WorldWideScience

Sample records for atomic circumnuclear disk

  1. Chemical Features in the Circumnuclear Disk of the Galactic Center

    CERN Document Server

    Harada, N; Viti, S; Jiménez-Serra, I; Requena-Torres, M A; Menten, K M; Martín, S; Aladro, R; Martin-Pintado, J; Hochgürtel, S

    2015-01-01

    The circumnuclear disk (CND) of the Galactic Center is exposed to many energetic phenomena coming from the supermassive black hole Sgr A* and stellar activities. These energetic activities can affect the chemical composition in the CND by the interaction with UV-photons, cosmic-rays, X-rays, and shock waves. We aim to constrain the physical conditions present in the CND by chemical modeling of observed molecular species detected towards it. We analyzed a selected set of molecular line data taken toward a position in the southwest lobe of the CND with the IRAM 30m and APEX 12-meter telescopes and derived the column density of each molecule using a large velocity gradient (LVG) analysis. The determined chemical composition is compared with a time-dependent gas-grain chemical model based on the UCL\\_CHEM code that includes the effects of shock waves with varying physical parameters. Molecules such as CO, HCN, HCO$^+$, HNC, CS, SO, SiO, NO, CN, H$_2$CO, HC$_3$N, N$_2$H$^+$ and H$_3$O$^+$ are detected and their co...

  2. Star formation and accretion in the circumnuclear disks of active galaxies

    CERN Document Server

    Wutschik, Stephanie; Palmer, Thomas S

    2013-01-01

    We explore the evolution of supermassive black holes (SMBH) centered in a circumnuclear disk (CND) as a function of the mass supply from the host galaxy and considering different star formation laws, which may give rise to a self-regulation via the injection of supernova-driven turbulence. A system of equations describing star formation, black hole accretion and angular momentum transport was solved for an axisymmetric disk in which the gravitational potential includes contributions from the black hole, the disk and the hosting galaxy. Our model extends the framework provided by Kawakatu et al. (2008) by separately considering the inner and outer part of the disk, and by introducing a potentially non-linear dependence of the star formation rate on the gas surface density and the turbulent velocity. The star formation recipes are calibrated using observational data for NGC 1097, while the accretion model is based on turbulent viscosity as a source of angular momentum transport in a thin viscous accretion disk....

  3. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    CERN Document Server

    Izumi, Takuma; Kohno, Kotaro

    2016-01-01

    We present a positive correlation between the mass of dense molecular gas ($M_{\\rm dense}$) of $\\sim 100$ pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ($\\dot{M}_{\\rm BH}$) in total 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture $\\theta_{\\rm med}$ = 220 pc). A typical $M_{\\rm dense}$ of CNDs is 10$^{7-8}$ $M_\\odot$, estimated from the luminosity of the dense gas tracer, the HCN($1-0$) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between nuclear star formation rate and $\\dot{M}_{\\rm BH}$ revealed previously. Moreover, the $M_{\\rm dense}-\\dot{M}_{\\rm BH}$ correlation was tighter for CND-scale gas than for the gas on kpc or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas $>$kpc scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Mill...

  4. MILLIMETER-WAVE SPECTRAL LINE SURVEYS TOWARD THE GALACTIC CIRCUMNUCLEAR DISK AND Sgr A*

    International Nuclear Information System (INIS)

    We have performed unbiased spectral line surveys at the 3 mm band toward the Galactic circumnuclear disk (CND) and Sgr A* using the Nobeyama Radio Observatory 45 m radio telescope. The target positions are two tangential points of the CND and the direction of Sgr A*. We have obtained three wide-band spectra that cover the frequency range from 81.3 GHz to 115.8 GHz, detecting 46 molecular lines from 30 species, including 10 rare isotopomers and 4 hydrogen recombination lines. Each line profile consists of multiple velocity components which arise from the CND, +50 km s–1 and +20 km –1 giant molecular clouds (GMCs), and the foreground spiral arms. We define the specific velocity ranges that represent the CND and the GMCs toward each direction, and classify the detected lines into three categories: the CND, GMC, HBD types, based on the line intensities integrated over the defined velocity ranges. The CND and GMC types are the lines that mainly trace the CND and the GMCs, respectively. The HBD types possesses the both characteristics of the CND and GMC types. We also present lists of line intensities and other parameters, as well as intensity ratios, which must be useful to investigate the difference between the nuclear environments of our Galaxy and others

  5. The Excitation of HCN and HCO+ in the Galactic Center Circumnuclear Disk

    CERN Document Server

    Mills, Elisabeth A C; Torres, Miguel A Requena; Morris, Mark R

    2013-01-01

    We present new observations of HCN and HCO+in the circumnuclear disk (CND) of the Galaxy, obtained with the APEX telescope. We have mapped emission in rotational lines of HCN J = 3-2, 4-3, and 8-7, as well as HCO+ J = 3-2, 4-3, and 9-8. We also present spectra of H13CN and H13CO+ toward four positions in the CND. Using the intensities of all of these lines, we present an excitation analysis for each molecule using the non-LTE radiative transfer code RADEX. The HCN line intensities toward the northern emission peak of the CND yield log densities (cm^-3) of 5.6 +0.6/-0.6, consistent with those measured with HCO+, as well as with densities recently reported for this region from an excitation analysis of highly-excited lines of CO. These densities are too low for the gas to be tidally stable. The HCN line intensities toward the CND's southern emission peak yield log densities of 6.5 +0.5/-0.7, higher than densities determined for this part of the CND with CO (although the densities measured with HCO+, log [n] = 5...

  6. EFFECTS OF CIRCUMNUCLEAR DISK GAS EVOLUTION ON THE SPIN OF CENTRAL BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Maio, Umberto [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching b. Muenchen (Germany); Dotti, Massimo [Department of Physics of the University of Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Petkova, Margarita [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching b. Muenchen (Germany); Perego, Albino [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Volonteri, Marta [Institut d' Astrophysique de Paris, 98bis Boulevard Arago, F-75014 Paris (France)

    2013-04-10

    Mass and spin are the only two parameters needed to completely characterize black holes (BHs) in general relativity. However, the interaction between BHs and their environment is where complexity lies, as the relevant physical processes occur over a large range of scales. That is particularly relevant in the case of supermassive black holes (SMBHs), hosted in galaxy centers, and surrounded by swirling gas and various generations of stars. These compete with the SMBH for gas consumption and affect both dynamics and thermodynamics of the gas itself. How the behavior of such a fiery environment influences the angular momentum of the gas accreted onto SMBHs, and, hence, BH spins, is uncertain. We explore the interaction between SMBHs and their environment via first three-dimensional sub-parsec resolution simulations (ranging from {approx}0.1 pc to {approx}1 kpc scales) that study the evolution of the SMBH spin by including the effects of star formation, stellar feedback, radiative transfer, and metal pollution according to the proper stellar yields and lifetimes. This approach is crucial in investigating the impact of star formation processes and feedback effects on the angular momentum of the material that could accrete on the central hole. We find that star formation and feedback mechanisms can locally inject significant amounts of entropy in the surrounding medium, and impact the inflow inclination angles and Eddington fractions. As a consequence, the resulting trends show upper-intermediate equilibrium values for the spin parameter of a {approx_equal} 0.6-0.9, corresponding to radiative efficiencies {epsilon} {approx_equal} 9%-15%. These results suggest that star formation feedback taking place in the circumnuclear disk during the infall alone cannot induce very strong chaotic trends in the gas flow, quite independently from the different numerical parameters.

  7. A circumnuclear disk of atomic hydrogen in Centaurus A

    NARCIS (Netherlands)

    Morganti, R.; Oosterloo, T.; Struve, C.; Saripalli, L.

    2008-01-01

    We present new observations, performed with the Australia Telescope Compact Array, of the Hi absorption in the central regions of Centaurus A. For the first time, absorption is detected against the radio core at velocities blueshifted with respect to the systemic velocity. Moreover, the data show th

  8. The Megamaser Cosmology Project. III. Accurate Masses of Seven Supermassive Black Holes in Active Galaxies with Circumnuclear Megamaser Disks

    Science.gov (United States)

    Kuo, C. Y.; Braatz, J. A.; Condon, J. J.; Impellizzeri, C. M. V.; Lo, K. Y.; Zaw, I.; Schenker, M.; Henkel, C.; Reid, M. J.; Greene, J. E.

    2011-01-01

    Observations of H2O masers from circumnuclear disks in active galaxies for the Megamaser Cosmology Project (MCP) allow accurate measurement of the mass of supermassive black holes (BH) in these galaxies. We present the Very Long Baseline Interferometry images and kinematics of water maser emission in six active galaxies: NGC 1194, NGC 2273, NGC 2960 (Mrk 1419), NGC 4388, NGC 6264 and NGC 6323. We use the Keplerian rotation curves of these six megamaser galaxies, plus a seventh previously published, to determine accurate enclosed masses within the central ~0.3 pc of these galaxies, smaller than the radius of the sphere of influence of the central mass in all cases. We also set lower limits to the central mass densities of between 0.12 × 1010 and 61 × 1010 M sun pc-3. For six of the seven disks, the high central densities rule out clusters of stars or stellar remnants as the central objects, and this result further supports our assumption that the enclosed mass can be attributed predominantly to a supermassive BH. The seven BHs have masses ranging between 0.75 × 107 and 6.5 × 107 M sun, with the mass errors dominated by the uncertainty of the Hubble constant. We compare the megamaser BH mass determination with BH mass measured from the virial estimation method. The virial estimation BH mass in four galaxies is consistent with the megamaser BH mass, but the virial mass uncertainty is much greater. Circumnuclear megamaser disks allow the best mass determination of the central BH mass in external galaxies and significantly improve the observational basis at the low-mass end of the M-σsstarf relation. The M-σsstarf relation may not be a single, low-scatter power law as originally proposed. MCP observations continue and we expect to obtain more maser BH masses in the future.

  9. The Megamaser Cosmology Project. III. Accurate Masses of Seven Supermassive Black Holes in Active Galaxies with Circumnuclear Megamaser Disks

    CERN Document Server

    Kuo, C Y; Condon, J J; Impellizzeri, C M V; Lo, K Y; Zaw, I; Schenker, M; Henkel, C; Reid, M J; Greene, J E

    2010-01-01

    Observations of H$_2$O masers from circumnuclear disks in active galaxies for the Megamaser Cosmology Project allow accurate measurement of the mass of supermassive black holes (BH) in these galaxies. We present the Very Long Baseline Interferometry (VLBI) images and kinematics of water maser emission in six active galaxies: NGC~1194, NGC~2273, NGC~2960 (Mrk~1419), NGC~4388, NGC~6264 and NGC~6323. We use the Keplerian rotation curves of these six megamaser galaxies, plus a seventh previously published, to determine accurate enclosed masses within the central $\\sim0.3$ pc of these galaxies, smaller than the radius of the sphere of influence of the central mass in all cases. We also set lower limits to the central mass densities of between 0.12 and 60 $\\times 10^{10} M_{\\odot}$~pc$^{-3}$. For six of the seven disks, the high central densities rule out clusters of stars or stellar remnants as the central objects, and this result further supports our assumption that the enclosed mass can be attributed predominant...

  10. THE TORQUING OF CIRCUMNUCLEAR ACCRETION DISKS BY STARS AND THE EVOLUTION OF MASSIVE BLACK HOLES

    International Nuclear Information System (INIS)

    An accreting massive black hole (MBH) in a galactic nucleus is surrounded by a dense stellar cluster. We analyze and simulate numerically the evolution of a thin accretion disk due to its internal viscous torques, due to the frame-dragging torques of a spinning MBH (the Bardeen-Petterson effect), and due to the orbit-averaged gravitational torques by the stars (resonant relaxation). We show that the evolution of the MBH mass accretion rate, the MBH spin growth rate, and the covering fraction of the disk relative to the central ionizing continuum source, are all strongly coupled to the stochastic fluctuations of the stellar potential via the warps that the stellar torques excite in the disk. These lead to fluctuations by factors of up to a few in these quantities over a wide range of timescales, with most of the power on timescales ∼> (M./Md )P(Rd ), where M. and Md are the masses of the MBH and disk, and P is the orbital period at the disk's mass-weighted mean radius Rd. The response of the disk is stronger the lighter it is and the more centrally concentrated the stellar cusp. As proof of concept, we simulate the evolution of the low-mass maser disk in NGC 4258 and show that its observed O(10°) warp can be driven by the stellar torques. We also show that the frame dragging of a massive active galactic nucleus disk couples the stochastic stellar torques to the MBH spin and can excite a jitter of a few degrees in its direction relative to that of the disk's outer regions.

  11. Circumnuclear molecular gas in megamaser disk galaxies NGC 4388 and NGC 1194

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Jenny E. [Department of Astrophysics, Princeton University, Princeton, NJ 08540 (United States); Seth, Anil [University of Utah, Salt Lake City, UT 84112 (United States); Lyubenova, Mariya; Van de Ven, Glenn; Läsker, Ronald [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Walsh, Jonelle [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States)

    2014-06-20

    We explore the warm molecular and ionized gas in the centers of two megamaser disk galaxies using K-band spectroscopy. Our ultimate goal is to determine how gas is funneled onto the accretion disk, here traced by megamaser spots on sub-parsec scales. We present NIR IFU data with a resolution of ∼50 pc for two galaxies: NGC 4388 with VLT/SINFONI and NGC 1194 with Keck/OSIRIS+AO. The high spatial resolution and rich spectral diagnostics allow us to study both the stellar and gas kinematics as well as gas excitation on scales only an order of magnitude larger than the maser disk. We find a drop in the stellar velocity dispersion in the inner ∼100 pc of NGC 4388, a common signature of a dynamically cold central component seen in many active nuclei. We also see evidence for noncircular gas motions in the molecular hydrogen on similar scales, with the gas kinematics on 100 parsec scales aligned with the megamaser disk. In contrast, the high ionization lines and Brγ trace outflow along the 100 parsec-scale jet. In NGC 1194, the continuum from the accreting black hole is very strong, making it difficult to measure robust two-dimensional kinematics, but the spatial distribution and line ratios of the molecular hydrogen and Brγ have consistent properties between the two galaxies.

  12. Spectra of Maser Radiation from a Turbulent, Circumnuclear Accretion Disk. III. Circular polarization

    CERN Document Server

    Watson, W D

    2001-01-01

    Calculations are performed for the circular polarization of maser radiation from a turbulent, Keplerian disk that is intended to represent the sub-parsec disk at the nucleus of the galaxy NGC4258. The polarization in the calculations is a result of the Zeeman effect in the regime in which the Zeeman splitting is much less than the spectral linebreadth. Plausible configurations for turbulent magnetic and velocity fields in the disk are created by statistical methods. This turbulence, along with the Keplerian velocity gradients and the blending of the three hyperfine components to form the $6_{16} - 5_{23}$ masing transition of water, are key ingredients in determining the appearance of the polarized spectra that are calculated. These spectra are quite different from the polarized spectra that would be expected for a two-level transition where there is no hyperfine structure. The effect of the hyperfine structure on the polarization is most striking in the calculations for the maser emission that represents the...

  13. The Pairing of Accreting Massive Black Holes in Multiphase Circumnuclear Disks: the Interplay between Radiative Cooling, Star Formation, and Feedback Processes

    CERN Document Server

    Lima, Rafael Souza; Capelo, Pedro R; Bellovary, Jillian M

    2016-01-01

    We study the orbital decay of a pair of massive black holes (BHs), in the mass range 5 * 10^5 - 10^7 Msun, using a large set of hydrodynamical simulations of circumnuclear disks (CNDs) with varying prescriptions for the sub-grid physics of the interstellar medium, from star formation and supernova feedback to BH accretion and its feedback. In the absence of any of such processes, the orbit of the secondary BH in an adiabatic flow decays over timescales of a few Myr to the center of the CND, where the primary BH resides. As soon as strong dissipation operates in CNDs, fragmentation into massive objects the size of giant molecular clouds occurs, causing stochastic torques as well as direct hits that eject the secondary BH out of the disk plane. Once outside the plane, the low-density medium provides only weak drag, and the return to the CND plane is governed by inefficient dynamical friction in a stellar bulge. Ejections are seen to occur in nearly all of runs with cooling, irrespective of which other processes...

  14. Angular Momentum Regulates Atomic Gas Fractions of Galactic Disks

    CERN Document Server

    Obreschkow, Danail; Kilborn, Virginia; Lutz, Katharina

    2016-01-01

    We show that the mass fraction f_atm = 1.35*MHI/M of neutral atomic gas (HI and He) in isolated local disk galaxies of baryonic mass M is well described by a straightforward stability model for flat exponential disks. In the outer disk parts, where gas at the characteristic dispersion of the Warm Neutral Medium is stable in the sense of Toomre (1964), the disk consists of neutral atomic gas; conversely the inner part where this medium would be Toomre-unstable, is dominated by stars and molecules. Within this model, f_atm only depends on a global stability parameter q=j*sigma/(GM), where j is the baryonic specific angular momentum of the disk and sigma the velocity dispersion of the atomic gas. The analytically derived first-order solution f_atm = min{1,2.5q^1.12} provides a good fit to all plausible rotation curves. This model, with no free parameters, agrees remarkably well (+-0.2 dex) with measurements of f_atm in isolated local disk galaxies, even with galaxies that are extremely HI-rich or HI-poor for the...

  15. The metallicity of circumnuclear star forming regions

    CERN Document Server

    Díaz, A I; Castellanos, M; Hägele, G F

    2006-01-01

    We present a spectrophotometric study of circumnuclear star forming regions (CNSFR) in the early type spiral galaxies: NGC 2903, NGC 3351 and NGC 3504, all of them of over solar metallicity according to standard empirical calibrations. A detailed determination of their abundances is made after careful subtraction of the very prominent underlying stellar absorption. It is found that most regions show the highest abundances in HII region-like objects. The relative N/O and S/O abundances are discussed. In is also shown that CNSFR, as a class, segregate from the disk HII region family, clustering around smaller ``softness parameter" -- \\eta' -- values, and therefore higher ionizing temperatures.

  16. Angular Momentum Regulates Atomic Gas Fractions of Galactic Disks

    Science.gov (United States)

    Obreschkow, D.; Glazebrook, K.; Kilborn, V.; Lutz, K.

    2016-06-01

    We show that the mass fraction {f}{{atm}}=1.35{M}{{H}{{I}}}/M of neutral atomic gas (H i and He) in isolated local disk galaxies of baryonic mass M is well described by a straightforward stability model for flat exponential disks. In the outer disk parts, where gas at the characteristic dispersion of the warm neutral medium is stable in the sense of Toomre, the disk consists of neutral atomic gas; conversely, the inner part where this medium would be Toomre-unstable, is dominated by stars and molecules. Within this model, {f}{{atm}} only depends on a global stability parameter q\\equiv jσ /({GM}), where j is the baryonic specific angular momentum of the disk and σ the velocity dispersion of the atomic gas. The analytically derived first-order solution {f}{{atm}}={min}\\{1,2.5{q}1.12\\} provides a good fit to all plausible rotation curves. This model, with no free parameters, agrees remarkably well (±0.2 dex) with measurements of {f}{{atm}} in isolated local disk galaxies, even with galaxies that are extremely H i-rich or H i-poor for their mass. The finding that {f}{{atm}} increasing monotonically with q for pure stability reasons offers a powerful intuitive explanation for the mean variation of {f}{{atm}} with M: in a cold dark matter universe, galaxies are expected to follow j\\propto {M}2/3, which implies the average scaling q\\propto {M}-1/3 and hence {f}{{atm}}\\propto {M}-0.37, in agreement with the observations.

  17. The Circumnuclear Molecular Gas in the Seyfert Galaxy NGC4945

    CERN Document Server

    Chou, Richard C Y; Lim, J; Matsushita, S; Müller, S; Sawada-Satoh, S; Dinh-V-Trung,; Boone, F; Henkel, C

    2007-01-01

    We have mapped the central region of NGC 4945 in the $J=2\\to1$ transition of $^{12}$CO, $^{13}$CO, and C$^{18}$O, as well as the continuum at 1.3 mm, at an angular resolution of $5\\farc \\times 3\\farc$ with the Submillimeter Array. The relative proximity of NGC 4945 (distance of only 3.8 Mpc) permits a detailed study of the circumnuclear molecular gas and dust in a galaxy exhibiting both an AGN (classified as a Seyfert 2) and a circumnuclear starburst in an inclined ring with radius $\\sim$2\\farcs5 ($\\sim$50 pc). We find that all three molecular lines trace an inclined rotating disk with major axis aligned with that of the starburst ring and large-scale galactic disk, and which exhibits solid-body rotation within a radius of $\\sim$5\\farc ($\\sim$95 pc). We infer an inclination for the nuclear disk of $62^{\\circ} \\pm 2^{\\circ}$, somewhat smaller than the inclination of the large-scale galactic disk of $\\sim rroundings, and is a promising candidate for the circumnuclear molecular torus invoked by AGN unification m...

  18. An embedded circumnuclear disk in Mrk 273

    CERN Document Server

    Klöckner, H R

    2004-01-01

    Radio observations using very long baseline interferometry (VLBI) and the Westerbork interferometer have been carried out to study the hydroxyl Megamaser emission in Mrk~273 at different spatial resolutions. Line and continuum observations were carried out by the European VLBI network (EVN) at 1.6 GHz and display a number of distinct structural components in the central arcsec^2 region. The observed continuum emission shows three prominent regions with both flat and steep spectral indexes. The hydroxyl (OH) emission detected by the EVN measurements accounts for only 12 percent of the total OH emission in Mrk 273, but it does show the same dominant 1667 MHz line emission components as the WSRT observations. The spatial distribution of the maser emission provides a high resolution view of the molecular environment in the nuclear region. The OH emission has only been detected toward a distinct radio source in the northern nucleus with a spatial extent of 108 pc. The OH emission is only partially superposed on th...

  19. Using Megamaser Disks to Probe Black Hole Accretion

    CERN Document Server

    Greene, Jenny E; Brok, Mark den; Braatz, James A; Henkel, Christian; Sun, Ai-Lei; Peng, Chien Y; Kuo, Cheng-Yu; Impellizzeri, C M Violette; Lo, K Y

    2013-01-01

    We examine the alignment between H_2O megamaser disks on sub-pc scales with circumnuclear disks and bars on 50 pc scales, in those galaxies for which radio continuum detections are available. Sub-arcsecond observations of molecular gas with ALMA will enable a more complete understanding of the interplay between circumnuclear structures.

  20. Disk

    NARCIS (Netherlands)

    Boncz, P.A.; Liu, L.; Özsu, M. Tamer

    2008-01-01

    In disk storage, data is recorded on planar, round and rotating surfaces (disks, discs, or platters). A disk drive is a peripheral device of a computer system, connected by some communication medium to a disk controller. The disk controller is a chip, typically connected to the CPU of the computer b

  1. On how the optical depth tunes the effects of ISM neutral atom flow on debris disks

    CERN Document Server

    Marzari, Francesco

    2011-01-01

    The flux of ISM neutral atoms surrounding stars and their environment affects the motion of dust particles in debris disks, causing a significant dynamical evolution. Large values of eccentricity and inclination can be excited and strong correlations settle in among the orbital angles. This dynamical behaviour, in particular for bound dust grains, can potentially cause significant asymmetries in dusty disks around solar type stars which might be detected by observations. However, the amount of orbital changes due to this non--gravitational perturbation is strongly limited by the collisional lifetime of dust particles. We show that for large values of the disk's optical depth the influence of ISM flow on the disk shape is almost negligible because the grains are collisionally destroyed before they can accumulate enough orbital changes due to the ISM perturbations. On the other hand, for values smaller than $10^{-3}$, peculiar asymmetric patterns appear in the density profile of the disk when we consider 1-10 m...

  2. Magnetic confinement of neutral atoms based on patterned vortex distributions in superconducting disks and rings

    CERN Document Server

    Zhang, B; Chan, K S; Beian, M; Lim, M J; Dumke, R; 10.1103/PhysRevA.85.013404

    2012-01-01

    We propose and analyze neutral atom traps generated by vortices imprinted by magnetic field pulse sequences in type-II superconducting disks and rings. We compute the supercurrent distribution and magnetic field resulting from the vortices in the superconductor. Different patterns of vortices can be written by versatile loading field sequences. We discuss in detail procedures to generate quadrupole traps, self-sufficient traps and ring traps based on superconducting disks and rings. The ease of creating these traps and the low current noise in supercurrent carrying structures makes our approach attractive for designing atom chip interferometers and probes.

  3. Circumnuclear Star Forming Activity in NGC 3982

    Institute of Scientific and Technical Information of China (English)

    Shui-Nai Zhang; Qiu-Sheng Gu; Yi-Peng Wang

    2008-01-01

    We present a study of the nearby Seyfert galaxy NGC 3982 using optical,infrared and X-ray data acquired by SDSS,Spitzer and Chandra.Our main results are as follows:(1) A simple stellar population synthesis on the nuclear and circumnuclear SDSS spectra gives unambiguous evidence of young stellar components in both the nuclear and circumnuclear regions.(2) The Spitzer Infrared Spectrograph (IRS) spectrum of the central region (~3") shows a power-law continuum,a silicate emission feature at 9.7 μm,and significant PAH emission features at 7.7,8.6,11.3 and 12.7/zm,suggesting the coexistence of AGN and starburst activities in the central region of NGC 3982.(3) We estimate the star formation rate (SFR) of the circumnuclear (~5"-20") region from the Ha luminosity to be for the active nucleus of NGC 3982 from radio to X-ray,and obtain a bolometric luminosity of Lbol=4.5×1042 erg s-1,corresponding to an Eddington ratio (Lbol/LEdd) of 0.014.The HST image of NGC 3982 shows a nuclear mini-spiral between the circumnuclear starforming region and the nucleus,which could be the channel through which gas is transported to the supermassive black hole from the circumnuclear star-forming region.

  4. Basic design of a rotating disk centrifugal atomizer for uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    One of the most used techniques to produce metallic powders is the centrifugal atomization with a rotating disk. This process is employ to fabricate ductile metallic particles of uranium-molybdenum alloys (typically U- 7 % Mo, by weight) for nuclear fuel elements for research and testing reactors. These alloys exhibit a face-centered cubic structure (γ phase) which is stable above 700 C degrees and can be retained at room temperature. The rotating disk centrifugal atomization allows a rapid solidification of spherical metallic droplets of about 40 to 100 μm, considered adequate to manufacture nuclear fuel elements. Besides the thermo-physical properties of both the alloy and the cooling gas, the main parameters of the process are the radius of the disk (R), the diameter of the atomization chamber (D), the disk rotation speed (ω), the liquid volume flow rate (Q) and the superheating of the liquid (ΔT). In this work, they were applied approximate analytical models to estimate the optimal geometrical and operative parameters to obtain spherical metallic powder of U- 7 % Mo alloy. Three physical phenomena were considerate: the liquid metal flow along the surface of the disk, the fragmentation and spheroidization of the droplets and the cooling and solidification of the droplets. The principal results are the more suitable gas is helium; R ≅ 20 mm; D ≥ 1 m; ≅ 20,000 - 50,000 rpm; Q ≅ 4 - 10 cm3/s; ΔT ≅ 100 - 200 C degrees. By applying the relevant non-dimensional parameters governing the main physical phenomena, the conclusion is that the more appropriate non-radioactive metal to simulate the atomization of U- 7 % Mo is gold

  5. PHYSICAL PARAMETERS IN CIRCUMNUCLEAR STAR FORMING REGIONS

    OpenAIRE

    G. F. Hägele; Cardaci, M. V.; Díaz, A. I.; Terlevich, E.; Terlevich, R.; Castellanos, M. (Maritza)

    2008-01-01

    This is an electronic version of an article published in Revista Mexicana de Astronomía y Astrofísica. Hägele, G.E. et al. Physical parameters in circumnuclear star forming regions. Revista Mexicana de Astronomía y Astrofísica 33 (2008): 172

  6. Lattices of ultracold atom traps over arrays of nano- and mesoscopic superconducting disks

    Science.gov (United States)

    Sokolovsky, Vladimir; Prigozhin, Leonid

    2016-04-01

    A lattice of traps for ultracold neutral atoms is a promising tool for experimental investigation in quantum physics and quantum information processing. We consider regular arrays of thin film type-II superconducting nanodisks, with only one pinned vortex in each of them, and also arrays of mesoscopic disks, each containing many vortices whose distribution is characterized by the superconducting current density. In both cases we show theoretically that the induced magnetic field can create a 3D lattice of magnetic traps for cold atoms without any additional bias field. Applying a bias DC field parallel to the superconductor surface, one can control the depth and sizes of the traps, their heights above the chip surface, potential barriers between the traps, as well as the structure and dimension of the lattices. In the adiabatic approximation the atom cloud shape is represented by the shape of a closed iso-surface of the magnetic field magnitude chosen in accordance with the atom cloud temperature. The computed trap sizes, heights and the distances between the neighboring traps are typically from tens to hundreds nanometers for nanodisks and of the order of 1 μm for mesoscopic disks. Our calculations show that the depth of magnetic traps on mesoscopic disks is, typically, between 0.3 G and 7.6 G; for the nanodisks the depth is about 0.3 G.

  7. Modelling of liquid flow after a hydraulic jump on a rotating disk prior to centrifugal atomization

    Science.gov (United States)

    Zhao, Y. Y.; Dowson, A. L.; Jacobs, M. H.

    2000-01-01

    This paper describes a simplified numerical model which is used to calculate the height distribution, and the radial and tangential velocities of a liquid on a rotating disk after a hydraulic jump and prior to centrifugal atomization. The results obtained from this numerical model are compared with predictions made using previously derived `hydraulic jump' and `analytical' models. Calculations, in conjunction with experimental measurements relating to the trajectory of liquid flow on the atomizing disk, have shown that the numerical model can not only give a reasonable prediction of the hydraulic jump location, but also yields more accurate information regarding the variations in liquid height, and radial and tangential velocities. The model is ideally suited for engineering applications.

  8. Liquid flow on a rotating disk prior to centrifugal atomization and spray deposition

    Science.gov (United States)

    Zhao, Y. Y.; Jacobs, M. H.; Dowson, A. L.

    1998-12-01

    Video observations of the flow patterns that develop on a rotating disk during centrifugal atomization and spray deposition, and subsequent metallographic studies conducted on solid skulls removed from the disk after processing, have indicated a circular discontinuity or hydraulic jump, which is manifested by a rapid increase in the thickness of the liquid metal and by a corresponding decrease in the radial velocity. A mathematical model has been developed that is capable of predicting both the occurrence and location of the jump, and the associated changes in the thickness profile and in the radial and tangential velocities of the liquid metal. Good correlations have been observed between model predictions and the flow patterns observed on the skull after atomization, and the effects of changes in material and operational parameters such as kinematic viscosity, volume flow rate, metallostatic head, and disk rotation speed have been quantified. Liquid metal flow is controlled primarily by the volume flow rate and by the metallostatic head prior to the hydraulic jump and by the centrifugal forces after the jump. The implications of these observations in terms of the atomization process are discussed.

  9. Super massive black holes in star forming gaseous circumnuclear discs

    CERN Document Server

    del Valle, Luciano; Molina, Juan; Cuadra, Jorge

    2015-01-01

    Using N-body/SPH simulations we study the evolution of the separation of a pair of SMBHs embedded in a star forming circumnuclear disk (CND). This type of disk is expected to be formed in the central kilo parsec of the remnant of gas-rich galaxy mergers. Our simulations indicate that orbital decay of the SMBHs occurs more quickly when the mean density of the CND is higher, due to increased dynamical friction. However, in simulations where the CND is fragmented in high density gaseous clumps (clumpy CND), the orbits of the SMBHs are erratically perturbed by the gravitational interaction with these clumps, delaying, in some cases, the orbital decay of the SMBHs. The densities of these gaseous clumps in our simulations and in recent studies of clumpy CNDs are significantly higher than the observed density of molecular clouds in isolated galaxies or ULIRGs, thus, we expect that SMBH orbits are perturbed less in real CNDs than in the simulated CNDs of this study and other recent studies. We also find that the migr...

  10. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int [Applied Nano-Optics Laboratory, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, s/n, 4715-330 Braga (Portugal); Martins, Marco [Nano-ICs Group, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, s/n, 4715-330 Braga (Portugal)

    2015-09-15

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.

  11. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    International Nuclear Information System (INIS)

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate

  12. Obscuration of Active Galactic Nuclei by Circumnuclear Starbursts

    CERN Document Server

    Watabe, Y; Watabe, Yasuyuki; Umemura, Masayuki

    2004-01-01

    We examine the possibility of the active galactic nucleus (AGN) obscuration by dusty gas clouds that spurt out from circumnuclear starburst regions. For the purpose, the dynamical evolution of gas clouds is pursued, including the effects of radiation forces by an AGN as well as a starburst. Here, we solve the radiative transfer equations for clouds, taking into consideration the growth of clouds by inelastic cloud-cloud collisions and the resultant change in optical depth. As a result, it is shown that if the starburst is more luminous than the AGN, gas clouds are distributed extensively above a galactic disk with the assistance of radiation pressure from the starburst. The total covering factor of gas clouds reaches a maximum of around 20%. After several $10^{7}$yr, gas clouds with larger optical depth form by cloud-cloud collisions and thereafter the clouds fall back due to weakened radiation pressure. The larger clouds undergo runaway growth and are eventually distributed around the equatorial plane on the...

  13. Nuclear Activity in Circumnuclear Ring Galaxies

    CERN Document Server

    Aguero, M P; Dottori, H

    2016-01-01

    We have analyzed the frequency and properties of the nuclear activity in a sample of galaxies with circumnuclear rings and spirals (CNRs). This sample was compared with a control sample of galaxies with very similar global properties but without circumnuclear rings. We discuss the relevance of the results in regard to the AGN feeding processes and present the following results: (i) bright companion galaxies seem not to be important for the appearance of CNRs, which appear to be more related to intrinsic properties of the host galaxies or to minor merger processes; (ii) the proportion of strong bars in galaxies with an AGN and a CNR is somewhat higher than the expected ratio of strongly barred AGN galaxies from the results of Ho and co-workers; (iii) the incidence of Seyfert activity coeval with CNRs is clearly larger than the rate expected from the morphological distribution of the host galaxies; (iv) the rate of Sy 2 to Sy 1 type galaxies with CNRs is about three times larger than the expected ratio for gala...

  14. M31* and its circumnuclear environment

    CERN Document Server

    Li, Zhiyuan; Wakker, Bart P

    2009-01-01

    We present a multiwavelength investigation of the circumnuclear environment of M31. Based on Chandra/ACIS data, we tightly constrain the X-ray luminosity of M31*, the central supermassive black hole of the galaxy, to be L (0.3-7 keV)<= 1.2x10^{36}erg/s, approximately 10^{-10} of the Eddington luminosity. From the diffuse X-ray emission, we characterize the circumnuclear hot gas with a temperature of ~0.3 keV and a density of ~0.1 cm^{-3}. In the absence of an active SMBH and recent star formation, the most likely heating source for the hot gas is Type Ia SNe. The presence of cooler, dusty gas residing in a nuclear spiral has long been known in terms of optical line emission and extinction. We further reveal the infrared emission of the nuclear spiral and evaluate the relative importance of various possible ionizing sources. We show evidence for interaction between the nuclear spiral and the hot gas, probably via thermal evaporation. This mechanism lends natural understandings to 1) the inactivity of M31*, ...

  15. Monitoring the temperature and reverberation delay of the circumnuclear hot dust in NGC 4151

    CERN Document Server

    Schnuelle, K; Rix, H -W; Peterson, B M; De Rosa, G; Shappee, B

    2015-01-01

    A hot, dusty torus located around the outer edge of the broad-line region of AGNs is a fundamental ingredient in unified AGN models. While the existence of circumnuclear dust around AGNs at pc-scale radii is now widely accepted, questions about the origin, evolution and long-term stability of these dust tori remain unsettled.\\\\ We used reverberation mapping of the hot circumnuclear dust in the Seyfert 1 galaxy NGC 4151, to monitor its temperature and reverberation lag as a function of the varying accretion disk brightness. We carried out multiband, multiepoch photometric observations of the nucleus of NGC 4151 in the z,Y,J,H, and K bands for 29 epochs from 2010 January to 2014 June, supported by new near-infrared and optical spectroscopic observations, and archived WISE data.\\\\ We see no signatures of dust destruction due to sublimation in our data, since they show no increase in the hot dust reverberation delay directly correlated with substantial accretion disk flux increases in the observed period. Instead...

  16. Young star clusters in circumnuclear starburst rings

    CERN Document Server

    de Grijs, Richard; Jia, Siyao; Ho, Luis C; Anders, Peter

    2016-01-01

    We analyse the cluster luminosity functions (CLFs) of the youngest star clusters in three galaxies exhibiting prominent circumnuclear starburst rings. We focus specifically on NGC 1512 and NGC 6951, for which we have access to H$\\alpha$ data that allow us to unambiguously identify the youngest sample clusters. To place our results on a firm statistical footing, we first explore in detail a number of important technical issues affecting the process from converting the observational data into the spectral-energy distributions of the objects in our final catalogues. The CLFs of the young clusters in both galaxies exhibit approximate power-law behaviour down to the 90 per cent observational completeness limits, thus showing that star cluster formation in the violent environments of starburst rings appears to proceed similarly as that elsewhere in the local Universe. We discuss this result in the context of the density of the interstellar medium in our starburst-ring galaxies.

  17. Circumnuclear media of quiescent supermassive black holes

    Science.gov (United States)

    Generozov, Aleksey; Stone, Nicholas C.; Metzger, Brian D.

    2015-10-01

    We calculate steady-state, one-dimensional hydrodynamic profiles of hot gas in slowly accreting (`quiescent') galactic nuclei for a range of central black hole masses M•, parametrized gas heating rates, and observationally motivated stellar density profiles. Mass is supplied to the circumnuclear medium by stellar winds, while energy is injected primarily by stellar winds, supernovae, and black hole feedback. Analytic estimates are derived for the stagnation radius (where the radial velocity of the gas passes through zero) and the large-scale gas inflow rate, dot{M}, as a function of M• and the gas heating efficiency, the latter being related to the star formation history. We assess the conditions under which radiative instabilities develop in the hydrostatic region near the stagnation radius, both in the case of a single burst of star formation and for the average star formation history predicted by cosmological simulations. By combining a sample of measured nuclear X-ray luminosities, LX, of nearby quiescent galactic nuclei with our results for dot{M}(M_{bullet }), we address whether the nuclei are consistent with accreting in a steady state, thermally stable manner for radiative efficiencies predicted for radiatively inefficiency accretion flows. We find thermally stable accretion cannot explain the short average growth times of low-mass black holes in the local Universe, which must instead result from gas being fed in from large radii, due either to gas inflows or thermal instabilities acting on larger, galactic scales. Our results have implications for attempts to constrain the occupation fraction of upermassive black holes in low-mass galaxies using the mean LX-M• correlation, as well as the predicted diversity of the circumnuclear densities encountered by relativistic outflows from tidal disruption events.

  18. The inner cavity of the circumnuclear disc

    CERN Document Server

    Blank, Marvin; Frank, Adam; Carroll-Nellenback, Jonathan J; Duschl, Wolfgang J

    2016-01-01

    The circumnuclear disc (CND) orbiting the Galaxy's central black hole is a reservoir of material that can ultimately provide energy through accretion, or form stars in the presence of the black hole, as evidenced by the stellar cluster that is presently located at the CND's centre. In this paper, we report the results of a computational study of the dynamics of the CND. The results lead us to question two paradigms that are prevalent in previous research on the Galactic Centre. The first is that the disc's inner cavity is maintained by the interaction of the central stellar cluster's strong winds with the disc's inner rim, and second, that the presence of unstable clumps in the disc implies that the CND is a transient feature. Our simulations show that, in the absence of a magnetic field, the interaction of the wind with the inner disc rim actually leads to a filling of the inner cavity within a few orbital time-scales, contrary to previous expectations. However, including the effects of magnetic fields stabi...

  19. The inner cavity of the circumnuclear disc

    Science.gov (United States)

    Blank, M.; Morris, M. R.; Frank, A.; Carroll-Nellenback, J. J.; Duschl, W. J.

    2016-06-01

    The circumnuclear disc (CND) orbiting the Galaxy's central black hole is a reservoir of material that can ultimately provide energy through accretion, or form stars in the presence of the black hole, as evidenced by the stellar cluster that is presently located at the CND's centre. In this paper, we report the results of a computational study of the dynamics of the CND. The results lead us to question two paradigms that are prevalent in previous research on the Galactic Centre. The first is that the disc's inner cavity is maintained by the interaction of the central stellar cluster's strong winds with the disc's inner rim, and secondly, that the presence of unstable clumps in the disc implies that the CND is a transient feature. Our simulations show that, in the absence of a magnetic field, the interaction of the wind with the inner disc rim actually leads to a filling of the inner cavity within a few orbital time-scales, contrary to previous expectations. However, including the effects of magnetic fields stabilizes the inner disc rim against rapid inward migration. Furthermore, this interaction causes instabilities that continuously create clumps that are individually unstable against tidal shearing. Thus the occurrence of such unstable clumps does not necessarily mean that the disc is itself a transient phenomenon. The next steps in this investigation are to explore the effect of the magnetorotational instability on the disc evolution and to test whether the results presented here persist for longer time-scales than those considered here.

  20. Circumnuclear Regions of Star Formation in Early Type Galaxies

    CERN Document Server

    Diaz, Angeles I; Hagele, Guillermo F; Castellanos, Marcelo

    2008-01-01

    Circumnuclear star forming regions, also called hotspots, are often found in the inner regions of some spiral galaxies where intense processes of star formation are taking place. In the UV, massive stars dominate the observed circumnuclear emission even in the presence of an active nucleus, contributing between 30 and 50% to the H$\\beta$ total emission of the nuclear zone. Spectrophotometric data of moderate resolution (3000 < R < 11000) are presented from which the physical properties of the ionized gas: electron density, oxygen abundances, ionization structure etc. have been derived.

  1. Kinematics in the starbusting circumnuclear region of M100

    NARCIS (Netherlands)

    Allard, E. L.; Peletier, R. F.; Knapen, J. H.

    2004-01-01

    Abstract: We have obtained integral-field spectroscopic data, using the SAURON instrument, of the bar and starbursting circumnuclear region in the barred spiral galaxy M100. From our data we have derived kinematic maps of the mean velocity and velocity dispersion of the stars and the gas, which we p

  2. The Atomic to Molecular Transition and its Relation to the Scaling Properties of Galaxy Disks in the Local Universe

    CERN Document Server

    Fu, Jian; Kauffmann, Guinevere; Krumholz, Mark R

    2010-01-01

    We extend existing semi-analytic models of galaxy formation to track atomic and molecular gas in disk galaxies. Simple recipes for processes such as cooling, star formation, supernova feedback, and chemical enrichment of the stars and gas are grafted on to dark matter halo merger trees derived from the Millennium Simulation. Each galactic disk is represented by a series of concentric rings. We assume that surface density profile of infalling gas in a dark matter halo is exponential, with scale radius r_d that is proportional to the virial radius of the halo times its spin parameter $\\lambda$. As the dark matter haloes grow through mergers and accretion, disk galaxies assemble from the inside out. We include two simple prescriptions for molecular gas formation processes in our models: one is based on the analytic calculations by Krumholz, McKee & Tumlinson (2008), and the other is a prescription where the H_2 fraction is determined by the kinematic pressure of the ISM. Motivated by the observational result...

  3. HERschel Observations of Edge-on Spirals (HEROES). II: Tilted-ring modelling of the atomic gas disks

    CERN Document Server

    Allaert, F; Baes, M; De Geyter, G; Hughes, T M; Lewis, F; Bianchi, S; De Looze, I; Fritz, J; Holwerda, B W; Verstappen, J; Viaene, S

    2015-01-01

    Context. Edge-on galaxies can offer important insights in galaxy evolution as they are the only systems where the distribution of the different components can be studied both radially and vertically. The HEROES project was designed to investigate the interplay between the gas, dust, stars and dark matter (DM) in a sample of 7 massive edge-on spiral galaxies. Aims. In this second HEROES paper we present an analysis of the atomic gas content of 6 out of 7 galaxies in our sample. The remaining galaxy was recently analysed according to the same strategy. The primary aim of this work is to constrain the surface density distribution, the rotation curve and the geometry of the gas disks in a homogeneous way. In addition we identify peculiar features and signs of recent interactions. Methods. We construct detailed tilted-ring models of the atomic gas disks based on new GMRT 21-cm observations of NGC 973 and UGC 4277 and re-reduced archival HI data of NGC 5907, NGC 5529, IC 2531 and NGC 4217. Potential degeneracies be...

  4. Dense circum-nuclear molecular gas in starburst galaxies

    CERN Document Server

    Green, Claire-Elise; Green, James A; Dawson, Joanne R; Jones, Paul A; López-Sánchez, Ángel R; Verdes-Montenegro, Lourdes; Henkel, Christian; Baan, Willem A; Martín, Sergio

    2016-01-01

    We present results from a study of the dense circum-nuclear molecular gas of starburst galaxies. The study aims to investigate the interplay between starbursts, active galactic nuclei and molecular gas. We characterise the dense gas traced by HCN, HCO$^{+}$ and HNC and examine its kinematics in the circum-nuclear regions of nine starburst galaxies observed with the Australia Telescope Compact Array. We detect HCN (1$-$0) and HCO$^{+}$ (1$-$0) in seven of the nine galaxies and HNC (1$-$0) in four. Approximately 7 arcsec resolution maps of the circum-nuclear molecular gas are presented. The velocity integrated intensity ratios, HCO$^{+}$ (1$-$0)/HCN (1$-$0) and HNC (1$-$0)/HCN (1$-$0), are calculated. Using these integrated intensity ratios and spatial intensity ratio maps we identify photon dominated regions (PDRs) in NGC 1097, NGC 1365 and NGC 1808. We find no galaxy which shows the PDR signature in only one part of the observed nuclear region. We also observe unusually strong HNC emission in NGC 5236, but it...

  5. Circumnuclear molecular gas in M87 detected with ALMA

    Science.gov (United States)

    Vlahakis, Catherine E.

    2016-01-01

    We present the detection of circumnuclear molecular gas residing within 100 pc of the supermassive black hole (SMBH) in the galaxy M87 (3C 274), using the Atacama Large Millimeter/submillimeter Array (ALMA) to image the gas on spatial scales from 100 to 10 pc. The proximity of M87, the archetypical giant elliptical radio galaxy at the centre of the Virgo galaxy cluster, presents a unique opportunity to investigate in detail the circumnuclear molecular gas revealed first by single-dish observations and recently imaged for the first time with ALMA (Vlahakis et al., in prep). ALMA's unique long baseline capability now allows us to make the first detailed investigation of the properties of the interstellar medium around the galaxy's SMBH on scales down to 10 pc (0.1 arcsec). Here, we present results of ALMA Band 3 CO J=1-0 observations obtained at different angular resolutions. With this data we are able to trace the bulk of the molecular gas as well as the continuum emission, providing the deepest and highest spatial resolution images yet of the molecular gas content of this giant elliptical galaxy. The highest resolution data allow us to unambiguously resolve the molecular gas structures for the first time and investigate, in unprecedented detail, the nature and origin of molecular gas that resides within the sphere of influence of the SMBH.

  6. Small-scale properties of atomic gas in extended disks of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Borthakur, Sanchayeeta; Heckman, Timothy M. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Momjian, Emmanuel [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); York, Donald G. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Bowen, David V. [Princeton University Observatory, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Yun, Min S.; Tripp, Todd M., E-mail: sanch@pha.jhu.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2014-11-01

    We present high-resolution H I 21 cm observations with the Karl G. Jansky Very Large Array for three H I rich galaxies in absorption against radio quasars. Our sample contains six sightlines with impact parameters from 2.6 to 32.4 kpc. We detected a narrow H I absorber of FWHM 1.1 km s{sup –1} at 444.5 km s{sup –1} toward SDSS J122106.854+454852.16 probing the dwarf galaxy UCG 7408 at an impact parameter of 2.8 kpc. The absorption feature was barely resolved and its width corresponds to a maximum kinetic temperature, T{sub k} ≈ 26 K. We estimate a limiting peak optical depth of 1.37 and a column density of 6 × 10{sup 19} cm{sup –2}. The physical extent of the absorber is 0.04 kpc{sup 2} and covers ∼25%-30% of the background source. A comparison between the emission and absorption strengths suggests the cold-to-total H I column density in the absorber is ∼30%. Folding in the covering fraction, the cold-to-total H I mass is ∼10%. This suggest that condensation of warm H I (T{sub s} ∼ 1000 K) to cold phase (T{sub s} < 100 K) is suppressed in UGC 7408. The unusually low temperature of the H I absorber also indicates inefficiency in condensation of atomic gas into molecular gas. The suppression in condensation is likely to be the result of low metal content in this galaxy. The same process might explain the low efficiency of star formation in dwarf galaxies despite their huge gas reservoirs. We report the non-detection of H I in absorption in five other sightlines. This indicates that either the cold gas distribution is highly patchy or the gas is much warmer (T{sub s} > 1000 K) toward these sightlines.

  7. Circumnuclear Media and Accretion Rates of Quiescent Supermassive Black Holes

    CERN Document Server

    Generozov, Aleksey; Metzger, Brian D

    2015-01-01

    We calculate steady-state, one-dimensional hydrodynamic profiles of hot gas in slowly accreting ("quiescent") galactic nuclei for a range of central black hole masses, parameterized gas heating rates, and observationally-motivated stellar density profiles. Mass is supplied to the circumnuclear medium by stellar winds, while energy is injected primarily by stellar winds, supernovae, and black hole feedback. Analytic estimates are derived for the stagnation radius (where the radial velocity of the gas passes through zero) and the black hole accretion rate, as a function of the black hole mass and the gas heating efficiency, the latter being related to the star-formation history. We assess the conditions under which radiative instabilities develop in the hydrostatic region near the stagnation radius, both in the case of a single burst of star formation and for the average star formation history predicted by cosmological simulations. By combining a sample of measured nuclear X-ray luminosities from nearby quiesce...

  8. Modelling the formation of the circumnuclear ring in the Galactic centre

    CERN Document Server

    Mapelli, Michela

    2016-01-01

    Several thousand solar masses of molecular, atomic and ionized gas lie in the innermost ~10 pc of our Galaxy. The most relevant structure of molecular gas is the circumnuclear ring (CNR), a dense and clumpy ring surrounding the supermassive black hole (SMBH), with a radius of ~2 pc. We propose that the CNR formed through the tidal disruption of a molecular cloud, and we investigate this scenario by means of N-body smoothed-particle hydrodynamics simulations. We ran a grid of simulations with different cloud mass (4X10^4, 1.3X10^5 solar masses), different initial orbital velocity (v_in=0.2-0.5 v_esc, where v_esc is the escape velocity from the SMBH), and different impact parameter (b=8, 26 pc). The disruption of the molecular cloud leads to the formation of very dense and clumpy gas rings, containing most of the initial cloud mass. If the initial orbital velocity of the cloud is sufficiently low (v_in0.5 v_esc), at least two rings form around the SMBH: an inner ring (with radius ~0.4 pc) and an outer ring (wit...

  9. Ultraviolet Spectroscopy of Circumnuclear Star Clusters in M83

    CERN Document Server

    Wofford, Aida; Leitherer, Claus

    2010-01-01

    We analyze archival HST/STIS/FUV-MAMA imaging and spectroscopy of 13 compact star clusters within the circumnuclear starburst region of M83, the closest such example. We compare the observed spectra with semi-empirical models, which are based on an empirical library of Galactic O and B stars observed with IUE, and with theoretical models, which are based on a new theoretical UV library of hot massive stars computed with WM-Basic. The models were generated with Starburst99 for metallicities of Z=0.020 and Z=0.040, and for stellar IMFs with upper mass limits of 10, 30, 50, and 100 M_sol. We estimate the ages and masses of the clusters from the best fit model spectra, and find that the ages derived from the semi-empirical and theoretical models agree within a factor of 1.2 on average. A comparison of the spectroscopic age estimates with values derived from HST/WFC3/UVIS multi-band photometry shows a similar level of agreement for all but one cluster. The clusters have a range of ages from about 3 to 20 Myr, and ...

  10. Preconcentration and Determination of Copper(Ⅱ) Using Octadecyl Silica Membrane Disks Modified by 1,5-Diphenylcarhazide and Flame Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    MOGHIMI Ali

    2007-01-01

    A simple and reproducible method for the rapid extraction and determination of trace amounts of copper(Ⅱ)ions using octadecyl-bonded silica membrane disks modified by 1,5-diphenylcarbazide (DPC) and atomic absorption spectrometry was presented, which was based on complex formation on the surface of the ENVI-18 DISKTM disks followed by stripping of the retained species by minimum amounts of appropriate organic solvents. The elution was efficient and quantitative. The effect of potential interfering ions, pH, ligand amount, stripping solvent, and sample flow rate were also investigated. Under the optimal experimental conditions, the break-through volume was found to be about 1000 mL providing a preconcentration factor of 400. The maximum capacity of the disks was found to be (255±5) μg for Cu2+, and the limit of detection of the proposed method was 5 ng per 1000 mL. The method was applied to the extraction and recovery of copper in different water samples.

  11. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    Science.gov (United States)

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. PMID:27260436

  12. Detection of Ca II absorption triplet in a circumnuclear H II region of NGC 3310

    OpenAIRE

    Terlevich, Elena; Angeles I. Díaz; Pastoriza, Miriani G.; Terlevich, Roberto; Dottori, Horacio

    1990-01-01

    This is an electronic version of an article published in Monthly Notices of the Royal Astronomical Society. Terlevich, E., Díaz, A.I., Pastoriza, M.G., Terlevich, R. and H. Dottori. Detection of Ca II absorption triplet in a circumnuclear H II region of NGC 3310. Monthly Notices of the Royal Astronomical Society 242 (1990): 48-51

  13. Preconcentration and Determination of Trace Amounts of Heavy Metals in Water Samples Using Membrane Disk and Flame Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    ALI,Moghimi

    2007-01-01

    A fast and simple method for preconcentration of Ni2+, Cd2+, Pb2+, Zn2+, Cu2+ and Co2+ from natural water samples was developed. The metal ions were complexed with sodium diethyldithiocarbamate (Na-DDTC), then adsorbed onto octadecyl silica membrane disk, recovered and determined by FAAS. Extraction efficiency, influence of sample volume and eluent flow rates, effects of pH, amount of Na-DDTC, nature and amount of eluent for elution of metal ions from membrane disk, break through volume and limit of detection have been evaluated. The effect of foreign ions on the percent recovery of heavy metal ions has also been studied. The limit of detection of the proposed method for Ni2+, Cd2+, Pb2+, Zn2+, Cu2+ and Co2+was found to be 2.03, 0.47, 3.13, 0.44, 1.24 and 2.05ng·mL-1, respectively. The proposed (DDTC) method has been successfully applied to the recovery and determination of heavy metal ions in different water samples.

  14. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  15. Infrared Interferometry and AGNs: Parsec-scale Disks and Dusty Outflows

    CERN Document Server

    Burtscher, Leonard; Jaffe, Walter; Kishimoto, Makoto; Lopez-Gonzaga, Noel; Meisenheimer, Klaus; Tristram, Konrad R W

    2016-01-01

    The "torus" is the central element of the most popular theory unifying various classes of AGNs, but it is usually described as "putative" because it has not been imaged yet. Since it is too small to be resolved with single-dish telescopes, one can only make indirect assumptions about its structure using models. Using infrared interferometry, however, we were able to resolve the circum-nuclear dust distributions for several nearby AGNs and achieved constraints on some further two dozen sources. We discovered circum-nuclear dust on parsec scales in all sources and, in two nearby sources, were able to dissect this dust into two distinct components. The compact component, a very thin disk, appears to be connected to the maser disk and the extended one, which is responsible for most of the mid-IR flux, is oriented perpendicularly to the circum-nuclear gas disks. What may come as a surprise when having in mind the standard unification cartoon actually connects well to observations on larger scales. Optically thin d...

  16. Determination of Trace Amount of Cadmium by Atomic Absorption Spectrometry in Table Salt after Solid Phase Preconcentration Using Octadecyl Silica Membrane Disk Modified by a New Derivative of Pyridine

    OpenAIRE

    Mahmood Payehghadr; Sousan Esmaeilpour; Mohammad Kazem Rofouei; Laleh Adlnasab

    2013-01-01

    Silica-C18 bonded disk modified by a four-dentate Schiff base has been used for preconcentration of cadmium in table salt samples followed by flame atomic absorption spectrometry. The method is based on the adsorption of Cd on 1,2-bis(pyridin-2-ylmethylene) hydrazine as Schiff base ligand on silica-C18 disk. The effects of several factors such as type and concentration of the eluent, pH of sample solution, amount of ligand, and breakthrough volume have been optimized based on one variable at ...

  17. DISENTANGLING THE CIRCUMNUCLEAR ENVIRONS OF CENTAURUS A. I. HIGH-RESOLUTION MOLECULAR GAS IMAGING

    International Nuclear Information System (INIS)

    We present high-resolution images of the 12CO(2-1) emission in the central 1' (1 kpc) of NGC 5128 (Centaurus A), observed using the Submillimeter Array. We elucidate for the first time the distribution and kinematics of the molecular gas in this region with a resolution of 6.''0 x 2.''4 (100 pc x 40 pc). We spatially resolve the circumnuclear molecular gas in the inner 24''x 12'' (400 pc x 200 pc), which is elongated along a position angle of P.A. ≅155 deg. and perpendicular to the radio/X-ray jet. The southeast (SE) and northwest (NW) components of the circumnuclear gas are connected to molecular gas found at larger radii. This gas appears as two parallel filaments at P.A. = 120 deg., which are coextensive with the long sides of the 3 kpc parallelogram shape of the previously observed dust continuum, as well as ionized and pure rotational H2 lines. Spatial and kinematical asymmetries are apparent in both the circumnuclear and outer gas, suggesting noncoplanar and/or noncircular motions. We extend to inner radii (r12CO(2 - 1) observations show relevant deviations from this model: namely, the physical connection between the circumnuclear gas and that at larger radii, brighter SE and NW sides on the parallelogram-shaped feature, and an outer curvature of its long sides. Overall, it resembles more closely an S-shaped morphology, a trend that is also found in other molecular species. Hence, we qualitatively explore the possible contribution of a weak bi-symmetric potential which would naturally explain these peculiarities.

  18. How does star formation proceed in the circumnuclear starburst ring of NGC 6951?

    CERN Document Server

    van der Laan, T P R; Emsellem, E; Hunt, L K; McDermid, R M; Liu, G

    2013-01-01

    Gas inflowing along stellar bars is often stalled at the location of circumnuclear rings, that form an effective reservoir for massive star formation and thus shape the central regions of galaxies. However, how exactly star formation is proceeding within these circumnuclear starburst rings is subject of debate. Two main scenarios for this process have been put forward: In the first the onset of star formation is regulated by the total amount of gas present in the ring with star forming starting once a mass threshold has reached in a `random' position within the ring like `popcorn'. In the second star formation preferentially takes place near the locations where the gas enters the ring. This scenario has been dubbed `pearls-on-a-string'. Here we combine new optical IFU data covering the full stellar bar with existing multi-wavelength data to study in detail the 580 pc radius circumnuclear starburst ring in the nearby spiral galaxy NGC 6951. Using HST archival data together with Sauron and Oasis IFU data, we de...

  19. High-resolution radio observations of nuclear and circumnuclear starbursts in Luminous Infrared Galaxies

    CERN Document Server

    Perez-Torres, Miguel A

    2008-01-01

    High-resolution radio observations of nearby starburst galaxies have shown that the distribution of their radio emission consists of a compact (<150 pc), high surface brightness, central radio source immersed in a low surface brightness circumnuclear halo. This radio structure is similar to that detected in bright Seyferts galaxies like NGC 7469 or Mrk 331, which display clear circumnuclear rings. While the compact, centrally located radio emission in these starbursts might be generated by a point-like source (AGN), or by the combined effect of multiple radio supernovae and supernova remnants (e.g., the evolved nuclear starburst in Arp~220), it seems well established that the circumnuclear regions of those objects host an ongoing burst of star-formation (e.g., NGC 7469; Colina et al. 2001, Alberdi et al. 2006). Therefore, high-resolution radio observations of Luminous Infra-Red Galaxies (LIRGs) in our local universe are a powerful tool to probe the dominant dust heating mechanism in their nuclear and circu...

  20. Bars from the Inside Out: An HST Study of their Dusty Circumnuclear Regions

    CERN Document Server

    Martini, P

    2004-01-01

    The results of bar-driven mass inflow are directly observable in high-resolution HST observations of their circumnuclear regions. These observations reveal a wealth of structures dominated by dust lanes, often with a spiral-like morphology, and recent star formation. Recent work has shown that some of these structures are correlated with the presence or absence of a bar. I extend this work with an investigation of circumnuclear morphology as a function of bar strength for a sample of 48 galaxies with both measured bar strengths and ``structure maps'' computed from HST images. The structure maps for these galaxies, which have projected spatial resolutions of 2 - 15 pc, show that the fraction of galaxies with grand-design (GD) circumnuclear dust spirals increases significantly with bar strength, while tightly wound dust spirals are only present in the most axisymmetric galaxies. GD structure is only found at the centers of galaxies classified as SB(s) or SB(rs) and not SB(r). SB(s) galaxies on average have stro...

  1. Circumnuclear regions in barred spiral galaxies; 1, Near-infrared imaging

    CERN Document Server

    Pérez-Ramírez, D; Peletier, R F; Laine, S; Doyon, R; Nadeau, D R

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearl...

  2. Disk Chemistry*

    OpenAIRE

    Thi Wing-Fai

    2015-01-01

    The chemical species in protoplanetary disks react with each other. The chemical species control part of the thermal balance in those disks. How the chemistry proceeds in the varied conditions encountered in disks relies on detailed microscopic understanding of the reactions through experiments or theoretical studies. This chapter strives to summarize and explain in simple terms the different types of chemical reactions that can lead to complex species. The first part of the chapter deals wit...

  3. Detection of Ca II absorption triplet in a circumnuclear H II region of NGC 3310

    International Nuclear Information System (INIS)

    We have obtained long slit spectrophotometry across NGC 3310, a luminous galaxy with circumnuclear bursts of star formation, covering the spectral range from λ3650 to 9700 A. In one giant star-forming region, the near-IR Ca II absorption lines (a signature of young supergiants) was detected with a strength similar to that of the nuclear region. This is, to our knowledge, the first detection of the IR Ca II triplet in an extragalactic giant H II region and confirms theoretical predictions that, after some 4 Myr, red supergiants should appear in bursts of star formation. (author)

  4. Disk Galaxies and Galaxy Disks

    CERN Document Server

    Funes, J G

    2000-01-01

    The conference Galaxy Disks and Disk Galaxies, sponsored by the Vatican Observatory, was held in June 12-16, 2000 at the Pontifical Gregorian University, in Rome (Italy). The meeting hosted about 230 participants coming from 30 countries. The very full program consisted of 29 review papers, 34 invited talks, and more than 180 posters. The meeting covered topics regarding the structure, formation and evolution of galaxies with disks. Particular attention was dedicated to the stellar and gaseous disk of the Milky Way, the global characteristics of galaxy disks, their structure, morphology and dynamics, the gaseous components, star formation, and chemical evolution, the interactions, accretion, mergers and starbursts, the dark and luminous matter, the establishment of the scaling laws, and the formation and evolution of disk galaxies from a theoretical and observational point of view.

  5. Toward Precision Black Hole Masses with ALMA: NGC 1332 as a Case Study in Molecular Disk Dynamics

    CERN Document Server

    Barth, A J; Baker, A J; Boizelle, B D; Buote, D A; Ho, L C; Walsh, J L

    2016-01-01

    We present first results from a program of Atacama Large Millimeter/submillimeter Array (ALMA) CO(2-1) observations of circumnuclear gas disks in early-type galaxies. The program was designed with the goal of detecting gas within the gravitational sphere of influence of the central black holes. In NGC 1332, the 0.3"-resolution ALMA data reveal CO emission from the highly inclined (i~ 83 degrees) circumnuclear disk, spatially coincident with the dust disk seen in Hubble Space Telescope images. The disk exhibits a central upturn in maximum line-of-sight velocity reaching +-500 km/s relative to the systemic velocity, consistent with the expected signature of rapid rotation around a supermassive black hole. Rotational broadening and beam smearing produce complex and asymmetric line profiles near the disk center. We constructed dynamical models for the rotating disk and fitted the modeled CO line profiles directly to the ALMA data cube. Degeneracy between rotation and turbulent velocity dispersion in the inner dis...

  6. Spatially Resolved HCN Absorption Features in the Circumnuclear Region of NGC 1052

    CERN Document Server

    Sawada-Satoh, Satoko; Oh, Se-Jin; Lee, Sang-Sung; Byun, Do-Young; Kameno, Seiji; Yeom, Jae-Hwan; Jung, Dong-Kyu; Kim, Hyo-Ryoung; Hwang, Ju-Yeon

    2016-01-01

    We present the first VLBI detection of HCN molecular absorption in the nearby active galactic nucleus NGC 1052. Utilizing the 1 milliarcsecond resolution achieved by the Korean VLBI Network, we have spatially resolved the HCN absorption against a double-sided nuclear jet structure. Two velocity features of HCN absorption are detected significantly at the radial velocity of 1656 and 1719 km/s, redshifted by 149 and 212 km/s with respect to the systemic velocity of the galaxy. The column density of the HCN molecule is estimated to be 10^{15}-10^{16} cm^{-2}, assuming the excitation temperature of 100-230 K. The absorption features show high optical depth localized on the receding jet side, where the free-free absorption occurred due to the circumnuclear torus. The size of the foreground absorbing molecular gas is estimated to be on approximately one-parsec scales, which agrees well with the approximate size of the circumnuclear torus. HCN absorbing gas is likely to be several clumps smaller than 0.1 parsec insi...

  7. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    International Nuclear Information System (INIS)

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  8. Hubble space telescope ultraviolet images of five circumnuclear star-forming rings

    CERN Document Server

    Maoz, D; Sternberg, A; Filippenko, A V; Ho, L C; Macchetto, F D; Rix, H W; Schneider, D P; Maoz, Dan; Barth, Aaron J; Sternberg, Amiel; Filippenko, Alexei V; Ho, Luis C; Macchetto, F Duccio; Rix, Hans Walter; Schneider, Donald P

    1996-01-01

    We present UV (2300 Ang) images, obtained with the HST Faint Object Camera, of the central 20'' of five galaxies containing circumnuclear star-forming rings. The five galaxies are from a well-defined sample of 103 normal, nearby galaxies we have observed with HST. At the HST resolution (0.05''), the rings break up into discrete star-forming clumps, each composed of many luminous and compact (R \\ltorder 5 pc) star clusters. These objects are similar to those that have been recently reported in colliding and starburst galaxies, and in several other circumnuclear rings. A large fraction, 15%--50%, of the UV emission originates in these compact clusters. Compact clusters therefore may be the preferred mode of star formation in starburst environments. For one galaxy, NGC 2997, we measure the UV-optical colors of the individual clusters using an archival HST WFPC2 image at 6000 Ang . Comparing the colors and luminosities to starburst population synthesis models, we show that the clusters are less than 100 Myr old a...

  9. IFU spectroscopy of 10 early-type galactic nuclei - III. Properties of the circumnuclear gas emission

    CERN Document Server

    Ricci, T V; Menezes, R B

    2015-01-01

    Many Early-type galaxies (ETG) have ionized gas emission in their centres that extends to scales of ~ 1kpc. The majority of such objects are classified as LINERs, but the nature of their ionizing source is still not clear. The kinematics associated with these gaseous structures usually shows deviations from a pure rotational motion due to non-gravitational effects or to non-axisymmetric potentials. This is the third of a series of papers that describes a sample of 10 nearby and massive ETG observed with the Gemini Multi-Object Spectrograph in Integral Field mode installed on the Gemini-South telescope. In paper II, we performed spectral synthesis to subtract the stellar components from the data cubes of the sample galaxies in order to study their nuclear spectra. Here, we analyse the circumnuclear gas emission (scales of ~ 100 pc) of the sample galaxies. Circumnuclear gas emission was detected in seven galaxies, all of them classified as LINERs. Pure gaseous discs are found in three galaxies. In two objects, ...

  10. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail: antxon@iaa.es, E-mail: torres@iaa.es, E-mail: colina@damir.iem.csic.es, E-mail: torrelle@ieec.fcr.es

    2008-10-15

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  11. The influence of circumnuclear environment on the radio emission from TDE jets

    CERN Document Server

    Generozov, A; Metzger, B D; Stone, N C; Giannios, D; Aloy, M A

    2016-01-01

    Dozens of stellar tidal disruption events (TDEs) have been identified at optical, UV and X-ray wavelengths. A small fraction of these, most notably Swift J1644+57, produce radio synchrotron emission, consistent with a powerful, relativistic jet shocking the surrounding circumnuclear gas. The dearth of similar non-thermal radio emission in the majority of TDEs may imply that powerful jet formation is intrinsically rare, or that the conditions in galactic nuclei are typically unfavorable for producing a detectable signal. Here we explore the latter possibility by constraining the radial profile of the gas density encountered by a TDE jet using a one-dimensional model for the circumnuclear medium which includes mass and energy input from a stellar population. Near the jet Sedov radius of 10$^{18}$ cm, we find gas densities in the range of $n_{18} \\sim$ 0.5$-$2000 cm$^{-3}$ across a wide range of plausible star formation histories. Using one- and two-dimensional relativistic hydrodynamical simulations, we calcula...

  12. Solid phase extraction of ultra traces silver(I) using octadecyl silica membrane disks modified by 1,3-bis(2-cyanobenzene) triazene (CBT) ligand prior to determination by flame atomic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Rofouei, Mohammad Kazem, E-mail: rofouei@tmu.ac.ir [Faculty of Chemistry, Tarbiat Moalem University, Tehran (Iran, Islamic Republic of); Payehghadr, Mahmood [Department of Chemistry, Payame Noor University (PNU) (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Ahmadalinezhad, Asieh [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)

    2009-09-15

    A simple, reliable and rapid method for preconcentration and determination of the ultra trace amount of silver using octadecyl silica membrane disk modified by a recently synthesized triazene ligand, 1,3-bis(2-cyanobenzene)triazene (CBT), and flame atomic absorption spectrometry is presented. Various parameters including pH of aqueous solution, flow rates, the amount of ligand and the type of stripping solvents were optimized. The breakthrough volume was greater than 1800 ml with an enrichment factor of more than 360 and 6.0 ng l{sup -1} detection limit. The capacity of the membrane disks modified by 5 mg of the ligand was found to be 1070 {mu}g of silver. The effects of various cationic interferences on the percent recovery of silver ion were studied. The method was successfully applied to the determination of silver ion in different samples, especially determination of ultra trace amount of silver in the presence of large amount of lead.

  13. IFU spectroscopy of 10 early-type galactic nuclei - III. Properties of the circumnuclear gas emission

    Science.gov (United States)

    Ricci, T. V.; Steiner, J. E.; Menezes, R. B.

    2015-08-01

    Many early-type galaxies have ionized gas emission in their centres that extends to scales of ˜1 kpc. The majority of such objects are classified as low-ionization nuclear emission regions (LINERs), but the nature of their ionizing source is still not clear. The kinematics associated with these gaseous structures usually shows deviations from a pure rotational motion due to non-gravitational effects (e.g. outflows) or to non-axisymmetric potentials (e.g. bars or tri-axial systems). This is the third of a series of papers that describes a sample of 10 nearby (d 200 km s-1) early-type galaxies observed with the Gemini Multi-Object Spectrograph in Integral Field mode installed on the Gemini-South telescope. In Paper II, we performed spectral synthesis to subtract the stellar components from the data cubes of the sample galaxies in order to study their nuclear spectra. In this work, we analyse the circumnuclear gas emission (scales of ˜100 pc) of the sample galaxies and we compare the results with those obtained with Principal Component Analysis Tomography in Paper I. We detected circumnuclear gas emission in seven galaxies of the sample, all of them classified as LINERs. Pure gaseous discs are found in three galaxies. In two objects, gaseous discs are probably present, but their kinematics are affected by non-Keplerian motions. In one galaxy (IC 5181), we detected a spiral structure of gas that may be caused either by a non-axisymmetric potential or by an outflow together with a gaseous disc. In NGC 3136, an ionization bicone is present in addition to five compact structures with LINER-like emission. In galaxies with a gaseous disc, we found that ionizing photons emitted by an active galactic nucleus are not enough to explain the observed Hα flux along this structure. On the other hand, the Hα flux distribution and equivalent width along the direction perpendicular the gaseous disc suggest the presence of low-velocity ionized gas emission which seem to be related

  14. Distributions of molecules in the circumnuclear disk and surrounding starburst ring in the Seyfert galaxy NGC 1068 observed with ALMA

    CERN Document Server

    Takano, Shuro; Kohno, Kotaro; Harada, Nanase; Herbst, Eric; Tamura, Yoichi; Izumi, Takuma; Taniguchi, Akio; Tosaki, Tomoka

    2014-01-01

    Sensitive observations with ALMA allow astronomers to observe the detailed distributions of molecules with relatively weak intensity in nearby galaxies. In particular, we report distributions of several molecular transitions including shock and dust related species ($^{13}$CO $J$ = 1--0, C$^{18}$O $J$ = 1--0, $^{13}$CN $N$ = 1--0, CS $J$ = 2--1, SO $J_N$ = 3$_2$--2$_1$, HNCO $J_{Ka,Kc}$ = 5$_{0,5}$--4$_{0,4}$, HC$_3$N $J$ = 11--10, 12--11, CH$_3$OH $J_K$ = 2$_K$--1$_K$, and CH$_3$CN $J_K$ = 6$_K$--5$_K$) in the nearby Seyfert 2 galaxy NGC 1068 observed with the ALMA early science program. The central $\\sim$1 arcmin ($\\sim$4.3 kpc) of this galaxy was observed in the 100 GHz region covering $\\sim$96--100 GHz and $\\sim$108--111 GHz with an angular resolution of $\\sim4"\\times2"$ (290 pc$\\times$140 pc) to study the effects of an active galactic nucleus and its surrounding starburst ring on molecular abundances. Here, we present images and report a classification of molecular distributions into three main categorie...

  15. VizieR Online Data Catalog: Circumnuclear star-forming regions (Alvarez-Alvarez+, 2015)

    Science.gov (United States)

    Alvarez-Alvarez, M.; Diaz, A. I.; Terlevich, E.; Terlevich, R.

    2016-01-01

    In order to achieve our scientific goals, we have studied a diverse population of galaxies with reported circumnuclear rings of SFRs in the bibliography. The data were acquired during five observing runs. For the first two runs (from 1988 to 1990), we used a blue sensitive GEC CCD at the f/15 Cassegrain focus of the 1.0m. Jacobus Kaptein Telescope of the Isaac Newton Group at the Observatorio del Roque de los Muchachos, La Palma, Spain. The CCD had 578x385 pixels 22um wide. The last three observing runs were carried on from 1999 to 2000 at the Centro Astronomico Hispano Aleman de Calar Alto, Almeria, Spain. (3 data files).

  16. A SINFONI view of circum-nuclear star-forming rings in spiral galaxies

    CERN Document Server

    Falcón-Barroso, J; Schinnerer, E; Knapen, J H; Ryder, S

    2007-01-01

    We present near-infrared (H- and K-band) SINFONI integral-field observations of the circumnuclear star formation rings in five nearby spiral galaxies. We made use of the relative intensities of different emission lines (i.e. [FeII], HeI, Brg) to age date the stellar clusters present along the rings. This qualitative, yet robust, method allows us to discriminate between two distinct scenarios that describe how star formation progresses along the rings. Our findings favour a model where star formation is triggered predominantly at the intersection between the bar major axis and the inner Lindblad resonance and then passively evolves as the clusters rotate around the ring ('Pearls on a string' scenario), although models of stochastically distributed star formation ('Popcorn' model) cannot be completely ruled out.

  17. Friction characteristics of floppy disks

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This note presents the principle and structure of a tribological measure for floppy disks.The precision of the force measuring system is 1 mN in loading and 3×10-6 N in friction.The resolution of the film thickness between head and floppy disk is 0.5 nm in the vertical and 1.5 nm in the horizontal direction.In order to investigate the tribological characteristics of floppy disks,six types of floppy disks have been tested and the floating properties of these disks are also studied with film measuring system.The experimental results of the surface morphology and friction coefficient of these floppy disks using the atomic force microscope/friction force mcroscope (AFM/FFM) are in accordance with the conclusion made by our own measuring system.The experimental results show that the air film thickness between head and disk is of the same order as the surface roughness of floppy disks.

  18. 旋转盘式雾化雾滴粒径分布实验研究%Experimental Investigation of Spray Droplet Size Distribution Using a Spinning Disk Atomizer

    Institute of Scientific and Technical Information of China (English)

    黄立新; 王春鹏; 周瑞君; 谢普军; MUJUMDAR A S

    2011-01-01

    旋转雾化盘是喷雾干燥系统中的重要部件,但是文献很少涉及到关于这类雾化器产生的雾滴粒径的分布和变化情况.采用一个工业化的2000 t/a生产可再分散性乳胶粉的雾化机作为模型雾化器,该雾化器最大处理量为2 000 kg/h.实验的雾化盘直径是180 mm,盘上有24个通道,激光粒径分析仪用于实测雾化嚣产生的雾滴粒径分布.采用变频嚣控制转速在10000~16000r/min间变化.喷雾干燥后粉体的平均粒径为72 tm,比雾化盘产生的雾滴平均粒径92μm小,同时喷雾干燥后最大粉体直径比雾化盘产生雾滴直径小,表明喷雾干燥过程中存在着雾滴间团聚效应.%Spinning disk atomizer is a key part in many spray drying systems.Few works exist in the literatures dealing with size distribution and changes of the droplets produced by such a type of atomizer.In this work,a model atomizer is used to spray-dry a re-dispersible glue emulsion on an industrial scale production 2 000 t/a.The maximum spray capacity of such an atomizer is 2 000 kg/h.The disk tested has a diameter of 180 mm and 24 channels.A laser analyzer was used to measure the droplet size distribution of sprays produced by the spinning disk atomizer.The effects of the disk rotating speed on water droplet size distribution were investigated.The rotating speed of the disk was varied from 16 000 to 10 000 r/ain using a frequency-inverter.In order to investigate the change of droplet size to dried particle size from the spray dryer,the droplet size distribution of the redispersible glue emulsion and the dried particle size distribution produced were measured.The results show that the mean size was reduced from 92 μm of droplets to 72 pm of dried particles.It was also observed that the maximum dried particle size was larger than that of droplets due to droplet and particle agglomeration taking place within the spray drying chamber.

  19. Precise Black Hole Masses From Megamaser Disks: Black Hole-Bulge Relations at Low Mass

    CERN Document Server

    Greene, J E; Kim, M; Kuo, C Y; Braatz, J A; Impellizzeri, C M V; Condon, J J; Lo, K Y; Henkel, C; Reid, M J

    2010-01-01

    The black hole (BH)-bulge correlations have greatly influenced the last decade of effort to understand galaxy evolution. Current knowledge of these correlations is limited predominantly to high BH masses (M_BH> 10^8 M_sun) that can be measured using direct stellar, gas, and maser kinematics. These objects, however, do not represent the demographics of more typical L< L* galaxies. This study transcends prior limitations to probe BHs that are an order of magnitude lower in mass, using BH mass measurements derived from the dynamics of H_2O megamasers in circumnuclear disks. The masers trace the Keplerian rotation of circumnuclear molecular disks starting at radii of a few tenths of a pc from the central BH. Modeling of the rotation curves, presented by Kuo et al. (2010), yields BH masses with exquisite precision. We present stellar velocity dispersion measurements for a sample of nine megamaser disk galaxies based on long-slit observations using the B&C spectrograph on the Dupont telescope and the DIS spe...

  20. The Chandra, HST, and VLA View of the Circumnuclear Extended Emission in the Narrow Emission Line Galaxy NGC 2110

    CERN Document Server

    Evans, D A; Kamenetska, M; Gallagher, S C; Kraft, R P; Hardcastle, M J; Weaver, K A; Evans, Daniel A.; Lee, Julia C.; Kamenetska, Maria; Gallagher, Sarah C.; Kraft, Ralph P.; Hardcastle, Martin J.; Weaver, Kimberly A.

    2006-01-01

    We present results from new Chandra and archival HST and VLA imaging observations of the circumnuclear extended emission in the nearby Type 2 Seyfert galaxy NGC 2110. We find resolved soft-band X-ray emission 4'' (~160 pc) north of the nucleus, which is spatially coincident with [OIII] emission, but lies just beyond the northern edge of the radio jet in the source. We find that shock-heating of multi-phase gas clouds can successfully account for this extended emission, although we cannot rule out alternative models, such as the scattering of nuclear radiation by ionized material, or pure photoionization from the nucleus. In addition, we detect kpc-scale (~30'') extended soft-band X-ray emission south of the nucleus. Finally, we compare our results for NGC 2110 with the prototypical Type 2 Seyfert galaxy NGC 1068, and suggest that different physical processes could produce extended circumnuclear X-ray emission in Seyfert galaxies.

  1. Enrichment of trace amounts of copper(II) ions in water samples using octadecyl silica disks modified by a Schiff base ionophore prior to flame atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, S.A.M. [Department of Chemistry, Faculty of Science, Zanjan University, PO Box 45195-313 Zanjan (Iran, Islamic Republic of); Yaftian, M.R. [Department of Chemistry, Faculty of Science, Zanjan University, PO Box 45195-313 Zanjan (Iran, Islamic Republic of)], E-mail: yaftian@znu.ac.ir

    2009-05-15

    Bis(5-bromo-2-hydroxybenzaldehyde)-1,2-propanediimine is synthesized by the reaction of 5-bromo-2-hydroxybenzaldehyde and 1,2-diaminopropane in ethanol. This ligand is used as a modifier of octadecyl silica disks for preconcentration of trace amounts of copper(II) ions, followed by nitric acid elution and flame atomic absorption spectrometric (FAAS) determination. The effect of parameters influencing the extraction efficiency, i.e. pH of the sample solutions, amount of the Schiff base, type and volume of stripping reagent, sample and eluent flow rates were evaluated. Under optimum experimental conditions, the capacity of the membrane disks modified by 4 mg of the ligand was found to be 247.7 ({+-}2.1) {mu}g of copper. The detection limit and the concentration factor of the presented method are 2.4 ng/l and greater than 400, respectively. The method was applied to the extraction, recovery and detection of copper in different synthetic and water samples.

  2. Determination of Trace Amount of Cadmium by Atomic Absorption Spectrometry in Table Salt after Solid Phase Preconcentration Using Octadecyl Silica Membrane Disk Modified by a New Derivative of Pyridine

    Directory of Open Access Journals (Sweden)

    Mahmood Payehghadr

    2013-01-01

    Full Text Available Silica-C18 bonded disk modified by a four-dentate Schiff base has been used for preconcentration of cadmium in table salt samples followed by flame atomic absorption spectrometry. The method is based on the adsorption of Cd on 1,2-bis(pyridin-2-ylmethylene hydrazine as Schiff base ligand on silica-C18 disk. The effects of several factors such as type and concentration of the eluent, pH of sample solution, amount of ligand, and breakthrough volume have been optimized based on one variable at a time. In optimum conditions (type of eluent, HNO3 1.0 mol/L; volume of eluent, 5.0 mL; solution pH, 9.0; breakthrough volume, 1000.0 mL, preconcentration factor of the present method is about 200. The resultant limit of detection is 5.0 μg/L. Finally, the performance of the method has been evaluated for extraction and determination of Cd (II in salt samples at milligram per liter concentration, and satisfactory results have been obtained (RSD ≤ 2.0%.

  3. The circumnuclear environment of NGC613: a nuclear starburst caught in the act?

    CERN Document Server

    Falcón-Barroso, J; Böker, T; Schinnerer, E; Knapen, J H; Lançon, A; Ryder, S

    2013-01-01

    We present near-infrared ($H$- and $K$-band) integral-field observations of the inner $\\sim$700pc of the active spiral galaxy NGC613, obtained with SINFONI on the Very Large Telescope. We use emission-line ratios to determine the dominant excitation mechanisms in different regions within our field-of-view, in particular the active nucleus and the star-forming circum-nuclear ring. Diagnostic diagrams involving [FeII] and H$_2$ fluxes indicate that the gas is not only photoionized by the AGN in the nucleus of NGC613, but also shock-heated. On the other hand, the emission line ratios measured in the ``hot spots'' along the ring are fully consistent with them being young star forming regions. We find no sign of radial gas transport from the ring into the core region dominated by the AGN. The ring morphology appears disturbed by a radial outflow of material from the AGN, which is confirmed by the existence of a weak jet in archival radio maps. However, this jet does not seem to have any significant effect on the m...

  4. Heating and cooling of the neutral ISM in the NGC4736 circumnuclear ring

    CERN Document Server

    van der Laan, T P R; Beirao, P; Sandstrom, K; Groves, B; Schinnerer, E; Draine, B T; Smith, J D; Galametz, M; Wolfire, M; Croxall, K; Dale, D; Camus, R Herrera; Calzetti, D; Kennicutt, R C

    2015-01-01

    The manner in which gas accretes and orbits within circumnuclear rings has direct implications for the star formation process. In particular, gas may be compressed and shocked at the inflow points, resulting in bursts of star formation at these locations. Afterwards the gas and young stars move together through the ring. In addition, star formation may occur throughout the ring, if and when the gas reaches sufficient density to collapse under gravity. These two scenarios for star formation in rings are often referred to as the `pearls on a string' and `popcorn' paradigms. In this paper, we use new Herschel PACS observations, obtained as part of the KINGFISH Open Time Key Program, along with archival Spitzer and ground-based observations from the SINGS Legacy project, to investigate the heating and cooling of the interstellar medium in the nearby star-forming ring galaxy, NGC4736. By comparing spatially resolved estimates of the stellar FUV flux available for heating, with the gas and dust cooling derived from...

  5. Circumnuclear star-forming regions in early type spiral galaxies: dynamical masses

    CERN Document Server

    Hagele, G F; Bosch, G L; Diaz, A I; Terlevich, E; Terlevich, R

    2012-01-01

    We present the measurements of gas and stellar velocity dispersions in 17 circumnuclear star-forming regions (CNSFRs) and the nuclei of three barred spiral galaxies: NGC2903, NGC3310 and NGC3351 from high dispersion spectra. The stellar dispersions have been obtained from the CaII triplet (CaT) lines at 8494, 8542, 8662A, while the gas velocity dispersions have been measured by Gaussian fits to the Hbeta and to the [OIII]5007A\\ lines. The CNSFRs, with sizes of about 100 to 150pc in diameter, are seen to be composed of several individual star clusters with sizes between 1.5 and 6.2pc on HST images. Using the stellar velocity dispersions, we have derived dynamical masses for the entire star-forming complexes and for the individual star clusters. Values of the stellar velocity dispersions are between 31 and 73 km/s. Dynamical masses for the whole CNSFRs are between 4.9x10^6 and 1.9x10^8 Mo and between 1.4x10^6 and 1.1x10^7 Mo for the individual star clusters. We have found indications for the presence of two dif...

  6. A SINFONI view of the nuclear activity and circum-nuclear star formation in NGC 4303

    CERN Document Server

    Riffel, Rogemar A; Storchi-Bergmann, T; Lopez, J Piqueras; Arribas, S; Riffel, R; Pastoriza, M; Sales, Dinalva A; Dametto, N Z; Labiano, A; Davies, R I

    2016-01-01

    We present new maps of emission-line flux distributions and kinematics in both ionized (traced by HI and [FeII] lines) and molecular (H2) gas of the inner 0.7x0.7kpc2 of the galaxy NGC4303, with a spatial resolution 40-80pc and velocity resolution 90-150 km/s obtained from near-IR integral field specroscopy using the VLT instrument SINFONI. The most promiment feature is a 200-250pc ring of circum-nuclear star-forming regions. The emission from ionized and molecular gas shows distinct flux distributions: while the strongest HI and [FeII] emission comes from regions in the west side of the ring (ages~4Myr), the H2 emission is strongest at the nucleus and in the east side of the ring (ages>10Myr). We find that regions of enhanced hot H2 emission are anti-correlated with those of enhanced [FeII] and HI emission, which can be attributed to post starburst regions that do not have ionizing photons anymore but still are hot enough (~2000K) to excite the H2 molecule. The line ratios are consistent with the presence of...

  7. Circumnuclear Star Formation in the BAT AGN Sample: High Resolution Radio Morphologies and SFRs

    Science.gov (United States)

    Smith, Krista Lynne; Mushotzky, Richard; Vogel, Stuart N.; Miller, Neal A.

    2016-04-01

    It has long been an assumption that active galaxies would obey the same far-infrared (FIR) - radio correlation established for star-forming normal galaxies. This assumption has been used by numerous high-z studies, but has recently come into doubt for two main reasons: the revelation that the AGN itself may contribute non-negligibly to the FIR emission, and different radio emission physics in the vicinity of the active nucleus than in isolated HII regions. Studies have attempted to decompose the FIR spectral energy distributions to remove the AGN contribution and then calculate the star formation rate (SFR). It would then be ideal to compare this to another, independent measure of SFR. We have conducted a high-resolution (0.3-1'') JVLA survey of an unbiased sample of nearby, hard X-ray selected AGN in order to spatially decompose the extended star formation emission from the central compact source. We present these maps of the nuclear regions of 41 AGN from the Swift-BAT sample. The objects exhibit a wide range of circumnuclear radio morphologies, including mini-jets and star-forming rings. When the central compact source is removed, the extended emission does indeed conform to the FIR-radio correlation. A subset of the objects also remain compact in our 1'' and 0.3'' observations, implying very high star formation surface densities which may be capable of driving significant winds.

  8. IFU spectroscopy of 10 early-type galactic nuclei - IV. Properties of the circumnuclear stellar kinematics

    CERN Document Server

    Ricci, T V; Menezes, R B

    2016-01-01

    The study of stellar kinematic properties may provide hints on the formation and evolution of elliptical and lenticular galaxies. Although most previous studies have focused on the large scale of these galaxies, their central regions (scales of $\\sim$ 100 pc) may contain important clues about their structure, such as kinematically decoupled cores. This is the fourth paper on a sample of 10 massive ($\\sigma$ $>$ 200 km s$^{-1}$) and nearby ($d$ $<$ 31 Mpc) early-type galaxies, observed with the integral field unit of the Gemini South Multi Object Spectrograph. Here, we analyse the properties of the stellar kinematics in the circumnuclear region. We fitted the line-of-sight velocity distribution with a Gauss-Hermite function. In seven galaxies of the sample, we detected a rotation pattern in their radial velocity maps that are anti-correlated with $h_3$. We interpret this as stellar structures in rotation embedded in the bulges of the objects. Comparing the stellar kinematic results with the PCA Tomography r...

  9. Luminosity-variation independent location of the circum-nuclear, hot dust in NGC 4151

    CERN Document Server

    Pott, Jorg-Uwe; Elitzur, Moshe; Ghez, Andrea M; Herbst, Tom M; Schodel, Rainer; Woillez, Julien

    2010-01-01

    After recent sensitivity upgrades at the Keck Interferometer (KI), systematic interferometric 2um studies of the innermost dust in nearby Seyfert nuclei are within observational reach. Here, we present the analysis of new interferometric data of NGC 4151, discussed in context of the results from recent dust reverberation, spectro-photometric and interferometric campaigns. The complete data set gives a complex picture, in particular the measured visibilities from now three different nights appear to be rather insensitive to the variation of the nuclear luminosity. KI data alone indicate two scenarios: the K-band emission is either dominated to ~90% by size scales smaller than 30mpc, which falls short of any dust reverberation measurement in NGC 4151 and of theoretical models of circum-nuclear dust distributions. Or contrary, and more likely, the K-band continuum emission is dominated by hot dust (>= 1300K) at linear scales of about 50mpc. The linear size estimate varies by a few tens of percent depending on th...

  10. Probing the Circumnuclear Stellar Populations of Starburst Galaxies in the Near-infrared

    CERN Document Server

    Dametto, N Z; Pastoriza, M G; Rodríguez-Ardila, A; Hernandez-Jimenez, J A; Carvalho, E A

    2014-01-01

    We employ the NASA Infrared Telescope Facility's near-infrared spectrograph SpeX at 0.8-2.4$\\mu$m to investigate the spatial distribution of the stellar populations (SPs) in four well known Starburst galaxies: NGC34, NGC1614, NGC3310 and NGC7714. We use the STARLIGHT code updated with the synthetic simple stellar populations models computed by Maraston (2005, M05). Our main results are that the NIR light in the nuclear surroundings of the galaxies is dominated by young/intermediate age SPs ($t \\leq 2\\times10^9$yr), summing from $\\sim$40\\% up to 100\\% of the light contribution. In the nuclear aperture of two sources (NGC1614 and NGC3310) we detected a predominant old SP component ($t > 2\\times10^9$yr), while for NGC34 and NGC7714 the younger component prevails. Furthermore, we found evidence of a circumnuclear star formation ring-like structure and a secondary nucleus in NGC1614, in agreement with previous studies. We also suggest that the merger/interaction experienced by three of the galaxies studied, NGC161...

  11. Secure Disk Mixed System

    Directory of Open Access Journals (Sweden)

    Myongchol Ri

    2013-01-01

    Full Text Available We propose a disk encryption method, called Secure Disk Mixed System (SDMS in this paper, for data protection of disk storages such as USB flash memory, USB hard disk and CD/DVD. It is aimed to solve temporal and spatial limitations of existing disk encryption methods and to control security performance flexibly according to the security requirement of system.

  12. IFU spectroscopy of 10 early-type galactic nuclei - IV. Properties of the circumnuclear stellar kinematics

    Science.gov (United States)

    Ricci, T. V.; Steiner, J. E.; Menezes, R. B.

    2016-09-01

    The study of stellar kinematic properties may provide hints on the formation and evolution of elliptical and lenticular galaxies. Although most previous studies have focused on the large scale of these galaxies, their central regions (scales of ˜ 100 pc) may contain important clues about their structure, such as kinematically decoupled cores. This is the fourth paper on a sample of 10 massive (σ > 200 km s-1) and nearby (d < 31 Mpc) early-type galaxies, observed with the Integral Field Unit of the Gemini South Multi Object Spectrograph. Here, we analyse the properties of the stellar kinematics in the circumnuclear region. We fitted the line-of-sight velocity distribution with a Gauss-Hermite function. In seven galaxies of the sample, we detected a rotation pattern in their radial velocity maps that are anti-correlated with h3. We interpret this as stellar structures in rotation embedded in the bulges of the objects. Comparing the stellar kinematic results with the PCA Tomography results and also with the gas kinematic results of IC 5181, it seems that this object may have a non-axisymmetric potential at its centre. The velocity dispersion maps of four objects have a nuclear peak, which must correspond, in part, to unresolved stellar rotation. In NGC 1404, we detected a kinematic decoupled core with an extension of ˜ 200 pc. This galaxy also has a σ-drop in the centre, which may be related to both stellar components in counterrotation or with a kinematically cold star-forming region.

  13. The NuSTAR View of Reflecting and Absorbing Circumnuclear Material in AGN

    Science.gov (United States)

    Rivers, Elizabeth

    2016-04-01

    The physical conditions and precise geometry of the accreting circumnuclear material in the vicinity of supermassive black holes remain open and critical questions. Between July 2012 and February 2013, NuSTAR and XMM-Newton performed four long-look joint observations of the type 1.8 Seyfert, NGC 1365. We have analyzed the variable absorption seen in these observations in order to characterize the geometry of the absorbing material. Two of the observations caught NGC 1365 in an unusually low absorption state, revealing complexity in the multi-layer absorbers which had previously been hidden, including a the Compton-thick torus, BLR clouds, and a patchy absorber with a variable column around 1022 cm-2 and a line of sight covering fraction of 0.3-0.9 which responds directly to the intrinsic source flux, possibly due to a wind geometry. We have also analyzed two NuSTAR observations of NGC 7582, a well-studied X-ray bright Seyfert 2 with moderately heavy highly variable absorption and strong reflection spectral features. Changes in the spectral shape and high reflection fractions have led to competing explanations: 1) the central X-ray source partially “shut off”, decreasing in intrinsic luminosity, with a delayed decrease in reflection features due to the light-crossing time of the Compton-thick material or 2) the source became more heavily obscured, with only a portion of the power law continuum leaking through. The high quality of the NuSTAR spectra above 10 keV give us the best look at the reflection hump to date and allow us to test these two scenarios.

  14. The Chandra, HST, and VLA View of the Circumnuclear Extended Emission in the Narrow Emission Line Galaxy NGC 2110

    OpenAIRE

    Evans, Daniel A.; Lee, Julia C.; Kamenetska, Maria; Gallagher, Sarah C.; Kraft, Ralph P.; Hardcastle, Martin J.; Weaver, Kimberly A.

    2006-01-01

    We present results from new Chandra and archival HST and VLA imaging observations of the circumnuclear extended emission in the nearby Type 2 Seyfert galaxy NGC 2110. We find resolved soft-band X-ray emission 4'' (~160 pc) north of the nucleus, which is spatially coincident with [OIII] emission, but lies just beyond the northern edge of the radio jet in the source. We find that shock-heating of multi-phase gas clouds can successfully account for this extended emission, although we cannot rule...

  15. A Supersymmetric Dark Disk Universe

    CERN Document Server

    Fischler, Willy; Tangarife, Walter

    2014-01-01

    We present a model of partially interacting dark matter (PIDM) within the framework of supersymmetry with gauge mediated symmetry breaking. Dark sector atoms are produced through Affleck-Dine baryogenesis in the dark sector while avoiding the production of Q-ball relics. We discuss the astrophysical constraints relevant for this model and the possibility of dark galactic disk formation. In addition, jet emission from rotating black holes is discussed in the context of this class of models.

  16. Galaxy Disks are Submaximal

    NARCIS (Netherlands)

    Bershady, Matthew A.; Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.

    2011-01-01

    We measure the contribution of galaxy disks to the overall gravitational potential of 30 nearly face-on intermediate-to-late-type spirals from the DiskMass Survey. The central vertical velocity dispersion of the disk stars (sigma(disk)(z,R=0)) is related to the maximum rotation speed (V-max) as sigm

  17. A SINFONI view of the nuclear activity and circumnuclear star formation in NGC 4303

    Science.gov (United States)

    Riffel, Rogemar A.; Colina, L.; Storchi-Bergmann, T.; Piqueras López, J.; Arribas, S.; Riffel, R.; Pastoriza, M.; Sales, Dinalva A.; Dametto, N. Z.; Labiano, A.; Davies, R. I.

    2016-10-01

    We present new maps of emission-line flux distributions and kinematics in both ionized (traced by H I and [Fe II] lines) and molecular (H2) gas of the inner 0.7 × 0.7 kpc2 of the galaxy NGC 4303, with a spatial resolution 40-80 pc and velocity resolution 90-150 km s- 1 obtained from near-IR integral field spectroscopy using the Very Large Telescope instrument SINFONI. The most prominent feature is a 200-250 pc ring of circumnuclear star-forming regions. The emission from ionized and molecular gas shows distinct flux distributions: while the strongest H I and [Fe II] emission comes from regions in the west side of the ring (ages ˜ 4 Myr), the H2 emission is strongest at the nucleus and in the east side of the ring (ages > 10 Myr). We find that regions of enhanced hot H2 emission are anti-correlated with those of enhanced [Fe II] and H I emission, which can be attributed to post-starburst regions that do not have ionizing photons anymore but still are hot enough (≈2000 K) to excite the H2 molecule. The line ratios are consistent with the presence of an active galactic nucleus at the nucleus. The youngest regions have stellar masses in the range 0.3-1.5 × 105 M⊙ and ionized and hot molecular gas masses of ˜0.25-1.2 × 104 M⊙ and ˜2.5-5 M⊙, respectively. The stellar and gas velocity fields show a rotation pattern, with the gas presenting larger velocity amplitudes than the stars, with a deviation observed for the H2 along the nuclear bar, where increased velocity dispersion is also observed, possibly associated with non-circular motions along the bar. The stars in the ring show smaller velocity dispersion than the surroundings, which can be attributed to a cooler dynamics due to their recent formation from cool gas.

  18. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  19. The Circumnuclear Environment of IRAS 20551-4250: A Case Study of AGN/Starburst Connection for JWST

    Directory of Open Access Journals (Sweden)

    E. Sani

    2012-01-01

    Full Text Available We present a general review of the current knowledge of IRAS 20551-4250 and its circumnuclear environment. This Ultraluminous Infrared Galaxy is one of the most puzzling sources of its class in the nearby Universe: the near-IR spectrum is typical of a galaxy experiencing a very intense starburst, but a highly obscured active nucleus is identified beyond ~5 μm and possibly dominates the mid-IR energy output of the system. At longer wavelengths star formation is again the main driver of the global spectral shape and features. We interpret all the available IR diagnostics in the framework of simultaneous black hole growth and star formation and discuss the key properties that make this source an ideal laboratory for the forthcoming James Webb Space Telescope.

  20. Accretion disk electrodynamics

    Science.gov (United States)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  1. Galactic Disk Warps

    NARCIS (Netherlands)

    Kuijken, K.; García, I.

    2000-01-01

    Abstract: This review addresses recent developments in the field of disk galaxy warps. Both results from a new HI survey of edgeon disk galaxies, and of simulations of the interaction between a disk+halo and an orbiting satelite, will be discussed.

  2. Galactic Disk Warps

    CERN Document Server

    Kuijken, K; Kuijken, Konrad; Garcia, Inigo

    2000-01-01

    This review addresses recent developments in the field of disk galaxy warps. Both results from a new HI survey of edgeon disk galaxies, and of simulations of the interaction between a disk+halo and an orbiting satelite, will be discussed.

  3. Chemistry in Protoplanetary Disks

    CERN Document Server

    Henning, Thomas

    2013-01-01

    This comprehensive review summarizes our current understanding of the evolution of gas, solids and molecular ices in protoplanetary disks. Key findings related to disk physics and chemistry, both observationally and theoretically, are highlighted. We discuss which molecular probes are used to derive gas temperature, density, ionization state, kinematics, deuterium fractionation, and study organic matter in protoplanetary disks.

  4. Interstellar Gas and a Dark Disk

    CERN Document Server

    Kramer, Eric David

    2016-01-01

    We introduce a potentially powerful method for constraining or discovering a thin dark matter disk in the Milky Way. The method relies on the relationship between the midplane densities and scale heights of interstellar gas being determined by the gravitational potential, which is sensitive to the presence of a dark disk. We show how to use the interstellar gas parameters to set a bound on a dark disk and discuss the constraints suggested by the current data. However, current measurements for these parameters are discordant, with the uncertainty in the constraint being dominated by the molecular hydrogen midplane density measurement, as well as by the atomic hydrogen velocity dispersion measurement. Magnetic fields and cosmic ray pressure, which are expected to play a role, are uncertain as well. Although a small dark disk is slightly favored, the current data is inadequate to establish its existence

  5. Interstellar Gas and a Dark Disk

    Science.gov (United States)

    Kramer, Eric David; Randall, Lisa

    2016-10-01

    We introduce a potentially powerful method for constraining or discovering a thin dark matter disk in the Milky Way. The method relies on the relationship between the midplane densities and scale heights of interstellar gas being determined by the gravitational potential, which is sensitive to the presence of a dark disk. We show how to use the interstellar gas parameters to set a bound on a dark disk and discuss the constraints suggested by the current data. However, current measurements for these parameters are discordant, with the uncertainty in the constraint being dominated by the molecular hydrogen midplane density measurement, as well as by the atomic hydrogen velocity dispersion measurement. Magnetic fields and cosmic ray pressure, which are expected to play a role, are uncertain as well. The current models and data are inadequate to determine the disk's existence, but taken at face value, may favor its existence depending on the gas parameters used.

  6. Water in Protoplanetary Disks: Deuteration and Turbulent Mixing

    OpenAIRE

    Furuya, Kenji; Aikawa, Yuri; Nomura, Hideko; Hersant, Franck; Wakelam, Valentine

    2013-01-01

    We investigate water and deuterated water chemistry in turbulent protoplanetary disks. Chemical rate equations are solved with the diffusion term, mimicking turbulent mixing in vertical direction. Water near the midplane is transported to the disk atmosphere by turbulence and destroyed by photoreactions to produce atomic oxygen, while the atomic oxygen is transported to the midplane and reforms water and/or other molecules. We find that this cycle significantly decreases column densities of w...

  7. Chemistry in protoplanetary disks (short review in Russian)

    OpenAIRE

    Semenov, Dmitry A.

    2012-01-01

    (English) In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes....

  8. Galaxy Disks are Submaximal

    CERN Document Server

    Bershady, Matthew A; Verheijen, Marc A W; Westfall, Kyle B; Andersen, David R; Swaters, Rob A

    2011-01-01

    We measure the contribution of galaxy disks to the overall gravitational potential of 30 nearly face-on intermediate-to-late-type spirals from the DiskMass Survey. The central vertical velocity dispersion of the disk stars, sigma(z,R=0), is related to the maximum rotation speed (Vmax) as sigma(z,R=0) ~ 0.26 Vmax, consistent with previous measurements for edge-on disk galaxies and a mean stellar velocity ellipsoid axial ratio sigma(z) / sigma(R) = 0.6. For reasonable values of disk oblateness, this relation implies these galaxy disks are submaximal. We find disks in our sample contribute only 15% to 30% of the dynamical mass within 2.2 disk scale-lengths (hR), with percentages increasing systematically with luminosity, rotation speed and redder color. These trends indicate the mass ratio of disk-to-total matter remains at or below 50% at 2.2 hR even for the most extreme, fast-rotating disks (Vmax > 300 km/s), of the reddest rest-frame, face-on color (B-K ~ 4 mag), and highest luminosity (M(K)<-26.5 mag). Th...

  9. The influence of dense gas rings on the dynamics of a stellar disk in the Galactic center

    CERN Document Server

    Trani, Alessandro Alberto; Bressan, Alessandro; Pelupessy, Federico Inti; van Elteren, Arjen; Zwart, Simon Portegies

    2015-01-01

    The Galactic center hosts several hundred early-type stars, about 20% of which lie in the so-called clockwise disk, while the remaining 80% do not belong to any disks. The circumnuclear ring (CNR), a ring of molecular gas that orbits the supermassive black hole (SMBH) with a radius of 1.5 pc, has been claimed to induce precession and Kozai-Lidov oscillations onto the orbits of stars in the innermost parsec. We investigate the perturbations exerted by a gas ring on a nearly-Keplerian stellar disk orbiting a SMBH by means of combined direct N-body and smoothed particle hydrodynamics simulations. We simulate the formation of gas rings through the infall and disruption of a molecular gas cloud, adopting different inclinations between the infalling gas cloud and the stellar disk. We find that a CNR-like ring is not efficient in affecting the stellar disk on a timescale of 3 Myr. In contrast, a gas ring in the innermost 0.5 pc induces precession of the longitude of the ascending node Omega, significantly affecting ...

  10. REMARKS ON JOHN DISKS

    Institute of Scientific and Technical Information of China (English)

    Chu Yuming; Cheng Jinfa; Wang Gendi

    2009-01-01

    Let D R2 be a Jordan domain, D* = -R2 \\ -D, the exterior of D. In this article, the authors obtained the following results: (1) If D is a John disk, then D is an outer linearly locally connected domain; (2) If D* is a John disk, then D is an inner linearly locally connected domain; (3) A homeomorphism f: R2→R2 is a quasiconformal mapping if and only if f(D) is a John disk for any John disk D(∈)R2; and (4) If D is a bounded quasidisk, then D is a John disk, and there exists an unbounded quasidisk which is not a John disk.

  11. Isolated unilateral disk edema

    OpenAIRE

    Varner P

    2011-01-01

    Paul VarnerJohn J Pershing VAMC, Poplar Bluff, MO, USAAbstract: Isolated unilateral disk edema is a familiar clinical presentation with myriad associations. Related, non-consensus terminology is a barrier to understanding a common pathogenesis. Mechanisms for the development of disk edema are reviewed, and a new framework for clinical differentiation of medical associations is presented.Keywords: disk edema, axoplasmic flow, clinical multiplier, optic neuritis, ischemic optic neuropathy, papi...

  12. Scattering line polarization in rotating, optically thick disks

    CERN Document Server

    Milic, Ivan

    2014-01-01

    To interpret observations of astrophysical disks it is essential to understand the formation process of the emitted light. If the disk is optically thick, scattering dominated and permeated by a Keplerian velocity field, Non-Local Thermodynamic Equilibrium radiative transfer modeling must be done to compute the emergent spectrum from a given disk model. We investigate Non-local thermodynamic equilibrium polarized line formation in different simple disk models and aim to demonstrate the importance of both radiative transfer effects and scattering as well as the effects of velocity fields. We self-consistently solve the coupled equations of radiative transfer and statistical equilibrium for a two level atom model by means of Jacobi iteration. We compute scattering polarization, that is Q/I and U/I line profiles. The degree of scattering polarization is significantly influenced by the inclination of the disk with respect to observer, but also by the optical thickness of the disk and the presence of rotation. Sto...

  13. Fast pulsars with disks

    Energy Technology Data Exchange (ETDEWEB)

    Michel, F.C.; Dessler, A.J.

    1983-05-05

    The observed properties of the pulsar PSR1937+214 are compared with predictions of the disk model. It is assumed that an isolated magnetized rotating neutron star is ringed by a fluid disk with a 0.00001 solar mass, and relative rotations of the star and the disk produce potential differences across the disk. A Faraday disk dynamo is also formed between the disk and the star, and allows the polar cap current to return from the disk to the star through auroral arcing. Preferential regions of the star are recipients of a return current controlled by the surface magnetic field structure, which configures the pulsing emissions. The disk model predicts the average luminosity to be 10 to the 31st erg/sec, and an emission of 3 x 10 to the 30th erg/sec was detected. Only one-millionth of the output of the emissions is in the radio region, and the X and gamma ray emissions are in the normal range for pulsars. It is concluded that PSR1937+214 behaves within the predictions of the disk model and is not a new kind of object. 9 references.

  14. HNC in Protoplanetary Disks

    CERN Document Server

    Graninger, Dawn; Qi, Chunhua; Kastner, Joel

    2015-01-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3--2 towards the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3--2, and IRAM 30m observations of HCN and HNC 1--0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1--0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. To realize the fu...

  15. An Ultraviolet through Infrared Look at Star Formation and Super Star Clusters in Two Circumnuclear Starburst Rings

    CERN Document Server

    Maoz, D; Ho, L C; Sternberg, A; Filippenko, A V; Maoz, Dan; Barth, Aaron J.; Ho, Luis C.; Sternberg, Amiel; Filippenko, Alexei V.

    2001-01-01

    We present broad-band (U, V, I,and H) and narrow-band(H-alpha+[N II] and Paschen-alpha) images of the circumnuclear starburst rings in two nearby spiral galaxies, NGC 1512 and NGC 5248, obtained with WFPC2 and NICMOS on HST. Combined with HST images at 2300 Ang, these data provide a particularly wide wavelength range with which to study the properties of the stellar populations, the gas, and the dust in the rings. Some large (50-pc scale) line emitting regions have little associated continuum emission, but a Pa equivalent width indicating a few-Myr-old embedded stellar population. The Ha/Pa intensity ratios suggest the gas is mixed with dust, making it effective at obscuring some of the young clusters. We identify about 1000 compact continuum sources (super star clusters and individual stars) and analyze their spectral energy distributions (SEDs) from 0.2 to 1.6 micron by fitting them with a grid of spectral synthesis models with a range of ages and extinctions. Most of the visible clusters are only mildly re...

  16. Near-infrared line imaging of the circumnuclear starburst rings in the active galaxies NGC 1097 and NGC 6574

    CERN Document Server

    Kotilainen, J K; Laine, S; Ryder, S D

    1999-01-01

    We present high spatial resolution near-infrared broad-band JHK and Br_gamma 2.166 micron and H_2 1-0 S(1) 2.121 micron emission line images of the circumnuclear star formation rings in the LINER/Seyfert 1 galaxy NGC 1097 and the Seyfert 2 galaxy NGC 6574. We investigate the morphology, extinction, and the star formation properties and history of the rings, by comparing the observed properties with an evolutionary population synthesis model. The clumpy morphology in both galaxies varies strongly with wavelength, due to a combination of extinction, hot dust and red supergiants, and the age of the stellar populations. The near-infrared and radio morphologies are in general agreement, although there are differences in the detailed morphology. From the comparison of Br_gamma and H_alpha fluxes, we derive average extinctions toward the hot spots A_V = 1.3 for NGC 1097 and A_V = 2.1 for NGC 6574. The observed H_2/Br_gamma ratios indicate that in both rings the main excitation mechanism of the molecular gas is UV ra...

  17. Supernova 2013fc in a circumnuclear ring of a luminous infrared galaxy: the big brother of SN 1998S

    CERN Document Server

    Kangas, T; Kankare, E; Lundqvist, P; Väisänen, P; Childress, M; Pignata, G; McCully, C; Valenti, S; Vinko, J; Pastorello, A; Elias-Rosa, N; Fraser, M; Gal-Yam, A; Kotak, R; Kotilainen, J; Smartt, S J; Galbany, L; Harmanen, J; Howell, D A; Inserra, C; Marion, G H; Quimby, R M; Silverman, J M; Szalai, T; Wheeler, C J; Ashall, C; Benetti, S; Romero-Cañizales, C; Smith, K W; Sullivan, M; Takáts, K; Young, D R

    2015-01-01

    We present photometric and spectroscopic observations of SN 2013fc, a bright type II supernova (SN) in a circumnuclear star-forming ring in the luminous infrared galaxy ESO 154-G010, observed as part of the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). SN 2013fc is both photometrically and spectroscopically similar to the well-studied type IIn SN 1998S and to the bright type II-L SN 1979C. It exhibits an initial linear decline after maximum, followed by a short plateau phase and a tail phase with a decline too fast for $^{56}$Co decay with full gamma-ray trapping. Initially the spectrum was blue and featureless. Later on, a strong broad ($\\sim 8000$ km s$^{-1}$) H$\\alpha$ emission profile became prominent. We apply a Starlight stellar population model fit to the SN location (observed when the SN had faded) to estimate both a high extinction of $A_V = 2.9 \\pm 0.2$ mag and an age of $10_{-2}^{+3}$ Myr for the underlying cluster. We compare the SN to SNe 1998S and 1979C and discuss its possible ...

  18. Radio Detection of Supernova 2004ip in the Circumnuclear Region of the Luminous Infrared Galaxy IRAS 18293-3413

    CERN Document Server

    Pérez-Torres, M A; Alberdi, A; Colina, L; Torrelles, J M; Väisänen, P; Panagia, N; Wilson, A

    2007-01-01

    We report a radio detection of supernova SN 2004ip in the circumnuclear region of the luminous infrared galaxy IRAS 18293-3413, using Very Large Array (VLA) observations at 8.4 GHz on 11 June 2007. SN 2004ip had been previously discovered at near-infrared wavelengths using adaptive optics observations, but its nature (core-collapse or thermonuclear) could not be definitely established. Our radio detection, about three years after the explosion of the supernova, indicates a prominent interaction of the ejecta of SN 2004ip with the circumstellar medium, confirming that the supernova was a core-collapse event (probably Type II), and thus strongly suggesting that its progenitor was a massive star with a significant mass-loss prior to its explosion. SN 2004ip has a 8.4 GHz luminosity of 3.5E27 erg/s/Hz, about twice as bright as SN 2000ft in NGC 7469 at a similar age, and given its projected distance to the nucleus (~500 pc), is one of the closest of all known radio SNe to a galaxy nucleus, and one of the brightest...

  19. Dust in the wind II: Polarization imaging from disk-born outflows

    CERN Document Server

    Marin, F

    2013-01-01

    In this second research note of a series of two, we aim to map the polarized flux emerging from a disk-born, dusty outflow as it was prescribed by Elvis (2000). His structure for quasars was achieved to unify the emission and absorption features observed in active galactic nuclei (AGN) and can be used as an alternative scenario to the typical dusty torus that is extensively used to account for AGN circumnuclear obscuration. Using Monte Carlo radiative transfer simulations, we model an obscuring outflow arising from an emitting accretion disk and examine the resulting polarization degree, polarization angle and polarized flux. Polarization cartography reveals that a disk-born outflow has a similar torus morphology in polar viewing angles, with bright polarized fluxes reprocessed onto the wind funnel. At intermediate and edge-on inclinations, the model is rather close to a double-conical wind, with higher fluxes in the cone bases. It indicates that the optically thick outflow is not efficient enough to avoid ra...

  20. The Milky Way disk

    Science.gov (United States)

    Carraro, G.

    2015-08-01

    This review summarises the invited presentation I gave on the Milky Way disc. The idea underneath was to touch those topics that can be considered hot nowadays in the Galactic disk research: the reality of the thick disk, the spiral structure of the Milky Way, and the properties of the outer Galactic disk. A lot of work has been done in recent years on these topics, but a coherent and clear picture is still missing. Detailed studies with high quality spectroscopic data seem to support a dual Galactic disk, with a clear separation into a thin and a thick component. Much confusion and very discrepant ideas still exist concerning the spiral structure of the Milky Way. Our location in the disk makes it impossible to observe it, and we can only infer it. This process of inference is still far from being mature, and depends a lot on the selected tracers, the adopted models and their limitations, which in many cases are neither properly accounted for, nor pondered enough. Finally, there are very different opinions on the size (scale length, truncation radius) of the Galactic disk, and on the interpretation of the observed outer disk stellar populations in terms either of external entities (Monoceros, Triangulus-Andromeda, Canis Major), or as manifestations of genuine disk properties (e.g., warp and flare).

  1. Planetesimals in Debris Disks

    CERN Document Server

    Youdin, Andrew N

    2015-01-01

    Planetesimals form in gas-rich protoplanetary disks around young stars. However, protoplanetary disks fade in about 10 Myr. The planetesimals (and also many of the planets) left behind are too dim to study directly. Fortunately, collisions between planetesimals produce dusty debris disks. These debris disks trace the processes of terrestrial planet formation for 100 Myr and of exoplanetary system evolution out to 10 Gyr. This chapter begins with a summary of planetesimal formation as a prelude to the epoch of planetesimal destruction. Our review of debris disks covers the key issues, including dust production and dynamics, needed to understand the observations. Our discussion of extrasolar debris keeps an eye on similarities to and differences from Solar System dust.

  2. Radio pulsar disk electrodynamics

    Science.gov (United States)

    Michel, F. C.

    1983-01-01

    Macroscopic physics are discussed for the case of a disk close to an isolated, magnetized, rotating neutron star that acts as a Faraday disk dynamo, while the disk acts as both a load and a neutral sheet. This sheet allows the polar cap current to return to the neutron star, splitting a dipolar field into two monopolar halves. The dominant energy loss is from the stellar wind torque, and the next contribution is dissipation in the auroral zones, where the current returns to the star in a 5 cm-thick sheet. The disk itself may be a source of visible radiation comparable to that in pulsed radio frequency emission. As the pulsar ages, the disk expands and narrows into a ring which, it is suggested, may lead to a cessation of pulsed emission at periods of a few sec.

  3. Discovery of an Inner Disk Component Around HD 141569 A

    Science.gov (United States)

    Konishi, Mihoko; Grady, Carol A.; Schneider, Glenn; Shibai, Hiroshi; McElwain, Michael W.; Nesvold, Erika R.; Kuchner, Marc J.; Carson, Joseph; Debes, John H.; Gaspar, Andras; Serabyn, Eugene

    2016-01-01

    We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphy, was imaged with an inner working angle of 0 25 arcseconds, and can be traced from 0 4 seconds (approximately 46 atomic units) to 1.0 arcseconds (approximately 116 atomic units) after deprojection using inclination = 55 degrees. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of approximately 6 atomic units, and break points where the slope of the surface brightness changes. It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2 arcseconds (approximately 232 atomic units), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9 plus or minus 3 mass Jupiter (M (sub J)) is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk component and the inner ring of 1 mass Jupiter, which is broadly consistent with previous estimates.

  4. Truncations in stellar disks

    CERN Document Server

    Van der Kruit, P C

    2000-01-01

    The presence of radial truncations in stellar disks is reviewed. There is ample evidence that many disk galaxies have relatively shaprt truncations in their disks. These often are symmetric and independent of the wavelength band of the observations. The ratio of the truncation radius R_{max} to the disk scalelength h appears often less then 4.5, as expected on a simple model for the disk collapse. Current samples of galaxies observed may however not be representative and heavily biased towards sisks witht he largest scalelengths. Many spiral galaxies also have HI warps and these generally start at the truncation radius of the stellar disk. The HI surface density suddenly becomes much flatter with radius. In some galaxies the start of the warp and the position of the disk truncation radius is accompanied by a drop in the rotation velocity. In the regiosn beyond the dis truncation in the HI layer some star formation does occur, but the heavy element abundance and the dust content are very low. All evidence is c...

  5. Water vapor distribution in protoplanetary disks

    CERN Document Server

    Du, Fujun

    2014-01-01

    Water vapor has been detected in protoplanetary disks. In this work we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyman alpha photons, since the Lyman alpha line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more ...

  6. High-Temperature Ionization in Protoplanetary Disks

    CERN Document Server

    Desch, Steven J

    2015-01-01

    We calculate the abundances of electrons and ions in the hot (> 500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains' work functions. The charged species' abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks' dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge locat...

  7. Disk-satellite interaction in disks with density gaps

    CERN Document Server

    Petrovich, Cristobal

    2012-01-01

    Gravitational coupling between a gaseous disk and an orbiting perturber leads to angular momentum exchange between them which can result in gap opening by planets in protoplanetary disks and clearing of gas by binary supermassive black holes (SMBHs) embedded in accretion disks. Understanding the co-evolution of the disk and the orbit of the perturber in these circumstances requires knowledge of the spatial distribution of the torque exerted by the latter on a highly nonuniform disk. Here we explore disk-satellite interaction in disks with gaps in linear approximation both in Fourier and in physical space, explicitly incorporating the disk non-uniformity in the fluid equations. Density gradients strongly displace the positions of Lindblad resonances in the disk (which often occur at multiple locations), and the waveforms of modes excited close to the gap edge get modified compared to the uniform disk case. The spatial distribution of the excitation torque density is found to be quite different from the existin...

  8. Turbulence driven diffusion in protoplanetary disks - chemical effects in the outer disk

    CERN Document Server

    Willacy, K; Langer, W D

    2006-01-01

    The dynamics and chemistry of protostellar disks are likely to be intricately linked, with dynamical processes altering the chemical composition, and chemistry, in turn, controlling the ionization structure and hence the ability of the magneto-rotational instability to drive the disk turbulence. Here we present the results from the first chemical models of the outer regions (R > 100 AU) of protoplanetary disks to consider the effects of turbulence driven diffusive mixing in the vertical direction. We show that vertical diffusion can greatly affect the column densities of many species, increasing them by factors of up to two orders of magnitude. Previous disk models have shown that disks can be divided into three chemically distinct layers, with the bulk of the observed molecular emission coming from a region between an atomic/ionic layer on the surface of the disk and the midplane regoin where the bulk of molecules are frozen onto grains. Diffusion retains this three layer structure, but increases the depth o...

  9. Disentangling the circumnuclear environs of Centaurus A: II. On the nature of the broad absorption line

    CERN Document Server

    Espada, D; Matsushita, S; Sakamoto, K; Henkel, C; Iono, D; Israel, F P; Muller, S; Petitpas, G; Pihlstroem, Y; Taylor, G B; Trung, D V

    2010-01-01

    We report on atomic gas (HI) and molecular gas (as traced by CO(2-1)) redshifted absorption features toward the nuclear regions of the closest powerful radio galaxy, Centaurus A (NGC 5128). Our HI observations using the Very Long Baseline Array allow us to discern with unprecedented sub-parsec resolution HI absorption profiles toward different positions along the 21 cm continuum jet emission in the inner 0."3 (or 5.4 pc). In addition, our CO(2-1) data obtained with the Submillimeter Array probe the bulk of the absorbing molecular gas with little contamination by emission, not possible with previous CO single-dish observations. We shed light with these data on the physical properties of the gas in the line of sight, emphasizing the still open debate about the nature of the gas that produces the broad absorption line (~55 km/s). First, the broad H I line is more prominent toward the central and brightest 21 cm continuum component than toward a region along the jet at a distance ~ 20 mas (or 0.4 pc) further from...

  10. More approximation on disks

    OpenAIRE

    Paepe, de, P.J.I.M.; Wiegerinck, J.J.O.O.

    2007-01-01

    Abstract: In this article we study the function algebra generated by z2 and g2 on a small closed disk centred at the origin of the complex plane. We prove, using a biholomorphic change of coordinates and already developed techniques in this area, that for a large class of functions g this algebra consists of all continuous functions on the disk. Keywords: 2000 Mathematics Subject Classifications: 46J10; 32E20

  11. Vortices in circumstellar disks

    CERN Document Server

    Adams, F; Adams, Fred; Watkins, Richard

    1995-01-01

    We discuss the physics of vortices in the circumstellar disks associated with young stellar objects. We elucidate the basic physical properties of these localized storm systems. In particular, we consider point vortices, linear vortices, the effects of self-gravity, magnetic fields, and nonlinear aspects of the problem. We find that these vortices can exist in many different forms in the disks of young stellar objects and may play a role in the formation of binary companions and/or giant planets. Vortices may enhance giant planet formation via gravitational instability by allowing dust grains (heavy elements) to settle to the center on a short timescale; the gravitational instability itself is also enhanced because the vortices also create a larger local surface density in the disk. In addition, vortices can enhance energy dissipation in disks and thereby affect disk accretion. Finally, we consider the possibility that vortices of this type exist in molecular clouds and in the disk of the galaxy itself. On al...

  12. Non-LTE Sodium Abundance in Galactic Thick- and Thin-Disk Red Giants

    OpenAIRE

    Alexeeva, S. A.; Pakhomov, Yu V.; Mashonkina, L. I.

    2014-01-01

    We evaluate non-local thermodynamical equilibrium (non-LTE) line formation for neutral sodium in model atmospheres of the 79 red giants using the model atom that incorporates the best available atomic data. The non-LTE abundances of Na were determined from Na I 6154, 6161 \\AA\\ for the 38 stars of the thin disk (15 of them the BaII stars), 15 stars of the thick disk, 13 stars of Hercules stream and 13 transition stars which can be identified with neither thin disk nor thick disk. For Na I 6154...

  13. Quantified Morphology of HI Disks in the Universe

    CERN Document Server

    Holwerda, B W; Bouchard, A; Blyth, S-L; van der Heyden, K; Prizkal, N

    2009-01-01

    he upcoming new perspective of the high redshift Universe in the 21 cm line of atomic hydrogen opens possibilities to explore topics of spiral disk evolution, hitherto reserved for the optical regime. The growth of spiral gas disks over Cosmic time can be explored with the new generation of radio telescopes, notably the SKA, and its precursors, as accurately as with the Hubble Space Telescope for stellar disks. Since the atomic hydrogen gas is the building block of these disks, it should trace their formation accurately. Morphology of HI disks can now equally be quantified over Cosmic time. In studies of HST deep fields, the optical or UV morphology of high-redshift galaxy disks have been characterized using a few quantities: concentration (C), asymmetry (A), smoothness (S), second-order-moment (M20), the GINI coefficient (G), and Ellipticity (E). We have applied these parameters across wavelengths and compared them to the HI morphology over the THINGS sample. NGC 3184, an unperturbed disk, and NGC 5194, the ...

  14. Thick Disks, and an Outflow, of Dense Gas in the Nuclei of Nearby Seyfert Galaxies

    CERN Document Server

    Lin, Ming-Yi; Burtscher, L; Contursi, A; Genzel, R; González-Alfonso, E; Graciá-Carpio, J; Janssen, A; Lutz, D; de Xivry, G Orban; Rosario, D; Schnorr-Müller, A; Sternberg, A; Sturm, E; Tacconi, L

    2016-01-01

    We discuss the dense molecular gas in central regions of nearby Seyfert galaxies, and report new arcsec resolution observations of HCN(1-0) and HCO$^+$(1-0) for 3 objects. In NGC 3079 the lines show complex profiles as a result of self-absorption and saturated continuum absorption. H$^{13}$CN reveals the continuum absorption profile, with a peak close to the galaxy's systemic velocity that traces disk rotation, and a second feature with a blue wing extending to $-350$km s$^{-1}$ that most likely traces a nuclear outflow. The morphological and spectral properties of the emission lines allow us to constrain the dense gas dynamics. We combine our kinematic analysis for these 3 objects, as well as another with archival data, with a previous comparable analysis of 4 other objects, to create a sample of 8 Seyferts. In 7 of these, the emission line kinematics imply thick disk structures on radial scales of $\\sim$100pc, suggesting such structures are a common occurrence. We find a relation between the circumnuclear L...

  15. Pulsar disk systems

    Energy Technology Data Exchange (ETDEWEB)

    Michel, F.C.; Dessler, A.J.

    1981-12-15

    We argue that the radio pulsars and the X-ray pulsars differ mainly in the fact that the latter are surrounded by an accretion disk, while the former are surrounded by a fossil collapse disk presumably left over from the formation event. We attribute the difference between these two types of pulsars to a strong interaction (enforced accretion) of the X-ray pulsars with their disks as opposed to a relatively weak interaction (and negligible accretion) in the case of the radio pulsars. A number of observational problems (e.g., role of alignment, ion confinement, nulling, drifting subpulses, braking index, residuals, and the supernova association) are readily addressed in terms of the disk model. Moreover, the model is consistent with a ''hollow cone'' type of emission pattern. Rough estimates here suggest that pulsars with disks could function with magnetic fields at the neutron star surface as low as 10/sup 9/ gauss, far below that often assumed; conventional field strengths of 10/sup 12/ gauss are not excluded, however.

  16. Chemistry in Protoplanetary Disks

    CERN Document Server

    Semenov, Dmitry

    2010-01-01

    Protoplanetary disks (PPDs) surrounding young stars are short-lived (~0.3-10 Myr), compact (~10-1000 AU) rotating reservoirs of gas and dust. PPDs are believed to be birthplaces of planetary systems, where tiny grains are assembled into pebbles, then rocks, planetesimals, and eventually planets, asteroids, and comets. Strong variations of physical conditions (temperature, density, ionization rate, UV/X-rays intensities) make a variety of chemical processes active in disks, producing simple molecules in the gas phase and complex polyatomic (organic) species on the surfaces of dust particles. In this entry, we summarize the major modern observational methods and theoretical paradigms used to investigate disk chemical composition and evolution, and present the most important results. Future research directions that will become possible with the advent of the Atacama Large Millimeter Array (ALMA) and other forthcoming observational facilities are also discussed.

  17. Silica in Protoplanetary Disks

    CERN Document Server

    Sargent, B A; Tayrien, C; McClure, M K; Li, A; Basu, A R; Manoj, P; Watson, D M; Bohac, C J; Furlan, E; Kim, K H; Green, J D; Sloan, G C

    2008-01-01

    Mid-infrared spectra of a few T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope show prominent narrow emission features indicating silica (crystalline silicon dioxide). Silica is not a major constituent of the interstellar medium; therefore, any silica present in the circumstellar protoplanetary disks of TTS must be largely the result of processing of primitive dust material in the disks surrouding these stars. We model the silica emission features in our spectra using the opacities of various polymorphs of silica and their amorphous versions computed from earth-based laboratory measurements. This modeling indicates that the two polymorphs of silica, tridymite and cristobalite, which form at successively higher temperatures and low pressures, are the dominant forms of silica in the TTS of our sample. These high temperature, low pressure polymorphs of silica present in protoplanetary disks are consistent with a grain composed mostly of tridymite named Ada found...

  18. Supersized Disk (Artist's Concept)

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Annotated ImageData Graph This illustration compares the size of a gargantuan star and its surrounding dusty disk (top) to that of our solar system. Monstrous disks like this one were discovered around two 'hypergiant' stars by NASA's Spitzer Space Telescope. Astronomers believe these disks might contain the early 'seeds' of planets, or possibly leftover debris from planets that already formed. The hypergiant stars, called R 66 and R 126, are located about 170,000 light-years away in our Milky Way's nearest neighbor galaxy, the Large Magellanic Cloud. The stars are about 100 times wider than the sun, or big enough to encompass an orbit equivalent to Earth's. The plump stars are heavy, at 30 and 70 times the mass of the sun, respectively. They are the most massive stars known to sport disks. The disks themselves are also bloated, with masses equal to several Jupiters. The disks begin at a distance approximately 120 times greater than that between Earth and the sun, or 120 astronomical units, and terminate at a distance of about 2,500 astronomical units. Hypergiant stars are the puffed-up, aging descendants of the most massive class of stars, called 'O' stars. The stars are so massive that their cores ultimately collapse under their own weight, triggering incredible explosions called supernovae. If any planets circled near the stars during one of these blasts, they would most likely be destroyed. The orbital distances in this picture are plotted on a logarithmic scale. This means that a given distance shown here represents proportionally larger actual distances as you move to the right. The sun and planets in our solar system have been scaled up in size for better viewing. Little Dust Grains in Giant Stellar Disks The graph above of data from NASA's Spitzer Space Telescope shows the composition of a monstrous disk of what may be planet-forming dust circling the colossal 'hypergiant' star called R 66. The disk contains

  19. Constraints on Accretion Disk Physics in Low Luminosity Radio Galaxies

    Science.gov (United States)

    Baum, Stefi; Noel-Storr, Jacob; O'Dea, Christopher

    2008-03-01

    It is currently believed that essentially all galaxies harbor a massive black hole in their nuclei. If this is true, then it becomes hard to understand why we do not see the luminosity released by the inevitable accretion of the galaxy ISM onto the black hole in all galaxies. The differences in AGN output between the two classes of narrow-line radio galaxies (FRI and FRII) may hold the vital clue. High radio luminosity FRIIs generally show strong high-excitation narrow lines and are believed to be the obscured counterparts of radio loud quasars. Low radio luminosity FRIs by contrast have weaker, low-ionization lines and low ratios of optical to radio luminosities. A large difference in accretion rate and radiative efficiency between FRI and FRIIs would explain the difference in the optical properties and also provide a new unification between different classes of active galaxies in which the dominant parameter is accretion rate. Spitzer IRAC and MIPS observations already exist for most of a well defined sample of FRIs. However, the previously observed objects are the 'famous' ones, e.g., M87, M84, NGC315, 3C264, 3C31. Thus, the existing datasets are highly selected. Here we propose a very small request to complete the sample. We propose IRAC observations in all 4 bands, and MIPS photometry at 24 and 70 microns of 8, and 7 sources, respectively, for a total request of 1.7 hrs. These observations will complete the sample at very little cost in observing time. The large amount of existing complmentary data at multiple wavebands will greatly enhance the legacy value of the proposed observations. By completing the sample, the proposed IRAC and MIPS observations will produce a well defined and very well studied sample of nearby low luminosity radio galaxies. We will use the completed sample to investigate the properties of the accretion disk radiation, and the circumnuclear obscuring material.

  20. Polarimetric microlensing of circumstellar disks

    CERN Document Server

    Sajadian, Sedighe

    2015-01-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar disks around the microlensed stars located at the Galactic bulge. These disks which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these disks can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot disks which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of disks, we show that although the polarimetric efficiency for detecting disks is similar to the photometric observation, but polarimetry observations can help to constraint the disk geometrical parameters e.g. the disk inner radius and the lens trajectory with resp...

  1. Secular Evolution in Disk Galaxies

    CERN Document Server

    Sellwood, J A

    2013-01-01

    Disk galaxies evolve over time through processes that may rearrange both the radial mass profile and the metallicity distribution within the disk. This review of such slow changes is largely, though not entirely, restricted to internally-driven processes that can be distinguished from evolution driven by galaxy interactions. It both describes our current understanding of disk evolution, and identifies areas where more work is needed. Stellar disks are heated through spiral scattering, which increases random motion components in the plane, while molecular clouds redirect some fraction of the random energy into vertical motion. The recently discovered process of radial migration at the corotation resonance of a transient spiral mode does not alter the underlying structure of the disk, since it neither heats the disk nor causes it to spread, but it does have a profound effect on the expected distribution of metallicities among the disk stars. Bars in disks are believed to be major drivers of secular evolution th...

  2. Disk Scheduling: Selection of Algorithm

    OpenAIRE

    Yashvir, S.; Prakash, Om

    2012-01-01

    The objective of this paper is to take some aspects of disk scheduling and scheduling algorithms. The disk scheduling is discussed with a sneak peak in general and selection of algorithm in particular.

  3. More approximation on disks

    NARCIS (Netherlands)

    P.J.I.M. de Paepe; J.J.O.O. Wiegerinck

    2007-01-01

    Abstract: In this article we study the function algebra generated by z2 and g2 on a small closed disk centred at the origin of the complex plane. We prove, using a biholomorphic change of coordinates and already developed techniques in this area, that for a large class of functions g this algebra co

  4. Disk Accretion of Tidally Disrupted Rocky Bodies onto White Dwarfs

    Science.gov (United States)

    Feng, Wanda; Desch, Steven; Turner, Neal; Kalyaan, Anusha

    2016-06-01

    About 1/3 of white dwarfs (WDs) are polluted with heavy elements (e.g., Koester et al., 2014; Zuckerman et al., 2010) that should sediment out of their atmospheres on astronomically short timescales unless replenished by accretion from a reservoir, at rates that for many WDs must exceed ~1010 g/s (Farihi et al., 2010). Direct accretion of planetesimals is too improbable and Poynting-Robertson drag of dust is too slow (due to the low luminosity of WDs) (Jura, 2003), so it is often assumed that WDs accrete from a disk of gas and solid particles, fed by tidal disruption of planeteismals inside the WD Roche limit (e.g. Debes et al., 2012; Rafikov, 2011a, 2011b). A few such gaseous disks have been directly observed, through emission from Ca II atoms in the disk (e.g. Manser et al., 2016; Wilson et al. 2014). Models successfully explain the accretion rates of metals onto the WD, provided the gaseous disk viscously spreads at rates consistent with a partially suppressed magnetorotational instability (Rafikov, 2011a, 2011b). However, these models currently do not explore the likely extent of the magnetorotational instability in disks by calculating the degree of ionization, or suppression by strong magnetic field.We present a 1-D model of a gaseous WD disk accretion, to assess the extent of the magnetorotational instability in WD disks. The composition of the disk, the ionization and recombination mechanisms, and the degree of ionization of the disk are explored. Magnetic field strengths consistent with WD dipolar magnetic fields are assumed. Elsasser numbers are calculated as a function of radius in the WD disk. The rate of viscous spreading is calculated, and the model of Rafikov (2011a, 2011b) updated to compute likely accretion rates of metals onto WDs.

  5. The Effects of Initial Abundances on Nitrogen in Protoplanetary Disks

    CERN Document Server

    Schwarz, Kamber R

    2014-01-01

    The dominant form of nitrogen provided to most solar system bodies is currently unknown, though available measurements show that the detected nitrogen in solar system rocks and ices is depleted with respect to solar abundances and the interstellar medium. We use a detailed chemical/physical model of the chemical evolution of a protoplanetary disk to explore the evolution and abundance of nitrogen-bearing molecules. Based on this model we analyze how initial chemical abundances, provided as either gas or ice during the early stages of disk formation, influence which species become the dominant nitrogen bearers at later stages. We find that a disk with the majority of its initial nitrogen in either atomic or molecular nitrogen is later dominated by atomic and molecular nitrogen as well as NH$_{3}$ and HCN ices, where the dominant species varies with disk radius. When nitrogen is initially in gaseous ammonia, it later becomes trapped in ammonia ice except in the outer disk where atomic nitrogen dominates. For a ...

  6. The Tilt between Acretion Disk and Stellar Disk

    Indian Academy of Sciences (India)

    Shiyin Shen; Zhengyi Shao; Minfeng Gu

    2011-03-01

    The orientations of the accretion disk of active galactic nuclei (AGN) and the stellar disk of its host galaxy are both determined by the angular momentum of their forming gas, but on very different physical environments and spatial scales. Here we show the evidence that the orientation of the stellar disk is correlated with the accretion disk by comparing the inclinations of the stellar disks of a large sample of Type 2 AGNs selected from Sloan Digital Sky Survey (SDSS, York et al. 2000) to a control galaxy sample. Given that the Type 2 AGN fraction is in the range of 70–90 percent for low luminosity AGNs as a priori, we find that the mean tilt between the accretion disk and stellar disk is ∼ 30 degrees (Shen et al. 2010).

  7. Chemistry in protoplanetary disks (short review in Russian)

    CERN Document Server

    Semenov, Dmitry A

    2012-01-01

    (English) In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.

  8. Volatiles in protoplanetary disks

    CERN Document Server

    Pontoppidan, Klaus M; Bergin, Edwin A; Brittain, Sean; Marty, Bernard; Mousis, Olvier; Oberg, Karin L

    2014-01-01

    Volatiles are compounds with low sublimation temperatures, and they make up most of the condensible mass in typical planet-forming environments. They consist of relatively small, often hydrogenated, molecules based on the abundant elements carbon, nitrogen and oxygen. Volatiles are central to the process of planet formation, forming the backbone of a rich chemistry that sets the initial conditions for the formation of planetary atmospheres, and act as a solid mass reservoir catalyzing the formation of planets and planetesimals. This growth has been driven by rapid advances in observations and models of protoplanetary disks, and by a deepening understanding of the cosmochemistry of the solar system. Indeed, it is only in the past few years that representative samples of molecules have been discovered in great abundance throughout protoplanetary disks - enough to begin building a complete budget for the most abundant elements after hydrogen and helium. The spatial distributions of key volatiles are being mapped...

  9. The Evolution of Inner Disk Gas in Transition Disks

    CERN Document Server

    Hoadley, Keri; Alexander, Richard D; McJunkin, Matthew; Schneider, Christian

    2015-01-01

    Investigating the molecular gas in the inner regions of protoplanetary disks provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H$_2$) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed HI-Lyman $\\alpha$-pumped H$_2$ disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H$_{2}$ emission in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H$_2$ FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner a...

  10. DVD - digital versatile disks

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, R.

    1997-05-01

    An international standard has emerged for the first true multimedia format. Digital Versatile Disk (by its official name), you may know it as Digital Video Disks. DVD has applications in movies, music, games, information CD-ROMS, and many other areas where massive amounts of digital information is needed. Did I say massive amounts of data? Would you believe over 17 gigabytes on a single piece of plastic the size of an audio-CD? That`s the promise, at least, by the group of nine electronics manufacturers who have agreed to the format specification, and who hope to make this goal a reality by 1998. In this major agreement, which didn`t come easily, the manufacturers will combine Sony and Phillip`s one side double-layer NMCD format with Toshiba and Matsushita`s double sided Super-Density disk. By Spring of this year, they plan to market the first 4.7 gigabyte units. The question is: Will DVD take off? Some believe that read-only disks recorded with movies will be about as popular as video laser disks. They say that until the eraseable/writable DVD arrives, the consumer will most likely not buy it. Also, DVD has a good market for replacement of CD- Roms. Back in the early 80`s, the international committee deciding the format of the audio compact disk decided its length would be 73 minutes. This, they declared, would allow Beethoven`s 9th Symphony to be contained entirely on a single CD. Similarly, today it was agreed that playback length of a single sided, single layer DVD would be 133 minutes, long enough to hold 94% of all feature-length movies. Further, audio can be in Dolby`s AC-3 stereo or 5.1 tracks of surround sound, better than CD-quality audio (16-bits at 48kHz). In addition, there are three to five language tracks, copy protection and parental ``locks`` for R rated movies. DVD will be backwards compatible with current CD-ROM and audio CD formats. Added versatility comes by way of multiple aspect rations: 4:3 pan-scan, 4:3 letterbox, and 16:9 widescreen. MPEG

  11. Radiation thermo-chemical models of protoplanetary disks I. Hydrostatic disk structure and inner rim

    CERN Document Server

    Woitke, Peter; Thi, Wing-Fai

    2009-01-01

    This paper introduces a new disk code, called ProDiMo, to calculate the thermo-chemical structure of protoplanetary disks and to interpret gas emission lines from UV to sub-mm. We combine frequency-dependent 2D dust continuum radiative transfer, kinetic gas-phase and UV photo-chemistry, ice formation, and detailed non-LTE heating & cooling balance with the consistent calculation of the hydrostatic disk structure. We include FeII and CO ro-vibrational line heating/cooling relevant for the high-density gas close to the star, and apply a modified escape probability treatment. The models are characterized by a high degree of consistency between the various physical, chemical and radiative processes, where the mutual feedbacks are solved iteratively. In application to a T Tauri disk extending from 0.5AU to 500AU, the models are featured by a puffed-up inner rim and show that the dense, shielded and cold midplane (z/r<0.1, Tg~Td) is surrounded by a layer of hot (5000K) and thin (10^7 to 10^8 cm^-3) atomic ga...

  12. Ringed accretion disks: equilibrium configurations

    CERN Document Server

    Pugliese, D

    2015-01-01

    We investigate a model of ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the General Relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can be then determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We pr...

  13. Audit: Automated Disk Investigation Toolkit

    Directory of Open Access Journals (Sweden)

    Umit Karabiyik

    2014-09-01

    Full Text Available Software tools designed for disk analysis play a critical role today in forensics investigations. However, these digital forensics tools are often difficult to use, usually task specific, and generally require professionally trained users with IT backgrounds. The relevant tools are also often open source requiring additional technical knowledge and proper configuration. This makes it difficult for investigators without some computer science background to easily conduct the needed disk analysis. In this paper, we present AUDIT, a novel automated disk investigation toolkit that supports investigations conducted by non-expert (in IT and disk technology and expert investigators. Our proof of concept design and implementation of AUDIT intelligently integrates open source tools and guides non-IT professionals while requiring minimal technical knowledge about the disk structures and file systems of the target disk image.

  14. VLT imaging of the {\\beta} Pictoris gas disk

    CERN Document Server

    Nilsson, R; Olofsson, G; Fathi, K; Thébault, Ph; Liseau, R

    2012-01-01

    Circumstellar debris disks older than a few Myr should be largely devoid of primordial gas remaining from the protoplanetary disk phase. Tracing the origin of observed atomic gas in Keplerian rotation in the edge-on debris disk surrounding the ~12 Myr old star {\\beta} Pictoris requires more detailed information about its spatial distribution than has previously been acquired by limited slit spectroscopy. Especially indications of asymmetries and presence of Ca II gas at high disk latitudes call for additional investigation. We set out to recover a complete image of the Fe I and Ca II gas emission around {\\beta} Pic by spatially resolved, high-resolution spectroscopic observations to better understand the morphology and origin of the gaseous disk component. The multiple fiber facility FLAMES/GIRAFFE at the VLT, with the large IFU ARGUS, was used to obtain spatially resolved optical spectra in four regions covering the northeast and southwest side of the disk. Emission lines from Fe I and Ca II were mapped and ...

  15. Ringed accretion disks: instabilities

    CERN Document Server

    Pugliese, D

    2016-01-01

    We analyze the possibility that several instability points may be formed, due to the Paczy\\'nski mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider recently proposed model of ringed accretion disk, made up by several tori (rings) which can be corotating or counterrotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  16. Foraminal and extraforaminal disk herniations

    International Nuclear Information System (INIS)

    This paper reports on a study of thirty-three patients with persistent radiculopathy and with CT findings suggestive of a far lateral disk herniation at 34 disk levels with MR imaging. In 33 cases, the disk fragment was identified and its separation with the nerve root was possible. One case of enlarged nerve root was misdiagnosed as a free fragment. A cephalad migration was noted on the sagittal lateral facet plane in 23 cases. Surgical correlations were available in 25 cases. Three cases had false-positive findings for disk herniation. Enlarged foraminal veins were responsible for these images, as confirmed in one case by Gd-DTPA infusion

  17. High Power Thin Disk Laser

    OpenAIRE

    Giesen, Adolf

    2011-01-01

    In this talk, the latest results for thin disk lasers will be presented. Thin disk lasers can be operated in cw-mode as well as in pulsed mode with pulse durations from 100 fs to microseconds. Results from different institutes and companies will be shown demonstrating the power/energy scalability of the thin disk laser design with good beam quality and high efficiency, simultaneously. Several German companies are selling thin disk lasers with up to 16 kW output power (cw) and with up to 1 kW...

  18. High-temperature Ionization in Protoplanetary Disks

    Science.gov (United States)

    Desch, Steven J.; Turner, Neal J.

    2015-10-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters.

  19. Scattering line polarization in rotating, optically thick disks

    Science.gov (United States)

    Milić, I.; Faurobert, M.

    2014-11-01

    Context. To interpret observations of astrophysical disks, it is essential to understand the formation process of the emitted light. If the disk is optically thick, scattering dominated and permeated by a Keplerian velocity field, non-local thermodynamic equilibrium (NLTE) radiative transfer modeling must be done to compute the emergent spectrum from a given disk model. Aims: We investigate NLTE polarized line formation in different simple disk models and aim to demonstrate the importance of both radiative transfer effects and scattering, as well as the effects of velocity fields. Methods: We self-consistently solve the coupled equations of radiative transfer and statistical equilibrium for a two-level atom model by means of Jacobi iteration. We use the short characteristics method of formal solution in two-dimensional axisymmetric media and compute scattering polarization, that is Q/I and U/I line profiles, using the reduced intensity formalism. We account for the presence of Keplerian velocity fields by casting the radiative transfer equation in the observer's frame. Results: Relatively simple (homogeneous and isothermal) disk models show complex intensity profiles that owe their shape to the interplay of multidimensional NLTE radiative transfer and the presence of rotation. The degree of scattering polarization is significantly influenced not only by the inclination of the disk with respect to observer, but also by the optical thickness of the disk and the presence of rotation. Stokes U/I shows double-lobed profiles with amplitude that increases with the disk rotation. Conclusions: Our results suggest that the line profiles, especially the polarized ones, emerging from gaseous disks differ significantly from the profiles predicted by simple approximations. Even in the case of the simple two-level atom model, we obtain line profiles that are diverse in shape, but typically symmetric in Stokes Q and antisymmetric in Stokes U. A clear indicator of disk rotation is

  20. [Disk calcifications in children].

    Science.gov (United States)

    Schmit, P; Fauré, C; Denarnaud, L

    1985-05-01

    It is not unusual for intervertebral disk calcifications to be detected in pediatric practice, the 150 or so cases reported in the literature probably representing only a small proportion of lesions actually diagnosed. Case reports of 33 children with intervertebral disk calcifications were analyzed. In the majority of these patients (31 of 33) a diagnosis of "idiopathic" calcifications had been made, the cervical localization of the lesions being related to repeated ORL infections and/or trauma. A pre-existing pathologic factor was found in two cases (one child with juvenile rheumatoid arthritis treated by corticoids and one child with Williams and Van Beuren's syndrome). An uncomplicated course was noted in 31 cases, the symptomatology (pain, spinal stiffness and febricula) improving after several days. Complications developed in two cases: one child had very disabling dysphagia due to an anteriorly protruding cervical herniated disc and surgery was necessary; the other child developed cervicobrachial neuralgia due to herniated disc protrusion into the cervical spinal canal, but symptoms regressed within several days although calcifications persisted unaltered. These findings and the course of the rare complications documented in the literature suggest the need for the most conservative treatment possible in cases of disc calcifications in children. PMID:4032343

  1. Disk storage at CERN

    CERN Document Server

    Mascetti, L; Chan, B; Espinal, X; Fiorot, A; Labrador, H Gonz; Iven, J; Lamanna, M; Presti, G Lo; Mościcki, JT; Peters, AJ; Ponce, S; Rousseau, H; van der Ster, D

    2015-01-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  2. Disk storage at CERN

    Science.gov (United States)

    Mascetti, L.; Cano, E.; Chan, B.; Espinal, X.; Fiorot, A.; González Labrador, H.; Iven, J.; Lamanna, M.; Lo Presti, G.; Mościcki, JT; Peters, AJ; Ponce, S.; Rousseau, H.; van der Ster, D.

    2015-12-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  3. Water in protoplanetary disks : Line flux modeling and disk structure

    NARCIS (Netherlands)

    Antonellini, Stefano

    2016-01-01

    Protoplanetary disks are the places in which planets form around young stars. These environments consist of dust and gas mainly in forms of molecules. Simple and abundant molecules such as water, carbon monoxide, ammonia, play an important role in the disk thermal balance, and allow also observers t

  4. Star formation in gravitationally unstable disk galaxies: From clouds to disks

    Science.gov (United States)

    Goldbaum, Nathan J.

    In Part I, I examine the dynamics of giant molecular clouds through simplified semianalytic models. I focus on the growth of clouds as they accrete gas. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds: clouds attain virial equilibrium and grow maintaining roughly constant surface densities, Sigma ≃ 50--200 M[special character omitted]pc-2 and that clouds grow along the well-known linewidth-size relation. We compare our models to observations of giant molecular clouds and associated young star clusters in the Large Magellanic Cloud, finding good agreement between our models and the relationship between H ii regions, young star clusters, and giant molecular clouds. The role of gravitational-instability driven turbulence in determining the structure and evolution of disk galaxies, and the extent to which gravity rather than feed- back can explain galaxy properties, remains an open question. To address it, in Part II I present high resolution adaptive mesh refinement simulations of Milky Way-like isolated disk galaxies, including realistic heating and cooling rates and a physically motivated prescription for star formation. The simulations resolve densities typical of the transition from atomic to molecular hydrogen, capturing the formation of gravitationally bound clouds. We present simulations both with and without stellar feedback from Type II supernova blast waves. We find gravitational instability alone can drive substantial turbulence in galactic disks and reproduce some properties of nearby star forming galaxies: Qtotal [special character omitted] 1, ceff ˜ 10 km/s, without stellar feedback. Including feedback produces an ISM with a structure similar to observed disks, with the bulk of the gas in the warm or cold atomic phase, and the remainder locked up in short-lived gravitationally bound clouds. We investigate radial flows of gas and find that radial migration of gas due to gravitational instability can

  5. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  6. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find th

  7. Detection of precessing circumpulsar disks

    CERN Document Server

    Grimani, C

    2014-01-01

    Experimental evidences indicate that formations of disks and planetary systems around pulsars are allowed. Unfortunately, direct detections through electromagnetic observations appear to be quite rare. In the case of PSR 1931+24, the hypothesis of a rigid precessing disk penetrating the pulsar light cylinder is found consistent with radio transient observations from this star. Disk self-occultation and precession may limit electromagnetic observations. Conversely, we show here that gravitational waves generated by disk precessing near the light cylinder of young and middle aged pulsars would be detected by future space interferometers with sensitivities like those expected for DECIGO (DECI-hertz Interferometer Gravitational Wave Observatory) and BBO (Big Bang Observer). The characteristics of circumpulsar detectable precessing disks are estimated as a function of distance from the Solar System. Speculations on upper limits to detection rates are presented.

  8. A Disk Scheduling Algorithm: SPFF

    Institute of Scientific and Technical Information of China (English)

    HU Ming

    2005-01-01

    We put forward an optimal disk schedule with n disk requests and prove its optimality mathematically. Generalizing the idea of an optimal disk schedule, we remove the limit of n requests and, at the same time, consider the dynamically arrival model of disk requests to obtain an algorithm, shortest path first-fit first (SPFF). This algorithm is based on the shortest path of disk head motion constructed by all the pendent requests. From view of the head-moving distance, it has the stronger globality than SSTF. From view of the head-moving direction, it has the better flexibility than SCAN. Therefore, SPFF keeps the advantage of SCAN and, at the same time, absorbs the strength of SSTF. The algorithm SPFF not only shows the more superiority than other scheduling polices, but also have higher adjustability to meet the computer system's different demands.

  9. Physical processes in protoplanetary disks

    CERN Document Server

    Armitage, Philip J

    2015-01-01

    This review introduces physical processes in protoplanetary disks relevant to accretion and the initial stages of planet formation. After reprising the elementary theory of disk structure and evolution, I discuss the gas-phase physics of angular momentum transport through turbulence and disk winds, and how this may be related to episodic accretion observed in Young Stellar Objects. Turning to solids, I review the evolution of single particles under aerodynamic forces, and describe the conditions necessary for the development of collective gas-particle instabilities. Observations show that disks are not always radially smooth axisymmetric structures, and I discuss how gas and particle processes can interact to form observable large-scale structure (at ice lines, vortices and in zonal flows). I conclude with disk dispersal.

  10. Debris Disks and Hidden Planets

    Science.gov (United States)

    Kuchner, Marc

    2008-01-01

    When a planet orbits inside a debris disk like the disk around Vega or Beta Pictoris, the planet may be invisible, but the patterns it creates in the disk may give it away. Observing and decoding these patterns may be the only way we can detect exo-Neptunes orbiting more than 20 AU from their stars, and the only way we can spot planets in systems undergoing the late stages of planet formation. Fortunately, every few months, a new image of a debris disk appears with curious structures begging for explanation. I'll describe some new ideas in the theory of these planet-disk interactions and provide a buyers guide to the latest models (and the planets they predict).

  11. The opacity of spiral galaxy disks : IX. Dust and gas surface densities

    NARCIS (Netherlands)

    Holwerda, B. W.; Allen, R. J.; de Blok, W. J. G.; Bouchard, A.; Gonzalez-Lopezlira, R. A.; van der Kruit, P. C.; Leroy, A.

    2013-01-01

    Our aim is to explore the relation between gas, atomic and molecular, and dust in spiral galaxies. Gas surface densities are from atomic hydrogen and CO line emission maps. To estimate the dust content, we use the disk opacity as inferred from the number of distant galaxies identified in twelve HST/

  12. TRANSITIONAL DISKS AROUND YOUNG LOW MASS STARS

    Directory of Open Access Journals (Sweden)

    P. D'Alessio

    2009-01-01

    have been interpreted as produced by disks with inner holes, which have been classi ed as \\Transitional Disks". These disks are considered the evolutionary link between the full disks typically found around the young T Tauri and Herbig Ae stars, and the debris disks, found around some main sequence stars. In this contribution we summarize the observed/inferred characteristics of these transitional disks and also some of the models proposed to explain their peculiar geometry.

  13. Accretion of solid materials onto circumplanetary disks from protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Takayuki [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Maruta, Akito; Machida, Masahiro N., E-mail: tanigawa@pop.lowtem.hokudai.ac.jp [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

    2014-04-01

    We investigate the accretion of solid materials onto circumplanetary disks from heliocentric orbits rotating in protoplanetary disks, which is a key process for the formation of regular satellite systems. In the late stage of the gas-capturing phase of giant planet formation, the accreting gas from protoplanetary disks forms circumplanetary disks. Since the accretion flow toward the circumplanetary disks affects the particle motion through gas drag force, we use hydrodynamic simulation data for the gas drag term to calculate the motion of solid materials. We consider a wide range of size for the solid particles (10{sup –2}-10{sup 6} m), and find that the accretion efficiency of the solid particles peaks around 10 m sized particles because energy dissipation of drag with circum-planetary disk gas in this size regime is most effective. The efficiency for particles larger than 10 m becomes lower because gas drag becomes less effective. For particles smaller than 10 m, the efficiency is lower because the particles are strongly coupled with the background gas flow, which prevents particles from accretion. We also find that the distance from the planet where the particles are captured by the circumplanetary disks is in a narrow range and well described as a function of the particle size.

  14. The formation of massive primordial stars in rapidly rotating disks

    CERN Document Server

    Latif, M A

    2014-01-01

    Massive primordial halos exposed to moderate UV backgrounds are the potential birthplaces of very massive stars or even supermassive black holes. In such a halo, an initially isothermal collapse will occur, leading to high accretion rates of $\\sim0.1$~M$_\\odot$~yr$^{-1}$. During the collapse, the gas in the interior will turn into a molecular state, and form an accretion disk due to the conservation of angular momentum. We consider here the structure of such an accretion disk and the role of viscous heating in the presence of high accretion rates for a central star of $10$, $100$ and $10^4$~M$_\\odot$. Our results show that the temperature in the disk increases considerably due to viscous heating, leading to a transition from the molecular to the atomic cooling phase. We found that the atomic cooling regime may extend out to several $100$~AU for a $10^4$~M$_\\odot$ central star and provides substantial support to stabilize the disk. It therefore favors the formation of a massive central object. The comparison o...

  15. DiskJockey: Protoplanetary disk modeling for dynamical mass derivation

    Science.gov (United States)

    Czekala, Ian

    2016-03-01

    DiskJockey derives dynamical masses for T Tauri stars using the Keplerian motion of their circumstellar disks, applied to radio interferometric data from the Atacama Large Millimeter Array (ALMA) and the Submillimeter Array (SMA). The package relies on RADMC-3D (ascl:1202.015) to perform the radiative transfer of the disk model. DiskJockey is designed to work in a parallel environment where the calculations for each frequency channel can be distributed to independent processors. Due to the computationally expensive nature of the radiative synthesis, fitting sizable datasets (e.g., SMA and ALMA) will require a substantial amount of CPU cores to explore a posterior distribution in a reasonable timeframe.

  16. Determining protoplanetary disk gas masses from CO isotopologues line observations

    Science.gov (United States)

    Miotello, A.; van Dishoeck, E. F.; Kama, M.; Bruderer, S.

    2016-10-01

    Context. Despite intensive studies of protoplanetary disks, there is still no reliable way to determine their total (gast+dust) mass and their surface density distribution, quantities that are crucial for describing both the structure and the evolution of disks up to the formation of planets. Aims: The goal of this work is to use less-abundant CO isotopologues, such as 13CO, C18O and C17O, detection of which is routine for ALMA, to infer the gas mass of disks. Isotope-selective effects need to be taken into account in the analysis, because they can significantly modify CO isotopologues' line intensities. Methods: CO isotope-selective photodissociation has been implemented in the physical-chemical code DALI (Dust And LInes) and more than 800 disk models have been run for a range of disk and stellar parameters. Dust and gas temperature structures have been computed self-consistently, together with a chemical calculation of the main atomic and molecular species. Both disk structure and stellar parameters have been investigated by varying the parameters in the grid of models. Total fluxes have been ray-traced for different CO isotopologues and for various low J-transitions for different inclinations. Results: A combination of 13CO and C18O total intensities allows inference of the total disk mass, although with non-negligible uncertainties. These can be overcome by employing spatially resolved observations, that is the disk's radial extent and inclination. Comparison with parametric models shows differences at the level of a factor of a few, especially for extremely low and high disk masses. Finally, total line intensities for different CO isotopologue and for various low-J transitions are provided and are fitted to simple formulae. The effects of a lower gas-phase carbon abundance and different gas-to-dust ratios are investigated as well, and comparison with other tracers is made. Conclusions: Disk masses can be determined within a factor of a few by comparing CO

  17. Magneto-thermal Disk Wind from Protoplanetary Disks

    CERN Document Server

    Bai, Xue-Ning; Goodman, Jeremy; Yuan, Feng

    2015-01-01

    Global evolution and dispersal of protoplanetary disks (PPDs) is governed by disk angular momentum transport and mass-loss processes. Recent numerical studies suggest that angular momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a 1D model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on 1) the magnetic field strength at the wind base, characterized by the poloidal Alfv\\'en speed $v_{Ap}$, 2) the sound speed $c_s$ near the wind base, and 3) how rapidly poloidal field lines diverge (achieve $R^{-2}$ scaling). When $v_{Ap}\\gg c_s$, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accel...

  18. Chandra High Resolution Spectroscopy of the Circumnuclear Matter in the Broad Line Radio Galaxy, 3C 445

    Science.gov (United States)

    Reeves, J. N.; Gofford, J.; Braito, V.; Sambruna, R.

    2010-01-01

    We present evidence for X-ray line emitting and absorbing gas in the nucleus of the Broad-Line Radio Galaxy (BLRG), 3C445. A 200 ks Chandra LETG observation of 3C 445 reveals the presence of several highly ionized emission lines in the soft X-ray spectrum, primarily from the He and H-like ions of O, Ne, Mg and Si. Radiative recombination emission is detected from O VII and O VIII, indicating that the emitting gas is photoionized. The He-like emission appears to be resolved into forbidden and intercombination line components, which implies a high density of greater than 10(sup 10) cm(sup -3), while the lines are velocity broadened with a mean width of 2600 km s(sup -1). The density and widths of the ionized lines indicate an origin of the gas on sub-parsec scales in the Broad Line Region (BLR). The X-ray continuum of 3C 445 is heavily obscured by a photoionized absorber of column density N(sub H) = 2 x 10(sup 23) cm(sup -2) and ionization parameter log xi = 1.4 erg cm s(sup -1). However the view of the X-ray line emission is unobscured, which requires the absorber to be located at radii well within any parsec scale molecular torus. Instead we suggest that the X-ray absorber in 3C 445 may be associated with an outflowing, but clumpy accretion disk wind, with an observed outflow velocity of approximately 10000 km s(sup -1).

  19. Chandra High-resolution Spectroscopy of the Circumnuclear Matter in the Broad-line Radio Galaxy 3C 445

    Science.gov (United States)

    Reeves, J. N.; Gofford, J.; Braito, V.; Sambruna, R.

    2010-12-01

    We present evidence for X-ray line emitting and absorbing gas in the nucleus of the broad-line radio galaxy 3C 445. A 200 ks Chandra Low Energy Transmission Grating observation of 3C 445 reveals the presence of several highly ionized emission lines in the soft X-ray spectrum, primarily from the He- and H-like ions of O, Ne, Mg, and Si. Radiative recombination emission is detected from O VII and O VIII, indicating that the emitting gas is photoionized. The He-like emission appears to be resolved into forbidden and intercombination line components, which implies a high density of >1010 cm-3, while the oxygen lines are velocity broadened with a mean width of ~2600 km s-1 (FWHM). The density and widths of the ionized lines indicate an origin of the gas on sub-parsec scales in the broad-line region. The X-ray continuum of 3C 445 is heavily obscured either by a partial coverer or by a photoionized absorber of column density N H = 2 × 1023 cm-2 and ionization parameter log ξ = 1.4 erg cm s-1. However, the view of the X-ray line emission is unobscured, which requires the absorber to be located at radii well within any parsec-scale molecular torus. Instead we suggest that the X-ray absorber in 3C 445 may be associated with an outflowing but clumpy accretion disk wind, with an observed outflow velocity of ~10, 000 km s-1.

  20. Disk evolution: dust and gas*

    Directory of Open Access Journals (Sweden)

    Dominik Carsten

    2015-01-01

    Full Text Available Disks are a natural by-product of start formation. Just like the formation if a star is a lengthy process that goes through many stages, disks around young stars evolve my processing matter through the disk and dumping it onto the star. The solid and gaseous components of disks do not always evolve together - dust-gas separation can take place, dust grains may grow. In this chapter we attempt a brief overview of processes that shape this evolution, in a way that is useful as a background to the other chapters in this lecture series. As such, the chapter does not aim for completeness or being up to date with some of the most recent developments.

  1. Gravitational Instabilities in Circumstellar Disks

    CERN Document Server

    Kratter, Kaitlin M

    2016-01-01

    [Abridged] Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability, and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability, supplemented with a survey of numerical simulations that aim to capture the non-linear evolution. We emphasize the role of thermodynamics and large scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analyt...

  2. Resolved observations of transition disks

    CERN Document Server

    Casassus, Simon

    2016-01-01

    Resolved observations are bringing new constraints on the origin of radial gaps in protoplanetary disks. The kinematics, sampled in detail in one case-study, are indicative of non-Keplerian flows, corresponding to warped structures and accretion which may both play a role in the development of cavities. Disk asymmetries seen in the radio continuum are being interpreted in the context of dust segregation via aerodynamic trapping. We summarise recent observational progress, and also describe prospects for improvements in the near term.

  3. Gravitational Instabilities in Circumstellar Disks

    Science.gov (United States)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  4. Planet-Disk Interaction revisited

    OpenAIRE

    Illenseer T. F.; Jung Manuel; Duschl W. J.

    2013-01-01

    We present results on our investigations of planet–disk interaction in protoplanetary disks. For the hydrodynamic simulations we use a second order semi–discrete total variation diminishing (TVD) scheme for systems of hyperbolic conservation laws on curvilinear grids. Our previously used method conserves the momentum in two dimensional systems with rotational symmetry. Additionally, we modified our simulation techniques for inertial angular momentum conservation even in two dimensional ...

  5. Collisional Grooming of Debris Disks

    CERN Document Server

    Kuchner, Marc J

    2009-01-01

    Debris disk images show clumps, rings, warps, and other structures, many of which have been interpreted as perturbations from hidden planets. But so far, no models of these structures have properly accounted for collisions between dust grains. We have developed new steady-state 3D models of debris disks that self-consistently incorporate grain-grain collisions. We summarize our algorithm and use it to illustrate how collisions interact with resonant trapping in the presence of a planet.

  6. Jets from magnetized accretion disks

    Science.gov (United States)

    Matsumoto, Ryoji

    When an accretion disk is threaded by large scale poloidal magnetic fields, the injection of magnetic helicity from the accretion disk drives bipolar outflows. We present the results of global magnetohydrodynamic (MHD) simulations of jet formation from a torus initially threaded by vertical magnetic fields. After the torsional Alfvén waves generated by the injected magnetic twists propagate along the large-scale magnetic field lines, magnetically driven jets emanate from the surface of the torus. Due to the magnetic pinch effect, the jets are collimated along the rotation axis. Since the jet formation process extracts angular momentum from the disk, it enhances the accretion rate of the disk material. Through three-dimensional (3D) global MHD simulations, we confirmed previous 2D results that the magnetically braked surface of the disk accretes like an avalanche. Owing to the growth of non-axisymmetric perturbations, the avalanche flow breaks up into spiral channels. Helical structure also appears inside the jet. When magnetic helicity is injected into closed magnetic loops connecting the central object and the accretion disk, it drives recurrent magnetic reconnection and outflows.

  7. Disk eccentricity and embedded planets

    CERN Document Server

    Kley, W; Kley, Wilhelm; Dirksen, Gerben

    2005-01-01

    We investigate the response of an accretion disk to the presence of a perturbing protoplanet embedded in the disk through time dependent hydrodynamical simulations. The disk is treated as a two-dimensional viscous fluid and the planet is kept on a fixed orbit. We run a set of simulations varying the planet mass, and the viscosity and temperature of the disk. All runs are followed until they reach a quasi-equilibrium state. We find that for planetary masses above a certain minimum mass, already 3 M_Jup for a viscosity of nu = 10^{-5}, the disk makes a transition from a nearly circular state into an eccentric state. Increasing the planetary mass leads to a saturation of disk eccentricity with a maximum value of around 0.25. The transition to the eccentric state is driven by the excitation of an m=2 spiral wave at the outer 1:3 Lindblad resonance. The effect occurs only if the planetary masses are large enough to clear a sufficiently wide and deep gap to reduce the damping effect of the outer 1:2 Lindblad resona...

  8. Physically Consistent Protoplanetary Disk Models

    Science.gov (United States)

    Calvet, Nuria

    2002-07-01

    We propose to make our physically consistent models for protoplanetary disks, which are the most detailed so far, available to the community. We propose to make available two types of models. First, we will construct a complete grid of models where dust and gas are well mixed throughout the disks, which are relevant for the youngest, less evolved objects. Then, we propose to advance in our present modeling efforts to include the effects of dust coagulation and settling towards the midplane on the structure and the emission of the disks. With our results, we propose to create a Web-based library of disk model results, including both scattered light images, as observed by the imaging detectors of HST, and far infrared to millimeter spectral energy distributions, to provide the community with the tools required for a comprehensive interpretation of protoplanetary disk data. Our proposed effort will provide the Star Formation users of HST with a powerful tool to best interpret their data and obtain key results for protoplanetary disk evolution.

  9. Disks around young stellar objects

    Indian Academy of Sciences (India)

    H C Bhatt

    2011-07-01

    By 1939, when Chandrasekhar’s classic monograph on the theory of Stellar Structure was published, although the need for recent star formation was fully acknowledged, no one had yet recognized an object that could be called a star in the process of being born. Young stellar objects (YSOs), as pre-main-sequence stars, were discovered in the 1940s and 1950s. Infrared excess emission and intrinsic polarization observed in these objects in the 1960s and 1970s indicated that they are surrounded by flattened disks. The YSO disks were seen in direct imaging only in the 1980s. Since then, high-resolution optical imaging with HST, near-infrared adaptive optics on large groundbased telescopes, mm and radiowave interferometry have been used to image disks around a large number of YSOs revealing disk structure with ever-increasing detail and variety. The disks around YSOs are believed to be the sites of planet formation and a few such associations have now been confirmed. The observed properties of the disk structure and their evolution, that have very important consequences for the theory of star and planet formation, are discussed.

  10. Relativistic Self-similar Disks

    CERN Document Server

    Cai, M J; Cai, Mike J.; Shu, Frank H.

    2002-01-01

    We formulate and solve by semi-analytic means the axisymmetric equilibria of relativistic self-similar disks of infinitesimal vertical thickness. These disks are supported in the horizontal directions against their self-gravity by a combination of isothermal (two-dimensional) pressure and a flat rotation curve. The dragging of inertial frames restricts possible solutions to rotation speeds that are always less than 0.438 times the speed of light, a result first obtained by Lynden-Bell and Pineault in 1978 for a cold disk. We show that prograde circular orbits of massive test particles exist and are stable for all of our model disks, but retrograde circular orbits cannot be maintained with particle velocities less than the speed of light once the disk develops an ergoregion. We also compute photon trajectories, planar and non-planar, in the resulting spacetime, for disks with and without ergoregions. We find that all photon orbits, except for a set of measure zero, tend to be focused by the gravity of the flat...

  11. Global Models for Embedded, Accreting Protostellar Disks

    CERN Document Server

    Kratter, Kaitlin M; Krumholz, Mark R

    2007-01-01

    Most analytic work to date on protostellar disks has focused on disks in isolation from their environments. However, observations are now beginning to probe the earliest, most embedded phases of star formation, during which disks are rapidly accreting from their parent cores and cannot be modeled in isolation. We present a simple, one-zone model of protostellar accretion disks with high mass infall rates. Our model combines a self-consistent calculation of disk temperatures with an approximate treatment of angular momentum transport via several mechanisms. We use this model to survey the properties of protostellar disks across a wide range of stellar masses and evolutionary times, and make predictions for disks' masses, sizes, spiral structure, and fragmentation that will be directly testable by future large-scale surveys of deeply embedded disks. We define a dimensionless accretion-rotation parameter which, in conjunction with the disk's temperature, controls the disk evolution. We track the dominant mode of...

  12. Magneto-thermal Disk Winds from Protoplanetary Disks

    Science.gov (United States)

    Bai, Xue-Ning; Ye, Jiani; Goodman, Jeremy; Yuan, Feng

    2016-02-01

    The global evolution and dispersal of protoplanetary disks (PPDs) are governed by disk angular-momentum transport and mass-loss processes. Recent numerical studies suggest that angular-momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a one-dimensional model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on (1) the magnetic field strength at the wind base, characterized by the poloidal Alfvén speed vAp, (2) the sound speed cs near the wind base, and (3) how rapidly poloidal field lines diverge (achieve {R}-2 scaling). When {v}{Ap}\\gg {c}{{s}}, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect vAp to be comparable to cs at the wind base. The resulting wind is heavily loaded, with a total wind mass-loss rate likely reaching a considerable fraction of the wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.

  13. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap

    2013-04-01

    We give exact and approximation algorithms for two-center problems when the input is a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in D intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. © 2012 Elsevier B.V.

  14. Tissue Engineering for Intervertebral Disk Degeneration

    OpenAIRE

    Leung, VYL; Chan, D; Chan, BP; Cheung, KMC; Tam, V

    2011-01-01

    Many challenges confront intervertebral disk engineering owing to complexity and the presence of extraordinary stresses. Rebuilding a disk of native function could be useful for removal of the symptoms and correction of altered spine kinematics. Improvement in understanding of disk properties and techniques for disk engineering brings promise to the fabrication of a functional motion segment for the treatment of disk degeneration. Increasing sophistication of techniques available in biomedica...

  15. Nonlinear resonant traveling waves in rotating disks

    Institute of Scientific and Technical Information of China (English)

    AlbertC.J.LUO; ChinAnTAN

    2000-01-01

    The resonant conditions for traveling waves in rotating disks are derived. The nonlinear resonant spectrum of a rotating disk is computed from the resonant conditions.Such a resonant spectrum is useful for the disk drive industry to determine the range of operational rotation speed. The resonant wave motions for linear and nonlinear, rotating disks are simulated numerically for a 3.5-inch diameter computer memory disk.

  16. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap

    2011-01-01

    We consider new versions of the two-center problem where the input consists of a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. We give exact and approximation algorithms for these versions. © 2011 Springer-Verlag.

  17. Atom Chips

    CERN Document Server

    Folman, R; Cassettari, D; Hessmo, B; Maier, T; Schmiedmayer, J; Folman, Ron; Krüger, Peter; Cassettari, Donatella; Hessmo, Björn; Maier, Thomas

    1999-01-01

    Atoms can be trapped and guided using nano-fabricated wires on surfaces, achieving the scales required by quantum information proposals. These Atom Chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems.

  18. Radio monitoring of NGC 7469: late-time radio evolution of SN 2000ft and the circumnuclear starburst in NGC 7469

    Science.gov (United States)

    Pérez-Torres, M. A.; Alberdi, A.; Colina, L.; Torrelles, J. M.; Panagia, N.; Wilson, A.; Kankare, E.; Mattila, S.

    2009-11-01

    We present the results of an eight-year long monitoring of the radio emission from the luminous infrared galaxy (LIRG) NGC 7469, using 8.4 GHz Very Large Array (VLA) observations at 0.3 arcsec resolution. Our monitoring shows that the late-time evolution of the radio supernova (RSN) SN 2000ft follows a decline very similar to that displayed at earlier times of its optically thin phase. The late-time radio emission of SN 2000ft is, therefore, still being powered by its interaction with the pre-SN stellar wind, and not with the interstellar medium (ISM). Indeed, the ram pressure of the pre-SN wind is ρwv2w ~ 7.6 × 10-9dyncm-2, at a SN age of t ~ 2127 d, which is significantly larger than the expected pressure of the ISM around SN 2000ft. At this age, the SN shock has reached a distance rsh ~ 0.06 pc, and our observations are probing the interaction of the SN with dense material that was ejected by the pre-SN star about 5820yr prior to its explosion. From our VLA monitoring, we estimate that the swept-up mass by the SN shock after about six years of expansion is Msw ~ 0.29Msolar, assuming an average expansion speed of the SN of 104km s-1. We also searched for recently exploded core-collapse SNe in our VLA images. Apart from SN 2000ft (Sν ~ 1760μJy at its peak, corresponding to 1.1 × 1028ergs-1Hz-1), we found no evidence for any other RSN more luminous than ~6.0 × 1026ergs-1Hz-1, which suggests that no other Type IIn SN has exploded since 2000 in the circumnuclear starburst of NGC 7469.

  19. Ultrafast disk lasers and amplifiers

    Science.gov (United States)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  20. Disk Instabilities and Cooling Fronts

    CERN Document Server

    Vishniac, E T

    1998-01-01

    Accretion disk outbursts, and their subsequent decline, offer a unique opportunity to constrain the physics of angular momentum transport in hot accretion disks. Recent work has centered on the claim by Cannizzo et al. that the exponential decay of luminosity following an outburst in black hole accretion disk systems is only consistent with a particular form for the dimensionless viscosity, $\\alpha=35(c_s/r\\Omega)^{3/2}$. This result can be understood in terms of a simple model of the evolution of cooling fronts in accretion disks. In particular, the cooling front speed during decline is $\\sim cooling front, and the exact value of $n$ depends on the hot state opacity, (although generally $n\\approx 1/2$). Setting this speed proportional to $r$ constrains the functional form of $\\alpha$ in the hot phase of the disk, which sets it apart from previous arguments based on the relative durations of outburst and quiescence. However, it remains uncertain how well we know the exponent $n$. In addition, more work is nee...

  1. Barred disks in dense environments

    CERN Document Server

    Marinova, I; Heiderman, A; Barazza, F D; Gray, M E; Barden, M; Wolf, C; Peng, C Y; Bacon, D; Balogh, M; Bell, E F; Bohm, A; Caldwell, J A R; Haussler, B; Heymans, C; Jahnke, K; van Kampen, E; Koposov, S; Lane, K; McIntosh, D H; Meisenheimer, K; Rix, H -W; Sanchez, S F; Taylor, A; Wisotzki, L; Zheng, X

    2010-01-01

    We investigate the properties of bright (MV <= -18) barred and unbarred disks in the Abell 901/902 cluster system at z~0.165 with the STAGES HST ACS survey. To identify and characterize bars, we use ellipse-fitting. We use visual classification, a Sersic cut, and a color cut to select disk galaxies, and find that the latter two methods miss 31% and 51%, respectively of disk galaxies identified through visual classification. This underscores the importance of carefully selecting the disk sample in cluster environments. However, we find that the global optical bar fraction in the clusters is ~30% regardless of the method of disk selection. We study the relationship of the optical bar fraction to host galaxy properties, and find that the optical bar fraction depends strongly on the luminosity of the galaxy and whether it hosts a prominent bulge or is bulgeless. Within a given absolute magnitude bin, the optical bar fraction increases for galaxies with no significant bulge component. Within each morphological ...

  2. An Observational Perspective of Transitional Disks

    CERN Document Server

    Espaillat, Catherine; Najita, Joan; Andrews, Sean; Zhu, Zhaohuan; Calvet, Nuria; Kraus, Stefan; Hashimoto, Jun; Kraus, Adam; D'Alessio, Paola

    2014-01-01

    Transitional disks are objects whose inner disk regions have undergone substantial clearing. The Spitzer Space Telescope produced detailed spectral energy distributions (SEDs) of transitional disks that allowed us to infer their radial dust disk structure in some detail, revealing the diversity of this class of disks. The growing sample of transitional disks also opened up the possibility of demographic studies, which provided unique insights. There now exist (sub)millimeter and infrared images that confirm the presence of large clearings of dust in transitional disks. In addition, protoplanet candidates have been detected within some of these clearings. Transitional disks are thought to be a strong link to planet formation around young stars and are a key area to study if further progress is to be made on understanding the initial stages of planet formation. Here we provide a review and synthesis of transitional disk observations to date with the aim of providing timely direction to the field, which is about...

  3. Probing the accretion disk and central engine structure of NGC4258 with Suzaku and XMM-Newton observations

    CERN Document Server

    Reynolds, Christopher S; Markoff, Sera; Tueller, Jack; Wilms, Joern; Young, Andrew J

    2008-01-01

    [abridged] We present an X-ray study of the low-luminosity active galactic nucleus (AGN) in NGC4258 using data from Suzaku, XMM-Newton, and the Swift/BAT survey. We find that signatures of X-ray reprocessing by cold gas are very weak in the spectrum of this Seyfert-2 galaxy; a weak, narrow fluorescent-Kalpha emission line of cold iron is robustly detected in both the Suzaku and XMM-Newton spectra but at a level much below that of most other Seyfert-2 galaxies. We conclude that the circumnuclear environment of this AGN is very "clean" and lacks the Compton-thick obscuring torus of unified Seyfert schemes. From the narrowness of the iron line, together with evidence for line flux variability between the Suzaku and XMM-Newton observations, we constrain the line emitting region to be between $3\\times 10^3r_g$ and $4\\times 10^4r_g$ from the black hole. We show that the observed properties of the iron line can be explained if the line originates from the surface layers of a warped accretion disk. In particular, we ...

  4. The Milky Way's Stellar Disk

    CERN Document Server

    Rix, Hans-Walter

    2013-01-01

    A suite of vast stellar surveys mapping the Milky Way, culminating in the Gaia mission, is revolutionizing the empirical information about the distribution and properties of stars in the Galactic stellar disk. We review and lay out what analysis and modeling machinery needs to be in place to test mechanisms of disk galaxy evolution and to stringently constrain the Galactic gravitational potential, using such Galactic star-by-star measurements. We stress the crucial role of stellar survey selection functions in any such modeling; and we advocate the utility of viewing the Galactic stellar disk as made up from `mono-abundance populations' (MAPs), both for dynamical modeling and for constraining the Milky Way's evolutionary processes. We review recent work on the spatial and kinematical distribution of MAPs, and lay out how further study of MAPs in the Gaia era should lead to a decisively clearer picture of the Milky Way's dark matter distribution and formation history.

  5. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  6. Gas emission from debris disks around A and F stars

    CERN Document Server

    Zagorovsky, Kyryl; Wu, Yanqin

    2010-01-01

    Gas has been detected in a number of debris disk systems. This gas may have arisen from grain sublimation or grain photodesorption. It interacts with the surrounding dust grains through a number of charge and heat exchanges. Studying the chemical composition and physical state of this gas can therefore reveal much about the dust component in these debris disks. We have produced a new code, ontario, to address gas emission from dusty gas-poor disks around A--F stars. This code computes the gas ionization and thermal balance self-consistently, with particular care taken of heating/cooling mechanisms. Line emission spectra are then produced for each species (up to zinc) by statistical equilibrium calculations of the atomic/ionic energy levels. For parameters that resemble the observed beta Pictoris gas disk, we find that the gas is primarily heated by photoelectric emission from dust grains, and primarily cooled through the CII 157.7 micron line emission. The gas can be heated to a temperature that is warmer tha...

  7. Theory of Protostellar Disk Fromation

    Science.gov (United States)

    Li, Zhi-Yun

    2015-08-01

    Disk formation, once thought to be a simple consequence of the conservation of angular momentum during the hydrodynamic core collapse, is far more subtle in magnetized gas. In this case, the rotation can be strongly magnetically braked. Indeed, both analytic arguments and numerical simulations have shown that disk formation is suppressed in strict ideal MHD for the observed level of core magnetization. I will discuss the physical reason for this so-called "magnetic braking catastrophe," and review possible resolutions to this problem that have been proposed so far, including non-ideal MHD effects, misalignment between the magnetic field and rotation axis, and especially turbulence.

  8. The Herschel Cold Debris Disks

    CERN Document Server

    Gaspar, Andras

    2013-01-01

    The Herschel "DUst around NEarby Stars (DUNES)" survey has found a number of debris disk candidates that are apparently very cold, with temperatures near 22K. It has proven difficult to fit their spectral energy distributions with conventional models for debris disks. Given this issue we carefully examine the alternative explanation, that the detections arise from confusion with IR cirrus and/or background galaxies that are not physically associated with the foreground star. We find that such an explanation is consistent with all of these detections.

  9. The chemical evolution of self-gravitating primordial disks

    CERN Document Server

    Schleicher, Dominik R G; Latif, Muhammad A; Ferrara, Andrea; Grassi, Tommaso

    2016-01-01

    Numerical simulations show the formation of self-gravitating primordial disks during the assembly of the first structures in the Universe, in particular during the formation of Pop. III and supermassive stars. Their subsequent evolution is expected to be crucial to determine the mass scale of the first cosmological objects, which depends on the temperature of the gas and the dominant cooling mechanism. Here, we derive a one-zone framework to explore the chemical evolution of such disks and show that viscous heating leads to the collisional dissociation of an initially molecular gas. The effect is relevant on scales of 10 AU (1000 AU) for a central mass of 10 M_solar (10^4 M_solar) at an accretion rate of 0.1 M_solar/yr, and provides a substantial heat input to stabilize the disk. If the gas is initially atomic, it remains atomic during the further evolution, and the effect of viscous heating is less significant. The additional thermal support is particularly relevant for the formation of very massive objects,...

  10. Atom chips

    CERN Document Server

    Reichel, Jakob

    2010-01-01

    This book provides a stimulating and multifaceted picture of a rapidly developing field. The first part reviews fundamentals of atom chip research in tutorial style, while subsequent parts focus on the topics of atom-surface interaction, coherence on atom chips, and possible future directions of atom chip research. The articles are written by leading researchers in the field in their characteristic and individual styles.

  11. Planet-disk interaction and orbital evolution

    CERN Document Server

    Kley, W

    2012-01-01

    As planets form and grow within gaseous protoplanetary disks, the mutual gravitational interaction between the disk and planet leads to the exchange of angular momentum, and migration of the planet. We review current understanding of disk-planet interactions, focussing in particular on physical processes that determine the speed and direction of migration. We describe the evolution of low mass planets embedded in protoplanetary disks, and examine the influence of Lindblad and corotation torques as a function of the disk properties. The role of the disk in causing the evolution of eccentricities and inclinations is also discussed. We describe the rapid migration of intermediate mass planets that may occur as a runaway process, and examine the transition to gap formation and slower migration driven by the viscous evolution of the disk for massive planets. The roles and influence of disk self-gravity and magnetohydrodynamic turbulence are discussed in detail, as a function of the planet mass, as is the evolution...

  12. Vortex migration in protoplanetary disks

    CERN Document Server

    Paardekooper, S -J; Papaloizou, J C B

    2010-01-01

    We consider the radial migration of vortices in two-dimensional isothermal gaseous disks. We find that a vortex core, orbiting at the local gas velocity, induces velocity perturbations that propagate away from the vortex as density waves. The resulting spiral wave pattern is reminiscent of an embedded planet. There are two main causes for asymmetries in these wakes: geometrical effects tend to favor the outer wave, while a radial vortensity gradient leads to an asymmetric vortex core, which favors the wave at the side that has the lowest density. In the case of asymmetric waves, which we always find except for a disk of constant pressure, there is a net exchange of angular momentum between the vortex and the surrounding disk, which leads to orbital migration of the vortex. Numerical hydrodynamical simulations show that this migration can be very rapid, on a time scale of a few thousand orbits, for vortices with a size comparable to the scale height of the disk. We discuss the possible effects of vortex migrat...

  13. Spaceflight optical disk recorder development

    Science.gov (United States)

    Jurczyk, Stephen G.; Hines, Glenn D.; Shull, Thomas A.

    1992-01-01

    Mass memory systems based on rewriteable optical disk media are expected to play an important role in meeting the data system requirements for future NASA spaceflight missions. NASA has established a program to develop a high performance (high rate, large capacity) optical disk recorder focused on use aboard unmanned Earth orbiting platforms. An expandable, adaptable system concept is proposed based on disk drive modules and a modular controller. Drive performance goals are 10 gigabyte capacity, 300 megabit/s transfer rate, 10 exp -12 corrected bit error rate, and 150 millisec access time. This performance is achieved by writing eight data tracks in parallel on both sides of a 14 in. optical disk using two independent heads. System goals are 160 gigabyte capacity, 1.2 gigabits/s data rate with concurrent I/O, 250 millisec access time, and two to five year operating life on orbit. The system can be configured to meet various applications. This versatility is provided by the controller. The controller provides command processing, multiple drive synchronization, data buffering, basic file management, error processing, and status reporting. Technology developments, design concepts, current status including a computer model of the system and a Controller breadboard, and future plans for the Drive and Controller are presented.

  14. Gas Evolution in Protoplanetary Disks

    NARCIS (Netherlands)

    Woitke, Peter; Dent, Bill; Thi, Wing-Fai; Sibthorpe, Bruce; Rice, Ken; Williams, Jonathan; Sicilia-Aguilar, Aurora; Brown, Joanna; Kamp, Inga; Pascucci, Ilaria; Alexander, Richard; Roberge, Aki

    2009-01-01

    This article summarizes a Splinter Session at the Cool Stars XV conference in St. Andrews with 3 review and 4 contributed talks. The speakers have discussed various approaches to understand the structure and evolution of the gas component in protoplanetary disks. These ranged from observational spec

  15. Atomic Physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  16. Non-LTE Sodium Abundance in Galactic Thick- and Thin-Disk Red Giants

    CERN Document Server

    Alexeeva, S A; Mashonkina, L I

    2014-01-01

    We evaluate non-local thermodynamical equilibrium (non-LTE) line formation for neutral sodium in model atmospheres of the 79 red giants using the model atom that incorporates the best available atomic data. The non-LTE abundances of Na were determined from Na I 6154, 6161 \\AA\\ for the 38 stars of the thin disk (15 of them the BaII stars), 15 stars of the thick disk, 13 stars of Hercules stream and 13 transition stars which can be identified with neither thin disk nor thick disk. For Na I 6154, 6161 \\AA\\ non-LTE abundance corrections amount to -0.06 to -0.24 dex depending on stellar parameters. We found no difference in [Na/Fe] abundance between the thick disk and thin disk and the obtained abundances are close to the solar one. We confirmed a weak excess of [Na/Fe] in BaII stars. Stars of the Hercules stream reveal [Na/Fe] abundances close to the solar one. The obtained results can be used to constrain the nucleosynthesis models for Na.

  17. Optimization of the Processing of Mo Disks

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Harvey, James [NorthStar Medical Technologies, LLC, Madison, WI (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The objective of this work is to decrease the processing time for irradiated disks of enriched Mo for the production of 99Mo. Results are given for the dissolution of nonirradiated Mo disks, optimization of the process for large-scale dissolution of sintered disks, optimization of the removal of the main side products (Zr and Nb) from dissolved targets, and dissolution of irradiated Mo disks.

  18. A Note on Bimodal Accretion Disks

    OpenAIRE

    Dullemond, C.P.; Turolla, R.

    1998-01-01

    The existence of bimodal disks is investigated. Following a simple argument based on energetic considerations we show that stationary, bimodal accretion disk models in which a Shakura--Sunyaev disk (SSD) at large radii matches an advection dominated accretion flow (ADAF) at smaller radii are never possible using the standard slim disk approach, unless some extra energy flux is present. The same argument, however, predicts the possibility of a transition from an outer Shapiro--Lightman--Eardle...

  19. Atom interferometry

    International Nuclear Information System (INIS)

    We will first present a development of the fundamental principles of atom interferometers. Next we will discuss a few of the various methods now available to split and recombine atomic De Broglie waves, with special emphasis on atom interferometers based on optical pulses. We will also be particularly concerned with high precision interferometers with long measurement times such those made with atomic fountains. The application of atom interferometry to the measurement of the acceleration due to gravity will be detailed. We will also develop the atom interferometry based on adiabatic transfer and we will apply it to the measurement of the photon recoil in the case of the Doppler shift of an atomic resonance caused by the momentum recoil from an absorbed photon. Finally the outlook of future developments will be given. (A.C.)

  20. Powder metallurgy processing of high strength turbine disk alloys

    Science.gov (United States)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  1. PSOCT studies of intervertebral disk

    Science.gov (United States)

    Matcher, Stephen J.; Winlove, Peter C.; Gangnus, Sergey V.

    2004-07-01

    Polarization-sensitive optical coherence tomography (PSOCT) is an emerging optical imaging technique that is sensitive to the birefringence properties of tissues. It thus has applications in studying the large-scale ordering of collagen fibers within connective tissues. This ordering not only provides useful insights into the relationship between structure and function for various anatomical structures but also is an indicator of pathology. Intervertebral disk is an elastic tissue of the spine and possesses a 3-D collagen structure well suited to study using PSOCT. Since the outer layer of the disk has a lamellar structure with collagen fibers oriented in a trellis-like arrangement between lamellae, the birefringence fast-axis shows pronounced variations with depth, on a spatial scale of about 100 μm. The lamellar thickness varies with age and possibly with disease. We have used a polarisation-sensitive optical coherence tomography system to measure the birefringence properties of freshly excised, hydrated bovine caudal intervertebral disk and compared this with equine flexor tendon. Our results clearly demonstrate the ability of PSOCT to detect the outer three lamellae, down to a depth of at least 700 μm, via discontinuities in the depth-resolved retardance. We have applied a simple semi-empirical model based on Jones calculus to quantify the variation in the fast-axis orientation with depth. Our data and modeling is in broad agreement with previous studies using x-ray diffraction and polarization microscopy applied to histological sections of dehydrated disk. Our results imply that PSOCT may prove a useful tool to study collagen organisation within intervertebral disk in vitro and possibly in vivo and its variation with age and disease.

  2. Optical Disk Formats: A Briefing. ERIC Digest.

    Science.gov (United States)

    Schamber, Linda

    This digest begins with a brief description and review of the development of optical disks. Optical disk formats are then described by capability: Read Only Memory (ROM), Write Once, Read Many (WORM), Interactive (I), and Erasable (E); forms of information (audio, text or data, video or graphics, or a combination); and disk size (most often 12 or…

  3. Growing and moving planets in disks

    NARCIS (Netherlands)

    Paardekooper, Sijme-Jan

    2006-01-01

    Planets form in disks that are commonly found around young stars. The intimate relationship that exists between planet and disk can account for a lot of the exotic extrasolar planetary systems known today. In this thesis we explore disk-planet interaction using numerical hydrodynamical simulations.

  4. Electromagnetic design of a conducting disk

    Energy Technology Data Exchange (ETDEWEB)

    Astakhov, V.I.

    1985-07-01

    Materials are presented which can serve as the basis for calculation of the electromagnetic process occurring in a conducting disk, an important part of many electrical devices. An integral equation is derived for the eddy currents in the disk and the transient electromagnetic process in the disk resulting from a change in applied magnetic field upon switching or disconnection of power sources is calculated.

  5. Thermal radiation from an accretion disk

    OpenAIRE

    Prigara, F. V.

    2003-01-01

    An effect of stimulated radiation processes on thermal radiation from an accretion disk is considered. The radial density waves triggering flare emission and producing quasi-periodic oscillations in radiation from an accretion disk are discussed. It is argued that the observational data suggest the existence of the weak laser sources in a two-temperature plasma of an accretion disk.

  6. Circumplanetary disks around young giant planets: a comparison between core-accretion and disk instability

    CERN Document Server

    Szulágyi, J; Quinn, T

    2016-01-01

    Circumplanetary disks can be found around forming giant planets, regardless of whether core accretion or gravitational instability built the planet. We carried out state-of-the-art hydrodynamical simulations of the circumplanetary disks for both formation scenarios, using as similar initial conditions as possible to unveil possible intrinsic differences in the circumplanetary disk mass and temperature between the two formation mechanisms. We found that the circumplanetary disks mass linearly scales with the circumstellar disk mass. Therefore, in an equally massive protoplanetary disk, the circumplanetary disks formed in the disk instability model can be only a factor of eight more massive than their core-accretion counterparts. On the other hand, the bulk circumplanetary disk temperature differs by more than an order of magnitude between the two cases. The subdisks around planets formed by gravitational instability have a characteristic temperature below 100 K, while the core accretion circumplanetary disks a...

  7. Probing the structure and dynamics of B[e] supergiant stars' disks

    Science.gov (United States)

    Kraus, M.

    2016-08-01

    B[e] supergiants are a group of evolved massive stars in a short-lived transition phase. During this phase, these objects eject large amounts of material, which accumulates in a circumstellar ring or disk-like structure, revolving around the star on Keplerian orbits. In most objects, the disks seem to be stable over many decades. This guarantees these disks as ideal chemical laboratories to study molecule formation and dust condensation. Combining high-resolution optical and infrared spectroscopic data allows to search for emission features that trace the disk structure, kinematics, and chemical composition at different distances from the star. Certain forbidden emission lines of singly ionized or neutral metals, such as [Caii] and [Oi], are ideal tracers for the innermost gaseous (atomic) regions. Farther out, molecules form. While first-overtone bands of carbon monoxide (CO) mark the hot, inner rim of the molecular disk, more molecules are expected to form and to fill the space between the CO emitting region and the dust condensation zone. Observing campaigns have been initiated to search for these molecules and their emission features, in order to construct a global picture of the properties of the disks around B[e] supergiants. This paper presents an overview of the status of our knowledge about the structure and kinematics of B[e] supergiant stars' disks, based on currently available information from different observational tracers.

  8. Two Disk Components from a Gas Rich Disk-Disk Merger

    CERN Document Server

    Brook, C; Kawata, D; Martel, H; Gibson, B K; Brook, Chris; Richard, Simon; Kawata, Daisuke; Martel, Hugo

    2006-01-01

    We employ N-body, smoothed particle hydrodynamical simulations, including detailed treatment of chemical enrichment, to follow a gas-rich merger which results in a galaxy with disk morphology. We trace the kinematic, structural and chemical properties of stars formed before, during, and after the merger. We show that such a merger produces two exponential disk components, with the older, hotter component having a scale-length 20% larger than the later-forming, cold disk. Rapid star formation during the merger quickly enriches the protogalactic gas reservoir, resulting in high metallicities of the forming stars. These stars form from gas largely polluted by Type II supernovae, which form rapidly in the merger-induced starburst. After the merger, a thin disk forms from gas which has had time to be polluted by Type Ia supernovae. Abundance trends are plotted, and we examine the proposal that increased star formation during gas-rich mergers may explain the high alpha-to-iron abundance ratios which exist in the re...

  9. Cold atom reflection from curved magnetic mirrors

    Science.gov (United States)

    Hughes, Ifan G.; Barton, P. A.; Boshier, M. G.; Hinds, Edward A.

    1997-05-01

    Multiple bounces of cold rubidium atoms have been observed for times up to one second in a trap formed by gravity and a 2 cm-diameter spherical mirror made from a sinusoidally magnetized floppy disk. We have studied the dynamics of the atoms bouncing in this trap from several different heights up to 40.5 mm and we conclude that the atoms are reflected specularly and with reflectivity 1.01(3). Slight roughness of the mirror is caused by harmonics in the magnetization of the surface and by discontinuities at the boundaries between recorded tracks. As the next step in this atom optics program we propose using a magnetic mirror to create a 2D atomic gas. We discuss how cold atoms can be loaded into the ground state of a static magnetic potential well that exists above the surface of the mirror as a consequence of the intermediate-field Zeeman effect.

  10. Water in Protoplanetary Disks: Deuteration and Turbulent Mixing

    CERN Document Server

    Furuya, Kenji; Nomura, Hideko; Hersant, Franck; Wakelam, Valentine

    2013-01-01

    We investigate water and deuterated water chemistry in turbulent protoplanetary disks. Chemical rate equations are solved with the diffusion term, mimicking turbulent mixing in vertical direction. Water near the midplane is transported to the disk atmosphere by turbulence and destroyed by photoreactions to produce atomic oxygen, while the atomic oxygen is transported to the midplane and reforms water and/or other molecules. We find that this cycle significantly decreases column densities of water ice at r < 30 AU, where dust temperatures are too high to reform water ice effectively. The radial extent of such region depends on the desorption energy of atomic hydrogen. Our model indicates that water ice could be deficient even outside the sublimation radius. Outside this radius, the cycle decreases the D/H ratio of water ice from 2x10^-2, which is set by the collapsing core model, to 10^-4-10^-2 in 10^6 yr, without significantly decreasing the water ice column density. The resultant D/H ratios depend on the ...

  11. Halo Tracing with Atomic Hydrogen

    CERN Document Server

    Merrifield, M R

    2001-01-01

    This paper reviews the constraints that can be placed on the shapes of disk galaxies' dark halos using the distribution and kinematics of atomic hydrogen. These data indicate that dark halos are close to axisymmetric, with their axes of symmetry co-aligned with their disk axes. They also appear to be oblate, with shortest-to-longest axis ratios displaying quite a broad range of values from ~0.2 to ~0.8. These results are consistent with the predicted shapes of halos in cold dark matter scenarios, but rule out some of the more exotic dark matter candidates. However, the total number of measurements is still depressingly small, and more data are required if halo shape is to become a powerful diagnostic for theories of galaxy formation and evolution.

  12. Melt film formation and disintegration during novel atomization process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Hybrid atomization is a new powder-making method and can produce economically very fine, clean, spherical tin alloy powders with average particle size about 10μm and narrow size distributions. The key concept of hybrid atomization is to control the liquid film formation on disk for fine powder production. Low-pressure gas atomization was utilized to promote the formation of a very thin stable liquid film before centrifugal breakup and give a better preparation for the final disintegration of melts. Besides the breakup ability of the rotating atomizer, the characteristics of liquid film on rotating disk affect the atomization mechanism and results remarkably. The main disintegration mode of melt is the breakup type of liquid film, which depends on the film instability and the atomization ability of the rotating disk. On the other hand, the mean powder size relates closely to the film thickness. The powder size distribution is mainly controlled by the atomization mode and the stability, flow type of liquid film on the rotating disk. A very thin, stable liquid film with long ligaments and a small pitch in LF mode results in very fine uniform tin alloy powders.

  13. Warped circumbinary disks in active galactic nuclei

    International Nuclear Information System (INIS)

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10–2 pc to 10–4 pc for 107 M☉ black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  14. Atomic physics

    International Nuclear Information System (INIS)

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 23Po,2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 23Po level of helium-like krypton

  15. Accretion disks in Algols: progenitors and evolution

    CERN Document Server

    Van Rensbergen, W

    2016-01-01

    There are only a few Algols with measured accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems, narrowing down the initial parameter space. We investigate the origin and evolution of 6 Algol systems with accretion disks to find the initial parameters and evolutionary constraints for them. With a modified binary evolution code, series of close binary evolution are calculated to obtain the best match for observed individual systems. Initial parameters for 6 Algol systems with accretion disks were determined matching both the present system parameters and the observed disk characteristics. When RLOF starts during core hydrogen burning of the donor, the disk lifetime was found to be short. The disk luminosity is comparable to the luminosity of the gainer during a large fraction of the disk lifetime.

  16. Meridional circulation in turbulent protoplanetary disks

    CERN Document Server

    Fromang, Sebastien; Masset, Frederic

    2011-01-01

    Based on viscous disk theory, a number of recent studies have suggested the existence of a large scale meridional circulation in protoplanetary disks. Such a flow could account for the presence of crystalline silicates, among which Calcium and Aluminium-rich Inclusions (CAIs), at large distances from the sun. This paper aims at examining whether such large scale flows exist in turbulent protoplanetary disks. High resolution global hydrodynamical and magnetohydrodynamical numerical simulations of turbulent protoplanetary disks are used to infer the properties of the flow in such disks. By performing hydrodynamic simulations using explicit viscosity, we demonstrate that our numerical setup does not suffer from any numerical artifact. The aforementioned meridional circulation is readily recovered in viscous and laminar disks. In MHD simulations, the magneto-rotational instability drives turbulence in the disks. Averaging out the turbulent fluctuations over long timescale, the results fail to show any large scale...

  17. The Evolving Structure of Galactic Disks

    CERN Document Server

    Martel, H; McGee, S; Gibson, B; Kawata, D; Martel, Hugo; Brook, Chris; Gee, Sean Mc; Gibson, Brad

    2005-01-01

    Observations suggest that the structural parameters of disk galaxies have not changed greatly since redshift 1. We examine whether these observations are consistent with a cosmology in which structures form hierarchically. We use SPH/N-body galaxy-scale simulations to simulate the formation and evolution of Milky-Way-like disk galaxies by fragmentation, followed by hierarchical merging. The simulated galaxies have a thick disk, that forms in a period of chaotic merging at high redshift, during which a large amount of alpha-elements are produced, and a thin disk, that forms later and has a higher metallicity. Our simulated disks settle down quickly and do not evolve much since redshift z~1, mostly because no major mergers take place between z=1 and z=0. During this period, the disk radius increases (inside-out growth) while its thickness remains constant. These results are consistent with observations of disk galaxies at low and high redshift.

  18. Regression of lumbar disk herniation

    Directory of Open Access Journals (Sweden)

    G. Yu Evzikov

    2015-01-01

    Full Text Available Compression of the spinal nerve root, giving rise to pain and sensory and motor disorders in the area of its innervation is the most vivid manifestation of herniated intervertebral disk. Different treatment modalities, including neurosurgery, for evolving these conditions are discussed. There has been recent evidence that spontaneous regression of disk herniation can regress. The paper describes a female patient with large lateralized disc extrusion that has caused compression of the nerve root S1, leading to obvious myotonic and radicular syndrome. Magnetic resonance imaging has shown that the clinical manifestations of discogenic radiculopathy, as well myotonic syndrome and morphological changes completely regressed 8 months later. The likely mechanism is inflammation-induced resorption of a large herniated disk fragment, which agrees with the data available in the literature. A decision to perform neurosurgery for which the patient had indications was made during her first consultation. After regression of discogenic radiculopathy, there was only moderate pain caused by musculoskeletal diseases (facet syndrome, piriformis syndrome that were successfully eliminated by minimally invasive techniques. 

  19. A Pulsar and a Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  20. The Earliest Stage of Planet Formation: Disk-Planet Interactions in Protoplanetary Disks and Observations of Transitional Disks

    Science.gov (United States)

    Dong, Ruobing; Rafikov, R.; Stone, J. M.; Hartmann, L. W.; SEEDS Team

    2013-01-01

    I will first talk about numerical simulations of disk-planet interactions in protoplanetary disks. Particularly, I’ll discuss the damping of the density waves excited by planets due to the nonlinearity in their propagation, which can result in gap opening in a low viscosity disk by low mass planets. I'll also discuss the effects of various numerical algorithms and parameters in simulations of disk-planet interaction, and address the question of how to produce correct simulations. Then I’ll move on to recent Subaru observations of transitional disks, which are protoplanetary disks with central depleted regions (cavities). Several ideas on the formation of transitional disks have been proposed, including gaps opened by planet(s). Recently, Subaru directly imaged a number of such disks at near infrared (NIR) wavelengths (the SEEDS project) with high spatial resolution and small inner working angles. Using radiative transfer simulations, we study the structure of transitional disks by modeling the NIR images, the SED, and the sub-mm observations from literature (whenever available) simultaneously. We obtain physical disk+cavity structures, and constrain the spatial distribution of the dust grains, particularly inside the cavity and at the cavity edge. Interestingly, we find that in some cases cavities are not present in the scattered light. In such cases we present a new transitional disk model to simultaneously account for all observations. Decoupling between the sub-um-sized and mm-sized grains inside the cavity is required, which may necessitate the dust filtration mechanism. For another group of transitional disks in which Subaru does reveal the cavities at NIR, we focus on whether grains at different sizes have the same spatial distribution or not. We use our modeling results to constrain transitional disk formation theories, particularly to comment on their possible planets origin.

  1. Powerful, Rotating Disk Winds from Stellar-mass Black Holes

    OpenAIRE

    Miller, J. M.; Fabian, A. C.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Raymond, J.; Reynolds, C. S.

    2015-01-01

    We present an analysis of ionized X-ray disk winds observed in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe XXV line is found to be shaped by contributions from the intercombination line...

  2. Atomic physics

    CERN Document Server

    Born, Max

    1989-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  3. Thin disk lasers: history and prospects

    Science.gov (United States)

    Speiser, Jochen

    2016-04-01

    During the early 1990s, collaboration between the German Aerospace Center and the University of Stuttgart started to work on the Thin Disk concept. The core idea behind the thin disk design is the use of a thin, disk-shaped active medium that is cooled through one of the flat faces of the disk. This ensures a large surface-to-volume ratio and therefore provides very efficient thermal management. Today, the thin disk concept is used in various commercial lasers - ranging from compact, efficient low power systems to multi-kW lasers, including cw lasers and also pulsed (femtosecond to nanosecond) oscillators and amplifiers. The whole development of the Thin Disk laser was and will be accompanied by numerical modeling and optimization of the thermal and thermo-mechanic behavior of the disk and also the heat sink structure, mostly based on finite element models. For further increasing the energy and efficiency of pulsed Thin Disk lasers, the effects of amplified spontaneous emission (ASE) are a core issue. Actual efforts are oriented towards short pulse and ultra-short pulse amplifiers with (multi-)kW average power or Joule-class Thin Disk amplifiers, but also on new designs for cw thin disk MOPA designs.

  4. Ring shaped dust accumulation in transition disks

    CERN Document Server

    Pinilla, P; Birnstiel, T

    2012-01-01

    Context.Transition disks are believed to be the final stages of protoplanetary disks, during which a forming planetary system or photoevaporation processes open a gap in the inner disk, drastically changing the disk structure. From theoretical arguments it is expected that dust growth, fragmentation and radial drift are strongly influenced by gas disk structure, and pressure bumps in disks have been suggested as key features that may allow grains to converge and grow efficiently. Aims. We want to study how the presence of a large planet in a disk influences the growth and radial distribution of dust grains, and how observable properties are linked to the mass of the planet. Methods. We combine two-dimensional hydrodynamical disk simulations of disk-planet interactions with state-of-the-art coagulation/fragmentation models to simulate the evolution of dust in a disk which has a gap created by a massive planet. We compute images at different wavelengths and illustrate our results using the example of the transi...

  5. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  6. Secular Planetary Perturbations in Circumstellar Debris Disks

    Science.gov (United States)

    Hahn, Joseph M.; Capobianco, C.

    2006-12-01

    Circumstellar debris disks are likely the by-product of collisions among unseen planetesimals. Planetesimals are also the seeds of planets, so it is reasonable to expect that some debris disks might also harbor planets. In fact several such disks, like those orbiting beta Pictoris, Fomalhaut, etc., do appear to be perturbed by unseen planets orbiting within. The signatures of planetary perturbations include: central gaps, warps, and radial offsets in the disk's surface brightness. By modeling the disturbances observed in a circumstellar dust disk, one can then measure or constrain the masses and orbits of the planets that may be lurking within. Of particular interest here are the warps and radial offsets seen in such disks, since these features can be due to secular planetary perturbations (Mouillet et al 1997, Wyatt et al 1999). Secular perturbations are the slowly varying gravitational perturbations that can excite orbital eccentricities and inclinations in a disk, and can also drive a slow orbital precession. Note that a dust grain's motion is completely analytic when suffering secular perturbations (Murray & Dermott 1999), which allows us to rapidly generate a synthetic image of a simulated disk as would be seen in scattered starlight or via thermal emission. And because this model is quite fast, our model can rapidly scan a rather large parameter space in order to determine the planetary configuration that may be responsible for the disk's perturbed appearance. We have applied this dust-disk model to Hubble observations of the β Pictoris dust-disk (from Heap et al 2000), and will report on the planets that may be responsible for the warp seen in this edge-on disk. We will also apply the model to optical and IR observations of debris disks at Fomalhaut, AU Microscopii, and others, with additional results to be reported at conference time.

  7. Generalized Similarity for Accretion/Decretion Disks

    Science.gov (United States)

    Rafikov, Roman R.

    2016-10-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post-main-sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects—circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc.—feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and nonlinear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter λ, which is uniquely related to the degree, to which the central mass accretion is suppressed by the non-zero central torque. The known decretion disk solutions correspond to the two discrete values of λ, while our new solutions cover a continuum of its physically allowed values, corresponding to either accretion or mass ejection by the central object. A direct relationship between λ and central \\dot{M} and torque is also established. We describe the time evolution of the various disk characteristics for different λ, and show that the observable properties (spectrum and luminosity evolution) of the decretion disks, in general, are different from the standard accretion disks with no central torque.

  8. Molecular Hydrogen in the Quiescent Disk of SW UMa

    Science.gov (United States)

    Raymond, John C.

    2004-01-01

    The FUSE observation has been reduced and a paper has been submitted to ApJ. The analysis has been slow because of the very noisy quality of the data, but we have derived line profile information for O VI and limits to the continuum brightness which place an interesting limit on the white dwarf temperature. The primary results are that a narrow O VI emission component seems to arise from the accretion flow onto the white dwarf itself, in agreement with cooling flow models for the X-ray spectra of low accretion rate dwarf novae. The broad component of the O VI lines is weaker than the observed C IV emission, suggesting that the UV line emission from the disk comes from photoionized plasma. A secondary result is that there is no H-2 fluorescent emission. The upper limits indicate that if molecular gas is present in the disk, it is shielded from Ly alpha photons by a layer of atomic hydrogen on the disk surface. We also derive an upper limit to the continuum level is below that observed by IUE. The limits are compatible with the lower end of the WD temperature range derived from IUE measurements, and they appear to agree with unpublished analysis of HST spectra. The grant has provided partial support for a data aide (Matt Povich) and a postdoc (Alex Lobel). It purchased a computer for M. Menou.

  9. ECO and RESOLVE: Galaxy Disk Growth in Environmental Context

    CERN Document Server

    Moffett, Amanda J; Berlind, Andreas A; Eckert, Kathleen D; Stark, David V; Hendel, David; Norris, Mark A; Grogin, Norman A

    2015-01-01

    We study the relationships between galaxy environments and galaxy properties related to disk (re)growth, considering two highly complete samples that are approximately baryonic mass limited into the high-mass dwarf galaxy regime, the Environmental COntext (ECO) catalog (data release herein) and the B-semester region of the REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey. We quantify galaxy environments using both group identification and smoothed galaxy density field methods. We use by-eye and quantitative morphological classifications plus atomic gas content measurements and estimates. We find that blue early-type (E/S0) galaxies, gas-dominated galaxies, and UV-bright disk host galaxies all become distinctly more common below group halo mass ~10^11.5 Msun, implying that this low group halo mass regime may be a preferred regime for significant disk growth activity. We also find that blue early-type and blue late-type galaxies inhabit environments of similar group halo mass at fixed baryonic mass, con...

  10. Secular Evolution in Disk Galaxies

    Science.gov (United States)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  11. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  12. Counterrotating Stars in Simulated Galaxy Disks

    CERN Document Server

    Algorry, David G; Abadi, Mario G; Sales, Laura V; Steinmetz, Matthias; Piontek, Franziska

    2013-01-01

    Counterrotating stars in disk galaxies are a puzzling dynamical feature whose origin has been ascribed to either satellite accretion events or to disk instabilities triggered by deviations from axisymmetry. We use a cosmological simulation of the formation of a disk galaxy to show that counterrotating stellar disk components may arise naturally in hierarchically-clustering scenarios even in the absence of merging. The simulated disk galaxy consists of two coplanar, overlapping stellar components with opposite spins: an inner counterrotating bar-like structure made up mostly of old stars surrounded by an extended, rotationally-supported disk of younger stars. The opposite-spin components originate from material accreted from two distinct filamentary structures which at turn around, when their net spin is acquired, intersect delineating a "V"-like structure. Each filament torques the other in opposite directions; the filament that first drains into the galaxy forms the inner counterrotating bar, while material ...

  13. Non-isothermal effects on Be disks

    CERN Document Server

    Vieira, Rodrigo G; Bjorkman, Jon E

    2016-01-01

    In the last decade, the viscous decretion disk model has emerged as the new paradigm for Be star disks. In this contribution, we propose a simple analytical model to estimate the continuum infrared excess arising from these circumstellar disks, in the light of the currently accepted scenario. We demonstrate that the disk can be satisfactorily described by a two component system: an inner optically thick region, which we call the pseudo-photosphere, and a diffuse outer part. In particular, a direct connexion between the disk brightness profile and the thermal structure is derived, and then confronted to realistic numerical simulations. This result quantifies how the non-isothermality of the disk ultimately affects both infrared measured fluxes and visibilities.

  14. Dusty Disks around White Dwarfs I: Origin of Debris Disks

    CERN Document Server

    Dong, Ruobing; Lin, D N C; Liu, X -W

    2010-01-01

    A significant fraction of the mature FGK stars have cool dusty disks at least an orders of magnitudes brighter than the solar system's outer zodiacal light. Since such dusts must be continually replenished, they are generally assumed to be the collisional fragments of residual planetesimals analogous to the Kuiper Belt objects. At least 10% of solar type stars also bear gas giant planets. The fraction of stars with known gas giants or detectable debris disks (or both) appears to increase with the stellar mass. Here, we examine the dynamical evolution of systems of long-period gas giant planets and residual planetesimals as their host stars evolve off the main sequence, lose mass, and form planetary nebula around remnant white dwarf cores. The orbits of distant gas giant planets and super-km-size planetesimals expand adiabatically. During the most intense AGB mass loss phase, sub-meter-size particles migrate toward their host stars due to the strong hydrodynamical drag by the intense stellar wind. Along their ...

  15. Floating-disk parylene micro check valve

    OpenAIRE

    Chen, Po-Jui; Tai, Yu-Chong

    2008-01-01

    A novel micro check valve which has nearly ideal fluidic shunting behaviors is presented. Featuring a parylene-based floating disk, this surface-micromachined check valve ultimately realizes both zero forward cracking pressure and zero reverse leakage in fluidic operations. Two different floating disk designs have been implemented to demonstrate functionality of the microvalve. Experimental data of underwater testing successfully show that in-channel floating-disk valv...

  16. Disk access controller for Multi 8 computer

    International Nuclear Information System (INIS)

    After having presented the initial characteristics and weaknesses of the software provided for the control of a memory disk coupled with a Multi 8 computer, the author reports the development and improvement of this controller software. He presents the different constitutive parts of the computer and the operation of the disk coupling and of the direct access to memory. He reports the development of the disk access controller: software organisation, loader, subprograms and statements

  17. Molecular Gas in Young Debris Disks

    Science.gov (United States)

    Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.

  18. Vertical dynamics of disk galaxies in MOND

    OpenAIRE

    Nipoti, Carlo; Londrillo, Pasquale; Zhao, HongSheng; Ciotti, Luca

    2007-01-01

    We investigate the possibility of discriminating between Modified Newtonian Dynamics (MOND) and Newtonian gravity with dark matter, by studying the vertical dynamics of disk galaxies. We consider models with the same circular velocity in the equatorial plane (purely baryonic disks in MOND and the same disks in Newtonian gravity embedded in spherical dark matter haloes), and we construct their intrinsic and projected kinematical fields by solving the Jeans equations under the assumption of a t...

  19. Regulering af jødiske kroppe

    DEFF Research Database (Denmark)

    Schleicher, Marianne

    2014-01-01

    Formålet med artiklen er at beskrive og forklare, hvordan jødiske kroppe reguleres, og på hvilke præmisser tolerance over for afvigende kroppe opstår i en jødisk kontekst. Artiklens materiale udgøres af israelitisk-jødiske kropsopfattelser fra Mosebøgerne til den tidlige rabbinske litteratur, hvo...

  20. Counting of 90Sr on SPE Disks

    Institute of Scientific and Technical Information of China (English)

    YANG; Su-liang; SUN; Hong-qing; DING; You-qian; YANG; Zhi-hong; ZHANG; Sheng-dong

    2012-01-01

    <正>90 Sr on SPE disks may be counted by either liquid scintillation or proportional counting. These two methods have both been employed in literature, but detailed description about counting conditions and efficiencies were not presented. In this work, counting efficiency using liquid scintillation counting was determined. The counting efficiency of 90Sr on SPE disks was approximately 99% by scintillation counting, which implied that the effect of self-adsorption of disk was negligible.

  1. Quasar Accretion Disks Are Strongly Inhomogeneous

    OpenAIRE

    Dexter, Jason; Agol, Eric

    2010-01-01

    Active galactic nuclei (AGN) have been observed to vary stochastically with 10-20 rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of \\sigma_T in dex. Models with l...

  2. Uncommon Manifestations of Intervertebral Disk Pathologic Conditions.

    Science.gov (United States)

    Diehn, Felix E; Maus, Timothy P; Morris, Jonathan M; Carr, Carrie M; Kotsenas, Amy L; Luetmer, Patrick H; Lehman, Vance T; Thielen, Kent R; Nassr, Ahmad; Wald, John T

    2016-01-01

    Beyond the familiar disk herniations with typical clinical features, intervertebral disk pathologic conditions can have a wide spectrum of imaging and clinical manifestations. The goal of this review is to illustrate and discuss unusual manifestations of intervertebral disk pathologic conditions that radiologists may encounter, including disk herniations in unusual locations, those with atypical imaging features, and those with uncommon pathophysiologic findings. Examples of atypical disk herniations presented include dorsal epidural, intradural, symptomatic thoracic (including giant calcified), extreme lateral (retroperitoneal), fluorine 18 fluorodeoxyglucose-avid, acute intravertebral (Schmorl node), and massive lumbar disk herniations. Examples of atypical pathophysiologic conditions covered are discal cysts, fibrocartilaginous emboli to the spinal cord, tiny calcified disks or disk-level spiculated osteophytes causing spinal cerebrospinal fluid (CSF) leak and intracranial hypotension, and pediatric acute calcific discitis. This broad gamut of disease includes a variety of sizes of disk pathologic conditions, from the tiny (eg, the minuscule calcified disks causing high-flow CSF leaks) to the extremely large (eg, giant calcified thoracic intradural disk herniations causing myelopathy). A spectrum of clinical acuity is represented, from hyperacute fibrocartilaginous emboli causing spinal cord infarct, to acute Schmorl nodes, to chronic intradural herniations. The entities included are characterized by a range of clinical courses, from the typically devastating cord infarct caused by fibrocartilaginous emboli, to the usually spontaneously resolving pediatric acute calcific discitis. Several conditions have important differential diagnostic considerations, and others have relatively diagnostic imaging findings. The pathophysiologic findings are well understood for some of these entities and poorly defined for others. Radiologists' knowledge of this broad scope of

  3. Mass Transport and Turbulence in Gravitationally Unstable Disk Galaxies. II: The Effects of Star Formation Feedback

    Science.gov (United States)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C.

    2016-08-01

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  4. Quantification of the association between intervertebral disk calcification and disk herniation in Dachshunds

    DEFF Research Database (Denmark)

    Jensen, Vibeke Frøkjær; Beck, S.; Christensen, K.A.;

    2008-01-01

    Objective-To quantify the association between intervertebral disk calcification and disk herniation in Dachshunds. Design-Longitudinal study. Animals-61 Dachshunds that had been radiographically screened for calcification of intervertebral disks at 2 years of age in other studies. Thirty......-seven of the dogs had survived to the time of the present study and were >= 8 years of age; 24 others had not survived. Procedures-Radiographic examination of 36 surviving dogs was performed, and information on occurrence of disk calcification at 2 years of age were obtained from records of all 61 Dachshunds....... Information on occurrence of disk herniation between 2 and 8 years of age was obtained from owners via questionnaire. Associations between numbers of calcified disks and disk herniation were analyzed via maximum likelihood logistic regression. Results-Disk calcification at 2 years of age was a significant...

  5. Fabrication of Turbine Disk Materials by Additive Manufacturing

    Science.gov (United States)

    Sudbrack, Chantal; Bean, Quincy A.; Cooper, Ken; Carter, Robert; Semiatin, S. Lee; Gabb, Tim

    2014-01-01

    Precipitation-strengthened, nickel-based superalloys are widely used in the aerospace and energy industries due to their excellent environmental resistance and outstanding mechanical properties under extreme conditions. Powder-bed additive manufacturing (AM) technologies offer the potential to revolutionize the processing of superalloy turbine components by eliminating the need for extensive inventory or expensive legacy tooling. Like selective laser melting (SLM), electron beam melting (EBM) constructs three-dimensional dense components layer-by-layer by melting and solidification of atomized, pre-alloyed powder feedstock within 50-200 micron layers. While SLM has been more widely used for AM of nickel alloys like 718, EBM offers several distinct advantages, such as less retained residual stress, lower risk of contamination, and faster build rates with multiple-electron-beam configurations. These advantages are particularly attractive for turbine disks, for which excessive residual stress and contamination can shorten disk life during high-temperature operation. In this presentation, we will discuss the feasibility of fabricating disk superalloy components using EBM AM. Originally developed using powder metallurgy forging processing, disk superalloys contain a higher refractory content and precipitate volume fraction than alloy 718, thus making them more prone to thermal cracking during AM. This and other challenges to produce homogeneous builds with desired properties will be presented. In particular, the quality of lab-scale samples fabricated via a design of experiments, in which the beam current, build temperature, and beam velocity were varied, will be summarized. The relationship between processing parameters, microstructure, grain orientation, and mechanical response will be discussed.

  6. Herschel detects oxygen in the β Pictoris debris disk

    Science.gov (United States)

    Brandeker, A.; Cataldi, G.; Olofsson, G.; Vandenbussche, B.; Acke, B.; Barlow, M. J.; Blommaert, J. A. D. L.; Cohen, M.; Dent, W. R. F.; Dominik, C.; Di Francesco, J.; Fridlund, M.; Gear, W. K.; Glauser, A. M.; Greaves, J. S.; Harvey, P. M.; Heras, A. M.; Hogerheijde, M. R.; Holland, W. S.; Huygen, R.; Ivison, R. J.; Leeks, S. J.; Lim, T. L.; Liseau, R.; Matthews, B. C.; Pantin, E.; Pilbratt, G. L.; Royer, P.; Sibthorpe, B.; Waelkens, C.; Walker, H. J.

    2016-06-01

    The young star β Pictoris is well known for its dusty debris disk produced through collisional grinding of planetesimals, kilometre-sized bodies in orbit around the star. In addition to dust, small amounts of gas are also known to orbit the star; this gas is likely the result of vaporisation of violently colliding dust grains. The disk is seen edge on and from previous absorption spectroscopy we know that the gas is very rich in carbon relative to other elements. The oxygen content has been more difficult to assess, however, with early estimates finding very little oxygen in the gas at a C/O ratio that is 20 × higher than the cosmic value. A C/O ratio that high is difficult to explain and would have far-reaching consequences for planet formation. Here we report on observations by the far-infrared space telescope Herschel, using PACS, of emission lines from ionised carbon and neutral oxygen. The detected emission from C+ is consistent withthat previously reported observed by the HIFI instrument on Herschel, while the emission from O is hard to explain without assuming a higher density region in the disk, perhaps in the shape of a clump or a dense torus required to sufficiently excite the O atoms. A possible scenario is that the C/O gas is produced by the same process responsible for the CO clump recently observed by the Atacama Large Millimeter/submillimeter Array in the disk and that the redistribution of the gas takes longer than previously assumed. A more detailed estimate of the C/O ratio and the mass of O will have to await better constraints on the C/O gas spatial distribution. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    CERN Document Server

    Nesvold, Erika R; Vican, Laura; Farr, Will M

    2016-01-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles' eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare t...

  8. Chemical history of molecules in circumstellar disks

    OpenAIRE

    Visser, Ruud; van Dishoeck, Ewine F.; Doty, Steven D.

    2011-01-01

    The chemical composition of a protoplanetary disk is determined not only by in situ chemical processes during the disk phase, but also by the history of the gas and dust before it accreted from the natal envelope. In order to understand the disk's chemical composition at the time of planet formation, especially in the midplane, one has to go back in time and retrace the chemistry to the molecular cloud that collapsed to form the disk and the central star. Here we present a new astrochemical m...

  9. Evaluation of powder metallurgy superalloy disk materials

    Science.gov (United States)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  10. Generalized Similarity for Accretion/Decretion Disks

    CERN Document Server

    Rafikov, Roman R

    2016-01-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post main sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects - circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc. - feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and non-linear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter $\\lambda$, which is uniquely related to the degree, to which the...

  11. The Galactic Thick Disk Stellar Abundances

    CERN Document Server

    Prochaska, J X; Carney, B W; McWilliam, A; Wolfe, A M; Prochaska, Jason X.; Naumov, Sergei O.; Carney, Bruce W.; William, Andrew Mc; Wolfe, Arthur M.

    2000-01-01

    We present first results from a program to measure the chemical abundances of a large (N>30) sample of thick disk stars with the principal goal of investigating the formation history of the Galactic thick disk. Our analysis confirms previous studies of O and Mg in the thick disk stars which reported enhancements in excess of the thin disk population. Furthermore, the observations of Si, Ca, Ti, Mn, Co, V, Zn, Al, and Eu all argue that the thick disk population has a distinct chemical history from the thin disk. With the exception of V and Co, the thick disk abundance patterns match or tend towards the values observed for halo stars with [Fe/H]~-1. This suggests that the thick disk stars had a chemical enrichment history similar to the metal-rich halo stars. With the possible exception of Si, the thick disk abundance patterns are in excellent agreement with the chemical abundances observed in the metal-poor bulge stars suggesting the two populations formed from the same gas reservoir at a common epoch. We disc...

  12. Characterisation of the Galactic thick disk

    CERN Document Server

    Bensby, Thomas

    2013-01-01

    Thick disks appear to be common in external large spiral galaxies and our own Milky Way also hosts one. The existence of a thick disk is possibly directly linked to the formation history of the host galaxy and if its properties is known it can constrain models of galaxy formation and help us to better understand galaxy formation and evolution. This brief review attempts to highlight some of the characteristics of the Galactic thick disk and how it relates to other stellar populations such as the thin disk and the Galactic bulge. Focus has been put on results from high-resolution spectroscopic data obtained during the last 10 to 15 years.

  13. Hyperaccreting Neutron-Star Disks, Magnetized Disks and Gamma-Ray Bursts

    OpenAIRE

    Zhang, Dong

    2009-01-01

    This thesis focuses on the study of the hyperaccreting neutron-star disks and magnetized accretion flows. It is usually proposed that hyperaccreting disks surrounding stellar-mass black holes with a huge accretion rate are central engines of gamma-ray bursts (GRBs). However, hyperaccretion disks around neutron stars may exist in some GRB formation scenarios. We study the structure and neutrino emission of a hyperaccretion disk around a neutron star. We consider a steady-state hyperaccretion d...

  14. Dust amorphization in protoplanetary disks

    CERN Document Server

    Glauser, Adrian M; Watson, Dan M; Henning, Thomas; Schegerer, Alexander A; Wolf, Sebastian; Audard, Marc; Baldovin-Saavedra, Carla

    2009-01-01

    High-energy irradiation of the circumstellar material might impact the structure and the composition of a protoplanetary disk and hence the process of planet formation. In this paper, we present a study on the possible influence of the stellar irradiation, indicated by X-ray emission, on the crystalline structure of the circumstellar dust. The dust crystallinity is measured for 42 class II T Tauri stars in the Taurus star-forming region using a decomposition fit of the 10 micron silicate feature, measured with the Spitzer IRS instrument. Since the sample includes objects with disks of various evolutionary stages, we further confine the target selection, using the age of the objects as a selection parameter. We correlate the X-ray luminosity and the X-ray hardness of the central object with the crystalline mass fraction of the circumstellar dust and find a significant anti-correlation for 20 objects within an age range of approx. 1 to 4.5 Myr. We postulate that X-rays represent the stellar activity and consequ...

  15. Hard disks with SCSI interface

    CERN Document Server

    Denisov, O Yu

    1999-01-01

    The testing of 20 models of hard SCSI-disks is carried out: the Fujitsu MAE3091LP; the IBM DDRS-39130, DGHS-318220, DNES-318350, DRHS-36V and DRVS-18V; the Quantum Atlas VI 18.2; the Viking 11 9.1; the Seagate ST118202LW, ST118273LW, ST118273W, ST318203LW, ST318275LW, ST34520W, ST39140LW and ST39173W; and the Western Digital WDE9100-0007, WDE9100-AV0016, WDE9100-AV0030 and WDE9180-0048. All tests ran under the Windows NT 4.0 workstation operating system with Service Pack 4, under video mode with 1024*768 pixel resolution, 32- bit colour depth and V-frequency equal to 85 Hz. The detailed description and characteristics of SCSI stores are presented. Test results (ZD Winstone 99 and ZD WinBench 99 tests) are given in both table and diagram (disk transfer rate) forms. (0 refs).

  16. Improving actuator disk wake model

    International Nuclear Information System (INIS)

    The wind energy industry has traditionally relied on simple wake models for estimating Wind Turbine (WT) wake losses. Despite limitations, low requirements in terms of detailed rotor information makes their use feasible, unlike more complex models, such as Blade Element Method (BEM) or Actuator Line. Froude's Actuator Disk (AD) does not suffer the simpler model's limitation of prescribing the wake through a closed set of equations, while sharing with them the low rotor data requirements. On the other hand they require some form of parametrization to close the model and calculate total thrust acting on the flow. An Actuator Disk model was developed, using an iterative algorithm based on Froude's one-dimensional momentum theory to determine the WT's performance, proving to be successful in estimating the performance of both machines in undisturbed flow and in the wake of an upstream machines. Before Froude's AD limitations compared to more complex rotor models, load distributions emulating those of a BEM model were tested. The results show that little impact is obtained at 3 rotor diameters downstream and beyond, agreeing with common definition of a far-wake that starts at 1-2 diameters downstream, where rotor characteristics become negligible and atmospheric flow effects dominate

  17. Circumplanetary disk or circumplanetary envelope?

    CERN Document Server

    Szulágyi, J; Lega, E; Crida, A; Morbidelli, A; Guillot, T

    2016-01-01

    We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution ($80\\%$ of Jupiter's diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche-lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000 K, 1500 K, and 2000 K). In these fixed temperature cases circumplanetary disks (CPDs) were formed. This suggests that the capability to form a circumplanetary disk is not simply linked to the mass of the planet and its ability to open a gap. Inste...

  18. The Orientation of Accretion Disks Relative to Dust Disks in Radio Galaxies

    CERN Document Server

    Schmitt, H R

    2002-01-01

    We study the orientation of accretion disks, traced by the position angle of the jet, relative to the dust disk major axis in a sample of 20 nearby Radio Galaxies. We find that the observed distribution of angles between the jet and dust disk major axis is consistent with jets homogeneously distributed over a polar cap of 77 degrees.

  19. Thick-disk Evolution Induced by the Growth of an Embedded Thin Disk

    NARCIS (Netherlands)

    Villalobos, Alvaro; Kazantzidis, Stelios; Helmi, Amina

    2010-01-01

    We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically common 5:1 encounters between initial

  20. Thick-disk evolution induced by the growth of an embedded thin disk

    CERN Document Server

    Villalobos, Álvaro; Helmi, Amina

    2009-01-01

    We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically-common 5:1 encounters between initially-thin primary disk galaxies and infalling satellites. The growing thin disks are modeled as static gravitational potentials and we explore a variety of growing-disk parameters that are likely to influence the response of thick disks. We find that the final thick-disk properties depend strongly on the total mass and radial scale-length of the growing thin disk, and much less sensitively on its growth timescale and vertical scale-height as well as the initial sense of thick-disk rotation. Overall, the growth of an embedded thin disk can cause a substantial contraction in both the radial and vertical direction, resulting in a significant decrease in the scale-lengths and scale-heights of thick disks. Kinematically, ...

  1. Disk Instability vs. Core Accretion: Observable Discriminants

    Science.gov (United States)

    Jang-Condell, H.

    2007-06-01

    I will discuss ways to distinguish between disk instability and core accretion, the two competing paradigms for giant planet formation. Disk instability happens when a massive disk fragments into planet-sized self-gravitating clumps. Scattered light from these disks will illuminate high altitude density variations that result from stirring of the disk by the forming planet. These variations will evolve quickly, within several years, but do not correlate with the position of the planet itself. Alternatively, core accretion happens when solid particles collide and coagulate into larger and larger bodies until a body large enough to accrete a gaseous envelope forms -- around 10-20 Earth masses. This process is thought to be more quiescent than gravitational instability, so the disk should appear smooth. Although a 10-20 Earth mass core is insufficiently massive to fully clear an annular gap in the disk, it does perturb the disk material immediately in its vicinity, creating shadows and brightenings at the protoplanet's location. The planet may also begin to clear a partial gap. Shadowing and illumination on this partial gap can alter the thermal structure at the upper layers of the disk on a sufficiently large scale to be observable. Observing the signatures of either disk instability or core accretion requires milliarcsecond resolution and high contrast imaging. Advances in coronography, adaptive optics, and interferometry are bringing us ever closer to begin able to make these detections. Observational confirmation of either process taking place in a young circumstellar disk will help resolve the long-standing debate over how giant planets form.

  2. Atomic secrecy

    International Nuclear Information System (INIS)

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press

  3. Development of Powered Disk Type Sugar Cane Stubble Saver

    Directory of Open Access Journals (Sweden)

    Radite P.A.S.

    2009-04-01

    Full Text Available The objective of this research was to design, fabricate and test a prototype of sugar cane stubble saver based on powered disk mechanism. In this research, a heavy duty disk plow or disk harrow was used as a rotating knife to cut the sugarcane stubble. The parabolic disk was chosen because it is proven reliable as soil working tools and it is available in the market as spare part of disk plow or disk harrow unit. The prototype was mounted on the four wheel tractor’s three point hitch, and powered by PTO of the tractor. Two kinds of disks were used in these experiments, those were disk with regular edge or plain disk and disk with scalloped edge or scalloped disk. Both disks had diameter of 28 inch. Results of field test showed that powered disk mechanism could satisfy cut sugar cane’s stubble. However, scalloped disk type gave smoother stubble cuts compared to that of plain disk. Plain disk type gave broken stubble cut. Higher rotation (1000 rpm resulted better cuts as compared to lower rotation (500 rpm both either on plain disk and scalloped disk. The developed prototype could work below the soil surface at depth of 5 to 10 cm. With tilt angle setting 20O and disk angle 45O the width of cut was about 25 cm.

  4. Circular plate capacitor with different disks

    CERN Document Server

    Paffuti, Giampiero; Di Lieto, Alberto; Maccarrone, Francesco

    2016-01-01

    In this paper we write a system of integral equations for a capacitor composed by two disks of different radii, generalizing Love's equation for equal disks. We compute the complete asymptotic form of the capacitance matrix both for large and small distances obtaining a generalization of Kirchhoff's formula for the latter case.

  5. Scaling Ratios and Triangles in Siegel Disks

    DEFF Research Database (Denmark)

    Buff, Xavier; Henriksen, Christian

    1999-01-01

    Let f(z)=e^{2i\\pi \\theta} + z^2, where \\theta is a quadratic irrational. McMullen proved that the Siegel disk for f is self-similar about the critical point, and we show that if \\theta = (\\sqrt{5}-1)/2 is the golden mean, then there exists a triangle contained in the Siegel disk, and with one...

  6. Angular Momentum Transport in Accretion Disks

    DEFF Research Database (Denmark)

    E. Pessah, Martin; Chan, Chi-kwan; Psaltis, Dimitrios;

    2007-01-01

    if the resolution were set equal to the natural dissipation scale in astrophysical disks. We conclude that, in order for MRI-driven turbulent angular momentum transport to be able to account for the large value of the effective alpha viscosity inferred observationally, the disk must be threaded by a significant...

  7. A Primer on Unifying Debris Disk Morphologies

    Science.gov (United States)

    Lee, Eve J.; Chiang, Eugene

    2016-08-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  8. The Transitional Disks Associated With Herbig Stars

    Science.gov (United States)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Lomax, J.; Hashimoto, J.; Currie, T.; Okamoto, Y.; Momose, M.; McElwain, M.

    2015-01-01

    As part of the Strategic Exploration of Exoplanets and Disks with Subaru YSO survey, we have surveyed a number of Herbig B-F stars mainly at H-band using Polarimetric Differential Imaging + Angular differential imaging. Historically, Herbig stars have been sorted by the shape of the IR SEDs into those which can be fit by power laws over 1-200 micrometers (Meeus et al. 2001, group II), and those which can be interpreted as a power law + a blackbody component (Meeus group I) or as transitional or pre-transitional disks (Maaskant et al. 2013). Meeus group II disks, when imaged with HiCIAO show featureless disks with depolarization along the projection of the disk semi-minor axis (Kusakabe et al. 2012). This is what we had expected to see for the Meeus group I disks, except for the addition of wide gaps or central cavities. Instead we find wild diversity, suggesting that transitional disks are highly perturbed compared to Meeus group II disks. To date, similar structure continues to be observed as higher Strehl ratio imagery becomes available.

  9. Early Phases of Protoplanetary Disk Evolution

    NARCIS (Netherlands)

    Kamp, Inga; Macchetto, FD

    2010-01-01

    It is widely accepted that planetary systems form from protoplanetary disks, and observations of the dust reveal significant grain growth over timescales of a few million years. However, we know little about the gas processing in the first 10-20 Myr of disk evolution. This is the phase where protopl

  10. Circumstellar disks around binary stars in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, R. L. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Jensen, E. L. N. [Swarthmore College, Department of Physics and Astronomy, Swarthmore, PA 19081 (United States)

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  11. Molecular gas in young debris disks

    CERN Document Server

    Moór, A; Juhász, A; Kiss, Cs; Pascucci, I; Kóspál, Á; Apai, D; Henning, Th; Csengeri, T; Grady, C

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas, and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J=3-2 survey with Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities...

  12. Recent development of disk lasers at TRUMPF

    Science.gov (United States)

    Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Ackermann, Matthias; Bauer, Dominik; Scharun, Michael; Killi, Alexander

    2016-03-01

    The disk laser is one of the most important laser concepts for today's industrial laser market. Offering high brilliance at low cost, high optical efficiency and great application flexibility the disk laser paved the way for many industrial laser applications. Over the past years power and brightness increased and the disk laser turned out to be a very versatile laser source, not only for welding but also for cutting. Both, the quality and speed of cutting are superior to CO2-based lasers for a vast majority of metals, and, most important, in a broad thickness range. In addition, due to the insensitivity against back reflections the disk laser is well suited for cutting highly reflective metal such as brass or copper. These advantages facilitate versatile cutting machines and explain the high and growing demand for disk lasers for applications besides welding applications that can be observed today. From a today's perspective the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over fiber lasers or direct diode lasers. This paper will give insight in the latest progress in kilowatt class cw disk laser technology at TRUMPF and will discuss recent power scaling results as well.

  13. Disks and Planets Around Massive White Dwarfs

    OpenAIRE

    Livio, M.; Pringle, J. E.; Wood, K.

    2005-01-01

    We predict the existence of dusty disks and possibly CO planets around massive white dwarfs. We show that the thermal emission from these disks should be detectable in the infrared. The planets may also be detectable either by direct IR imaging, spectroscopy, or using the pulsations of the white dwarfs.

  14. Sporadically Torqued Accretion Disks Around Black Holes

    CERN Document Server

    Garofalo, D; Garofalo, David; Reynolds, Christopher S.

    2005-01-01

    The assumption that black hole accretion disks possess an untorqued inner boundary, the so-called zero torque boundary condition, has been employed by models of black hole disks for many years. However, recent theoretical and observational work suggests that magnetic forces may appreciably torque the inner disk. This raises the question of the effect that a time-changing magnetic torque may have on the evolution of such a disk. In particular, we explore the suggestion that the ``Deep Minimum State'' of the Seyfert galaxy MCG--6-30-15 can be identified as a sporadic inner disk torquing event. This suggestion is motivated by detailed analyses of changes in the profile of the broad fluorescence iron line in XMM-Newton spectra. We find that the response of such a disk to a torquing event has two phases; an initial damming of the accretion flow together with a partial draining of the disk interior to the torque location, followed by a replenishment of the inner disk as the system achieves a new (torqued) steady-st...

  15. Magnetic fields in early protostellar disk formation

    CERN Document Server

    González-Casanova, Diego F; Lazarian, Alexander

    2016-01-01

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian & Vishniac (1999) model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called "magnetic braking catastrophe". In particular, we provide a detailed study of the dynamics of a 0.5 M$_\\odot$ protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, "reconnection diffusion", removes the magnetic flux from the disk, the other involves the change of the magnetic field's topology, but does not change the a...

  16. Gravitational Instabilities in Disks with Radiative Cooling

    CERN Document Server

    Mejia, A C; Pickett, M K; Mej\\'ia, Annie C.; Durisen, Richard H.; Pickett, Megan K.

    2003-01-01

    Previous simulations of self-gravitating protostellar disks have shown that, once developed, gravitational instabilities are enhanced by cooling the disk constantly during its evolution (Pickett et al. 2002). These earlier calculations included a very simple form of volumetric cooling, with a constant cooling time throughout the disk, which acted against the stabilizing effects of shock heating. The present work incorporates more realistic treatments of energy transport. The initial disk model extends from 2.3 to 40 AU, has a mass of 0.07 Msun and orbits a 0.5 Msun star. The models evolve for a period of over 2500 years, during which extensive spiral arms form. The disks structure is profoundly altered, transient clumps form in one case, but no permanent bound companion objects develop.

  17. Structures of magnetized thin accretion disks

    Institute of Scientific and Technical Information of China (English)

    LI; xiaoqing(李晓卿); JI; Haisheng(季海生)

    2002-01-01

    We investigate the magnetohydrodynamic (MHD) process in thin accretion disks. Therelevant momentum as well as magnetic reduction equations in the thin disk approximation areincluded. On the basis of these equations, we examine numerically the stationary structures, includingdistributions of the surface mass density, temperature and flow velocities of a disk around a youngstellar object (YSO). The numerical results are as follows: (i) There should be an upper limit to themagnitude of magnetic field, such an upper limit corresponds to the equipartition field. For relevantmagnitude of magnetic field of the disk's interior the disk remains approximately Keplerian. (ii) Thedistribution of effective temperature T(r) is a smoothly decreasing function of radius with power 1 corresponding to the observed radiation flux density, provided that the magnetic fieldindex γ= -1/2,is suitably chosen.

  18. Quasar Accretion Disks Are Strongly Inhomogeneous

    CERN Document Server

    Dexter, Jason

    2010-01-01

    Active galactic nuclei (AGN) have been observed to vary stochastically with 10-20 rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of \\sigma_T in dex. Models with large fluctuations (\\sigma_T=0.35-0.50) in 100-1000 independently fluctuating zones for every factor of two in radius can explain the observed discrepancy between thin accretion disk sizes inferred from microlensing events and optical luminosity while matching the observed optical variability. For the same range of \\sigma_T, inhomogeneous disk spectra provide excellent fits to the HST quasar composite without invoking global Compton scattering atmospheres to explain the high levels of observed UV emission. Simulated microl...

  19. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  20. Reprocessing of Ices in Turbulent Protoplanetary Disks: Carbon and Nitrogen Chemistry

    CERN Document Server

    Furuya, Kenji

    2014-01-01

    We study the influence of the turbulent transport on ice chemistry in protoplanetary disks, focusing on carbon and nitrogen bearing molecules. Chemical rate equations are solved with the diffusion term, mimicking the turbulent mixing in the vertical direction. Turbulence can bring ice-coated dust grains from the midplane to the warm irradiated disk surface, and the ice mantles are reprocessed by photoreactions, thermal desorption, and surface reactions. The upward transport decreases the abundance of methanol and ammonia ices at r < 30 AU, because warm dust temperature prohibits their reformation on grain surfaces. This reprocessing could explain the smaller abundances of carbon and nitrogen bearing molecules in cometary coma than those in low-mass protostellar envelopes. We also show the effect of mixing on the synthesis of complex organic molecules (COMs) are two ways: (1) transport of ices from the midplane to the disk surface and (2) transport of atomic hydrogen from the surface to the midplane. The fo...

  1. Volatile-Rich Circumstellar Gas in the Unusual 49 Ceti Debris Disk

    CERN Document Server

    Roberge, Aki; Kamp, Inga; Weinberger, Alycia J; Grady, Carol A

    2014-01-01

    We present Hubble Space Telescope STIS far-UV spectra of the edge-on disk around 49 Ceti, one of the very few debris disks showing sub-mm CO emission. Many atomic absorption lines are present in the spectra, most of which arise from circumstellar gas lying along the line-of-sight to the central star. We determined the line-of-sight CI column density, estimated the total carbon column density, and set limits on the OI column density. Surprisingly, no line-of-sight CO absorption was seen. We discuss possible explanations for this non-detection, and present preliminary estimates of the carbon abundances in the line-of-sight gas. The C/Fe ratio is much greater than the solar value, suggesting that 49 Cet harbors a volatile-rich gas disk similar to that of Beta Pictoris.

  2. Disk-loss and disk-renewal phases in classical Be stars. II. Contrasting with stable and variable disks

    International Nuclear Information System (INIS)

    Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCDs) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of nine additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic V-band polarization and polarization position angle of γ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen and Jones. We also observe stochastic jumps in the intrinsic polarization across the Balmer jump of several known Be+sdO systems, and speculate that the thermal inflation of part of the outer region of these disks could be responsible for producing this observational phenomenon. Finally, we estimate the base densities of this sample of stars to be between ≈8 × 10–11 and ≈4 × 10–12 g cm–3 during quasi steady state periods given there maximum observed polarization.

  3. Disk-loss and disk-renewal phases in classical Be stars. II. Contrasting with stable and variable disks

    Energy Technology Data Exchange (ETDEWEB)

    Draper, Zachary H. [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2 (Canada); Wisniewski, John P. [HL Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St, Norman, OK 73019 (United States); Bjorkman, Karen S.; Bjorkman, Jon E. [Ritter Observatory, Department of Physics and Astronomy, Mail Stop 113, University of Toledo, Toledo, OH 43606 (United States); Meade, Marilyn R. [Space Astronomy Lab, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706 (United States); Haubois, Xavier; Mota, Bruno C.; Carciofi, Alex C., E-mail: wisniewski@ou.edu, E-mail: karen.bjorkman@utoledo.edu, E-mail: jon@physics.utoledo.edu, E-mail: meade@astro.wisc.edu, E-mail: xhaubois@astro.iag.usp.br, E-mail: carciofi@usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universitária de São Paulo, Rua do Matão 1226, Cidade Universitária, 05508-900 São Paulo, SP (Brazil)

    2014-05-10

    Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCDs) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of nine additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic V-band polarization and polarization position angle of γ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen and Jones. We also observe stochastic jumps in the intrinsic polarization across the Balmer jump of several known Be+sdO systems, and speculate that the thermal inflation of part of the outer region of these disks could be responsible for producing this observational phenomenon. Finally, we estimate the base densities of this sample of stars to be between ≈8 × 10{sup –11} and ≈4 × 10{sup –12} g cm{sup –3} during quasi steady state periods given there maximum observed polarization.

  4. Disk-loss and Disk-renewal Phases in Classical Be Stars. II. Contrasting with Stable and Variable Disks

    Science.gov (United States)

    Draper, Zachary H.; Wisniewski, John P.; Bjorkman, Karen S.; Meade, Marilyn R.; Haubois, Xavier; Mota, Bruno C.; Carciofi, Alex C.; Bjorkman, Jon E.

    2014-05-01

    Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCDs) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of nine additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic V-band polarization and polarization position angle of γ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen & Jones. We also observe stochastic jumps in the intrinsic polarization across the Balmer jump of several known Be+sdO systems, and speculate that the thermal inflation of part of the outer region of these disks could be responsible for producing this observational phenomenon. Finally, we estimate the base densities of this sample of stars to be between ≈8 × 10-11 and ≈4 × 10-12 g cm-3 during quasi steady state periods given there maximum observed polarization.

  5. Effect of atomization gas pressure variation on gas flow field in supersonic gas atomization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, a computational fluid flow model was adopted to investigate the effect of varying atomization gas pressure (P0) on the gas flow field in supersonic gas atomization. The influence of P0 on static pressure and velocity magnitude of the central axis of the flow field was also examined. The numerical results indicate that the maximum gas velocity within the gas field increases with increasing P0. The aspiration pressure (ΔP) is found to decrease as P0 increases at a lower atomization gas pressure. However, at a higher atomization gas pressure increasing P0 causes the opposite: the higher atomization gas pressure, the higher aspiration pressure. The alternation of ΔP is caused by the variations of stagnation point pressure and location of Mach disk, while hardly by the location of stagnation point. A radical pressure gradient is formed along the tip of the delivery tube and increases as P0 increases.

  6. Photodissociation Region Models of Photoevaporating Circumstellar Disks and Application to the Proplyds in Orion

    Science.gov (United States)

    Störzer, H.; Hollenbach, D.

    1999-04-01

    lifetime of the proplyds can be as large as the age of the Orion Cluster (~1 Myr), and θ1C Ori can be significantly older than 105 yr. We have calculated the thermal and chemical structure of the flow region in the observationally best studied object HST 182-413 (HST 10) and the representative object HST 155-338. A region of atomic hydrogen extends from the IF toward the disk surface, but close to the surface hydrogen becomes molecular. The temperatures inside the atomic layer are several thousand K. We have calculated the H2 1-0 S(1) and the H2 2-1 S(1) vibrational line intensities, the [C II] 158 μm and [O I] 63 μm fine-structure line intensities, and the [O I] 6300 Å line intensity. We find good agreement between the observed H2 1-0 S(1) line intensity and the theoretically predicted one. The models can also reproduce the [O I] 6300 Å line emission observed close to the disk surface in HST 182-413, HST 155-338, and the other proplyds where the disks can be resolved in the [O I] line. The other lines are not yet observed; we present them here as predictions for future observations.

  7. Discovery of molecular gas around HD 131835 in an APEX molecular line survey of bright debris disks

    CERN Document Server

    Moór, A; Juhász, A; Ábrahám, P; Balog, Z; Kóspál, Á; Pascucci, I; Szabó, Gy M; Vavrek, R; Curé, M; Csengeri, T; Grady, C; Güsten, R; Kiss, Cs

    2015-01-01

    Debris disks are considered to be gas-poor, but recent observations revealed molecular or atomic gas in several 10-40 Myr old systems. We used the APEX and IRAM 30m radiotelescopes to search for CO gas in 20 bright debris disks. In one case, around the 16 Myr old A-type star HD 131835, we discovered a new gas-bearing debris disk, where the CO 3-2 transition was successfully detected. No other individual system exhibited a measurable CO signal. Our Herschel Space Observatory far-infrared images of HD 131835 marginally resolved the disk both at 70 and 100$\\mu$m, with a characteristic radius of ~170 au. While in stellar properties HD 131835 resembles $\\beta$ Pic, its dust disk properties are similar to those of the most massive young debris disks. With the detection of gas in HD 131835 the number of known debris disks with CO content has increased to four, all of them encircling young ($\\leq$40 Myr) A-type stars. Based on statistics within 125 pc, we suggest that the presence of detectable amount of gas in the m...

  8. A Gap in TW Hydrae's Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    Located a mere 176 light-years away, TW Hydrae is an 8-million-year-old star surrounded by a nearly face-on disk of gas and dust. Recent observations have confirmed the existence of a gap within that disk a particularly intriguing find, since gaps can sometimes signal the presence of a planet.Gaps and PlanetsNumerical simulations have shown that newly-formed planets orbiting within dusty disks can clear the gas and dust out of their paths. This process results in pressure gradients that can be seen in the density structure of the disk, in the form of visible gaps, rings, or spirals.For this reason, finding a gap in a protoplanetary disk can be an exciting discovery. Previous observations of the disk around TW Hydrae had indicated that there might be a gap present, but they were limited in their resolution; despite TW Hydraes relative nearness, attempting to observe the dim light scattered off dust particles in a disk surrounding a distant, bright star is difficult!But a team led by Valerie Rapson (Rochester Institute of Technology, Dudley Observatory) recently set out to follow up on this discovery using a powerful tool: the Gemini Planet Imager (GPI).New ObservationsComparison of the actual image of TW Hydraes disk from GPI (right) to a simulated scattered-light image from a model of a ~0.2 Jupiter-mass planet orbiting in the disk at ~21 AU (left) in two different bands (top: J, bottom: K1).[Adapted from Rapson et al. 2015]GPI is an instrument on the Gemini South Telescope in Chile. Its near-infrared imagers, equipped with extreme adaptive optics, allowed it to probe the disk from ~80 AU all the way in to ~10 AU from the central star, with an unprecedented resolution of ~1.5 AU.These observations from GPI allowed Rapson and collaborators to unambiguously confirm the presence of a gap in TW Hydraes disk. The gap lies at a distance of ~23 AU from the central star (roughly the same distance as Uranus to the Sun), and its ~5 AU wide.Modeled PossibilitiesThere are a

  9. The CDF Run II Disk Inventory Manager

    Institute of Scientific and Technical Information of China (English)

    PaulHubbard; StephanLammel

    2001-01-01

    The Collider Detector at Fermilab(CDF) experiment records and analyses proton-antiprotion interactions at a center-of -mass energy of 2 TeV,Run II of the Fermilab Tevatron started in April of this year,The duration of the run is expected to be over two years.One of the main data handling strategies of CDF for RUn II is to hide all tape access from the user and to facilitate sharing of data and thus disk space,A disk inventory manager was designed and developed over the past years to keep track of the data on disk.to coordinate user access to the data,and to stage data back from tape to disk as needed.The CDF Run II disk inventory manager consists of a server process,a user and administrator command line interfaces.and a library with the routines of the client API.Data are managed in filesets which are groups of one or more files.The system keeps track of user acess to the filesets and attempts to keep frequently accessed data on disk.Data that are not on disk are automatically staged back from tape as needed.For CDF the main staging method is based on the mt-tools package as tapes are written according to the ANSI standard.

  10. The Spitzer IRS Debris Disk Catalog

    Science.gov (United States)

    Chen, C.

    2014-04-01

    During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and MIPS debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. We carried out two separate SED analyses. (1) For all targets, we modeled the IRS and MIPS 70 micron data (where available) assuming that the SEDs were well-described using, zero, one or two temperature black bodies. We calculated the probability for each model and computed the average probability to select among models. (2) For a subset of 120 targets with 10 and/or 20 micron silicate features, we modeled the data using spherical silicate (olivine, pyroxene, forsterite, and enstatite) grains located either in a continuous disk with power-law size and surface density distributions or two thin rings that are well-characterized using two separate dust grain temperatures. We present a demographic analysis of the disk properties. For example, we find that the majority of debris disks are better fit using two dust components, suggesting that planetary systems are common in debris disks and that the size distribution of dust grains is consistent with a collisional cascade.

  11. The observational appearance of slim accretion disks

    CERN Document Server

    Szuszkiewicz, E; Abramowicz, M A; Szuszkiewicz, Ewa; Malkan, Matthew A; Abramowicz, Marek Artur

    1995-01-01

    We reexamine the hypothesis that the optical/UV/soft X-ray continuum of Active Galactic Nuclei is thermal emission from an accretion disk. Previous studies have shown that fitting the spectra with the standard, optically thick and geometrically thin accretion disk models often led to luminosities which contradict the basic assumptions adopted in the standard model. There is no known reason why the accretion rates in AGN should not be larger than the thin disk limit. In fact, more general, slim accretion disk models are self-consistent even for moderately super-Eddington luminosities. We calculate here spectra from a set of thin and slim, optically thick accretion disks. We discuss the differences between the thin and slim disk models, stressing the implications of these differences for the interpretation of the observed properties of AGN. We found that the spectra can be fitted not only by models with a high mass and a low accretion rate (as in the case of thin disk fitting) but also by models with a low mass...

  12. Dynamics of acoustically levitated disk samples.

    Science.gov (United States)

    Xie, W J; Wei, B

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gammaacoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval H(n) . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis. PMID:15600551

  13. The Hot Inner Disk of FU Ori

    CERN Document Server

    Zhu, Zhaohuan; Calvet, Nuria; Hernandez, Jesus; Muzerolle, James; Tannirkulam, Ajay-Kumar

    2007-01-01

    We have constructed a detailed radiative transfer disk model which reproduces the main features of the spectrum of the outbursting young stellar object FU Orionis from ~ 4000 angstrom, to ~ 8 micron. Using an estimated visual extinction Av~1.5, a steady disk model with a central star mass ~0.3 Msun and a mass accretion rate ~ 2e-4 Msun/yr, we can reproduce the spectral energy distribution of FU Ori quite well. With the mid-infrared spectrum obtained by the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope, we estimate that the outer radius of the hot, rapidly accreting inner disk is ~ 1 AU using disk models truncated at this outer radius. Inclusion of radiation from a cooler irradiated outer disk might reduce the outer limit of the hot inner disk to ~ 0.5 AU. In either case, the radius is inconsistent with a pure thermal instability model for the outburst. Our radiative transfer model implies that the central disk temperature Tc > 1000 K out to ~ 0.5 - 1 AU, suggesting that the magnetorotationa...

  14. Cold Dark Matter Substructure and Galactic Disks

    CERN Document Server

    Kazantzidis, Stelios; Bullock, James S

    2008-01-01

    We perform a set of high-resolution, dissipationless N-body simulations to investigate the influence of cold dark matter (CDM) substructure on the dynamical evolution of thin galactic disks. Our method combines cosmological simulations of galaxy-sized CDM halos to derive the properties of substructure populations and controlled numerical experiments of consecutive subhalo impacts onto initially-thin, fully-formed disk galaxies. We demonstrate that close encounters between massive subhalos and galactic disks since z~1 should be common occurrences in LCDM models. In contrast, extremely few satellites in present-day CDM halos are likely to have a significant impact on the disk structure. One typical host halo merger history is used to seed controlled N-body experiments of subhalo-disk encounters. As a result of these accretion events, the disk thickens considerably at all radii with the disk scale height increasing in excess of a factor of 2 in the solar neighborhood. We show that interactions with the subhalo p...

  15. The effects of viscosity on circumplanetary disks

    Institute of Scientific and Technical Information of China (English)

    De-Fu Bu; Hsien Shang; Feng Yuan

    2013-01-01

    The effects of viscosity on the circumplanetary disks residing in the vicinity of protoplanets are investigated through two-dimensional hydrodynamical simulations with the shearing sheet model.We find that viscosity can considerably affect properties of the circumplanetary disk when the mass of the protoplanet Mp (<) 33 M(⊙),where M(⊙) is the Earth's mass.However,effects of viscosity on the circumplanetary disk are negligibly small when the mass of the protoplanet Mp(>) 33 M(⊙).We find that when Mp(<) 33 M(⊙),viscosity can markedly disrupt the spiral structure of the gas around the planet and smoothly distribute the gas,which weakens the torques exerted on the protoplanet.Thus,viscosity can slow the migration speed of a protoplanet.After including viscosity,the size of the circumplanetary disk can be decreased by a factor of (>) 20%.Viscosity helps to transport gas into the circumplanetary disk from the differentially rotating circumstellar disk.The mass of the circumplanetary disk can be increased by a factor of 50% after viscosity is taken into account when Mp(<) 33 M(⊙).Effects of viscosity on the formation of planets and satellites are briefly discussed.

  16. Stellar Disks in Aquarius Dark Matter Haloes

    CERN Document Server

    DeBuhr, Jackson; White, Simon D M

    2012-01-01

    We investigate the gravitational interactions between live stellar disks and their dark matter halos, using LCDM haloes similar in mass to that of the Milky Way taken from the Aquarius Project. We introduce the stellar disks by first allowing the haloes to respond to the influence of a growing rigid disk potential from z = 1.3 to z = 1.0. The rigid potential is then replaced with star particles which evolve self-consistently with the dark matter particles until z = 0.0. Regardless of the initial orientation of the disk, the inner parts of the haloes contract and change from prolate to oblate as the disk grows to its full size. When the disk normal is initially aligned with the major axis of the halo at z=1.3, the length of the major axis contracts and becomes the minor axis by z=1.0. Six out of the eight disks in our main set of simulations form bars, and five of the six bars experience a buckling instability that results in a sudden jump in the vertical stellar velocity dispersion and an accompanying drop in...

  17. Quasar Accretion Disks are Strongly Inhomogeneous

    Science.gov (United States)

    Dexter, Jason; Agol, Eric

    2011-01-01

    Active galactic nuclei have been observed to vary stochastically with 10%-20% rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of σ T in dex. Models with large fluctuations (σ T = 0.35-0.50) in 102-103 independently fluctuating zones for every factor of two in radius can explain the observed discrepancy between thin accretion disk sizes inferred from microlensing events and optical luminosity while matching the observed optical variability. For the same range of σ T , inhomogeneous disk spectra provide excellent fits to the Hubble Space Telescope quasar composite without invoking global Compton scattering atmospheres to explain the high levels of observed UV emission. Simulated microlensing light curves for the Einstein cross from our time-varying toy models are well fit using a time-steady power-law temperature disk and produce magnification light curves that are consistent with current microlensing observations. Deviations due to the inhomogeneous, time-dependent disk structure should occur above the 1% level in the light curves, detectable in future microlensing observations with millimagnitude sensitivity.

  18. Lunar and Meteorite Sample Disk for Educators

    Science.gov (United States)

    Foxworth, Suzanne; Luckey, M.; McInturff, B.; Allen, J.; Kascak, A.

    2015-01-01

    NASA Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation and distribution of samples for research, education and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core and regolith samples, from the lunar surface. JSC also curates meteorites collected from a US cooperative effort among NASA, the National Science Foundation (NSF) and the Smithsonian Institution that funds expeditions to Antarctica. The meteorites that are collected include rocks from Moon, Mars, and many asteroids including Vesta. The sample disks for educational use include these different samples. Active relevant learning has always been important to teachers and the Lunar and Meteorite Sample Disk Program provides this active style of learning for students and the general public. The Lunar and Meteorite Sample Disks permit students to conduct investigations comparable to actual scientists. The Lunar Sample Disk contains 6 samples; Basalt, Breccia, Highland Regolith, Anorthosite, Mare Regolith and Orange Soil. The Meteorite Sample Disk contains 6 samples; Chondrite L3, Chondrite H5, Carbonaceous Chondrite, Basaltic Achondrite, Iron and Stony-Iron. Teachers are given different activities that adhere to their standards with the disks. During a Sample Disk Certification Workshop, teachers participate in the activities as students gain insight into the history, formation and geologic processes of the moon, asteroids and meteorites.

  19. The $Spitzer$ infrared spectrograph survey of protoplanetary disks in Orion A: I. disk properties

    CERN Document Server

    Kim, K H; Manoj, P; Forrest, W J; Furlan, Elise; Najita, Joan; Sargent, Benjamin; Hernández, Jesús; Calvet, Nuria; Adame, Lucía; Espaillat, Catherine; Megeath, S T; Muzerolle, James; McClure, M K

    2016-01-01

    We present our investigation of 319 Class II objects in Orion A observed by $Spitzer$/IRS. We also present the follow-up observation of 120 of these Class II objects in Orion A from IRTF/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks to those of Taurus disks with respect to position within Orion A (ONC and L1641) and to the sub-groups by the inferred radial structures, such as transitional disks vs. radially continuous full disks. Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) Mass accretion rate of transitional disks and that of radially continuous full disks are statistically significantly displaced from each other. The m...

  20. Molecule survival in magnetized protostellar disk winds. I. Chemical model and first results

    CERN Document Server

    Panoglou, D; Forets, G Pineau des; Garcia, P J V; Ferreira, J; Casse, F

    2011-01-01

    Molecular counterparts to atomic jets have been detected within 1000 AU of young stars. Reproducing them is a challenge for proposed ejection models. We explore whether molecules may survive in an MHD disk wind invoked to reproduce the kinematics and tentative rotation signatures of atomic jets in T Tauri stars. The coupled ionization, chemical and thermal evolution along dusty flow streamlines is computed for a prescribed MHD disk wind solution, using a method developed for magnetized shocks in the interstellar medium. Irradiation by wind-attenuated coronal X-rays and FUV photons from accretion hot spots is included, with self-shielding of H2 and CO. Disk accretion rates of 5e-6, 1e-6 and 1e-7 solar masses per year are considered, representative of low-mass young protostars (Class 0), evolved protostars (Class I) and very active T Tauri stars (Class II). The disk wind has an onion-like thermo-chemical structure, with streamlines launched from larger radii having lower temperature and ionisation, and higher H...

  1. Non-LTE sodium abundance in galactic thick- and thin-disk red giants

    Science.gov (United States)

    Alexeeva, S. A.; Pakhomov, Yu. V.; Mashonkina, L. I.

    2014-07-01

    The non-LTE sodium abundance has been determined from the Na I 6154 and 6161 Å lines for 38 thin-disk stars (15 of them are Ba II stars), 15 thick-disk stars, 13 Hercules-stream stars, and 13 stars that cannot be attributed neither to the thick Galactic disk nor to the thin one. The Na I model atom has been constructed using the most accurate present-day atomic data. For the Na I 6154 and 6161 Å lines, the non-LTEabundance corrections are from -0.06 to -0.24 dex, depending on the stellar parameters. No differences in [Na/Fe] abundance between the thick and thin disks have been detected; the derived ratios are close to the solar ones. The existence of a [Na/Fe] overabundance in the Ba II stars has been confirmed. The Hercules-stream stars exhibit nearly solar [Na/Fe] ratios. The results obtained can be used to test the sodium nucleosynthesis models.

  2. PROBING THE GASEOUS DISK OF T Tau N WITH CN 5-4 LINES

    Energy Technology Data Exchange (ETDEWEB)

    Podio, L.; Codella, C. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Florence (Italy); Kamp, I.; Meijerink, R.; Spaans, M. [Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen (Netherlands); Nisini, B. [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040, Monte Porzio Catone (Italy); Aresu, G. [INAF-Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047, Selargius (Italy); Brittain, S. [Department of Physics and Astronomy, 118 Kinard Laboratory, Clemson University, Clemson, SC 29634 (United States); Cabrit, S.; Dougados, C.; Thi, W.-F. [UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); Grady, C. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Sandell, G. [SOFIA-USRA, NASA Ames Research Center, MS 232-12, Building N232, Rm. 146, P.O. Box 1, Moffett Field, CA 94035-0001 (United States); White, G. J. [Department of Physical Sciences, The Open University, Milton Keynes, MK7 6AA (United Kingdom); Woitke, P. [SUPA, School of Physics and Astronomy, University of St. Andrews, KY16 9SS (United Kingdom)

    2014-03-10

    We present spectrally resolved observations of the young multiple system T Tau in atomic and molecular lines obtained with the Heterodyne Instrument for the Far Infrared on board Herschel. While CO, H{sub 2}O, [C II], and SO lines trace the envelope and the outflowing gas up to velocities of 33 km s{sup –1} with respect to systemic, the CN 5-4 hyperfine structure lines at 566.7, 566.9 GHz show a narrow double-peaked profile centered at systemic velocity, consistent with an origin in the outer region of the compact disk of T Tau N. Disk modeling of the T Tau N disk with the thermo-chemical code ProDiMo produces CN line fluxes and profiles consistent with the observed ones and constrain the size of the gaseous disk (R{sub out}=110{sub −20}{sup +10} AU) and its inclination (i = 25°± 5°). The model indicates that the CN lines originate in a disk upper layer at 40-110 AU from the star, which is irradiated by the stellar UV field and heated up to temperatures of 50-700 K. With respect to previously observed CN 2-1 millimeter lines, the CN 5-4 lines appear to be less affected by envelope emission, due to their larger critical density and excitation temperature. Hence, high-J CN lines are a unique confusion-free tracer of embedded disks, such as the disk of T Tau N.

  3. Probing the gaseous disk of T Tau N with CN 5-4 lines

    CERN Document Server

    Podio, L; Codella, C; Nisini, B; Aresu, G; Brittain, S; Cabrit, S; Dougados, C; Grady, C; Meijerink, R; Sandell, G; Spaans, M; Thi, W -F; White, G J; Woitke, P

    2014-01-01

    We present spectrally resolved Herschel/HIFI observations of the young multiple system T Tau in atomic and molecular lines. While CO, H2O, [C II], and SO lines trace the envelope and the outflowing gas up to velocities of 33 km/s with respect to systemic, the CN 5-4 hyperfine structure lines at 566.7, 566.9 GHz show a narrow double-peaked profile centered at systemic velocity, consistent with an origin in the outer region of the compact disk of T Tau N. Disk modeling of the T Tau N disk with the thermo-chemical code ProDiMo produces CN line fluxes and profiles consistent with the observed ones and constrain the size of the gaseous disk (R_out = 110 (+10, -20) AU) and its inclination (i = 25 \\pm 5 degree). The model indicates that the CN lines originate in a disk upper layer at 40-110 AU from the star, which is irradiated by the stellar UV field and heated up to temperatures of 50-700 K. With respect to previously observed CN 2-1 millimeter lines, the CN 5-4 lines appear to be less affected by envelope emissio...

  4. Disk degeneration in 14 year old children

    International Nuclear Information System (INIS)

    This paper reports low back symptoms of 1,500 school children (14 years old) evaluated with a questionnaire and with a standardized clinical examination. Forty children who complained of recurrent and/or persistent low back pain and 40 matching symptomless controls were randomly chosen to undergo MR imaging of the lumbar spine. Premature disk degeneration was seen in 25.5% of asymptomatic children and in 40% of those with low back pain. The difference was statistically not significant. Disk degeneration is a surprisingly frequent MR finding in symptomless children. Premature disk degeneration may be the cause of low back pain in some children but is not always symptomatic in childhood

  5. When did round disk galaxies form?

    OpenAIRE

    Takeuchi, Tomoe M.; Ohta, Kouji; Yuma, Suraphong; Yabe, Kiyoto

    2015-01-01

    When and how galaxy morphology such as disk and bulge seen in the present-day universe emerged is still not clear. In the universe at $z\\gtrsim 2$, galaxies with various morphology are seen, and star-forming galaxies at $z\\sim2$ show an intrinsic shape of bar-like structure. Then, when did round disk structure form? Here we take a simple and straightforward approach to see the epoch when a round disk galaxy population emerged by constraining the intrinsic shape statistically based on apparent...

  6. The innermost astronomical unit of protoplanetary disks

    CERN Document Server

    Kluska, J; Benisty, M

    2016-01-01

    Circumstellar disks around young stars are the birthsites of planets. It is thus fundamental to study the disks in which they form, their structure and the physical conditions therein. The first astronomical unit is of great interest because this is where the terrestrial-planets form and the angular momentum is controled via massloss through winds/jets. With its milli-arcsecond resolution, optical interferometry is the only technic able to spatially resolve the first few astronomical units of the disk. In this review, we will present a broad overview of studies of young stellar objects with interferometry, and discuss prospects for the future.

  7. Mass Extinctions and a Dark Disk

    CERN Document Server

    Kramer, Eric David

    2016-01-01

    We consider whether the observed periodicity of mass extinctions and of comet impacts on Earth is consistent with Solar oscillation about the Galactic midplane and spiral arm crossings. It is of further interest to determine whether a hypothetical thin dark disk is necessary to give the right periodicity, and whether such a dark disk is allowed given kinematic and other observational constaints on the Galaxy's gravitational potential. We show that a dark disk consistent with recent bounds, combined with data for spiral arm crossing, can lead to the required periodicity. Moreover, we find that the best fit values correctly predict the date of the Chicxulub crater dated to 66 My ago.

  8. The Age of the Galactic Disk

    CERN Document Server

    Carraro, G

    1999-01-01

    I review different methods devised to derive the age of the Galactic Disk, namely the Radio-active Decay (RD), the Cool White Dwarf Luminosity Function (CWDLF), old opne clusters (OOC) and the Color Magnitude Diagram (CMD) of the stars in the solar vicinity. I argue that the disk is likely to be 8-10 Gyr old. Since the bulk of globulars has an age around 13 Gyr, the possibility emerges that the Galaxy experienced a minimum of Star Formation at the end of the halo/bulge formation. This minimum might reflect the time at which the Galaxy started to acquire material to form the disk inside-out.

  9. Analytical models of relativistic accretion disks

    CERN Document Server

    Zhuravlev, Viacheslav V

    2015-01-01

    We present not a literature review but a description, as detailed and consistent as possible, of two analytic models of disk accretion onto a rotating black hole: a standard relativistic disk and a twisted relativistic disk. Although one of these models is much older than the other, both are of topical current interest for black hole studies. The way the exposition is presented, the reader with only a limited knowledge of general relativity and relativistic hydrodynamics can --- with little or no use of additional sources -- gain good insight into many technical details lacking in the original papers.

  10. Atomic arias

    Science.gov (United States)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  11. Atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.E.; Kukla, K.; Cheng, S. [Univ. of Toledo, OH (United States)] [and others

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  12. Disk-Loss and Disk-Renewal Phases in Classical Be Stars II. Contrasting with Stable and Variable Disks

    CERN Document Server

    Draper, Zachary H; Bjorkman, Karen S; Meade, Marilyn R; Haubois, Xavier; Mota, Bruno C; Carciofi, Alex C; Bjorkman, Jon E

    2014-01-01

    Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCD) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of 9 additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, ...

  13. Effects of inclined star-disk encounter on protoplanetary disk size

    CERN Document Server

    Bhandare, Asmita; Pfalzner, Susanne

    2016-01-01

    Most, if not all, young stars are initially surrounded by protoplanetary disks. Owing to the preferential formation of stars in stellar clusters, the protoplanetary disks around these stars may potentially be affected by the cluster environment. Various works have investigated the influence of stellar fly-bys on disks, although many of them consider only the effects due to parabolic, coplanar encounters often for equal-mass stars, which is only a very special case. We perform numerical simulations to study the fate of protoplanetary disks after the impact of parabolic star-disk encounter for the less investigated case of inclined up to coplanar, retrograde encounters, which is a much more common case. Here, we concentrate on the disk size after such encounters because this limits the size of the potentially forming planetary systems. In addition, with the possibilities that ALMA offers, now a direct comparison to observations is possible. Covering a wide range of periastron distances and mass ratios between t...

  14. Perturbed disks get shocked. Binary black hole merger effects on accretion disks

    CERN Document Server

    Megevand, Miguel; Frank, Juhan; Hirschmann, Eric W; Lehner, Luis; Liebling, Steven L; Motl, Patrick M; Neilsen, David

    2009-01-01

    The merger process of a binary black hole system can have a strong impact on a circumbinary disk. In the present work we study the effect of both central mass reduction (due to the energy loss through gravitational waves) and a possible black hole recoil (due to asymmetric emission of gravitational radiation). For the mass reduction case and recoil directed along the disk's angular momentum, oscillations are induced in the disk which then modulate the internal energy and bremsstrahlung luminosities. On the other hand, when the recoil direction has a component orthogonal to the disk's angular momentum, the disk's dynamics are strongly impacted, giving rise to relativistic shocks. The shock heating leaves its signature in our proxies for radiation, the total internal energy and bremsstrahlung luminosity. Interestingly, for cases where the kick velocity is below the smallest orbital velocity in the disk (a likely scenario in real AGN), we observe a common, characteristic pattern in the internal energy of the dis...

  15. Perturbed disks get shocked. Binary black hole merger effects on accretion disks

    OpenAIRE

    Megevand, Miguel; Anderson, Matthew; Frank, Juhan; Hirschmann, Eric W.; Lehner, Luis; Liebling, Steven L.; Motl, Patrick M; Neilsen, David

    2009-01-01

    The merger process of a binary black hole system can have a strong impact on a circumbinary disk. In the present work we study the effect of both central mass reduction (due to the energy loss through gravitational waves) and a possible black hole recoil (due to asymmetric emission of gravitational radiation). For the mass reduction case and recoil directed along the disk's angular momentum, oscillations are induced in the disk which then modulate the internal energy and bremsstrahlung lumino...

  16. Launching of Poynting Jets from Accretion Disks

    CERN Document Server

    Lovelace, R V E

    2009-01-01

    The jets observed to emanate from many compact accreting objects may arise from the twisting of the magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic outflows, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting outflows, where the mass flux is negligible and energy and angular momentum are carried predominantly by the electromagnetic field. We describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks and new relativistic, fully-electromagnetic, particle-in-cell simulations of the formation of jets from accretion disks.

  17. Ionization and Dust Charging in Protoplanetary Disks

    CERN Document Server

    Ivlev, A V; Caselli, P

    2016-01-01

    Ionization-recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field and the development of magnetorotational instability in protoplanetary disks. We present a self-consistent analytical model which allows us to exactly calculate abundances of charged species in dusty gas, in the regime where the dust-phase recombination dominates over the gas-phase recombination. The model is employed to verify applicability of a conventional approximation of low dust charges in protoplanetary disks, and to discuss the implications for the dust coagulation and the development of the "dead zone" in the disk. Furthermore, the importance of mutually consistent models for the ionization and dust evolution is addressed: These processes are coupled via several mechanisms operating in the disk, and therefore their interplay can be crucial for the ultimate ...

  18. Observations of Solids in Protoplanetary Disks

    CERN Document Server

    Andrews, Sean M

    2015-01-01

    This review addresses the state of research that employs astronomical (remote sensing) observations of solids ("dust") in young circumstellar disks to learn about planet formation. The intention is for it to serve as an accessible, introductory, pedagogical resource for junior scientists interested in the subject. After some historical background and a basic observational primer, the focus is shifted to the three fundamental topics that broadly define the field: (1) demographics -- the relationships between disk properties and the characteristics of their environments and hosts; (2) structure -- the spatial distribution of disk material and its associated physical conditions and composition; and (3) evolution -- the signposts of key changes in disk properties, including the growth and migration of solids and the impact of dynamical interactions with young planetary systems. Based on the state of the art results in these areas, suggestions are made for potentially fruitful lines of work in the near future.

  19. Analytic Creep Durability of Rotating Uniform Disks

    Directory of Open Access Journals (Sweden)

    Yuriy Nyashin

    1998-01-01

    Full Text Available Turbine disks of aircraft engines in operation are subjected to alternating thermocyclic deformation under high temperatures. Operation gives rise to sufficiently high stresses and subsequent creep damaging effects.

  20. Advanced disk-type LP turbine rotors

    International Nuclear Information System (INIS)

    This paper addresses the application of these design considerations. After twenty years experience with disk-type rotors, the Siemens/KWU ten-disk rotor for low-speed nuclear LP turbines was developed in 1969. Full volumetric disk hub inspections after 83,000 service hours did not reveal any stress corrosion cracking. In the meantime, this rotor design has been further improved. In 1987, two advanced eight-disk rotors went into operation at the Connecticut Yankee station. This rotor design together with the advanced LP turbine blading has been delivered to the Unterweser station. First test results indicated a remarkably improved thermodynamic performance. Avoidance of stress corrosion cracking can be accomplished by a combination of various measures: Proper keyway design; Low metal temperature; Low tensile stressing (by design); Low yield strength; High fracture toughness; Low surface stresses (by manufacturing); Proper steam/water cycle chemistry

  1. Observations of Solids in Protoplanetary Disks

    Science.gov (United States)

    Andrews, Sean M.

    2015-10-01

    This review addresses the state of research that employs astronomical (remote sensing) observations of solids ("dust") in young circumstellar disks to learn about planet formation. The intention is for it to serve as an accessible, introductory, pedagogical resource for junior scientists interested in the subject. After some historical background and a basic observational primer, the focus is shifted to the three fundamental topics that broadly define the field: (1) demographics—the relationships between disk properties and the characteristics of their environments and hosts; (2) structure—the spatial distribution of disk material and its associated physical conditions and composition; and (3) evolution—the signposts of key changes in disk properties, including the growth and migration of solids and the impact of dynamical interactions with young planetary systems. Based on the state-of-the-art results in these areas, suggestions are made for potentially fruitful lines of work in the near future.

  2. Carbon isotope fractionation in protoplanetary disks

    CERN Document Server

    Woods, Paul M

    2008-01-01

    We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of protoplanetary disks. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12C/13C, of the system varies with radius and height in the disk. Different behaviour is seen in the fractionation of different species. We compare our results with 12C/13C ratios in the Solar System comets, and find a stark contrast, indicative of reprocessing.

  3. Disks, accretion and outflows of brown dwarfs

    CERN Document Server

    Joergens, V; Liu, Y; Pascucci, I; Whelan, E; Alcala, J; Biazzo, K; Costigan, G; Gully-Santiago, M; Henning, Th; Natta, A; Rigliaco, E; Rodriguez-Ledesma, V; Sicilia-Aguilar, A; Tottle, J; Wolf, S

    2012-01-01

    Characterization of the properties of young brown dwarfs are important to constraining the formation of objects at the extreme low-mass end of the IMF. While young brown dwarfs share many properties with solar-mass T Tauri stars, differences may be used as tests of how the physics of accretion/outflow and disk chemistry/dissipation depend on the mass of the central object. This article summarizes the presentations and discussions during the splinter session on 'Disks, accretion and outflows of brown dwarfs' held at the CoolStars17 conference in Barcelona in June 2012. Recent results in the field of brown dwarf disks and outflows include the determination of brown dwarf disk masses and geometries based on Herschel far-IR photometry (70-160 um), accretion properties based on X-Shooter spectra, and new outflow detections in the very low-mass regime.

  4. Exact Relativistic Magnetized Haloes around Rotating Disks

    Directory of Open Access Journals (Sweden)

    Antonio C. Gutiérrez-Piñeres

    2015-01-01

    Full Text Available The study of the dynamics of magnetic fields in galaxies is one of important problems in formation and evolution of galaxies. In this paper, we present the exact relativistic treatment of a rotating disk surrounded by a magnetized material halo. The features of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only. For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the first relativistic model describing analytically the magnetized halo of a rotating disk.

  5. Stochastic oscillations of general relativistic disks

    CERN Document Server

    Harko, Tiberiu

    2012-01-01

    We analyze the general relativistic oscillations of thin accretion disks around compact astrophysical objects interacting with the surrounding medium through non-gravitational forces. The interaction with the external medium (a thermal bath) is modeled via a friction force, and a random force, respectively. The general equations describing the stochastically perturbed disks are derived by considering the perturbations of trajectories of the test particles in equatorial orbits, assumed to move along the geodesic lines. By taking into account the presence of a viscous dissipation and of a stochastic force we show that the dynamics of the stochastically perturbed disks can be formulated in terms of a general relativistic Langevin equation. The stochastic energy transport equation is also obtained. The vertical oscillations of the disks in the Schwarzschild and Kerr geometries are considered in detail, and they are analyzed by numerically integrating the corresponding Langevin equations. The vertical displacement...

  6. Powerful, Rotating Disk Winds from Stellar-mass Black Holes

    CERN Document Server

    Miller, J M; Kaastra, J; Kallman, T; King, A L; Proga, D; Raymond, J; Reynolds, C S

    2015-01-01

    We present an analysis of ionized X-ray disk winds observed in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe XXV line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe XXVI line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are ro...

  7. A New M Dwarf Debris Disk Candidate in a Young Moving Group Discovered with Disk Detective

    CERN Document Server

    Silverberg, Steven M; Wisniewski, John P; Gagne, Jonathan; Bans, Alissa S; Bhattacharjee, Shambo; Currie, Thayne R; Debes, John R; Biggs, Joseph R; Bosch, Milton; Doll, Katharina; Durantini-Luca, Hugo A; Enachioaie, Alexandru; Griffith,, Philip; Hyogo, Michiharu; Piniero, Fernanda

    2016-01-01

    We used the Disk Detective citizen science project and the BANYAN II Bayesian analysis tool to identify a new candidate member of a nearby young association with infrared excess. WISE J080822.18-644357.3, an M5.5-type debris disk system with significant excess at both 12 and 22 $\\mu$m, is a likely member ($\\sim 90\\%$ BANYAN II probability) of the $\\sim 45$ Myr-old Carina association. Since this would be the oldest M dwarf debris disk detected in a moving group, this discovery could be an important constraint on our understanding of M dwarf debris disk evolution.

  8. The Debris Disk Explorer: a balloon-borne coronagraph for observing debris disks

    CERN Document Server

    Roberts, Lewis C; Traub, Wesley; Unwin, Stephen; Trauger, John; Krist, John; Aldrich, Jack; Brugarolas, Paul; Stapelfeldt, Karl; Wyatt, Mark; Stuchlik, David; Lanzi, James

    2013-01-01

    The Debris Disk Explorer (DDX) is a proposed balloon-borne investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. DDX will measure the size, shape, brightness, and color of tens of disks. These measurements will enable us to place the Solar System in context. By imaging debris disks around nearby stars, DDX will reveal the presence of perturbing planets via their influence on disk structure, and explore the physics and history of debris disks by characterizing the size and composition of disk dust. The DDX instrument is a 0.75-m diameter off-axis telescope and a coronagraph carried by a stratospheric balloon. DDX will take high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Two flights are planned; an overnight test flight within the United States followed by a month-long science flight launched from New Zealand. The long flight will fully explore the set of known de...

  9. Gaps in Protoplanetary Disks as Signatures of Planets: II. Inclined Disks

    CERN Document Server

    Jang-Condell, Hannah

    2013-01-01

    We examine the observational appearance of partial gaps being opened by planets in protoplanetary disks, considering the effects of the inclination relative to the line of sight. The gap's trough is darkened by both shadowing and cooling, relative to the uninterrupted disk. The gap's outer wall is brightened by direct illumination and also by heating, which puffs it up so that it intercepts more starlight. In this paper, we examine the effects of inclination on resolved images of disks with and without gaps at a wide range of wavelengths. The scattering surface's offset from the disk midplane creates a brightness asymmetry along the axis of inclination, making the disk's near side appear brighter than the far side in scattered light. Finite disk thickness also causes the projected distances of equidistant points on the disk surface to be smaller on the near side of the disk as compared to the far side. Consequently, the gap shoulder on the near side of the disk should appear brighter and closer to the star th...

  10. YottaYotta announces new world record set for TCP disk-to-disk bulk transfer

    CERN Multimedia

    2002-01-01

    The Yottabyte NetStorage(TM) Company, today announced a new world record for TCP disk-to-disk data transfer using the company's NetStorager(R) System. The record-breaking demonstration transferred 5 terabytes of data between Chicago, Il. to Vancouver, BC and Ottawa, ON, at a sustained average throughput of 11.1 gigabits per second. Peak throughput exceeded 11.6 gigabits per second, more than 15-times faster than previous records for TCP transfer from disk-to-disk (1 page).

  11. Lumbar Disk Herniation Surgery: Outcome and Predictors

    OpenAIRE

    Sedighi, Mahsa; Haghnegahdar, Ali

    2014-01-01

    Study Design A retrospective cohort study. Objectives To determine the outcome and any differences in the clinical results of three different surgical methods for lumbar disk herniation and to assess the effect of factors that could predict the outcome of surgery. Methods We evaluated 148 patients who had operations for lumbar disk herniation from March 2006 to March 2011 using three different surgical techniques (laminectomy, microscopically assisted percutaneous nucleotomy, and spinous proc...

  12. Shock Waves in Dense Hard Disk Fluids

    OpenAIRE

    Sirmas, Nick; Tudorache, Marion; Barahona, Javier; Radulescu, Matei I.

    2011-01-01

    Media composed of colliding hard disks (2D) or hard spheres (3D) serve as good approximations for the collective hydrodynamic description of gases, liquids and granular media. In the present study, the compressible hydrodynamics and shock dynamics are studied for a two-dimensional hard-disk medium at both the continuum and discrete particle level descriptions. For the continuum description, closed form analytical expressions for the inviscid hydrodynamic description, shock Hugoniot, isentropi...

  13. Propeller-driven Outflows and Disk Oscillations

    OpenAIRE

    Romanova, M. M.; Ustyugova, G. V.; Koldoba, A. V.; Lovelace, R. V. E.

    2005-01-01

    We report the discovery of propeller-driven outflows in axisymmetric magnetohydrodynamic simulations of disk accretion to rapidly rotating magnetized stars. Matter outflows in a wide cone and is centrifugally ejected from the inner regions of the disk. Closer to the axis there is a strong, collimated, magnetically dominated outflow of energy and angular momentum carried by the open magnetic field lines from the star. The ``efficiency'' of the propeller may be very high in the respect that mos...

  14. LMC Microlensing and Very Thick Disks

    OpenAIRE

    Gyuk, Geza; Gates, Evalyn

    1998-01-01

    We investigate the implications of a very thick (scale height 1.5 - 3.0 kpc) disk population of MACHOs. Such a population represents a reasonable alternative to standard halo configurations of a lensing population. We find that very thick disk distributions can lower the lens mass estimate derived from the microlensing data toward the LMC, although an average lens mass substantially below $0.3\\Msol$ is unlikely. Constraints from direct searches for such lenses imply very low luminosity object...

  15. A Note on Disk Drag Dynamics

    CERN Document Server

    Gunther, Neil J

    2012-01-01

    The electrical power consumed by typical magnetic hard disk drives (HDD) not only increases linearly with the number of spindles but, more significantly, it increases as very fast power-laws of speed (RPM) and diameter. Since the theoretical basis for this relationship is neither well-known nor readily accessible in the literature, we show how these exponents arise from aerodynamic disk drag and discuss their import for green storage capacity planning.

  16. Disk-averaged synthetic spectra of Mars

    OpenAIRE

    Tinetti, Giovanna; Meadows, Victoria S.; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather

    2004-01-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and ESA Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earth-sized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of the planet Mars to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra as a f...

  17. HD95881 : a gas rich to gas poor transition disk?

    NARCIS (Netherlands)

    Verhoeff, A. P.; Min, M.; Acke, B.; van Boekel, R.; Pantin, E.; Waters, L. B. F. M.; Tielens, A. G. G. M.; van den Ancker, M. E.; Mulders, G. D.; de Koter, A.; Bouwman, J.

    2010-01-01

    Context. Based on the far infrared excess the Herbig class of stars is divided into a group with flaring circumstellar disks (group I) and a group with flat circumstellar disks (group II). Dust sedimentation is generally proposed as an evolution mechanism to transform flaring disks into flat disks.

  18. Is dynamic heating of stellar disk inevitable?

    CERN Document Server

    Zasov, A; Katkov, I

    2012-01-01

    Major mergers or/and the repeated minor mergers lead to dynamical heating of disks of galaxies. We analyze the available data on the velocity dispersion of stellar disks of S-S0 galaxies, including the new observational data obtained at 6m telescope of SAO RAS. As a measure of dynamical (over)heating, we use the ratio of the observed velocity dispersion to the minimal dispersion which provides the local stability of the stellar disks with respect to gravitational perturbations. We came to conclusion that stellar disks in a significant part of galaxies (including LSB and some S0 galaxies) are close to the marginal stability condition (or are slightly overheated) -- at least at radial distances $r\\sim$ 2-3 radial scalelenghts. It enables to constrain the role of merging in the heating of stellar disks: in many cases it seems to be non-efficient. Marginal stability condition may also be successfully used to estimate the mass of a disk and the midplane volume gas (stars) densities on the basis of kinematic measur...

  19. A Primer on Unifying Debris Disk Morphologies

    CERN Document Server

    Lee, Eve J

    2016-01-01

    A "minimum model" for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: "rings," "needles," "ships-and-wakes," "bars," and "moths (a.k.a. fans)," depending on the viewing geometry. Moths can also sport "double wings." We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intui...

  20. Tilt, Warp, and Simultaneous Precessions in Disks

    CERN Document Server

    Montgomery, M M

    2012-01-01

    Warps are suspected in disks around massive compact objects. However, the proposed warping source -- non-axisymmetric radiation pressure -- does not apply to white dwarfs. In this letter we report the first Smoothed Particle Hydrodynamic simulations of accretion disks in SU UMa-type systems that naturally tilt, warp, and simultaneously precess in the prograde and retrograde directions using white dwarf V344 Lyrae in the Kepler field as our model. After ~79 days in V344 Lyrae, the disk angular momentum L_d becomes misaligned to the orbital angular momentum L_o. As the gas stream remains normal to L_o, hydrodynamics (e.g., the lift force) is a likely source to disk tilt. In addition to tilt, the outer disk annuli cyclically change shape from circular to highly eccentric due to tidal torques by the secondary star. The effect of simultaneous prograde and retrograde precession is a warp of the colder, denser midplane as seen along the disk rim. The simulated rate of apsidal advance to nodal regression per orbit ne...

  1. An MCMC Circumstellar Disks Modeling Tool

    Science.gov (United States)

    Wolff, Schuyler; Perrin, Marshall D.; Mazoyer, Johan; Choquet, Elodie; Soummer, Remi; Ren, Bin; Pueyo, Laurent; Debes, John H.; Duchene, Gaspard; Pinte, Christophe; Menard, Francois

    2016-01-01

    We present an enhanced software framework for the Monte Carlo Markov Chain modeling of circumstellar disk observations, including spectral energy distributions and multi wavelength images from a variety of instruments (e.g. GPI, NICI, HST, WFIRST). The goal is to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in the derived properties. This modular code is designed to work with a collection of existing modeling tools, ranging from simple scripts to define the geometry for optically thin debris disks, to full radiative transfer modeling of complex grain structures in protoplanetary disks (using the MCFOST radiative transfer modeling code). The MCMC chain relies on direct chi squared comparison of model images/spectra to observations. We will include a discussion of how best to weight different observations in the modeling of a single disk and how to incorporate forward modeling from PCA PSF subtraction techniques. The code is open source, python, and available from github. Results for several disks at various evolutionary stages will be discussed.

  2. Near continuum flows over a rotating disk

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Rodriguez, Gerardo; Cai, Chunpei, E-mail: geralara680@gmail.com, E-mail: ccai@nmsu.edu [New Mexico State University, Las Cruces, NM (United States)

    2015-08-15

    We analyze the near continuum flow created by a rotating disk facing a stagnant gas. The flow-field properties change from the traditional continuum solutions, due to the introductions of new velocity-slip and temperature-jump boundary conditions. To compute the velocity profiles, a self-similar transformation simplifies the Navier-Stokes equations into a system of ordinary differential equations. The introduction of new boundary conditions generates new parameters which can be adjusted at different degrees of rarefaction. Shooting methods are adopted to solve the differential equations with the new boundary conditions. Based on the solved velocity profiles, exact solutions for the temperature distribution are obtained. The gas temperature at the disk surface shifts towards the free stream temperature, while the heat flux between the gas and surface is reduced. Stream function solutions for the flow at the disk surface are presented to demonstrate the effects of the slip boundary conditions. The torque generated by the disk is obtained with different disk rotating speed, and the gas at the disk surface has different slip velocities. (author)

  3. Axisymmetric bending oscillations of stellar disks

    CERN Document Server

    Sellwood, J A

    1996-01-01

    Self-gravitating stellar disks with random motion support both exponentially growing and, in some cases, purely oscillatory axisymmetric bending modes, unlike their cold disk counterparts. A razor-thin disk with even a very small degree of random motion in the plane is both unstable and possesses a discrete spectrum of neutral modes, irrespective of the sharpness of the edge. Random motion normal to the disk plane has a stabilizing effect but at the same time allows bending waves to couple to the internal vibrations of the particles, which causes the formerly neutral modes to decay through Landau damping. Focusing first on instabilities, I here determine the degree of random motion normal to the plane needed to suppress global, axisymmetric, bending instabilities in a family of self-gravitating disks. As found previously, bending instabilities are suppressed only when the thickness exceeds that expected from a na\\"\\i ve local criterion when the degree of pressure support within the disk plane is comparable to...

  4. Gravitational Instability in Neutrino Dominated Accretion Disks

    Institute of Scientific and Technical Information of China (English)

    刘彤; 薛力

    2011-01-01

    We revisit the vertical structure of neutrino-dominated accretion flows (NDAFs) in spherical coordinates under a boundary condition based on a mechanical equilibrium. The solutions show that the NDAF is significantly geometrically thick. The Toomre parameter is determined by the mass accretion rate and the viscosity parameter, which is defined as Q = csΩ/πGΣ, where cs, Ω and Σ are the sound speed, angular velocity and surface density, respectively. According to the distribution of the Toomre parameter, the possible fragments of the disk may appear near the disk surface in the outer region. These possible outflows originating from the gravitational instability of the disk may account for the late-time flares in gamma-ray bursts.%We revisit the vertical structure of neutrino-dominated accretion flows(NDAFs)in spherical coordinates under a boundary condition based on a mechanical equilibrium.The solutions show that the NDAF is significantly geometrically thick.The Toomre parameter is determined by the mass accretion rate and the viscosity parameter,which is defined as Q =csΩ/πG∑,where cs,Ω and ∑ are the sound speed,angular velocity and surface density,respectively.According to the distribution of the Toomre parameter,the possible fragments of the disk may appear near the disk surface in the outer region.These possible outflows originating from the gravitational instability of the disk may account for the late-time flares in gamma-ray bursts.

  5. The Collisional Evolution of Debris Disks

    CERN Document Server

    Gaspar, Andras; Balog, Zoltan

    2012-01-01

    We explore the collisional decay of disk mass and infrared emission in debris disks. With models, we show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a slower value. The total disk mass falls off ~ t^-0.35 at its fastest point (where t is time) for our reference model, while the dust mass and its proxy -- the infrared excess emission -- fades significantly faster (~ t^-0.8). These later level off to a decay rate of M_tot(t) ~ t^-0.08 and M_dust(t) or L_ir(t) ~ t^-0.6. This is slower than the ~ t^-1 decay given for all three system parameters by traditional analytic models. We also compile an extensive catalog of Spitzer and Herschel 24, 70, and 100 micron observations. Assuming a log-normal distribution of initial disk masses, we generate model population decay curves for the fraction of debris disk harboring stars observed at 24 micron and also model the distribution of measured excesses at the far-...

  6. Extra-Solar Kuiper Belt Dust Disks

    CERN Document Server

    Moro-Martin, A; Malhotra, R; Trilling, D E; Moro-Martin, Amaya; Wyatt, Mark C.; Malhotra, Renu; Trilling, David E.

    2007-01-01

    The dust disks observed around mature stars are evidence that plantesimals are present in these systems on spatial scales that are similar to that of the asteroids and the KBOs in the Solar System. These dust disks (a.k.a. ``debris disks'') present a wide range of sizes, morphologies and properties. It is inferred that their dust mass declines with time as the dust-producing planetesimals get depleted, and that this decline can be punctuated by large spikes that are produced as a result of individual collisional events. The lack of solid state features indicate that, generally, the dust in these disks have sizes larger than approximately 10 microns, but exceptionally, strong silicate features in some disks suggest the presence of large quantities of small grains, thought to be the result of recent collisions. Spatially resolved observations of debris disks show a diversity of structural features, such as inner cavities, warps, offsets, brightness asymmetries, spirals, rings and clumps. There is growing eviden...

  7. Synchronized Intermittent Motion Induced by the Interaction between Camphor Disks

    Science.gov (United States)

    Suematsu, Nobuhiko J.; Tateno, Kurina; Nakata, Satoshi; Nishimori, Hiraku

    2015-03-01

    A new mode of collective motion was discovered in a system of camphor disks floating on the water surface in a circular chamber. The mode was induced by tuning the number of the disks. A single or few disks are known to continuously move on the water surface. Conversely, when many disks are present, motion comes to a stop and the disks form ordered spatial patterns by repulsive interaction. Here we found the third mode that emerged at an intermediate disk number, in which inactive and active motion phases alternated non-periodically. This new mode exhibited synchronization as the disk number increased.

  8. Vertical Structure of Magnetized Accretion Disks around Young Stars

    CERN Document Server

    Lizano, S; Boehler, Y; D'Alessio, P

    2015-01-01

    We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic field dragged during the process of star formation developed by Shu and coworkers. We consider disks around low mass protostars, T Tauri, and FU Orionis stars. We consider two levels of disk magnetization, $\\lambda_{sys} = 4$ (strongly magnetized disks), and $\\lambda_{sys} = 12$ (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk. The T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7\\% of the visc...

  9. Research overview on vibration damping of mistuned bladed disk assemblies

    OpenAIRE

    Zhang, Liang; Liu, Tiejian; Li, Xin; Xuyao HUO

    2016-01-01

    Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home a...

  10. Intermediate mass black holes in AGN disks: I. Production & Growth

    OpenAIRE

    McKernan, B.; Ford, K. E. S.; Lyra, W.; Perets, H. B.

    2012-01-01

    Here we propose a mechanism for efficiently growing intermediate mass black holes (IMBH) in disks around supermassive black holes. Stellar mass objects can efficiently agglomerate when facilitated by the gas disk. Stars, compact objects and binaries can migrate, accrete and merge within disks around supermassive black holes. While dynamical heating by cusp stars excites the velocity dispersion of nuclear cluster objects (NCOs) in the disk, gas in the disk damps NCO orbits. If gas damping domi...

  11. Disk-Planet Interaction: Triggered Formation and Migration

    OpenAIRE

    Lufkin, Graeme; Quinn, Thomas; Governato, Fabio

    2004-01-01

    We present three-dimensional SPH calculations of giant planets embedded in gaseous disks. Our findings are collected into a map of parameter space, exhibiting four distinct regions: Type I migration, gap formation, triggered formation of more planets, and wholly unstable disks. For Type I migration of the planet due to secular interactions with the disk material, the migration rate depends linearly on the disk mass, and is independent of the initial planet mass. For more massive disks, the pl...

  12. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  13. Photon Bubble Turbulence in Cold Atomic Gases

    CERN Document Server

    Rodrigues, João D; Ferreira, António V; Terças, Hugo; Kaiser, Robin; Mendonça, José T

    2016-01-01

    Turbulent radiation flow is ubiquitous in many physical systems where light-matter interaction becomes relevant. Photon bubbling, in particular, has been identified as the main source of turbulent radiation transport in many astrophysical objects, such as stars and accretion disks. This mechanism takes place when radiation trapping in optically dense media becomes unstable, leading to the energy dissipation from the larger to the smaller bubbles. Here, we report on the observation of photon bubble turbulence in cold atomic gases in the presence of multiple scattering of light. The instability is theoretically explained by a fluid description for the atom density coupled to a diffusive transport equation for the photons, which is known to be accurate in the multiple scattering regime investigated here. We determine the power spectrum of the atom density fluctuations, which displays an unusual $\\sim k^{-4}$ scaling, and entails a complex underlying turbulent dynamics resulting from the formation of dynamical bu...

  14. Thermal Test on Target with Pressed Disks

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chemerisov, Sergey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gromov, Roman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lowden, Rick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-27

    A thorough test of the thermal performance of a target for Mo99 production using solid Mo100 target to produce the Mo99 via a gamma-n reaction has previously been conducted at Argonne National Laboratory (ANL). The results are reported in “Zero Degree Line Mo Target Thermal Test Results and Analysis,” LANL report Number LA-UR-15-23134 dated 3/27/15. This target was comprised of 25 disks 1 mm thick and 12 mm in diameter, separated by helium coolant gaps 0.5 mm wide. The test reported in the above referenced report was conducted with natural Mo disks all cut from commercial rod. The production plant will have Mo100 disks pressed and sintered using a process being developed at Oak Ridge National Laboratory (ORNL). The structural integrity of press-and-sinter disks is of some concern. The test reported herein included 4 disks made by the ORNL process and placed in the high heat, and therefore high thermal stress, region of the target. The electron beam energy was 23 MeV for these tests. Beam spot size was 3.5 mm horizontal and 3 mm vertical, FWHM. The thermal stress test of pressed-and-sintered disks resulted in no mechanical failures. The induced thermal stresses were below yield stress for natural Mo, indicating that up to that stress state no inherent deficiencies in the mechanical properties of the fabricated disks were evident.

  15. Radially Magnetized Protoplanetary Disk: Vertical Profile

    Science.gov (United States)

    Russo, Matthew; Thompson, Christopher

    2015-11-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field Br ˜ (10-4-10-2)(r/ AU)-2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ˜1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10-8 M⊙ yr-1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.

  16. Failure characterization at head/disk interface of hard disk drive

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The characterization of sub-micron features and particles between hard disk interface(HDI) is becoming even more important to the hard disk industry in the fields of corrosion, tribologyand the contamination. In this paper, media scratch and particles are characterized with AES,TOF-SIMS, SEM/EDX and LPC. The main causes resulted in serious media scratch have beenanalyzed and discussed.

  17. Disk radii and grain sizes in Herschel-resolved debris disks

    Energy Technology Data Exchange (ETDEWEB)

    Pawellek, Nicole; Krivov, Alexander V. [Astrophysikalisches Institut und Universitätssternwarte, Friedrich-Schiller-Universität Jena, Schillergäßchen 2-3, 07745 Jena (Germany); Marshall, Jonathan P. [School of Physics, University of New South Wales, Sydney NSW 2052 (Australia); Montesinos, Benjamin [Departmento de Astrofísica, Centro de Astrobiología (CAB, CSIC-INTA), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Ábrahám, Péter; Moór, Attila [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary); Bryden, Geoffrey [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Eiroa, Carlos [Departamento de Física Teórica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain)

    2014-09-01

    The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focus our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s {sub blow} that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s {sub blow} at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s {sub blow}, appear to decrease

  18. Disk Radii and Grain Sizes in Herschel-resolved Debris Disks

    Science.gov (United States)

    Pawellek, Nicole; Krivov, Alexander V.; Marshall, Jonathan P.; Montesinos, Benjamin; Ábrahám, Péter; Moór, Attila; Bryden, Geoffrey; Eiroa, Carlos

    2014-09-01

    The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focus our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s blow that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s blow at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s blow, appear to decrease with the luminosity

  19. Milky Way's Thick and Thin disk: Is there distinct thick disk?

    CERN Document Server

    Kawata, D

    2016-01-01

    This article is based on our discussion session on Milky Way models at the 592 WE-Heraeus Seminar, Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical models. The discussion focused on the following question: "Are there distinct thick and thin disks?". The answer to this question depends on the definition one adopts for thin and thick disks. The participants of this discussion converged to the idea that there are at least two different types of disks in the Milky Way. However, there are still important open questions on how to best define these two types of disks (chemically, kinematically, geometrically or by age?). The question of what is the origin of the distinct disks remains open. The future Galactic surveys which are highlighted in this conference should help us answering these questions. The almost one-hour debate involving researchers in the field representing different modelling approaches (Galactic models such as TRILEGAL, Besancon and Galaxia, chemica...

  20. Chemical evolution of protoplanetary disks - the effects of viscous accretion, turbulent mixing and disk winds

    CERN Document Server

    Heinzeller, Dominikus; Walsh, Catherine; Millar, Tom J

    2011-01-01

    We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared LTE line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line ...

  1. Manipulation of magnetic vortex parameters in disk-on-disk nanostructures with various geometry

    Directory of Open Access Journals (Sweden)

    Maxim E. Stebliy

    2015-03-01

    Full Text Available Magnetic nanostructures in the form of a sandwich consisting of two permalloy (Py disks with diameters of 600 and 200 nm separated by a nonmagnetic interlayer are studied. Magnetization reversal of the disk-on-disk nanostructures depends on the distance between centers of the small and big disks and on orientation of an external magnetic field applied during measurements. It is found that manipulation of the magnetic vortex chirality and the trajectory of the vortex core in the big disk is only possible in asymmetric nanostructures. Experimentally studied peculiarities of a motion path of the vortex core and vortex parameters by the magneto-optical Kerr effect (MOKE magnetometer are supported by the magnetic force microscopy imaging and micromagnetic simulations.

  2. Reprocessing of ices in turbulent protoplanetary disks: Carbon and nitrogen chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Kenji; Aikawa, Yuri, E-mail: furuya@strw.leidenuniv.nl [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan)

    2014-08-01

    We study the influence of the turbulent transport on ice chemistry in protoplanetary disks, focusing on carbon- and nitrogen-bearing molecules. Chemical rate equations are solved with the diffusion term, mimicking the turbulent mixing in the vertical direction. Turbulence can bring ice-coated dust grains from the midplane to the warm irradiated disk surface, and the ice mantles are reprocessed by photoreactions, thermal desorption, and surface reactions. The upward transport decreases the abundance of methanol and ammonia ices at r ≲ 30 AU because warm dust temperature prohibits their reformation on grain surfaces. This reprocessing could explain the smaller abundances of carbon and nitrogen bearing molecules in cometary coma than those in low-mass protostellar envelopes. We also show the effect of mixing on the synthesis of complex organic molecules (COMs) in two ways: (1) transport of ices from the midplane to the disk surface and (2) transport of atomic hydrogen from the surface to the midplane. The former enhances the COMs formation in the disk surface, while the latter suppresses it in the midplane. Then, when mixing is strong, COMs are predominantly formed in the disk surface, while their parent molecules are (re)formed in the midplane. This cycle expands the COMs distribution both vertically and radially outward compared with that in the non-turbulent model. We derive the timescale of the sink mechanism by which CO and N{sub 2} are converted to less volatile molecules to be depleted from the gas phase and find that the vertical mixing suppresses this mechanism in the inner disks.

  3. Radiative Ablation of Disks Around Massive Stars

    CERN Document Server

    Kee, N D

    2015-01-01

    Hot, massive stars (spectral types O and B) have extreme luminosities ($10^4 -10^6 L_\\odot$) that drive strong stellar winds through UV line-scattering. Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar...

  4. Bar instability in disk-halo systems

    CERN Document Server

    Sellwood, J A

    2016-01-01

    We show that the exponential growth rate of a bar in a stellar disk is substantially greater when the disk is embedded in a live halo than in a rigid one having the same mass distribution. We also find that the vigor of the instability in disk-halo systems varies with the shape of the halo velocity ellipsoid. Disks in rigid halos that are massive enough to be stable by the usual criteria, quickly form bars in isotropic halos and much greater halo mass is needed to avoid a strong bar; thus stability criteria derived for disks in rigid halos do not apply when the halo is responsive. The study presented here is of an idealized family of models with near uniform central rotation and that lack an extended halo; we present more realistic models with extended halos in a companion paper. The puzzle presented by the absence of strong bars in some galaxies having gently rising inner rotation curves is compounded by the results presented here.

  5. Low EUV Luminosities Impinging on Protoplanetary Disks

    CERN Document Server

    Pascucci, I; Gorti, U; Hollenbach, D; Hendler, N P; Brooks, K J; Contreras, Y

    2014-01-01

    The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the EUV luminosity impinging on 14 disks around young (~2-10Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 10$^{42}$ photons/s for all sources without jets and lower than $5 \\times 10^{40}$ photons/s for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [NeII] 12.81 micron luminosities from three disks with slow [NeII]-detected winds. This indicates that the [NeII] line in these sources prima...

  6. Planetary Torque in 3D Isentropic Disks

    CERN Document Server

    Fung, Jeffrey; Lega, Elena; Velasco, David

    2016-01-01

    Planet migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep requirement in resolution. Using two different hydrodynamics code, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a 1 to 5 Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet's potential ($r_{\\rm s}$), and that it has a weak dependence on the adiabatic index of the gaseous disk ($\\gamma$). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern...

  7. The Migrating Embryo Model for Disk Evolution

    CERN Document Server

    Basu, Shantanu

    2012-01-01

    A new view of disk evolution is emerging from self-consistent numerical simulation modeling of the formation of circumstellar disks from the direct collapse of prestellar cloud cores. This has implications for many aspects of star and planet formation, including the growth of dust and high-temperature processing of materials. A defining result is that the early evolution of a disk is crucially affected by the continuing mass loading from the core envelope, and is driven into recurrent phases of gravitational instability. Nonlinear spiral arms formed during these episodes fragment to form gaseous clumps in the disk. These clumps generally migrate inward due to gravitational torques arising from their interaction with a trailing spiral arm. Occasionally, a clump can open up a gap in the disk and settle into a stable orbit, revealing a direct pathway to the formation of companion stars, brown dwarfs, or giant planets. At other times, when multiple clumps are present, a low mass clump may even be ejected from the...

  8. Nucleosynthesis in Gamma Ray Burst Accretion Disks

    CERN Document Server

    Pruet, J; Hoffman, R D; Pruet, Jason

    2003-01-01

    We follow the nuclear reactions that occur in the accretion disks of stellar mass black holes that are accreting at a very high rate, 0.01 to 1 solar masses per second, as is realized in many current models for gamma-ray bursts (GRBs). The degree of neutronization in the disk is a sensitive function of the accretion rate, black hole mass, Kerr parameter, and disk viscosity. For high accretion rates and low viscosity, material arriving at the black hole will consist predominantly of neutrons. This degree of neutronization will have important implications for the dynamics of the GRB producing jet and perhaps for the synthesis of the r-process. For lower accretion rates and high viscosity, as might be appropriate for the outer disk in the collapsar model, neutron-proton equality persists allowing the possible synthesis of 56Ni in the disk wind. 56Ni must be present to make any optically bright Type Ib supernova, and in particular those associated with GRBs.

  9. Radiative Transfer on Perturbations in Protoplanetary Disks

    CERN Document Server

    Jang-Condell, H; Jang-Condell, Hannah; Sasselov, Dimitar D.

    2003-01-01

    We present a method for calculating the radiative tranfer on a protoplanetary disk perturbed by a protoplanet. We apply this method to determine the effect on the temperature structure within the photosphere of a passive circumstellar disk in the vicinity of a small protoplanet of up to 20 Earth masses. The gravitational potential of a protoplanet induces a compression of the disk material near it, resulting in a decrement in the density at the disk's surface. Thus, an isodensity contour at the height of the photosphere takes on the shape of a well. When such a well is illuminated by stellar irradiation at grazing incidence, it results in cooling in a shadowed region and heating in an exposed region. For typical stellar and disk parameters relevant to the epoch of planet formation, we find that the temperature variation due to a protoplanet at 1 AU separation from its parent star is about 4% (5 K) for a planet of 1 Earth mass, about 14% (19 K) for planet of 10 Earth masses, and about 18% (25 K) for planet of ...

  10. Updated Kinematic Constraints on a Dark Disk

    CERN Document Server

    Kramer, Eric David

    2016-01-01

    We update the method of the Holmberg & Flynn (2000) study, including an updated model of the Milky Way's interstellar gas, radial velocities, an updated reddening map, and a careful statistical analysis, to bound the allowed surface density and scale height of a dark disk. We pay careful attention to the self-consistency of the model, including the gravitational influence of the dark disk on other disk components, and to the net velocity of the tracer stars. We find that the data set exhibits a non-zero bulk velocity in the vertical direction as well as a displacement from the expected location at the Galactic midplane. If not properly accounted for, these features would bias the bound toward low dark disk mass. We therefore perform our analysis two ways. In the first, traditional method, we subtract the mean velocity and displacement from the tracers' phase space distributions. In the second method, we perform a non-equilibrium version of the HF method to derive a bound on the dark disk parameters for an...

  11. Scattered light mapping of protoplanetary disks

    CERN Document Server

    Stolker, T; Min, M; Garufi, A; Mulders, G D; Avenhaus, H

    2016-01-01

    High-contrast scattered light observations have revealed the surface morphology of several dozens of protoplanetary disks at optical and near-infrared wavelengths. Inclined disks offer the opportunity to measure part of the phase function of the dust grains that reside in the disk surface which is essential for our understanding of protoplanetary dust properties and the early stages of planet formation. We aim to construct a method which takes into account how the flaring shape of the scattering surface of an (optically thick) protoplanetary disk projects onto the image plane of the observer. This allows us to map physical quantities (scattering radius and scattering angle) onto scattered light images and retrieve stellar irradiation corrected (r^2-scaled) images and dust phase functions. We apply the method on archival polarized intensity images of the protoplanetary disk around HD 100546 that were obtained with VLT/SPHERE in R'-band and VLT/NACO in H- and Ks-band. The brightest side of the r^2-scaled R'-ban...

  12. Propeller-driven Outflows and Disk Oscillations

    CERN Document Server

    Romanova, M M; Koldoba, A V; Lovelace, R V E

    2005-01-01

    We report the discovery of propeller-driven outflows in axisymmetric magnetohydrodynamic simulations of disk accretion to rapidly rotating magnetized stars. Matter outflows in a wide cone and is centrifugally ejected from the inner regions of the disk. Closer to the axis there is a strong, collimated, magnetically dominated outflow of energy and angular momentum carried by the open magnetic field lines from the star. The ``efficiency'' of the propeller may be very high in the respect that most of the incoming disk matter is expelled from the system in winds. The star spins-down rapidly due to the magnetic interaction with the disk through closed field lines and with corona through open field lines. Diffusive and viscous interaction between magnetosphere and the disk are important: no outflows were observed for very small values of the diffusivity and viscosity. These simulation results are applicable to the early stages of evolution of classical T Tauri stars and to different stages of evolution of cataclysmi...

  13. Radially Magnetized Protoplanetary Disk: Vertical Profile

    CERN Document Server

    Russo, Matthew

    2015-01-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, is wound up by the disk shear, and is pushed downward by a combination of turbulent mixing and ambipolar and Ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field $B_r \\sim (10^{-4}$-$10^{-2})(r/{\\rm AU})^{-2}$ G. Careful attention is giv...

  14. Building massive compact planetesimal disks from the accretion of pebbles

    CERN Document Server

    Moriarty, John

    2015-01-01

    We present a model in which planetesimal disks are built from the combination of planetesimal formation and accretion of radially drifting pebbles onto existing planetesimals. In this model, the rate of accretion of pebbles onto planetesimals quickly outpaces the rate of direct planetesimal formation in the inner disk. This allows for the formation of a high mass inner disk without the need for enhanced planetesimal formation or a massive protoplanetary disk. Our proposed mechanism for planetesimal disk growth does not require any special conditions to operate. Consequently, we expect that high mass planetesimal disks form naturally in nearly all systems. The extent of this growth is controlled by the total mass in pebbles that drifts through the inner disk. Anything that reduces the rate or duration of pebble delivery will correspondingly reduce the final mass of the planetesimal disk. Therefore, we expect that low mass stars (with less massive protoplanetary disks), low metallicity stars and stars with gian...

  15. Three-dimensional modeling of radiative disks in binaries

    CERN Document Server

    Picogna, Giovanni

    2013-01-01

    Circumstellar disks in binaries are perturbed by the companion gravity causing significant alterations of the disk morphology. Spiral waves due to the companion tidal force also develop in the vertical direction and affect the disk temperature profile. These effects may significantly influence the process of planet formation. We perform 3D numerical simulations of disks in binaries with different initial dynamical configurations and physical parameters. Our goal is to investigate their evolution and their propensity to grow planets. We use an improved version of the SPH code VINE modified to better account for momentum and energy conservation. The energy equation includes a flux--limited radiative transfer algorithm and the disk cooling is obtained via "boundary particles". We model a system made of star/disk + star/disk where the secondary star (and relative disk) is less massive than the primary. The numerical simulations performed for different values of binary separation and disk density show that the dis...

  16. Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks

    Science.gov (United States)

    Lin, Shih Kai; Lin, I. Chun; Tsai, Din Ping

    2006-05-01

    Conductive-atomic force microscopy has been successfully used for characterizing recorded marks on commercial digital versatile disk and Blu-ray disk. Nano recorded marks beyond diffraction limit are imaged with high spatial resolution and excellent contrast of conductivity. The smallest mark size resolved is around 23.5 nm which is limited by background spots around 18.5 nm. The results of different optical power and writing strategy on the size, shape, and close packed writing process of recorded marks clearly show the opto-thermal response of phase-change recording layer.

  17. Chemistry in disks. X. The molecular content of protoplanetary disks in Taurus

    Science.gov (United States)

    Guilloteau, S.; Reboussin, L.; Dutrey, A.; Chapillon, E.; Wakelam, V.; Piétu, V.; Di Folco, E.; Semenov, D.; Henning, Th.

    2016-08-01

    Aims: We attempt to determine the molecular composition of disks around young low-mass stars. Methods: We used the IRAM 30 m radio telescope to perform a sensitive wideband survey of 30 stars in the Taurus Auriga region known to be surrounded by gaseous circumstellar disks. We simultaneously observed HCO+(3-2), HCN(3-2), C2H(3-2), CS(5-4), and two transitions of SO. We combined the results with a previous survey that observed 13CO (2-1), CN(2-1), two o-H2CO lines, and another transition of SO. We used available interferometric data to derive excitation temperatures of CN and C2H in several sources. We determined characteristic sizes of the gas disks and column densities of all molecules using a parametric power-law disk model. Our study is mostly sensitive to molecules at 200-400 au from the stars. We compared the derived column densities to the predictions of an extensive gas-grain chemical disk model under conditions representative of T Tauri disks. Results: This survey provides 20 new detections of HCO+ in disks, 18 in HCN, 11 in C2H, 8 in CS, and 4 in SO. HCO+ is detected in almost all sources and its J = 3-2 line is essentially optically thick, providing good estimates of the disk radii. The other transitions are (at least partially) optically thin. Large variations of the column density ratios are observed, but do not correlate with any specific property of the star or disk. Disks around Herbig Ae stars appear less rich in molecules than those around T Tauri stars, although the sample remains small. SO is only found in the (presumably younger) embedded objects, perhaps reflecting an evolution of the S chemistry due to increasing depletion with time. Overall, the molecular column densities, and in particular the CN/HCN and CN/C2H ratios, are well reproduced by gas-grain chemistry in cold disks. Conclusions: This study provides a comprehensive census of simple molecules in disks of radii >200-300 au. Extending that to smaller disks, or searching for less

  18. The abundance and thermal history of water ice in the disk surrounding HD 142527 from the DIGIT Herschel Key Program

    Science.gov (United States)

    Min, M.; Bouwman, J.; Dominik, C.; Waters, L. B. F. M.; Pontoppidan, K. M.; Hony, S.; Mulders, G. D.; Henning, Th.; van Dishoeck, E. F.; Woitke, P.; Evans, Neal J., II; Digit Team

    2016-08-01

    Context. The presence or absence of ice in protoplanetary disks is of great importance to the formation of planets. By enhancing solid surface density and increasing sticking efficiency, ice catalyzes the rapid formation of planetesimals and decreases the timescale of giant planet core accretion. Aims: In this paper, we analyze the composition of the outer disk around the Herbig star HD 142527. We focus on the composition of water ice, but also analyze the abundances of previously proposed minerals. Methods: We present new Herschel far-infrared spectra and a re-reduction of archival data from the Infrared Space Observatory (ISO). We modeled the disk using full 3D radiative transfer to obtain the disk structure. Also, we used an optically thin analysis of the outer disk spectrum to obtain firm constraints on the composition of the dust component. Results: The water ice in the disk around HD 142527 contains a large reservoir of crystalline water ice. We determine the local abundance of water ice in the outer disk (i.e., beyond 130 AU). The re-reduced ISO spectrum differs significantly from that previously published, but matches the new Herschel spectrum at their common wavelength range. In particular, we do not detect any significant contribution from carbonates or hydrous silicates, in contrast to earlier claims. Conclusions: The amount of water ice detected in the outer disk requires ~80% of oxygen atoms. This is comparable to the water ice abundance in the outer solar system, comets, and dense interstellar clouds. The water ice is highly crystalline while the temperatures where we detect it are too low to crystallize the water on relevant timescales. We discuss the implications of this finding.

  19. Herschel Observations of Dusty Debris Disks

    CERN Document Server

    Vican, Laura; Bryden, Geoff; Melis, Carl; Zuckerman, B; Rhee, Joseph; Song, Inseok

    2016-01-01

    We present results from two Herschel observing programs using the Photodetector Array Camera and Spectrometer. During three separate campaigns, we obtained Herschel data for 24 stars at 70, 100, and 160 microns. We chose stars that were already known or suspected to have circumstellar dust based on excess infrared emission previously measured with IRAS or Spitzer, and used Herschel to examine long-wavelength properties of the dust. Fifteen stars were found to be uncontaminated by background sources, and possess infrared emission most likely due to a circumstellar debris disk. We analyzed the properties of these debris disks to better understand the physical mechanisms responsible for dust production and removal. Seven targets were spatially resolved in the Herschel images. Based on fits to their spectral energy distributions, nine disks appear to have two temperature components. Of these nine, in three cases, the warmer dust component is likely the result of a transient process rather than a steady state coll...

  20. High Power Disk Loaded Guide Load

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Z.D.; /SLAC

    2006-02-22

    A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

  1. Earth, Moon, Sun, and CV Accretion Disks

    CERN Document Server

    Montgomery, M M

    2009-01-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting Cataclysmic Variable (CV) Dwarf Novae systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar and black hole systems. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our a...

  2. Optical disk uses in criminal identification systems

    Science.gov (United States)

    Sypherd, Allen D.

    1990-08-01

    A significant advancement in law enforcement tools has been made possible by the rapid and innovative development of electronic imaging for criminal identification systems. In particular, development of optical disks capable of high-capacity and random-access storage has provided a unique marriage of application and technology. Fast random access to any record, non-destructive reading of stored images, electronic sorting and transmission of images and an accepted legal basis for evidence are a few of the advantages derived from optical disk technology. This paper discusses the application of optical disk technology to both Automated Fingerprint Identification Systems (AFIS) and Automated Mugshot Retrieval Systems (AMRS). The following topics are addressed in light of AFIS and AMRS user requirements and system capabilities: Write once vs. rewritable, gray level and storage requirements, multi-volume library systems, data organization and capacity trends.

  3. Disk Dispersal: Theoretical Understanding and Observational Constraints

    CERN Document Server

    Gorti, U; Sandor, Zs; clarke, C

    2015-01-01

    Protoplanetary disks dissipate rapidly after the central star forms, on time-scales comparable to those inferred for planet formation. In order to allow the formation of planets, disks must survive the dispersive effects of UV and X-ray photoevaporation for at least a few Myr. Viscous accretion depletes significant amounts of the mass in gas and solids, while photoevaporative flows driven by internal and external irradiation remove most of the gas. A reasonably large fraction of the mass in solids and some gas get incorporated into planets. Here, we review our current understanding of disk evolution and dispersal, and discuss how these might affect planet formation. We also discuss existing observational constraints on dispersal mechanisms and future directions.

  4. Disk Dispersal: Theoretical Understanding and Observational Constraints

    Science.gov (United States)

    Gorti, U.; Liseau, R.; Sándor, Z.; Clarke, C.

    2016-05-01

    Protoplanetary disks dissipate rapidly after the central star forms, on time-scales comparable to those inferred for planet formation. In order to allow the formation of planets, disks must survive the dispersive effects of UV and X-ray photoevaporation for at least a few Myr. Viscous accretion depletes significant amounts of the mass in gas and solids, while photoevaporative flows driven by internal and external irradiation remove most of the gas. A reasonably large fraction of the mass in solids and some gas get incorporated into planets. Here, we review our current understanding of disk evolution and dispersal, and discuss how these might affect planet formation. We also discuss existing observational constraints on dispersal mechanisms and future directions.

  5. Read-only memory disk with AgOx super-resolution mask layer

    Institute of Scientific and Technical Information of China (English)

    Feng Zhang; Yang Wang; Wendong Xu; Hongren Shi; Fuxi Gan

    2005-01-01

    @@ A novel read-only memory (ROM) disk with an AgOx mask layer was proposed and studied in this letter.The AgOx films sputtered on the premastered substrates, with pits depth of 50 nm and pits length of 380 nm, were studied by an atomic force microscopy. The transmittances of these AgOx films were also measured by a spectrophotometer. Disk measurement was carried out by a dynamic setup with a laser wavelength of 632.8 nm and a lens numerical aperture (NA) of 0.40. The readout resolution limit of this setup was λ/(4NA) (400 nm). Results showed that the super-resolution readout happened only when the oxygen flow ratios were at suitable values for these disks. The best super-resolution performance was achieved at the oxygen flow ratio of 0.5 with the smoothest film surface. The super-resolution readout mechanism of these ROM disks was analyzed as well.

  6. Observational Constraints on the Stellar Radiation Field Impinging on Transitional Disk Atmospheres

    CERN Document Server

    Szulágyi, Judit; Ábrahám, Péter; Apai, Dániel; Bouwman, Jeroen; Moór, Attila

    2012-01-01

    Mid-infrared atomic and ionic line ratios measured in spectra of pre-main sequence stars are sensitive indicators of the hardness of the radiation field impinging on the disk surface. We present a low-resolution Spitzer IRS search for [Ar II] at 6.98 $\\mu$m, [Ne II] at 12.81 $\\mu$m, and [Ne III] 15.55 $\\mu$m lines in 56 transitional disks. These objects, characterized by reduced near-infrared but strong far-infrared excess emission, are ideal targets to set constraints on the stellar radiation field onto the disk because their spectra are not contaminated by shock emission from jets/outflows or by molecular emission lines. After demonstrating that we can detect [Ne II] lines and recover their fluxes from the low-resolution spectra, here we report the first detections of [Ar II] lines towards protoplanetary disks. We did not detect [Ne III] emission in any of our sources. Our [Ne II]/[Ne III] line flux ratios combined with literature data suggest that a soft-EUV or X-ray spectrum produces these gas lines. Furt...

  7. Characterising uniform star formation efficiencies with marginally-stable galactic disks

    CERN Document Server

    Wong, O Ivy; Zheng, Z; Heckman, T M; Thilker, D A; Zwaan, M A

    2016-01-01

    We examine the HI-based star formation efficiency (SFE_HI), the ratio of star formation rate to the atomic Hydrogen (HI) mass, in the context of a constant stability star-forming disk model. Our observations of HI-selected galaxies show SFE to be fairly constant (log SFE_HI = -9.65 yr-1 with a dispersion of 0.3 dex) across ~5 orders of magnitude in stellar masses. We present a model to account for this result, whose main principle is that the gas within galaxies forms a uniform stability disk and that stars form within the molecular gas in this disk. We test two versions of the model differing in the prescription that determines the molecular gas fraction, based on either the hydrostatic pressure, or the stellar surface density of the disk. For high-mass galaxies such as the Milky Way, we find that either prescription predicts SFE_HI similar to the observations. However, the hydrostatic pressure prescription is a more accurate SFE_HI predictor for low-mass galaxies. Our model is the first model that links the...

  8. Star Formation and Metallicity Gradients in Semi-analytic Models of Disk Galaxy Formation

    CERN Document Server

    Fu, Jian; Huang, Meiling; Yates, Robert M; Moran, Sean; Heckman, Timothy M; Davé, Romeel; Guo, Qi

    2013-01-01

    We updated our radially-resolved SAMs of galaxy formation to track the radial distribution of stars, metals, atomic and molecular gas in galactic disks. The models are run on both MS and MS II using the recipes outlined in Fu et al. (2010) and Guo et al. (2011), with 3 main changes: (1) We adopt a simple star formation law where \\Sigma_SFR \\propto \\Sigma_H2. (2) We inject the heavy elements produced by SNe directly into the halo, instead of first mixing them with the disk cold gas. (3) We include radial gas inflows in disks using a model of the form v_inflow=alpha r. The average \\Sigma_H2 profiles in L_* galaxies strongly constrains the inflow velocities, favoring models where v_inflow ~ 7 km/s at r=10 kpc. The radial inflow model has little influence on the gas and stellar metallicity gradients in the outer disks. Gas metallicity gradients are affected much more strongly by the fraction of metals that are directly injected into the halo gas, rather than mixed with the interstellar cold gas. Metals ejected ou...

  9. The structure of the central disk of NGC 1068 a clumpy disk model

    CERN Document Server

    Kumar, P

    1999-01-01

    NGC 1068 is one of the best studied Seyfert II galaxies, for which the blackhole mass has been determined from the Doppler velocities of water maser. We show that the standard $\\alpha$-disk model of NGC 1068 gives disk mass between the radii of 0.65 pc and 1.1 pc (the region from which water maser emission is detected) to be about 7x10$^7$ M$_\\odot$ (for $\\alpha=0.1$), more than four times the blackhole mass, and a Toomre Q-parameter for the disk is large-amplitude density fluctuations. We conclude that the standard invalid for NGC 1068. In this paper we develop a new model for the accretion disk. The disk is considered to be composed of gravitationally bound clumps; accretion in this clumped disk model arises because of gravitational interaction of clumps with each other and the dynamical frictional drag exerted on clumps from the stars in the central region of the galaxy. The clumped disk model provides a self-consistent description of the observations of NGC 1068. The computed temperature and density are w...

  10. The orbital evolution of planets in disks

    CERN Document Server

    Kley, W

    2000-01-01

    The orbital parameters of the observed extrasolar planets differ strongly from those of our own solar system. The differences include planets with high masses, small semi-major axis and large eccentricities. We performed numerical computations of embedded planets in disks and follow their mass growth and orbital evolution over several thousand periods. We find that planets do migrate inwards on timescales of about $10^5$ years on nearly circular orbits, during which they may grow up to about 5 Jupiter masses. The interaction of the disk with several planets may halt the migration process and lead to a system similar to the solar planetary system.

  11. Maximal possible accretion rates for slim disks

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    It was proved in the previous work that there must be a maximal possible accretion rate Mmax for a slim disk. Here we discuss how the value of Mmax depends on the two fundamental parameters of the disk,namely the mass of the central black hole M and the viscosity parameter α. It is shown that Mmax increases with decreasing α,but is almost independent of M if Mmax is measured by the Eddington accretion rate MEdd ,which is in turn proportional to M.

  12. HTS nonlinearities in microwave disk resonators

    Science.gov (United States)

    Collado, Carlos; Mateu, Jordi; Shaw, Timothy J.; O'Callaghan, Juan M.

    2002-08-01

    This article describes a procedure for the calculation of the intermodulation behavior of the TM0 1 0 mode in high temperature superconducting (HTS) disk resonators from a description of the local HTS nonlinearities. Successful cross-checks are performed by comparing the theoretical results with experimental measurements and simulations based on the multiport harmonic balance algorithm for a specific model of HTS nonlinearity. The application of this procedure to the determination of nonlinear material parameters from disk resonator measurements is illustrated and compared to theoretical predictions.

  13. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    D. Κ. Ojha

    2000-06-01

    This paper presents an analysis of the first 2MASS (The Two Micron All Sky Survey) sampler data as observed at lower Galactic latitude in our Galaxy. These new near-infrared data provide insight into the structure of the thin disk of our Galaxy, The interpretation of star counts and color distributions of stars in the near-infrared with the synthetic stellar population model, gives strong evidence that the Galactic thin disk density scale length, ℎ, is rather short (2.7 ± 0.1 kpc).

  14. The Rossby wave instability in protoplanetary disks

    Directory of Open Access Journals (Sweden)

    Meheut H.

    2013-04-01

    Full Text Available The Rossby wave instability has been proposed as a mechanism to transport angular momentum in the dead zone of protoplanetary disks and to form vortices. These vortices are of particular interest to concentrate solids in their centres and eventually to form planetesimals. Here we summarize some recent results concerning the growth and structure of this instability in radially and vertically stratified disks, its saturation and non-linear evolution. We also discuss the concentration of solids in the Rossby vortices including vertical settling.

  15. Nanosecond cryogenic Yb:YAG disk laser

    Energy Technology Data Exchange (ETDEWEB)

    Perevezentsev, E A; Mukhin, I B; Kuznetsov, I I; Vadimova, O L; Palashov, O V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2014-05-30

    A cryogenic Yb:YAG disk laser is modernised to increase its average and peak power. The master oscillator unit of the laser is considerably modified so that the pulse duration decreases to several nanoseconds with the same pulse energy. A cryogenic disk laser head with a flow-through cooling system is developed. Based on two such laser heads, a new main amplifier is assembled according to an active multipass cell scheme. The total small-signal gain of cryogenic cascades is ∼10{sup 8}. (lasers)

  16. Extended HI disks in nearby spiral galaxies

    CERN Document Server

    Bosma, A

    2016-01-01

    In this short write-up, I will concentrate on a few topics of interest. In the 1970s I found very extended HI disks in galaxies such as NGC 5055 and NGC 2841, out to 2 - 2.5 times the Holmberg radius. Since these galaxies are warped, a "tilted ring model" allows rotation curves to be derived, and evidence for dark matter to be found. The evaluation of the amount of dark matter is hampered by a disk-halo degeneracy, which can possibly be broken by observations of velocity dispersions in both the MgI region and the CaII region.

  17. Explorations of Dusty Debris Disk Geometry

    CERN Document Server

    Dennihy, E; Clemens, J C

    2016-01-01

    As the sample of white dwarfs with signatures of planetary systems has grown, statistical studies have begun to suggest our picture of compact debris disk formation from disrupted planetary bodies is incomplete. Here we present the results of an effort to extend the preferred dust disk model introduced by \\citet{jur03} to include elliptical geometries. We apply this model the observed distribution of fractional infrared luminosities, and explore the difference in preferred parameter spaces for a circular and highly elliptical model on a well-studied dusty white dwarf.

  18. The flaring HI disk of the nearby spiral galaxy NGC 2683

    CERN Document Server

    Vollmer, B; Ibata, R

    2015-01-01

    New deep VLA D array HI observations of the highly inclined nearby spiral galaxy NGC 2683 are presented. Archival C array data were processed and added to the new observations. To investigate the 3D structure of the atomic gas disk, we made different 3D models for which we produced model HI data cubes. The main ingredients of our best-fit model are (i) a thin disk inclined by 80 degrees; (ii) a crude approximation of a spiral and/or bar structure by an elliptical surface density distribution of the gas disk; (iii) a slight warp in inclination; (iv) an exponential flare; and (v) a low surface-density gas ring. The slope of NGC 2683's flare is comparable, but somewhat steeper than those of other spiral galaxies. NGC 2683's maximum height of the flare is also comparable to those of other galaxies. On the other hand, a saturation of the flare is only observed in NGC 2683. Based on the comparison between the high resolution model and observations, we exclude the existence of an extended atomic gas halo around the ...

  19. TOWARD A GLOBAL EVOLUTIONARY MODEL OF PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-51, Cambridge, MA 02138 (United States)

    2016-04-20

    A global picture of the evolution  of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.

  20. Evolution of Thick Accretion Disks Produced by Tidal Disruption Events

    CERN Document Server

    Ulmer, A

    1997-01-01

    Geometrically thick disks may form after tidal disruption events, and rapid accretion may lead to short flares followed by long-term, lower-level emission. Using a novel accretion disk code which relies primarily on global conservation laws and the assumption that viscosity is everywhere positive, a broad range of physically allowed evolutionary sequences of thick disks is investigated. The main result is that accretion in the thick disk phase can consume only a fraction of the initial disk material before the disk cools and becomes thin. This fraction is ~0.5-0.9 for disruptions around 10^6 to 10^7 M_ødot black holes and is sensitive to the mean angular momentum of the disk. The residual material will accrete in some form of thin disk over a longer period of time. The initial thick disk phase may reduce the dimming timescale of the disk by a factor of ~2 from estimates based on thin disks alone. Assuming an 0.5 M_ødot initial thick disk, even if the thin disks become advection dominated, the black hole mas...

  1. Frequency Correlations of QPOs Based on a Disk Oscillation Model in Warped Disks

    CERN Document Server

    Kato, S

    2007-01-01

    In previous papers we proposed a model that high-frequency quasi-periodic oscillations (QPOs) observed in black-hole and neutron-star X-ray binaries are disk oscillations (inertial-acoustic and/or g-mode oscillations) resonantly excited on warped disks. In this paper we examine whether time variations of the QPOs and their frequency correlations observed in neutron-star X-ray binaries can be accounted for by this disk-oscillation model. By assuming that a warp has a time-dependent precession, we can well describe observed frequency correlations among kHz QPOs and LF QPOs in a wide range of frequencies.

  2. ACCRETION DISK WARPING BY RESONANT RELAXATION: THE CASE OF MASER DISK NGC 4258

    International Nuclear Information System (INIS)

    The maser disk around the massive black hole (MBH) in active galaxy NGC 4258 exhibits an O(10 deg.) warp on the O(0.1 pc) scale. The physics driving the warp is still debated. Suggested mechanisms include torquing by relativistic frame dragging or by radiation pressure. We propose here a new warping mechanism: resonant torquing of the disk by stars in the dense cusp around the MBH. We show that resonant torquing can induce such a warp over a wide range of observed and deduced physical parameters of the maser disk.

  3. Accretion disk warping by resonant relaxation: The case of maser disk NGC4258

    CERN Document Server

    Bregman, Michal

    2009-01-01

    The maser disk around the massive black hole (MBH) in active galaxy NGC 4258 exhibits an O(10 deg) warp on the O(0.1 pc) scale. The physics driving the warp are still debated. Suggested mechanisms include torquing by relativistic frame dragging or by radiation pressure. We propose here a new warping mechanism: resonant torquing of the disk by stars in the dense cusp around the MBH. We show that resonant torquing can induce such a warp over the range of observed and deduced physical parameters of the maser disk.

  4. Fomalhaut's Debris Disk and Planet: Constraining the Mass of Formalhaut B from Disk Morphology

    Science.gov (United States)

    Chiang, E.; Kite, E.; Kalas, P.; Graham, J. R.; Clampin, M.

    2008-01-01

    Following the optical imaging of exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhaut's debris disk is gravitationally shaped by a single interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. If Fom b is the dominant perturber of the belt, then to produce the observed disk morphology it must have a mass M(sub pl) 101.5AU, and an orbital eccentricity e(sub pl) = 0.11 - 0.13. These conclusions are independent of Fom b's photometry. To not disrupt the disk, a greater mass for Fom b demands a smaller orbit farther removed from the disk; thus, future astrometric measurement of Fom b's orbit, combined with our model of planet-disk interaction, can be used to determine the mass more precisely. The inner edge of the debris disk at a approximately equals 133AU lies at the periphery of Fom b's chaotic zone, and the mean disk eccentricity of e approximately equals 0.11 is secularly forced by the planet, supporting predictions made prior to the discovery of Fom b. However, previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planet's chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of approximately 100 Myr, and model them separately from their dust grain progeny; the latter's orbits are strongly affected by radiation pressure and their lifetimes are limited to approximately 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Fomalhaut b's nominal space velocity does not bear this out, but the astrometric uncertainties are difficult to quantify. Even if the apsidal misalignment proves real, our calculated upper mass limit of 3 M(sub J) still holds. Parent bodies are evacuated from mean

  5. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  6. THE GRAVITATIONAL FORCE AND POTENTIAL OF THE FINITE MESTEL DISK

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Earl, E-mail: earlschulz@gmail.com [60 Mountain Road, North Granby, CT 06060 (United States)

    2012-03-10

    Mestel determined the surface mass distribution of the finite disk for which the circular velocity is constant in the disk and found the gravitational field for points in the z = 0 plane. Here we find the exact closed form solutions for the potential and the gravitational field of this disk in cylindrical coordinates over all the space. The finite Mestel disk (FMD) is characterized by a cuspy mass distribution in the inner disk region and by an exponential distribution in the outer region of the disk. The FMD is quite different from the better known exponential disk or the untruncated Mestel disk which, being infinite in extent, are not realistic models of real spiral galaxies. In particular, the FMD requires significantly less mass to explain a measured velocity curve.

  7. The gravitational force and potential of the finite Mestel disk

    CERN Document Server

    Schulz, Earl

    2011-01-01

    Mestel determined the surface mass distribution of the finite disk for which the circular velocity is constant in the disk and found the gravitational field for points in the $z=0$ plane. Here we find the exact closed form solutions for the potential and the gravitational field of this disk in cylindrical coordinates over all the space. The Finite Mestel Disk (FMD) is characterized by a cuspy mass distribution in the inner disk region and by an exponential distribution in the outer region of the disk. The FMD is quite different from the better known exponential disk or the untruncated Mestel disk which, being infinite in extent, are not realistic models of real spiral galaxies. In particular, the FMD requires significantly less mass to explain a measured velocity curve.

  8. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where...

  9. Capture of planetesimals by waning circumplanetary gas disks

    CERN Document Server

    Suetsugu, Ryo

    2016-01-01

    When gas giant protoplanets grow sufficiently massive, circumplanetary disks would form. While solid bodies captured by the circumplanetary disks likely contribute to the growth of the planets and regular satellites around them, some of captured bodies would remain in planet-centered orbits after the dispersal of the disk. We examine capture and subsequent orbital evolution of planetesimals in waning circumplanetary gas disks using three-body orbital integration. We find that some of captured planetesimals can survive in the circumplanetary disk for a long period of time under such weak gas drag. Captured planetesimals have semi-major axes smaller than about one third of the planet's Hill radius. Distributions of their eccentricities and inclinations after disk dispersal depend on the strength of gas drag and the timescale of disk dispersal, and initially strong gas drag and quick disk dispersal facilitates capture and survival of planetesimals. However, in such a case, final orbital eccentricities and inclin...

  10. Disk Truncation and Planet Formation in gamma Cephei

    CERN Document Server

    Jang-Condell, H; Schmidt, T

    2008-01-01

    The $\\gamma$ Cephei system is one of the most closely bound binary planet hosts known to date. The companion ($\\gamma$ Cep B) to the planet-hosting star ($\\gamma$ Cep A) should have truncated any protoplanetary disk around $\\gamma$ Cep A, possibly limiting planet formation in the disk. We explore this problem by calculating the truncation radii of protoplanetary disk models around $\\gamma$ Cep A to determine whether or not there is sufficient material remaining in the disk to form a planet. We vary the accretion rate and viscosity parameter of the disk models to cover a range of reasonable possibilities for the disks properties and determine that for accretion rates of $\\geq 10^{-7}$ M$_{\\sun}$/yr and low viscosity parameter, sufficient material in gas and solids exist for planet formation via core accretion to be possible. Disk instability is less favored, as this can only occur in the most massive disk model with an extremely high accretion rate.

  11. Holographic Compact Disk Read-Only Memories

    Science.gov (United States)

    Liu, Tsuen-Hsi

    1996-01-01

    Compact disk read-only memories (CD-ROMs) of proposed type store digital data in volume holograms instead of in surface differentially reflective elements. Holographic CD-ROM consist largely of parts similar to those used in conventional CD-ROMs. However, achieves 10 or more times data-storage capacity and throughput by use of wavelength-multiplexing/volume-hologram scheme.

  12. Fast Radial Flows in Transition Disk Holes

    CERN Document Server

    Rosenfeld, Katherine A; Andrews, Sean M

    2013-01-01

    Protoplanetary "transition" disks have large, mass-depleted central cavities, yet also deliver gas onto their host stars at rates comparable to disks without holes. The paradox of simultaneous transparency and accretion can be explained if gas flows inward at much higher radial speeds inside the cavity than outside the cavity, since surface density (and by extension optical depth) varies inversely with inflow velocity at fixed accretion rate. Radial speeds within the cavity might even have to approach free-fall values to explain the huge surface density contrasts inferred for transition disks. We identify observational diagnostics of fast radial inflow in channel maps made in optically thick spectral lines. Signatures include (1) twisted isophotes in maps made at low systemic velocities and (2) rotation of structures observed between maps made in high-velocity line wings. As a test case, we apply our new diagnostic tools to archival ALMA data on the transition disk HD 142527, and uncover evidence for free-fal...

  13. Computing Temperatures in Optically Thick Protoplanetary Disks

    Science.gov (United States)

    Capuder, Lawrence F.. Jr.

    2011-01-01

    We worked with a Monte Carlo radiative transfer code to simulate the transfer of energy through protoplanetary disks, where planet formation occurs. The code tracks photons from the star into the disk, through scattering, absorption and re-emission, until they escape to infinity. High optical depths in the disk interior dominate the computation time because it takes the photon packet many interactions to get out of the region. High optical depths also receive few photons and therefore do not have well-estimated temperatures. We applied a modified random walk (MRW) approximation for treating high optical depths and to speed up the Monte Carlo calculations. The MRW is implemented by calculating the average number of interactions the photon packet will undergo in diffusing within a single cell of the spatial grid and then updating the packet position, packet frequencies, and local radiation absorption rate appropriately. The MRW approximation was then tested for accuracy and speed compared to the original code. We determined that MRW provides accurate answers to Monte Carlo Radiative transfer simulations. The speed gained from using MRW is shown to be proportional to the disk mass.

  14. The short circuit instability in protoplanetary disks

    DEFF Research Database (Denmark)

    Hubbard, A.; McNally, C.P.; Mac Low, M.M.;

    2013-01-01

    We introduce a magneto-hydrodynamic instability which occurs, among other locations, in the inner, hot regions of protoplanetary disks, and which alters the way in which resistive dissipation of magnetic energy into heat proceeds. This instability can be likened to both an electrical short circuit...

  15. Herniated Disk in the Lower Back

    Science.gov (United States)

    ... of patients with lumbar disk herniations require surgery. Spine surgery is typically recommended only a er a period ... be as good as if you had elected surgery earlier. The risk of surgical complications is exceptionally low. Possible complications include: • Infection • Nerve ...

  16. The Inner Rim in Protoplanetary Disks

    Science.gov (United States)

    Flock, Mario; Turner, Neal J.

    2016-10-01

    Many stars host planets orbiting within one astronomical unit (AU). These close planets origins are a mystery that motivates investigating protoplanetary disks central regions.A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric, and include starlight heating, silicate grains sublimating and condensing to equilibrium at the local, timedependent temperature and density, and accretion stresses parametrizing the results of MHD magneto-rotational turbulence models.The results show for the first time the dynamical stability of the rim. Passing the model disks into Monte Carlo radiative transfer calculations allows us to directly compare with observational constraints. The inner rim has a substantial radial extent, corresponding to several disk scale heights. A pressure maximum develops at the position of thermal ionization at temperatures about 1000 K. The pressure maximum is capable of halting solid pebbles radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.

  17. Local Magnetohydrodynamical Models of Layered Accretion Disks

    CERN Document Server

    Fleming, T; Fleming, Timothy; Stone, James M.

    2003-01-01

    Using numerical MHD simulations, we have studied the evolution of the magnetorotational instability in stratified accretion disks in which the ionization fraction (and therefore resistivity) varies substantially with height. This model is appropriate to dense, cold disks around protostars or dwarf nova systems which are ionized by external irradiation of cosmic rays or high-energy photons. We find the growth and saturation of the MRI occurs only in the upper layers of the disk where the magnetic Reynolds number exceeds a critical value; in the midplane the disk remains queiscent. The vertical Poynting flux into the "dead", central zone is small, however velocity fluctuations in the dead zone driven by the turbulence in the active layers generate a significant Reynolds stress in the midplane. When normalized by the thermal pressure, the Reynolds stress in the midplane never drops below about 10% of the value of the Maxwell stress in the active layers, even though the Maxwell stress in the dead zone may be orde...

  18. The geometry of the disk complex

    OpenAIRE

    Masur, Howard; Schleimer, Saul

    2010-01-01

    We give a distance estimate for the metric on the disk complex and show that it is Gromov hyperbolic. As another application of our techniques, we find an algorithm which computes the Hempel distance of a Heegaard splitting, up to an error depending only on the genus.

  19. Magnetohydrodynamic Origin of Jets from Accretion Disks

    Science.gov (United States)

    Lovelace, R. V. E.; Romanova, M. M.

    1998-01-01

    A review is made of magnetohydrodynamic (MHD) theory and simulation of outflows from disks for different distributions of magnetic field threading the disk. In one limit of a relatively weak, initially diverging magnetic field, both thermal and magnetic pressure gradients act to drive matter to an outflow, while a toroidal magnetic field develops which strongly collimates the outflow. The collimation greatly reduces the field divergence and the mass outflow rate decreases after an initial peak. In a second limit of a strong magnetic field, the initial field configuration was taken with the field strength on the disk decreasing outwards to small values so that collimation was reduced. As a result, a family of stationary solutions was discovered where matter is driven mainly by the strong magnetic pressure gradient force. The collimation in this case depends on the pressure of an external medium. These flows are qualitatively similar to the analytic solutions for magnetically driven outflows. The problem of the opening of a closed field line configuration linking a magnetized star and an accretion disk is also discussed.

  20. Asymmetric transition disks: Vorticity or eccentricity?

    CERN Document Server

    Zsom, A; Ghanbari, J

    2013-01-01

    Context. Transition disks typically appear in resolved millimeter observations as giant dust rings surrounding their young host stars. More accurate observations with ALMA have shown several of these rings to be in fact asymmetric: they have lopsided shapes. It has been speculated that these rings act as dust traps, which would make them important laboratories for studying planet formation. It has been shown that an elongated giant vortex produced in a disk with a strong viscosity jump strikingly resembles the observed asymmetric rings. Aims. We aim to study a similar behavior for a disk in which a giant planet is embedded. However, a giant planet can induce two kinds of asymmetries: (1) a giant vortex, and (2) an eccentric disk. We studied under which conditions each of these can appear, and how one can observationally distinguish between them. This is important because only a vortex can trap particles both radially and azimuthally, while the eccentric ring can only trap particles in radial direction. Method...

  1. Strength of Cracked Reinforced Concrete Disks

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1999-01-01

    The paper deals with models, based on the theory of plasticity, to be used in strength assessments of reinforced concrete disks suffering from different kinds of cracking. Based on the assumption that the sliding strength of concrete is reduced in sections where cracks are located, solutions...

  2. Resolving the inner disk of UX Orionis

    Science.gov (United States)

    Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.

    2016-05-01

    Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.

  3. Resonant Excitation of Disk Oscillations in Deformed Disks VII: Stability Criterion in MHD Systems

    CERN Document Server

    Kato, Shoji

    2013-01-01

    In a disk with an oscillatory deformation from an axisymmetric state with frequency $\\omega_{\\rm D}$ and azimuthal wavenumber $m_{\\rm D}$, a set of two normal mode oscillations with frequency and azimuthal wavenumber being ($\\omega_1$, $m_1$) and ($\\omega_2$, $m_2$) resonantly couple through the disk deformation, when the resonant conditions ($\\omega_1+\\omega_2+\\omega_{\\rm D}=0$ and $m_1+m_2+m_{\\rm D}=0$) are satisfied. In the case of hydrodynamical disks, the resonance amplifies the set of the oscillations if $(E_1/\\omega_1)(E_2/\\omega_2)>0$ (Kato 2013b), where $E_1$ and $E_2$ are wave energies of the two oscillations with $\\omega_1$ and $\\omega_2$, respectively. In this paper we show that this instability criterion is still valid even when the oscillations are ideal MHD ones in magnetized disks, if the displacements associated with the oscillations vanish on the boundary of the system.

  4. SOLIS: reconciling disk-integrated and disk-resolved spectra from the Sun

    CERN Document Server

    Pevtsov, Alexei; Harker, Brian; Giampapa, Mark; Marble, Andrew

    2014-01-01

    Unlike other stars, the surface of the Sun can be spatially resolved to a high degree of detail. But the Sun can also be observed as if it was a distant star. The availability of solar disk-resolved and disk-integrated spectra offers an opportunity to devise methods to derive information about the spatial distribution of solar features from Sun-as-a-star measurements. Here, we present an update on work done at the National Solar Observatory to reconcile disk-integrated and disk-resolved solar spectra from the Synoptic Optical Long-term Investigation of the Sun (SOLIS) station. The results of this work will lead to a new approach to infer the information about the spatial distribution of features on other stars, from the overall filling factor of active regions to, possibly, the latitude/longitude distribution of features.

  5. MODELING DUST EMISSION OF HL TAU DISK BASED ON PLANET–DISK INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sheng; Ji, Jianghui [Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Shengtai; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Isella, Andrea [Rice University, Houston, TX (United States)

    2016-02-10

    We use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three-dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the self-gravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses of 0.35, 0.17, and 0.26 M{sub Jup} at 13.1, 33.0, and 68.6 AU, respectively. Implications for the planet formation as well as the limitations of this scenario are discussed.

  6. Cometary grains in the HD 32297 debris disk

    Science.gov (United States)

    Yang, Y.-G.; Li, Aigen

    2016-07-01

    HD 32297 is a young A-type star with a bright edge-on debris disk. The dust thermal emission spectral energy distribution and scattered starlight spectrum are simultaneously modeled in terms of porous cometary grains. Our modeling suggests that, similar to the solar system, the debris disk around HD 32297 may have an inner warm ring and an outer cold disk which are seen in other young debris disks as well.

  7. DISK BATTERIES IN THE ESOPHAGUS OF NIGERIAN CHILDREN: CASE SERIES

    OpenAIRE

    LUCKY OBUKOWHO ONOTAI; ADAOBI ELIZABETH OSUJI

    2015-01-01

    Foreign body (FB) ingestion is common in clinical practice especially in children. Its impaction in the esophagus constitutes an important cause of morbidity and mortality in our environment. Due to technological advancement and increase use of disk batteries to power children toys and remote control gadgets, ingestion of disk batteries is now commonplace. In our environment there is paucity of information on disk batteries hence we decided to present case series of disk batteries in the esop...

  8. Atomic Energy Basics, Understanding the Atom Series.

    Science.gov (United States)

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  9. Disk wind and magnetospheric accretion in emission from the Herbig Ae star MWC 480

    Science.gov (United States)

    Tambovtseva, L. V.; Grinin, V. P.; Potravnov, I. S.; Mkrtichian, D. E.

    2016-09-01

    The young Herbig Ae star MWC 480 (HD 31648) is one of the comprehensively spectroscopically studied stars in the ultraviolet, optical, and infrared spectral ranges. Using non-LTE modeling of its hydrogen spectrum, we have calculated the contribution to the hydrogen emission from such important regions of the circumstellar environment as the disk wind and the magnetosphere. We have used our own observations of the stellar spectrum performed with the 2.4-m telescope at the Thai National Observatory to quantitatively check our theoretical calculations. In addition, all of the visible and infrared spectra available in the literature have been used for a qualitative comparison. The modeling results have revealed a significant role of the magneto-centrifugal disk wind in the formation of atomic hydrogen emission. The cause of the emission line variability in the spectrum ofMWC 480 is discussed.

  10. Updated Kinematic Constraints on a Dark Disk

    Science.gov (United States)

    Kramer, Eric David; Randall, Lisa

    2016-06-01

    We update the method of the Holmberg & Flynn study, including an updated model of the Milky Way’s interstellar gas, radial velocities, an updated reddening map, and a careful statistical analysis, to bound the allowed surface density and scale height of a dark disk. We pay careful attention to the self-consistency of the model, including the gravitational influence of the dark disk on other disk components, and to the net velocity of the tracer stars. We find that the data set exhibits a non-zero bulk velocity in the vertical direction as well as a displacement from the expected location at the Galactic midplane. If not properly accounted for, these features would bias the bound toward low dark disk mass. We therefore perform our analysis two ways. In the first, using the traditional method, we subtract the mean velocity and displacement from the tracers’ phase space distributions. In the second method, we perform a non-equilibrium version of the HF method to derive a bound on the dark disk parameters for an oscillating tracer distribution. Despite updates in the mass model and reddening map, the traditional method results remain consistent with those of HF2000. The second, non-equilibrium technique, however, allows a surface density as large as 14 {M}ȯ {{{pc}}}-2 (and as small as 0 {M}ȯ {{{pc}}}-2), demonstrating much weaker constraints. For both techniques, the bound on surface density is weaker for larger scale height. In future analyses of Gaia data it will be important to verify whether the tracer populations are in equilibrium.

  11. THE VLA VIEW OF THE HL TAU DISK: DISK MASS, GRAIN EVOLUTION, AND EARLY PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto [Instituto de Radioastronomía y Astrofísica UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Henning, Thomas; Linz, Hendrik; Birnstiel, Til; Boekel, Roy van; Klahr, Hubert [Max-Planck-Institut für Astronomie Heidelberg, Königstuhl 17, D-69117 Heidelberg (Germany); Chandler, Claire J.; Pérez, Laura [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387 (United States); Anglada, Guillem; Macias, Enrique; Osorio, Mayra [Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, E-18080 Granada (Spain); Flock, Mario [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Menten, Karl [Jansky Fellow of the National Radio Astronomy Observatory (United States); Testi, Leonardo [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Zhu, Zhaohuan, E-mail: c.carrasco@crya.unam.mx, E-mail: l.rodriguez@crya.unam.mx, E-mail: r.galvan@crya.unam.mx, E-mail: henning@mpia.de, E-mail: linz@mpia.de [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-04-10

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10{sup −3} M {sub ⊙}, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.

  12. Major Effects of Nonmetallic Inclusions on the Fatigue Life of Disk Superalloy Demonstrated

    Science.gov (United States)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Bonacuse, Peter J.; Barrie, Robert L.

    2002-01-01

    The fatigue properties of modern powder metallurgy disk alloys can vary because of the different steps of materials and component processing and machining. Among these variables, the effects of nonmetallic inclusions introduced during the powder atomization and handling processes have been shown to significantly degrade low-cycle fatigue life. The levels of inclusion contamination have, therefore, been reduced to less than 1 part per million in state-of-the-art nickel disk powder-processing facilities. Yet the large quantities of compressor and turbine disks weighing from 100 to over 1000 lb have enough total volume and surface area for these rare inclusions to still be present and limit fatigue life. The objective of this study was to investigate the effects on fatigue life of these inclusions, as part of the Crack Resistant Disk Materials task within the Ultra Safe Propulsion Project. Inclusions were carefully introduced at elevated levels in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were then performed on extracted test specimens at 650 C. Analyses were performed to compare the low-cycle fatigue lives and failure initiation sites as functions of inclusion content and fatigue conditions. Powder of the nickel-base superalloy U720 was atomized in argon at Special Metals Corporation, Inc., using production-scale high-cleanliness powder-processing facilities and handling practices. The powder was then passed through a 270-mesh screen. One portion of this powder was set aside for subsequent consolidation without introduced inclusions. Two other portions of this powder were seeded with alumina inclusions. Small, polycrystalline soft (Type 2) inclusions of about 50 mm diameter were carefully prepared and blended into one powder lot, and larger hard (Type 1) inclusions of about 150 mm mean diameter were introduced into the other seeded portion of powder. All three portions of powder were

  13. POLAR DISK GALAXY FOUND IN WALL BETWEEN VOIDS

    NARCIS (Netherlands)

    Stanonik, K.; Platen, E.; Aragon-Calvo, M. A.; van Gorkom, J. H.; van de Weygaert, R.; van der Hulst, J. M.; Peebles, P. J. E.

    2009-01-01

    We have found an isolated polar disk galaxy in what appears to be a cosmological wall situated between two voids. This void galaxy is unique as its polar disk was discovered serendipitously in an Hi survey of SDSS void galaxies, with no optical counterpart to the Hi polar disk. Yet the Hi mass in th

  14. The Design of a High-Integrity Disk Management Subsystem

    NARCIS (Netherlands)

    Oey, M.A.

    2005-01-01

    This dissertation describes and experimentally evaluates the design of the Logical Disk, a disk management subsystem that guarantees the integrity of data stored on disk even after system failures, while still providing performance competitive to other storage systems. Current storage systems that

  15. On the Solar System-Debris Disk Connecction

    OpenAIRE

    Moro-Martin, Amaya

    2007-01-01

    This paper emphasizes the connection between solar and extra-solar debris disks: how models and observations of the Solar System are helping us understand the debris disk phenomenon, and vice versa, how debris disks are helping us place our Solar System into context.

  16. Ultrasonic testing of turbine rotors with hooped disks

    International Nuclear Information System (INIS)

    Alsthom-Atlantique has developed ultrasonic testing methods for in-service inspection of the low-pressure rotors of 900 MW steam turbines; they allow to detect fatigue cracks which grow from the rotor shaft/disk interface, either within the shaft, or in the disks, without removing the disks

  17. Outer Spiral Disks as Clues to Galaxy Formation and Evolution

    CERN Document Server

    Vlajić, Marija

    2010-01-01

    Recent studies of outer spiral disks have given rise to an abundance of new results. We discuss the observational and theoretical advances that have spurred the interest in disk outskirts, as well as where we currently stand in terms of our understanding of outer disk structure, ages and metallicities.

  18. The DiskMass Survey : II. Error Budget

    NARCIS (Netherlands)

    Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas

    2010-01-01

    We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Gamma(*)), and to yield robust estimates of the dark-matter

  19. On the structure of the transition disk around TW Hydrae

    NARCIS (Netherlands)

    J. Menu; R. van Boekel; T. Henning; C.J. Chandler; H. Linz; M. Benisty; S. Lacour; M. Min; C. Waelkens; S.M. Andrews; N. Calvet; J.M. Carpenter; S.A. Corder; A.T. Deller; J.S. Greaves; R. J. Harris; A. Isella; W. Kwon; J. Lazio; J.B. de Bouquin; F. Ménard; L.G. Mundy; L.M. Pérez; L. Ricci; A.I. Sargent; S. Storm; L. Testi; D.J. Wilner

    2014-01-01

    Context. For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being inconsistent, the individual models might

  20. Teach us atom structure

    International Nuclear Information System (INIS)

    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  1. Teach us atom structure

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Suh Yeon

    2006-08-15

    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  2. Tomographic Sounding of Protoplanetary and Transitional Disks: Using Inner Disk Variability at Near to Mid-IR Wavelengths to Probe Conditions in the Outer Disk

    Science.gov (United States)

    Grady, C. A.; Sitko, M.L.

    2013-01-01

    Spitzer synoptic monitoring of young stellar associations has demonstrated that variability among young stars and their disks is ubiquitous. The Spitzer studies have been limited by target visibility windows and cover only a short temporal baseline in years. A complementary approach is to focus on stars chosen for high-value observations (e.g. high-contrast imaging, interferometry, or access to wavelengths which are difficult to achieve from the ground) where the synoptic data can augment the imagery or interferometry as well as probing disk structure. In this talk, we discuss how synoptic data for two protoplanetary disks, MWC 480 and HD 163296, constrain the dust disk scale height, account for variable disk illumination, and can be used to locate emission features, such as the IR bands commonly associated with PAHs in the disk, as part of our SOFIA cycle 1 study. Similar variability is now known for several pre-transitional disks, where synoptic data can be used to identify inner disks which are not coplanar with the outer disk, and which may be relicts of giant planet-giant planet scattering events. Despite the logistical difficulties in arranging supporting, coordinated observations in tandem with high-value observations, such data have allowed us to place imagery in context, constrained structures in inner disks not accessible to direct imagery, and may be a tool for identifying systems where planet scattering events have occurred.

  3. Fomalhaut's Debris Disk and Planet: Constraining the Mass of Fomalhaut b From Disk Morphology

    CERN Document Server

    Chiang, E; Kalas, P; Graham, J R; Clampin, M

    2008-01-01

    Following the optical imaging of the exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhaut's debris disk is gravitationally shaped by a single interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. We find that to not disrupt the belt, Fom b must have a mass < 3 Jupiter masses. Previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planet's chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of 100 Myr, and model them separately from their dust grain progeny; the latter's orbits are strongly affected by radiation pressure and their lifetimes are limited to 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Preliminary analysi...

  4. Chemistry in Disks X: The Molecular Content of Proto-planetary Disks in Taurus

    CERN Document Server

    Guilloteau, S; Dutrey, A; Chapillon, E; Wakelam, V; Piétu, V; Di Folco, E; Semenov, D; Henning, Th

    2016-01-01

    (abridged) We used the IRAM 30-m to perform a sensitive wideband survey of 30 protoplanetary disks in the Taurus Auriga region. We simultaneously observed HCO$^+$(3-2), HCN(3-2), C$_2$H(3-2), CS(5-4), and two transitions of SO. We combine the results with a previous survey which observed $^{13}$CO (2-1), CN(2-1), two o-H$_2$CO lines and one of SO. We use available interferometric data to derive excitation temperatures of CN and C$_2$H in several sources. We determine characteristic sizes of the gas disks and column densities of all molecules using a parametric power-law disk model. Our study is mostly sensitive to molecules at 200-400 au from the stars. We compare the derived column densities to the predictions of an extensive gas-grain chemical disk model, under conditions representative of T Tauri disks. This survey provides 20 new detections of HCO$^+$ in disks, 18 in HCN, 11 in C$_2$H, 8 in CS and 4 in SO. HCO$^+$ is detected in almost all sources, and its J=3-2 line is essentially optically thick, provid...

  5. Brown dwarf disks with ALMA: evidence for truncated dust disks in Ophiuchus

    CERN Document Server

    Testi, L; Scholz, A; Tazzari, M; Ricci, L; Monsalvo, I de Gregorio

    2016-01-01

    The study of the properties of disks around young brown dwarfs can provide important clues on the formation of these very low mass objects and on the possibility of forming planetary systems around them. The presence of warm dusty disks around brown dwarfs is well known, based on near- and mid-infrared studies. High angular resolution observations of the cold outer disk are limited, we used ALMA to attempt a first survey of young brown dwarfs in the rho-Ophiuchi star forming region with ALMA. All 17 young brown dwarfs in our sample were observed at 890 um in the continuum at ~0.5" angular resolution. The sensitivity of our observations was chosen to detect ~0.5 MEarth of dust. We detect continuum emission in 11 disks (65% of the total), the estimated mass of dust in the detected disks ranges from ~0.5 to ~6 MEarth. These disk masses imply that planet formation around brown dwarfs may be relatively rare and that the supra-Jupiter mass companions found around some brown dwarfs are probably the result of a binar...

  6. CID: Chemistry In Disks VII. First detection of HC3N in protoplanetary disks

    CERN Document Server

    Chapillon, E; Guilloteau, S; Pietu, V; Wakelam, V; Hersant, F; Gueth, F; Henning, T; Launhardt, R; Schreyer, K; Semenov, D

    2012-01-01

    Molecular line emission from protoplanetary disks is a powerful tool to constrain their physical and chemical structure. Nevertheless, only a few molecules have been detected in disks so far. We take advantage of the enhanced capabilities of the IRAM 30m telescope by using the new broad band correlator (FTS) to search for so far undetected molecules in the protoplanetary disks surrounding the TTauri stars DM Tau, GO Tau, LkCa 15 and the Herbig Ae star MWC 480. We report the first detection of HC3N at 5 sigma in the GO Tau and MWC 480 disks with the IRAM 30-m, and in the LkCa 15 disk (5 sigma), using the IRAM array, with derived column densities of the order of 10^{12}cm^{-2}. We also obtain stringent upper limits on CCS (N < 1.5 x 10^{12} cm^{-3}). We discuss the observational results by comparing them to column densities derived from existing chemical disk models (computed using the chemical code Nautilus) and based on previous nitrogen and sulfur-bearing molecule observations. The observed column densiti...

  7. Atomic phase diagram

    Institute of Scientific and Technical Information of China (English)

    LI Shichun

    2004-01-01

    Based on the Thomas-Fermi-Dirac-Cheng model, atomic phase diagram or electron density versus atomic radius diagram describing the interaction properties of atoms of different kinds in equilibrium state is developed. Atomic phase diagram is established based on the two-atoms model. Besides atomic radius, electron density and continuity condition for electron density on interfaces between atoms, the lever law of atomic phase diagram involving other physical parameters is taken into account, such as the binding energy, for the sake of simplicity.

  8. The flaring Hi disk of the nearby spiral galaxy NGC 2683

    Science.gov (United States)

    Vollmer, B.; Nehlig, F.; Ibata, R.

    2016-02-01

    New deep VLA D array Hi observations of the highly inclined nearby spiral galaxy NGC 2683 are presented. Archival C array data were processed and added to the new observations. To investigate the 3D structure of the atomic gas disk, we made different 3D models for which we produced model Hi data cubes. The main ingredients of our best-fit model are (i) a thin disk inclined by 80°; (ii) a crude approximation of a spiral and/or bar structure by an elliptical surface density distribution of the gas disk; (iii) a slight warp in inclination between 10 kpc ≤ R ≤ 20 kpc (decreasing by 10°); (iv) an exponential flare that rises from 0.5 kpc at R = 9 kpc to 4 kpc at R = 15 kpc, stays constant until R = 22 kpc, and decreases its height for R> 22 kpc; and (v) a low surface-density gas ring with a vertical offset of 1.3 kpc. The slope of NGC 2683's flare is comparable, but somewhat steeper than those of other spiral galaxies. NGC 2683's maximum height of the flare is also comparable to those of other galaxies. On the other hand, a saturation of the flare is only observed in NGC 2683. Based on the comparison between the high resolution model and observations, we exclude the existence of an extended atomic gas halo around the optical and thin gas disk. Under the assumption of vertical hydrostatic equilibrium we derive the vertical velocity dispersion of the gas. The high turbulent velocity dispersion in the flare can be explained by energy injection by (i) supernovae; (ii) magneto-rotational instabilities; (iii) interstellar medium stirring by dark matter substructure; or (iv) external gas accretion. The existence of the complex large-scale warping and asymmetries favors external gas accretion as one of the major energy sources that drives turbulence in the outer gas disk. We propose a scenario where this external accretion leads to turbulent adiabatic compression that enhances the turbulent velocity dispersion and might quench star formation in the outer gas disk of NGC

  9. Cold Matter Assembled Atom-by-Atom

    CERN Document Server

    Endres, Manuel; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D

    2016-01-01

    The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a novel platform for the deterministic preparation of regular arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of over 50 atoms in less than 400 ms. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach enables controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements.

  10. THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Gisela A.; Schreiber, Matthias R.; Rebassa-Mansergas, Alberto [Departamento de Fisica y Astronomia, Universidad de Valparaiso, Valparaiso (Chile); Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Merin, Bruno [Herschel Science Centre, ESAC (ESA), P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Smith Castelli, Analia V. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Allen, Lori E. [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Morrell, Nidia [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)

    2012-04-10

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from {approx}<1 to 10 M{sub JUP}, and accretion rates ranging from {approx}<10{sup -11} to 10{sup -7.7} M{sub Sun} yr{sup -1}. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole. We find the same heterogeneity of the transition disk population in Lupus III, IV, and Corona Australis as in our previous analysis of transition disks in Ophiuchus while all transition disk candidates selected in Lupus V, VI turned out to be contaminating background asymptotic giant branch stars. All transition disks classified as photoevaporating disks have small disk masses, which indicates that photoevaporation must be less efficient than predicted by most recent models. The three systems that are excellent candidates for harboring giant planets potentially represent invaluable laboratories to study planet formation with the Atacama Large Millimeter/Submillimeter Array.

  11. Consistent dust and gas models for protoplanetary disks. I. Disk shape, dust settling, opacities, and PAHs

    Science.gov (United States)

    Woitke, P.; Min, M.; Pinte, C.; Thi, W.-F.; Kamp, I.; Rab, C.; Anthonioz, F.; Antonellini, S.; Baldovin-Saavedra, C.; Carmona, A.; Dominik, C.; Dionatos, O.; Greaves, J.; Güdel, M.; Ilee, J. D.; Liebhart, A.; Ménard, F.; Rigon, L.; Waters, L. B. F. M.; Aresu, G.; Meijerink, R.; Spaans, M.

    2016-02-01

    We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavelengths. The first paper of this series focuses on the assumptions about the shape of the disk, the dust opacities, dust settling, and polycyclic aromatic hydrocarbons (PAHs). In particular, we propose new standard dust opacities for disk models, we present a simplified treatment of PAHs in radiative equilibrium which is sufficient to reproduce the PAH emission features, and we suggest using a simple yet physically justified treatment of dust settling. We roughly adjust parameters to obtain a model that predicts continuum and line observations that resemble typical multi-wavelength continuum and line observations of Class II T Tauri stars. We systematically study the impact of each model parameter (disk mass, disk extension and shape, dust settling, dust size and opacity, gas/dust ratio, etc.) on all mainstream continuum and line observables, in particular on the SED, mm-slope, continuum visibilities, and emission lines including [OI] 63 μm, high-J CO lines, (sub-)mm CO isotopologue lines, and CO fundamental ro-vibrational lines. We find that evolved dust properties, i.e. large grains, often needed to fit the SED, have important consequences for disk chemistry and heating/cooling balance, leading to stronger near- to far-IR emission lines in general. Strong dust settling and missing disk flaring have similar effects on continuum observations, but opposite effects on far-IR gas emission lines. PAH molecules can efficiently shield the gas from stellar UV radiation because of their strong absorption and negligible scattering opacities in comparison to evolved dust. The observable millimetre-slope of the SED can become significantly more gentle in the case of cold disk midplanes, which we find regularly in our T Tauri models

  12. Gas lines from the 5-Myr old optically thin disk around HD141569A. Herschel observations and modeling

    CERN Document Server

    Thi, Wing-Fai; Pantin, Eric; Augereau, Jean-Charles; Meeus, Gwendolyn; Menard, Francois; Martin-Zaïdi, Claire; Woitke, Peter; Riviere-Marichalar, Pablo; Kamp, Inga; Carmona, Andres; Sandell, Goran; Eiroa, Carlos; Dent, Williams; Montesinos, Benjamin; Aresu, Giambattista; Meijerink, Rowin; Spaans, Marco; White, Glenn; Ardila, David; Lebreton, Jeremy; Mendigutia, Ignacio; Brittain, Sean

    2013-01-01

    At the distance of 99-116 pc, HD141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disk, probably in transition between a massive primordial disk and a debris disk. We observed the fine-structure lines of OI at 63 and 145 micron and the CII line at 157 micron with the PACS instrument onboard the Herschel Space Telescope as part of the open-time large programme GASPS. We complemented the atomic line observations with archival Spitzer spectroscopic and photometric continuum data, a ground-based VLT-VISIR image at 8.6 micron, and 12CO fundamental ro-vibrational and pure rotational J=3-2 observations. We simultaneously modeled the continuum emission and the line fluxes with the Monte Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disk gas- and dust properties assuming no dust settling. The models suggest that the oxygen lines are emitted from the inner disk around HD141569A, whereas the [CII] line emission is more extended. The CO submillimeter fl...

  13. DISK BATTERIES IN THE ESOPHAGUS OF NIGERIAN CHILDREN: CASE SERIES

    Directory of Open Access Journals (Sweden)

    LUCKY OBUKOWHO ONOTAI

    2015-07-01

    Full Text Available Foreign body (FB ingestion is common in clinical practice especially in children. Its impaction in the esophagus constitutes an important cause of morbidity and mortality in our environment. Due to technological advancement and increase use of disk batteries to power children toys and remote control gadgets, ingestion of disk batteries is now commonplace. In our environment there is paucity of information on disk batteries hence we decided to present case series of disk batteries in the esophagus of children highlighting the peculiarities of disk batteries, the dangers posed by them, the mode of retrieval, complications encountered, and possible recommendations to curtail the increasing occurrence.

  14. Do low surface brightness galaxies have dense disks?

    CERN Document Server

    Saburova, A S

    2010-01-01

    The disk masses of four low surface brightness galaxies (LSB) were estimated using marginal gravitational stability criterion and the stellar velocity dispersion data which were taken from Pizzella et al., 2008 [1]. The constructed mass models appear to be close to the models of maximal disk. The results show that the disks of LSB galaxies may be significantly more massive than it is usually accepted from their brightnesses. In this case their surface densities and masses appear to be rather typical for normal spirals. Otherwise, unlike the disks of many spiral galaxies, the LSB disks are dynamically overheated.

  15. Disk Destruction and (Re)-Creation in the Magellanic Clouds

    OpenAIRE

    Nidever, David L.

    2013-01-01

    Unlike most satellite galaxies in the Local Group that have long lost their gaseous disks, the Magellanic Clouds are gas-rich dwarf galaxies most-likely on their first pericentric passage allowing us to study disk evolution on the smallest scales. The Magellanic Clouds show both disk destruction and (re)-creation. The Large Magellanic Cloud has a very extended stellar disk reaching to at least 15 kpc (10 radial scalelengths) while its gaseous disk is truncated at ~5 kpc mainly due to its inte...

  16. Reading the Signatures of Extrasolar Planets in Debris Disks

    Science.gov (United States)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  17. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, NY 10024 (United States)

    2016-03-10

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.

  18. Research overview on vibration damping of mistuned bladed disk assemblies

    Directory of Open Access Journals (Sweden)

    Liang ZHANG

    2016-04-01

    Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.

  19. Dust dynamics in 2D gravito-turbulent disks

    CERN Document Server

    Shi, Ji-Ming; Stone, James M; Chiang, Eugene

    2016-01-01

    The dynamics of solid bodies in protoplanetary disks are subject to the properties of any underlying gas turbulence. Turbulence driven by disk self-gravity shows features distinct from those driven by the magnetorotational instability (MRI). We study the dynamics of solids in gravito-turbulent disks with two-dimensional (in the disk plane), hybrid (particle and gas) simulations. Gravito-turbulent disks can exhibit stronger gravitational stirring than MRI-active disks, resulting in greater radial diffusion and larger eccentricities and relative speeds for large particles (those with dimensionless stopping times $t_{stop} \\Omega > 1$, where $\\Omega$ is the orbital frequency). The agglomeration of large particles into planetesimals by pairwise collisions is therefore disfavored in gravito-turbulent disks. However, the relative speeds of intermediate-size particles $t_{stop} \\Omega \\sim 1$ are significantly reduced as such particles are collected by gas drag and gas gravity into coherent filament-like structures ...

  20. Accretion Disks Around Binary Black Holes: A Quasistationary Model

    CERN Document Server

    Liu, Yuk Tung

    2010-01-01

    Tidal torques acting on a gaseous accretion disk around a binary black hole can create a gap in the disk near the orbital radius. At late times, when the binary inspiral timescale due to gravitational wave emission becomes shorter than the viscous timescale in the disk, the binary decouples from the disk and eventually merges. Prior to decoupling the balance between tidal and viscous torques drives the disk to a quasistationary equilibrium state, perturbed slightly by small amplitude, spiral density waves emanating from the edges of the gap. We consider a black hole binary with a companion of smaller mass and construct a simple Newtonian model for a geometrically thin, Keplerian disk in the orbital plane of the binary. We solve the disk evolution equations in steady state to determine the quasistationary, (orbit-averaged) surface density profile prior to decoupling. We use our solution, which is analytic up to simple quadratures, to compute the electromagnetic flux and approximate radiation spectrum during th...

  1. Inner polar gaseous disks: incidence, ages, possible origin

    CERN Document Server

    Sil'chenko, Olga K

    2014-01-01

    We review our current knowledge about a particular case of decoupled gas kinematics -- inner ionized-gas polar disks. Though more difficult to be noticed, they seem to be more numerous than their large-scale counterparts; our recent estimates imply about 10 per cent of early-type disk galaxies to be hosts of inner polar disks. Since in the most cases the kinematics of the inner polar gaseous disks is decoupled from the kinematics of the outer large-scale gaseous disks and since they nested around very old stellar nuclei, we speculate that the inner polar disks may be relics of very early events of external gas accretion several Gyr ago. Such view is in agreement with our new paradigm of the disk galaxies evolution.

  2. Dipper disks not inclined towards edge-on orbits

    CERN Document Server

    Ansdell, M; Williams, J P; Kennedy, G; Wyatt, M C; LaCourse, D M; Jacobs, T L; Mann, A W

    2016-01-01

    The so-called "dipper" stars host circumstellar disks and have optical and infrared light curves that exhibit quasi-periodic or aperiodic dimming events consistent with extinction by transiting dusty structures orbiting in the inner disk. Most of the proposed mechanisms explaining the dips---i.e., occulting disk warps, vortices, and forming planetesimals---assume nearly edge-on viewing geometries. However, our analysis of the three known dippers with publicly available resolved sub-mm data reveals disks with a range of inclinations, most notably the face-on transition disk J1604-2130 (EPIC 204638512). This suggests that nearly edge-on viewing geometries are not a defining characteristic of the dippers and that additional models should be explored. If confirmed by further observations of more dippers, this would point to inner disk processes that regularly produce dusty structures far above the outer disk midplane in regions relevant to planet formation.

  3. Thermal instability of advection-dominated disks against local perturbations

    CERN Document Server

    Kato, S; Chen, X; Kato, Shoji; Abramowicz, Marek Artur; Chen, Xingming

    1995-01-01

    Thermal instability is examined for advection-dominated one-temperature accretion disks. We consider axisymmetric perturbations with short wavelength in the radial direction. The viscosity is assumed to be sufficiently small for the vertical hydrostatic balance to hold in perturbed states. The type of viscosity is given either by the \\alpha-viscosity or by a diffusion-type stress tensor. Optically thick disks are found to be in general more unstable than optically thin ones. When the thermal diffusion is present, the optically thin disks become stable, but the optically thick disks are still unstable. The instability of the advection-dominated disks is different from that of the geometrically thin disks without advection. In the case of no advection, the thermal mode behaves under no appreciable surface density change. In the case of advection-dominated disks, however, the thermal mode occurs with no appreciable pressure change (compared with the density change), when local perturbations are considered. The v...

  4. Metallicity Gradients in Disks: Do Galaxies Form Inside-Out?

    CERN Document Server

    Pilkington, K; Gibson, B K; Calura, F; Michel-Dansac, L; Thacker, R J; Molla, M; Matteucci, F; Rahimi, A; Kawata, D; Kobayashi, C; Brook, C B; Stinson, G S; Couchman, H M P; Bailin, J; Wadsley, J

    2012-01-01

    We examine radial and vertical metallicity gradients using a suite of disk galaxy simulations, supplemented with two classic chemical evolution approaches. We determine the rate of change of gradient and reconcile differences between extant models and observations within the `inside-out' disk growth paradigm. A sample of 25 disks is used, consisting of 19 from our RaDES (Ramses Disk Environment Study) sample, realised with the adaptive mesh refinement code RAMSES. Four disks are selected from the MUGS (McMaster Unbiased Galaxy Simulations) sample, generated with the smoothed particle hydrodynamics (SPH) code GASOLINE, alongside disks from Rahimi et al. (GCD+) and Kobayashi & Nakasato (GRAPE-SPH). Two chemical evolution models of inside-out disk growth were employed to contrast the temporal evolution of their radial gradients with those of the simulations. We find that systematic differences exist between the predicted evolution of radial abundance gradients in the RaDES and chemical evolution models, comp...

  5. Determining locus and periphery of optic disk in retinal images

    Science.gov (United States)

    Norouzi Fard, Mohammad; Salehi, Alireza; Shanbeh Zadeh, Jamshid

    2008-04-01

    Diabetes can be recognized by features of retina. Automatic retina feature extraction improves the speed of diabetes diagnosis. The first step in extracting the features is to localize the optic disk. Methods with low accuracy in localizing the optic disk include area with maximum lightness or the largest area containing pixels with maximum gray levels. A more accurate method is to find the physical position of blood vessel that passes through optic disk. This paper presents a fast and accurate algorithm for localizing the optic disk. The process of localization consists of finding the target area, Optic Disk center and Optic Disk boundaries. Optic Disk boundaries are recognized by our algorithm with %90 accuracy.

  6. Eccentric Jupiters via Disk-Planet Interactions

    CERN Document Server

    Duffell, Paul C

    2015-01-01

    Numerical hydrodynamics calculations are performed to determine conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified --- provided their orbits start eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricities causes catastrophic eccentricity damping as the planet collides into gap walls. If the eccentricity driving documented here survives in 3D, it may explain the low-to-moderate eccentricities $\\lesssim 0.1$ exhibited by many giant planets (including Jupiter and Saturn), especially those without plane...

  7. Zodiac II: Debris Disk Imaging Potential

    Science.gov (United States)

    Traub Wesley; Bryden, Geoff; Stapelfeldt, Karl; Chen, Pin; Trauger, John

    2011-01-01

    Zodiac II is a proposed coronagraph on a balloon-borne platform, for the purpose of observing debris disks around nearby stars. Zodiac II will have a 1.2-m diameter telescope mounted in a balloon-borne gondola capable of arcsecond quality pointing, and with the capability to make long-duration (several week) flights. Zodiac II will have a coronagraph able to make images of debris disks, meaning that its scattered light speckles will be at or below an average contrast level of about 10(exp -7) in three narrow (7 percent) bands centered on the V band, and one broad (20%) one at I band. We will discuss the potential science to be done with Zodiac II.

  8. Accretion disk structure in SS Cygni

    Science.gov (United States)

    Hessman, F. V.

    1987-02-01

    High-resolution coude observations of nonaxisymmetric line emission from the dwarf nova SS Cygni are presented. By subtracting the constant line component, the asymmetric line emission responsible for the observed phase shift between the absorption and emission line radial velocity curves can be isolated. The extra emission is a large fraction of the total line emission and extends to large velocities (of about 1500 km/sec). The phase stability of the emission demands a large-scale structure which is fixed in the frame of the binary. A magnetic origin of the excitation cannot be ruled out but is implausible. A simple explanation is that the accretion stream from the companion star is able to spill over the edge of the disk, introducing emission at noncircular velocities and most likely disturbing the upper layers of the accretion disk.

  9. Dust coagulation in protoplanetary disks: porosity matters

    CERN Document Server

    Ormel, C W; Tielens, A G G M

    2006-01-01

    Context: Sticking of colliding dust particles through van der Waals forces is the first stage in the grain growth process in protoplanetary disks, eventually leading to the formation of comets, asteroids and planets. A key aspect of the collisional evolution is the coupling between dust and gas motions, which depends on the internal structure (porosity) of aggregates. Aims: To quantify the importance of the internal structure on the collisional evolution of particles, and to create a new coagulation model to investigate the difference between porous and compact coagulation in the context of a turbulent protoplanetary disk. Methods: We have developed simple prescriptions for the collisional evolution of porosity of grain-aggregates in grain-grain collisions. Three regimes can then be distinguished: `hit-and-stick' at low velocities, with an increase in porosity; compaction at intermediate velocities, with a decrease of porosity; and fragmentation at high velocities. (..) Results: (..) We can discern three diff...

  10. Magnetic white dwarfs with debris disks

    CERN Document Server

    Külebi, Baybars; Lorén-Aguilar, Pablo; Isern, Jordi; García-Berro, Enrique

    2012-01-01

    It has long been accepted that a possible mechanism for explaining the existence of magnetic white dwarfs is the merger of a binary white dwarf system, as there are viable mechanisms for producing sustainable magnetism within the merger product. However, the lack of rapid rotators in the magnetic white dwarf population has been always considered a problematic issue of this scenario. In order to explain this discrepancy we build a model in which the interaction between the magnetosphere of the star and the disk induces angular momentum transfer. Our model predicts that the magnetospheric interaction of magnetic white dwarfs with their disks results in a significant spin down, and we show that the observed rotation period of REJ 0317-853, which is suggested to be a product of a double degenerate merger, can be reproduced.

  11. Shock Waves in Dense Hard Disk Fluids

    CERN Document Server

    Sirmas, Nick; Barahona, Javier; Radulescu, Matei I

    2011-01-01

    Media composed of colliding hard disks (2D) or hard spheres (3D) serve as good approximations for the collective hydrodynamic description of gases, liquids and granular media. In the present study, the compressible hydrodynamics and shock dynamics are studied for a two-dimensional hard-disk medium at both the continuum and discrete particle level descriptions. For the continuum description, closed form analytical expressions for the inviscid hydrodynamic description, shock Hugoniot, isentropic exponent and shock jump conditions were obtained using the Helfand equation of state. The closed-form analytical solutions permitted us to gain physical insight on the role of the material's density on its compressibility, i.e. how the medium compresses under mechanical loadings and sustains wave motion. Furthermore, the predictions were found in excellent agreement with calculations using the Event Driven Molecular Dynamic method involving 30,000 particles over the entire range of compressibility spanning the dilute id...

  12. Exponential Galaxy Disks from Stellar Scattering

    CERN Document Server

    Elmegreen, Bruce G

    2013-01-01

    Stellar scattering off of orbiting or transient clumps is shown to lead to the formation of exponential profiles in both surface density and velocity dispersion in a two-dimensional non-self gravitating stellar disk with a fixed halo potential. The exponential forms for both nearly-flat rotation curves and near-solid body rotation curves. The exponential does not depend on initial conditions, spiral arms, bars, viscosity, star formation, or strong shear. After a rapid initial development, the exponential saturates to an approximately fixed scale length. The inner exponential in a two-component profile has a break radius comparable to the initial disk radius; the outer exponential is primarily scattered stars.

  13. Turbulent Comptonization in Black Hole Accretion Disks

    CERN Document Server

    Socrates, A; Blaes, Omer M; Socrates, Aristotle; Davis, Shane W.; Blaes, Omer

    2004-01-01

    In the inner-most regions of radiation pressure supported accretion disks, the turbulent magnetic pressure may greatly exceed that of the gas. If this is the case, it is possible for bulk Alfvenic motions driven by the magnetorotational instability (MRI) to surpass the electron thermal velocity. Bulk rather than thermal Comptonization may then be the dominant radiative process which mediates gravitational energy release. For sufficiently large turbulent stresses, we show that turbulent Comptonization produces a significant contribution to the far-UV and X-ray emission of black hole accretion disks. The existence of this spectral component provides a means of obtaining direct observational constraints on the nature of the turbulence itself. We describe how this component may affect the spectral energy distributions and variability properties of X-ray binaries and active galactic nuclei.

  14. Comment to "Thomson rings in a disk"

    CERN Document Server

    Amore, Paolo

    2016-01-01

    We have found that the minimum energy configuration of $N=395$ charges confined in a disk and interacting via the Coulomb potential, reported by Cerkaski et al. in Ref.~\\cite{Cerkaski15} is not a global minimum of the total electrostatic energy. We have identified a large number of configurations with lower energy, where defects are present close to the center of the disk; thus, the formation of a hexagonal core and valence circular rings for the centered configurations, predicted by the model of Ref.~\\cite{Cerkaski15}, is not supported by numerical evidence and the configurations obtained with this model cannot be used as a guide for the numerical calculations, as claimed by the authors.

  15. Transient dynamics of perturbations in astrophysical disks

    CERN Document Server

    Razdoburdin, Dmitry N

    2015-01-01

    This paper reviews some aspects of one of the major unsolved problems in understanding astrophysical (in particular, accretion) disks: whether the disk interiors may be effectively viscous in spite of the absence of marnetorotational instability? In this case a rotational homogeneous inviscid flow with a Keplerian angular velocity profile is spectrally stable, making the transient growth of perturbations a candidate mechanism for energy transfer from the regular motion to perturbations. Transient perturbations differ qualitatively from perturbation modes and can grow substantially in shear flows due to the nonnormality of their dynamical evolution operator. Since the eigenvectors of this operator, alias perturbation modes, are mutually nonorthogonal, they can mutually interfere, resulting in the transient growth of their linear combinations. Physically, a growing transient perturbation is a leading spiral whose branches are shrunk as a result of the differential rotation of the flow. This paper discusses in d...

  16. Capsule- and disk-filter procedure

    Science.gov (United States)

    Skrobialowski, Stanley C.

    2016-01-01

    Capsule and disk filters are disposable, self-contained units composed of a pleated or woven filter medium encased in a polypropylene or other plastic housing that can be connected inline to a sample-delivery system (such as a submersible or peristaltic pump) that generates sufficient pressure (positive or negative) to force water through the filter. Filter media are available in several pore sizes, but 0.45 µm is the pore size used routinely for most studies at this time. Capsule or disk filters (table 5.2.1.A.1) are required routinely for most studies when filtering samples for trace-element analyses and are recommended when filtering samples for major-ion or other inorganic-constituent analyses.

  17. Terabyte IDE RAID-5 Disk Arrays

    Energy Technology Data Exchange (ETDEWEB)

    David A. Sanders et al.

    2003-09-30

    High energy physics experiments are currently recording large amounts of data and in a few years will be recording prodigious quantities of data. New methods must be developed to handle this data and make analysis at universities possible. We examine some techniques that exploit recent developments in commodity hardware. We report on tests of redundant arrays of integrated drive electronics (IDE) disk drives for use in offline high energy physics data analysis. IDE redundant array of inexpensive disks (RAID) prices now are less than the cost per terabyte of million-dollar tape robots! The arrays can be scaled to sizes affordable to institutions without robots and used when fast random access at low cost is important.

  18. Accretion disks in luminous young stellar objects

    CERN Document Server

    Beltran, M T

    2015-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  19. Adsorption on interstellar analog surfaces : from atoms to organic molecules

    OpenAIRE

    Doronin, Mikhail

    2015-01-01

    Gas-grain interaction plays an important role in the chemistry of the cold interstellar medium and protoplanetary disks. A key parameter for modeling the exchange between grain surfaces and gas phase is adsorption energy, Ea. This work aims to develop a reliable and systematic experimental/theoretical approach to determine the adsorption energies of relevant atoms and molecules on models of interstellar grain surfaces. Employed experimental technique is the Temperature Programmed Desorption. ...

  20. Effective gluon interactions from superstring disk amplitudes

    International Nuclear Information System (INIS)

    In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full α' dependence. In this connection material for obtaining the α' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)