and natural electron configuration analysis indicate that there is charge transfer from the Si atoms and 5s orbital of the Rh atoms to the 4d and 5p orbitals of Rh atoms. The analysis of electron localization function reveal that the Si–Si bonds are mainly covalent bonds and the Si–Rh bonds are almost ionic bonds. Moreover, the vertical ionization potential, vertical electron affinity, chemical hardness, chemical potential, vibrational spectrum and polarizability are also discussed. - Highlights: • The geometric structures of Rh{sub 2}Si{sub n} (n = 1–11) clusters are determined. • The stabilities and electronic properties of Rh{sub 2}Si{sub n} clusters are discussed. • The Rh{sub 2}Si{sub 6} cluster has the higher stability than other clusters. • The doped rhodium atoms can reduce the chemical stabilities of Si{sub n} clusters.

  14. Kinetic and radiation processes in cluster plasmas

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1996-01-01

    The analysis of processes is made for a cluster plasma which is a xenon arc plasma of a high pressure with an admixture of tungsten cluster ions. Because cluster ions emit radiation, this system is a light source which parameters are determined by various processes such as heat release and transport of charged particles in the plasma, radiative processes involving clusters, processes of cluster evaporation and attachment of atoms to it that leads to an equilibrium between clusters and vapor of their atoms, processes of cluster generation, processes of the ionization equilibrium between cluster ions and plasma electrons, transport of cluster ions in the discharge plasma in all directions. These processes govern by properties of a specific cluster plasma under consideration. (author)

  15. Marketing research cluster analysis

    OpenAIRE

    Marić Nebojša

    2002-01-01

    One area of applications of cluster analysis in marketing is identification of groups of cities and towns with similar demographic profiles. This paper considers main aspects of cluster analysis by an example of clustering 12 cities with the use of Minitab software.

  16. Marketing research cluster analysis

    Directory of Open Access Journals (Sweden)

    Marić Nebojša

    2002-01-01

    Full Text Available One area of applications of cluster analysis in marketing is identification of groups of cities and towns with similar demographic profiles. This paper considers main aspects of cluster analysis by an example of clustering 12 cities with the use of Minitab software.

  17. Atomic structures and covalent-to-metallic transition of lead clusters Pbn (n=2-22)

    International Nuclear Information System (INIS)

    Wang Baolin; Zhao Jijun; Chen Xiaoshuang; Shi Daning; Wang Guanghou

    2005-01-01

    The lowest-energy structures and electronic properties of the lead clusters are studied by density-functional-theory calculations with Becke-Lee-Yang-Parr gradient correction. The lowest-energy structures of Pb n (n=2-22) clusters are determined from a number of structural isomers, which are generated from empirical genetic algorithm simulations. The competition between atom-centered compact structures and layered stacking structures leads to the alternative appearance of the two types of structures as global minimum. The size evolution of geometric and electronic properties from covalent bonding towards bulk metallic behavior in Pb clusters is discussed

  18. A first-principles study of structure, orbital interactions and atomic oxygen and OH adsorption on Mo-, Sc- and Y-doped nickel bimetallic clusters

    International Nuclear Information System (INIS)

    Das, Nishith Kumar; Shoji, Tetsuo

    2013-01-01

    Highlights: •Mo-doped nickel clusters are energetically more stable than the Sc and Y-doped clusters (n ⩾ 10). •Mo atom exhibits center at the cluster rather than edge, while Sc and Y atom sit at the edge. •The metallic s, d orbitals are mainly dominated on the stability of nanoclusters. •The oxygen and OH adsorption energy of Mo-doped cluster are higher than those of other nanoclusters. •2p Orbitals are strongly bonds with Mo 4d, and a weakly interacts with Ni 3d, 4s and Mo 5s orbitals. -- Abstract: Density functional theory (DFT) has been used to study the stability, orbitals interactions and oxygen and hydroxyl chemisorption properties of Ni n M (1 ⩽ n ⩽ 12) clusters. A single atom doped-nickel clusters increase the stability, and icosahedral Ni 12 Mo cluster is the most stable structure. Molybdenum atom prefers to exhibit center at the cluster (n ⩾ 10) rather than edge, while Sc and Y atom remain at the edge. The Ni–Mo bond lengths are smaller than the Ni–Sc and Ni–Y. The pDOS results show that the d–d orbitals interactions are mainly dominating on the stability of clusters, while p orbitals have a small effect on the stability. The Mo-doped nanoclusters have the highest oxygen and OH chemisorption energy, and the most favorable adsorption site is on the top Mo site. The larger cluster distortion is found for the Sc- and Y-doped structures compared to other clusters. The oxygen 2p orbitals are strongly hybridizing with the Mo 4d orbitals (n < 9) and a little interaction between oxygen 2p and Ni 3d, 4s and Mo 5s orbitals. The Mo-doped clusters are significantly increased the chemisorption energies that might improve the passive film adherence of nanoalloys

  19. Coordination-resolved local bond contraction and electron binding-energy entrapment of Si atomic clusters and solid skins

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin; Huang, Yongli; Zhang, Ting [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); Wang, Yan, E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Zhang, Xi [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China)

    2014-04-14

    Consistency between x-ray photoelectron spectroscopy measurements and density-function theory calculations confirms our bond order-length-strength notation-incorporated tight-binding theory predictions on the quantum entrapment of Si solid skin and atomic clusters. It has been revealed that bond-order deficiency shortens and strengthens the Si-Si bond, which results in the local densification and quantum entrapment of the core and valence electrons. Unifying Si clusters and Si(001) and (111) skins, this mechanism has led to quantification of the 2p binding energy of 96.089 eV for an isolated Si atom, and their bulk shifts of 2.461 eV. Findings evidence the significance of atomic undercoordination that is of great importance to device performance.

  20. Small gold clusters on graphene, their mobility and clustering: a DFT study

    International Nuclear Information System (INIS)

    Amft, Martin; Sanyal, Biplab; Eriksson, Olle; Skorodumova, Natalia V

    2011-01-01

    Motivated by the experimentally observed high mobility of gold atoms on graphene and their tendency to form nanometer-sized clusters, we present a density functional theory study of the ground state structures of small gold clusters on graphene, their mobility and clustering. Our detailed analysis of the electronic structures identifies the opportunity to form strong gold-gold bonds and the graphene-mediated interaction of the pre-adsorbed fragments as the driving forces behind gold's tendency to aggregate on graphene. While clusters containing up to three gold atoms have one unambiguous ground state structure, both gas phase isomers of a cluster with four gold atoms can be found on graphene. In the gas phase the diamond-shaped Au 4 D cluster is the ground state structure, whereas the Y-shaped Au 4 Y becomes the actual ground state when adsorbed on graphene. As we show, both clusters can be produced on graphene by two distinct clustering processes. We also studied in detail the stepwise formation of a gold dimer out of two pre-adsorbed adatoms, as well as the formation of Au 3 . All reactions are exothermic and no further activation barriers, apart from the diffusion barriers, were found. The diffusion barriers of all studied clusters range from 4 to 36 meV only, and are substantially exceeded by the adsorption energies of - 0.1 to - 0.59 eV. This explains the high mobility of Au 1-4 on graphene along the C-C bonds.

  1. Comprehensive cluster analysis with Transitivity Clustering.

    Science.gov (United States)

    Wittkop, Tobias; Emig, Dorothea; Truss, Anke; Albrecht, Mario; Böcker, Sebastian; Baumbach, Jan

    2011-03-01

    Transitivity Clustering is a method for the partitioning of biological data into groups of similar objects, such as genes, for instance. It provides integrated access to various functions addressing each step of a typical cluster analysis. To facilitate this, Transitivity Clustering is accessible online and offers three user-friendly interfaces: a powerful stand-alone version, a web interface, and a collection of Cytoscape plug-ins. In this paper, we describe three major workflows: (i) protein (super)family detection with Cytoscape, (ii) protein homology detection with incomplete gold standards and (iii) clustering of gene expression data. This protocol guides the user through the most important features of Transitivity Clustering and takes ∼1 h to complete.

  2. [Cluster analysis in biomedical researches].

    Science.gov (United States)

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research.

  3. Discrete Visible Luminescence of Helium Atoms and Molecules Desorbing from Helium Clusters: The Role of Electronic, Vibrational, and Rotational Energy Transfer

    International Nuclear Information System (INIS)

    von Haeften, K.; von Pietrowski, R.; Moeller, T.; Joppien, M.; Moussavizadeh, L.; de Castro, A.R.

    1997-01-01

    Discrete visible and near-infrared luminescence of a beam of photoexcited helium clusters is reported. The emission lines are attributed to free helium atoms and molecules desorbing from clusters in electronically excited states. Depending on the excitation energy, various atomic and molecular singlet and triplet states are involved in the relaxation process. With increasing cluster size the intensity of molecular transitions becomes dominant. The temperature of ejected molecules could be estimated to T vib ∼2500 K and T rot ∼450 K and is much higher than that of the cluster itself. copyright 1997 The American Physical Society

  4. A DFT study of the stability of SIAs and small SIA clusters in the vicinity of solute atoms in Fe

    Science.gov (United States)

    Becquart, C. S.; Ngayam Happy, R.; Olsson, P.; Domain, C.

    2018-03-01

    The energetics, defect volume and magnetic properties of single SIAs and small SIA clusters up to size 6 have been calculated by DFT for different configurations like the parallel 〈110〉 dumbbell, the non parallel 〈110〉 dumbbell and the C15 structure. The most stable configurations of each type have been further analyzed to determine the influence on their stability of various solute atoms (Ti, V, Cr, Mn, Co, Ni, Cu, Mo, W, Pd, Al, Si, P), relevant for steels used under irradiation. The results show that the presence of solute atoms does not change the relative stability order among SIA clusters. The small SIA clusters investigated can bind to both undersized and oversized solutes. Several descriptors have been considered to derive interesting trends from results. It appears that the local atomic volume available for the solute is the main physical quantity governing the binding energy evolution, whatever the solute type (undersized or oversized) and the cluster configuration (size and type).

  5. STATISTICAL ANALYSIS OF THE HEAVY NEUTRAL ATOMS MEASURED BY IBEX

    International Nuclear Information System (INIS)

    Park, Jeewoo; Kucharek, Harald; Möbius, Eberhard; Galli, André; Livadiotis, George; Fuselier, Steve A.; McComas, David J.

    2015-01-01

    We investigate the directional distribution of heavy neutral atoms in the heliosphere by using heavy neutral maps generated with the IBEX-Lo instrument over three years from 2009 to 2011. The interstellar neutral (ISN) O and Ne gas flow was found in the first-year heavy neutral map at 601 keV and its flow direction and temperature were studied. However, due to the low counting statistics, researchers have not treated the full sky maps in detail. The main goal of this study is to evaluate the statistical significance of each pixel in the heavy neutral maps to get a better understanding of the directional distribution of heavy neutral atoms in the heliosphere. Here, we examine three statistical analysis methods: the signal-to-noise filter, the confidence limit method, and the cluster analysis method. These methods allow us to exclude background from areas where the heavy neutral signal is statistically significant. These methods also allow the consistent detection of heavy neutral atom structures. The main emission feature expands toward lower longitude and higher latitude from the observational peak of the ISN O and Ne gas flow. We call this emission the extended tail. It may be an imprint of the secondary oxygen atoms generated by charge exchange between ISN hydrogen atoms and oxygen ions in the outer heliosheath

  6. The atomic structure of Fe100-xCux nanoalloys: X-ray absorption analysis

    International Nuclear Information System (INIS)

    Kravtsova, A.N.; Yalovega, G.E.; Soldatov, A.V.; Yan, W.S.; Wei, S.Q.

    2009-01-01

    The local atomic structure of Fe 100-x Cu x nanoalloys (x = 0, 10, 20, 40, 60, 70, 80 and 100%) has been investigated by X-ray absorption near edge structure (XANES) analysis. Local environment around copper and iron atoms in Fe 100-x Cu x has been studied by comparing the experimental XANES with corresponding theoretical spectra calculated for several structural models. It has been established that the most probable structure of the Fe 100-x Cu x nanoalloys for a low concentration of copper (x = 10-20%) is a homogenous bcc structure, for a high copper concentration (x = 60-80%)-a homogenous fcc structure, while at an intermediate copper concentration (about 40%) the nanoalloys have an inhomogeneous structure consisting of clusters of fcc solid solution (90%) and of clusters of bcc solid solution (10%)

  7. Generalized vibrating potential model for collective excitations in spherical, deformed and superdeformed systems: (1) atomic nuclei, (2) metal clusters

    International Nuclear Information System (INIS)

    Nesterenko, V.O.; Kleinig, W.

    1995-01-01

    The self-consistent vibrating potential model (VPM) is extended for description of Eλ collective excitations in atomic nuclei and metal clusters with practically any kind of static deformation. The model is convenient for a qualitative analysis and provides the RPA accuracy of numerical calculations. The VPM is applied to study Eλ giant resonances in spherical metal clusters and deformed and superdeformed nuclei. It is shown that the deformation splitting of superdeformed nuclei results in a very complicated (''jungle-like'') structure of the resonances, which makes the experimental observation of E2 and E3 giant resonances in superdeformed nuclei quite problematic. Calculations of E1 giant resonance in spherical sodium clusters Na 8 , Na 20 and Na 40 are presented, as a test of the VPM in this field. The results are in qualitative agreement with the experimental data. (orig.)

  8. Going beyond clustering in MD trajectory analysis: an application to villin headpiece folding.

    Directory of Open Access Journals (Sweden)

    Aruna Rajan

    2010-04-01

    Full Text Available Recent advances in computing technology have enabled microsecond long all-atom molecular dynamics (MD simulations of biological systems. Methods that can distill the salient features of such large trajectories are now urgently needed. Conventional clustering methods used to analyze MD trajectories suffer from various setbacks, namely (i they are not data driven, (ii they are unstable to noise and changes in cut-off parameters such as cluster radius and cluster number, and (iii they do not reduce the dimensionality of the trajectories, and hence are unsuitable for finding collective coordinates. We advocate the application of principal component analysis (PCA and a non-metric multidimensional scaling (nMDS method to reduce MD trajectories and overcome the drawbacks of clustering. To illustrate the superiority of nMDS over other methods in reducing data and reproducing salient features, we analyze three complete villin headpiece folding trajectories. Our analysis suggests that the folding process of the villin headpiece is structurally heterogeneous.

  9. Chemical inhomogeneity in In{sub x}Ga{sub 1-x}N and ZnO. A HRTEM study on atomic scale clustering

    Energy Technology Data Exchange (ETDEWEB)

    Bartel, T.P.

    2008-10-08

    Nanostructuration as well as the nucleation and growth of nanoparticles pervades the development of modern materials and devices. Quantitative high resolution transmission electron microscopy (HRTEM) is currently being developed for a structural and chemical analysis at an atomic scale. It is used in this thesis to study the chemical inhomogeneity and clustering in In{sub x}Ga{sub 1-x}N, InN and ZnO. A methodology for reliable quantitative HRTEM is rst de ned: it necessitates a damage free sample, the avoidance of electron beam damage and the control of microscope instabilities. With these conditions satis ed, the reliability of quantitative HRTEM is demonstrated by an accurate measurement of lattice relaxation in a thin TEM sample. Clustering in an alloy can then be distinguished from a random distribution of atoms. In In{sub x}Ga{sub 1-x}N for instance, clustering is detected for concentrations x>0.1. The sensitivity is insufficient to determine whether clustering is present for lower concentrations. HRTEM allows to identify the amplitude and the spatial distribution of the decomposition which is attributed to a spinodal decomposition. In InN, nanometer scale metallic indium inclusions are detected. With decreasing size of the metallic clusters, the photoluminescence of the sample shifts towards the infrared. This indicates that the inclusions may be responsible for the infrared activity of InN. Finally, ZnO grown homoepitaxially on zinc-face and oxygen-face substrates is studied. The O-face epilayer is strained whereas the Zn-face epilayer is almost strain free and has a higher crystalline quality. Quantitative analysis of exit wave phases is in good agreement with simulations, but the signal to noise ratio needs to be improved for the detection of single point defects. (orig.)

  10. Electronic structure and properties of designer clusters and cluster-assemblies

    International Nuclear Information System (INIS)

    Khanna, S.N.; Jena, P.

    1995-01-01

    Using self-consistent calculations based on density functional theory, we demonstrate that electronic shell filling and close atomic packing criteria can be used to design ultra-stable clusters. Interaction of these clusters with each other and with gas atoms is found to be weak confirming their chemical inertness. A crystal composed of these inert clusters is expected to have electronic properties that are markedly different from crystals where atoms are the building blocks. The recent observation of ferromagnetism in potassium clusters assembled in zeolite cages is discussed. (orig.)

  11. Room-temperature current blockade in atomically defined single-cluster junctions

    Science.gov (United States)

    Lovat, Giacomo; Choi, Bonnie; Paley, Daniel W.; Steigerwald, Michael L.; Venkataraman, Latha; Roy, Xavier

    2017-11-01

    Fabricating nanoscopic devices capable of manipulating and processing single units of charge is an essential step towards creating functional devices where quantum effects dominate transport characteristics. The archetypal single-electron transistor comprises a small conducting or semiconducting island separated from two metallic reservoirs by insulating barriers. By enabling the transfer of a well-defined number of charge carriers between the island and the reservoirs, such a device may enable discrete single-electron operations. Here, we describe a single-molecule junction comprising a redox-active, atomically precise cobalt chalcogenide cluster wired between two nanoscopic electrodes. We observe current blockade at room temperature in thousands of single-cluster junctions. Below a threshold voltage, charge transfer across the junction is suppressed. The device is turned on when the temporary occupation of the core states by a transiting carrier is energetically enabled, resulting in a sequential tunnelling process and an increase in current by a factor of ∼600. We perform in situ and ex situ cyclic voltammetry as well as density functional theory calculations to unveil a two-step process mediated by an orbital localized on the core of the cluster in which charge carriers reside before tunnelling to the collector reservoir. As the bias window of the junction is opened wide enough to include one of the cluster frontier orbitals, the current blockade is lifted and charge carriers can tunnel sequentially across the junction.

  12. Photochemistry in rare gas clusters

    International Nuclear Information System (INIS)

    Moeller, T.; Haeften, K. von; Pietrowski, R. von

    1999-01-01

    In this contribution photochemical processes in pure rare gas clusters will be discussed. The relaxation dynamics of electronically excited He clusters is investigated with luminescence spectroscopy. After electronic excitation of He clusters many sharp lines are observed in the visible and infrared spectral range which can be attributed to He atoms and molecules desorbing from the cluster. It turns out that the desorption of electronically excited He atoms and molecules is an important decay channel. The findings for He clusters are compared with results for Ar clusters. While desorption of electronically excited He atoms is observed for all clusters containing up to several thousand atoms a corresponding process in Ar clusters is only observed for very small clusters (N<10). (orig.)

  13. Photochemistry in rare gas clusters

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, T.; Haeften, K. von; Pietrowski, R. von [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Hamburger Synchrotronstrahlungslabor; Laarman, T. [Universitaet Hamburg, II. Institut fuer Experimentalphysik, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    1999-12-01

    In this contribution photochemical processes in pure rare gas clusters will be discussed. The relaxation dynamics of electronically excited He clusters is investigated with luminescence spectroscopy. After electronic excitation of He clusters many sharp lines are observed in the visible and infrared spectral range which can be attributed to He atoms and molecules desorbing from the cluster. It turns out that the desorption of electronically excited He atoms and molecules is an important decay channel. The findings for He clusters are compared with results for Ar clusters. While desorption of electronically excited He atoms is observed for all clusters containing up to several thousand atoms a corresponding process in Ar clusters is only observed for very small clusters (N<10). (orig.)

  14. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  15. Potential of Transition Metal Atoms Embedded in Buckled Monolayer g-C3N4 as Single-Atom Catalysts

    KAUST Repository

    Li, Shu-Long; Kan, Xiang; Yin, Hui; Gan, Li-Yong; Schwingenschlö gl, Udo; Zhao, Yong

    2017-01-01

    We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C3N4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C3N4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C3N4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C3N4 gives rise to promising single-atom catalysts at low temperature.

  16. Potential of Transition Metal Atoms Embedded in Buckled Monolayer g-C3N4 as Single-Atom Catalysts

    KAUST Repository

    Li, Shu-Long

    2017-10-27

    We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C3N4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C3N4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C3N4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C3N4 gives rise to promising single-atom catalysts at low temperature.

  17. Electron paramagnetic resonance studies on silver atoms and clusters in regularly interstratified clay minerals

    International Nuclear Information System (INIS)

    Yamada, H.; Tamura, K.; Shimomura, S.; Sadlo, J.; Turek, J.; Michalik, J.

    2004-01-01

    The formation and stabilization of reduced silver species in the regularly interstratified clay minerals, trioctahedral smectite/chlorite (tri-Sm/Ch) and dioctahedral smectite/mica (di-Sm/M), have been studied by electron paramagnetic resonance (EPR) spectroscopy. Both minerals loaded with Ag + cations after degassing and dehydration were γ-irradiated at 77 K and monitored by EPR as the temperature increased. Some samples were exposed to water or methanol vapor after dehydration. In both hydrated and dehydrated samples only the doublets to Ag 0 atoms were observed with no evidence of the formation of Ag clusters. However, the EPR parameter of silver atoms in both matrices are different. In tri-Sm/Ch the narrow anisotropic EPR lines overlap with the broader isotropic lines, whereas in di-Sm/M only broad lines are recorded. The hyperfine splitting - A iso (Ag 0 ) is larger in tri-Sm/Ch than in di-Sm/M. Also the stability of Ag 0 in both clay minerals is distinctly different. Ag 0 doublet in di-Sm/M disappears completely above 230 K, Whereas in tri-Sm/Ch it is still recorded at 310 K. It is proposed, basing on the EPR results that Ag 0 atoms appear at different sites in both matrices: - in tri-Sm/Ch in the middle of smectite interlayer and in hexagonal cavities in the silicate sheets of tetrahedron layer and in di-Sm.M in hexagonal cavities only. When samples had been exposed to methanol before irradiation, the silver clusters become stabilized in the interlayer sites. In tri-Sm/M matrix the silver dimer Ag 2 + formed by gamma-irradiation at 77 K is transformed to tetrameric cluster, Ag 4 + at 150 K. In di-Sm/M the radiation-induced silver agglomeration proceeds in a similar way, but with a slower rate and Ag tetramer is formed only above 190 K. In both clay minerals, Ag 4 + clusters decay above 250 K. (author)

  18. Formation of atomic clusters through the laser ablation of refractory materials in a supersonic molecular beam source

    International Nuclear Information System (INIS)

    Haufler, R.E.; Puretzky, A.A.; Compton, R.N.

    1993-01-01

    Concepts which guide the design of atomic cluster supersonic beam sources have been developed. These ideas are founded on the knowledge of laser ablation dynamics and are structured in order to take advantage of certain features of the ablation event. Some of the drawbacks of previous cluster source designs become apparent when the sequence of events following laser ablation are clarified. Key features of the new cluster source design include control of the cluster size distribution, uniform performance with a variety of solid materials and elements, high beam intensity, and significant removal of internal energy during the supersonic expansion

  19. Self-interstitial atom clusters as obstacles to glide of 1/3{11-bar 00} edge dislocations in α-zirconium

    International Nuclear Information System (INIS)

    Voskoboynikov, R.E.; Osetsky, Yu.N.; Bacon, D.J.

    2005-01-01

    Atomic-scale details of interaction of a 1/3 {11-bar 00} edge dislocation with clusters of self-interstitial atoms (SIAs) in α-zirconium has been studied by computer simulation. Four typical clusters are considered. A triangular cluster of five SIAs lying within a basal plane bisected by the dislocation glide plane is not absorbed by the dislocation but acts as a moderately strong obstacle. A 3-D SIA cluster lying across the glide plane is completely absorbed by the dislocation by creation of super-jogs, and is a weak obstacle. Interaction of the dislocation with glissile SIA loops with perfect Burgers vector inclined at 60 deg. to the dislocation glide plane shows that the process depends on the vector orientation. Defects of the two orientations are strong obstacles, and one, which initially forms a sessile segment on the dislocation line, is particularly so

  20. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    Science.gov (United States)

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  1. Influence of a transition metal atom on the geometry and electronic structure of Mg and Mg-H clusters

    International Nuclear Information System (INIS)

    Siretskiy, M.Yu.; Shelyapina, M.G.; Fruchart, D.; Miraglia, S.; Skryabina, N.E.

    2009-01-01

    We report on the study of (MgH 2 ) n + M complexes (M = Ti or Ni) carried out within the framework of the cluster density functional theory (DFT) method. The influence of such transition metal atoms on the cluster geometry and electronic structure is discussed considering the stability of MgH 2 hydride.

  2. Structure and Stability of GeAun, n = 1-10 clusters: A Density Functional Study

    International Nuclear Information System (INIS)

    Priyanka,; Dharamvir, Keya; Sharma, Hitesh

    2011-01-01

    The structures of Germanium doped gold clusters GeAu n (n = 1-10) have been investigated using ab initio calculations based on density functional theory (DFT). We have obtained ground state geometries of GeAu n clusters and have it compared with Silicon doped gold clusters and pure gold clusters. The ground state geometries of the GeAu n clusters show patterns similar to silicon doped gold clusters except for n = 5, 6 and 9. The introduction of germanium atom increases the binding energy of gold clusters. The binding energy per atom of germanium doped cluster is smaller than the corresponding silicon doped gold cluster. The HUMO-LOMO gap for Au n Ge clusters have been found to vary between 0.46 eV-2.09 eV. The mullikan charge analysis indicates that charge of order of 0.1e always transfers from germanium atom to gold atom.

  3. Algorithms for solving atomic structures of nanodimensional clusters in single crystals based on X-ray and neutron diffuse scattering data

    International Nuclear Information System (INIS)

    Andrushevskii, N.M.; Shchedrin, B.M.; Simonov, V.I.

    2004-01-01

    New algorithms for solving the atomic structure of equivalent nanodimensional clusters of the same orientations randomly distributed over the initial single crystal (crystal matrix) have been suggested. A cluster is a compact group of substitutional, interstitial or other atoms displaced from their positions in the crystal matrix. The structure is solved based on X-ray or neutron diffuse scattering data obtained from such objects. The use of the mathematical apparatus of Fourier transformations of finite functions showed that the appropriate sampling of the intensities of continuous diffuse scattering allows one to synthesize multiperiodic difference Patterson functions that reveal the systems of the interatomic vectors of an individual cluster. The suggested algorithms are tested on a model one-dimensional structure

  4. Improving estimation of kinetic parameters in dynamic force spectroscopy using cluster analysis

    Science.gov (United States)

    Yen, Chi-Fu; Sivasankar, Sanjeevi

    2018-03-01

    Dynamic Force Spectroscopy (DFS) is a widely used technique to characterize the dissociation kinetics and interaction energy landscape of receptor-ligand complexes with single-molecule resolution. In an Atomic Force Microscope (AFM)-based DFS experiment, receptor-ligand complexes, sandwiched between an AFM tip and substrate, are ruptured at different stress rates by varying the speed at which the AFM-tip and substrate are pulled away from each other. The rupture events are grouped according to their pulling speeds, and the mean force and loading rate of each group are calculated. These data are subsequently fit to established models, and energy landscape parameters such as the intrinsic off-rate (koff) and the width of the potential energy barrier (xβ) are extracted. However, due to large uncertainties in determining mean forces and loading rates of the groups, errors in the estimated koff and xβ can be substantial. Here, we demonstrate that the accuracy of fitted parameters in a DFS experiment can be dramatically improved by sorting rupture events into groups using cluster analysis instead of sorting them according to their pulling speeds. We test different clustering algorithms including Gaussian mixture, logistic regression, and K-means clustering, under conditions that closely mimic DFS experiments. Using Monte Carlo simulations, we benchmark the performance of these clustering algorithms over a wide range of koff and xβ, under different levels of thermal noise, and as a function of both the number of unbinding events and the number of pulling speeds. Our results demonstrate that cluster analysis, particularly K-means clustering, is very effective in improving the accuracy of parameter estimation, particularly when the number of unbinding events are limited and not well separated into distinct groups. Cluster analysis is easy to implement, and our performance benchmarks serve as a guide in choosing an appropriate method for DFS data analysis.

  5. Formation of global energy minimim structures in the growth process of Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Koshelev, Andrey; Shutovich, Andrey

    2003-01-01

    that in this way all known global minimum structures of the Lennard-Jones (LJ) clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic numbers sequence for the clusters of noble gases atoms and compare...

  6. Changing cluster composition in cluster randomised controlled trials: design and analysis considerations

    Science.gov (United States)

    2014-01-01

    Background There are many methodological challenges in the conduct and analysis of cluster randomised controlled trials, but one that has received little attention is that of post-randomisation changes to cluster composition. To illustrate this, we focus on the issue of cluster merging, considering the impact on the design, analysis and interpretation of trial outcomes. Methods We explored the effects of merging clusters on study power using standard methods of power calculation. We assessed the potential impacts on study findings of both homogeneous cluster merges (involving clusters randomised to the same arm of a trial) and heterogeneous merges (involving clusters randomised to different arms of a trial) by simulation. To determine the impact on bias and precision of treatment effect estimates, we applied standard methods of analysis to different populations under analysis. Results Cluster merging produced a systematic reduction in study power. This effect depended on the number of merges and was most pronounced when variability in cluster size was at its greatest. Simulations demonstrate that the impact on analysis was minimal when cluster merges were homogeneous, with impact on study power being balanced by a change in observed intracluster correlation coefficient (ICC). We found a decrease in study power when cluster merges were heterogeneous, and the estimate of treatment effect was attenuated. Conclusions Examples of cluster merges found in previously published reports of cluster randomised trials were typically homogeneous rather than heterogeneous. Simulations demonstrated that trial findings in such cases would be unbiased. However, simulations also showed that any heterogeneous cluster merges would introduce bias that would be hard to quantify, as well as having negative impacts on the precision of estimates obtained. Further methodological development is warranted to better determine how to analyse such trials appropriately. Interim recommendations

  7. Clustering methods for the optimization of atomic cluster structure

    Science.gov (United States)

    Bagattini, Francesco; Schoen, Fabio; Tigli, Luca

    2018-04-01

    In this paper, we propose a revised global optimization method and apply it to large scale cluster conformation problems. In the 1990s, the so-called clustering methods were considered among the most efficient general purpose global optimization techniques; however, their usage has quickly declined in recent years, mainly due to the inherent difficulties of clustering approaches in large dimensional spaces. Inspired from the machine learning literature, we redesigned clustering methods in order to deal with molecular structures in a reduced feature space. Our aim is to show that by suitably choosing a good set of geometrical features coupled with a very efficient descent method, an effective optimization tool is obtained which is capable of finding, with a very high success rate, all known putative optima for medium size clusters without any prior information, both for Lennard-Jones and Morse potentials. The main result is that, beyond being a reliable approach, the proposed method, based on the idea of starting a computationally expensive deep local search only when it seems worth doing so, is capable of saving a huge amount of searches with respect to an analogous algorithm which does not employ a clustering phase. In this paper, we are not claiming the superiority of the proposed method compared to specific, refined, state-of-the-art procedures, but rather indicating a quite straightforward way to save local searches by means of a clustering scheme working in a reduced variable space, which might prove useful when included in many modern methods.

  8. Integrative cluster analysis in bioinformatics

    CERN Document Server

    Abu-Jamous, Basel; Nandi, Asoke K

    2015-01-01

    Clustering techniques are increasingly being put to use in the analysis of high-throughput biological datasets. Novel computational techniques to analyse high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. This book details the complete pathway of cluster analysis, from the basics of molecular biology to the generation of biological knowledge. The book also presents the latest clustering methods and clustering validation, thereby offering the reader a comprehensive review o

  9. Clustered atom-replaced structure in single-crystal-like metal oxide

    Science.gov (United States)

    Araki, Takeshi; Hayashi, Mariko; Ishii, Hirotaka; Yokoe, Daisaku; Yoshida, Ryuji; Kato, Takeharu; Nishijima, Gen; Matsumoto, Akiyoshi

    2018-06-01

    By means of metal organic deposition using trifluoroacetates (TFA-MOD), we replaced and localized two or more atoms in a single-crystalline structure having almost perfect orientation. Thus, we created a new functional structure, namely, clustered atom-replaced structure (CARS), having single-crystal-like metal oxide. We replaced metals in the oxide with Sm and Lu and localized them. Energy dispersive x-ray spectroscopy results, where the Sm signal increases with the Lu signal in the single-crystalline structure, confirm evidence of CARS. We also form other CARS with three additional metals, including Pr. The valence number of Pr might change from 3+ to approximately 4+, thereby reducing the Pr–Ba distance. We directly observed the structure by a high-angle annular dark-field image, which provided further evidence of CARS. The key to establishing CARS is an equilibrium chemical reaction and a combination of additional larger and smaller unit cells to matrix cells. We made a new functional metal oxide with CARS and expect to realize CARS in other metal oxide structures in the future by using the above-mentioned process.

  10. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    International Nuclear Information System (INIS)

    Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.; Sales, Brian C.; Sefat, Athena S.

    2014-01-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe 0.55 Se 0.45 (T c = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe 1−x Se x structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces

  11. Efficient Decarbonylation of Furfural to Furan Catalyzed by Zirconia-Supported Palladium Clusters with Low Atomicity.

    Science.gov (United States)

    Ishida, Tamao; Kume, Kurumi; Kinjo, Kota; Honma, Tetsuo; Nakada, Kengo; Ohashi, Hironori; Yokoyama, Takushi; Hamasaki, Akiyuki; Murayama, Haruno; Izawa, Yusuke; Utsunomiya, Masaru; Tokunaga, Makoto

    2016-12-20

    Decarbonylation of furfural to furan was efficiently catalyzed by ZrO 2 -supported Pd clusters in the liquid phase under a N 2 atmosphere without additives. Although Pd/C and Pd/Al 2 O 3 have frequently been used for decarbonylation, Pd/ZrO 2 exhibited superior catalytic performance compared with these conventional catalysts. Transmission electron microscopy and X-ray absorption fine structure measurements revealed that the size of the Pd particles decreased with an increase in the specific surface area of ZrO 2 . ZrO 2 with a high surface area immobilized Pd as clusters consisting of several (three to five) Pd atoms, whereas Pd aggregated to form nanoparticles on other supports such as carbon and Al 2 O 3 despite their high surface areas. The catalytic activity of Pd/ZrO 2 was enhanced with a decrease in particle size, and the smallest Pd/ZrO 2 was the most active catalyst for decarbonylation. When CeO 2 was used as the support, a decrease in Pd particle size with an increase in surface area was also observed. Single Pd atoms were deposited on CeO 2 with a high surface area, with a strong interaction through the formation of a Pd-O-Ce bond, which led to a lower catalytic activity than that of Pd/ZrO 2 . This result suggests that zero-valent small Pd clusters consisting of more than one Pd atom are the active species for the decarbonylation reaction. Recycling tests proved that Pd/ZrO 2 maintained its catalytic activity until its sixth use. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Properties of an ionised-cluster beam from a vaporised-cluster ion source

    International Nuclear Information System (INIS)

    Takagi, T.; Yamada, I.; Sasaki, A.

    1978-01-01

    A new type of ion source vaporised-metal cluster ion source, has been developed for deposition and epitaxy. A cluster consisting of 10 2 to 10 3 atoms coupled loosely together is formed by adiabatic expansion ejecting the vapour of materials into a high-vacuum region through the nozzle of a heated crucible. The clusters are ionised by electron bombardment and accelerated with neutral clusters toward a substrate. In this paper, mechanisms of cluster formation experimental results of the cluster size (atoms/cluster) and its distribution, and characteristics of the cluster ion beams are reported. The size is calculated from the kinetic equation E = (1/2)mNVsub(ej) 2 , where E is the cluster beam energy, Vsub(ej) is the ejection velocity, m is the mass of atom and N is the cluster size. The energy and the velocity of the cluster are measured by an electrostatic 127 0 energy analyser and a rotating disc system, respectively. The cluster size obtained for Ag is about 5 x 10 2 to 2 x 10 3 atoms. The retarding potential method is used to confirm the results for Ag. The same dependence on cluster size for metals such as Ag, Cu and Pb has been obtained in previous experiments. In the cluster state the cluster ion beam is easily produced by electron bombardment. About 50% of ionised clusters are obtained under typical operation conditions, because of the large ionisation cross sections of the clusters. To obtain a uniform spatial distribution, the ionising electrode system is also discussed. The new techniques are termed ionised-cluster beam deposition (ICBD) and epitaxy (ICBE). (author)

  13. Elemental characterization of herbal medicines used in Ghana by instrumental neutron activation analysis and atomic absorption spectrometry and multivariate statistical analysis

    International Nuclear Information System (INIS)

    Ayivor, J.E.; Nyarko, B.J.B.; Dampare, S.B.; Okine, L.K.

    2010-01-01

    k 0 instrumental neutron activation analysis and atomic absorption spectrometry were applied to determine multi elements in thirteen Ghanaian herbal medicines used for the management of various diseases. Concentrations of AI, Cu, Mg, Mn and Na were determined. As, Br, K, CI, and Na were determined by short and medium irradiations at a thermal neutron flux of 5x10ncm -2 s -1 . Fe, Cr, Pb, Co, Ni, Sn, Ca, Ba, Li and Sb were determined using atomic absorption spectrometry. Ba, Cu, Li and V were present at trace levels whereas AI, CI, Na, Ca were present at major levels. K, Br, Mg, Mn, Co, Ni, Fe and Sb were also present at minor levels. The precision and accuracy of the method using real samples and standard reference materials were within ±10% of the reported value. Multivariate analytical techniques, such as cluster analysis and principal component analysis (PCA)/factor analysis (FA), have been applied to evaluate the chemical variations in the herbal medicine dataset. All the 13 samples may be grouped into two statistically significant clusters, reflecting the different chemical compositions. The concentrations of elements were within the recommended daily allowances or maximum permissible levels posing no adverse effects on human health.

  14. Stable structures of Al510–800 clusters and lowest energy sequence of truncated octahedral Al clusters up to 10,000 atoms

    International Nuclear Information System (INIS)

    Wu, Xia; He, Chengdong

    2012-01-01

    Highlights: ► The stable structures of Al 510–800 clusters are obtained with the NP-B potential. ► Al 510–800 clusters adopt truncated octahedral (TO) growth pattern based on complete TOs at Al 405 , Al 586 , and Al 711 . ► The lowest energy sequence of complete TOs up to the size 10,000 is proposed. -- Abstract: The stable structures of Al 510–800 clusters are obtained using dynamic lattice searching with constructed cores (DLSc) method by the NP-B potential. According to the structural growth rule, octahedra and truncated octahedra (TO) configurations are adopted as the inner cores in DLSc method. The results show that in the optimized structures two complete TO structures are found at Al 586 and Al 711 . Furthermore, Al 510–800 clusters adopt TO growth pattern on complete TOs at Al 405 , Al 586 , and Al 711 , and the configurations of the surface atoms are investigated. On the other hand, Al clusters with complete TO motifs are studied up to the size 10,000 by the geometrical construction method. The structural characteristics of complete TOs are denoted by the term “family”, and the growth sequence of Al clusters is investigated. The lowest energy sequence of complete TOs is proposed.

  15. Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means

    Science.gov (United States)

    Yangmin, GUO; Yun, TANG; Yu, DU; Shisong, TANG; Lianbo, GUO; Xiangyou, LI; Yongfeng, LU; Xiaoyan, ZENG

    2018-06-01

    Laser-induced breakdown spectroscopy (LIBS) combined with K-means algorithm was employed to automatically differentiate industrial polymers under atmospheric conditions. The unsupervised learning algorithm K-means were utilized for the clustering of LIBS dataset measured from twenty kinds of industrial polymers. To prevent the interference from metallic elements, three atomic emission lines (C I 247.86 nm , H I 656.3 nm, and O I 777.3 nm) and one molecular line C–N (0, 0) 388.3 nm were used. The cluster analysis results were obtained through an iterative process. The Davies–Bouldin index was employed to determine the initial number of clusters. The average relative standard deviation values of characteristic spectral lines were used as the iterative criterion. With the proposed approach, the classification accuracy for twenty kinds of industrial polymers achieved 99.6%. The results demonstrated that this approach has great potential for industrial polymers recycling by LIBS.

  16. Microstructural characterization of atom clusters in irradiated pressure vessel steels and model alloys

    International Nuclear Information System (INIS)

    Auger, P.; Pareige, P.; Akamatsu, M.; Van Duysen, J.C.

    1993-01-01

    In order to characterize the microstructural evolution of iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions, and, for comparison, low copper model alloys irradiated with neutrons and electrons, have been studied through small angle neutron scattering and atom probe experiments. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex; solute atoms such as Ni, Mn and Si, sometimes associated with Cu, segregate as ''clouds'' more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs

  17. Microstructural characterization of atom clusters in irradiated pressure vessel steels and model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Auger, P; Pareige, P [Rouen Univ., 76 - Mont-Saint-Aignan (France); Akamatsu, M; Van Duysen, J C [Electricite de France (EDF), 77 - Ecuelles (France)

    1994-12-31

    In order to characterize the microstructural evolution of iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions, and, for comparison, low copper model alloys irradiated with neutrons and electrons, have been studied through small angle neutron scattering and atom probe experiments. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex; solute atoms such as Ni, Mn and Si, sometimes associated with Cu, segregate as ``clouds`` more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs.

  18. Microscopic solvation of a lithium atom in water-ammonia mixed clusters: solvent coordination and electron localization in presence of a counterion.

    Science.gov (United States)

    Pratihar, Subha; Chandra, Amalendu

    2008-07-14

    The microsolvation structures and energetics of water-ammonia mixed clusters containing a lithium atom, i.e., Li(H(2)O)(n)(NH(3)), n = 1-5, are investigated by means of ab initio theoretical calculations. Several structural aspects such as the solvent coordination to the metal ion and binding motifs of the free valence electron of the metal are investigated. We also study the energetics aspects such as the dependence of vertical ionization energies on the cluster size, and all these structural and energetics aspects are compared to the corresponding results of previously studied anionic water-ammonia clusters without a metal ion. It is found that the Li-O and Li-N interactions play a very important role in stabilizing the lithium-water-ammonia clusters, and the presence of these metal ion-solvent interactions also affect the characteristics of electron solvation in these clusters. This is seen from the spatial distribution of the singly occupied molecular orbital (SOMO) which holds the ejected valence electron of the Li atom. For very small clusters, SOMO electron density is found to exist mainly at the vicinity of the Li atom, whereas for larger clusters, it is distributed outside the first solvation shell. The free dangling hydrogens of water and ammonia molecules are involved in capturing the SOMO electron density. In some of the conformers, OH{e}HO and OH{e}HN types of interactions are found to be present. The presence of the metal ion at the center of the cluster ensures that the ejected electron is solvated at a surface state only, whereas both surface and interiorlike states were found for the free electron in the corresponding anionic clusters without a metal ion. The vertical ionization energies of the present clusters are found to be higher than the vertical detachment energies of the corresponding anionic clusters which signify a relatively stronger binding of the free electron in the presence of the positive metal counterion. The shifts in different

  19. Investigation of energy thresholds of atomic and cluster sputtering of some elements under ion bombardment

    CERN Document Server

    Atabaev, B G; Lifanova, L F

    2002-01-01

    Threshold energies of sputtering of negative cluster ions from the Si(111) surface were measured at bombardment by Cs sup + , Rb sup + , and Na sup + ions with energy of 0.1-3.0 keV. These results are compared with the calculations of the similar thresholds by Bohdansky etc. formulas (3) for clusters Si sub n sup - and Cu sub n sup - with n=(1-5) and also for B, C, Al, Si, Fe, Cu atoms. Threshold energies of sputtering for the above elements were also estimated using the data from (5). Satisfactory agreement between the experimental and theoretical results was obtained. (author)

  20. Ligand-protected gold clusters: the structure, synthesis and applications

    Science.gov (United States)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.

    2015-11-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  1. Stability analysis and structural rules of titanium dioxide clusters (TiO2)n with n = 1-9

    International Nuclear Information System (INIS)

    Zhang Weiwei; Han Ye; Yao Shuyu; Sun Haiqing

    2011-01-01

    Highlights: · We investigated the structure and stability of (TiO 2 ) n clusters with n = 1-9. · Some initial structures are introduced and proved to be the real global minimum. · We summarized the structural rules for small (TiO 2 ) n clusters. · The bonding features for the energy increment or decrement of the clusters are investigated. · A general shift of stability and reactivity with size for (TiO 2 ) n clusters. - Abstract: Atomic clusters have been considered as models for fundamental mechanistic insight into complex surfaces and catalysts. The structure and stability of (TiO 2 ) n clusters with n = 1-9 are investigated using the b3lyp hybrid density functional method in this paper. Some of the clusters are proposed initially and proved to be the real global minima. The stability and band gap of the clusters as a function of size are also investigated. The structural rules of the clusters are first summarized. The lowest-lying (TiO 2 ) n isomers tend to form some compact rather than quasi-linear or circular structures. The oxygen atom in 4-fold coordination and the titanium atom in 4-fold coordination favor the cluster stability. The 5-fold coordinated Ti-atom, the Ti-Ti bond and the terminal Ti-O bond lead to stability penalty for the clusters. No evidence for a regular variation in stability or reactivity with size of the clusters has shown. The structural rules can serve as guiding factors for formation research and structure design of (TiO 2 ) n and other transition metal oxide clusters.

  2. Concomitant formation of different nature clusters and hardening in reactor pressure vessel steels irradiated by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K., E-mail: fujiik@inss.co.jp [Institute of Nuclear Safety System, Inc., Mihama 919-1205 (Japan); Fukuya, K. [Institute of Nuclear Safety System, Inc., Mihama 919-1205 (Japan); Hojo, T. [Japan Nuclear Energy Safety Organization, Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

    2013-11-15

    Specimens of A533B steels containing 0.04, 0.09 and 0.21 wt%Cu were irradiated at 290 °C to 3 dpa with 3 MeV Fe ions and subjected to atom probe analyses, transmission electron microscopy observations and hardness measurements. The atom probe analysis results showed that two types of solute clusters were formed: Cu-enriched clusters containing Mn, Ni and Si atoms as irradiation-enhanced solute atom clusters and Mn/Ni/Si-enriched clusters as irradiation-induced solute atom clusters. Both cluster types occurred in the highest Cu-content steel and the ratio of Mn/Ni/Si-enriched clusters to Cu-enriched clusters increased with irradiation doses. It was confirmed that the cluster formation was a key factor in the microstructure evolution until the high dose irradiation was reached even in the low Cu content steels though the dislocation loops with much lower density than that of the clusters were observed as matrix damage. The difference in the hardening efficiency due to the difference in the nature of the clusters was small. The irradiation-induced clustering of undersized Si atoms suggested that a clustering driving force other than vacancy-driven diffusion, probably an interstitial mechanism, may become important at higher dose rates.

  3. Concomitant formation of different nature clusters and hardening in reactor pressure vessel steels irradiated by heavy ions

    International Nuclear Information System (INIS)

    Fujii, K.; Fukuya, K.; Hojo, T.

    2013-01-01

    Specimens of A533B steels containing 0.04, 0.09 and 0.21 wt%Cu were irradiated at 290 °C to 3 dpa with 3 MeV Fe ions and subjected to atom probe analyses, transmission electron microscopy observations and hardness measurements. The atom probe analysis results showed that two types of solute clusters were formed: Cu-enriched clusters containing Mn, Ni and Si atoms as irradiation-enhanced solute atom clusters and Mn/Ni/Si-enriched clusters as irradiation-induced solute atom clusters. Both cluster types occurred in the highest Cu-content steel and the ratio of Mn/Ni/Si-enriched clusters to Cu-enriched clusters increased with irradiation doses. It was confirmed that the cluster formation was a key factor in the microstructure evolution until the high dose irradiation was reached even in the low Cu content steels though the dislocation loops with much lower density than that of the clusters were observed as matrix damage. The difference in the hardening efficiency due to the difference in the nature of the clusters was small. The irradiation-induced clustering of undersized Si atoms suggested that a clustering driving force other than vacancy-driven diffusion, probably an interstitial mechanism, may become important at higher dose rates

  4. A novel stibacarbaborane cluster with adjacent antimony atoms exhibiting unique pnictogen bond formation that dominates its crystal packing.

    Science.gov (United States)

    Holub, Josef; Melichar, Petr; Růžičková, Zdeňka; Vrána, Jan; Wann, Derek A; Fanfrlík, Jindřich; Hnyk, Drahomír; Růžička, Aleš

    2017-10-17

    We have prepared nido-7,8,9,11-Sb 2 C 2 B 7 H 9 , the first cluster with simultaneous Sb-B, Sb-C and Sb-Sb atom pairs with interatomic separations with magnitudes that approach the respective sums of covalent radii. However, the length of the Sb-Sb separation in this cluster is slightly less than the sum of the covalent radii. Quantum chemical analysis has revealed that the crystal packing of nido-7,8,9,11-Sb 2 C 2 B 7 H 9 is predominantly dictated by pnictogen (Pn) bonding, an unconventional σ-hole interaction. Indeed, the interaction energy of a very strong Sb 2 H-B Pn-bond in the nido-7,8,9,11-Sb 2 C 2 B 7 H 9 dimer exceeds -6.0 kcal mol -1 . This is a very large value and is comparable to the strengths of known Pn-bonds in Cl 3 Pnπ complexes (Pn = As, Sb).

  5. Cluster analysis in phenotyping a Portuguese population.

    Science.gov (United States)

    Loureiro, C C; Sa-Couto, P; Todo-Bom, A; Bousquet, J

    2015-09-03

    Unbiased cluster analysis using clinical parameters has identified asthma phenotypes. Adding inflammatory biomarkers to this analysis provided a better insight into the disease mechanisms. This approach has not yet been applied to asthmatic Portuguese patients. To identify phenotypes of asthma using cluster analysis in a Portuguese asthmatic population treated in secondary medical care. Consecutive patients with asthma were recruited from the outpatient clinic. Patients were optimally treated according to GINA guidelines and enrolled in the study. Procedures were performed according to a standard evaluation of asthma. Phenotypes were identified by cluster analysis using Ward's clustering method. Of the 72 patients enrolled, 57 had full data and were included for cluster analysis. Distribution was set in 5 clusters described as follows: cluster (C) 1, early onset mild allergic asthma; C2, moderate allergic asthma, with long evolution, female prevalence and mixed inflammation; C3, allergic brittle asthma in young females with early disease onset and no evidence of inflammation; C4, severe asthma in obese females with late disease onset, highly symptomatic despite low Th2 inflammation; C5, severe asthma with chronic airflow obstruction, late disease onset and eosinophilic inflammation. In our study population, the identified clusters were mainly coincident with other larger-scale cluster analysis. Variables such as age at disease onset, obesity, lung function, FeNO (Th2 biomarker) and disease severity were important for cluster distinction. Copyright © 2015. Published by Elsevier España, S.L.U.

  6. Three-Dimensional Atomic Structure of Metastable Nanoclusters in Doped Semiconductors

    Science.gov (United States)

    Couillard, Martin; Radtke, Guillaume; Knights, Andrew P.; Botton, Gianluigi A.

    2011-10-01

    Aberration-corrected scanning transmission electron microscopy is used to determine the atomic structure of nanoclusters of cerium dopant atoms embedded in silicon. By channeling electrons along two crystallographic orientations, we identify a characteristic zinc-blende chemical ordering within CeSi clusters coherent with the silicon host matrix. Strain energy limits the size of these ordered arrangements to just above 1 nm. With the local order identified, we then determine the atomic configuration of an individual subnanometer cluster by quantifying the scattering intensity under weak channeling condition in terms of the number of atoms. Analysis based on single-atom visualization also evidences the presence of split-vacancy impurity complexes, which supports the hypothesis of a vacancy-assisted formation of these metastable CeSi nanophases.

  7. Behaviors of transmutation elements Re and Os and their effects on energetics and clustering of vacancy and self-interstitial atoms in W

    Science.gov (United States)

    Li, Yu-Hao; Zhou, Hong-Bo; Jin, Shuo; Zhang, Ying; Deng, Huiqiu; Lu, Guang-Hong

    2017-04-01

    We investigate the behaviors of rhenium (Re) and osmium (Os) and their interactions with point defects in tungsten (W) using a first-principles method. We show that Re atoms are energetically favorable to disperse separately in bulk W due to the Re-Re repulsive interaction. Despite the attractive interaction between Os atoms, there is still a large activation energy barrier of 1.10 eV at the critical number of 10 for the formation of Os clusters in bulk W based on the results of the total nucleation free energy change. Interestingly, the presence of vacancy can significantly reduce the total nucleation free energy change of Re/Os clusters, suggesting that vacancy can facilitate the nucleation of Re/Os in W. Re/Os in turn has an effect on the stability of the vacancy clusters (V n ) in W, especially for small vacancy clusters. A single Re/Os atom can raise the total binding energies of V2 and V3 obviously, thus enhancing their formation. Further, we demonstrate that there is a strong attractive interaction between Re/Os and self-interstitial atoms (SIAs). Re/Os could increase the diffusion barrier of SIAs and decrease their rotation barrier, while the interstitial-mediated path may be the optimal diffusion path of Re/Os in W. Consequently, the synergistic effect between Re/Os and point defects plays a key role in Re/Os precipitation and the evolution of defects in irradiated W.

  8. Molecular-dynamics analysis of mobile helium cluster reactions near surfaces of plasma-exposed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu [Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303 (United States); Hammond, Karl D. [Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-10-28

    We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes of helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.

  9. First-principles real-space tight-binding LMTO calculation of electronic structures for atomic clusters

    International Nuclear Information System (INIS)

    Xie, Z.L.; Dy, K.S.; Wu, S.Y.

    1997-01-01

    A real-space scheme has been developed for a first-principles calculation of electronic structures and total energies of atomic clusters. The scheme is based on the combination of the tight-binding linear muffin-tin orbital (TBLMTO) method and the method of real-space Green close-quote s function. With this approach, the local electronic density of states can be conveniently determined from the real-space Green close-quote s function. Furthermore, the full electron density of a cluster can be directly calculated in real space. The scheme has been shown to be very efficient due to the incorporation of the method of real-space Green close-quote s function and Delley close-quote s method of evaluating multicenter integrals. copyright 1996 The American Physical Society

  10. Asymptotical approximation of interconnection of nucleons' quadrupole and cluster motion in atomic nucleus

    International Nuclear Information System (INIS)

    Kabulov, A.B.

    2003-01-01

    Atomic nuclei display different kinds of collective motion. The well known example - is the collective model arising from valent nucleons motion. The other a special kind of collective motion is cluster mode. If a collective model has quadrupole character, then cluster one has dipole character. In the boson formalism this model is describing by dynamic symmetry U(6) direct X U(4). The common Hamiltonian symmetrical to U(6) direct X U(4) group has a form H=H d +H p +V pd . In the paper the asymptotical wave function for dipole states connected with (N-1) bosons of s- and d-types is presented. In this case the problem for Hamiltonian eigenvalues is solving by analytical way. With use Elliot method and wave functions asymptotical form the operators for matrix elements of E2-, E1-, M1-transitions are cited

  11. Structure and stability of small H clusters on graphene

    DEFF Research Database (Denmark)

    Sljivancanin, Zeljko; Andersen, Mie; Hammer, Bjørk

    2011-01-01

    The structure and stability of small hydrogen clusters adsorbed on graphene is studied by means of density functional theory (DFT) calculations. Clusters containing up to six H atoms are investigated systematically, with the clusters having either all H atoms on one side of the graphene sheet (cis......-clusters) or having the H atoms on both sides in an alternating manner (trans-clusters). The most stable cis-clusters found have H atoms in ortho- and para-positions with respect to each other (two H’s on neighboring or diagonally opposite carbon positions within one carbon hexagon), while the most stable trans......-clusters found have H atoms in ortho-trans-positions with respect to each other (two H’s on neighboring carbon positions, but on opposite sides of the graphene). Very stable trans-clusters with 13–22 H atoms were identified by optimizing the number of H atoms in ortho-trans-positions and thereby the number...

  12. Formation of stable products from cluster-cluster collisions

    International Nuclear Information System (INIS)

    Alamanova, Denitsa; Grigoryan, Valeri G; Springborg, Michael

    2007-01-01

    The formation of stable products from copper cluster-cluster collisions is investigated by using classical molecular-dynamics simulations in combination with an embedded-atom potential. The dependence of the product clusters on impact energy, relative orientation of the clusters, and size of the clusters is studied. The structures and total energies of the product clusters are analysed and compared with those of the colliding clusters before impact. These results, together with the internal temperature, are used in obtaining an increased understanding of cluster fusion processes

  13. Prediction of strontium bromide laser efficiency using cluster and decision tree analysis

    Directory of Open Access Journals (Sweden)

    Iliev Iliycho

    2018-01-01

    Full Text Available Subject of investigation is a new high-powered strontium bromide (SrBr2 vapor laser emitting in multiline region of wavelengths. The laser is an alternative to the atom strontium lasers and electron free lasers, especially at the line 6.45 μm which line is used in surgery for medical processing of biological tissues and bones with minimal damage. In this paper the experimental data from measurements of operational and output characteristics of the laser are statistically processed by means of cluster analysis and tree-based regression techniques. The aim is to extract the more important relationships and dependences from the available data which influence the increase of the overall laser efficiency. There are constructed and analyzed a set of cluster models. It is shown by using different cluster methods that the seven investigated operational characteristics (laser tube diameter, length, supplied electrical power, and others and laser efficiency are combined in 2 clusters. By the built regression tree models using Classification and Regression Trees (CART technique there are obtained dependences to predict the values of efficiency, and especially the maximum efficiency with over 95% accuracy.

  14. Ligand-protected gold clusters: the structure, synthesis and applications

    International Nuclear Information System (INIS)

    Pichugina, D A; Kuz'menko, N E; Shestakov, A F

    2015-01-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Au n with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au 15 and Au 25 ) and on anchorage to a support surface (Au 25 /SiO 2 , Au 20 /C, Au 10 /FeO x ) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR) n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters M x Au n L m (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR) x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active

  15. Atom trap trace analysis

    International Nuclear Information System (INIS)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-01-01

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual 85 Kr and 81 Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10 -11 and 10 -13 , respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications

  16. Hydrogen isotope dynamic effects on partially reduced paramagnetic six-atom Ag clusters in low-symmetry cage of zeolite A

    Directory of Open Access Journals (Sweden)

    Amgalanbaatar Baldansuren

    2016-12-01

    Full Text Available A well-defined, monodisperse Ag6+ cluster was prepared by mild chemical treatments including aqueous ion-exchange, dehydration, oxygen calcination at 673 K and hydrogen reduction 293 K, rather than autoreduction and irradiations with γ-ray and X-ray. H2 reduction was proved as a crucial step to form the nanosize cluster with six equivalent silver atoms. Hydrogen isotope exchange and dynamics were probed by EPR and HYSCORE to provide information relevant to the cluster geometry, size, charge state and spin state. Desorption experiments result in the deuterium desorption energy of 0.78 eV from the cluster, exceeding the experimental value of 0.38 eV for the single crystal Ag(111 surface. These experiments indicate that the EPR-active clusters are in delicate equilibrium with EPR-silent clusters.

  17. An intrinsic representation of atomic structure: From clusters to periodic systems

    Science.gov (United States)

    Li, Xiao-Tian; Xu, Shao-Gang; Yang, Xiao-Bao; Zhao, Yu-Jun

    2017-10-01

    We have improved our distance matrix and eigen-subspace projection function (EPF) [X.-T. Li et al., J. Chem. Phys. 146, 154108 (2017)] to describe the atomic structure for periodic systems. Depicting the local structure of an atom, the EPF turns out to be invariant with respect to the choices of the unit cell and coordinate frame, leading to an intrinsic representation of the crystal with a set of EPFs of the nontrivial atoms. The difference of EPFs reveals the difference of atoms in local structure, while the accumulated difference between two sets of EPFs can be taken as the distance between configurations. Exemplified with the cases of carbon allotropes and boron sheets, our EPF approach shows exceptional rationality and efficiency to distinguish the atomic structures, which is crucial in structure recognition, comparison, and analysis.

  18. Quadripartite cluster and Greenberger–Horne–Zeilinger entangled light via cascade interactions with separated atomic ensembles

    International Nuclear Information System (INIS)

    Li Xing; Hu Xiangming

    2012-01-01

    It has been known that two-mode entangled light can possibly be generated by employing near-resonant interaction with an ensemble of two-level atoms. The responsible mechanism is the absorption of two photons from the strong driving field and the emission of two new photons into the cavity field. Here, we generalize such a mechanism to three separated atomic ensembles and establish cascade interactions for four nondegenerate fields. It is shown that the quadripartite cluster and Greenberger–Horne–Zeilinger entangled states occur for continuous variables. The advantage of the present scheme for the multipartite entanglement lies in that the coupling strengths are much larger due to the near resonances than for far-off-resonance-based parametric processes. (paper)

  19. Evaporation of Lennard-Jones clusters

    International Nuclear Information System (INIS)

    Roman, C.E.; Garzon, I.L.

    1991-01-01

    Extensive molecular dynamics simulations have been done to study the evaporation of a 13-atom Lennard-Jones cluster. The survival probability and the evaporative lifetime are calculated as a function of the cluster total energy from a classical trajectory analysis. The results are interpreted in terms of the RRK theory of unimolecular dissociation. The calculation of the binding energy of the evaporated species from the evaporation rate and the average kinetic energy release is discussed. (orig.)

  20. Stopping of hypervelocity clusters in solids

    International Nuclear Information System (INIS)

    Anders, Christian; Ziegenhain, Gerolf; Urbassek, Herbert M; Bringa, Eduardo M

    2011-01-01

    Using molecular-dynamics simulations, we study the processes underlying the stopping of energetic clusters upon impact in matter. We investigate self-bombardment of both a metallic (Cu) and a van-der-Waals bonded (frozen Ar) target. Clusters with sizes up to N = 10 4 atoms and with energies per atom of E/N = 0.1-1600 eV atom -1 were studied. We find that the stopping force exerted on a cluster follows an N 2/3 -dependence with cluster size N; thus large clusters experience less stopping than equi-velocity atoms. In the course of being stopped, the cluster is strongly deformed and attains a roughly pancake shape. Due to the cluster inertia, maximum deformation occurs later than the maximum stopping force. The time scale of projectile stopping is set by t 0 , the time the cluster needs to cover its own diameter before impacting the target; it thus depends on both cluster size and velocity. The time when the cluster experiences its maximum stopping force is around (0.7-0.8)t 0 . We find that the cluster is deformed with huge strain rates of around 1/2t 0 ; this amounts to 10 11 -10 13 s -1 for the cases studied here. (paper)

  1. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  2. Palladium clusters deposited on the heterogeneous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun, E-mail: cqdxwk@126.com [College of Power Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing 400044 (China); Liu, Juanfang, E-mail: juanfang@cqu.edu.cn [College of Power Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing 400044 (China); Chen, Qinghua, E-mail: qhchen@cqu.edu.cn [College of Power Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing 400044 (China)

    2016-07-15

    Graphical abstract: The site-exchange between the substrate and cluster atoms can result in the formation of the surface alloys and the reconstruction of the cluster structure before the collision system approaching the thermal equilibrium. The deposited cluster adjusted the atom arrangement as possibly as to match the substrate lattice arrangement from bottom to up. The structural reconstruction is accompanied by the system potential energy minimization. - Highlights: • The deposition process can divide explicitly into three stages: adsorption, collision, relaxation. • The local melt does not emerge inside the substrate during the deposition process. • Surface alloys are formed by the site-exchange between the cluster and substrate atoms. • The cluster reconstructs the atom arrangement following as the substrate lattice arrangement from bottom to up. • The structural reconstruction ability and scope depend on the cluster size and incident energy. - Abstract: To improve the performance of the Pd composite membrane prepared by the cold spraying technology, it is extremely essential to give insights into the deposition process of the cluster and the heterogeneous deposition of the big Pd cluster at the different incident velocities on the atomic level. The deposition behavior, morphologies, energetic and interfacial configuration were examined by the molecular dynamic simulation and characterized by the cluster flattening ratio, the substrate maximum local temperature, the atom-embedded layer number and the surface-alloy formation. According to the morphology evolution, three deposition stages and the corresponding structural and energy evolution were clearly identified. The cluster deformation and penetrating depth increased with the enhancement of the incident velocity, but the increase degree also depended on the substrate hardness. The interfacial interaction between the cluster and the substrate can be improved by the higher substrate local temperature

  3. Lateral manipulation of small clusters on the Cu and Ag(1 1 1) surfaces with the single-atom and trimer-apex tips: Reliability study

    International Nuclear Information System (INIS)

    Xie Yiqun; Liu Fen; Huang Lei

    2010-01-01

    We study the reliability of the lateral manipulation of small Cu clusters (dimer and trimer) on the flat Cu(1 1 1) surface with both the single-atom and trimer-apex tips and that for the Ag/Ag(1 1 1) system, and compare the results between the two systems as well as with the single-atom manipulation on these surfaces. Manipulations are simulated using molecular statics method with semi-empirical potentials. The dependence of the manipulation reliability on the tip height and tip orientation are investigated. Overall, the manipulation reliability increases with decreasing tip height although it depends obviously on the tip orientation. For the Cu/Cu(1 1 1) system, the manipulation of the dimmer and trimer can be successful with both tips. The manipulation reliability can be improved by the trimer-apex tip, and the tip-height range for the successful manipulation is also broader, as compared to the single-atom apex tip. Differently from the single-atom manipulation, the tip orientation has a noticeable influence on the manipulation reliability even for the single-atom tip due to the stronger tip-cluster and surface-adatom interactions in cluster manipulation. For the Ag/Ag(1 1 1) system, successful manipulations only be achieved with the trimer-apex tip, and the manipulation reliability is worse than that of the Cu/Cu(1 1 1) system, indicating the difference in mechanic properties between the two surfaces at the atomic level.

  4. Cluster analysis of track structure

    International Nuclear Information System (INIS)

    Michalik, V.

    1991-01-01

    One of the possibilities of classifying track structures is application of conventional partition techniques of analysis of multidimensional data to the track structure. Using these cluster algorithms this paper attempts to find characteristics of radiation reflecting the spatial distribution of ionizations in the primary particle track. An absolute frequency distribution of clusters of ionizations giving the mean number of clusters produced by radiation per unit of deposited energy can serve as this characteristic. General computation techniques used as well as methods of calculations of distributions of clusters for different radiations are discussed. 8 refs.; 5 figs

  5. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    International Nuclear Information System (INIS)

    Nakashima, Kenichi; Stoller, Roger E; Xu, Haixuan

    2015-01-01

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in irradiated materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1.0a 0 to 3.3a 0 have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a 0 by taking the average of the recombination distances from 80 simulation cases. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster. (paper)

  6. Computer simulation of cooling properties of UF5 hot-clusters in argon

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Ohno, Fubito

    1999-01-01

    Brownian collision-coalescence models have been proposed by many researchers to describe a cluster or a particle growth process. In these mathematical models, the effect of a cluster temperature on a sticking probability is not included, although the cluster temperature is one of the most important factors which determines the particle growth rate at the incipient stage of coagulation. A hot-cluster consisting of 30 UF 5 molecules is formed in a computer and is bombarded with argon atoms. Measuring a kinetic energy of argon atom scattered from the hot-cluster, the cluster temperature can be estimated by molecular dynamics simulations. It is concluded that the hot-cluster is rapidly cooled under the conditions of molecular laser isotope separation (MLIS) process, so that the cluster-argon system can reach its thermal equilibrium state. Therefore, in the analysis of the dynamics of clustering process, the temperature of UF 5 molecular cluster may be set equal to that of argon gas. (author)

  7. Are clusters of dietary patterns and cluster membership stable over time? Results of a longitudinal cluster analysis study.

    Science.gov (United States)

    Walthouwer, Michel Jean Louis; Oenema, Anke; Soetens, Katja; Lechner, Lilian; de Vries, Hein

    2014-11-01

    Developing nutrition education interventions based on clusters of dietary patterns can only be done adequately when it is clear if distinctive clusters of dietary patterns can be derived and reproduced over time, if cluster membership is stable, and if it is predictable which type of people belong to a certain cluster. Hence, this study aimed to: (1) identify clusters of dietary patterns among Dutch adults, (2) test the reproducibility of these clusters and stability of cluster membership over time, and (3) identify sociodemographic predictors of cluster membership and cluster transition. This study had a longitudinal design with online measurements at baseline (N=483) and 6 months follow-up (N=379). Dietary intake was assessed with a validated food frequency questionnaire. A hierarchical cluster analysis was performed, followed by a K-means cluster analysis. Multinomial logistic regression analyses were conducted to identify the sociodemographic predictors of cluster membership and cluster transition. At baseline and follow-up, a comparable three-cluster solution was derived, distinguishing a healthy, moderately healthy, and unhealthy dietary pattern. Male and lower educated participants were significantly more likely to have a less healthy dietary pattern. Further, 251 (66.2%) participants remained in the same cluster, 45 (11.9%) participants changed to an unhealthier cluster, and 83 (21.9%) participants shifted to a healthier cluster. Men and people living alone were significantly more likely to shift toward a less healthy dietary pattern. Distinctive clusters of dietary patterns can be derived. Yet, cluster membership is unstable and only few sociodemographic factors were associated with cluster membership and cluster transition. These findings imply that clusters based on dietary intake may not be suitable as a basis for nutrition education interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.

    Science.gov (United States)

    Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin

    2017-08-31

    Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.

  9. MANNER OF STOCKS SORTING USING CLUSTER ANALYSIS METHODS

    Directory of Open Access Journals (Sweden)

    Jana Halčinová

    2014-06-01

    Full Text Available The aim of the present article is to show the possibility of using the methods of cluster analysis in classification of stocks of finished products. Cluster analysis creates groups (clusters of finished products according to similarity in demand i.e. customer requirements for each product. Manner stocks sorting of finished products by clusters is described a practical example. The resultants clusters are incorporated into the draft layout of the distribution warehouse.

  10. Cluster generator

    Science.gov (United States)

    Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  11. Monte Carlo simulation of atomic short range order and cluster formation in two dimensional model alloys

    International Nuclear Information System (INIS)

    Rojas T, J.; Instituto Peruano de Energia Nuclear, Lima; Manrique C, E.; Torres T, E.

    2002-01-01

    Using monte Carlo simulation have been carried out an atomistic description of the structure and ordering processes in the system Cu-Au in a two-dimensional model. The ABV model of the alloy is a system of N atoms A and B, located in rigid lattice with some vacant sites. In the model we assume pair wise interactions between nearest neighbors with constant ordering energy J = 0,03 eV. The dynamics was introduced by means of a vacancy that exchanges of place with any atom of its neighbors. The simulations were carried out in a square lattice with 1024 and 4096 particles, using periodic boundary conditions to avoid border effects. We calculate the first two parameters of short range order of Warren-Cowley as function of the concentration and temperature. It was also studied the probabilities of formation of different atomic clusters that consist of 9 atoms as function of the concentration of the alloy and temperatures in a wide range of values. In some regions of temperature and concentration it was observed compositional and thermal polymorphism

  12. Energy properties of deuterium cluster impacts on TiD targets

    International Nuclear Information System (INIS)

    Yamamura, Yasunori

    1992-01-01

    In order to know the energy properties of deuterium atoms in the cluster impact region, the deuterium cluster impact phenomena have been simulated by using the time-evolution Monte Carlo simulation code DYACAT, where the (D) n (n being 100 to 500 ) with energy 500eV/atom are bombarded on TiD targets. For comparison, the energy properties of 500 eV/atom (Al) 500 cluster impacts on amorphous Au targets have also been simulated. In the case of the deuterium cluster impacts on TiD targets, the high energy tail of the energy distribution of deuterium atoms drops so fast. The temperature of the deuterium cluster impact region is less than 100 ev, and it decreases slightly as the cluster size increases due to the enhanced energy removal with reflected deuterium atoms and sputtered deuterium atoms. While in the case of 500 eV/atom (Al) 500 cluster impacts on Au the high-energy tail of the energy distribution of Al atoms due to the big cluster impact can be well described in terms of the Maxwell-Boltzmann function whose temperature is 270 ev. (author)

  13. Atomic structure of graphene supported heterogeneous model catalysts

    International Nuclear Information System (INIS)

    Franz, Dirk

    2017-04-01

    Graphene on Ir(111) forms a moire structure with well defined nucleation centres. Therefore it can be utilized to create hexagonal metal cluster lattices with outstanding structural quality. At diffraction experiments these 2D surface lattices cause a coherent superposition of the moire cell structure factor, so that the measured signal intensity scales with the square of coherently scattering unit cells. This artificial signal enhancement enables the opportunity for X-ray diffraction to determine the atomic structure of small nano-objects, which are hardly accessible with any experimental technique. The uniform environment of every metal cluster makes the described metal cluster lattices on graphene/Ir(111) an attractive model system for the investigation of catalytic, magnetic and quantum size properties of ultra-small nano-objects. In this context the use of x-rays provides a maximum of flexibility concerning the possible sample environments (vacuum, selected gases, liquids, sample temperature) and allows in-situ/operando measurements. In the framework of the present thesis the structure of different metal clusters grown by physical vapor deposition in an UHV environment and after gas exposure have been investigated. On the one hand the obtained results will explore many aspects of the atomic structure of these small metal clusters and on the other hand the presented results will proof the capabilities of the described technique (SXRD on cluster lattices). For iridium, platinum, iridium/palladium and platinum/rhodium the growth on graphene/Ir(111) of epitaxial, crystalline clusters with an ordered hexagonal lattice arrangement has been confirmed using SXRD. The clusters nucleate at the hcp sites of the moire cell and bind via rehybridization of the carbon atoms (sp"2 → sp"3) to the Ir(111) substrate. This causes small displacements of the substrate atoms, which is revealed by the diffraction experiments. All metal clusters exhibit a fcc structure, whereupon

  14. Atomic structure of graphene supported heterogeneous model catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Franz, Dirk

    2017-04-15

    Graphene on Ir(111) forms a moire structure with well defined nucleation centres. Therefore it can be utilized to create hexagonal metal cluster lattices with outstanding structural quality. At diffraction experiments these 2D surface lattices cause a coherent superposition of the moire cell structure factor, so that the measured signal intensity scales with the square of coherently scattering unit cells. This artificial signal enhancement enables the opportunity for X-ray diffraction to determine the atomic structure of small nano-objects, which are hardly accessible with any experimental technique. The uniform environment of every metal cluster makes the described metal cluster lattices on graphene/Ir(111) an attractive model system for the investigation of catalytic, magnetic and quantum size properties of ultra-small nano-objects. In this context the use of x-rays provides a maximum of flexibility concerning the possible sample environments (vacuum, selected gases, liquids, sample temperature) and allows in-situ/operando measurements. In the framework of the present thesis the structure of different metal clusters grown by physical vapor deposition in an UHV environment and after gas exposure have been investigated. On the one hand the obtained results will explore many aspects of the atomic structure of these small metal clusters and on the other hand the presented results will proof the capabilities of the described technique (SXRD on cluster lattices). For iridium, platinum, iridium/palladium and platinum/rhodium the growth on graphene/Ir(111) of epitaxial, crystalline clusters with an ordered hexagonal lattice arrangement has been confirmed using SXRD. The clusters nucleate at the hcp sites of the moire cell and bind via rehybridization of the carbon atoms (sp{sup 2} → sp{sup 3}) to the Ir(111) substrate. This causes small displacements of the substrate atoms, which is revealed by the diffraction experiments. All metal clusters exhibit a fcc structure

  15. Exact WKB analysis and cluster algebras

    International Nuclear Information System (INIS)

    Iwaki, Kohei; Nakanishi, Tomoki

    2014-01-01

    We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

  16. First principles study of vibrational dynamics of ceria-titania hybrid clusters

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul, E-mail: abdulmajid40@yahoo.com; Bibi, Maryam [University of Gujrat, Department of Physics (Pakistan)

    2017-04-15

    Density functional theory based calculations were performed to study vibrational properties of ceria, titania, and ceria-titania hybrid clusters. The findings revealed the dominance of vibrations related to oxygen when compared to those of metallic atoms in the clusters. In case of hybrid cluster, the softening of normal modes related to exterior oxygen atoms in ceria and softening/hardening of high/low frequency modes related to titania dimmers are observed. The results calculated for monomers conform to symmetry predictions according to which three IR and three Raman active modes were detected for TiO{sub 2}, whereas two IR active and one Raman active modes were observed for CeO{sub 2}. The comparative analysis indicates that the hybrid cluster CeTiO{sub 4} contains simultaneous vibrational fingerprints of the component dimmers. The symmetry, nature of vibrations, IR and Raman activity, intensities, and atomic involvement in different modes of the clusters are described in detail. The study points to engineering of CeTiO{sub 4} to tailor its properties for technological visible region applications in photocatalytic and electrochemical devices.

  17. Investigation of Carbon Monoxide Adsorption on Cationic Gold- Palladium Clusters

    Science.gov (United States)

    Chen, Yang-Mei; Kuang, Xiao-Yu; Sheng, Xiao-Wei; Wang, Huai-Qian; Shao, Peng; Zhong, Min-Ming

    2013-11-01

    Density functional calculations have been performed for the carbon monoxide molecule adsorption on AunPd+m(n+m ≤ 6) clusters. In the process of CO adsorption, small Au clusters and Pd clusters tend to be an Au atom and three Pd atoms adsorption, respectively. For the mixed Au-Pd clusters, an Au atom, a Pd atom, two atoms consisted of an Au atom and a Pd atom, two Pd atoms, and three Pd atoms adsorption structures are displayed. The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps and natural bond orbital charge population are calculated. Moreover, CO adsorption energy, CO stretching frequency, and CO bond length (upon adsorption) are also analysed in detail. The results predict that the adsorption strength of Au clusters with CO and the C-O vibration strength is enhanced and reduced after doping of Pd in the AunPdmCO+ complexes, respectively

  18. Structural, electronic and magnetic properties of small bimetallic zirconium–palladium clusters: Ab initio study

    International Nuclear Information System (INIS)

    Bezi Javan, Masoud

    2015-01-01

    Highlights: • Electronic and magnetic properties of small Zr n Pd m (n + m ⩽ 5) have been investigated. • Binding energies of the Zr n clusters are significantly higher than Pd n clusters. • Binding energy of the Pd n clusters increase with substituting one or more Zr atom. • HOMO–LUMO gap of the Zr n Pd m clusters increase in comparison with pure states. - Abstract: Structural, electronic and magnetic properties of small bimetallic zirconium–palladium clusters, Zr n Pd m (n + m ⩽ 5), have been investigated using density functional theory with considering generalized gradient approximation and PBE functional. We have determined the ground state conformations of the bimetallic zirconium–palladium clusters by substitution of Zr and Pd atoms in the optimized lowest energy structures of pure zirconium and palladium clusters. Results reveal that binding energies of the pure Zr n clusters are significantly higher than Pd n clusters with the same number of atoms. Also it is found that binding energy of the Zr n and Pd n clusters increase with growth of the number of consisting atoms in the clusters. Results indicate that, for both Zr n and Pd n clusters the binding energy of planar forms is lower than three-dimensional structures. We have also found that the binding energy of the Pd n clusters increase with substituting one or more Zr atoms in these clusters. We have also studied the HOMO–LUMO energy gap and magnetic moment of the pure and combined Zr and Pd clusters. The energy gap analysis of the pure and combined Pd and Zr clusters show that in generally the HOMO–LUMO gap of the bimetallic Zr n Pd m clusters increase in comparison with their corresponding pure clusters with the same number of atoms. According to the spin polarization DFT calculations all of the Zr n Pd m (n + m ⩽ 5) have net magnetic moments as instance the Zr 2 , Pd 2 and ZrPd clusters show a total magnetic moment value of 2 μ B . Some more discussions around charge population

  19. Probing the structural and electronic properties of cationic rubidium-gold clusters: [AunRb]+ (n = 1-10)

    Science.gov (United States)

    Zhao, Ya-Ru; Zhang, Hai-Rong; Qian, Yu; Duan, Xu-Chao; Hu, Yan-Fei

    2016-03-01

    Density functional theory has been applied to study the geometric structures, relative stabilities, and electronic properties of cationic [AunRb]+ and Aun + 1+ (n = 1-10) clusters. For the lowest energy structures of [AunRb]+ clusters, the planar to three-dimensional transformation is found to occur at cluster size n = 4 and the Rb atoms prefer being located at the most highly coordinated position. The trends of the averaged atomic binding energies, fragmentation energies, second-order difference of energies, and energy gaps show pronounced even-odd alternations. It indicated that the clusters containing odd number of atoms maintain greater stability than the clusters in the vicinity. In particular, the [Au6Rb]+ clusters are the most stable isomer for [AunRb]+ clusters in the region of n = 1-10. The charges in [AunRb]+ clusters transfer from the Rb atoms to Aun host. Density of states revealed that the Au-5d, Au-5p, and Rb-4p orbitals hardly participated in bonding. In addition, it is found that the most favourable channel of the [AunRb]+ clusters is Rb+ cation ejection. The electronic localisation function (ELF) analysis of the [AunRb]+ clusters shown that strong interactions are not revealed in this study.

  20. From virtual clustering analysis to self-consistent clustering analysis: a mathematical study

    Science.gov (United States)

    Tang, Shaoqiang; Zhang, Lei; Liu, Wing Kam

    2018-03-01

    In this paper, we propose a new homogenization algorithm, virtual clustering analysis (VCA), as well as provide a mathematical framework for the recently proposed self-consistent clustering analysis (SCA) (Liu et al. in Comput Methods Appl Mech Eng 306:319-341, 2016). In the mathematical theory, we clarify the key assumptions and ideas of VCA and SCA, and derive the continuous and discrete Lippmann-Schwinger equations. Based on a key postulation of "once response similarly, always response similarly", clustering is performed in an offline stage by machine learning techniques (k-means and SOM), and facilitates substantial reduction of computational complexity in an online predictive stage. The clear mathematical setup allows for the first time a convergence study of clustering refinement in one space dimension. Convergence is proved rigorously, and found to be of second order from numerical investigations. Furthermore, we propose to suitably enlarge the domain in VCA, such that the boundary terms may be neglected in the Lippmann-Schwinger equation, by virtue of the Saint-Venant's principle. In contrast, they were not obtained in the original SCA paper, and we discover these terms may well be responsible for the numerical dependency on the choice of reference material property. Since VCA enhances the accuracy by overcoming the modeling error, and reduce the numerical cost by avoiding an outer loop iteration for attaining the material property consistency in SCA, its efficiency is expected even higher than the recently proposed SCA algorithm.

  1. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  2. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    Science.gov (United States)

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  3. Comparative investigation of pure and mixed rare gas atoms on coronene molecules.

    Science.gov (United States)

    Rodríguez-Cantano, Rocío; Bartolomei, Massimiliano; Hernández, Marta I; Campos-Martínez, José; González-Lezana, Tomás; Villarreal, Pablo; Pérez de Tudela, Ricardo; Pirani, Fernando; Hernández-Rojas, Javier; Bretón, José

    2017-01-21

    Clusters formed by the combination of rare gas (RG) atoms of He, Ne, Ar, and Kr on coronene have been investigated by means of a basin-hopping algorithm and path integral Monte Carlo calculations at T = 2 K. Energies and geometries have been obtained and the role played by the specific RG-RG and RG-coronene interactions on the final results is analysed in detail. Signatures of diffuse behavior of the He atoms on the surface of the coronene are in contrast with the localization of the heavier species, Ar and Kr. The observed coexistence of various geometries for Ne suggests the motion of the RG atoms on the multi-well potential energy surface landscape offered by the coronene. Therefore, the investigation of different clusters enables a comparative analysis of localized versus non-localized features. Mixed Ar-He-coronene clusters have also been considered and the competition of the RG atoms to occupy the docking sites on the molecule is discussed. All the obtained information is crucial to assess the behavior of coronene, a prototypical polycyclic aromatic hydrocarbon clustering with RG atoms at a temperature close to that of interstellar medium, which arises from the critical balance of the interactions involved.

  4. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  5. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  6. Quasi-planar elemental clusters in pair interactions approximation

    Directory of Open Access Journals (Sweden)

    Chkhartishvili Levan

    2016-01-01

    Full Text Available The pair-interactions approximation, when applied to describe elemental clusters, only takes into account bonding between neighboring atoms. According to this approach, isomers of wrapped forms of 2D clusters – nanotubular and fullerene-like structures – and truly 3D clusters, are generally expected to be more stable than their quasi-planar counterparts. This is because quasi-planar clusters contain more peripheral atoms with dangling bonds and, correspondingly, fewer atoms with saturated bonds. However, the differences in coordination numbers between central and peripheral atoms lead to the polarization of bonds. The related corrections to the molar binding energy can make small, quasi-planar clusters more stable than their 2D wrapped allotropes and 3D isomers. The present work provides a general theoretical frame for studying the relative stability of small elemental clusters within the pair interactions approximation.

  7. Density functional study of structural and electronic properties of bimetallic silver-gold clusters: Comparison with pure gold and silver clusters

    Science.gov (United States)

    Bonacic-Koutecky, Vlasta; Burda, Jaroslav; Mitric, Roland; Ge, Maofa; Zampella, Giuseppe; Fantucci, Piercarlo

    2002-08-01

    Bimetallic silver-gold clusters offer an excellent opportunity to study changes in metallic versus "ionic" properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and charged bimetallic AgmAun 3[less-than-or-equal](m+n)[less-than-or-equal]5 clusters. Calculated VDE values compare well with available experimental data. In the stable structures of these clusters Au atoms assume positions which favor the charge transfer from Ag atoms. Heteronuclear bonding is usually preferred to homonuclear bonding in clusters with equal numbers of hetero atoms. In fact, stable structures of neutral Ag2Au2, Ag3Au3, and Ag4Au4 clusters are characterized by the maximum number of hetero bonds and peripheral positions of Au atoms. Bimetallic tetramer as well as hexamer are planar and have common structural properties with corresponding one-component systems, while Ag4Au4 and Ag8 have 3D forms in contrast to Au8 which assumes planar structure. At the density functional level of theory we have shown that this is due to participation of d electrons in bonding of pure Aun clusters while s electrons dominate bonding in pure Agm as well as in bimetallic clusters. In fact, Aun clusters remain planar for larger sizes than Agm and AgnAun clusters. Segregation between two components in bimetallic systems is not favorable, as shown in the example of Ag5Au5 cluster. We have found that the structures of bimetallic clusters with 20 atoms Ag10Au10 and Ag12Au8 are characterized by negatively charged Au subunits embedded in Ag environment. In the latter case, the shape of Au8 is related to a pentagonal bipyramid capped by one atom and contains three exposed negatively charged Au atoms. They might be suitable for activating reactions relevant to catalysis. According to our findings the charge transfer in bimetallic

  8. Atomic bonding between metal and graphene

    KAUST Repository

    Wang, Hongtao

    2013-03-07

    To understand structural and chemical properties of metal-graphene composites, it is crucial to unveil the chemical bonding along the interface. We provide direct experimental evidence of atomic bonding between typical metal nano structures and graphene, agreeing well with density functional theory studies. Single Cr atoms are located in the valleys of a zigzag edge, and few-atom ensembles preferentially form atomic chains by self-assembly. Low migration barriers lead to rich dynamics of metal atoms and clusters under electron irradiation. We demonstrate no electron-instigated interaction between Cr clusters and pristine graphene, though Cr has been reported to be highly reactive to graphene. The metal-mediated etching is a dynamic effect between metal clusters and pre-existing defects. The resolved atomic configurations of typical nano metal structures on graphene offer insight into modeling and simulations on properties of metal-decorated graphene for both catalysis and future carbon-based electronics. © 2013 American Chemical Society.

  9. Introduction to cluster dynamics

    CERN Document Server

    Reinhard, Paul-Gerhard

    2008-01-01

    Clusters as mesoscopic particles represent an intermediate state of matter between single atoms and solid material. The tendency to miniaturise technical objects requires knowledge about systems which contain a ""small"" number of atoms or molecules only. This is all the more true for dynamical aspects, particularly in relation to the qick development of laser technology and femtosecond spectroscopy. Here, for the first time is a highly qualitative introduction to cluster physics. With its emphasis on cluster dynamics, this will be vital to everyone involved in this interdisciplinary subje

  10. Robust cluster analysis and variable selection

    CERN Document Server

    Ritter, Gunter

    2014-01-01

    Clustering remains a vibrant area of research in statistics. Although there are many books on this topic, there are relatively few that are well founded in the theoretical aspects. In Robust Cluster Analysis and Variable Selection, Gunter Ritter presents an overview of the theory and applications of probabilistic clustering and variable selection, synthesizing the key research results of the last 50 years. The author focuses on the robust clustering methods he found to be the most useful on simulated data and real-time applications. The book provides clear guidance for the varying needs of bot

  11. Possible ionization ''ignition'' in laser-driven clusters

    International Nuclear Information System (INIS)

    Rose-Petruck, C.; Schafer, K.J.; Barty, C.P.J.

    1995-01-01

    The authors use Classical Trajectory Monte Carlo (CTMC) simulations to study the ionization of small rare gas clusters in short pulse, high intensity laser fields. They calculate, for a cluster of 25 neon atoms, the ionization stage reached and the average kinetic energy of the ionized electrons as functions of time and peak laser intensity. The CTMC calculations mimic the results of the much simpler barrier suppression model in the limit of isolated atoms. At solid density the results give much more ionization in the cluster than that predicted by the barrier suppression model. They find that when the laser intensity reaches a threshold value such that on average one electron is ionized from each atom, the cluster atoms rapidly move to higher ionization stages, approaching Ne +8 in a few femtoseconds. This ignition process creates an ultrafast pulse of energetic electrons in the cluster at quite modest laser intensities

  12. Equilibrium geometries, electronic and magnetic properties of small AunNi- (n = 1-9) clusters

    Science.gov (United States)

    Tang, Cui-Ming; Chen, Xiao-Xu; Yang, Xiang-Dong

    2014-05-01

    Geometrical, electronic and magnetic properties of small AunNi- (n = 1-9) clusters have been investigated based on density functional theory (DFT) at PW91P86 level. An extensive structural search shows that the relative stable structures of AunNi- (n = 1-9) clusters adopt 2D structure for n = 1-5, 7 and 3D structure for n = 6, 8-9. And the substitution of a Ni atom for an Au atom in the Au-n+1 cluster obviously changes the structure of the host cluster. Moreover, an odd-even alternation phenomenon has been found for HOMO-LUMO energy gaps, indicating that the relative stable structures of the AunNi- clusters with odd-numbered gold atoms have a higher relative stability. Finally, the natural population analysis (NPA) and the vertical detachment energies (VDE) are studied, respectively. The theoretical values of VDE are reported for the first time to our best knowledge.

  13. Density functional study of the bonding in small silicon clusters

    International Nuclear Information System (INIS)

    Fournier, R.; Sinnott, S.B.; DePristo, A.E.

    1992-01-01

    We report the ground electronic state, equilibrium geometry, vibrational frequencies, and binding energy for various isomers of Si n (n = 2--8) obtained with the linear combination of atomic orbitals-density functional method. We used both a local density approximation approach and one with gradient corrections. Our local density approximation results concerning the relative stability of electronic states and isomers are in agreement with Hartree--Fock and Moller--Plesset (MP2) calculations [K. Raghavachari and C. M. Rohlfing, J. Chem. Phys. 89, 2219 (1988)]. The binding energies calculated with the gradient corrected functional are in good agreement with experiment (Si 2 and Si 3 ) and with the best theoretical estimates. Our analysis of the bonding reveals two limiting modes of bonding and classes of silicon clusters. One class of clusters is characterized by relatively large s atomic populations and a large number of weak bonds, while the other class of clusters is characterized by relatively small s atomic populations and a small number of strong bonds

  14. Cluster Ion Implantation in Graphite and Diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects as well as modification and processing of surfaces and shallow layers on an atomic scale. The current paper present an overview and analysis of data obtained on a few sets of graphite...... and diamond samples implanted by keV-energy size-selected cobalt and argon clusters. One of the emphases is put on pinning of metal clusters on graphite with a possibility of following selective etching of graphene layers. The other topic of concern is related to the development of scaling law for cluster...... implantation. Implantation of cobalt and argon clusters into two different allotropic forms of carbon, namely, graphite and diamond is analysed and compared in order to approach universal theory of cluster stopping in matter....

  15. TRACE ANALYSIS BY LASER-EXCITED ATOMIC FLUORESCENCE WITH ATOMIZATION IN A PULSED PLASMA

    OpenAIRE

    Lunyov , O.; Oshemkov , S.; Petrov , A.

    1991-01-01

    The possibilities of plasma atomization for laser fluorescence trace analysis are discussed. Pulsed hot hollow cathode discharge was used for analysis of solutions and powdered samples. The high voltage spark and laser-induced breakdown (laser spark) were used as atomizers of metal-containing atmospheric aerosols. Detection limits were improved by means of temporal background selection.

  16. Collision cascades and sputtering induced by larger cluster ions

    International Nuclear Information System (INIS)

    Sigmund, P.

    1988-01-01

    Recent experimental work on larger cluster impact on solid surfaces suggests large deviations from the standard case of additive sputter yields both in the nuclear and electronic stopping regime. The paper concentrates on elastic collision cascades. In addition to very pronounced spike effects, two phenomena are pointed out that are specific to cluster bombardment. Multiple hits of cluster atoms on one and the same target atom may result in recoil atoms that move faster than the maximum recoil speed for monomer bombardment at the same projectile speed. This effect is important when the atomic mass of a beam atom is less than that of a target atom, M 1 2 . In the opposite case, M 1 >> M 2 , collisions between beam particles may accelerate some beam particles and slow down others. Some consequences are mentioned. Remarks on the nuclear stopping power of larger clusters and on electronic sputtering by cluster bombardment conclude the paper. 38 refs., 2 figs

  17. Cluster analysis

    OpenAIRE

    Mucha, Hans-Joachim; Sofyan, Hizir

    2000-01-01

    As an explorative technique, duster analysis provides a description or a reduction in the dimension of the data. It classifies a set of observations into two or more mutually exclusive unknown groups based on combinations of many variables. Its aim is to construct groups in such a way that the profiles of objects in the same groups are relatively homogenous whereas the profiles of objects in different groups are relatively heterogeneous. Clustering is distinct from classification techniques, ...

  18. Computer-simulated images of icosahedral, pentagonal and decagonal clusters of atoms

    International Nuclear Information System (INIS)

    Peng JuLin; Bursill, L.A.

    1989-01-01

    The aim of this work was to assess, by computer-simulation the sensitivity of high-resolution electron microscopy (HREM) images for a set of icosahedral and decagonal clusters, containing 50-400 atoms. An experimental study of both crystalline and quasy-crystalline alloys of A1(Si)Mn is presented, in which carefully-chosen electron optical conditions were established by computer simulation then used to obtain high quality images. It was concluded that while there is a very significant degree of model sensitiveness available, direct inversion from image to structure is not at realistic possibility. A reasonable procedure would be to record experimental images of known complex icosahedral alloys, in a crystalline phase, then use the computer-simulations to identify fingerprint imaging conditions whereby certain structural elements could be identified in images of quasi-crystalline or amorphous specimens. 27 refs., 12 figs., 1 tab

  19. Study of Pair and many-body interactions in rare-gas halide atom clusters using negative ion zero electron kinetic energy (ZEKE) and threshold photodetachment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yourshaw, Ivan [Univ. of California, Berkeley, CA (United States)

    1998-07-09

    The diatomic halogen atom-rare gas diatomic complexes KrBr-, XeBr-, and KrCl- are studied in this work by zero electron kinetic energy (ZEKE) spectroscopy in order to characterize the weak intermolecular diatomic potentials of these species. Also, the ZEKE and threshold photodetachment spectra of the polyatomic clusters ArnBr- (n = 2-9) and ArnI- (n = 2-19) are studied to obtain information about the non-additive effects on the interactions among the atoms. This work is part of an ongoing effort to characterize the pair and many-body potentials of the complete series of rare gas halide clusters. In these studies we obtain information about both the anionic and neutral clusters.

  20. A density functional theory study on structures, stabilities, and electronic and magnetic properties of Au{sub n}C (n = 1–9) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xiao-Fei; Yan, Li-Li; Huang, Teng; Hong, Yu; Miao, Shou-Kui [Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Peng, Xiu-Qiu [School of Environmental Science & Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, Yi-Rong, E-mail: liuyirong@aiofm.ac.cn [Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Wei, E-mail: huangwei6@ustc.edu.cn [Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Environmental Science & Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-06-15

    The equilibrium geometric structures, relative stabilities, electronic stabilities, and electronic and magnetic properties of the Au{sub n}C and Au{sub n+1} (n = 1–9) clusters are systematically investigated using density functional theory (DFT) with hyper-generalized gradient approximation (GGA). The optimized geometries show that one Au atom added to the Au{sub n−1}C cluster is the dominant growth pattern for the Au{sub n}C clusters. In contrast to the pure gold clusters, the Au{sub n}C clusters are most stable in a quasi-planar or three-dimensional (3D) structure because the C dopant induces the local non-planarity, with exceptions of the Au{sub 6,8}C clusters who have 2D structures. The analysis of the relative and electronic stabilities reveals that the Au{sub 4}C and Au{sub 6} clusters are the most stable in the series of studied clusters, respectively. In addition, a natural bond orbital (NBO) analysis shows that the charges in the Au{sub n}C clusters transfer from the Au{sub n} host to the C atom. Moreover, the Au and C atoms interact with each other mostly via covalent bond rather than ionic bond, which can be confirmed through the average ionic character of the Au–C bond. Meanwhile, the charges mainly transfer between 2s and 2p orbitals within the C atom, and among 5d, 6s, and 6p orbitals within the Au atom for the Au{sub n}C clusters. As for the magnetic properties of the Au{sub n}C clusters, the total magnetic moments are 1 μ{sub B} for n = odd clusters, with the total magnetic moments mainly locating on the C atoms for Au{sub 1,3,9}C and on the Au{sub n} host for Au{sub 5,7}C clusters. However, the total magnetic moments of the Au{sub n}C clusters are zero for n = even clusters. Simultaneously, the magnetic moments mainly locate on the 2p orbital within the C atom and on the 5d, 6s orbitals within the Au atom.

  1. Low-energy irradiation effects of gas cluster ion beams

    International Nuclear Information System (INIS)

    Houzumi, Shingo; Takeshima, Keigo; Mochiji, Kozo; Toyoda, Noriaki; Yamada, Isao

    2007-01-01

    A cluster-ion irradiation system with cluster-size selection has been developed to study the effects of the cluster size for surface processes using cluster ions. A permanent magnet with a magnetic field of 1.2 T is installed for size separation of large cluster ions. Trace formations at HOPG surface by the irradiation with size-selected Ar-cluster ions under acceleration energy of 30 keV were investigated by a scanning tunneling microscopy. Generation behavior of the crater-like traces is strongly affected by the number of constituent atoms (cluster size) of the irradiating cluster ion. When the incident cluster ion is composed of 100-3000 atoms, crater-like traces are observed on the irradiated surfaces. In contrast, such traces are not observed at all with the irradiation of the cluster-ions composed of over 5000 atoms. Such the behavior is discussed on the basis of the kinetic energy per constituent atom of the cluster ion. To study GCIB irradiation effects against macromolecule, GCIB was irradiated on DNA molecules absorbed on graphite surface. By the GCIB irradiation, much more DNA molecules was sputtered away as compared with the monomer-ion irradiation. (author)

  2. CO dissociation on magnetic Fen clusters

    KAUST Repository

    Jedidi, Abdesslem

    2014-01-01

    This work theoretically investigates the CO dissociation on Fen nanoparticles, for n in the range of 1-65, focusing on size dependence in the context of the initial step of the Fischer-Tropsch reaction. CO adsorbs molecularly through its C-end on a triangular facet of the nanoparticle. Dissociation becomes easier when the cluster size increases. Then, the C atom is bonded to a square facet that is generated as a result of the adsorption if it does not yet exist in the bare cluster, while the O atom is adsorbed on a triangular facet. In the most stable situation, the two adsorbed atoms remain close together, both having in common one shared first-neighbor iron atom. There is a partial spin quenching of the neighboring Fe atoms, which become more positively charged than the other Fe atoms. The shared surface iron atom resembles a metal-cation from a complex. Despite the small size of the iron cluster considered, fluctuations due to specific configurations do not influence properties for n > 25 and global trends seem significant.

  3. Beams of mass-selected clusters: realization and first experiments

    International Nuclear Information System (INIS)

    Kamalou, O.

    2007-04-01

    The main objective of this work concerns the production of beams of mass-selected clusters of metallic and semiconductor materials. Clusters are produced in magnetron sputtering source combined with a gas aggregation chamber, cooled by liquid nitrogen circulation. Downstream of the cluster source, a Wiley-McLaren time-of-flight setup allows to select a given cluster size or a narrow size range. The pulsed mass-selected cluster ion beam is separated from the continuous neutral one by an electrostatic 90-quadrupole deflector. After the deflector, the density of the pulsed beam amounts to about 10 3 particles/cm 3 . Preliminary deposition experiments of mass-selected copper clusters with a deposition energy of about 0.5 eV/atom have ben performed on highly oriented pyrolytic graphite (HOPG) substrates, indicating that copper clusters are evidently mobile on the HOPG-surface until they reach cleavage steps, dislocation lines or other surface defects. In order to lower the cluster mobility on the HOPG-surface, we have first irradiated HOPG samples with slow highly charged ions (high dose) in order to create superficial defects. In a second step we have deposited mass-selected copper clusters on these pre-irradiated samples. The first analysis by AFM (Atomic Force Microscopy) techniques showed that the copper clusters are trapped on the defects produced by the highly charged ions. (author)

  4. MD simulation of cluster formation during sputtering

    International Nuclear Information System (INIS)

    Muramoto, T.; Okai, M.; Yamashita, Y.; Yorizane, K.; Yamamura, Y.

    2001-01-01

    The cluster ejection due to cluster impact on a solid surface is studied through molecular dynamics (MD) simulations. Simulations are performed for Cu cluster impacts on the Cu(1 1 1) surface for cluster energy 100 eV/atom, and for clusters of 6, 13, 28 and 55 atoms. Interatomic interactions are described by the AMLJ-EAM potential. The vibration energy spectrum is independent of the incident cluster size and energy. This comes from the fact that sputtered clusters become stable through the successive fragmentation of nascent large sputtered clusters. The vibration energy spectra for large sputtered clusters have a peak, whose energy corresponds to the melting temperature of Cu. The exponent of the power-law fit of the abundance distribution and the total sputtering yield for the cluster impacts are higher than that for the monatomic ion impacts with the same total energy, where the exponent δ is given by Y n ∝n δ and Y n is the yield of sputtered n-atom cluster. The exponent δ follows a unified function of the total sputtering yield, which is a monotonic increase function, and it is nearly equal to δ ∼ -3 for larger yield

  5. CO dissociation on magnetic Fen clusters

    KAUST Repository

    Jedidi, Abdesslem; Markovits, Alexis; Minot, Christian; Abderrabba, Manef Ben; Van Hove, Michel A.

    2014-01-01

    triangular facet of the nanoparticle. Dissociation becomes easier when the cluster size increases. Then, the C atom is bonded to a square facet that is generated as a result of the adsorption if it does not yet exist in the bare cluster, while the O atom

  6. Construction of the energy matrix for complex atoms. Part VIII: Hyperfine structure HPC calculations for terbium atom

    Science.gov (United States)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy

    2017-11-01

    A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.

  7. Structures, stabilities, and electronic properties for rare-earth lanthanum doped gold clusters

    International Nuclear Information System (INIS)

    Zhao, Ya-Ru

    2015-01-01

    The structures, stabilities, and electronic properties of rare-earth lanthanum doped gold La 2 Au n (n = 1-9) and pure gold Au n (n ≤ 11) clusters have been investigated by using density functional theory. The optimized geometries show that the lowest energy structures of La 2 Au n clusters favour the 3D structure at n ≥ 3. The lanthanum atoms can strongly enhance the stabilities of gold clusters and tend to occupy the most highly coordinated position. By analysing the gap, vertical ionization potential, and chemical hardness, it is found that the La 2 Au 6 isomer possesses higher stability for small-sized La 2 Au n clusters (n = 1-9). The charges in the La 2 Au n clusters transfer from La atoms to the Au n host. In addition, Wiberg bond indices analysis reveals that the intensity of different bonds of La 2 Au n clusters exhibits a sequence of La-La bond > La-Au bond > Au-Au bond.

  8. Ultrafast relaxation dynamics of electrons in Au clusters capped with dodecanethiol molecules

    International Nuclear Information System (INIS)

    Hamanaka, Y.; Fukagawa, K.; Tai, Y.; Murakami, J.; Nakamura, A.

    2006-01-01

    We have investigated electron relaxation dynamics of size-selected Au clusters capped by dodecanethiol molecules in the cluster sizes of 28-142 atoms using femtosecond pump-probe spectroscopy. Absorption spectra of 28-71-atom clusters show discrete peaks due to the optical transitions between quantized states, while an absorption band due to the surface plasmon is observed in 142-atom clusters. In the differential absorption spectra measured by the pump-probe experiments, a large redshift of 140 meV lasting over 10 ps and absorption bleaching decaying within 2 ps are observed at the absorption peaks of 28-atom clusters. The redshift is ascribed to a charge transfer between Au clusters and dodecanethiol molecules adsorbed on the cluster surface, and the bleaching is due to blocking of the optical transitions between the ground state and the occupied electronic states due to the Pauli's-exclusion principle. Such behavior is in contrast to the 142-atom clusters, where the cooling of hot electrons generated by photo-excitation determines the relaxation dynamics. These results indicate molecular properties of the 28-atom Au cluster-dodecanethiol system

  9. Preferential site occupancy observed in coexpanded argon-krypton clusters

    International Nuclear Information System (INIS)

    Lundwall, M.; Bergersen, H.; Lindblad, A.; Oehrwall, G.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.

    2006-01-01

    Free heterogeneous argon-krypton clusters have been produced by coexpansion and investigated by means of x-ray photoelectron spectroscopy. By examining cluster surface and bulk binding energy shifts, relative intensities, and peak widths, we show that in the mixed argon-krypton clusters the krypton atoms favor the bulk and argon atoms are pushed to the surface. Furthermore, we show that krypton atoms in the surface layer occupy high-coordination sites and that heterogeneous argon-krypton clusters produced by coexpansion show the same surface structure as argon host clusters doped with krypton. These observations are supported by site-dependent calculations of chemical shifts

  10. Enhanced magnetocrystalline anisotropy in deposited cobalt clusters

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, D.A.; Denby, P.M.; Kirkman, I.W. [Daresbury Laboratory, Daresbury, Warrington (United Kingdom); Harrison, A.; Whittaker, A.G. [Department of Chemistry, University of Edinburgh, Edinburgh (United Kingdom)

    2002-01-28

    The magnetic properties of nanomaterials made by embedding cobalt nanocrystals in a copper matrix have been studied using a SQUID magnetometer. The remanent magnetization at temperatures down to 1.8 K and the RT (room temperature) field-dependent magnetization of 1000- and 8000-atom (average-size) cobalt cluster samples have been measured. In all cases it has been possible to relate the morphology of the material to the magnetic properties. However, it is found that the deposited cluster samples contain a majority of sintered clusters even at cobalt concentrations as low as 5% by volume. The remanent magnetization of the 8000-atom samples was found to be bimodal, consisting of one contribution from spherical particles and one from touching (sintered) clusters. Using a Monte Carlo calculation to simulate the sintering it has been possible to calculate a size distribution which fits the RT superparamagnetic behaviour of the 1000-atom samples. The remanent magnetization for this average size of clusters could then be fitted to a simple model assuming that all the nanoparticles are spherical and have a size distribution which fits the superparamagnetic behaviour. This gives a value for the potential energy barrier height (for reversing the spin direction) of 2.0 {mu}eV/atom which is almost four times the accepted value for face-centred-cubic bulk cobalt. The remanent magnetization for the spherical component of the large-cluster sample could not be fitted with a single barrier height and it is conjectured that this is because the barriers change as a function of cluster size. The average value is 1.5 {mu}eV/atom but presumably this value tends toward the bulk value (0.5 {mu}eV/atom) for the largest clusters in this sample. (author)

  11. Detonation of Meta-stable Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B.; Beckner, Vincent; Grcar, Joseph F.

    2008-05-31

    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.

  12. Electronic structure of metal clusters

    International Nuclear Information System (INIS)

    Wertheim, G.K.

    1989-01-01

    Photoemission spectra of valence electrons in metal clusters, together with threshold ionization potential measurements, provide a coherent picture of the development of the electronic structure from the isolated atom to the large metallic cluster. An insulator-metal transition occurs at an intermediate cluster size, which serves to define the boundary between small and large clusters. Although the outer electrons may be delocalized over the entire cluster, a small cluster remains insulating until the density of states near the Fermi level exceeds 1/kT. In large clusters, with increasing cluster size, the band structure approaches that of the bulk metal. However, the bands remain significantly narrowed even in a 1000-atom cluster, giving an indication of the importance of long-range order. The core-electron binding-energy shifts of supported metal clusters depend on changes in the band structure in the initial state, as well as on various final-state effects, including changes in core hole screening and the coulomb energy of the final-state charge. For cluster supported on amorphous carbon, this macroscopic coulomb shift is often dominant, as evidenced by the parallel shifts of the core-electron binding energy and the Fermi edge. Auger data confirm that final-state effects dominate in cluster of Sn and some other metals. Surface atom core-level shifts provide a valuable guide to the contributions of initial-state changes in band structure to cluster core-electron binding energy shifts, especially for Au and Pt. The available data indicate that the shift observed in supported, metallic clusters arise largely from the charge left on the cluster by photoemission. As the metal-insulator transition is approached from above, metallic screening is suppressed and the shift is determined by the local environment. (orig.)

  13. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  14. Influence of indium clustering on the band structure of semiconducting ternary and quaternarynitride alloys

    DEFF Research Database (Denmark)

    Gorczyca,, I.; Łepkowski, S. P.; Suski, T.

    2009-01-01

    smaller when the In atoms are clustered than when they are uniformly distributed. An explanation of this phenomenon is proposed on the basis of an analysis of the density of states and the bond lengths, performed in detail for ternary alloys. Results for the band gaps of InxGayAl1-x-yN quaternary alloys...... and atomic arrangements are examined. Particular attention is paid to the magnitude of and trends in bowing of the band gaps. Indium composition fluctuation (clustering) is simulated by different distributions of In atoms and it is shown that it strongly influences the band gaps. The gaps are considerably...... show a similar trend. It is suggested that the large variation in the band gaps determined on samples grown in different laboratories is caused by different degrees of In clustering....

  15. Dynamics diffusion behaviors of Pd small clusters on a Pd(1 1 1) surface

    International Nuclear Information System (INIS)

    Liu, Fusheng; Hu, Wangyu; Deng, Huiqiu; He, Rensheng; Yang, Xiyuan; Lu, Kuilin; Deng, Lei; Luo, Wenhua

    2010-01-01

    Using molecular dynamics, nudged elastic band and modified analytic embedded atom methods, the self-diffusion dynamics properties of palladium atomic clusters up to seven atoms on the Pd (1 1 1) surface have been studied at temperatures ranging from 300 to 1000 K. The simulation time varies from 20 to 75 ns according to the cluster sizes and the temperature ranges. The heptamer and trimer are more stable than the other neighboring clusters. The diffusion coefficients of the clusters are derived from the mean square displacement of the cluster's mass-center, and the diffusion prefactors D 0 and activation energies E a are derived from the Arrhenius relation. The activation energy of the clusters increases with the increasing atom number in the clusters, especially for Pd 6 to Pd 7 . The analysis of trajectories shows the noncompact clusters diffuse by the local diffusion mechanism but the compact clusters diffuse mainly by the whole gliding mechanism, and some static energy barriers of the diffusion modes are calculated. From Pd 2 to Pd 6 , the prefactors are in the range of the standard value 10 −3  cm 2  s −1 , and the prefactor of Pd 7 cluster is 2 orders of magnitude greater than that of the single Pd adatom because of a large number of nonequivalent diffusion processes. The heptamer can be the nucleus in the room temperature range according to nucleation theory

  16. The energetics and structure of nickel clusters: Size dependence

    International Nuclear Information System (INIS)

    Cleveland, C.L.; Landman, U.

    1991-01-01

    The energetics of nickel clusters over a broad size range are explored within the context of the many-body potentials obtained via the embedded atom method. Unconstrained local minimum energy configurations are found for single crystal clusters consisting of various truncations of the cube or octahedron, with and without (110) faces, as well as some monotwinnings of these. We also examine multitwinned structures such as icosahedra and various truncations of the decahedron, such as those of Ino and Marks. These clusters range in size from 142 to over 5000 atoms. As in most such previous studies, such as those on Lennard-Jones systems, we find that icosahedral clusters are favored for the smallest cluster sizes and that Marks' decahedra are favored for intermediate sizes (all our atomic systems larger than about 2300 atoms). Of course very large clusters will be single crystal face-centered-cubic (fcc) polyhedra: the onset of optimally stable single-crystal nickel clusters is estimated to occur at 17 000 atoms. We find, via comparisons to results obtained via atomistic calculations, that simple macroscopic expressions using accurate surface, strain, and twinning energies can usefully predict energy differences between different structures even for clusters of much smaller size than expected. These expressions can be used to assess the relative energetic merits of various structural motifs and their dependence on cluster size

  17. The Effect of Indium Content on the Atomic Environment and Cluster Stability of GeSe4Inx=10,15 Glasses

    Directory of Open Access Journals (Sweden)

    Georgios S. E. Antipas

    2015-01-01

    Full Text Available The atomic environments of two chalcogenide glasses, with compositions GeSe4In10 and GeSe4In15, were studied via Reverse Monte Carlo and Density Functional Theory. Indium content demoted Ge–Se bonding in favor of Se-In while the contribution of Se–Se in the first coordination shell order was faint. Upon transition to the richer In glass, there was formation of rich Ge-centered clusters at radial distances further than 4 Å from the RMC box center, which was taken to signify a reduction of Ge–Se interactions. Cluster coordination by Se promoted stability while, very conclusively, In coordination lowered cluster stability by intervening in the Ge–Se and Se–Se networks.

  18. Structural, magnetic and electronic properties of FexCoyIrz (x + y + z = 5, 6) clusters: an ab initio study

    KAUST Repository

    Devi, Assa Aravindh Sasikala

    2014-05-01

    Investigations on freestanding binary and ternary clusters of Fe (x) Co (y) Ir (z) (x + y + z = 5, 6) are carried out using ab initio density functional theory techniques. The geometry, chemical order, binding energy, magnetic moment and electronic structure of the clusters are analyzed for the entire range of composition. Composition dependent structural transition is observed in the five atom clusters, while octahedral geometry prevailed in clusters with six atoms. Both the clusters show increment in binding energy with the increase in number of heterogeneous bonds. Analysis based on the chemical order parameter indicates that clusters favor mixing rather than segregation. The clusters exhibit ferromagnetic ordering and the inter-dependence of optimal cluster geometry to the magnetic moments and electronic structure is observed.

  19. Formation of Core-Shell Ethane-Silver Clusters in He Droplets.

    Science.gov (United States)

    Loginov, Evgeny; Gomez, Luis F; Sartakov, Boris G; Vilesov, Andrey F

    2017-08-17

    Ethane core-silver shell clusters consisting of several thousand particles have been assembled in helium droplets upon capture of ethane molecules followed by Ag atoms. The composite clusters were studied via infrared laser spectroscopy in the range of the C-H stretching vibrations of ethane. The spectra reveal a splitting of the vibrational bands, which is ascribed to interaction with Ag. A rigorous analysis of band intensities for a varying number of trapped ethane molecules and Ag atoms indicates that the composite clusters consist of a core of ethane that is covered by relatively small Ag clusters. This metastable structure is stabilized due to fast dissipation in superfluid helium droplets of the cohesion energy of the clusters.

  20. Picosecond multiphoton ionization of atomic and molecular clusters

    International Nuclear Information System (INIS)

    Miller, J.C.; Smith, D.B.

    1990-01-01

    High peak-power picosecond laser pulses have been used for the first time to effect nonresonant or resonant multiphoton ionization (MPI) of clusters generated in a supersonic nozzle expansion. The resulting ions are subsequently detected and characterized by time-of-flight mass spectroscopy. Specifically, we present results involving MPI of clusters of xenon and nitric oxide. Previous MPI studies of many molecular clusters using nanosecond lasers have not been successful in observing the parent ion, presumably due to fast dissociation channels. It is proposed that the present technique is a new and rather general ionization source for cluster studies which is complementary to electron impact but may, in addition, provide unique spectroscopic or dynamical information. 23 refs., 5 figs

  1. Annealing and cluster formation of defects in a cascade

    International Nuclear Information System (INIS)

    Martynenko, Yu.V.

    1975-01-01

    The behaviour of radiative defects after a dynamic cascade of atomic collisions caused by irradiation by neutrons or accelerated heavy ions if theoretically investigated. In investig.ation, apart from processes of vacancy recombination, cluster formation and interstitial atoms the diffusive ''spreading'' of point defects from the initial region is taken into account. Since interstitial atoms are more mobile, all the processes are divided into two stages: at the first stage only interstitial atoms diffuse, and vacancies are stationary; at the second stage vacancies are mobile, and interstitial atoms are either ''spread'' over the whole volume, or are united into stable clusters. The number of defects and clusters is calculated depending on energy of cascade, atomic number of the material and temperature

  2. Study of aluminum-doped silicon clusters

    International Nuclear Information System (INIS)

    Zhan Shichang; Li Baoxing; Yang Jiansong

    2007-01-01

    Using full-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method, we have investigated the effect of aluminum heteroatoms on the geometric structures and bond characteristics of Si n (n=5-10) clusters in detail. It is found that the geometric framework of the ground state structures for Si n (n=5-10) clusters change to some extent upon the substitution of Al atoms in some Si atoms. The effect of aluminum doping on the silicon clusters depends on the geometric structures of Si n (n=5-10) clusters. In particular, the calculations suggest that the aluminum doping would improve the bond strength of some Si-Si bonds in the mixed Si n - m Al m clusters

  3. Clustering Trajectories by Relevant Parts for Air Traffic Analysis.

    Science.gov (United States)

    Andrienko, Gennady; Andrienko, Natalia; Fuchs, Georg; Garcia, Jose Manuel Cordero

    2018-01-01

    Clustering of trajectories of moving objects by similarity is an important technique in movement analysis. Existing distance functions assess the similarity between trajectories based on properties of the trajectory points or segments. The properties may include the spatial positions, times, and thematic attributes. There may be a need to focus the analysis on certain parts of trajectories, i.e., points and segments that have particular properties. According to the analysis focus, the analyst may need to cluster trajectories by similarity of their relevant parts only. Throughout the analysis process, the focus may change, and different parts of trajectories may become relevant. We propose an analytical workflow in which interactive filtering tools are used to attach relevance flags to elements of trajectories, clustering is done using a distance function that ignores irrelevant elements, and the resulting clusters are summarized for further analysis. We demonstrate how this workflow can be useful for different analysis tasks in three case studies with real data from the domain of air traffic. We propose a suite of generic techniques and visualization guidelines to support movement data analysis by means of relevance-aware trajectory clustering.

  4. The smart cluster method. Adaptive earthquake cluster identification and analysis in strong seismic regions

    Science.gov (United States)

    Schaefer, Andreas M.; Daniell, James E.; Wenzel, Friedemann

    2017-07-01

    Earthquake clustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation for probabilistic seismic hazard assessment. This study introduces the Smart Cluster Method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal cluster identification. It utilises the magnitude-dependent spatio-temporal earthquake density to adjust the search properties, subsequently analyses the identified clusters to determine directional variation and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010-2011 Darfield-Christchurch sequence, a reclassification procedure is applied to disassemble subsequent ruptures using near-field searches, nearest neighbour classification and temporal splitting. The method is capable of identifying and classifying earthquake clusters in space and time. It has been tested and validated using earthquake data from California and New Zealand. A total of more than 1500 clusters have been found in both regions since 1980 with M m i n = 2.0. Utilising the knowledge of cluster classification, the method has been adjusted to provide an earthquake declustering algorithm, which has been compared to existing methods. Its performance is comparable to established methodologies. The analysis of earthquake clustering statistics lead to various new and updated correlation functions, e.g. for ratios between mainshock and strongest aftershock and general aftershock activity metrics.

  5. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis

    Science.gov (United States)

    Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

    2015-01-01

    Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383

  6. Simultaneous Two-Way Clustering of Multiple Correspondence Analysis

    Science.gov (United States)

    Hwang, Heungsun; Dillon, William R.

    2010-01-01

    A 2-way clustering approach to multiple correspondence analysis is proposed to account for cluster-level heterogeneity of both respondents and variable categories in multivariate categorical data. Specifically, in the proposed method, multiple correspondence analysis is combined with k-means in a unified framework in which "k"-means is…

  7. Observation of elastic scattering effects on photoelectron angular distributions in free Xe clusters

    International Nuclear Information System (INIS)

    Oehrwall, G; Tchaplyguine, M; Gisselbrecht, M; Lundwall, M; Feifel, R; Rander, T; Schulz, J; Marinho, R R T; Lindgren, A; Sorensen, S L; Svensson, S; Bjoerneholm, O

    2003-01-01

    We report an observation of substantial deviations in the photoelectron angular distribution for photoionization of atoms in free Xe clusters compared to the case of photoionization of free atoms. The cross section, however, seems not to vary between the cluster and free atoms. This observation was made in the vicinity of the Xe 4d Cooper minimum, where the atomic angular distribution is known to vary dramatically. The angular distribution of electrons emitted from atoms in the clusters is more isotropic than that of free atoms over the entire kinetic energy range studied. Furthermore, the angular distribution is more isotropic for atoms in the interior of the clusters than for atoms at the surface. We attribute this deviation to elastic scattering of the outgoing photoelectrons. We have investigated two average cluster sizes, ≥ 4000 and 1000 and found no significant differences between these two cases

  8. Re4As6S3, a thio-spinel-related cluster system

    DEFF Research Database (Denmark)

    Besnard, Celine; Svensson, Christer; Ståhl, Kenny

    2003-01-01

    . The rhenium atoms form tetrahedral clusters linked via tetrahedral arsenic clusters to produce an NaCl-type arrangement. The oxidation state of rhenium is IV and the number of electrons shared by the rhenium atoms in the cluster is 12. The structure is based on an ordered defect thio-spinel A((1-x))B(2)X(4......) where the B-type atoms form tetrahedral clusters....

  9. Semi-supervised consensus clustering for gene expression data analysis

    OpenAIRE

    Wang, Yunli; Pan, Youlian

    2014-01-01

    Background Simple clustering methods such as hierarchical clustering and k-means are widely used for gene expression data analysis; but they are unable to deal with noise and high dimensionality associated with the microarray gene expression data. Consensus clustering appears to improve the robustness and quality of clustering results. Incorporating prior knowledge in clustering process (semi-supervised clustering) has been shown to improve the consistency between the data partitioning and do...

  10. On the use of big-bang method to generate low-energy structures of atomic clusters modeled with pair potentials of different ranges.

    Science.gov (United States)

    Marques, J M C; Pais, A A C C; Abreu, P E

    2012-02-05

    The efficiency of the so-called big-bang method for the optimization of atomic clusters is analysed in detail for Morse pair potentials with different ranges; here, we have used Morse potentials with four different ranges, from long- ρ = 3) to short-ranged ρ = 14) interactions. Specifically, we study the efficacy of the method in discovering low-energy structures, including the putative global minimum, as a function of the potential range and the cluster size. A new global minimum structure for long-ranged ρ = 3) Morse potential at the cluster size of n= 240 is reported. The present results are useful to assess the maximum cluster size for each type of interaction where the global minimum can be discovered with a limited number of big-bang trials. Copyright © 2011 Wiley Periodicals, Inc.

  11. Allergen Sensitization Pattern by Sex: A Cluster Analysis in Korea.

    Science.gov (United States)

    Ohn, Jungyoon; Paik, Seung Hwan; Doh, Eun Jin; Park, Hyun-Sun; Yoon, Hyun-Sun; Cho, Soyun

    2017-12-01

    Allergens tend to sensitize simultaneously. Etiology of this phenomenon has been suggested to be allergen cross-reactivity or concurrent exposure. However, little is known about specific allergen sensitization patterns. To investigate the allergen sensitization characteristics according to gender. Multiple allergen simultaneous test (MAST) is widely used as a screening tool for detecting allergen sensitization in dermatologic clinics. We retrospectively reviewed the medical records of patients with MAST results between 2008 and 2014 in our Department of Dermatology. A cluster analysis was performed to elucidate the allergen-specific immunoglobulin (Ig)E cluster pattern. The results of MAST (39 allergen-specific IgEs) from 4,360 cases were analyzed. By cluster analysis, 39items were grouped into 8 clusters. Each cluster had characteristic features. When compared with female, the male group tended to be sensitized more frequently to all tested allergens, except for fungus allergens cluster. The cluster and comparative analysis results demonstrate that the allergen sensitization is clustered, manifesting allergen similarity or co-exposure. Only the fungus cluster allergens tend to sensitize female group more frequently than male group.

  12. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

    Science.gov (United States)

    Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

    2013-03-01

    Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

  13. Electronic and magnetic properties of small rhodium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Yee Yeen; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.

  14. WebGimm: An integrated web-based platform for cluster analysis, functional analysis, and interactive visualization of results.

    Science.gov (United States)

    Joshi, Vineet K; Freudenberg, Johannes M; Hu, Zhen; Medvedovic, Mario

    2011-01-17

    Cluster analysis methods have been extensively researched, but the adoption of new methods is often hindered by technical barriers in their implementation and use. WebGimm is a free cluster analysis web-service, and an open source general purpose clustering web-server infrastructure designed to facilitate easy deployment of integrated cluster analysis servers based on clustering and functional annotation algorithms implemented in R. Integrated functional analyses and interactive browsing of both, clustering structure and functional annotations provides a complete analytical environment for cluster analysis and interpretation of results. The Java Web Start client-based interface is modeled after the familiar cluster/treeview packages making its use intuitive to a wide array of biomedical researchers. For biomedical researchers, WebGimm provides an avenue to access state of the art clustering procedures. For Bioinformatics methods developers, WebGimm offers a convenient avenue to deploy their newly developed clustering methods. WebGimm server, software and manuals can be freely accessed at http://ClusterAnalysis.org/.

  15. Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale.

    Science.gov (United States)

    Emmons, Scott; Kobourov, Stephen; Gallant, Mike; Börner, Katy

    2016-01-01

    Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms-Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters.

  16. Cluster analysis of activity-time series in motor learning

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Å; Futiger, Sally A

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel......-time series. The optimal number of clusters was chosen using a cross-validated likelihood method, which highlights the clustering pattern that generalizes best over the subjects. Data were acquired with PET at different time points during practice of a visuomotor task. The results from cluster analysis show...

  17. Molecular dynamics calculation of half-lives for thermal decay of Lennard-Jones clusters

    International Nuclear Information System (INIS)

    Smith, R.W.

    1991-01-01

    Molecular dynamics has been used with a Lenard-Jones (6-12) potential in order to study the decay behavior of neutral Argon clusters containing between 12 and 14 atoms. The clusters were heated to temperatures well above their melting points and then tracked in time via molecular dynamics until evaporation of one or more atoms was observed. In each simulation, the mode of evaporation, energy released during evaporation, and cluster lifetime were recorded. Results from roughly 2000 simulation histories were combined in order to compute statistically significant values of cluster half-lives and decay energies. It was found that cluster half-life decreases with increasing energy and that for a given value of excess energy (defined as E=(E tot -E gnd )/n), the 13 atom cluster is more stable against decay than clusters containing either 12 or 14 atoms. The dominant decay mechanism for all clusters was determined to be single atom emission. (orig.)

  18. Advanced analysis of forest fire clustering

    Science.gov (United States)

    Kanevski, Mikhail; Pereira, Mario; Golay, Jean

    2017-04-01

    Analysis of point pattern clustering is an important topic in spatial statistics and for many applications: biodiversity, epidemiology, natural hazards, geomarketing, etc. There are several fundamental approaches used to quantify spatial data clustering using topological, statistical and fractal measures. In the present research, the recently introduced multi-point Morisita index (mMI) is applied to study the spatial clustering of forest fires in Portugal. The data set consists of more than 30000 fire events covering the time period from 1975 to 2013. The distribution of forest fires is very complex and highly variable in space. mMI is a multi-point extension of the classical two-point Morisita index. In essence, mMI is estimated by covering the region under study by a grid and by computing how many times more likely it is that m points selected at random will be from the same grid cell than it would be in the case of a complete random Poisson process. By changing the number of grid cells (size of the grid cells), mMI characterizes the scaling properties of spatial clustering. From mMI, the data intrinsic dimension (fractal dimension) of the point distribution can be estimated as well. In this study, the mMI of forest fires is compared with the mMI of random patterns (RPs) generated within the validity domain defined as the forest area of Portugal. It turns out that the forest fires are highly clustered inside the validity domain in comparison with the RPs. Moreover, they demonstrate different scaling properties at different spatial scales. The results obtained from the mMI analysis are also compared with those of fractal measures of clustering - box counting and sand box counting approaches. REFERENCES Golay J., Kanevski M., Vega Orozco C., Leuenberger M., 2014: The multipoint Morisita index for the analysis of spatial patterns. Physica A, 406, 191-202. Golay J., Kanevski M. 2015: A new estimator of intrinsic dimension based on the multipoint Morisita index

  19. Physicochemical properties of different corn varieties by principal components analysis and cluster analysis

    International Nuclear Information System (INIS)

    Zeng, J.; Li, G.; Sun, J.

    2013-01-01

    Principal components analysis and cluster analysis were used to investigate the properties of different corn varieties. The chemical compositions and some properties of corn flour which processed by drying milling were determined. The results showed that the chemical compositions and physicochemical properties were significantly different among twenty six corn varieties. The quality of corn flour was concerned with five principal components from principal component analysis and the contribution rate of starch pasting properties was important, which could account for 48.90%. Twenty six corn varieties could be classified into four groups by cluster analysis. The consistency between principal components analysis and cluster analysis indicated that multivariate analyses were feasible in the study of corn variety properties. (author)

  20. Cluster temperature. Methods for its measurement and stabilization

    International Nuclear Information System (INIS)

    Makarov, G N

    2008-01-01

    Cluster temperature is an important material parameter essential to many physical and chemical processes involving clusters and cluster beams. Because of the diverse methods by which clusters can be produced, excited, and stabilized, and also because of the widely ranging values of atomic and molecular binding energies (approximately from 10 -5 to 10 eV) and numerous energy relaxation channels in clusters, cluster temperature (internal energy) ranges from 10 -3 to about 10 8 K. This paper reviews research on cluster temperature and describes methods for its measurement and stabilization. The role of cluster temperature in and its influence on physical and chemical processes is discussed. Results on the temperature dependence of cluster properties are presented. The way in which cluster temperature relates to cluster structure and to atomic and molecular interaction potentials in clusters is addressed. Methods for strong excitation of clusters and channels for their energy relaxation are discussed. Some applications of clusters and cluster beams are considered. (reviews of topical problems)

  1. Rotation of small clusters in sheared metallic glasses

    International Nuclear Information System (INIS)

    Delogu, Francesco

    2011-01-01

    Graphical abstract: When a Cu 50 Ti 50 metallic glass is shear-deformed, the irreversible rearrangement of local structures allows the rigid body rotation of clusters. Highlights: → A shear-deformed Cu 50 Ti 50 metallic glass was studied by molecular dynamics. → Atomic displacements occur at irreversible rearrangements of local structures. → The dynamics of such events includes the rigid body rotation of clusters. → Relatively large clusters can undergo two or more complete rotations. - Abstract: Molecular dynamics methods were used to simulate the response of a Cu 50 Ti 50 metallic glass to shear deformation. Attention was focused on the atomic displacements taking place during the irreversible rearrangement of local atomic structures. It is shown that the apparently disordered dynamics of such events hides the rigid body rotation of small clusters. Cluster rotation was investigated by evaluating rotation angle, axis and lifetimes. This permitted to point out that relatively large clusters can undergo two or more complete rotations.

  2. Taxonomical analysis of the Cancer cluster of galaxies

    International Nuclear Information System (INIS)

    Perea, J.; Olmo, A. del; Moles, M.

    1986-01-01

    A description is presented of the Cancer cluster of galaxies, based on a taxonomical analysis in (α,delta, Vsub(r)) space. Earlier results by previous authors on the lack of dynamical entity of the cluster are confirmed. The present analysis points out the existence of a binary structure in the most populated region of the complex. (author)

  3. Static dipole polarizabilities of Scn (n ≤ 15) clusters

    International Nuclear Information System (INIS)

    Xi-Bo, Li; Jiang-Shan, Luo; Wei-Dong, Wu; Yong-Jian, Tang; Hong-Yan, Wang; Yun-Dong, Guo

    2009-01-01

    The static dipole polarizabilities of scandium clusters with up to 15 atoms are determined by using the numerically finite field method in the framework of density functional theory. The electronic effects on the polarizabilities are investigated for the scandium clusters. We examine a large highest occupied molecular orbital — the lowest occupied molecular orbital (HOMO–LUMO) gap of a scandium cluster usually corresponds to a large dipole moment. The static polarizability per atom decreases slowly and exhibits local minimum with increasing cluster size. The polarizability anisotropy and the ratio of mean static polarizability to the HOMO–LUMO gap can also reflect the cluster stability. The polarizability of the scandium cluster is partially related to the HOMO–LUMO gap and is also dependent on geometrical characteristics. A strong correlation between the polarizability and ionization energy is observed. (atomic and molecular physics)

  4. Observation of a barium xenon exciplex within a large argon cluster.

    Science.gov (United States)

    Briant, M; Gaveau, M-A; Mestdagh, J-M

    2010-07-21

    Spectroscopic measurements provide fluorescence and excitation spectra of a single barium atom codeposited with xenon atoms on argon clusters of average size approximately 2000. The spectra are studied as a function of the number of xenon atoms per cluster. The excitation spectrum with approximately 10 xenon atoms per cluster is qualitatively similar to that observed when no xenon atom is present on the cluster. It consists of two bands located on each side of the 6s6p (1)P-6s(2) (1)S resonance line of the free barium. In contrast, the fluorescence spectrum differs qualitatively since a barium-xenon exciplex is observed, which has no counterpart in xenon free clusters. In particular an emission is observed, which is redshifted by 729 cm(-1) with respect to the Ba(6s6p (1)P-6s(2) (1)S) resonance line.

  5. Assessment of surface water quality using hierarchical cluster analysis

    Directory of Open Access Journals (Sweden)

    Dheeraj Kumar Dabgerwal

    2016-02-01

    Full Text Available This study was carried out to assess the physicochemical quality river Varuna inVaranasi,India. Water samples were collected from 10 sites during January-June 2015. Pearson correlation analysis was used to assess the direction and strength of relationship between physicochemical parameters. Hierarchical Cluster analysis was also performed to determine the sources of pollution in the river Varuna. The result showed quite high value of DO, Nitrate, BOD, COD and Total Alkalinity, above the BIS permissible limit. The results of correlation analysis identified key water parameters as pH, electrical conductivity, total alkalinity and nitrate, which influence the concentration of other water parameters. Cluster analysis identified three major clusters of sampling sites out of total 10 sites, according to the similarity in water quality. This study illustrated the usefulness of correlation and cluster analysis for getting better information about the river water quality.International Journal of Environment Vol. 5 (1 2016,  pp: 32-44

  6. Chemical analysis of carbonates and carbonate rocks by atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tardon, S

    1981-01-01

    Evaluates methods of determining chemical composition of rocks surrounding black coal seams. Carbonate rock samples were collected in the Ostrava-Karvina coal mines. Sampling methods are described. Determination of the following elements and compounds in carbonate rocks is discussed: calcium, magnesium, iron, manganese, barium, silicon, aluminium, titanium, sodium, potassium, sulfur trioxide, phosphorus pentoxide, water and carbon dioxide. Proportion of compounds insoluble in water in the investigated rocks is also determined. Most of the elements are determined by means of atomic absorption analysis. Phosphorus is also determined by atomic absorption analysis. Other compounds are determined gravimetrically. The described procedure permits weight of a rock sample to be reduced to 0.5 g without reducing analysis accuracy. The results of determining carbonate rock components by X-ray analysis and by chemical analysis are compared. Equipment used for atomic absorption analysis is characterized (the 503 Perkin-Elmer and the CF-4 Optica-Milano spectrophotometers). The analyzed method for determining carbonate rock permits more accurate classification of rocks surrounding coal seams and rock impurities in run-of-mine coal. (22 refs.) (In Czech)

  7. Magneto-structural properties and magnetic anisotropy of small transition-metal clusters: a first-principles study

    International Nuclear Information System (INIS)

    Blonski, Piotr; Hafner, Juergen

    2011-01-01

    Ab initio density-functional calculations including spin-orbit coupling (SOC) have been performed for Ni and Pd clusters with three to six atoms and for 13-atom clusters of Ni, Pd, and Pt, extending earlier calculations for Pt clusters with up to six atoms (2011 J. Chem. Phys. 134 034107). The geometric and magnetic structures have been optimized for different orientations of the magnetization with respect to the crystallographic axes of the cluster. The magnetic anisotropy energies (MAE) and the anisotropies of spin and orbital moments have been determined. Particular attention has been paid to the correlation between the geometric and magnetic structures. The magnetic point group symmetry of the clusters varies with the direction of the magnetization. Even for a 3d metal such as Ni, the change in the magnetic symmetry leads to small geometric distortions of the cluster structure, which are even more pronounced for the 4d metal Pd. For a 5d metal the SOC is strong enough to change the energetic ordering of the structural isomers. SOC leads to a mixing of the spin states corresponding to the low-energy spin isomers identified in the scalar-relativistic calculations. Spin moments are isotropic only for Ni clusters, but anisotropic for Pd and Pt clusters, orbital moments are anisotropic for the clusters of all three elements. The magnetic anisotropy energies have been calculated. The comparison between MAE and orbital anisotropy invalidates a perturbation analysis of magnetic anisotropy for these small clusters.

  8. Sm cluster superlattice on graphene/Ir(111)

    Science.gov (United States)

    Mousadakos, Dimitris; Pivetta, Marina; Brune, Harald; Rusponi, Stefano

    2017-12-01

    We report on the first example of a self-assembled rare earth cluster superlattice. As a template, we use the moiré pattern formed by graphene on Ir(111); its lattice constant of 2.52 nm defines the interparticle distance. The samarium cluster superlattice forms for substrate temperatures during deposition ranging from 80 to 110 K, and it is stable upon annealing to 140 K. By varying the samarium coverage, the mean cluster size can be increased up to 50 atoms, without affecting the long-range order. The spatial order and the width of the cluster size distribution match the best examples of metal cluster superlattices grown by atomic beam epitaxy on template surfaces.

  9. Self-assembled metal clusters on an alumina nanomesh

    International Nuclear Information System (INIS)

    Buchsbaum, A.

    2012-01-01

    Template mediated growth of metals has attracted much interest due to the remarkable magnetic and catalytic properties of clusters in the nanometer range and provides the opportunity to grow clusters with narrow size distributions. When the Ni3Al(111) surface is exposed to oxygen at elevated temperature a thin oxide film with a well-defined structure and uniform thickness grows and covers the alloy surface completely. The structure of the alumina film has been solved mainly by the help of scanning tunneling microscopy (STM) combined with density functional theory (DFT) calculations. The structure of the approx. 0.5 nm thick oxide film has sixfold symmetry and exhibits holes with a diameter of approx. 400 pm reaching down to the metal substrate at the corners of the (Sqrt(67) x Sqrt(67))R12.2° unit cell. The side length of the unit cell is 4.1 nm. The driving force for the formation of the oxide nanomesh is the reduction of the metal/oxide interface energy by the formation of energetically favorable Al-Ni bonds at the interface. Due to better wetting of metal on metal surfaces than on oxide surfaces, metal atoms prefer to bind to the substrate in the hole, not to the oxide. Therefore the oxide forms a template with a hexagonal 4.1 nm lattice for the growth of well-ordered metal clusters. Nevertheless, the growth of most metal clusters on top of the corner holes is not straightforward. Fe and Co atoms cannot jump into the corner holes due to a barrier for diffusion and nucleate at their second favorable adsorption site. However, Pd atoms trapped in these corner holes reduce the barrier for diffusion and create metallic nucleation sites where Fe as well as Co clusters can nucleate and form a well-ordered hexagonal arrangement on the oxide nanomesh. We have studied these Fe and Co clusters and applied different methods like STM and surface x-ray diffraction (SXRD) to determine the morphology and crystallography of the clusters. For Fe we found cluster growth with

  10. First-principles study of helium clustering at initial stage in ThO2

    International Nuclear Information System (INIS)

    Shao Kuan; Han Han; Zhang Wei; Wang Chang-Ying; Guo Yong-Liang; Ren Cui-Lan; Huai Ping

    2017-01-01

    The clustering behavior of helium atoms in thorium dioxide has been investigated by first-principles calculations. The results show that He atoms tend to form a cluster around an octahedral interstitial site (OIS). As the concentration of He atoms in ThO 2 increases, the strain induced by the He atoms increases and the octahedral interstitial site is not large enough to accommodate a large cluster, such as a He hexamer. We considered three different Schottky defect (SD) configurations (SD 1 , SD 2 , and SD 3 . When He atoms are located in the SD sites, the strain induced by the He atoms is released and the incorporation and binding energies decrease. The He trimer is the most stable cluster in SD 1 . Large He clusters, such as a He hexamer, are also stable in the SDs. (paper)

  11. Analysis of Aspects of Innovation in a Brazilian Cluster

    Directory of Open Access Journals (Sweden)

    Adriana Valélia Saraceni

    2012-09-01

    Full Text Available Innovation through clustering has become very important on the increased significance that interaction represents on innovation and learning process concept. This study aims to identify whereas a case analysis on innovation process in a cluster represents on the learning process. Therefore, this study is developed in two stages. First, we used a preliminary case study verifying a cluster innovation analysis and it Innovation Index, for further, exploring a combined body of theory and practice. Further, the second stage is developed by exploring the learning process concept. Both stages allowed us building a theory model for the learning process development in clusters. The main results of the model development come up with a mechanism of improvement implementation on clusters when case studies are applied.

  12. Effects of Group Size and Lack of Sphericity on the Recovery of Clusters in K-Means Cluster Analysis

    Science.gov (United States)

    de Craen, Saskia; Commandeur, Jacques J. F.; Frank, Laurence E.; Heiser, Willem J.

    2006-01-01

    K-means cluster analysis is known for its tendency to produce spherical and equally sized clusters. To assess the magnitude of these effects, a simulation study was conducted, in which populations were created with varying departures from sphericity and group sizes. An analysis of the recovery of clusters in the samples taken from these…

  13. Two-Way Regularized Fuzzy Clustering of Multiple Correspondence Analysis.

    Science.gov (United States)

    Kim, Sunmee; Choi, Ji Yeh; Hwang, Heungsun

    2017-01-01

    Multiple correspondence analysis (MCA) is a useful tool for investigating the interrelationships among dummy-coded categorical variables. MCA has been combined with clustering methods to examine whether there exist heterogeneous subclusters of a population, which exhibit cluster-level heterogeneity. These combined approaches aim to classify either observations only (one-way clustering of MCA) or both observations and variable categories (two-way clustering of MCA). The latter approach is favored because its solutions are easier to interpret by providing explicitly which subgroup of observations is associated with which subset of variable categories. Nonetheless, the two-way approach has been built on hard classification that assumes observations and/or variable categories to belong to only one cluster. To relax this assumption, we propose two-way fuzzy clustering of MCA. Specifically, we combine MCA with fuzzy k-means simultaneously to classify a subgroup of observations and a subset of variable categories into a common cluster, while allowing both observations and variable categories to belong partially to multiple clusters. Importantly, we adopt regularized fuzzy k-means, thereby enabling us to decide the degree of fuzziness in cluster memberships automatically. We evaluate the performance of the proposed approach through the analysis of simulated and real data, in comparison with existing two-way clustering approaches.

  14. The application of atomic absorption spectrometry to chemical analysis

    International Nuclear Information System (INIS)

    Walsh, A.

    1980-01-01

    YhThe history of the development of atomic absorption methods of elemental analysis is outlined. The theoretical basis of atomic absorption methods is discussed and the principle of modern methods of atomic absorption measurements is described. The advantages, scope and limations of these methods are discussed. Related methods based on the measurement of atomic fluorescence are also described

  15. Phenotypes Determined by Cluster Analysis in Moderate to Severe Bronchial Asthma.

    Science.gov (United States)

    Youroukova, Vania M; Dimitrova, Denitsa G; Valerieva, Anna D; Lesichkova, Spaska S; Velikova, Tsvetelina V; Ivanova-Todorova, Ekaterina I; Tumangelova-Yuzeir, Kalina D

    2017-06-01

    Bronchial asthma is a heterogeneous disease that includes various subtypes. They may share similar clinical characteristics, but probably have different pathological mechanisms. To identify phenotypes using cluster analysis in moderate to severe bronchial asthma and to compare differences in clinical, physiological, immunological and inflammatory data between the clusters. Forty adult patients with moderate to severe bronchial asthma out of exacerbation were included. All underwent clinical assessment, anthropometric measurements, skin prick testing, standard spirometry and measurement fraction of exhaled nitric oxide. Blood eosinophilic count, serum total IgE and periostin levels were determined. Two-step cluster approach, hierarchical clustering method and k-mean analysis were used for identification of the clusters. We have identified four clusters. Cluster 1 (n=14) - late-onset, non-atopic asthma with impaired lung function, Cluster 2 (n=13) - late-onset, atopic asthma, Cluster 3 (n=6) - late-onset, aspirin sensitivity, eosinophilic asthma, and Cluster 4 (n=7) - early-onset, atopic asthma. Our study is the first in Bulgaria in which cluster analysis is applied to asthmatic patients. We identified four clusters. The variables with greatest force for differentiation in our study were: age of asthma onset, duration of diseases, atopy, smoking, blood eosinophils, nonsteroidal anti-inflammatory drugs hypersensitivity, baseline FEV1/FVC and symptoms severity. Our results support the concept of heterogeneity of bronchial asthma and demonstrate that cluster analysis can be an useful tool for phenotyping of disease and personalized approach to the treatment of patients.

  16. Monoxides of small terbium clusters: A density functional theory investigation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G. L.; Yuan, H. K., E-mail: yhk10@swu.edu.cn; Chen, H.; Kuang, A. L.; Li, Y.; Wang, J. Z.; Chen, J. [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China)

    2014-12-28

    To investigate the effect of oxygen atom on the geometrical structures, electronic, and magnetic properties of small terbium clusters, we carried out the first-principles calculations on Tb{sub n}O (n = 1-14) clusters. The capping of an oxygen atom on one trigonal-facet of Tb{sub n} structures is always favored energetically, which can significantly improve the structural stability. The far-infrared vibrational spectroscopies are found to be different from those of corresponding bare clusters, providing a distinct signal to detect the characteristic structures of Tb{sub n}O clusters. The primary effect of oxygen atom on magnetic properties is to change the magnetic orderings among Tb atoms and to reduce small of local magnetic moments of the O-coordinated Tb atoms, both of which serve as the key reasons for the experimental magnetic evolution of an oscillating behavior. These calculations are consistent with, and help to account for, the experimentally observed magnetic properties of monoxide Tb{sub n}O clusters [C. N. Van Dijk et al., J. Appl. Phys. 107, 09B526 (2010)].

  17. Atomic-Scale Simulations of Cascade Overlap and Damage Evolution in Silicon Carbide

    International Nuclear Information System (INIS)

    Gao, Fei; Weber, William J.

    2003-01-01

    In a previous computer simulation experiment, the accumulation of damage in SiC from the overlap of 10 keV Si displacement cascades at 200 K was investigated, and the damage states produced following each cascade were archived for further analysis. In the present study, interstitial clustering, system energy, and volume changes are investigated as the damage states evolve due to cascade overlap. An amorphous state is achieved at a damage energy density of 27.5 eV/atom (0.28 displacements per atom). At low dose levels, most defects are produced as isolated Frenkel pairs, with a small number of defect clusters involving only 4 to 6 atoms; however, after the overlap of 5 cascades (0.0125 displacements per atom), the size and number of interstitial clusters increases with increasing dose. The average energy per atom increases linearly with increasing short-range (or chemical) disorder. The volume change exhibits two regimes of linear dependence on system energy and increases more rapidly with dose than either the energy or the disorder, which indicate a significant contribution to swelling of isolated interstitials and anti-site defects. The saturation volume change for the cascade-amorphized state in these simulations is 8.2%, which is in reasonable agreement with the experimental value of 10.8% in neutron-irradiated SiC

  18. Irradiation effects of Ar cluster ion beams on Si substrates

    International Nuclear Information System (INIS)

    Ishii, Masahiro; Sugahara, Gaku; Takaoka, G.H.; Yamada, Isao

    1993-01-01

    Gas-cluster ion beams can be applied to new surface modification techniques such as surface cleaning, low damage sputtering and shallow junction formation. The effects of energetic Ar cluster impacts on solid surface were studied for cluster energies of 10-30keV. Irradiation effects were studied by RBS. For Si(111) substrates, irradiated with Ar ≥500 clusters to a dose of 1x10 15 ion/cm 2 at acceleration voltage 15kV, 2x10 14 atoms/cm 2 implanted Ar atoms were detected. In this case, the energy per cluster atom was smaller than 30eV; at this energy, no significant implantation occurs in the case of monomer ions. Ar cluster implantation into Si substrates occurred due to the high energy density irradiation. (author)

  19. Electronic structure of the BiSI cluster

    Energy Technology Data Exchange (ETDEWEB)

    Audzijonis, A. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Gaigalas, G. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, LT-01108 Vilnius (Lithuania); Zigas, L. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania)]. E-mail: kkol@vpu.lt; Pauliukas, A. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Zaltauskas, R. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Cerskus, A. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Narusis, J. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, LT-01108 Vilnius (Lithuania); Kvedaravicius, A. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania)

    2007-03-15

    The energy levels of valence bands (VB) and core levels (CL) of the BiSI crystals have been investigated theoretically. The molecular model of this crystal was used for calculation of VB and CL by the unrestricted Hartree-Fock method using GAMESS program, with Hw and MINI basis set. The molecular cluster consisting of 20 molecules of BiSI was used for calculations of averaged total density of states including atom vibrations. The spectra of averaged total density of states from VB of BiSI cluster has been compared with experimental X-ray photoelectron spectra (XPS) of VB of SbSI crystal. The results clarify that the atomic vibrations is one of possible reasons for the smoother appearance of the experimental XPS. The investigation of vibrational spectrum reveals new experimental information about the reflection spectrum of BiSI crystals. The cluster model calculations have shown that the splitting of the CL in the BiSI may be caused by the photoelectron emission from the atoms at the surface that is in different valence states. The cluster model calculation showed that splitting energy of CL depends on difference of ionic charges of the same atoms at the edges of BiSI cluster.

  20. Electronic structure of the BiSI cluster

    International Nuclear Information System (INIS)

    Audzijonis, A.; Gaigalas, G.; Zigas, L.; Pauliukas, A.; Zaltauskas, R.; Cerskus, A.; Narusis, J.; Kvedaravicius, A.

    2007-01-01

    The energy levels of valence bands (VB) and core levels (CL) of the BiSI crystals have been investigated theoretically. The molecular model of this crystal was used for calculation of VB and CL by the unrestricted Hartree-Fock method using GAMESS program, with Hw and MINI basis set. The molecular cluster consisting of 20 molecules of BiSI was used for calculations of averaged total density of states including atom vibrations. The spectra of averaged total density of states from VB of BiSI cluster has been compared with experimental X-ray photoelectron spectra (XPS) of VB of SbSI crystal. The results clarify that the atomic vibrations is one of possible reasons for the smoother appearance of the experimental XPS. The investigation of vibrational spectrum reveals new experimental information about the reflection spectrum of BiSI crystals. The cluster model calculations have shown that the splitting of the CL in the BiSI may be caused by the photoelectron emission from the atoms at the surface that is in different valence states. The cluster model calculation showed that splitting energy of CL depends on difference of ionic charges of the same atoms at the edges of BiSI cluster

  1. Fusion process of Lennard-Jones clusters: global minima and magic numbers formation

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2004-01-01

    We present a new theoretical framework for modeling the fusion process of Lennard–Jones (LJ) clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing paths up to the cluster size of 150 atoms...

  2. Structures, energetics and magnetic properties of (NiSn) n clusters ...

    Indian Academy of Sciences (India)

    The preference for tetrahedron unit of Ni3 Sn is seen in the lowest-energy configuration of these clusters. The multi-centre bonding between Ni atoms play an important role in stabilizing the stoichiometric Ni–Sn clusters. Doping of Sn atoms enhances the binding energy and reduces the ionization potential of nickel clusters.

  3. Magnetic behavior of Si-Ge bond in SixGe4-x nano-clusters

    Science.gov (United States)

    Nahali, Masoud; Mehri, Ali

    2018-06-01

    The structure of SixGe4-x nano-clusters were optimized by MPW1B95 level of theory using MG3S and SDB-aug-cc-PVTZ basis set. The agreement of the calculated ionization and dissociation energies with experimental values validates the reported structures of nano-clusters and justifies the use of hybrid meta density functional method. Since the Si-Si bond is stronger than Si-Ge and Ge-Ge bonds, the Si-Si, Si-Ge, and Ge-Ge diagonal bonds determine the precedence of the stability in these nano-clusters. The hybrid meta density functional calculations were carried out to investigate the adsorption of CO on all possible SixGe4-x nano-clusters. It was found that the silicon atom generally makes a stronger bond with CO than germanium and thereby preferentially affects the shape of structures having higher multiplicity. In Si-Ge structures with higher spin more than 95% of spins accumulate on positions with less bonds to other atoms of the cluster. Through CO adsorption on these clusters bridge structures are made that behave as spin bridge which conduct the spin from the nano-cluster surface to the adsorbate atoms. A better understanding of bridged structures was achieved upon introducing the 'spin bridge' concept. Based on exhaustive spin density analysis, it was found that the reason for the extra negative charge on oxygen in the bridged structures is the relocation of spin from the surface through the bridge.

  4. Kr atoms and their clustering in zeolite A

    CERN Document Server

    Lim, W T; Jung, K J; Heo, N H

    2001-01-01

    The positions of Kr atoms encapsulated in the molecular-dimensioned cavities of fully dehydrated zeolite A of unit-cell composition Cs sub 3 Na sub 8 HSi sub 1 sub 2 Al sub 1 sub 2 O sub 4 sub 8 (Cs sub 3 -A) have been determined. Cs sub 3 -A was exposed to 1025 atm of krypton gas at 400 .deg. C for four days, followed by cooling at pressure to encapsulate Kr atoms. The resulting crystal structure of Cs sub 3 -A(6Kr) (a=12.247(2) A, R sub 1 =0.078, and R sub 2 =0.085) has been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at 21(1) .deg. C and 1 atm. In the crystal structure of Cs sub 3 -A(6Kr), six Kr atoms per unit cell are distributed over three crystallographically distinct positions: each unit cell contains one Kr atom at Kr(1) on a threefold axis in the sodalite unit, three at Kr(2) opposite four-rings in the large cavity , and two at Kr(3) on threefold axes in the large cavity . Relatively strong interactions of Kr atoms at Kr(1) and Kr(3) with Na sup + ions of ...

  5. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    Science.gov (United States)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-01

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  6. Planar CoB18- Cluster: a New Motif for - and Metallo-Borophenes

    Science.gov (United States)

    Chen, Teng-Teng; Jian, Tian; Lopez, Gary; Li, Wan-Lu; Chen, Xin; Li, Jun; Wang, Lai-Sheng

    2016-06-01

    Combined Photoelectron Spectroscopy (PES) and theoretical calculations have found that anion boron clusters (Bn-) are planar and quasi-planar up to B25-. Recent works show that anion pure boron clusters continued to be planar at B27-,B30-,B35- and B36-. B35- and B36- provide the first experimental evidence for the viability of the two-dimensional (2D) boron sheets (Borophene). The 2D to three-dimensional (3D) transitions are shown to happen at B40-,B39- and B28-, which possess cage-like structures. These fullerene-like boron cage clusters are named as Borospherene. Recently, borophenes or similar structures are claimed to be synthesized by several groups. Following an electronic design principle, a series of transition-metal-doped boron clusters (M©Bn-, n=8-10) are found to possess the monocyclic wheel structures. Meanwhile, CoB12- and RhB12- are revealed to adopt half-sandwich-type structures with the quasi-planar B12 moiety similar to the B12- cluster. Very lately, we show that the CoB16- cluster possesses a highly symmetric Cobalt-centered drum-like structure, with a new record of coordination number at 16. Here we report the CoB18- cluster to possess a unique planar structure, in which the Co atom is doped into the network of a planar boron cluster. PES reveals that the CoB18- cluster is a highly stable electronic system with the first adiabatic detachment energy (ADE) at 4.0 eV. Global minimum searches along with high-level quantum calculations show the global minimum for CoB18- is perfectly planar and closed shell (1A1) with C2v symmetry. The Co atom is bonded with 7 boron atoms in the closest coordination shell and the other 11 boron atoms in the outer coordination shell. The calculated vertical detachment energy (VDE) values match quite well with our experimental results. Chemical bonding analysis by the Adaptive Natural Density Partitioning (AdNDP) method shows the CoB18- cluster is π-aromatic with four 4-centered-2-electron (4c-2e) π bonds and one 19

  7. Closed-cage tungsten oxide clusters in the gas phase.

    Science.gov (United States)

    Singh, D M David Jeba; Pradeep, T; Thirumoorthy, Krishnan; Balasubramanian, Krishnan

    2010-05-06

    During the course of a study on the clustering of W-Se and W-S mixtures in the gas phase using laser desorption ionization (LDI) mass spectrometry, we observed several anionic W-O clusters. Three distinct species, W(6)O(19)(-), W(13)O(29)(-), and W(14)O(32)(-), stand out as intense peaks in the regular mass spectral pattern of tungsten oxide clusters suggesting unusual stabilities for them. Moreover, these clusters do not fragment in the postsource decay analysis. While trying to understand the precursor material, which produced these clusters, we found the presence of nanoscale forms of tungsten oxide. The structure and thermodynamic parameters of tungsten clusters have been explored using relativistic quantum chemical methods. Our computed results of atomization energy are consistent with the observed LDI mass spectra. The computational results suggest that the clusters observed have closed-cage structure. These distinct W(13) and W(14) clusters were observed for the first time in the gas phase.

  8. Cluster analysis of rural, urban, and curbside atmospheric particle size data.

    Science.gov (United States)

    Beddows, David C S; Dall'Osto, Manuel; Harrison, Roy M

    2009-07-01

    Particle size is a key determinant of the hazard posed by airborne particles. Continuous multivariate particle size data have been collected using aerosol particle size spectrometers sited at four locations within the UK: Harwell (Oxfordshire); Regents Park (London); British Telecom Tower (London); and Marylebone Road (London). These data have been analyzed using k-means cluster analysis, deduced to be the preferred cluster analysis technique, selected from an option of four partitional cluster packages, namelythe following: Fuzzy; k-means; k-median; and Model-Based clustering. Using cluster validation indices k-means clustering was shown to produce clusters with the smallest size, furthest separation, and importantly the highest degree of similarity between the elements within each partition. Using k-means clustering, the complexity of the data set is reduced allowing characterization of the data according to the temporal and spatial trends of the clusters. At Harwell, the rural background measurement site, the cluster analysis showed that the spectra may be differentiated by their modal-diameters and average temporal trends showing either high counts during the day-time or night-time hours. Likewise for the urban sites, the cluster analysis differentiated the spectra into a small number of size distributions according their modal-diameter, the location of the measurement site, and time of day. The responsible aerosol emission, formation, and dynamic processes can be inferred according to the cluster characteristics and correlation to concurrently measured meteorological, gas phase, and particle phase measurements.

  9. Structure, reactivity and electronic properties of Mn doped Ni13 clusters

    International Nuclear Information System (INIS)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit

    2013-01-01

    In this work we have studied the structural and magnetic properties of Ni 13 cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H 2 molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni 12 Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni 12 MnH 2 . Our analysis of the stability and HOMO–LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H 2 absorption in the doped Ni 13−m Mn m alloy clusters. This has been reported earlier for smaller Ni n clusters [1

  10. Structure, reactivity and electronic properties of Mn doped Ni13 clusters

    Science.gov (United States)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit

    2013-06-01

    In this work we have studied the structural and magnetic properties of Ni13 cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H2 molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni12Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni12MnH2. Our analysis of the stability and HOMO-LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H2 absorption in the doped NiMnm alloy clusters. This has been reported earlier for smaller Nin clusters [1].

  11. Universal Four-Boson System: Dimer-Atom-Atom Efimov Effect and Recombination Reactions

    International Nuclear Information System (INIS)

    Deltuva, A.

    2013-01-01

    Recent theoretical developments in the four-boson system with resonant interactions are described. Momentum-space scattering equations for the four-particle transition operators are used. The properties of unstable tetramers with approximate dimer-atom-atom structure are determined. In addition, the three- and four-cluster recombination processes in the four-boson system are studied. (author)

  12. Simulation of the dynamics of laser-cluster interaction

    International Nuclear Information System (INIS)

    Deiss, C.

    2009-01-01

    Ranging in size from a few atoms to several million atoms, clusters form a link between gases and solids. When irradiating clusters with intense femtosecond laser pulses, the production of energetic and highly charged ions, hot electrons, and extreme UV and X-ray photons, gives evidence of a very efficient energy conversion. The size of the system and the multitude of mechanisms at play provide a considerable challenge for the theoretical treatment of the interaction. In this thesis, we have developed a Classical Trajectory Monte Carlo simulation that gives insight into the particle dynamics during the interaction of laser pulses with large argon clusters (with more than 10000 atoms per cluster). Elastic electron-ion scattering, electron-electron scattering, electron-impact ionization and excitation, as well as three-body recombination and Auger decay are included via stochastic events. In a strongly simplified picture, the dynamics of the laser-cluster interaction can be summarized as follows: the intense laser field ionizes the cluster atoms and drives the population of quasi-free electrons. In collision events, further free electrons and high ionic charge states are created. As some electrons leave the cluster, the ions feel a net positive charge, and the cluster ultimately disintegrates in a Coulomb explosion. Even at moderate laser intensities (approx. 10 15 W/cm 2 ), impact ionization produces inner-shell vacancies in the cluster ions that decay by emitting characteristic X-ray radiation. The small population of fast electrons responsible for these ionization events is produced near the cluster poles, where the combination of polarization and charging of the cluster leads to strongly enhanced field strengths. We achieve a good agreement over large parameter ranges between the simulation and X-ray spectroscopy experiments. We also investigate the dependence of X-ray emission on laser intensity, pulse duration and cluster size. We find that in order to

  13. Cluster analysis for determining distribution center location

    Science.gov (United States)

    Lestari Widaningrum, Dyah; Andika, Aditya; Murphiyanto, Richard Dimas Julian

    2017-12-01

    Determination of distribution facilities is highly important to survive in the high level of competition in today’s business world. Companies can operate multiple distribution centers to mitigate supply chain risk. Thus, new problems arise, namely how many and where the facilities should be provided. This study examines a fast-food restaurant brand, which located in the Greater Jakarta. This brand is included in the category of top 5 fast food restaurant chain based on retail sales. There were three stages in this study, compiling spatial data, cluster analysis, and network analysis. Cluster analysis results are used to consider the location of the additional distribution center. Network analysis results show a more efficient process referring to a shorter distance to the distribution process.

  14. Clustering Analysis for Credit Default Probabilities in a Retail Bank Portfolio

    Directory of Open Access Journals (Sweden)

    Elena ANDREI (DRAGOMIR

    2012-08-01

    Full Text Available Methods underlying cluster analysis are very useful in data analysis, especially when the processed volume of data is very large, so that it becomes impossible to extract essential information, unless specific instruments are used to summarize and structure the gross information. In this context, cluster analysis techniques are used particularly, for systematic information analysis. The aim of this article is to build an useful model for banking field, based on data mining techniques, by dividing the groups of borrowers into clusters, in order to obtain a profile of the customers (debtors and good payers. We assume that a class is appropriate if it contains members that have a high degree of similarity and the standard method for measuring the similarity within a group shows the lowest variance. After clustering, data mining techniques are implemented on the cluster with bad debtors, reaching a very high accuracy after implementation. The paper is structured as follows: Section 2 describes the model for data analysis based on a specific scoring model that we proposed. In section 3, we present a cluster analysis using K-means algorithm and the DM models are applied on a specific cluster. Section 4 shows the conclusions.

  15. Perspective: Size selected clusters for catalysis and electrochemistry

    Science.gov (United States)

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; Vajda, Stefan

    2018-03-01

    Size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization, and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition, cluster-support interactions, and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modeling based on density functional theory sampling of local minima and energy barriers or ab initio molecular dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Finally, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.

  16. Electron-ion collision rates in atomic clusters irradiated by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Moll, M; Hilse, P; Schlanges, M; Bornath, Th; Krainov, V P

    2010-01-01

    In atomic clusters irradiated by femtosecond laser pulses, plasmas with high density and high temperature are created. The heating is mainly caused by inverse bremsstrahlung, i.e. determined by electron-ion collisions. In the description of the scattering of electrons on noble gas ions in such plasmas, it is important to account for the inner structure of the ions and the screening by the surrounding plasma medium which can be accomplished by using suitable model potentials. In the wide parameter range met in experiments, the Born approximation is not applicable. Instead, the electron-ion collision frequency is calculated on the basis of classical momentum transport cross sections. Results are presented for xenon, krypton and argon ions in different charge states. A comparison of these results to those for the scattering on Coulomb particles with the same charge shows an enhancement of the collision frequency. The Born approximation, however, leads to an overestimation.

  17. Cluster Analysis as an Analytical Tool of Population Policy

    Directory of Open Access Journals (Sweden)

    Oksana Mikhaylovna Shubat

    2017-12-01

    Full Text Available The predicted negative trends in Russian demography (falling birth rates, population decline actualize the need to strengthen measures of family and population policy. Our research purpose is to identify groups of Russian regions with similar characteristics in the family sphere using cluster analysis. The findings should make an important contribution to the field of family policy. We used hierarchical cluster analysis based on the Ward method and the Euclidean distance for segmentation of Russian regions. Clustering is based on four variables, which allowed assessing the family institution in the region. The authors used the data of Federal State Statistics Service from 2010 to 2015. Clustering and profiling of each segment has allowed forming a model of Russian regions depending on the features of the family institution in these regions. The authors revealed four clusters grouping regions with similar problems in the family sphere. This segmentation makes it possible to develop the most relevant family policy measures in each group of regions. Thus, the analysis has shown a high degree of differentiation of the family institution in the regions. This suggests that a unified approach to population problems’ solving is far from being effective. To achieve greater results in the implementation of family policy, a differentiated approach is needed. Methods of multidimensional data classification can be successfully applied as a relevant analytical toolkit. Further research could develop the adaptation of multidimensional classification methods to the analysis of the population problems in Russian regions. In particular, the algorithms of nonparametric cluster analysis may be of relevance in future studies.

  18. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects

    International Nuclear Information System (INIS)

    Meslin-Chiffon, E.

    2007-11-01

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  19. Strontium clusters: electronic and geometry shell effects

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2008-01-01

    charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, and spectra of the density of electronic states (DOS). It is demonstrated that the size-evolution of structural and electronic properties of strontium clusters...... is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters. It is shown that the excessive charge essentially affects the optimized geometry...

  20. Cu cluster shell structure at elevated temperatures

    DEFF Research Database (Denmark)

    Christensen, Ole Bøssing; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    1991-01-01

    Equilibrium structures of small (3–29)-atom Cu clusters are determined by simulated annealing, and finite-temperature ensembles are simulated by Monte Carlo techniques using the effective-medium theory for the energy calculation. Clusters with 8, 18, and 20 atoms are found to be particularly stable....... The equilibrium geometrical structures are determined and found to be determined by a Jahn-Teller distortion, which is found to affect the geometry also at high temperatures. The ‘‘magic’’ clusters retain their large stability even at elevated temperatures....

  1. Clinical Characteristics of Exacerbation-Prone Adult Asthmatics Identified by Cluster Analysis.

    Science.gov (United States)

    Kim, Mi Ae; Shin, Seung Woo; Park, Jong Sook; Uh, Soo Taek; Chang, Hun Soo; Bae, Da Jeong; Cho, You Sook; Park, Hae Sim; Yoon, Ho Joo; Choi, Byoung Whui; Kim, Yong Hoon; Park, Choon Sik

    2017-11-01

    Asthma is a heterogeneous disease characterized by various types of airway inflammation and obstruction. Therefore, it is classified into several subphenotypes, such as early-onset atopic, obese non-eosinophilic, benign, and eosinophilic asthma, using cluster analysis. A number of asthmatics frequently experience exacerbation over a long-term follow-up period, but the exacerbation-prone subphenotype has rarely been evaluated by cluster analysis. This prompted us to identify clusters reflecting asthma exacerbation. A uniform cluster analysis method was applied to 259 adult asthmatics who were regularly followed-up for over 1 year using 12 variables, selected on the basis of their contribution to asthma phenotypes. After clustering, clinical profiles and exacerbation rates during follow-up were compared among the clusters. Four subphenotypes were identified: cluster 1 was comprised of patients with early-onset atopic asthma with preserved lung function, cluster 2 late-onset non-atopic asthma with impaired lung function, cluster 3 early-onset atopic asthma with severely impaired lung function, and cluster 4 late-onset non-atopic asthma with well-preserved lung function. The patients in clusters 2 and 3 were identified as exacerbation-prone asthmatics, showing a higher risk of asthma exacerbation. Two different phenotypes of exacerbation-prone asthma were identified among Korean asthmatics using cluster analysis; both were characterized by impaired lung function, but the age at asthma onset and atopic status were different between the two. Copyright © 2017 The Korean Academy of Asthma, Allergy and Clinical Immunology · The Korean Academy of Pediatric Allergy and Respiratory Disease

  2. First-principles calculations for titanium monoxide clusters TinO (n = 1–9)

    International Nuclear Information System (INIS)

    Lu Zhanghui; Cao Juexian

    2008-01-01

    Based on the density-functional theory, this paper studies the geometric and magnetic properties of Ti n O (n = 1–9) clusters. The resulting geometries show that the oxygen atom remains on the surface of clusters and does not change the geometry of Ti n significantly. The binding energy, second-order energy differences with the size of clusters show that Ti 7 O cluster is endowed with special stability. The stability of Ti n O clusters is validated by the recent time-of-flight mass spectra. The total magnetic moments for Ti n O clusters with n = 1–4, 8–9 are constant with 2 and drop to zero at n = 5–7. The local magnetic moment and charge partition of each atom, and the density of states are discussed. The magnetic moment of the Ti n O is clearly dominated by the localized 3d electrons of Ti atoms while the oxygen atom contributes a very small amount of spin in Ti n O clusters. (atomic and molecular physics)

  3. ADAS: Atomic data, modelling and analysis for fusion

    International Nuclear Information System (INIS)

    Summers, H. P.; O'Mullane, M. G.; Whiteford, A. D.; Badnell, N. R.; Loch, S. D.

    2007-01-01

    The Atomic Data and Analysis Structure, ADAS, comprises extensive fundamental and derived atomic data collections, interactive codes for the manipulation and generation of collisional-radiative data and models, off-line codes for large scale fundamental atomic data production and codes for diagnostic analysis in the fusion and astrophysical environments. ADAS data are organized according to precise specifications, tuned to application and are assigned to numbered ADAS data formats. Some of these formats contain very large quantities of data and some have achieved wide-scale adoption in the fusion community.The paper focuses on recent extensions of ADAS designed to orient ADAS to the needs of ITER. The issue of heavy atomic species, expected to be present as ITER wall and divertor materials, dopants or control species, will be addressed with a view to the economized handling of the emission and ionisation state data needed for diagnostic spectral analysis. Charge exchange and beam emission spectroscopic capabilities and developments in ADAS will be reviewed from an ITER perspective and in the context of a shared analysis between fusion laboratories. Finally an overview and summary of current large scale fundamental data production in the framework of the ADAS project will be given and its intended availability in both fusion and astrophysics noted

  4. Magic numbers and isotopic effect of ion clusters

    International Nuclear Information System (INIS)

    Wang Guanghou

    1989-04-01

    The magic numbers and isotopic effect as well as stable configurations in relation to the charge state of the clusters are discussed. Ionic (atomic) clusters are small atomic aggregates, a physical state between gas and solid states, and have many interesting properties, some of them are more or less similar to those in nuclei

  5. PREFACE: International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (MPS2014)

    Science.gov (United States)

    Ancarani, Lorenzo Ugo

    2015-04-01

    This volume contains a collection of contributions from the invited speakers at the 2014 edition of the International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces held in Metz, France, from 15th to 18th July 2014. This biennial conference alternates with the ICPEAC satellite International Symposium on (e,2e), Double Photoionization and Related Topics, and is concerned with experimental and theoretical studies of radiation interactions with matter. These include many-body and electron-electron correlation effects in excitation, and in single and multiple ionization of atoms, molecules, clusters and surfaces with various projectiles: electrons, photons and ions. More than 80 scientists, from 19 different countries around the world, came together to discuss the most recent progress on these topics. The scientific programme included 28 invited talks and a poster session extending over the three days of the meeting. Amongst the 51 posters, 11 have been selected and were advertised through short talks. Besides, Professor Nora Berrah gave a talk in memory of Professor Uwe Becker who sadly passed away shortly after co-chairing the previous edition of this conference. Financial support from the Institut Jean Barriol, Laboratoire SRSMC, Groupement de Recherche THEMS (CNRS), Ville de Metz, Metz Métropole, Conseil Général de la Moselle and Région Lorraine is gratefully acknowledged. Finally, I would like to thank the members of the local committee and the staff of the Université de Lorraine for making the conference run smoothly, the International Advisory Board for building up the scientific programme, the sessions chairpersons, those who gave their valuable time in carefully refereeing the articles of this volume and last, but not least, all participants for contributing to lively and fruitful discussions throughout the meeting.

  6. Automated analysis of organic particles using cluster SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Gillen, Greg; Zeissler, Cindy; Mahoney, Christine; Lindstrom, Abigail; Fletcher, Robert; Chi, Peter; Verkouteren, Jennifer; Bright, David; Lareau, Richard T.; Boldman, Mike

    2004-06-15

    Cluster primary ion bombardment combined with secondary ion imaging is used on an ion microscope secondary ion mass spectrometer for the spatially resolved analysis of organic particles on various surfaces. Compared to the use of monoatomic primary ion beam bombardment, the use of a cluster primary ion beam (SF{sub 5}{sup +} or C{sub 8}{sup -}) provides significant improvement in molecular ion yields and a reduction in beam-induced degradation of the analyte molecules. These characteristics of cluster bombardment, along with automated sample stage control and custom image analysis software are utilized to rapidly characterize the spatial distribution of trace explosive particles, narcotics and inkjet-printed microarrays on a variety of surfaces.

  7. Advanced statistics to improve the physical interpretation of atomization processes

    International Nuclear Information System (INIS)

    Panão, Miguel R.O.; Radu, Lucian

    2013-01-01

    Highlights: ► Finite pdf mixtures improves physical interpretation of sprays. ► Bayesian approach using MCMC algorithm is used to find the best finite mixture. ► Statistical method identifies multiple droplet clusters in a spray. ► Multiple drop clusters eventually associated with multiple atomization mechanisms. ► Spray described by drop size distribution and not only its moments. -- Abstract: This paper reports an analysis of the physics of atomization processes using advanced statistical tools. Namely, finite mixtures of probability density functions, which best fitting is found using a Bayesian approach based on a Markov chain Monte Carlo (MCMC) algorithm. This approach takes into account eventual multimodality and heterogeneities in drop size distributions. Therefore, it provides information about the complete probability density function of multimodal drop size distributions and allows the identification of subgroups in the heterogeneous data. This allows improving the physical interpretation of atomization processes. Moreover, it also overcomes the limitations induced by analyzing the spray droplets characteristics through moments alone, particularly, the hindering of different natures of droplet formation. Finally, the method is applied to physically interpret a case-study based on multijet atomization processes

  8. A valence-universal coupled-cluster single- and double-excitations method for atoms: Pt. 3

    International Nuclear Information System (INIS)

    Jankowski, K.; Malinowski, P.

    1994-01-01

    To better understand the problems met when solving the equations of VU-CC approaches in the presence of intruder states, we are concerned with the following aspects of the solvability problem for sets of non-linear equations: the existence and properties of multiple solutions and the attainability of these solutions by means of various numerical methods. Our study is concentrated on the equations obtained for Be within the framework of the recently formulated atomically oriented form of the valence-universal coupled-cluster theory accounting for one- and two-electron excitations (VU-CCSD/R) and based on the complete model space (2s 2 , 2p 2 ). Six pairs of multiple solutions representing four 1 S states are found and discussed. Three of these solutions provide amplitudes describing the 2p 2 1 S state for which the intruder state problem has been considered as extremely serious. Several known numerical methods have been applied to solve the same set of non-linear equations for the two-valence cluster amplitudes. It is shown that these methods perform quite differently in the presence of intruder states, which seems to indicate that the intruder state problem for VU-CC methods is partly caused by the commonly used methods of solving the non-linear equations. (author)

  9. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    Science.gov (United States)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  10. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Schroedter, Lasse

    2013-08-15

    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10{sup 15} W/cm{sup 2}. For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  11. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    International Nuclear Information System (INIS)

    Schroedter, Lasse

    2013-08-01

    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10 15 W/cm 2 . For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  12. Anomalous properties of technetium clusters

    International Nuclear Information System (INIS)

    Kryuchkov, S.V.

    1985-01-01

    On the basis of critical evaluation of literature data in the field of chemistry of technetium cluster compounds with ligands of a weak field a conclusion is made on specific, ''anomalous'' properties of technetium cluster complexes which consist in an increased ability of the given element to the formation of a series of binuclear and multinuclear clusters, similar in composition and structure and easily transforming in each other. The majority of technetium clusters unlike similar compounds of other elements are paramagnetic with one unpaired electron on ''metallic'' MO of loosening type. All theoretical conceptions known today on the electronic structure of technetium clusters are considered. It is pointed out, that the best results in the explanation of ''anomalous'' properties of technetium clusters can be obtained in the framework of nonempirical methods of self-consistent field taking into account configuration interactions. It is also shown, that certain properties of technetium clusters can be explained on the basis of qualitative model of Coulomb repulsion of metal atoms in clusters. The conclusion is made, that technetium position in the Periodic table, as well as recently detected technetium property to the decrease of effective charge on its atoms during M-M bond formation promote a high ability of the element to cluster formation both with weak field ligands and with strong field one

  13. Nanocluster formation by spin coating : quantitative atomic force microscopy and Rutherford backscattering spectrometry analysis

    NARCIS (Netherlands)

    Partridge, A.; Toussaint, S.L.G.; Flipse, C.F.J.; IJzendoorn, van L.J.; Oetelaar, van den L.C.A.

    1996-01-01

    A recently developed spin coating method has been employed to produce a homogeneous distribution of nanometer-sized metal clusters onto a flat oxidic support. The particle size and distribution, and the total amount of material deposited has been studied by comparing the results of atomic force

  14. Network Analysis Tools: from biological networks to clusters and pathways.

    Science.gov (United States)

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  15. Performance analysis of clustering techniques over microarray data: A case study

    Science.gov (United States)

    Dash, Rasmita; Misra, Bijan Bihari

    2018-03-01

    Handling big data is one of the major issues in the field of statistical data analysis. In such investigation cluster analysis plays a vital role to deal with the large scale data. There are many clustering techniques with different cluster analysis approach. But which approach suits a particular dataset is difficult to predict. To deal with this problem a grading approach is introduced over many clustering techniques to identify a stable technique. But the grading approach depends on the characteristic of dataset as well as on the validity indices. So a two stage grading approach is implemented. In this study the grading approach is implemented over five clustering techniques like hybrid swarm based clustering (HSC), k-means, partitioning around medoids (PAM), vector quantization (VQ) and agglomerative nesting (AGNES). The experimentation is conducted over five microarray datasets with seven validity indices. The finding of grading approach that a cluster technique is significant is also established by Nemenyi post-hoc hypothetical test.

  16. Clustering behaviour in an Al-Mg-Si-Cu alloy during natural ageing and subsequent under-ageing

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lingfei, E-mail: lingfei.cao@monash.edu [ARC Centre of Excellence for Design in Light Metals, Monash University, G68, Building 27, Welling Road, Clayton, Vic 3800 (Australia); Rometsch, Paul A.; Couper, Malcolm J. [ARC Centre of Excellence for Design in Light Metals, Monash University, G68, Building 27, Welling Road, Clayton, Vic 3800 (Australia)

    2013-01-01

    The clustering behaviour in an Al-Mg-Si-Cu alloy in the T4 and T61 tempers has been investigated by hardness and electrical conductivity testing, along with nanostructural characterisation using 3-D atom probe (3DAP) analysis. The selection of parameters for the PoSAP and IVAS cluster analysis software tools is discussed. The results show that the T4 hardness increases significantly within one day of natural ageing, and then reaches a plateau after about a week. A contingency table analysis reveals that clustering between Mg and Si atoms already exists in the T4 condition with only 1.1 h of natural ageing. In the T61 condition (after 0.5 h at 170 Degree-Sign C), the hardness is greatest in samples aged immediately after quenching, and decreases very rapidly with increasing prior natural ageing times of up to 3 h. The initial hardness drop in the T61 condition is associated with decreases in the volume fraction, average size and maximum size of solute aggregates. Longer prior natural ageing times inhibit the formation of larger solute aggregates (with more than 75 detected Mg+Si+Cu atoms) and thus result in low levels of T61 hardness.

  17. Clustering behaviour in an Al–Mg–Si–Cu alloy during natural ageing and subsequent under-ageing

    International Nuclear Information System (INIS)

    Cao, Lingfei; Rometsch, Paul A.; Couper, Malcolm J.

    2013-01-01

    The clustering behaviour in an Al–Mg–Si–Cu alloy in the T4 and T61 tempers has been investigated by hardness and electrical conductivity testing, along with nanostructural characterisation using 3-D atom probe (3DAP) analysis. The selection of parameters for the PoSAP and IVAS cluster analysis software tools is discussed. The results show that the T4 hardness increases significantly within one day of natural ageing, and then reaches a plateau after about a week. A contingency table analysis reveals that clustering between Mg and Si atoms already exists in the T4 condition with only 1.1 h of natural ageing. In the T61 condition (after 0.5 h at 170 °C), the hardness is greatest in samples aged immediately after quenching, and decreases very rapidly with increasing prior natural ageing times of up to 3 h. The initial hardness drop in the T61 condition is associated with decreases in the volume fraction, average size and maximum size of solute aggregates. Longer prior natural ageing times inhibit the formation of larger solute aggregates (with more than 75 detected Mg+Si+Cu atoms) and thus result in low levels of T61 hardness.

  18. Energetic Study of Helium Cluster Nucleation and Growth in 14YWT through First Principles

    Directory of Open Access Journals (Sweden)

    Yingye Gan

    2016-01-01

    Full Text Available First principles calculations have been performed to energetically investigate the helium cluster nucleation, formation and growth behavior in the nano-structured ferritic alloy 14YWT. The helium displays strong affinity to the oxygen:vacancy (O:Vac pair. By investigating various local environments of the vacancy, we find that the energy cost for He cluster growth increases with the appearance of solutes in the reference unit. He atom tends to join the He cluster in the directions away from the solute atoms. Meanwhile, the He cluster tends to expand in the directions away from the solute atoms. A growth criterion is proposed based on the elastic instability strain of the perfect iron lattice in order to determine the maximum number of He atoms at the vacancy site. We find that up to seven He atoms can be trapped at a single vacancy. However, it is reduced to five if the vacancy is pre-occupied by an oxygen atom. Furthermore, the solute atoms within nanoclusters, such as Ti and Y, will greatly limit the growth of the He cluster. A migration energy barrier study is performed to discuss the reduced mobility of the He atom/He cluster in 14YWT.

  19. Cluster analysis of typhoid cases in Kota Bharu, Kelantan, Malaysia

    Directory of Open Access Journals (Sweden)

    Nazarudin Safian

    2008-09-01

    Full Text Available Typhoid fever is still a major public health problem globally as well as in Malaysia. This study was done to identify the spatial epidemiology of typhoid fever in the Kota Bharu District of Malaysia as a first step to developing more advanced analysis of the whole country. The main characteristic of the epidemiological pattern that interested us was whether typhoid cases occurred in clusters or whether they were evenly distributed throughout the area. We also wanted to know at what spatial distances they were clustered. All confirmed typhoid cases that were reported to the Kota Bharu District Health Department from the year 2001 to June of 2005 were taken as the samples. From the home address of the cases, the location of the house was traced and a coordinate was taken using handheld GPS devices. Spatial statistical analysis was done to determine the distribution of typhoid cases, whether clustered, random or dispersed. The spatial statistical analysis was done using CrimeStat III software to determine whether typhoid cases occur in clusters, and later on to determine at what distances it clustered. From 736 cases involved in the study there was significant clustering for cases occurring in the years 2001, 2002, 2003 and 2005. There was no significant clustering in year 2004. Typhoid clustering also occurred strongly for distances up to 6 km. This study shows that typhoid cases occur in clusters, and this method could be applicable to describe spatial epidemiology for a specific area. (Med J Indones 2008; 17: 175-82Keywords: typhoid, clustering, spatial epidemiology, GIS

  20. Icosahedral binary clusters of glass-forming Lennard-Jones binary alloy

    International Nuclear Information System (INIS)

    Iwamatsu, Masao

    2007-01-01

    It is widely believed that the local icosahedral structure is related to the formation of bulk metallic glasses (BMGs). Specifically the existence of 13-atom icosahedral cluster in undercooled liquid is imagined to play a key role to initiate the glass formation as the seed of amorphous structure or to block the nucleation of regular crystal as the impurity. The existence of 13-atom icosahedral clusters in one-component liquids was predicted more than half a century ago by Frank from his total energy calculation for isolated clusters. In BMG alloys, however, the situation is less clear. In this report, we present the lowest-energy structures of 13-atom Lennard-Jones binary cluster calculated from the modified space-fixed genetic algorithm. We study, in particular, the artificial Lennard-Jones potential designed by Kob and Andersen [W. Kob, H.C. Andersen, Phys. Rev. E 51 (1995) 4626] that is known to form BMG. Curiously, the lowest-energy structures of 13-atom cluster are non-icosahedral for almost all compositions. Our result suggests that the existence of the icosahedral cluster is not a necessary condition but only a sufficient condition for glass formation

  1. Cluster analysis of Southeastern U.S. climate stations

    Science.gov (United States)

    Stooksbury, D. E.; Michaels, P. J.

    1991-09-01

    A two-step cluster analysis of 449 Southeastern climate stations is used to objectively determine general climate clusters (groups of climate stations) for eight southeastern states. The purpose is objectively to define regions of climatic homogeneity that should perform more robustly in subsequent climatic impact models. This type of analysis has been successfully used in many related climate research problems including the determination of corn/climate districts in Iowa (Ortiz-Valdez, 1985) and the classification of synoptic climate types (Davis, 1988). These general climate clusters may be more appropriate for climate research than the standard climate divisions (CD) groupings of climate stations, which are modifications of the agro-economic United States Department of Agriculture crop reporting districts. Unlike the CD's, these objectively determined climate clusters are not restricted by state borders and thus have reduced multicollinearity which makes them more appropriate for the study of the impact of climate and climatic change.

  2. C60 as an Atom Trap to Capture Co Adatoms

    DEFF Research Database (Denmark)

    Yang, Peng; Li, Dongzhe; Repain, Vincent

    2015-01-01

    C60 molecules were used to trap Co adatoms and clusters on a Au(111) surface using atomic/molecular manipulation with a scanning tunneling microscope. Two manipulation pathways (successive integration of single Co atoms in one molecule or direct integration of a Co cluster) were found...... to efficiently allow the formation of complexes mixing a C60 molecule with Co atoms. Scanning tunneling spectroscopy reveals the robustness of the pi states of C60 that are preserved after Co trapping. Scanning tunneling microscopy images and density functional theory calculations reveal that dissociated Co...... clusters of up to nine atoms can be formed at the molecule-substrate interface. These results open new perspectives in the interactions between metal adatoms and molecules, for applications in metal-organic devices...

  3. Enhanced high-order harmonic generation from Argon-clusters

    NARCIS (Netherlands)

    Tao, Yin; Hagmeijer, Rob; Bastiaens, Hubertus M.J.; Goh, S.J.; van der Slot, P.J.M.; Biedron, S.; Milton, S.; Boller, Klaus J.

    2017-01-01

    High-order harmonic generation (HHG) in clusters is of high promise because clusters appear to offer an increased optical nonlinearity. We experimentally investigate HHG from Argon clusters in a supersonic gas jet that can generate monomer-cluster mixtures with varying atomic number density and

  4. Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.

    Science.gov (United States)

    Haley, Daniel; Bagot, Paul A J; Moody, Michael P

    2017-04-01

    In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

  5. Cluster analysis by optimal decomposition of induced fuzzy sets

    Energy Technology Data Exchange (ETDEWEB)

    Backer, E

    1978-01-01

    Nonsupervised pattern recognition is addressed and the concept of fuzzy sets is explored in order to provide the investigator (data analyst) additional information supplied by the pattern class membership values apart from the classical pattern class assignments. The basic ideas behind the pattern recognition problem, the clustering problem, and the concept of fuzzy sets in cluster analysis are discussed, and a brief review of the literature of the fuzzy cluster analysis is given. Some mathematical aspects of fuzzy set theory are briefly discussed; in particular, a measure of fuzziness is suggested. The optimization-clustering problem is characterized. Then the fundamental idea behind affinity decomposition is considered. Next, further analysis takes place with respect to the partitioning-characterization functions. The iterative optimization procedure is then addressed. The reclassification function is investigated and convergence properties are examined. Finally, several experiments in support of the method suggested are described. Four object data sets serve as appropriate test cases. 120 references, 70 figures, 11 tables. (RWR)

  6. Use of labelled atoms in thermal analysis

    International Nuclear Information System (INIS)

    Balek, V.; Beckman, I.N.

    1985-01-01

    The article informs of the preparation of labelled samples for which the most frequently used radionuclides are 14 C, 3 H or 2 H, 32 P, 35 S and others as well as radioactive gases such as 85 Kr, 133 Xe or 220 Rn and 222 Rn. The equipment is described for the application of labelled atoms in thermal analysis consisting of a detector for measuring radioactivity and a system for measuring thermal analysis parameters. Examples are given of the use of labelled atoms in the study of chemical reactions of solids, in autoradiography or in Moessbauer spectroscopy. The greatest attention is devoted to the use of labelled atoms in emanation thermal analysis. By this technique it is possible to study chemical reactions and phase transformations, to continuously monitor changes in the surface and morphology of dispersion substances, to characterize the mobility of defects in the structure of solids and the active state of the structure of solids and to ascertain mechanical, radiation and chemical effects on solids. Attention is also devoted to the technological applications of emanation thermal analysis (the solidification of cement paste, calcination and the firing of the mixture of oxides for the manufacture of ferrites). (E.S.)

  7. Bayesian data analysis tools for atomic physics

    Science.gov (United States)

    Trassinelli, Martino

    2017-10-01

    We present an introduction to some concepts of Bayesian data analysis in the context of atomic physics. Starting from basic rules of probability, we present the Bayes' theorem and its applications. In particular we discuss about how to calculate simple and joint probability distributions and the Bayesian evidence, a model dependent quantity that allows to assign probabilities to different hypotheses from the analysis of a same data set. To give some practical examples, these methods are applied to two concrete cases. In the first example, the presence or not of a satellite line in an atomic spectrum is investigated. In the second example, we determine the most probable model among a set of possible profiles from the analysis of a statistically poor spectrum. We show also how to calculate the probability distribution of the main spectral component without having to determine uniquely the spectrum modeling. For these two studies, we implement the program Nested_fit to calculate the different probability distributions and other related quantities. Nested_fit is a Fortran90/Python code developed during the last years for analysis of atomic spectra. As indicated by the name, it is based on the nested algorithm, which is presented in details together with the program itself.

  8. Graph analysis of cell clusters forming vascular networks

    Science.gov (United States)

    Alves, A. P.; Mesquita, O. N.; Gómez-Gardeñes, J.; Agero, U.

    2018-03-01

    This manuscript describes the experimental observation of vasculogenesis in chick embryos by means of network analysis. The formation of the vascular network was observed in the area opaca of embryos from 40 to 55 h of development. In the area opaca endothelial cell clusters self-organize as a primitive and approximately regular network of capillaries. The process was observed by bright-field microscopy in control embryos and in embryos treated with Bevacizumab (Avastin), an antibody that inhibits the signalling of the vascular endothelial growth factor (VEGF). The sequence of images of the vascular growth were thresholded, and used to quantify the forming network in control and Avastin-treated embryos. This characterization is made by measuring vessels density, number of cell clusters and the largest cluster density. From the original images, the topology of the vascular network was extracted and characterized by means of the usual network metrics such as: the degree distribution, average clustering coefficient, average short path length and assortativity, among others. This analysis allows to monitor how the largest connected cluster of the vascular network evolves in time and provides with quantitative evidence of the disruptive effects that Avastin has on the tree structure of vascular networks.

  9. application of single-linkage clustering method in the analysis of ...

    African Journals Online (AJOL)

    Admin

    ANALYSIS OF GROWTH RATE OF GROSS DOMESTIC PRODUCT. (GDP) AT ... The end result of the algorithm is a tree of clusters called a dendrogram, which shows how the clusters are ..... Number of cluster sum from from observations of ...

  10. A Flocking Based algorithm for Document Clustering Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Gao, Jinzhu [ORNL; Potok, Thomas E [ORNL

    2006-01-01

    Social animals or insects in nature often exhibit a form of emergent collective behavior known as flocking. In this paper, we present a novel Flocking based approach for document clustering analysis. Our Flocking clustering algorithm uses stochastic and heuristic principles discovered from observing bird flocks or fish schools. Unlike other partition clustering algorithm such as K-means, the Flocking based algorithm does not require initial partitional seeds. The algorithm generates a clustering of a given set of data through the embedding of the high-dimensional data items on a two-dimensional grid for easy clustering result retrieval and visualization. Inspired by the self-organized behavior of bird flocks, we represent each document object with a flock boid. The simple local rules followed by each flock boid result in the entire document flock generating complex global behaviors, which eventually result in a clustering of the documents. We evaluate the efficiency of our algorithm with both a synthetic dataset and a real document collection that includes 100 news articles collected from the Internet. Our results show that the Flocking clustering algorithm achieves better performance compared to the K- means and the Ant clustering algorithm for real document clustering.

  11. ASAS: Computational code for Analysis and Simulation of Atomic Spectra

    Directory of Open Access Journals (Sweden)

    Jhonatha R. dos Santos

    2017-01-01

    Full Text Available The laser isotopic separation process is based on the selective photoionization principle and, because of this, it is necessary to know the absorption spectrum of the desired atom. Computational resource has become indispensable for the planning of experiments and analysis of the acquired data. The ASAS (Analysis and Simulation of Atomic Spectra software presented here is a helpful tool to be used in studies involving atomic spectroscopy. The input for the simulations is friendly and essentially needs a database containing the energy levels and spectral lines of the atoms subjected to be studied.

  12. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.

    Science.gov (United States)

    Chin, Ya-Huei Cathy; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2011-10-12

    absence of CH(4) show that O(2) activation steps are quasi-equilibrated during catalysis. Measured and DFT-derived C-H bond activation barriers are large, because of the weak stabilization of the CH(3) fragments at transition states, but are compensated by the high entropy of these radical-like species. Turnover rates in this regime decrease with increasing Pt dispersion, because low-coordination exposed Pt atoms on small clusters bind O* more strongly than those that reside at low-index facets on large clusters, thus making O* less effective in H-abstraction. As vacancies (*, also exposed Pt atoms) become available on O*-covered surfaces, O*-* site pairs activate C-H bonds via concerted oxidative addition and H-abstraction in transition states effectively stabilized by CH(3) interactions with the vacancies, which lead to much higher turnover rates than on O*-O* pairs. In this regime, O(2) activation becomes irreversible, because fast C-H bond activation steps scavenge O* as it forms. Thus, O* coverages are set by the prevalent O(2)/CH(4) ratios instead of the O(2) pressures. CH(4)/CD(4) kinetic isotope effects are much larger for turnovers mediated by O*-* than by O*-O* site pairs, because C-H (and C-D) activation steps are required to form the * sites involved in C-H bond activation. Turnover rates for CH(4)-O(2) reactions mediated by O*-* pairs decrease with increasing Pt dispersion, as in the case of O*-O* active structures, because stronger O* binding on small clusters leads not only to less reactive O* atoms, but also to lower vacancy concentrations at cluster surfaces. As O(2)/CH(4) ratios and O* coverages become smaller, O(2) activation on bare Pt clusters becomes the sole kinetically relevant step; turnover rates are proportional to O(2) pressures and independent of CH(4) pressure and no CH(4)/CD(4) kinetic isotope effects are observed. In this regime, turnover rates become nearly independent of Pt dispersion, because the O(2) activation step is essentially

  13. Density functional study of TaSin (n = 1-3, 12) clusters adsorbed to graphene surface

    International Nuclear Information System (INIS)

    Guo Ping; Zheng Lin; Zheng Jiming; Zhang Ruizhi; Yang Luna; Ren, Zhaoyu

    2011-01-01

    A plane-wave density functional theory (DFT) calculations have been performed to investigate structural and electronic properties of TaSi n (n = 1-3, 12) clusters supported by graphene surface. The resulting adsorption structures are described and discussed in terms of stability, bonding, and electron transfer between the cluster and the graphene. The TaSi n clusters on graphene surface favor their free-standing ground-state structures. Especially in the cases of the linear TaSi 2 and the planar TaSi 3 , the graphene surface may catalyze the transition of the TaSi n clusters from an isomer of lower dimensionality into the ground-state structure. The adsorption site and configuration of TaSi n on graphene surface are dominated by the interaction between Ta atom and graphene. Ta atom prefers to adsorb on the hollow site of graphene, and Si atoms tend to locate on the bridge site. Further, the electron transfer is found to proceed from the cluster to the surface for n = 1 and 2, while its direction reverses as n > 2. For the case of TaSi, chemisorption is shown to prevail over physisorption as the dominant mode of surface-adsorbate interaction by charge density analysis.

  14. Topic modeling for cluster analysis of large biological and medical datasets.

    Science.gov (United States)

    Zhao, Weizhong; Zou, Wen; Chen, James J

    2014-01-01

    The big data moniker is nowhere better deserved than to describe the ever-increasing prodigiousness and complexity of biological and medical datasets. New methods are needed to generate and test hypotheses, foster biological interpretation, and build validated predictors. Although multivariate techniques such as cluster analysis may allow researchers to identify groups, or clusters, of related variables, the accuracies and effectiveness of traditional clustering methods diminish for large and hyper dimensional datasets. Topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to structure large textual corpora for data mining. Its ability to reduce high dimensionality to a small number of latent variables makes it suitable as a means for clustering or overcoming clustering difficulties in large biological and medical datasets. In this study, three topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, are proposed and tested on the cluster analysis of three large datasets: Salmonella pulsed-field gel electrophoresis (PFGE) dataset, lung cancer dataset, and breast cancer dataset, which represent various types of large biological or medical datasets. All three various methods are shown to improve the efficacy/effectiveness of clustering results on the three datasets in comparison to traditional methods. A preferable cluster analysis method emerged for each of the three datasets on the basis of replicating known biological truths. Topic modeling could be advantageously applied to the large datasets of biological or medical research. The three proposed topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, yield clustering improvements for the three different data types. Clusters more efficaciously represent truthful groupings and subgroupings in the data than traditional methods, suggesting

  15. Low energy Cu clusters slow deposition on a Fe (001) surface investigated by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shixu [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gong, Hengfeng [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Division of Nuclear Materials Science and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Xuanzhi [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Gongping, E-mail: ligp@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Zhiguang, E-mail: zhgwang@impcas.ac.cn [Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-09-30

    Highlights: • We study the deposition of low energy Cu clusters on Fe (001) surface by molecular dynamics. • The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. • The phenomenon of contact epitaxy of cluster occurred. • The thermal diffusion of cluster atoms was analyzed. - Abstract: The slow deposition of low energy Cu clusters on a Fe (001) surface was investigated by molecular dynamics simulation. A many-body potential based on Finnis–Sinclair model was used to describe the interactions among atoms. Three clusters comprising of 13, 55 and 147 atoms, respectively, were deposited with incident energies ranging from 0.0 to 1.0 eV/atom at various substrate temperatures (0, 300 and 800 K). The rearrangement and the diffusion of cluster can occur, only when the cluster atoms are activated and obtained enough migration energy. The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. In the former, the migration energy originates from the latent heat of binding energy for the soft deposition regime and primarily comes from the incident energy of cluster for the energetic cluster deposition regime. In the latter, the thermal vibration would result in some cluster atoms activated again at medium and high substrate temperatures. Also, the effects of incident energy, cluster size and substrate temperature on the interaction potential energy between cluster and substrate, the final deposition morphology of cluster, the spreading index and the structure parameter of cluster are analyzed.

  16. Kramers degeneracy and relaxation in vanadium, niobium and tantalum clusters

    Science.gov (United States)

    Diaz-Bachs, A.; Katsnelson, M. I.; Kirilyuk, A.

    2018-04-01

    In this work we use magnetic deflection of V, Nb, and Ta atomic clusters to measure their magnetic moments. While only a few of the clusters show weak magnetism, all odd-numbered clusters deflect due to the presence of a single unpaired electron. Surprisingly, for the majority of V and Nb clusters an atomic-like behavior is found, which is a direct indication of the absence of spin–lattice interaction. This is in agreement with Kramers degeneracy theorem for systems with a half-integer spin. This purely quantum phenomenon is surprisingly observed for large systems of more than 20 atoms, and also indicates various quantum relaxation processes, via Raman two-phonon and Orbach high-spin mechanisms. In heavier, Ta clusters, the relaxation is always present, probably due to larger masses and thus lower phonon energies, as well as increased spin–orbit coupling.

  17. Model analysis of molecular conformations in terms of weak interactions between non bonded atoms

    International Nuclear Information System (INIS)

    Lombardi, E.

    1988-01-01

    The aim of the present paper is to establish a reliable basis for the evaluation of stable conformations and rotational barriers for molecules, with possible applications to systems of biological interest. It is proceeded in two steps: first, the effect of chemical environment on orbitals of a given atom is studied for diatomic units, adopting a valence-bond approach and considering, as prototypes, the two simplest series of diatomic molecules with one valence electron each, i.e. the alkali diatomics and the alkali hydrides. In the model, the orbital of the hydrogen atom by a simple (''1S'') gaussian function, the valence orbital of an alkali atom by a function (r 2 -a 2 ) times a simple gaussian (''2S'' gaussian). Dissociation energies D e and equilibrium distances R e are calculated using a scanning procedure. Agreement with experiment is quantitative for the alkali diatomics. For alkali hydrides, good agreement is obtained only if validity of a rule β e R e =constant, for the two atoms separately, is postulated; β e is the characteristic parameter of a ''1S'' gaussian (hydrogen) or a ''2S'' gaussian (alkali atom) function. In a second step, the authors assume validity of the same rule in conformational analysis for any single bonded A-B molecule with A=C, O, N, P, Si, Ge and B=H, or a halogen atom. Gauge β e values for H, F and C are obtained by fitting experimental rotational barriers in C 2 H 6 , C 2 F 6 and C 3 H 8 . Stable conformation of, and barriers to rotation in, ethane-like rotors are determined, applying first-order exchange perturbation theory, in terms of two- and many-center exchange interactions in cluster of non-bonded atoms. Some 60 molecules are analyzed. Agreement with experiments is strikngly good except for a few systematic deviation. Reasons for such discrepancies are discussed

  18. Characterisation of the early stages of solute clustering in 1Ni-1.3Mn welds containing Cu

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, J.M., E-mail: jonathan.hyde@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); National Nuclear Laboratory Ltd, B168 Harwell, Didcot, Oxon OX11 0QJ (United Kingdom); Burke, M.G. [Bechtel Bettis Inc., 814 Pittsburgh-McKeesport Blvd, West Mifflin, Pittsburgh 15122-0079 (United States); Boothby, R.M.; English, C.A. [National Nuclear Laboratory Ltd, B168 Harwell, Didcot, Oxon OX11 0QJ (United Kingdom)

    2009-04-15

    Microstructural characterisation of neutron irradiated low alloy steels is important for developing mechanistic understanding of irradiation embrittlement. This work is focused on the early stages of irradiation-induced clustering in a low Cu (0.03 wt%), high Ni ({approx}1 wt%) weld. The weld was irradiated at a very high dose rate and then examined by atom probe (energy-compensated position-sensitive atom probe (ECOPoSAP) and local electrode atom probe (LEAP)) with supporting microstructural information obtained by small angle neutron scattering (SANS) and positron annihilation (PALA). It was demonstrated that extreme care must be taken optimising parameters used to characterise the extent of clustering. This is particularly important during the early stages of irradiation-damage when the clusters are poorly defined and significant compositional variations are present in what is traditionally described as matrix. Analysis of the irradiated materials showed increasing clustering of Cu, Mn, Ni and Si with dose. In the low Cu steel the results showed that initially the irradiation damage results in clustering of Mn, Ni and Si, but at very high doses, at very high dose rates, redistribution of Si is significantly more advanced than that for Mn and Ni.

  19. CLUSTER ANALYSIS UKRAINIAN REGIONAL DISTRIBUTION BY LEVEL OF INNOVATION

    Directory of Open Access Journals (Sweden)

    Roman Shchur

    2016-07-01

    Full Text Available   SWOT-analysis of the threats and benefits of innovation development strategy of Ivano-Frankivsk region in the context of financial support was сonducted. Methodical approach to determine of public-private partnerships potential that is tool of innovative economic development financing was identified. Cluster analysis of possibilities of forming public-private partnership in a particular region was carried out. Optimal set of problem areas that require urgent solutions and financial security is defined on the basis of cluster approach. It will help to form practical recommendations for the formation of an effective financial mechanism in the regions of Ukraine. Key words: the mechanism of innovation development financial provision, innovation development, public-private partnerships, cluster analysis, innovative development strategy.

  20. Multiscale visual quality assessment for cluster analysis with self-organizing maps

    Science.gov (United States)

    Bernard, Jürgen; von Landesberger, Tatiana; Bremm, Sebastian; Schreck, Tobias

    2011-01-01

    Cluster analysis is an important data mining technique for analyzing large amounts of data, reducing many objects to a limited number of clusters. Cluster visualization techniques aim at supporting the user in better understanding the characteristics and relationships among the found clusters. While promising approaches to visual cluster analysis already exist, these usually fall short of incorporating the quality of the obtained clustering results. However, due to the nature of the clustering process, quality plays an important aspect, as for most practical data sets, typically many different clusterings are possible. Being aware of clustering quality is important to judge the expressiveness of a given cluster visualization, or to adjust the clustering process with refined parameters, among others. In this work, we present an encompassing suite of visual tools for quality assessment of an important visual cluster algorithm, namely, the Self-Organizing Map (SOM) technique. We define, measure, and visualize the notion of SOM cluster quality along a hierarchy of cluster abstractions. The quality abstractions range from simple scalar-valued quality scores up to the structural comparison of a given SOM clustering with output of additional supportive clustering methods. The suite of methods allows the user to assess the SOM quality on the appropriate abstraction level, and arrive at improved clustering results. We implement our tools in an integrated system, apply it on experimental data sets, and show its applicability.

  1. Symmetrized partial-wave method for density-functional cluster calculations

    International Nuclear Information System (INIS)

    Averill, F.W.; Painter, G.S.

    1994-01-01

    The computational advantage and accuracy of the Harris method is linked to the simplicity and adequacy of the reference-density model. In an earlier paper, we investigated one way the Harris functional could be extended to systems outside the limits of weakly interacting atoms by making the charge density of the interacting atoms self-consistent within the constraints of overlapping spherical atomic densities. In the present study, a method is presented for augmenting the interacting atom charge densities with symmetrized partial-wave expansions on each atomic site. The added variational freedom of the partial waves leads to a scheme capable of giving exact results within a given exchange-correlation approximation while maintaining many of the desirable convergence and stability properties of the original Harris method. Incorporation of the symmetry of the cluster in the partial-wave construction further reduces the level of computational effort. This partial-wave cluster method is illustrated by its application to the dimer C 2 , the hypothetical atomic cluster Fe 6 Al 8 , and the benzene molecule

  2. Elemental abundances of intermediate-age open cluster NGC 3680

    Science.gov (United States)

    Mitschang, A. W.; De Silva, G. M.; Zucker, D. B.

    2012-06-01

    We present a new abundance analysis of the intermediate-age Galactic open cluster NGC 3680, based on high-resolution, high signal-to-noise ratio VLT/UVES spectroscopic data. Several element abundances are presented for this cluster for the first time, but most notably we derive abundances for the light and heavy s-process elements Y, Ba, La and Nd. The serendipitous measurement of the rare-earth r-process element Gd is also reported. This cluster exhibits a significant enhancement of Na in giants as compared to dwarfs, which may be a proxy for an O to Na anticorrelation as observed in Galactic globular clusters but not open clusters. We also observe a step-like enhancement of heavy s-process elements towards higher atomic number, contrary to expectations from asymptotic giant branch nucleosynthesis models, suggesting that the r process played a significant role in the generation of both La and Nd in this cluster.

  3. Cross section measurements of the processes occurring in the fragmentation of Hn+ (3 ≤ n ≤ 35) hydrogen clusters induced by high speed (60 keV/u) collisions on helium atoms

    International Nuclear Information System (INIS)

    Louc, Sandrine

    1997-01-01

    Different processes involved in the fragmentation of ionised hydrogen clusters H 3 + (H 2 ) (n-3)/2 (n = 5-35) have been studied in the same experiment: the fragmentation of the cluster is induced by the collision with an helium atom at high velocity (≅ c/100). The collision is realised in reversed kinematic - clusters are accelerated - which allows the detection of neutral and charged fragments. The different channels of fragmentation are identified by using coincidence techniques. For all the cluster sizes studied the capture cross sections of one electron of the target by the cluster is equal to the capture cross section of the H 3 + ion. In the same way, the dissociation cross section of the H 3 + core of the cluster does not depend on cluster size. These fragmentation processes are due to the interaction of H 3 + core of the cluster and the helium atom without ionization of another component of the cluster. On the contrary, the cross sections of loss of one, two and three molecules by the cluster and the dissociation cross section of the cluster in all its molecular components depends strongly on the cluster size. This dependence is different from the one measured for the metastable decay of the cluster. Thus, the process of loss of molecules induced by a collision should correspond to a different dissociation mechanism. In regard of the singularities observed for the size dependence, the H 9 + , H 15 + , H 19 + and H 29 + clusters could be the 'core' of the biggest clusters. These observation are in agreement with the size effects of smaller magnitude observed for the dissociation cross section (all the processes). The values of the cross section for the process of at least one ionization of the cluster indicate that about 80% of the fragmentation events result from this process. (author)

  4. Change of Energy of the Cubic Subnanocluster of Iron Under Influence of Interstitial and Substitutional Atoms.

    Science.gov (United States)

    Nedolya, Anatoliy V; Bondarenko, Natalya V

    2016-12-01

    Energy change of an iron face-centred cubic subnanocluster was evaluated using molecular mechanics method depending on the position of a carbon interstitial atom and substitutional atoms of nickel. Calculations of all possible positions of impurity atoms show that the energy change of the system are discrete and at certain positions of the atoms are close to continuous.In terms of energy, when all impurity atoms are on the same edge of an atomic cluster, their positions are more advantageous. The presence of nickel atoms on the edge of a cubic cluster resulted in decrease of potential barrier for a carbon atom and decrease in energy in the whole cluster. A similar drift of a carbon atom from central octahedral interstitial site to the surface in the direction occurred under the influence of surface factors.Such configuration corresponds to decreasing symmetry and increasing the number of possible energy states of a subnanocluster, and it corresponds to the condition of spontaneous crystallization process in an isolated system.Taking into account accidental positions of the nickel atom in the iron cluster, such behaviour of the carbon atom can explain the mechanism of growth of a new phase and formation of new clusters in the presence of other kind of atoms because of surface influence.

  5. Cluster Analysis of Clinical Data Identifies Fibromyalgia Subgroups

    Science.gov (United States)

    Docampo, Elisa; Collado, Antonio; Escaramís, Geòrgia; Carbonell, Jordi; Rivera, Javier; Vidal, Javier; Alegre, José

    2013-01-01

    Introduction Fibromyalgia (FM) is mainly characterized by widespread pain and multiple accompanying symptoms, which hinder FM assessment and management. In order to reduce FM heterogeneity we classified clinical data into simplified dimensions that were used to define FM subgroups. Material and Methods 48 variables were evaluated in 1,446 Spanish FM cases fulfilling 1990 ACR FM criteria. A partitioning analysis was performed to find groups of variables similar to each other. Similarities between variables were identified and the variables were grouped into dimensions. This was performed in a subset of 559 patients, and cross-validated in the remaining 887 patients. For each sample and dimension, a composite index was obtained based on the weights of the variables included in the dimension. Finally, a clustering procedure was applied to the indexes, resulting in FM subgroups. Results Variables clustered into three independent dimensions: “symptomatology”, “comorbidities” and “clinical scales”. Only the two first dimensions were considered for the construction of FM subgroups. Resulting scores classified FM samples into three subgroups: low symptomatology and comorbidities (Cluster 1), high symptomatology and comorbidities (Cluster 2), and high symptomatology but low comorbidities (Cluster 3), showing differences in measures of disease severity. Conclusions We have identified three subgroups of FM samples in a large cohort of FM by clustering clinical data. Our analysis stresses the importance of family and personal history of FM comorbidities. Also, the resulting patient clusters could indicate different forms of the disease, relevant to future research, and might have an impact on clinical assessment. PMID:24098674

  6. Cluster analysis of clinical data identifies fibromyalgia subgroups.

    Directory of Open Access Journals (Sweden)

    Elisa Docampo

    Full Text Available INTRODUCTION: Fibromyalgia (FM is mainly characterized by widespread pain and multiple accompanying symptoms, which hinder FM assessment and management. In order to reduce FM heterogeneity we classified clinical data into simplified dimensions that were used to define FM subgroups. MATERIAL AND METHODS: 48 variables were evaluated in 1,446 Spanish FM cases fulfilling 1990 ACR FM criteria. A partitioning analysis was performed to find groups of variables similar to each other. Similarities between variables were identified and the variables were grouped into dimensions. This was performed in a subset of 559 patients, and cross-validated in the remaining 887 patients. For each sample and dimension, a composite index was obtained based on the weights of the variables included in the dimension. Finally, a clustering procedure was applied to the indexes, resulting in FM subgroups. RESULTS: VARIABLES CLUSTERED INTO THREE INDEPENDENT DIMENSIONS: "symptomatology", "comorbidities" and "clinical scales". Only the two first dimensions were considered for the construction of FM subgroups. Resulting scores classified FM samples into three subgroups: low symptomatology and comorbidities (Cluster 1, high symptomatology and comorbidities (Cluster 2, and high symptomatology but low comorbidities (Cluster 3, showing differences in measures of disease severity. CONCLUSIONS: We have identified three subgroups of FM samples in a large cohort of FM by clustering clinical data. Our analysis stresses the importance of family and personal history of FM comorbidities. Also, the resulting patient clusters could indicate different forms of the disease, relevant to future research, and might have an impact on clinical assessment.

  7. Fluorescent Thiol-Derivatized Gold Clusters Embedded in Polymers

    Directory of Open Access Journals (Sweden)

    G. Carotenuto

    2013-01-01

    Full Text Available Owing to aurophilic interactions, linear and/or planar Au(I-thiolate molecules spontaneously aggregate, leading to molecular gold clusters passivated by a thiolate monolayer coating. Differently from the thiolate precursors, such cluster compounds show very intensive visible fluorescence characteristics that can be tuned by alloying the gold clusters with silver atoms or by conjugating the electronic structure of the metallic core with unsaturated electronic structures in the organic ligand through the sulphur atom. Here, the photoluminescence features of some examples of these systems are shortly described.

  8. Derivative flame atomic absorption spectrometry and its application in trace analysis

    International Nuclear Information System (INIS)

    Sun, H. W.; Li, L. Q.

    2005-01-01

    Flame atomic absorption spectrometry is an accepted and widely used method for the determination of trace elements in a great variety of samples. But its sensitivity doesn't meet the demands of trace and ultra-trace analysis for some samples. The derivative signal processing technique, with a very high capability for enhancing sensitivity, was developed for flame atomic absorption spectrometry. The signal models of conventional flame atomic absorption spectrometry are described. The equations of derivative signals are established for flame atomic absorption spectrometry, flow injection atomic absorption spectrometry (FI-FAAS) and atom trapping flame atomic absorption spectrometry (AT-FAAS). The principle and performance of the derivative atomic absorption spectrometry are evaluated. The derivative technique based on determination of variation rate of signal intensity with time (dl/dt) is different from the derivative spectrophotometry based on determination of variation rate of signal intensity with wavelength (dl/dhλ). Derivative flame atomic absorption spectrometry has higher sensitivity, lower detection limits and better accuracy. It has been applied to the direct determination of trace elements without preconcentration. If the derivative technique was combined with several preconcentration techniques, the sensitivity would be enhanced further for ultra-trace analysis with good linearity. The applications of derivative flame atomic absorption spectroscopy are reviewed for trace element analysis in biological, pharmaceutical, environmental and food samples

  9. Observations on small anionic clusters in an electrostatic ion beam trap

    International Nuclear Information System (INIS)

    Eritt, Markus

    2008-01-01

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C n - n=2-12), aluminium (Al n - n=2-7) and silver clusters (Ag n - n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon emission. The thermionic evaporative decay of anionic aluminium and

  10. Geometric, stable and electronic properties of Aun–2Y2 (n = 3–8) clusters

    International Nuclear Information System (INIS)

    Kai-Tian, Qi; Yong, Sheng; Hua-Ping, Mao; Hong-Yan, Wang

    2010-01-01

    Employing first-principles methods, based on the density function theory, and using the LANL2DZ basis sets, the ground-state geometric, the stable and the electronic properties of Au n–2 Y 2 clusters are investigated in this paper. Meanwhile, the differences in property among pure gold clusters, pure yttrium clusters, gold clusters doped with one yttrium atom, and gold clusters doped with two yttrium atoms are studied. We find that when gold clusters are doped by two yttrium atoms, the odd-even oscillatory behaviours of Au n–1 Y and Au n disappear. The properties of Au n–2 Y 2 clusters are close to those of pure yttrium clusters

  11. Development of small scale cluster computer for numerical analysis

    Science.gov (United States)

    Zulkifli, N. H. N.; Sapit, A.; Mohammed, A. N.

    2017-09-01

    In this study, two units of personal computer were successfully networked together to form a small scale cluster. Each of the processor involved are multicore processor which has four cores in it, thus made this cluster to have eight processors. Here, the cluster incorporate Ubuntu 14.04 LINUX environment with MPI implementation (MPICH2). Two main tests were conducted in order to test the cluster, which is communication test and performance test. The communication test was done to make sure that the computers are able to pass the required information without any problem and were done by using simple MPI Hello Program where the program written in C language. Additional, performance test was also done to prove that this cluster calculation performance is much better than single CPU computer. In this performance test, four tests were done by running the same code by using single node, 2 processors, 4 processors, and 8 processors. The result shows that with additional processors, the time required to solve the problem decrease. Time required for the calculation shorten to half when we double the processors. To conclude, we successfully develop a small scale cluster computer using common hardware which capable of higher computing power when compare to single CPU processor, and this can be beneficial for research that require high computing power especially numerical analysis such as finite element analysis, computational fluid dynamics, and computational physics analysis.

  12. Interplay between experiments and calculations for organometallic clusters and caged clusters

    International Nuclear Information System (INIS)

    Nakajima, Atsushi

    2015-01-01

    Clusters consisting of 10-1000 atoms exhibit size-dependent electronic and geometric properties. In particular, composite clusters consisting of several elements and/or components provide a promising way for a bottom-up approach for designing functional advanced materials, because the functionality of the composite clusters can be optimized not only by the cluster size but also by their compositions. In the formation of composite clusters, their geometric symmetry and dimensionality are emphasized to control the physical and chemical properties, because selective and anisotropic enhancements for optical, chemical, and magnetic properties can be expected. Organometallic clusters and caged clusters are demonstrated as a representative example of designing the functionality of the composite clusters. Organometallic vanadium-benzene forms a one dimensional sandwich structure showing ferromagnetic behaviors and anomalously large HOMO-LUMO gap differences of two spin orbitals, which can be regarded as spin-filter components for cluster-based spintronic devices. Caged clusters of aluminum (Al) are well stabilized both geometrically and electronically at Al 12 X, behaving as a “superatom”

  13. A DFT study on the structures and electronic states of zinc cluster Znn (n = 2-32)

    International Nuclear Information System (INIS)

    Iokibe, Kei; Tachikawa, Hiroto; Azumi, Kazuhisa

    2007-01-01

    Ab-initio and density functional theory (DFT) calculations have been carried out for zinc clusters Zn n (n = 2-32, n is the number of atoms to form a cluster) to elucidate the structure and electronic charge states of the clusters and the mechanism of clustering. The binding energies of Zn atoms were negligibly small at n = 2-3, whereas the energy increased significantly at n = 4 (the first transition). The second transition occurred at n = 8-16. In the larger clusters (n = 16-32), the binding energy increased slightly with increasing cluster size (n). The cluster size dependence of the binding energy and bond length between zinc atoms agreed well with that of the natural population of electrons in the 4p orbital of the zinc atom. In the larger clusters (n > 20), it was found that the zinc atoms in the surface region of the cluster have a positive charge, whereas those in the interior region have a negative charge with a large population in the 4p orbital. The formation mechanism of zinc clusters was discussed on the basis of the theoretical results

  14. Structure, reactivity and electronic properties of Mn doped Ni{sub 13} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit, E-mail: abhijit.mookerjee61@gmail.com

    2013-06-15

    In this work we have studied the structural and magnetic properties of Ni{sub 13} cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H{sub 2} molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni{sub 12}Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni{sub 12}MnH{sub 2}. Our analysis of the stability and HOMO–LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H{sub 2} absorption in the doped Ni{sub 13−m}Mn{sub m} alloy clusters. This has been reported earlier for smaller Ni{sub n} clusters [1].

  15. Electronic and chemical properties of indium clusters

    International Nuclear Information System (INIS)

    Rayane, D.; Khardi, S.; Tribollet, B.; Broyer, M.; Melinon, P.; Cabaud, B.; Hoareau, A.

    1989-01-01

    Indium clusters are produced by the inert gas condensation technique. The ionization potentials are found higher for small clusters than for the Indium atom. This is explained by the p character of the bonding as in aluminium. Doubly charge clusters are also observed and fragmentation processes discussed. Finally small Indium clusters 3< n<9 are found very reactive with hydrocarbon. (orig.)

  16. 5th colloquium on atomic spectrometric trace analysis

    International Nuclear Information System (INIS)

    Welz, B.

    1989-01-01

    This book deals with apparatus, use-oriented and theoretical aspects of trace analysis and spectroscopy. General articles are concerned with the analysis of environmentally relevant samples; a comparison of modern spectroscopic techniques, the coupling of hydride production, chromatography and spectrometry; chemical modifiers for graphite tube furnace atomic absorption spectroscopy (AAS), and possible applications of flow injection to atomic spectrometric trace analysis - one of the outstanding subjects of the colloquium. About one quarter of the 85 contributions deals with new techniques including flow injection. Other priority subjects are the theory and application of graphite tube furnace AAS, and a comparison between different dissolution methods and direct solid analysis. Medicine and toxicology, analysis of biological materials and environmentally relevant samples are in the foreground of use-oriented papers. (orig./BBR) [de

  17. Using Cluster Analysis for Data Mining in Educational Technology Research

    Science.gov (United States)

    Antonenko, Pavlo D.; Toy, Serkan; Niederhauser, Dale S.

    2012-01-01

    Cluster analysis is a group of statistical methods that has great potential for analyzing the vast amounts of web server-log data to understand student learning from hyperlinked information resources. In this methodological paper we provide an introduction to cluster analysis for educational technology researchers and illustrate its use through…

  18. [Typologies of Madrid's citizens (Spain) at the end-of-life: cluster analysis].

    Science.gov (United States)

    Ortiz-Gonçalves, Belén; Perea-Pérez, Bernardo; Labajo González, Elena; Albarrán Juan, Elena; Santiago-Sáez, Andrés

    2018-03-06

    To establish typologies within Madrid's citizens (Spain) with regard to end-of-life by cluster analysis. The SPAD 8 programme was implemented in a sample from a health care centre in the autonomous region of Madrid (Spain). A multiple correspondence analysis technique was used, followed by a cluster analysis to create a dendrogram. A cross-sectional study was made beforehand with the results of the questionnaire. Five clusters stand out. Cluster 1: a group who preferred not to answer numerous questions (5%). Cluster 2: in favour of receiving palliative care and euthanasia (40%). Cluster 3: would oppose assisted suicide and would not ask for spiritual assistance (15%). Cluster 4: would like to receive palliative care and assisted suicide (16%). Cluster 5: would oppose assisted suicide and would ask for spiritual assistance (24%). The following four clusters stood out. Clusters 2 and 4 would like to receive palliative care, euthanasia (2) and assisted suicide (4). Clusters 4 and 5 regularly practiced their faith and their family members did not receive palliative care. Clusters 3 and 5 would be opposed to euthanasia and assisted suicide in particular. Clusters 2, 4 and 5 had not completed an advance directive document (2, 4 and 5). Clusters 2 and 3 seldom practiced their faith. This study could be taken into consideration to improve the quality of end-of-life care choices. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Ab initio study of He trapping, diffusion and clustering in Y{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Wensheng, E-mail: wslai@tsinghua.edu.cn [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Ou, Yidian; Lou, Xiaofeng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Wang, Fei [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Xi’an High Technology Research Center, Xi’an 710025 (China)

    2017-02-15

    Ab initio calculations have been performed to study the formation and migration energies of helium atoms and the stability of helium-vacancy clusters in a Y{sub 2}O{sub 3} crystal. The calculated formation energies show that a helium atom is preferred to occupy an yttrium vacancy site with a large volume and low electron density. The migration energy of the helium atom by an interstitial mechanism is 0.31 eV. Calculations of the binding energies of an extra helium atom to the helium-vacancy clusters vary with the number of helium atoms in the clusters with a typical value of 0.4–0.7 eV. This turns negative when the He atoms reach saturation; that indicates that vacancy clusters can attract a limited number of helium atoms to form small stable helium-vacancy clusters. Our calculations suggest that the use of Y{sub 2}O{sub 3} in oxide dispersion strengthened ferritic steels may reduce He gas bubble formation as it may act as sink for trapping helium atoms.

  20. Using cluster analysis to organize and explore regional GPS velocities

    Science.gov (United States)

    Simpson, Robert W.; Thatcher, Wayne; Savage, James C.

    2012-01-01

    Cluster analysis offers a simple visual exploratory tool for the initial investigation of regional Global Positioning System (GPS) velocity observations, which are providing increasingly precise mappings of actively deforming continental lithosphere. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, can be subjective and is often guided by the distribution of known faults. To illustrate our method, we apply cluster analysis to GPS velocities from the San Francisco Bay Region, California, to search for spatially coherent patterns of deformation, including evidence of block-like behavior. The clustering process identifies four robust groupings of velocities that we identify with four crustal blocks. Although the analysis uses no prior geologic information other than the GPS velocities, the cluster/block boundaries track three major faults, both locked and creeping.

  1. Local atomic order in nanocrystalline Fe-based alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Jartych, E.

    2003-01-01

    Using the 57 Fe Moessbauer spectroscopy, a local atomic order in nanocrystalline alloys of iron with Al, Ni, W and Mo has been determined. Alloys were prepared by mechanical alloying method. Analysis of Moessbauer spectra was performed on the basis of the local environment model in terms of Warren-Cowley parameters. It was shown that impurity atoms are not randomly distributed in the volume of the first and the second co-ordination spheres of 57 Fe nuclei and they form clusters

  2. Methodology сomparative statistical analysis of Russian industry based on cluster analysis

    Directory of Open Access Journals (Sweden)

    Sergey S. Shishulin

    2017-01-01

    Full Text Available The article is devoted to researching of the possibilities of applying multidimensional statistical analysis in the study of industrial production on the basis of comparing its growth rates and structure with other developed and developing countries of the world. The purpose of this article is to determine the optimal set of statistical methods and the results of their application to industrial production data, which would give the best access to the analysis of the result.Data includes such indicators as output, output, gross value added, the number of employed and other indicators of the system of national accounts and operational business statistics. The objects of observation are the industry of the countrys of the Customs Union, the United States, Japan and Erope in 2005-2015. As the research tool used as the simplest methods of transformation, graphical and tabular visualization of data, and methods of statistical analysis. In particular, based on a specialized software package (SPSS, the main components method, discriminant analysis, hierarchical methods of cluster analysis, Ward’s method and k-means were applied.The application of the method of principal components to the initial data makes it possible to substantially and effectively reduce the initial space of industrial production data. Thus, for example, in analyzing the structure of industrial production, the reduction was from fifteen industries to three basic, well-interpreted factors: the relatively extractive industries (with a low degree of processing, high-tech industries and consumer goods (medium-technology sectors. At the same time, as a result of comparison of the results of application of cluster analysis to the initial data and data obtained on the basis of the principal components method, it was established that clustering industrial production data on the basis of new factors significantly improves the results of clustering.As a result of analyzing the parameters of

  3. Size-dependent valence change in small Pr, Nd, and Sm clusters isolated in solid Ar

    International Nuclear Information System (INIS)

    Luebcke, M.; Sonntag, B.; Niemann, W.; Rabe, P.

    1986-01-01

    The L/sub III/ absorption thresholds of Pr, Nd, and Sm clusters isolated in solid Ar are marked by prominent white lines. The lines ascribed to divalent and trivalent rare-earth metals are well separated in energy. From the relative intensities of these lines an average valence of the rare-earth atoms in the cluster has been determined. For dimers and trimers the average valence is close to 2, the value for free atoms. For clusters consisting of more than 20 atoms the average valence approaches 3, the value for bulk metals. In between the valence changes abruptly, indicating the existence of a critical cluster size of approximately 5 atoms for Pr and Nd and of 13 atoms for Sm

  4. Genome-scale analysis of positional clustering of mouse testis-specific genes

    Directory of Open Access Journals (Sweden)

    Lee Bernett TK

    2005-01-01

    Full Text Available Abstract Background Genes are not randomly distributed on a chromosome as they were thought even after removal of tandem repeats. The positional clustering of co-expressed genes is known in prokaryotes and recently reported in several eukaryotic organisms such as Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. In order to further investigate the mode of tissue-specific gene clustering in higher eukaryotes, we have performed a genome-scale analysis of positional clustering of the mouse testis-specific genes. Results Our computational analysis shows that a large proportion of testis-specific genes are clustered in groups of 2 to 5 genes in the mouse genome. The number of clusters is much higher than expected by chance even after removal of tandem repeats. Conclusion Our result suggests that testis-specific genes tend to cluster on the mouse chromosomes. This provides another piece of evidence for the hypothesis that clusters of tissue-specific genes do exist.

  5. Pattern recognition in menstrual bleeding diaries by statistical cluster analysis

    Directory of Open Access Journals (Sweden)

    Wessel Jens

    2009-07-01

    Full Text Available Abstract Background The aim of this paper is to empirically identify a treatment-independent statistical method to describe clinically relevant bleeding patterns by using bleeding diaries of clinical studies on various sex hormone containing drugs. Methods We used the four cluster analysis methods single, average and complete linkage as well as the method of Ward for the pattern recognition in menstrual bleeding diaries. The optimal number of clusters was determined using the semi-partial R2, the cubic cluster criterion, the pseudo-F- and the pseudo-t2-statistic. Finally, the interpretability of the results from a gynecological point of view was assessed. Results The method of Ward yielded distinct clusters of the bleeding diaries. The other methods successively chained the observations into one cluster. The optimal number of distinctive bleeding patterns was six. We found two desirable and four undesirable bleeding patterns. Cyclic and non cyclic bleeding patterns were well separated. Conclusion Using this cluster analysis with the method of Ward medications and devices having an impact on bleeding can be easily compared and categorized.

  6. Comparative analysis of clustering methods for gene expression time course data

    Directory of Open Access Journals (Sweden)

    Ivan G. Costa

    2004-01-01

    Full Text Available This work performs a data driven comparative study of clustering methods used in the analysis of gene expression time courses (or time series. Five clustering methods found in the literature of gene expression analysis are compared: agglomerative hierarchical clustering, CLICK, dynamical clustering, k-means and self-organizing maps. In order to evaluate the methods, a k-fold cross-validation procedure adapted to unsupervised methods is applied. The accuracy of the results is assessed by the comparison of the partitions obtained in these experiments with gene annotation, such as protein function and series classification.

  7. Density functional theory study of small X-doped Mg(n) (X = Fe, Co, Ni, n = 1-9) bimetallic clusters: equilibrium structures, stabilities, electronic and magnetic properties.

    Science.gov (United States)

    Kong, Fanjie; Hu, Yanfei

    2014-03-01

    The geometries, stabilities, and electronic and magnetic properties of Mg(n) X (X = Fe, Co, Ni, n = 1-9) clusters were investigated systematically within the framework of the gradient-corrected density functional theory. The results show that the Mg(n)Fe, Mg(n)Co, and Mg(n)Ni clusters have similar geometric structures and that the X atom in Mg(n)X clusters prefers to be endohedrally doped. The average atomic binding energies, fragmentation energies, second-order differences in energy, and HOMO-LUMO gaps show that Mg₄X (X = Fe, Co, Ni) clusters possess relatively high stability. Natural population analysis was performed and the results showed that the 3s and 4s electrons always transfer to the 3d and 4p orbitals in the bonding atoms, and that electrons also transfer from the Mg atoms to the doped atoms (Fe, Co, Ni). In addition, the spin magnetic moments were analyzed and compared. Several clusters, such as Mg₁,₂,₃,₄,₅,₆,₈,₉Fe, Mg₁,₂,₄,₅,₆,₈,₉Co, and Mg₁,₂,₅,₆,₇,₉Ni, present high magnetic moments (4 μ(B), 3 μ(B), and 2 μ(B), respectively).

  8. The Productivity Analysis of Chennai Automotive Industry Cluster

    Science.gov (United States)

    Bhaskaran, E.

    2014-07-01

    Chennai, also called the Detroit of India, is India's second fastest growing auto market and exports auto components and vehicles to US, Germany, Japan and Brazil. For inclusive growth and sustainable development, 250 auto component industries in Ambattur, Thirumalisai and Thirumudivakkam Industrial Estates located in Chennai have adopted the Cluster Development Approach called Automotive Component Cluster. The objective is to study the Value Chain, Correlation and Data Envelopment Analysis by determining technical efficiency, peer weights, input and output slacks of 100 auto component industries in three estates. The methodology adopted is using Data Envelopment Analysis of Output Oriented Banker Charnes Cooper model by taking net worth, fixed assets, employment as inputs and gross output as outputs. The non-zero represents the weights for efficient clusters. The higher slack obtained reveals the excess net worth, fixed assets, employment and shortage in gross output. To conclude, the variables are highly correlated and the inefficient industries should increase their gross output or decrease the fixed assets or employment. Moreover for sustainable development, the cluster should strengthen infrastructure, technology, procurement, production and marketing interrelationships to decrease costs and to increase productivity and efficiency to compete in the indigenous and export market.

  9. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    Science.gov (United States)

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  10. MMPI profiles of males accused of severe crimes: a cluster analysis

    NARCIS (Netherlands)

    Spaans, M.; Barendregt, M.; Muller, E.; Beurs, E. de; Nijman, H.L.I.; Rinne, T.

    2009-01-01

    In studies attempting to classify criminal offenders by cluster analysis of Minnesota Multiphasic Personality Inventory-2 (MMPI-2) data, the number of clusters found varied between 10 (the Megargee System) and two (one cluster indicating no psychopathology and one exhibiting serious

  11. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.

    Science.gov (United States)

    Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu

    2012-01-10

    An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gold atoms and clusters on MgO(100) films; an EPR and IRAS study

    Science.gov (United States)

    Yulikov, M.; Sterrer, M.; Risse, T.; Freund, H.-J.

    2009-06-01

    Single gold atoms deposited on single crystalline MgO(1 0 0) films grown on Mo(1 0 0) are characterized by electron paramagnetic resonance spectroscopy as well as IR spectroscopy using CO as probe molecules. In this article we describe the first angular dependent measurements to determine the principal hyperfine components of a secondary hyperfine interaction, namely, with 17O of the MgO. The values determined here are in perfect agreement with theoretical expectations and corroborate the previously reported binding mechanism of Au atoms on the oxygen anions of the MgO terrace. The temperature dependent EPR data reveal an onset of Au atom mobility at about 80 K while the formation of Au particles occurs only above 125 K. By an analysis of the EPR line width in combination with STM measurements it is possible to deduce an increase of the interatomic distance above 80 K. The Au/CO complexes show a somewhat smaller temperature stability as compared to the Au atoms. The observed thermal stability is in perfect agreement with theoretical predictions for CO desorption.

  13. Observations on small anionic clusters in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Eritt, Markus

    2008-10-02

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C{sub n}{sup -} n=2-12), aluminium (Al{sub n}{sup -} n=2-7) and silver clusters (Ag{sub n}{sup -} n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon

  14. On the applicability of the jellium model to the description of alkali clusters

    International Nuclear Information System (INIS)

    Matveentsev, A.; Lyalin, A.; Solovyov, I.A.; Solovyov, A.V.; Greiner, W.

    2003-01-01

    This work is devoted to the elucidation of the applicability of the jellium model to the description of alkali cluster properties. We compare the jellium model results with those derived within ab initio theoretical approaches and with experiments. On the basis of Hartree–Fock and local-density approximations we have calculated the binding energies per atom, ionization potentials, deformation parameters and optimized values of the Wigner–Seitz radii for neutral and singly charged sodium clusters with the number of atoms N ≤ 20. The characteristics calculated within the framework of the deformed jellium model are compared with the results derived from ab initio simulations of cluster electronic and ionic structure based on density functional theory and systematic post Hartree–Fock many-body perturbation theory accounting for all electrons in the system. The comparison performed demonstrates the great role of the cluster shape deformations in the formation cluster properties and quite reasonable level of applicability of the deformed jellium model. This elucidates the similarities of atomic cluster physics with the physics of atomic nuclei. (author)

  15. Formation of nanoclusters of gadolinium atoms in silicon

    International Nuclear Information System (INIS)

    Iliev, Kh.M.; Saparniyazova, Z.M.; Ismajlov, K.A.; Madzhitov, M.Kh.

    2011-01-01

    A technology of stage wise low temperature diffusion of gadolinium into silicon that makes it possible to form nanoclusters of impurity atoms with a significant magnetic moment distributed throughout the volume of the material has been developed. It is shown that, unlike the samples obtained by high temperature diffusion doping, the samples prepared by the new technology do not have surface erosion, and alloys and silicides are not formed in the near surface region. Nanoclusters of impurity atoms of gadolinium in the volume of the crystal lattice of the silicon are studied using an MIK-5 infrared microscope. It is found that, in the stage wise low temperature diffusion, the temperature and time of the diffusion have an effect not only on the depth of penetration of the impurities but also on the sizes of the resulting clusters; these factors can also prevent the formation of clusters. The study of the effect of low temperature treatments on the size and distribution of clusters shows that, upon annealing in the temperature range of 500-700 degrees Celsius, the ordering of the clusters of gadolinium impurity atoms is observed. A further increase in the annealing temperature leads to the destruction of gadolinium clusters in the silicon bulk. (authors)

  16. Magnetic Properties of Iron Clusters in Silver

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Al Rawas, A.; Yousif, A.; Gismelseed, A.; Rais, A.; Al-Omari, I.; Bouziane, K. [College of Science, Department of Physics (Oman); Widatallah, H. [Khartoum University, Department of Physics, Faculty of Science (Sudan)

    2004-12-15

    The discrete variational method is used to study the effect of interactions of iron impurities on the magnetic moments, hyperfine fields and isomer shifts at iron sites in silver. We study small clusters of iron atoms as they grow to form FCC phase that is coherent with the silver lattice. The effects of the lattice relaxation and the ferromagnetic and antiferromagnetic couplings are also considered. When Fe atoms congregate around a central Fe atom in an FCC arrangement under ferromagnetic coupling, the local magnetic moment and the contact charge density at the central atom hardly change as the cluster builds up, whereas the hyperfine field increases asymptotically as the number of Fe nearest neighbors increases. Introduction of antiferromagnetic coupling has minor effect on the local magnetic moments and isomer shifts, however it produces large reduction in the hyperfine field. The lattice relaxation of the surrounding Fe atoms towards a BCC phase around a central Fe atom leads to reduction in the magnetic moment accompanied by increase in the magnetic hyperfine field.

  17. Geometric, stability, and electronic properties of gold-doped Pd clusters (Pd{sub n}Au, n = 3~20)

    Energy Technology Data Exchange (ETDEWEB)

    Huan, Hao; Chen, Yan; Wang, Tao; Ye, Xiang, E-mail: yexiang@shnu.edu.cn [Shanghai Normal University, Department of Physics (China); Gu, Xiao, E-mail: gx@cqu.edu.cn [Chongqing University, Department of Applied Physics (China)

    2016-11-15

    The structure, stability, and electronic properties of Pd{sub n}Au (n = 3~20) clusters are studied by density functional theory. The results show that the clusters studied here prefer three-dimensional structures even with very small atom number. It is found that the binding energies of Pd{sub n}Au clusters are higher than the corresponding pure Pd{sub n} clusters with the same atom number. Most Pd{sub n}Au clusters studied here are magnetic with magnetic moments ranging from 1.0 to 7.0 μ{sub B.} The dissociation energies of Pd atoms are lower than the doped gold atom, that is the doped Au atom will increase the mother clusters stability and activity.

  18. Formation of large clusters during sputtering of silver

    International Nuclear Information System (INIS)

    Staudt, C.; Heinrich, R.; Wucher, A.

    2000-01-01

    We have studied the formation of polyatomic clusters during sputtering of metal surfaces by keV ion bombardment. Both positively charged (secondary cluster ions) and neutral clusters have been detected in a time-of-flight mass spectrometer under otherwise identical experimental conditions, the sputtered neutrals being post-ionized by single photon absorption using a pulsed 157 nm VUV laser beam. Due to the high achievable laser intensity, the photoionization of all clusters could be saturated, thus enabling a quantitative determination of the respective partial sputtering yields. We find that the relative yield distributions of sputtered clusters are strongly correlated with the total sputtering yield in a way that higher yields lead to higher abundances of large clusters. By using heavy projectile ions (Xe + ) in connection with bombarding energies up to 15 keV, we have been able to detect sputtered neutral silver clusters containing up to about 60 atoms. For cluster sizes above 40 atoms, doubly charged species are shown to be produced in the photoionization process with non-negligible efficiency. From a direct comparison of secondary neutral and ion yields, the ionization probability of sputtered clusters is determined as a function of the cluster size. It is demonstrated that even the largest silver clusters are still predominantly sputtered as neutrals

  19. Photodesorption of Na atoms from rough Na surfaces

    DEFF Research Database (Denmark)

    Balzer, Frank; Gerlach, R.; Manson, J.R.

    1997-01-01

    We investigate the desorption of Na atoms from large Na clusters deposited on dielectric surfaces. High-resolution translational energy distributions of the desorbing atoms are determined by three independent methods, two-photon laser-induced fluorescence, as well as single-photon and resonance......-enhanced two-photon ionization techniques. Upon variation of surface temperature and for different substrates (mica vs lithium fluoride) clear non-Maxwellian time-of-flight distributions are observed with a cos θ angular dependence and most probable kinetic energies below that expected of atoms desorbing from...... atoms are scattered by surface vibrations. Recent experiments providing time constants for the decay of the optical excitations in the clusters support this model. The excellent agreement between experiment and theory indicates the importance of both absorption of the laser photons via direct excitation...

  20. First-principles study on stability and magnetism of AlnZn (n=1-9) clusters

    International Nuclear Information System (INIS)

    Ren Xiaojun; Li Baoxing

    2010-01-01

    We have investigated the structures, stabilities and magnetism of zinc-doped Al n (n=1-9) clusters in detail by using first-principles density functional theory. Our calculated results indicate that the ground state structures of the mixed Al n Zn (n=1-9) clusters doped with one zinc atom can be obtained from the most stable structures of the pure Al n (n=2-10) clusters by substitutional type. The impurity atom causes local structural distortion due to different atomic radii and different bonding characteristics. It is found that the clusters with total atom numbers of 3 and 7 exhibit high stability. In addition, the energy gaps E g s between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) show obvious even/odd alternation with cluster size. Furthermore, we investigate the magnetism of the mixed clusters. The Al 4 Zn, Al 6 Zn and Al 8 Zn clusters with even number of electrons do not have any magnetism. All Al 1 Zn, Al 5 Zn, Al 7 Zn and Al 9 Zn clusters have the total magnetic moment of 1.0 μ B due to one unpaired electron. Unexpectedly, the Al 2 Zn and Al 3 Zn clusters show total magnetic moments of 2.0 and 3.0 μ B , respectively. The magnetism arises from the sp-d hybridization due to charge transfer and the influence of the impurity zinc atom.

  1. Effects of incident cluster size, substrate temperature, and incident energy on bombardment of Ni clusters onto Cu (0 0 1) surface studied using molecular dynamics simulation

    International Nuclear Information System (INIS)

    Lin, Shiang-Jiun; Wu, Cheng-Da; Fang, Te-Hua; Chen, Guan-Hung

    2012-01-01

    The bombardment process of a Ni cluster onto a Cu (0 0 1) surface is studied using molecular dynamics (MD) simulations based on the tight-binding second-moment approximation (TB-SMA) many-body potential. The effects of incident cluster size, substrate temperature, and incident energy are evaluated in terms of molecular trajectories, kinetic energy, stress, self-diffusion coefficient, and sputtering yield. The simulation results clearly show that the penetration depth and Cu surface damage increase with increasing incident cluster size for a given incident energy per atom. The self-diffusion coefficient and the penetration depth of a cluster significantly increase with increasing substrate temperature. An incident cluster can be scattered into molecules or atoms that become embedded in the surface after incidence. When the incident energy is increased, the number of volcano-like defects and the penetration depth increase. A high sputtering yield can be obtained by increasing the incident energy at high temperature. The sputtering yield significantly increases with cluster size when the incident energy is above 5 eV/atom.

  2. ANALYSIS OF DEVELOPING BATIK INDUSTRY CLUSTER IN BAKARAN VILLAGE CENTRAL JAVA PROVINCE

    Directory of Open Access Journals (Sweden)

    Hermanto Hermanto

    2017-06-01

    Full Text Available SMEs grow in a cluster in a certain geographical area. The entrepreneurs grow and thrive through the business cluster. Central Java Province has a lot of business clusters in improving the regional economy, one of which is batik industry cluster. Pati Regency is one of regencies / city in Central Java that has the lowest turnover. Batik industy cluster in Pati develops quite well, which can be seen from the increasing number of batik industry incorporated in the cluster. This research examines the strategy of developing the batik industry cluster in Pati Regency. The purpose of this research is to determine the proper strategy for developing the batik industry clusters in Pati. The method of research is quantitative. The analysis tool of this research is the Strengths, Weakness, Opportunity, Threats (SWOT analysis. The result of SWOT analysis in this research shows that the proper strategy for developing the batik industry cluster in Pati is optimizing the management of batik business cluster in Bakaran Village; the local government provides information of the facility of business capital loans; the utilization of labors from Bakaran Village while improving the quality of labors by training, and marketing the Bakaran batik to the broader markets while maintaining the quality of batik. Advice that can be given from this research is that the parties who have a role in batik industry cluster development in Bakaran Village, Pati Regency, such as the Local Government.

  3. Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.

    Science.gov (United States)

    Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si

    2017-07-01

    Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.

  4. A SURVEY ON DOCUMENT CLUSTERING APPROACH FOR COMPUTER FORENSIC ANALYSIS

    OpenAIRE

    Monika Raghuvanshi*, Rahul Patel

    2016-01-01

    In a forensic analysis, large numbers of files are examined. Much of the information comprises of in unstructured format, so it’s quite difficult task for computer forensic to perform such analysis. That’s why to do the forensic analysis of document within a limited period of time require a special approach such as document clustering. This paper review different document clustering algorithms methodologies for example K-mean, K-medoid, single link, complete link, average link in accorandance...

  5. Assessment of elemental pollution in soil of Islamabad city using instrumental neutron activation analysis and atomic absorption spectrometry techniques

    International Nuclear Information System (INIS)

    Daud, M.; Wasim, M.; Khalid, N.; Zaidi, J.H.; Iqbal, J.

    2009-01-01

    The soil samples of nine different sites in Islamabad were studied for their elemental composition. Instrumental neutron activation analysis and atomic absorption spectrometry were employed and 33 elements were determined. The acquired data were analyzed using descriptive statistics, principal component analysis, cluster analysis, pollution level index and enrichment factor. A perusal of results shows a distribution of elemental concentration in two major groups, one along the highway and the other in industrial area of Islamabad. The soil along the highway sites was found to be relatively less polluted than at the sites in the industrial area. The enrichment factor indicates the presence of As, Pb, Sb, Se and Sn at higher levels. The method validation was done by analyzing IAEA reference materials SL-1 (lake sediment) and S7 (soil). (orig.)

  6. Enhanced polarizability of aromatic molecules placed in the vicinity of silver clusters

    International Nuclear Information System (INIS)

    Mayer, A; Schatz, G C

    2009-01-01

    We use a charge-dipole interaction model to study the polarizability of aromatic molecules that are placed between two silver clusters. In particular we examine the enhancement in polarizability induced by the clusters at plasmon-like resonant frequencies of the cluster-molecule-cluster system. The model used for these simulations relies on representation of the atoms by both a net electric charge and a dipole. By relating the time variation of the atomic charges to the currents that flow through the bonds of the structures considered, a least-action principle can be formulated that enables the atomic charges and dipoles to be determined. We consider benzene, naphthalene and anthracene for this study, comparing the polarizability of these aromatic molecules when placed in the middle between two Ag 120 clusters, with their polarizability as isolated molecules. We find that the polarizability of these molecules is enhanced by the clusters, and this increases the electromagnetic coupling between the two clusters. This results in significant red-shifting (by up to 0.8 eV) of the lowest energy optical transition in the cluster-molecule-cluster system compared to plasmon-like excitation in the cluster-cluster system. The resulting resonant polarizability enhancement leads to an electromagnetic enhancement in surface-enhanced Raman scattering of over 10 6 .

  7. Marvels of enzyme catalysis at true atomic resolution: distortions, bond elongations, hidden flips, protonation states and atom identities.

    Science.gov (United States)

    Neumann, Piotr; Tittmann, Kai

    2014-12-01

    Although general principles of enzyme catalysis are fairly well understood nowadays, many important details of how exactly the substrate is bound and processed in an enzyme remain often invisible and as such elusive. In fortunate cases, structural analysis of enzymes can be accomplished at true atomic resolution thus making possible to shed light on otherwise concealed fine-structural traits of bound substrates, intermediates, cofactors and protein groups. We highlight recent structural studies of enzymes using ultrahigh-resolution X-ray protein crystallography showcasing its enormous potential as a tool in the elucidation of enzymatic mechanisms and in unveiling fundamental principles of enzyme catalysis. We discuss the observation of seemingly hyper-reactive, physically distorted cofactors and intermediates with elongated scissile substrate bonds, the detection of 'hidden' conformational and chemical equilibria and the analysis of protonation states with surprising findings. In delicate cases, atomic resolution is required to unambiguously disclose the identity of atoms as demonstrated for the metal cluster in nitrogenase. In addition to the pivotal structural findings and the implications for our understanding of enzyme catalysis, we further provide a practical framework for resolution enhancement through optimized data acquisition and processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Impact of slow gold clusters on various solids

    International Nuclear Information System (INIS)

    Benguerba, M.; Brunelle, A.; Della-Negra, S.; Depauw, J.; Joret, H.; Beyec, Y. Le; Schweikert, E.A.; Assayag, G.B.; Sudraud, P.

    1991-01-01

    A liquid metal ion source has been installed on a pulsed ion gun. The time of flight (TOF) spectra of the pulsed beam were recorded. With the gold source several cluster ions (up to 10 atoms in the cluster) and doubly charged ions were identified in the ion beam TOF spectra. With a second pulsation, single cluster ions can be selected as projectiles for secondary ion TOF mass spectrometry. The secondary ion emission induced by cluster impact from a variety of targets (organic, CsI, metallic) was studied. A large enhancement of yield is observed by comparison to single atomic ion impact (e.g., a factor of 30 between Au 3 + and Au + ). The secondary ion yields increase nonlinearly with the number of constituents in the cluster. A comparison with other types of clusters and also fission fragments of 252 Cf has been performed. The rate of secondary emission stimulated by cluster is similar to the secondary ion yield induced by fission fragments. (author) 47 refs., 18 figs., 5 tabs

  9. Cluster Analysis in Rapeseed (Brassica Napus L.)

    International Nuclear Information System (INIS)

    Mahasi, J.M

    2002-01-01

    With widening edible deficit, Kenya has become increasingly dependent on imported edible oils. Many oilseed crops (e.g. sunflower, soya beans, rapeseed/mustard, sesame, groundnuts etc) can be grown in Kenya. But oilseed rape is preferred because it very high yielding (1.5 tons-4.0 tons/ha) with oil content of 42-46%. Other uses include fitting in various cropping systems as; relay/inter crops, rotational crops, trap crops and fodder. It is soft seeded hence oil extraction is relatively easy. The meal is high in protein and very useful in livestock supplementation. Rapeseed can be straight combined using adjusted wheat combines. The priority is to expand domestic oilseed production, hence the need to introduce improved rapeseed germplasm from other countries. The success of any crop improvement programme depends on the extent of genetic diversity in the material. Hence, it is essential to understand the adaptation of introduced genotypes and the similarities if any among them. Evaluation trials were carried out on 17 rapeseed genotypes (nine Canadian origin and eight of European origin) grown at 4 locations namely Endebess, Njoro, Timau and Mau Narok in three years (1992, 1993 and 1994). Results for 1993 were discarded due to severe drought. An analysis of variance was carried out only on seed yields and the treatments were found to be significantly different. Cluster analysis was then carried out on mean seed yields and based on this analysis; only one major group exists within the material. In 1992, varieties 2,3,8 and 9 didn't fall in the same cluster as the rest. Variety 8 was the only one not classified with the rest of the Canadian varieties. Three European varieties (2,3 and 9) were however not classified with the others. In 1994, varieties 10 and 6 didn't fall in the major cluster. Of these two, variety 10 is of Canadian origin. Varieties were more similar in 1994 than 1992 due to favorable weather. It is evident that, genotypes from different geographical

  10. Consideration of possible mass and velocity corrections to magnetic cluster experiments

    International Nuclear Information System (INIS)

    Liu, Z.Y.; Dowben, P.A.; Popov, A.P.; Pappas, David P.

    2003-01-01

    Gadolinium occurs, in natural abundance, as several isotopes. The possible combinations of different gadolinium isotopes dictates that even for a fixed number of atoms in the cluster, clusters of gadolinium atoms will exhibit a range of masses. This and the expected consequence of the translation energy distributions are explored as possible corrections to Stern-Gerlach cluster beam-deflection experiments. Upon closer inspection of the experimental data, we find that the translation energy plus the vibrational temperature distribution may be inhomogeneous. This could be the origin of a long tail to high deflections in the experimental deflection profiles, at low cluster temperatures, in the magnetic cluster Stern-Gerlach experiments

  11. Analysis of the Structures and Properties of (GaSb)n (n = 4-9) Clusters through Density Functional Theory.

    Science.gov (United States)

    Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De; Wan, Jian Guo

    2016-07-07

    An optimization strategy combining global semiempirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (GaSb)n clusters up to n = 9. The growth pattern of the clusters differed from those of previously reported group III-V binary clusters. A cagelike configuration was found for cluster sizes n ≤ 7. The structure of (GaSb)6 deviated from that of other III-V clusters. Competition existed between core-shell and hollow cage structures of (GaSb)7. Novel noncagelike structures were energetically preferred over the cages for the (GaSb)8 and (GaSb)9 clusters. Electronic properties, such as vertical ionization potential, adiabatic electron affinities, HOMO-LUMO gaps, and average on-site charges on Ga or Sb atoms, as well as binding energies, were computed.

  12. Computed structure of small benzene clusters

    NARCIS (Netherlands)

    van de Waal, B.W.

    1986-01-01

    The structures of small benzene clusters (C6H6)n, n = 2–7, have been calculated employing potential-energy minimization with respect to molecular translational and rotational coordinates, using exp-6-1 non-bonded atom-atom potential functions. The influence of the adopted point-charge model is

  13. The Quantitative Analysis of Chennai Automotive Industry Cluster

    Science.gov (United States)

    Bhaskaran, Ethirajan

    2016-07-01

    Chennai, also called as Detroit of India due to presence of Automotive Industry producing over 40 % of the India's vehicle and components. During 2001-2002, the Automotive Component Industries (ACI) in Ambattur, Thirumalizai and Thirumudivakkam Industrial Estate, Chennai has faced problems on infrastructure, technology, procurement, production and marketing. The objective is to study the Quantitative Performance of Chennai Automotive Industry Cluster before (2001-2002) and after the CDA (2008-2009). The methodology adopted is collection of primary data from 100 ACI using quantitative questionnaire and analyzing using Correlation Analysis (CA), Regression Analysis (RA), Friedman Test (FMT), and Kruskall Wallis Test (KWT).The CA computed for the different set of variables reveals that there is high degree of relationship between the variables studied. The RA models constructed establish the strong relationship between the dependent variable and a host of independent variables. The models proposed here reveal the approximate relationship in a closer form. KWT proves, there is no significant difference between three locations clusters with respect to: Net Profit, Production Cost, Marketing Costs, Procurement Costs and Gross Output. This supports that each location has contributed for development of automobile component cluster uniformly. The FMT proves, there is no significant difference between industrial units in respect of cost like Production, Infrastructure, Technology, Marketing and Net Profit. To conclude, the Automotive Industries have fully utilized the Physical Infrastructure and Centralised Facilities by adopting CDA and now exporting their products to North America, South America, Europe, Australia, Africa and Asia. The value chain analysis models have been implemented in all the cluster units. This Cluster Development Approach (CDA) model can be implemented in industries of under developed and developing countries for cost reduction and productivity

  14. The CERN polarized atomic hydrogen beam target project

    International Nuclear Information System (INIS)

    Kubischta, W.; Dick, L.

    1990-01-01

    The UA6-experiment at the CERN p bar p Colider is at present using an unpolarized hydrogen cluster target with a thickness up to 5.10 14 atoms/cm 2 . It is planned to replace this target by a polarized atomic hydrogen beam target with a thickness up to about 10 13 atoms/cm 2 . This paper discusses basic requirements and results of atom optical calculations

  15. Clusters of Insomnia Disorder: An Exploratory Cluster Analysis of Objective Sleep Parameters Reveals Differences in Neurocognitive Functioning, Quantitative EEG, and Heart Rate Variability.

    Science.gov (United States)

    Miller, Christopher B; Bartlett, Delwyn J; Mullins, Anna E; Dodds, Kirsty L; Gordon, Christopher J; Kyle, Simon D; Kim, Jong Won; D'Rozario, Angela L; Lee, Rico S C; Comas, Maria; Marshall, Nathaniel S; Yee, Brendon J; Espie, Colin A; Grunstein, Ronald R

    2016-11-01

    To empirically derive and evaluate potential clusters of Insomnia Disorder through cluster analysis from polysomnography (PSG). We hypothesized that clusters would differ on neurocognitive performance, sleep-onset measures of quantitative ( q )-EEG and heart rate variability (HRV). Research volunteers with Insomnia Disorder (DSM-5) completed a neurocognitive assessment and overnight PSG measures of total sleep time (TST), wake time after sleep onset (WASO), and sleep onset latency (SOL) were used to determine clusters. From 96 volunteers with Insomnia Disorder, cluster analysis derived at least two clusters from objective sleep parameters: Insomnia with normal objective sleep duration (I-NSD: n = 53) and Insomnia with short sleep duration (I-SSD: n = 43). At sleep onset, differences in HRV between I-NSD and I-SSD clusters suggest attenuated parasympathetic activity in I-SSD (P insomnia clusters derived from cluster analysis differ in sleep onset HRV. Preliminary data suggest evidence for three clusters in insomnia with differences for sustained attention and sleep-onset q -EEG. Insomnia 100 sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR) identification number 12612000049875. URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=347742. © 2016 Associated Professional Sleep Societies, LLC.

  16. Clusters of Insomnia Disorder: An Exploratory Cluster Analysis of Objective Sleep Parameters Reveals Differences in Neurocognitive Functioning, Quantitative EEG, and Heart Rate Variability

    Science.gov (United States)

    Miller, Christopher B.; Bartlett, Delwyn J.; Mullins, Anna E.; Dodds, Kirsty L.; Gordon, Christopher J.; Kyle, Simon D.; Kim, Jong Won; D'Rozario, Angela L.; Lee, Rico S.C.; Comas, Maria; Marshall, Nathaniel S.; Yee, Brendon J.; Espie, Colin A.; Grunstein, Ronald R.

    2016-01-01

    Study Objectives: To empirically derive and evaluate potential clusters of Insomnia Disorder through cluster analysis from polysomnography (PSG). We hypothesized that clusters would differ on neurocognitive performance, sleep-onset measures of quantitative (q)-EEG and heart rate variability (HRV). Methods: Research volunteers with Insomnia Disorder (DSM-5) completed a neurocognitive assessment and overnight PSG measures of total sleep time (TST), wake time after sleep onset (WASO), and sleep onset latency (SOL) were used to determine clusters. Results: From 96 volunteers with Insomnia Disorder, cluster analysis derived at least two clusters from objective sleep parameters: Insomnia with normal objective sleep duration (I-NSD: n = 53) and Insomnia with short sleep duration (I-SSD: n = 43). At sleep onset, differences in HRV between I-NSD and I-SSD clusters suggest attenuated parasympathetic activity in I-SSD (P insomnia clusters derived from cluster analysis differ in sleep onset HRV. Preliminary data suggest evidence for three clusters in insomnia with differences for sustained attention and sleep-onset q-EEG. Clinical Trial Registration: Insomnia 100 sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR) identification number 12612000049875. URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=347742. Citation: Miller CB, Bartlett DJ, Mullins AE, Dodds KL, Gordon CJ, Kyle SD, Kim JW, D'Rozario AL, Lee RS, Comas M, Marshall NS, Yee BJ, Espie CA, Grunstein RR. Clusters of Insomnia Disorder: an exploratory cluster analysis of objective sleep parameters reveals differences in neurocognitive functioning, quantitative EEG, and heart rate variability. SLEEP 2016;39(11):1993–2004. PMID:27568796

  17. Ion induced electron emission statistics under Agm- cluster bombardment of Ag

    Science.gov (United States)

    Breuers, A.; Penning, R.; Wucher, A.

    2018-05-01

    The electron emission from a polycrystalline silver surface under bombardment with Agm- cluster ions (m = 1, 2, 3) is investigated in terms of ion induced kinetic excitation. The electron yield γ is determined directly by a current measurement method on the one hand and implicitly by the analysis of the electron emission statistics on the other hand. Successful measurements of the electron emission spectra ensure a deeper understanding of the ion induced kinetic electron emission process, with particular emphasis on the effect of the projectile cluster size to the yield as well as to emission statistics. The results allow a quantitative comparison to computer simulations performed for silver atoms and clusters impinging onto a silver surface.

  18. Assessment of genetic divergence in tomato through agglomerative hierarchical clustering and principal component analysis

    International Nuclear Information System (INIS)

    Iqbal, Q.; Saleem, M.Y.; Hameed, A.; Asghar, M.

    2014-01-01

    For the improvement of qualitative and quantitative traits, existence of variability has prime importance in plant breeding. Data on different morphological and reproductive traits of 47 tomato genotypes were analyzed for correlation,agglomerative hierarchical clustering and principal component analysis (PCA) to select genotypes and traits for future breeding program. Correlation analysis revealed significant positive association between yield and yield components like fruit diameter, single fruit weight and number of fruits plant-1. Principal component (PC) analysis depicted first three PCs with Eigen-value higher than 1 contributing 81.72% of total variability for different traits. The PC-I showed positive factor loadings for all the traits except number of fruits plant-1. The contribution of single fruit weight and fruit diameter was highest in PC-1. Cluster analysis grouped all genotypes into five divergent clusters. The genotypes in cluster-II and cluster-V exhibited uniform maturity and higher yield. The D2 statistics confirmed highest distance between cluster- III and cluster-V while maximum similarity was observed in cluster-II and cluster-III. It is therefore suggested that crosses between genotypes of cluster-II and cluster-V with those of cluster-I and cluster-III may exhibit heterosis in F1 for hybrid breeding and for selection of superior genotypes in succeeding generations for cross breeding programme. (author)

  19. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.

    Science.gov (United States)

    Sammond, Deanne W; Kastelowitz, Noah; Himmel, Michael E; Yin, Hang; Crowley, Michael F; Bomble, Yannick J

    2016-01-01

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.

  20. Gamma radiation effect on n-InP crystals with impurity clusters

    International Nuclear Information System (INIS)

    Vitovskij, N.A.; Dakhno, A.N.; Emel'yanenko, O.V.; Lagunova, T.S.; Mashovets, T.V.

    1982-01-01

    Parameters of acceptor-impurity atom clusters have been investigated for the cases of nonirradiated and gamma-irradiated n-InP crystals. Temperature dependences of electric conductivity, the Hall coefficient and the longitudinal magnetoresistance have been measured both in darkness and in lighting, the kinetics of the photoconductivity drop has also been studied. It is shown that in nonirradiated n-InP:Cu and n-InP-Zn the number of atoms in the cluster may be about 25-30. The concentration of the clusters may reach 10 11 cm -3 . Gamma-radiation increases the number of atoms in the cluster up to approximately equal to 40 with the insignificant change of the radius. In the nonirradiated material, the potential barrier heights created by the cluster are 0.15 eV and 0.4 eV at 78 and 300 K, respectively. The irradiation increases the barrier and the fraction of the volume occupied by the space-charge regions which overlap if the dose is sufficiently high

  1. Structure and bonding in clusters

    International Nuclear Information System (INIS)

    Kumar, V.

    1991-10-01

    We review here the recent progress made in the understanding of the electronic and atomic structure of small clusters of s-p bonded materials using the density functional molecular dynamics technique within the local density approximation. Starting with a brief description of the method, results are presented for alkali metal clusters, clusters of divalent metals such as Mg and Be which show a transition from van der Waals or weak chemical bonding to metallic behaviour as the cluster size grows and clusters of Al, Sn and Sb. In the case of semiconductors, we discuss results for Si, Ge and GaAs clusters. Clusters of other materials such as P, C, S, and Se are also briefly discussed. From these and other available results we suggest the possibility of unique structures for the magic clusters. (author). 69 refs, 7 figs, 1 tab

  2. A Distributed Flocking Approach for Information Stream Clustering Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL

    2006-01-01

    Intelligence analysts are currently overwhelmed with the amount of information streams generated everyday. There is a lack of comprehensive tool that can real-time analyze the information streams. Document clustering analysis plays an important role in improving the accuracy of information retrieval. However, most clustering technologies can only be applied for analyzing the static document collection because they normally require a large amount of computation resource and long time to get accurate result. It is very difficult to cluster a dynamic changed text information streams on an individual computer. Our early research has resulted in a dynamic reactive flock clustering algorithm which can continually refine the clustering result and quickly react to the change of document contents. This character makes the algorithm suitable for cluster analyzing dynamic changed document information, such as text information stream. Because of the decentralized character of this algorithm, a distributed approach is a very natural way to increase the clustering speed of the algorithm. In this paper, we present a distributed multi-agent flocking approach for the text information stream clustering and discuss the decentralized architectures and communication schemes for load balance and status information synchronization in this approach.

  3. Genome cluster database. A sequence family analysis platform for Arabidopsis and rice.

    Science.gov (United States)

    Horan, Kevin; Lauricha, Josh; Bailey-Serres, Julia; Raikhel, Natasha; Girke, Thomas

    2005-05-01

    The genome-wide protein sequences from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) spp. japonica were clustered into families using sequence similarity and domain-based clustering. The two fundamentally different methods resulted in separate cluster sets with complementary properties to compensate the limitations for accurate family analysis. Functional names for the identified families were assigned with an efficient computational approach that uses the description of the most common molecular function gene ontology node within each cluster. Subsequently, multiple alignments and phylogenetic trees were calculated for the assembled families. All clustering results and their underlying sequences were organized in the Web-accessible Genome Cluster Database (http://bioinfo.ucr.edu/projects/GCD) with rich interactive and user-friendly sequence family mining tools to facilitate the analysis of any given family of interest for the plant science community. An automated clustering pipeline ensures current information for future updates in the annotations of the two genomes and clustering improvements. The analysis allowed the first systematic identification of family and singlet proteins present in both organisms as well as those restricted to one of them. In addition, the established Web resources for mining these data provide a road map for future studies of the composition and structure of protein families between the two species.

  4. Cluster analysis of obesity and asthma phenotypes.

    Directory of Open Access Journals (Sweden)

    E Rand Sutherland

    Full Text Available Asthma is a heterogeneous disease with variability among patients in characteristics such as lung function, symptoms and control, body weight, markers of inflammation, and responsiveness to glucocorticoids (GC. Cluster analysis of well-characterized cohorts can advance understanding of disease subgroups in asthma and point to unsuspected disease mechanisms. We utilized an hypothesis-free cluster analytical approach to define the contribution of obesity and related variables to asthma phenotype.In a cohort of clinical trial participants (n = 250, minimum-variance hierarchical clustering was used to identify clinical and inflammatory biomarkers important in determining disease cluster membership in mild and moderate persistent asthmatics. In a subset of participants, GC sensitivity was assessed via expression of GC receptor alpha (GCRα and induction of MAP kinase phosphatase-1 (MKP-1 expression by dexamethasone. Four asthma clusters were identified, with body mass index (BMI, kg/m(2 and severity of asthma symptoms (AEQ score the most significant determinants of cluster membership (F = 57.1, p<0.0001 and F = 44.8, p<0.0001, respectively. Two clusters were composed of predominantly obese individuals; these two obese asthma clusters differed from one another with regard to age of asthma onset, measures of asthma symptoms (AEQ and control (ACQ, exhaled nitric oxide concentration (F(ENO and airway hyperresponsiveness (methacholine PC(20 but were similar with regard to measures of lung function (FEV(1 (% and FEV(1/FVC, airway eosinophilia, IgE, leptin, adiponectin and C-reactive protein (hsCRP. Members of obese clusters demonstrated evidence of reduced expression of GCRα, a finding which was correlated with a reduced induction of MKP-1 expression by dexamethasoneObesity is an important determinant of asthma phenotype in adults. There is heterogeneity in expression of clinical and inflammatory biomarkers of asthma across obese individuals

  5. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K., E-mail: millermk@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6139 (United States); Reinhard, D., E-mail: David.Reinhard@ametek.com [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711 (United States); Larson, D.J., E-mail: David.Larson@ametek.com [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711 (United States)

    2015-07-15

    Highlights: • Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency. • Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP. • High densities, 1.8 × 10{sup 24} m{sup −3}, of solute clusters were detected in as-milled flakes of 14YWT. • Lower densities, 1.2 × 10{sup 24} m{sup −3}, were detected in the stir zone of a FSW. • Vacancies stabilize the clusters, which retard diffusion and confers excellent stability. - Abstract: A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8 × 10{sup 24} m{sup −3} and 1.2 × 10{sup 24} m{sup −3}, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  6. Molecular dynamic simulation on boron cluster implantation for shallow junction formation

    International Nuclear Information System (INIS)

    Yuan Li; Yu Min; Li Wei; Ji Huihui; Ren Liming; Zhan Kai; Huang Ru; Zhang Xing; Wang Yangyuan; Zhang Jinyu; Oka, Hideki

    2006-01-01

    Boron cluster ion implantation is a potential technology for shallow junction formation in integrated circuits manufacture. A molecular dynamic method for cluster implantation simulation, aiming at microelectronics application, is presented in this paper. Accurate geometric structures of boron clusters are described by the model, and the H atoms in clusters are included. A potential function taking the form of combining the ZBL and the SW potentials is presented here to model interaction among the atoms in the boron cluster. The impact of these models on cluster implantation simulation is investigated. There are notable impact on dopant distribution and amount of implantation defects with consideration of these models. The simulation on the distributions of B and H are verified by SIMS data

  7. Cluster: A New Application for Spatial Analysis of Pixelated Data for Epiphytotics.

    Science.gov (United States)

    Nelson, Scot C; Corcoja, Iulian; Pethybridge, Sarah J

    2017-12-01

    Spatial analysis of epiphytotics is essential to develop and test hypotheses about pathogen ecology, disease dynamics, and to optimize plant disease management strategies. Data collection for spatial analysis requires substantial investment in time to depict patterns in various frames and hierarchies. We developed a new approach for spatial analysis of pixelated data in digital imagery and incorporated the method in a stand-alone desktop application called Cluster. The user isolates target entities (clusters) by designating up to 24 pixel colors as nontargets and moves a threshold slider to visualize the targets. The app calculates the percent area occupied by targeted pixels, identifies the centroids of targeted clusters, and computes the relative compass angle of orientation for each cluster. Users can deselect anomalous clusters manually and/or automatically by specifying a size threshold value to exclude smaller targets from the analysis. Up to 1,000 stochastic simulations randomly place the centroids of each cluster in ranked order of size (largest to smallest) within each matrix while preserving their calculated angles of orientation for the long axes. A two-tailed probability t test compares the mean inter-cluster distances for the observed versus the values derived from randomly simulated maps. This is the basis for statistical testing of the null hypothesis that the clusters are randomly distributed within the frame of interest. These frames can assume any shape, from natural (e.g., leaf) to arbitrary (e.g., a rectangular or polygonal field). Cluster summarizes normalized attributes of clusters, including pixel number, axis length, axis width, compass orientation, and the length/width ratio, available to the user as a downloadable spreadsheet. Each simulated map may be saved as an image and inspected. Provided examples demonstrate the utility of Cluster to analyze patterns at various spatial scales in plant pathology and ecology and highlight the

  8. Structure and properties of small sodium clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2002-01-01

    and the results of other theoretical work. We have systematically calculated the optimized geometries of neutral and singly charged sodium clusters having up to 20 atoms, their multipole moments (dipole and quadrupole), static polarizabilities, binding energies per atom, ionization potentials, and frequencies...

  9. Sixteenth International Conference on the physics of electronic and atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B. (eds.)

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  10. Sixteenth International Conference on the physics of electronic and atomic collisions

    International Nuclear Information System (INIS)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter

  11. Electron correlation in the interacting quantum atoms partition via coupled-cluster lagrangian densities.

    Science.gov (United States)

    Holguín-Gallego, Fernando José; Chávez-Calvillo, Rodrigo; García-Revilla, Marco; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás

    2016-07-15

    The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Cluster-assembled overlayers and high-temperature superconductors

    International Nuclear Information System (INIS)

    Ohno, T.R.; Yang, Y.; Kroll, G.H.; Krause, K.; Schmidt, L.D.; Weaver, J.H.; Kimachi, Y.; Hidaka, Y.; Pan, S.H.; de Lozanne, A.L.

    1991-01-01

    X-ray photoemission results for interfaces prepared by cluster assembly with nanometer-size clusters deposited on high-T c superconductors (HTS's) show a reduction in reactivity because atom interactions with the surface are replaced by cluster interactions. Results for conventional atom deposition show the formation of overlayer oxides that are related to oxygen depletion and disruption of the near-surface region of the HTS's. For cluster assembly of Cr and Cu, there is a very thin reacted region on single-crystal Bi 2 Sr 2 CaCu 2 O 8 . Reduced reactivity is observed for Cr cluster deposition on single-crystal YBa 2 Cu 3 O 7 -based interfaces. There is no evidence of chemical modification of the surface for Ge and Au cluster assembly on Bi 2 Sr 2 CaCu 2 O 8 (100). The overlayer grown by Au cluster assembly on Bi 2 Sr 2 CaCu 2 O 8 covers the surface at low temperature but roughening occurs upon warming to 300 K. Scanning-tunneling-microscopy results for the Au(cluster)/Bi 2 Sr 2 CaCu 2 O 8 system warmed to 300 K shows individual clusters that have coalesced into large clusters. These results offer insight into the role of surface energies and cluster interactions in determining the overlayer morphology. Transmission-electron-microscopy results for Cu cluster assembly on silica show isolated irregularly shaped clusters that do not interact at low coverage. Sintering and labyrinth formation is observed at intermediate coverage and, ultimately, a continuous film is achieved at high coverage. Silica surface wetting by Cu clusters demonstrates that dispersive force are important for these small clusters

  13. HIRFL–CSR internal cluster target

    International Nuclear Information System (INIS)

    Shao, Caojie; Lu, Rongchun; Cai, Xiaohong; Yu, Deyang; Ruan, Fangfang; Xue, Yingli; Zhang, Jianming; Torpokov, D.K.; Nikolenko, D.

    2013-01-01

    Highlights: • An internal cluster target was built and installed at HIRFL–CSR. • The target thickness for H 2 amounts up to 6.6 × 10 12 atoms/cm 2 . • The feasibility and stability of the internal cluster target were verified by on-line experiments. -- Abstract: Since HIRFL–CSR internal cluster target was built, it has played a key role in in-ring experiments at HIRFL–CSR. So far it have been operated with five gas species as targets for scattering experiments, i.e. hydrogen, nitrogen, argon, neon, and krypton. The obtained highest thickness for hydrogen target amounts up to 10 12 atoms/cm 2 , and those of other targets are larger than 10 13 atoms/cm 2 with the background pressure of 10 −11 mbar in CSR. The target thickness can be varied by regulating the nozzle temperature and pressure of the inlet gas. The first online internal target experiment dedicated to investigate radioactive electron capture (REC) process with Xe 54+ ions colliding with the nitrogen target demonstrated the stability and reliability of the internal target system. In addition, hydrogen and krypton were also tested online in recent experiments, which indicate the target system can meet experimental requirements for the thickness of target, pressure in scattering chamber, and long-term stability

  14. Cluster analysis as a prediction tool for pregnancy outcomes.

    Science.gov (United States)

    Banjari, Ines; Kenjerić, Daniela; Šolić, Krešimir; Mandić, Milena L

    2015-03-01

    Considering specific physiology changes during gestation and thinking of pregnancy as a "critical window", classification of pregnant women at early pregnancy can be considered as crucial. The paper demonstrates the use of a method based on an approach from intelligent data mining, cluster analysis. Cluster analysis method is a statistical method which makes possible to group individuals based on sets of identifying variables. The method was chosen in order to determine possibility for classification of pregnant women at early pregnancy to analyze unknown correlations between different variables so that the certain outcomes could be predicted. 222 pregnant women from two general obstetric offices' were recruited. The main orient was set on characteristics of these pregnant women: their age, pre-pregnancy body mass index (BMI) and haemoglobin value. Cluster analysis gained a 94.1% classification accuracy rate with three branch- es or groups of pregnant women showing statistically significant correlations with pregnancy outcomes. The results are showing that pregnant women both of older age and higher pre-pregnancy BMI have a significantly higher incidence of delivering baby of higher birth weight but they gain significantly less weight during pregnancy. Their babies are also longer, and these women have significantly higher probability for complications during pregnancy (gestosis) and higher probability of induced or caesarean delivery. We can conclude that the cluster analysis method can appropriately classify pregnant women at early pregnancy to predict certain outcomes.

  15. Rare earth analysis in human biological samples by atomic absorption using electrothermal atomization

    International Nuclear Information System (INIS)

    Citron, I.M.; Holtzman, R.B.; Leiman, J.

    1982-01-01

    The determination of Sc and seven rare earth elements, Nd, Sm, Dy, Ho, Eu, Tm, and Yb, in biological samplesby atomic absorption spectrophotometric analysis (AAS) using electrothermal atomization in a pyrolytic graphite tube is shown to be rapid, precise and accurate. The technique utilizes the method of standard additions and linear regression analysis to determine results from peak area data. Inter-elemental interferences are negligible. The elements found sensitive enough for this type of analysis are, in order of decreasing sensitivity, Yb, Eu, Tm, Dy, Sc, Ho, Sm and Nd. The determination in these types of materials of Gd and elements less sensitive to AAS detection than Gd does not appear to be feasible. Results are presented on the concentrations of these elements in 41 samples from human subjects, cows and vegetables with normal environmental exposure to the rare earth elements. The composite percent mean deviation in peak-area readings for all samples and all elements examined was 4%. The mean standard error in the results among samples was about 6.5%

  16. Phenotypes of asthma in low-income children and adolescents: cluster analysis

    Directory of Open Access Journals (Sweden)

    Anna Lucia Barros Cabral

    Full Text Available ABSTRACT Objective: Studies characterizing asthma phenotypes have predominantly included adults or have involved children and adolescents in developed countries. Therefore, their applicability in other populations, such as those of developing countries, remains indeterminate. Our objective was to determine how low-income children and adolescents with asthma in Brazil are distributed across a cluster analysis. Methods: We included 306 children and adolescents (6-18 years of age with a clinical diagnosis of asthma and under medical treatment for at least one year of follow-up. At enrollment, all the patients were clinically stable. For the cluster analysis, we selected 20 variables commonly measured in clinical practice and considered important in defining asthma phenotypes. Variables with high multicollinearity were excluded. A cluster analysis was applied using a twostep agglomerative test and log-likelihood distance measure. Results: Three clusters were defined for our population. Cluster 1 (n = 94 included subjects with normal pulmonary function, mild eosinophil inflammation, few exacerbations, later age at asthma onset, and mild atopy. Cluster 2 (n = 87 included those with normal pulmonary function, a moderate number of exacerbations, early age at asthma onset, more severe eosinophil inflammation, and moderate atopy. Cluster 3 (n = 108 included those with poor pulmonary function, frequent exacerbations, severe eosinophil inflammation, and severe atopy. Conclusions: Asthma was characterized by the presence of atopy, number of exacerbations, and lung function in low-income children and adolescents in Brazil. The many similarities with previous cluster analyses of phenotypes indicate that this approach shows good generalizability.

  17. Strengthening from Nb-rich clusters in a Nb-microalloyed steel

    International Nuclear Information System (INIS)

    Xie, Kelvin Y.; Zheng, Tianxiao; Cairney, Julie M.; Kaul, Harold; Williams, James G.; Barbaro, Frank J.; Killmore, Chris R.; Ringer, Simon P.

    2012-01-01

    We demonstrate that a Nb-microalloyed ultra-thin cast strip steel can be strengthened substantially without compromising ductility by performing a simple heat treatment at 700 °C for 4 min. The strengthening was attributed to a fine dispersion of Nb-rich solute atom clusters. These clusters had an average size of ∼60 atoms at peak hardness and resembled Guinier–Preston zones in Al–Cu alloys. The application of the Ashby–Orowan equation indicates that these clusters are potent strengthening agents when compared to conventional Nb(C,N) precipitation strengthening.

  18. Reproducibility of Cognitive Profiles in Psychosis Using Cluster Analysis.

    Science.gov (United States)

    Lewandowski, Kathryn E; Baker, Justin T; McCarthy, Julie M; Norris, Lesley A; Öngür, Dost

    2018-04-01

    Cognitive dysfunction is a core symptom dimension that cuts across the psychoses. Recent findings support classification of patients along the cognitive dimension using cluster analysis; however, data-derived groupings may be highly determined by sampling characteristics and the measures used to derive the clusters, and so their interpretability must be established. We examined cognitive clusters in a cross-diagnostic sample of patients with psychosis and associations with clinical and functional outcomes. We then compared our findings to a previous report of cognitive clusters in a separate sample using a different cognitive battery. Participants with affective or non-affective psychosis (n=120) and healthy controls (n=31) were administered the MATRICS Consensus Cognitive Battery, and clinical and community functioning assessments. Cluster analyses were performed on cognitive variables, and clusters were compared on demographic, cognitive, and clinical measures. Results were compared to findings from our previous report. A four-cluster solution provided a good fit to the data; profiles included a neuropsychologically normal cluster, a globally impaired cluster, and two clusters of mixed profiles. Cognitive burden was associated with symptom severity and poorer community functioning. The patterns of cognitive performance by cluster were highly consistent with our previous findings. We found evidence of four cognitive subgroups of patients with psychosis, with cognitive profiles that map closely to those produced in our previous work. Clusters were associated with clinical and community variables and a measure of premorbid functioning, suggesting that they reflect meaningful groupings: replicable, and related to clinical presentation and functional outcomes. (JINS, 2018, 24, 382-390).

  19. Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables.

    Science.gov (United States)

    Horiuchi, Yu; Tanimoto, Shuzou; Latif, A H M Mahbub; Urayama, Kevin Y; Aoki, Jiro; Yahagi, Kazuyuki; Okuno, Taishi; Sato, Yu; Tanaka, Tetsu; Koseki, Keita; Komiyama, Kota; Nakajima, Hiroyoshi; Hara, Kazuhiro; Tanabe, Kengo

    2018-07-01

    Acute heart failure (AHF) is a heterogeneous disease caused by various cardiovascular (CV) pathophysiology and multiple non-CV comorbidities. We aimed to identify clinically important subgroups to improve our understanding of the pathophysiology of AHF and inform clinical decision-making. We evaluated detailed clinical data of 345 consecutive AHF patients using non-hierarchical cluster analysis of 77 variables, including age, sex, HF etiology, comorbidities, physical findings, laboratory data, electrocardiogram, echocardiogram and treatment during hospitalization. Cox proportional hazards regression analysis was performed to estimate the association between the clusters and clinical outcomes. Three clusters were identified. Cluster 1 (n=108) represented "vascular failure". This cluster had the highest average systolic blood pressure at admission and lung congestion with type 2 respiratory failure. Cluster 2 (n=89) represented "cardiac and renal failure". They had the lowest ejection fraction (EF) and worst renal function. Cluster 3 (n=148) comprised mostly older patients and had the highest prevalence of atrial fibrillation and preserved EF. Death or HF hospitalization within 12-month occurred in 23% of Cluster 1, 36% of Cluster 2 and 36% of Cluster 3 (p=0.034). Compared with Cluster 1, risk of death or HF hospitalization was 1.74 (95% CI, 1.03-2.95, p=0.037) for Cluster 2 and 1.82 (95% CI, 1.13-2.93, p=0.014) for Cluster 3. Cluster analysis may be effective in producing clinically relevant categories of AHF, and may suggest underlying pathophysiology and potential utility in predicting clinical outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. High-Intensity Femtosecond Laser Interaction with Rare Gas Clusters

    Institute of Scientific and Technical Information of China (English)

    林亚风; 钟钦; 曾淳; 陈哲

    2001-01-01

    With a 45 fs multiterawatt 790 nm laser system and jets of argon and krypton atomic clusters, a study of the interaction of fs intense laser pulses with large size rare gas dusters was conducted. The maximum laser intensity of about 7 × 1016 W/cm2 and dusters composed of thousands of atoms which were determined through Rayleigh scattering measurements were involved inthe experiments. On the one hand, the results indicate that the interaction is strongly cluster size dependent. The stronger the interaction, the larger the clusters are. On the other hand, a saturation followed by a drop of the energy of ions ejected from the interaction will occur when the laser intensity exceeds a definite value for clusters of a certain size.

  1. Identification and validation of asthma phenotypes in Chinese population using cluster analysis.

    Science.gov (United States)

    Wang, Lei; Liang, Rui; Zhou, Ting; Zheng, Jing; Liang, Bing Miao; Zhang, Hong Ping; Luo, Feng Ming; Gibson, Peter G; Wang, Gang

    2017-10-01

    Asthma is a heterogeneous airway disease, so it is crucial to clearly identify clinical phenotypes to achieve better asthma management. To identify and prospectively validate asthma clusters in a Chinese population. Two hundred eighty-four patients were consecutively recruited and 18 sociodemographic and clinical variables were collected. Hierarchical cluster analysis was performed by the Ward method followed by k-means cluster analysis. Then, a prospective 12-month cohort study was used to validate the identified clusters. Five clusters were successfully identified. Clusters 1 (n = 71) and 3 (n = 81) were mild asthma phenotypes with slight airway obstruction and low exacerbation risk, but with a sex differential. Cluster 2 (n = 65) described an "allergic" phenotype, cluster 4 (n = 33) featured a "fixed airflow limitation" phenotype with smoking, and cluster 5 (n = 34) was a "low socioeconomic status" phenotype. Patients in clusters 2, 4, and 5 had distinctly lower socioeconomic status and more psychological symptoms. Cluster 2 had a significantly increased risk of exacerbations (risk ratio [RR] 1.13, 95% confidence interval [CI] 1.03-1.25), unplanned visits for asthma (RR 1.98, 95% CI 1.07-3.66), and emergency visits for asthma (RR 7.17, 95% CI 1.26-40.80). Cluster 4 had an increased risk of unplanned visits (RR 2.22, 95% CI 1.02-4.81), and cluster 5 had increased emergency visits (RR 12.72, 95% CI 1.95-69.78). Kaplan-Meier analysis confirmed that cluster grouping was predictive of time to the first asthma exacerbation, unplanned visit, emergency visit, and hospital admission (P clusters as "allergic asthma," "fixed airflow limitation," and "low socioeconomic status" phenotypes that are at high risk of severe asthma exacerbations and that have management implications for clinical practice in developing countries. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Multielement methods of atomic fluorescence analysis of enviromental samples

    International Nuclear Information System (INIS)

    Rigin, V.I.

    1985-01-01

    A multielement method of atomic fluorescence analysis of environmental samples based on sample decomposition by autoclave fluorination and gas-phase atomization of volatile compounds in inductive araon plasma using a nondispersive polychromator is suggested. Detection limits of some elements (Be, Sr, Cd, V, Mo, Te, Ru etc.) for different sample forms introduced in to an analyzer are given

  3. Comparison of population-averaged and cluster-specific models for the analysis of cluster randomized trials with missing binary outcomes: a simulation study

    Directory of Open Access Journals (Sweden)

    Ma Jinhui

    2013-01-01

    Full Text Available Abstracts Background The objective of this simulation study is to compare the accuracy and efficiency of population-averaged (i.e. generalized estimating equations (GEE and cluster-specific (i.e. random-effects logistic regression (RELR models for analyzing data from cluster randomized trials (CRTs with missing binary responses. Methods In this simulation study, clustered responses were generated from a beta-binomial distribution. The number of clusters per trial arm, the number of subjects per cluster, intra-cluster correlation coefficient, and the percentage of missing data were allowed to vary. Under the assumption of covariate dependent missingness, missing outcomes were handled by complete case analysis, standard multiple imputation (MI and within-cluster MI strategies. Data were analyzed using GEE and RELR. Performance of the methods was assessed using standardized bias, empirical standard error, root mean squared error (RMSE, and coverage probability. Results GEE performs well on all four measures — provided the downward bias of the standard error (when the number of clusters per arm is small is adjusted appropriately — under the following scenarios: complete case analysis for CRTs with a small amount of missing data; standard MI for CRTs with variance inflation factor (VIF 50. RELR performs well only when a small amount of data was missing, and complete case analysis was applied. Conclusion GEE performs well as long as appropriate missing data strategies are adopted based on the design of CRTs and the percentage of missing data. In contrast, RELR does not perform well when either standard or within-cluster MI strategy is applied prior to the analysis.

  4. Density functional calculations for atoms, molecules and clusters

    International Nuclear Information System (INIS)

    Gunnarsson, O.; Jones, R.O.

    1980-01-01

    The density functional formalism provides a framework for including exchange and correlation effects in the calculation of ground state properties of many-electron systems. The reduction of the problem to the solution of single-particle equations leads to important numerical advantages over other ab initio methods of incorporating correlation effects. The essential features of the scheme are outlined and results obtained for atomic and molecular systems are surveyed. The local spin density (LSD) approximation gives generally good results for systems where the bonding involves s and p electrons, but results are less satisfactory for d-bonded systems. Non-local modifications to the LSD approximation have been tested on atomic systems yielding much improved total energies. (Auth.)

  5. Contribution of radiation chemistry to cluster science

    International Nuclear Information System (INIS)

    Belloni, J.

    2006-01-01

    Nanoclusters are small objects made of a few atoms, with a size of a few nanometers at most, which constitute a state of matter, named mesoscopic, intermediary between the atom and the bulk metal. In the 70's, radiation chemistry experiments have demonstrated that metal clusters exhibited indeed, due to their very small size, specific properties distinct from the bulk metal. The properties, physical and chemical, change with the number of atoms they contain. Their optical absorption spectrum, for example, as well as their redox potential, depends on the nuclearity, and also on the environment. Radiation chemistry methods have been proven to be of high potentiality to induce small and size-monodispersed metal clusters, as nanocolloids or supported on various materials. Pulse radiolysis provides the means to study the dynamics of nucleation and growth of clusters, monoand bi-metallic, from the monomers to the stable nanoparticle and to observe directly their reactivity, especially to determine during the growth their nuclearity-dependent properties, such as the redox potential. These are of crucial importance for the understanding of the mechanism of the cluster growth itself, in the radiation-induced as well as in the chemical or photochemical reduction processes, and also of the mechanism of certain catalytic reactions. (authors)

  6. Cluster analysis of radionuclide concentrations in beach sand

    NARCIS (Netherlands)

    de Meijer, R.J.; James, I.; Jennings, P.J.; Keoyers, J.E.

    This paper presents a method in which natural radionuclide concentrations of beach sand minerals are traced along a stretch of coast by cluster analysis. This analysis yields two groups of mineral deposit with different origins. The method deviates from standard methods of following dispersal of

  7. Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters

    International Nuclear Information System (INIS)

    Imran, Muhammad; Hussain, Fayyaz; Ullah, Hafeez; Ahmad, Ejaz; Rashid, Muhammad; Ismail, Muhammad; Cai, Yongqing; Javid, M Arshad; Ahmad, S A

    2016-01-01

    Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface diffusion of heterogeneous adatoms clusters can be vital for the binary island growth on the surface and can be useful for the formation of alloy-based thin film surface through atomic exchange process. The results of the diffusion process show that at 300 K, the diffusion of small adatoms clusters shows hopping, sliding, and shear motion; whereas for large adatoms clusters (hexamer and above), the diffusion is negligible. At 500 K, small adatoms clusters, i.e., dimer, show almost all possible diffusion mechanisms including the atomic exchange process; however no such exchange is observed for adatoms clusters greater than dimer. At 700 K, the exchange mechanism dominates for all types of clusters, where Zr adatoms show maximum tendency and Ag adatoms show minimum or no tendency toward the exchange process. Separation and recombination of one or more adatoms are also observed at 500 K and 700 K. The Ag adatoms also occupy pop-up positions over the adatoms clusters for short intervals. At 700 K, the vacancies are also generated in the vicinity of the adatoms cluster, vacancy formation, filling, and shifting can be observed from the results. (paper)

  8. Adsorption of beryllium atoms and clusters both on graphene and in a bilayer of graphite investigated by DFT.

    Science.gov (United States)

    Ferro, Yves; Fernandez, Nicolas; Allouche, Alain; Linsmeier, Christian

    2013-01-09

    We herein investigate the interaction of beryllium with a graphene sheet and in a bilayer of graphite by means of periodic DFT calculations. In all cases, we find the beryllium atoms to be more weakly bonded on graphene than in the bilayer. Be(2) forms both magnetic and non-magnetic structures on graphene depending on the geometrical configuration of adsorption. We find that the stability of the Be/bilayer system increases with the size of the beryllium clusters inserted into the bilayer of graphite. We also find a charge transfer from beryllium to the graphite layers. All these results are analysed in terms of electronic structure.

  9. Infrared Multiple Photon Dissociation Spectroscopy Of Metal Cluster-Adducts

    Science.gov (United States)

    Cox, D. M.; Kaldor, A.; Zakin, M. R.

    1987-01-01

    Recent development of the laser vaporization technique combined with mass-selective detection has made possible new studies of the fundamental chemical and physical properties of unsupported transition metal clusters as a function of the number of constituent atoms. A variety of experimental techniques have been developed in our laboratory to measure ionization threshold energies, magnetic moments, and gas phase reactivity of clusters. However, studies have so far been unable to determine the cluster structure or the chemical state of chemisorbed species on gas phase clusters. The application of infrared multiple photon dissociation IRMPD to obtain the IR absorption properties of metal cluster-adsorbate species in a molecular beam is described here. Specifically using a high power, pulsed CO2 laser as the infrared source, the IRMPD spectrum for methanol chemisorbed on small iron clusters is measured as a function of the number of both iron atoms and methanols in the complex for different methanol isotopes. Both the feasibility and potential utility of IRMPD for characterizing metal cluster-adsorbate interactions are demonstrated. The method is generally applicable to any cluster or cluster-adsorbate system dependent only upon the availability of appropriate high power infrared sources.

  10. Exotic objects of atomic physics

    Science.gov (United States)

    Eletskii, A. V.

    2017-11-01

    There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.

  11. Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.

    Science.gov (United States)

    Yao, Jianchao; Chang, Chunqi; Salmi, Mari L; Hung, Yeung Sam; Loraine, Ann; Roux, Stanley J

    2008-06-18

    Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient) using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. This study shows that SCC is an alternative to the Pearson

  12. Application of microarray analysis on computer cluster and cloud platforms.

    Science.gov (United States)

    Bernau, C; Boulesteix, A-L; Knaus, J

    2013-01-01

    Analysis of recent high-dimensional biological data tends to be computationally intensive as many common approaches such as resampling or permutation tests require the basic statistical analysis to be repeated many times. A crucial advantage of these methods is that they can be easily parallelized due to the computational independence of the resampling or permutation iterations, which has induced many statistics departments to establish their own computer clusters. An alternative is to rent computing resources in the cloud, e.g. at Amazon Web Services. In this article we analyze whether a selection of statistical projects, recently implemented at our department, can be efficiently realized on these cloud resources. Moreover, we illustrate an opportunity to combine computer cluster and cloud resources. In order to compare the efficiency of computer cluster and cloud implementations and their respective parallelizations we use microarray analysis procedures and compare their runtimes on the different platforms. Amazon Web Services provide various instance types which meet the particular needs of the different statistical projects we analyzed in this paper. Moreover, the network capacity is sufficient and the parallelization is comparable in efficiency to standard computer cluster implementations. Our results suggest that many statistical projects can be efficiently realized on cloud resources. It is important to mention, however, that workflows can change substantially as a result of a shift from computer cluster to cloud computing.

  13. Simulation of depositions of a Lennard-Jones cluster on a crystalline surface

    International Nuclear Information System (INIS)

    Saitoh, Kuniyasu; Hayakawa, Hisao

    2009-01-01

    Depositions of amorphous Lennard-Jones clusters on a crystalline surface are numerically investigated. From the results of the molecular dynamics simulation, we found that the deposited clusters exhibit a transition from multilayered adsorption to monolayered adsorption at a critical incident speed. Employing the energy conservation law, we can explain the behavior of the ratio of the number of atoms adsorbed on the substrate to the cluster size. The boundary shape of the deposited cluster depends strongly on the incident speed, and some unstable modes grow during the spread of the deposited cluster on the substrate. We also discuss the wettability between different Lennard-Jones atoms. (author)

  14. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. II. EXPANDING THE METALLICITY RANGE FOR OLD CLUSTERS AND UPDATED ANALYSIS TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

    2017-01-10

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = −0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.

  15. A Novel Divisive Hierarchical Clustering Algorithm for Geospatial Analysis

    Directory of Open Access Journals (Sweden)

    Shaoning Li

    2017-01-01

    Full Text Available In the fields of geographic information systems (GIS and remote sensing (RS, the clustering algorithm has been widely used for image segmentation, pattern recognition, and cartographic generalization. Although clustering analysis plays a key role in geospatial modelling, traditional clustering methods are limited due to computational complexity, noise resistant ability and robustness. Furthermore, traditional methods are more focused on the adjacent spatial context, which makes it hard for the clustering methods to be applied to multi-density discrete objects. In this paper, a new method, cell-dividing hierarchical clustering (CDHC, is proposed based on convex hull retraction. The main steps are as follows. First, a convex hull structure is constructed to describe the global spatial context of geospatial objects. Then, the retracting structure of each borderline is established in sequence by setting the initial parameter. The objects are split into two clusters (i.e., “sub-clusters” if the retracting structure intersects with the borderlines. Finally, clusters are repeatedly split and the initial parameter is updated until the terminate condition is satisfied. The experimental results show that CDHC separates the multi-density objects from noise sufficiently and also reduces complexity compared to the traditional agglomerative hierarchical clustering algorithm.

  16. Clustering of users of digital libraries through log file analysis

    Directory of Open Access Journals (Sweden)

    Juan Antonio Martínez-Comeche

    2017-09-01

    Full Text Available This study analyzes how users perform information retrieval tasks when introducing queries to the Hispanic Digital Library. Clusters of users are differentiated based on their distinct information behavior. The study used the log files collected by the server over a year and different possible clustering algorithms are compared. The k-means algorithm is found to be a suitable clustering method for the analysis of large log files from digital libraries. In the case of the Hispanic Digital Library the results show three clusters of users and the characteristic information behavior of each group is described.

  17. Polarizabilities and hyperpolarizabilities for the atoms Al, Si, P, S, Cl, and Ar: Coupled cluster calculations.

    Science.gov (United States)

    Lupinetti, Concetta; Thakkar, Ajit J

    2005-01-22

    Accurate static dipole polarizabilities and hyperpolarizabilities are calculated for the ground states of the Al, Si, P, S, Cl, and Ar atoms. The finite-field computations use energies obtained with various ab initio methods including Moller-Plesset perturbation theory and the coupled cluster approach. Excellent agreement with experiment is found for argon. The experimental alpha for Al is likely to be in error. Only limited comparisons are possible for the other atoms because hyperpolarizabilities have not been reported previously for most of these atoms. Our recommended values of the mean dipole polarizability (in the order Al-Ar) are alpha/e(2)a(0) (2)E(h) (-1)=57.74, 37.17, 24.93, 19.37, 14.57, and 11.085 with an error estimate of +/-0.5%. The recommended values of the mean second dipole hyperpolarizability (in the order Al-Ar) are gamma/e(4)a(0) (4)E(h) (-3)=2.02 x 10(5), 4.31 x 10(4), 1.14 x 10(4), 6.51 x 10(3), 2.73 x 10(3), and 1.18 x 10(3) with an error estimate of +/-2%. Our recommended polarizability anisotropy values are Deltaalpha/e(2)a(0) (2)E(h) (-1)=-25.60, 8.41, -3.63, and 1.71 for Al, Si, S, and Cl respectively, with an error estimate of +/-1%. The recommended hyperpolarizability anisotropies are Deltagamma/e(4)a(0) (4)E(h) (-3)=-3.88 x 10(5), 4.16 x 10(4), -7.00 x 10(3), and 1.65 x 10(3) for Al, Si, S, and Cl, respectively, with an error estimate of +/-4%. (c) 2005 American Institute of Physics.

  18. Interaction of scandium and titanium atoms with a carbon surface containing five- and seven-membered rings

    International Nuclear Information System (INIS)

    Krasnov, P. O.; Eliseeva, N. S.; Kuzubov, A. A.

    2012-01-01

    The use of carbon nanotubes coated by atoms of transition metals to store molecular hydrogen is associated with the problem of the aggregation of these atoms, which leads to the formation of metal clusters. The quantum-chemical simulation of cluster models of the carbon surface of a graphene type with scandium and titanium atoms has been performed. It has been shown that the presence of five- and seven-membered rings, in addition to six-membered rings, in these structures makes it possible to strongly suppress the processes of the migration of metal atoms over the surface, preventing their clustering.

  19. Structure of small rare earth clusters

    International Nuclear Information System (INIS)

    Rayane, D.; Benamar, A.; Tribollet, B.; Broyer, M.; Melinon, P.

    1991-01-01

    Rare earth clusters are produced by the inert gas condensation technique. The observed size distribution shows large peaks at n=13, 19, 23, 26, 29, 32, 34, 37, 39, 45, .... The beginning of this sequence (up to 34) has been already observed in argon clusters and recently by our group in barium clusters; this sequence may be interpreted in terms of icosahedral structures corresponding to the addition of caps on a core icosahedron of 13 atoms. (orig.)

  20. How are small endohedral silicon clusters stabilized?

    Science.gov (United States)

    Avaltroni, Fabrice; Steinmann, Stephan N; Corminboeuf, Clémence

    2012-11-21

    Clusters in the (Be, B, C)@Si(n)((0,1,2+)) (n = 6-10) series, isoelectronic to Si(n)(2-), present multiple symmetric structures, including rings, cages and open structures, which the doping atom stabilizes using contrasting bonding mechanisms. The most striking feature of these clusters is the absence of electron transfer (for Be) or even the inversion (for B and C) in comparison to classic endohedral metallofullerenes (e.g. from the outer frameworks towards the enclosed atom). The relatively small cavity of the highly symmetric Si(8) cubic cage benefits more strongly from the encapsulation of a boron atom than from the insertion of a too large beryllium atom. Overall, the maximization of multicenter-type bonding, as visualized by the Localized Orbital Locator (LOL), is the key to the stabilization of the small Si(n) cages. Boron offers the best balance between size, electronegativity and delocalized bonding pattern when compared to beryllium and carbon.

  1. Effect of charge state and stoichiometry on the structure and reactivity of nickel oxide clusters with CO

    Science.gov (United States)

    Johnson, Grant E.; Reilly, Nelly M.; Castleman, A. W., Jr.

    2009-02-01

    The collision induced fragmentation and reactivity of cationic and anionic nickel oxide clusters with carbon monoxide were studied experimentally using guided-ion-beam mass spectrometry. Anionic clusters with a stoichiometry containing one more oxygen atom than nickel atom (NiO2-, Ni2O3-, Ni3O4- and Ni4O5-) were found to exhibit dominant products resulting from the transfer of a single oxygen atom to CO, suggesting the formation of CO2. Of these four species, Ni2O3- and Ni4O5- were observed to be the most reactive having oxygen transfer products accounting for approximately 5% and 10% of the total ion intensity at a maximum pressure of 15 mTorr of CO. Our findings, therefore, indicate that anionic nickel oxide clusters containing an even number of nickel atoms and an odd number of oxygen atoms are more reactive than those with an odd number of nickel atoms and an even number of oxygen atoms. The majority of cationic nickel oxides, in contrast to anionic species, reacted preferentially through the adsorption of CO onto the cluster accompanied by the loss of either molecular O2 or nickel oxide units. The adsorption of CO onto positively charged nickel oxides, therefore, is exothermic enough to break apart the gas-phase clusters. Collision induced dissociation experiments, employing inert xenon gas, were also conducted to gain insight into the structural properties of nickel oxide clusters. The fragmentation products were found to vary considerably with size and stoichiometry as well as ionic charge state. In general, cationic clusters favored the collisional loss of molecular O2 while anionic clusters fragmented through the loss of both atomic oxygen and nickel oxide units. Our results provide insight into the effect of ionic charge state on the structure of nickel oxide clusters. Furthermore, we establish how the size and stoichiometry of nickel oxide clusters influences their ability to oxidize CO, an important reaction for environmental pollution abatement.

  2. Structures, stability, magnetic moments and growth strategies of the Fe_nN (n = 1–7) clusters: All-electron density functional theory calculations

    International Nuclear Information System (INIS)

    Li, Zhi; Zhao, Zhen

    2017-01-01

    The geometries, electronic properties, magnetic moments and growth strategies of the Fe_nN (n = 1–7) clusters are investigated using all-electron density functional theory. The results show that N doping significantly distorts the Fe_n clusters. Fe_4N and Fe_6N clusters are more stable structures than other considered Fe_nN clusters. Local peaks of HOMO-LUMO gap curve are found at n = 3, 7, implying that the chemical stability of the Fe_3N and Fe_7N clusters is higher. Fe_2N, Fe_4N and Fe_6N clusters have larger magnetic moments compared to other considered Fe_nN (n = 1–7) clusters. It can be seen that the Fe_5 clusters are easier to adsorb a Fe atom while the Fe_4 clusters are easier to adsorb a N atom. The considered Fe_mN clusters prefer to adsorb a Fe atom and larger Fe_mN clusters are easier to grow. - Highlights: • The structural stability of the Fe_4N and Fe_6N clusters is higher. • The chemical stability of the Fe_3N and Fe_7N clusters is higher. • Fe_5 clusters are easier to adsorb a Fe atom while Fe_4 clusters are easier to adsorb a N atom. • Fe_nN clusters prefer to adsorb a Fe atom.

  3. Feasibility Study of Parallel Finite Element Analysis on Cluster-of-Clusters

    Science.gov (United States)

    Muraoka, Masae; Okuda, Hiroshi

    With the rapid growth of WAN infrastructure and development of Grid middleware, it's become a realistic and attractive methodology to connect cluster machines on wide-area network for the execution of computation-demanding applications. Many existing parallel finite element (FE) applications have been, however, designed and developed with a single computing resource in mind, since such applications require frequent synchronization and communication among processes. There have been few FE applications that can exploit the distributed environment so far. In this study, we explore the feasibility of FE applications on the cluster-of-clusters. First, we classify FE applications into two types, tightly coupled applications (TCA) and loosely coupled applications (LCA) based on their communication pattern. A prototype of each application is implemented on the cluster-of-clusters. We perform numerical experiments executing TCA and LCA on both the cluster-of-clusters and a single cluster. Thorough these experiments, by comparing the performances and communication cost in each case, we evaluate the feasibility of FEA on the cluster-of-clusters.

  4. Respective efficiencies of nuclear collisions and electronic excitations for precipitating Ag clusters in sol-gel films

    CERN Document Server

    Pivin, J C

    2002-01-01

    The growth of silver clusters in co-sputtered SiO sub 2 :Ag films under irradiation with increasing fluences of 1.5 MeV He or 3 MeV Au ions is investigated by recording spectra of optical extinction. The analysis of surface plasmon resonances in these very small clusters on basis of Mie theory permits to estimate more precisely their mean size than TEM images. A linear increase of the mean cluster size with the energy deposited by ions in electronic excitations and little effect of collision cascades are observed. The growth kinetics is ascribed to a process of desorption/re-adsorption of Ag atoms at the surface of clusters.

  5. Surface processing with ionized cluster beams: computer simulation

    International Nuclear Information System (INIS)

    Insepov, Z.; Yamada, I.

    1999-01-01

    Molecular Dynamics (MD) and Monte Carlo (MC) models of energetic gas cluster irradiation of a solid surface have been developed to investigate the phenomena of crater formation, sputtering, surface treatment, and the material hardness evaluation by irradiation with cluster ions. Theoretical estimation of crater dimensions formed with Ar gas cluster ion irradiation of different substrates, based on hydrodynamics and MD simulation, are presented. The atomic scale shock waves arising from cluster impact were obtained by calculating the pressure, temperature and mass-velocity of the target atoms. The crater depth is given as a unique 1/3 dependence on the cluster energy and on the cold material Brinell hardness number (BHN). A new 'true material hardness' scale which can be very useful for example for thin film coatings deposited on a soft substrate, is defined. This finding could be used as a new technique for measuring of a material hardness. Evolution of surface morphology under cluster ion irradiation was described by the surface relaxation equation which contains a term of crater formation at cluster impact. The formation of ripples on a surface irradiated with oblique cluster ion beams was predicted. MD and MC models of Decaborane ion (B 10 H 14 ) implantation into Si and the following rapid thermal annealing (RTA) have been developed

  6. Full text clustering and relationship network analysis of biomedical publications.

    Directory of Open Access Journals (Sweden)

    Renchu Guan

    Full Text Available Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

  7. Full text clustering and relationship network analysis of biomedical publications.

    Science.gov (United States)

    Guan, Renchu; Yang, Chen; Marchese, Maurizio; Liang, Yanchun; Shi, Xiaohu

    2014-01-01

    Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP) to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

  8. Stability of relaxed Lennard-Jones models made of 500 to 6000 atoms

    International Nuclear Information System (INIS)

    Raoult, B.; Farges, J.; Feraudy, M.F. de; Torchet, G.

    1989-01-01

    We present a study of the stability of clusters models made of a number N of atoms in the range 500 to 6000 atoms, freely interacting through the Lennard-Jones potential. The potential energy per atom, calculated for relaxed models, shows that stable models belong to an icosahedral sequence when N<1600 and to a decahedral sequence beyond. A coexistence size range of both structures is discussed in connection with experimental results on argon clusters in free jet expansions. (orig.)

  9. Steady state subchannel analysis of AHWR fuel cluster

    International Nuclear Information System (INIS)

    Dasgupta, A.; Chandraker, D.K.; Vijayan, P.K.; Saha, D.

    2006-09-01

    Subchannel analysis is a technique used to predict the thermal hydraulic behavior of reactor fuel assemblies. The rod cluster is subdivided into a number of parallel interacting flow subchannels. The conservation equations are solved for each of these subchannels, taking into account subchannel interactions. Subchannel analysis of AHWR D-5 fuel cluster has been carried out to determine the variations in thermal hydraulic conditions of coolant and fuel temperatures along the length of the fuel bundle. The hottest regions within the AHWR fuel bundle have been identified. The effect of creep on the fuel performance has also been studied. MCHFR has been calculated using Jansen-Levy correlation. The calculations have been backed by sensitivity analysis for parameters whose values are not known accurately. The sensitivity analysis showed the calculations to have a very low sensitivity to these parameters. Apart from the analysis, the report also includes a brief introduction of a few subchannel codes. A brief description of the equations and solution methodology used in COBRA-IIIC and COBRA-IV-I is also given. (author)

  10. Electronic structure of Ni-- and Ni2--ethylene cluster complexes

    International Nuclear Information System (INIS)

    Basch, H.; Newton, M.D.; Moskowitz, J.W.

    1978-01-01

    The electronic structure of metal cluster--ethylene complexes has been investigated by carrying out ab initio bonding pair-correlated, self-consistent field, and configuration interaction (CI) calculations on the NiC 2 H 4 and Ni 2 C 2 H 4 species. The π-NiC 2 H 4 and π-Ni 2 C 2 H 4 cluster complexes are found to be bound, the former only with CI, while disigma-Ni 2 C 2 H 4 has only a repulsive Ni 2 --C 2 H 4 ground state potential curve. The bonding in the π-type cluster complexes can be described as follows: The metal atom configuration is 3d 9 4s 1 with the 4s hybridized (by the metal 4p) away from the ethylene molecule, thereby allowing the π orbital to form a dative sigma bond with the metal atom. The bonding interaction is promoted by the presence of a second nickel atom behind the first one, leading to a 4s orbital electron deficiency of the bonded nickel atom and thus making this nickel atom a better electron acceptor. Back donation from the occupied metal 3d into the ethylene π* molecular orbital also takes place to some extent, and thus both features of the classical Dewar--Chatt--Duncanson model are observed. The π-Ni 2 C 2 H 4 species is analyzed in terms of the addition of a bare nickel atom to a π-NiC 2 H 4 cluster complex, with concomitant stabilization of the orbitals of the bonded nickel atom. A study of the excited electronic states of π-NiC 2 H 4 shows that low-lying 4s→π* and 3d→π* (M→L) charge transfer transitions are predicted. The former is not observed experimentally, probably due to the diffuse nature of the 4s orbital. The relationship between small cluster--ethylene complex systems and ethylene chemisorption on a nickel metal surface is discussed

  11. Mobility in Europe: Recent Trends from a Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Ioana Manafi

    2017-08-01

    Full Text Available During the past decade, Europe was confronted with major changes and events offering large opportunities for mobility. The EU enlargement process, the EU policies regarding youth, the economic crisis affecting national economies on different levels, political instabilities in some European countries, high rates of unemployment or the increasing number of refugees are only a few of the factors influencing net migration in Europe. Based on a set of socio-economic indicators for EU/EFTA countries and cluster analysis, the paper provides an overview of regional differences across European countries, related to migration magnitude in the identified clusters. The obtained clusters are in accordance with previous studies in migration, and appear stable during the period of 2005-2013, with only some exceptions. The analysis revealed three country clusters: EU/EFTA center-receiving countries, EU/EFTA periphery-sending countries and EU/EFTA outlier countries, the names suggesting not only the geographical position within Europe, but the trends in net migration flows during the years. Therewith, the results provide evidence for the persistence of a movement from periphery to center countries, which is correlated with recent flows of mobility in Europe.

  12. Cluster analysis for portfolio optimization

    OpenAIRE

    Vincenzo Tola; Fabrizio Lillo; Mauro Gallegati; Rosario N. Mantegna

    2005-01-01

    We consider the problem of the statistical uncertainty of the correlation matrix in the optimization of a financial portfolio. We show that the use of clustering algorithms can improve the reliability of the portfolio in terms of the ratio between predicted and realized risk. Bootstrap analysis indicates that this improvement is obtained in a wide range of the parameters N (number of assets) and T (investment horizon). The predicted and realized risk level and the relative portfolio compositi...

  13. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.

    Directory of Open Access Journals (Sweden)

    Deanne W Sammond

    Full Text Available Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.

  14. Hierarchical cluster analysis of progression patterns in open-angle glaucoma patients with medical treatment.

    Science.gov (United States)

    Bae, Hyoung Won; Rho, Seungsoo; Lee, Hye Sun; Lee, Naeun; Hong, Samin; Seong, Gong Je; Sung, Kyung Rim; Kim, Chan Yun

    2014-04-29

    To classify medically treated open-angle glaucoma (OAG) by the pattern of progression using hierarchical cluster analysis, and to determine OAG progression characteristics by comparing clusters. Ninety-five eyes of 95 OAG patients who received medical treatment, and who had undergone visual field (VF) testing at least once per year for 5 or more years. OAG was classified into subgroups using hierarchical cluster analysis based on the following five variables: baseline mean deviation (MD), baseline visual field index (VFI), MD slope, VFI slope, and Glaucoma Progression Analysis (GPA) printout. After that, other parameters were compared between clusters. Two clusters were made after a hierarchical cluster analysis. Cluster 1 showed -4.06 ± 2.43 dB baseline MD, 92.58% ± 6.27% baseline VFI, -0.28 ± 0.38 dB per year MD slope, -0.52% ± 0.81% per year VFI slope, and all "no progression" cases in GPA printout, whereas cluster 2 showed -8.68 ± 3.81 baseline MD, 77.54 ± 12.98 baseline VFI, -0.72 ± 0.55 MD slope, -2.22 ± 1.89 VFI slope, and seven "possible" and four "likely" progression cases in GPA printout. There were no significant differences in age, sex, mean IOP, central corneal thickness, and axial length between clusters. However, cluster 2 included more high-tension glaucoma patients and used a greater number of antiglaucoma eye drops significantly compared with cluster 1. Hierarchical cluster analysis of progression patterns divided OAG into slow and fast progression groups, evidenced by assessing the parameters of glaucomatous progression in VF testing. In the fast progression group, the prevalence of high-tension glaucoma was greater and the number of antiglaucoma medications administered was increased versus the slow progression group. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  15. Atomic structure of a decagonal Al-Pd-Mn phase

    Science.gov (United States)

    Mihalkovič, Marek; Roth, Johannes; Trebin, Hans-Rainer

    2017-12-01

    We present a detailed structure solution for the 16 -Å decagonal quasicrystal in the Al-Pd-Mn system by means of cluster decoration and ab initio energy minimization. It is based on structure models of the ɛ and other approximant phases. The ɛ phases can be represented as subsets of a hexagon-boat-star (HBS) tiling. The decagonal phase comprises further HBS tiles. We have constructed several fictitious HBS approximants and optimized their structures individually. All tiles are decorated by two types of atomic clusters: the pseudo-Mackay icosahedron (PMI) and the large bicapped pentagonal prism (LBPP). It turns out that, whereas the PMI clusters can be kept essentially unchanged, the LBPP clusters must be adjusted in occupancy with Al atoms depending on their positions in the various tiles. In this way we obtain cluster decorations for all tiles of the decagonal quasicrystal. The calculations were confirmed by evaluation of an effective tile Hamiltonian.

  16. Cluster analysis of spontaneous preterm birth phenotypes identifies potential associations among preterm birth mechanisms.

    Science.gov (United States)

    Esplin, M Sean; Manuck, Tracy A; Varner, Michael W; Christensen, Bryce; Biggio, Joseph; Bukowski, Radek; Parry, Samuel; Zhang, Heping; Huang, Hao; Andrews, William; Saade, George; Sadovsky, Yoel; Reddy, Uma M; Ilekis, John

    2015-09-01

    We sought to use an innovative tool that is based on common biologic pathways to identify specific phenotypes among women with spontaneous preterm birth (SPTB) to enhance investigators' ability to identify and to highlight common mechanisms and underlying genetic factors that are responsible for SPTB. We performed a secondary analysis of a prospective case-control multicenter study of SPTB. All cases delivered a preterm singleton at SPTB ≤34.0 weeks' gestation. Each woman was assessed for the presence of underlying SPTB causes. A hierarchic cluster analysis was used to identify groups of women with homogeneous phenotypic profiles. One of the phenotypic clusters was selected for candidate gene association analysis with the use of VEGAS software. One thousand twenty-eight women with SPTB were assigned phenotypes. Hierarchic clustering of the phenotypes revealed 5 major clusters. Cluster 1 (n = 445) was characterized by maternal stress; cluster 2 (n = 294) was characterized by premature membrane rupture; cluster 3 (n = 120) was characterized by familial factors, and cluster 4 (n = 63) was characterized by maternal comorbidities. Cluster 5 (n = 106) was multifactorial and characterized by infection (INF), decidual hemorrhage (DH), and placental dysfunction (PD). These 3 phenotypes were correlated highly by χ(2) analysis (PD and DH, P cluster 3 of SPTB. We identified 5 major clusters of SPTB based on a phenotype tool and hierarch clustering. There was significant correlation between several of the phenotypes. The INS gene was associated with familial factors that were underlying SPTB. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Interactions of energetic particles and clusters with solids

    International Nuclear Information System (INIS)

    Averback, R.S.; Hsieh, Horngming; Benedek, R.

    1990-12-01

    Ion beams are being applied for surface modifications of materials in a variety of different ways: ion implantation, ion beam mixing, sputtering, and particle or cluster beam-assisted deposition. Fundamental to all of these processes is the deposition of a large amount of energy, generally some keV's, in a localized area. This can lead to the production of defects, atomic mixing, disordering and in some cases, amorphization. Recent results of molecular dynamics computer simulations of energetic displacement cascades in Cu and Ni with energies up to 5 keV suggest that thermal spikes play an important role in these processes. Specifically, it will be shown that many aspects of defect production, atomic mixing and ''cascade collapse'' can be understood as a consequence of local melting of the cascade core. Included in this discussion will be the possible role of electron-phonon coupling in thermal spike dynamics. The interaction of energetic clusters of atoms with solid surfaces has also been studied by molecular dynamics simulations. this process is of interest because a large amount of energy can be deposited in a small region and possibly without creating point defects in the substrate or implanting cluster atoms. The simulations reveal that the dynamics of the collision process are strongly dependent on cluster size and energy. Different regimes where defect production, local melting and plastic flow dominate will be discussed. 43 refs., 7 figs

  18. NATO Advanced Research Workshop on Physics and Chemistry of Finite Systems : from Clusters to Crystals

    CERN Document Server

    Khanna, S; Rao, B

    1992-01-01

    Recent innovations in experimental techniques such as molecular and cluster beam epitaxy, supersonic jet expansion, matrix isolation and chemical synthesis are increasingly enabling researchers to produce materials by design and with atomic dimension. These materials constrained by sire, shape, and symmetry range from clusters containing as few as two atoms to nanoscale materials consisting of thousands of atoms. They possess unique structuraI, electronic, magnetic and optical properties that depend strongly on their size and geometry. The availability of these materials raises many fundamental questions as weIl as technological possibilities. From the academic viewpoint, the most pertinent question concerns the evolution of the atomic and electronic structure of the system as it grows from micro clusters to crystals. At what stage, for example, does the cluster look as if it is a fragment of the corresponding crystal. How do electrons forming bonds in micro-clusters transform to bands in solids? How do the s...

  19. AtomicJ: An open source software for analysis of force curves

    Science.gov (United States)

    Hermanowicz, Paweł; Sarna, Michał; Burda, Kvetoslava; Gabryś, Halina

    2014-06-01

    We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh.

  20. AtomicJ: An open source software for analysis of force curves

    International Nuclear Information System (INIS)

    Hermanowicz, Paweł; Gabryś, Halina; Sarna, Michał; Burda, Kvetoslava

    2014-01-01

    We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh

  1. A critical cluster analysis of 44 indicators of author-level performance

    DEFF Research Database (Denmark)

    Wildgaard, Lorna Elizabeth

    2016-01-01

    -four indicators of individual researcher performance were computed using the data. The clustering solution was supported by continued reference to the researcher’s curriculum vitae, an effect analysis and a risk analysis. Disciplinary appropriate indicators were identified and used to divide the researchers......This paper explores a 7-stage cluster methodology as a process to identify appropriate indicators for evaluation of individual researchers at a disciplinary and seniority level. Publication and citation data for 741 researchers from 4 disciplines was collected in Web of Science. Forty...... of statistics in research evaluation. The strength of the 7-stage cluster methodology is that it makes clear that in the evaluation of individual researchers, statistics cannot stand alone. The methodology is reliant on contextual information to verify the bibliometric values and cluster solution...

  2. Tweets clustering using latent semantic analysis

    Science.gov (United States)

    Rasidi, Norsuhaili Mahamed; Bakar, Sakhinah Abu; Razak, Fatimah Abdul

    2017-04-01

    Social media are becoming overloaded with information due to the increasing number of information feeds. Unlike other social media, Twitter users are allowed to broadcast a short message called as `tweet". In this study, we extract tweets related to MH370 for certain of time. In this paper, we present overview of our approach for tweets clustering to analyze the users' responses toward tragedy of MH370. The tweets were clustered based on the frequency of terms obtained from the classification process. The method we used for the text classification is Latent Semantic Analysis. As a result, there are two types of tweets that response to MH370 tragedy which is emotional and non-emotional. We show some of our initial results to demonstrate the effectiveness of our approach.

  3. Symptom Cluster Research With Biomarkers and Genetics Using Latent Class Analysis.

    Science.gov (United States)

    Conley, Samantha

    2017-12-01

    The purpose of this article is to provide an overview of latent class analysis (LCA) and examples from symptom cluster research that includes biomarkers and genetics. A review of LCA with genetics and biomarkers was conducted using Medline, Embase, PubMed, and Google Scholar. LCA is a robust latent variable model used to cluster categorical data and allows for the determination of empirically determined symptom clusters. Researchers should consider using LCA to link empirically determined symptom clusters to biomarkers and genetics to better understand the underlying etiology of symptom clusters. The full potential of LCA in symptom cluster research has not yet been realized because it has been used in limited populations, and researchers have explored limited biologic pathways.

  4. The composite sequential clustering technique for analysis of multispectral scanner data

    Science.gov (United States)

    Su, M. Y.

    1972-01-01

    The clustering technique consists of two parts: (1) a sequential statistical clustering which is essentially a sequential variance analysis, and (2) a generalized K-means clustering. In this composite clustering technique, the output of (1) is a set of initial clusters which are input to (2) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum likelihood classification techniques. The mathematical algorithms for the composite sequential clustering program and a detailed computer program description with job setup are given.

  5. Cluster-based analysis of multi-model climate ensembles

    Science.gov (United States)

    Hyde, Richard; Hossaini, Ryan; Leeson, Amber A.

    2018-06-01

    Clustering - the automated grouping of similar data - can provide powerful and unique insight into large and complex data sets, in a fast and computationally efficient manner. While clustering has been used in a variety of fields (from medical image processing to economics), its application within atmospheric science has been fairly limited to date, and the potential benefits of the application of advanced clustering techniques to climate data (both model output and observations) has yet to be fully realised. In this paper, we explore the specific application of clustering to a multi-model climate ensemble. We hypothesise that clustering techniques can provide (a) a flexible, data-driven method of testing model-observation agreement and (b) a mechanism with which to identify model development priorities. We focus our analysis on chemistry-climate model (CCM) output of tropospheric ozone - an important greenhouse gas - from the recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Tropospheric column ozone from the ACCMIP ensemble was clustered using the Data Density based Clustering (DDC) algorithm. We find that a multi-model mean (MMM) calculated using members of the most-populous cluster identified at each location offers a reduction of up to ˜ 20 % in the global absolute mean bias between the MMM and an observed satellite-based tropospheric ozone climatology, with respect to a simple, all-model MMM. On a spatial basis, the bias is reduced at ˜ 62 % of all locations, with the largest bias reductions occurring in the Northern Hemisphere - where ozone concentrations are relatively large. However, the bias is unchanged at 9 % of all locations and increases at 29 %, particularly in the Southern Hemisphere. The latter demonstrates that although cluster-based subsampling acts to remove outlier model data, such data may in fact be closer to observed values in some locations. We further demonstrate that clustering can provide a viable and

  6. Magnetic behavior of clusters of ferromagnetic transition metals

    DEFF Research Database (Denmark)

    Khanna, S. N.; Linderoth, Søren

    1991-01-01

    The effective magnetic moments of small iron and cobalt clusters have been calculated by assuming that the clusters undergo superparamagnetic relaxation. The effective moments per atom are found to be much below the bulk values, even at low temperatures (100 K). They increase with particle size a...... moments in small clusters compared to bulk as being due to melting of surface spins....

  7. Atom depth analysis delineates mechanisms of protein intermolecular interactions

    International Nuclear Information System (INIS)

    Alocci, Davide; Bernini, Andrea; Niccolai, Neri

    2013-01-01

    Highlights: •3D atom depth analysis is proposed to identify different layers in protein structures. •Amino acid contents for each layers have been analyzed for a large protein dataset. •Charged amino acids in the most external layer are present at very different extents. •Atom depth indexes of K residues reflect their side chains flexibility. •Mobile surface charges can be responsible for long range protein–protein recognition. -- Abstract: The systematic analysis of amino acid distribution, performed inside a large set of resolved protein structures, sheds light on possible mechanisms driving non random protein–protein approaches. Protein Data Bank entries have been selected using as filters a series of restrictions ensuring that the shape of protein surface is not modified by interactions with large or small ligands. 3D atom depth has been evaluated for all the atoms of the 2,410 selected structures. The amino acid relative population in each of the structural layers formed by grouping atoms on the basis of their calculated depths, has been evaluated. We have identified seven structural layers, the inner ones reproducing the core of proteins and the outer one incorporating their most protruding moieties. Quantitative analysis of amino acid contents of structural layers identified, as expected, different behaviors. Atoms of Q, R, K, N, D residues are increasingly more abundant in going from core to surfaces. An opposite trend is observed for V, I, L, A, C, and G. An intermediate behavior is exhibited by P, S, T, M, W, H, F and Y. The outer structural layer hosts predominantly E and K residues whose charged moieties, protruding from outer regions of the protein surface, reorient free from steric hindrances, determining specific electrodynamics maps. This feature may represent a protein signature for long distance effects, driving the formation of encounter complexes and the eventual short distance approaches that are required for protein

  8. Optical response of small magnesium clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2004-01-01

    We predict strong enhancement in the photoabsorption of small Mg clusters in the region of 4–5 eV due to the resonant excitation of the plasmon oscillations of cluster electrons. Photoabsorption spectra for neutral Mg clusters consisting of up to N = 11 atoms have been calculated using an ab initio...... framework based on the time-dependent density functional theory (TDDFT). The nature of predicted resonances has been elucidated by comparison of the results of the an ab initio calculations with the results of the classical Mie theory. The splitting of the plasmon resonances caused by the cluster...

  9. Clusters of galaxies as tools in observational cosmology : results from x-ray analysis

    International Nuclear Information System (INIS)

    Weratschnig, J.M.

    2009-01-01

    Clusters of galaxies are the largest gravitationally bound structures in the universe. They can be used as ideal tools to study large scale structure formation (e.g. when studying merger clusters) and provide highly interesting environments to analyse several characteristic interaction processes (like ram pressure stripping of galaxies, magnetic fields). In this dissertation thesis, we have studied several clusters of galaxies using X-ray observations. To obtain scientific results, we have applied different data reduction and analysis methods. With a combination of morphological and spectral analysis, the merger cluster Abell 514 was studied in much detail. It has a highly interesting morphology and shows signs for an ongoing merger as well as a shock. using a new method to detect substructure, we have analysed several clusters to determine whether any substructure is present in the X-ray image. This hints towards a real structure in the distribution of the intra-cluster medium (ICM) and is evidence for ongoing mergers. The results from this analysis are extensively used with the cluster of galaxies Abell S1136. Here, we study the ICM distribution and compare its structure with the spatial distribution of star forming galaxies. Cluster magnetic fields are another important topic of my thesis. They can be studied in Radio observations, which can be put into relation with results from X-ray observations. using observational data from several clusters, we could support the theory that cluster magnetic fields are frozen into the ICM. (author)

  10. New Theoretical Developments in Exploring Electronically Excited States: Including Localized Configuration Interaction Singles and Application to Large Helium Clusters

    Science.gov (United States)

    Closser, Kristina Danielle

    This thesis presents new developments in excited state electronic structure theory. Contrasted with the ground state, the electronically excited states of atoms and molecules often are unstable and have short lifetimes, exhibit a greater diversity of character and are generally less well understood. The very unusual excited states of helium clusters motivated much of this work. These clusters consist of large numbers of atoms (experimentally 103--109 atoms) and bands of nearly degenerate excited states. For an isolated atom the lowest energy excitation energies are from 1s → 2s and 1s → 2 p transitions, and in clusters describing the lowest energy band minimally requires four states per atom. In the ground state the clusters are weakly bound by van der Waals interactions, however in the excited state they can form well-defined covalent bonds. The computational cost of quantum chemical calculations rapidly becomes prohibitive as the size of the systems increase. Standard excited-state methods such as configuration interaction singles (CIS) and time-dependent density functional theory (TD-DFT) can be used with ≈100 atoms, and are optimized to treat only a few states. Thus, one of our primary aims is to develop a method which can treat these large systems with large numbers of nearly degenerate excited states. Additionally, excited states are generally formed far from their equilibrium structures. Vertical excitations from the ground state induce dynamics in the excited states. Thus, another focus of this work is to explore the results of these forces and the fate of the excited states. Very little was known about helium cluster excited states when this work began, thus we first investigated the excitations in small helium clusters consisting of 7 or 25 atoms using CIS. The character of these excited states was determined using attachment/detachment density analysis and we found that in the n = 2 manifold the excitations could generally be interpreted as

  11. Rearrangement of cluster structure during fission processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Andrey V.

    2004-01-01

    Results of molecular dynamics simulations of fission reactions $Na_10^2+ -->Na_7^++ Na_3^+ and Na_18^2+--> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analysed. It is demonstrated that the energy necessary for removing homothetic...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...

  12. Characterizing Heterogeneity within Head and Neck Lesions Using Cluster Analysis of Multi-Parametric MRI Data.

    Directory of Open Access Journals (Sweden)

    Marco Borri

    Full Text Available To describe a methodology, based on cluster analysis, to partition multi-parametric functional imaging data into groups (or clusters of similar functional characteristics, with the aim of characterizing functional heterogeneity within head and neck tumour volumes. To evaluate the performance of the proposed approach on a set of longitudinal MRI data, analysing the evolution of the obtained sub-sets with treatment.The cluster analysis workflow was applied to a combination of dynamic contrast-enhanced and diffusion-weighted imaging MRI data from a cohort of squamous cell carcinoma of the head and neck patients. Cumulative distributions of voxels, containing pre and post-treatment data and including both primary tumours and lymph nodes, were partitioned into k clusters (k = 2, 3 or 4. Principal component analysis and cluster validation were employed to investigate data composition and to independently determine the optimal number of clusters. The evolution of the resulting sub-regions with induction chemotherapy treatment was assessed relative to the number of clusters.The clustering algorithm was able to separate clusters which significantly reduced in voxel number following induction chemotherapy from clusters with a non-significant reduction. Partitioning with the optimal number of clusters (k = 4, determined with cluster validation, produced the best separation between reducing and non-reducing clusters.The proposed methodology was able to identify tumour sub-regions with distinct functional properties, independently separating clusters which were affected differently by treatment. This work demonstrates that unsupervised cluster analysis, with no prior knowledge of the data, can be employed to provide a multi-parametric characterization of functional heterogeneity within tumour volumes.

  13. Coupled cluster and density functional theory calculations of atomic hydrogen chemisorption on pyrene and coronene as model systems for graphene hydrogenation.

    Science.gov (United States)

    Wang, Ying; Qian, Hu-Jun; Morokuma, Keiji; Irle, Stephan

    2012-07-05

    Ab initio coupled cluster and density functional theory studies of atomic hydrogen addition to the central region of pyrene and coronene as molecular models for graphene hydrogenation were performed. Fully relaxed potential energy curves (PECs) were computed at the spin-unrestricted B3LYP/cc-pVDZ level of theory for the atomic hydrogen attack of a center carbon atom (site A), the midpoint of a neighboring carbon bond (site B), and the center of a central hexagon (site C). Using the B3LYP/cc-pVDZ PEC geometries, we evaluated energies at the PBE density functional, as well as ab initio restricted open-shell ROMP2, ROCCSD, and ROCCSD(T) levels of theory, employing cc-pVDZ and cc-pVTZ basis sets, and performed a G2MS extrapolation to the ROCCSD(T)/cc-pVTZ level of theory. In agreement with earlier studies, we find that only site A attack leads to chemisorption. The G2MS entrance channel barrier heights, binding energies, and PEC profiles are found to agree well with a recent ab initio multireference wave function theory study (Bonfanti et al. J. Chem. Phys.2011, 135, 164701), indicating that single-reference open-shell methods including B3LYP are sufficient for the theoretical treatment of the interaction of graphene with a single hydrogen atom.

  14. Latent cluster analysis of ALS phenotypes identifies prognostically differing groups.

    Directory of Open Access Journals (Sweden)

    Jeban Ganesalingam

    2009-09-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a degenerative disease predominantly affecting motor neurons and manifesting as several different phenotypes. Whether these phenotypes correspond to different underlying disease processes is unknown. We used latent cluster analysis to identify groupings of clinical variables in an objective and unbiased way to improve phenotyping for clinical and research purposes.Latent class cluster analysis was applied to a large database consisting of 1467 records of people with ALS, using discrete variables which can be readily determined at the first clinic appointment. The model was tested for clinical relevance by survival analysis of the phenotypic groupings using the Kaplan-Meier method.The best model generated five distinct phenotypic classes that strongly predicted survival (p<0.0001. Eight variables were used for the latent class analysis, but a good estimate of the classification could be obtained using just two variables: site of first symptoms (bulbar or limb and time from symptom onset to diagnosis (p<0.00001.The five phenotypic classes identified using latent cluster analysis can predict prognosis. They could be used to stratify patients recruited into clinical trials and generating more homogeneous disease groups for genetic, proteomic and risk factor research.

  15. Global classification of human facial healthy skin using PLS discriminant analysis and clustering analysis.

    Science.gov (United States)

    Guinot, C; Latreille, J; Tenenhaus, M; Malvy, D J

    2001-04-01

    Today's classifications of healthy skin are predominantly based on a very limited number of skin characteristics, such as skin oiliness or susceptibility to sun exposure. The aim of the present analysis was to set up a global classification of healthy facial skin, using mathematical models. This classification is based on clinical, biophysical skin characteristics and self-reported information related to the skin, as well as the results of a theoretical skin classification assessed separately for the frontal and the malar zones of the face. In order to maximize the predictive power of the models with a minimum of variables, the Partial Least Square (PLS) discriminant analysis method was used. The resulting PLS components were subjected to clustering analyses to identify the plausible number of clusters and to group the individuals according to their proximities. Using this approach, four PLS components could be constructed and six clusters were found relevant. So, from the 36 hypothetical combinations of the theoretical skin types classification, we tended to a strengthened six classes proposal. Our data suggest that the association of the PLS discriminant analysis and the clustering methods leads to a valid and simple way to classify healthy human skin and represents a potentially useful tool for cosmetic and dermatological research.

  16. Onset of Coulomb explosion in small silicon clusters exposed to strong-field laser pulses

    Science.gov (United States)

    Sayres, S. G.; Ross, M. W.; Castleman, A. W., Jr.

    2012-05-01

    It is now well established that, under intense laser illumination, clusters undergo enhanced ionization compared to their isolated atomic and molecular counterparts being subjected to the same pulses. This leads to extremely high charge states and concomitant Coulomb explosion. Until now, the cluster size necessary for ionization enhancement has not been quantified. Here, we demonstrate that through the comparison of ion signal from small covalently bound silicon clusters exposed to low intensity laser pulses with semi-classical theory, their ionization potentials (IPs) can be determined. At moderate laser intensities the clusters are not only atomized, but all valence electrons are removed from the cluster, thereby producing up to Si4+. The effective IPs for the production of the high charge states are shown to be ˜40% lower than the expected values for atomic silicon. Finally, the minimum cluster size responsible for the onset of the enhanced ionization is determined utilizing the magnitude of the kinetic energy released from the Coulomb explosion.

  17. Atomistic studies of nucleation of He clusters and bubbles in bcc iron

    International Nuclear Information System (INIS)

    Yang, L.; Deng, H.Q.; Gao, F.; Heinisch, H.L.; Kurtz, R.J.; Hu, S.Y.; Li, Y.L.; Zu, X.T.

    2013-01-01

    Atomistic simulations of the nucleation of He clusters and bubbles in bcc iron at 800 K have been carried out using the newly developed Fe–Fe interatomic potential, along with Ackland potential for the Fe–Fe interactions. Microstructure changes were analyzed in detail. We found that a He cluster with four He atoms is able to push out an iron interstitial from the cluster, creating a Frenkel pair. Small He clusters and self-interstitial atom (SIA) can migrate in the matrix, but He-vacancy (He-V) clusters are immobile. Most SIAs form clusters, and only the dislocation loops with a Burgers vector of b = 1/2 appear in the simulations. SIA clusters (or loops) are attached to He-V clusters for He implantation up to 1372 appm, while the He-V cluster–loop complexes with more than one He-V cluster are formed at the He concentration of 2057 appm and larger

  18. MicroED Structure of Au146(p-MBA)57 at Subatomic Resolution Reveals a Twinned FCC Cluster.

    Science.gov (United States)

    Vergara, Sandra; Lukes, Dylan A; Martynowycz, Michael W; Santiago, Ulises; Plascencia-Villa, Germán; Weiss, Simon C; de la Cruz, M Jason; Black, David M; Alvarez, Marcos M; López-Lozano, Xochitl; Barnes, Christopher O; Lin, Guowu; Weissker, Hans-Christian; Whetten, Robert L; Gonen, Tamir; Yacaman, Miguel Jose; Calero, Guillermo

    2017-11-16

    Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au 146 (p-MBA) 57 (p-MBA: para-mercaptobenzoic acid), solved by electron micro-diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.3 Å). The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure, whereas the surface gold atoms follow a C 2 rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au 146 (p-MBA) 57 is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault.

  19. Diffusion of two-dimensional epitaxial clusters on metal (100) surfaces: Facile versus nucleation-mediated behavior and their merging for larger sizes

    Science.gov (United States)

    Lai, King C.; Liu, Da-Jiang; Evans, James W.

    2017-12-01

    For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal (100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN˜ N-β with β =3 /2 . However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N mediated diffusion with small β 2 for N =Np+1 and Np+2 also for moderate sizes 9 ≤N ≤O (102) ; (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲β analysis must account for a strong enhancement of diffusivity for short time increments due to back correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground-state and low-lying excited state cluster configurations, and also of kink populations.

  20. Carbon-cluster mass calibration at SHIPTRAP

    International Nuclear Information System (INIS)

    Chaudhuri, Ankur

    2007-01-01

    A carbon-cluster ion source has been installed and tested at SHIPTRAP, the Penning-trap mass spectrometer for mass measurements of heavy elements at GSI/Darmstadt, Germany. A precision mass determination is carried out by measuring the ion cyclotron frequency ω c =qB=m, where q/m is the charge-to-mass ratio of the ion and B is the magnetic field. The mass of the ion of interest is obtained from the comparison of its cyclotron frequency ω c with that of a well-known reference ion. Carbon clusters are the mass reference of choice since the unified atomic mass unit is defined as 1/12 of the mass of the 12 C atom. Thus the masses of carbon clusters 12 C n , n=1,2,3,.. are multiples of the unified atomic mass unit. Carbon-cluster ions 12 C n + , 5≤n≤23, were produced by laser-induced desorption and ionization from a carbon sample. Carbon clusters of various sizes ( 12 C 7 + , 12 C 9 + , 12 C 10 + , 12 C 11 + , 12 C 12 + , 12 C 15 + , 12 C 18 + , 12 C 19 + , 12 C 20 + ) were used for an investigation of the accuracy of SHIPTRAP covering a mass range from 84 u to 240 u. To this end the clusters were used both as ions of interest and reference ions. Hence the true values of the frequency ratios are exactly known. The mass-dependent uncertainty was found to be negligible for the case of (m-m ref ) -8 was revealed. In addition, carbon clusters were employed for the first time as reference ions in an on-line studies of short-lived nuclei. Absolute mass measurements of the radionuclides 144 Dy, 146 Dy and 147 Ho were performed using 12 C 11 + as reference ion. The results agree with measurements during the same run using 85 Rb + as reference ion. The investigated radionuclides were produced in the fusion-evaporation reaction 92 Mo( 58 Ni,xpyn) at SHIP (Separator for Heavy Ion reaction Products) at GSI. Among the measured nuclei 147 Ho has the lowest half life (5.8 s). A relative mass uncertainty of 5 x 10 -8 was obtained from the mass measurements using carbon clusters