WorldWideScience

Sample records for atomic chains adsorbed

  1. Spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons

    International Nuclear Information System (INIS)

    Zhang, Z L; Chen, Y P; Xie, Y E; Zhang, M; Zhong, J X

    2011-01-01

    The spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons (ZGNRs) are investigated using the density-functional theory in combination with the nonequilibrium Green's function method. We find that the Fe chain has drastic effects on spin-polarized transport properties of ZGNRs compared with a single Fe atom adsorbed on the ZGNRs. When the Fe chain is adsorbed on the centre of the ZGNR, the original semiconductor transforms into metal, showing a very wide range of spin-polarized transport. Particularly, the spin polarization around the Fermi level is up to 100%. This is because the adsorbed Fe chain not only induces many localized states but also has effects on the edge states of ZGNR, which can effectively modulate the spin-polarized transports. The spin polarization of ZGNRs is sensitive to the adsorption site of the Fe chain. When the Fe chain is adsorbed on the edge of ZGNR, the spin degeneracy of conductance is completely broken. The spin polarization is found to be more pronounced because the edge state of one edge is destroyed by the additional Fe chain. These results have direct implications for the control of the spin-dependent conductance in ZGNRs with the adsorption of Fe chains.

  2. Spin currents and filtering behavior in zigzag graphene nanoribbons with adsorbed molybdenum chains

    International Nuclear Information System (INIS)

    García-Fuente, A; Gallego, L J; Vega, A

    2015-01-01

    By means of density-functional-theoretic calculations, we investigated the structural, electronic and transport properties of hydrogen-passivated zigzag graphene nanoribbons (ZGNRs) on which a one-atom-thick Mo chain was adsorbed (with or without one or two missing atoms), or in which the passivating hydrogen atoms were replaced by Mo atoms. Mo-passivated ZGNRs proved to be nonmagnetic. ZGNRs with an adsorbed defect-free Mo chain were most stable with the Mo atoms forming dimers above edge bay sites, which suppressed the magnetic moments of the C atoms in that half of the ribbon; around the Fermi level of these systems, each spin component had a transmission channel via the Mo sp z band and one had an additional channel created by polarization of the ZGNR π * band, leading to a net spin current. The absence of an Mo dimer from an Mo chain adsorbed at the ZGNR edge made the system a perfect spin filter at low voltage bias by suppressing the Mo sp z band channels. Thus this last kind of hybrid system is a potential spin valve. (paper)

  3. Enhanced binding capacity of boronate affinity adsorbent via surface modification of silica by combination of atom transfer radical polymerization and chain-end functionalization for high-efficiency enrichment of cis-diol molecules

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; He, Maofang; Wang, Chaozhan; Wei, Yinmao, E-mail: ymwei@nwu.edu.cn

    2015-07-30

    Boronate affinity materials have been widely used for specific separation and preconcentration of cis-diol molecules, but most do not have sufficient capacity due to limited binding sites on the material surface. In this work, we prepared a phenylboronic acid-functionalized adsorbent with a high binding capacity via the combination of surface-initiated atom transfer radical polymerization (SI-ATRP) and chain-end functionalization. With this method, the terminal chlorides of the polymer chains were used fully, and the proposed adsorbent contains dense boronic acid polymers chain with boronic acid on the chain end. Consequently, the proposed adsorbent possesses excellent selectivity and a high binding capacity of 513.6 μmol g{sup −1} for catechol and 736.8 μmol g{sup −1} for fructose, which are much higher than those of other reported adsorbents. The dispersed solid-phase extraction (dSPE) based on the prepared adsorbent was used for extraction of three cis-diol drugs (i.e., epinephrine, isoprenaline and caffeic acid isopropyl ester) from plasma; the eluates were analyzed by HPLC-UV. The reduced amount of adsorbent (i.e., 2.0 mg) could still eliminate interferences efficiently and yielded a recovery range of 85.6–101.1% with relative standard deviations ranging from 2.5 to 9.7% (n = 5). The results indicated that the proposed strategy could serve as a promising alternative to increase the density of surface functional groups on the adsorbent; thus, the prepared adsorbent has the potential to effectively enrich cis-diol substances in real samples. - Highlights: • Boronate adsorbent is prepared via ATRP and chain-end functionalization. • The adsorbent has quite high binding capacity for cis-diols. • Binding capacity is easily manipulated by ATRP condition. • Chain-end functionalization can improve binding capacity significantly. • Reduced adsorbent is consumed in dispersed solid-phase extraction of cis-diols.

  4. Electronic spectral properties of surfaces and adsorbates and atom-adsorbate van der Waals interactions

    International Nuclear Information System (INIS)

    Lovric, D.; Gumhalter, B.

    1988-01-01

    The relevance of van der Waals interactions in the scattering of neutral atoms from adsorbates has been recently confirmed by highly sensitive molecular-beam techniques. The theoretical descriptions of the collision dynamics which followed the experimental studies have necessitated very careful qualitative and quantitative examinations and evaluations of the properties of atom-adsorbate van der Waals interactions for specific systems. In this work we present a microscopic calculation of the strengths and reference-plane positions for van der Waals potentials relevant for scattering of He atoms from CO adsorbed on various metallic substrates. In order to take into account the specificities of the polarization properties of real metals (noble and transition metals) and of chemisorbed CO, we first calculate the spectra of the electronic excitations characteristic of the respective electronic subsystems by using various data sources available and combine them with the existing theoretical models. The reliability of the calculated spectra is then verified in each particular case by universal sum rules which may be established for the electronic excitations of surfaces and adsorbates. The substrate and adsorbate polarization properties which derive from these calculations serve as input data for the evaluation of the strengths and reference-plane positions of van der Waals potentials whose computed values are tabulated for a number of real chemisorption systems. The implications of the obtained results are discussed in regard to the atom-adsorbate scattering cross sections pertinent to molecular-beam scattering experiments

  5. Beyond the Born approximation. The case of very long polymer chains adsorbed at an interface

    International Nuclear Information System (INIS)

    Guiselin, O.; Jannink, G.; Cloizeaux, J. des

    1991-01-01

    Two experimental evidences are discussed of the reflectance discontinuity associated with very long adsorbed polymer chains. It is shown that the Born approximation is not valid in this case. The anomalous low reflectivity is compared to the Ramsauer-Townsend effect in the scattering of slow electrons by rare-gas atoms. (author) 15 refs.; 6 figs

  6. Self-lacing atom chains

    International Nuclear Information System (INIS)

    Zandvliet, Harold J W; Van Houselt, Arie; Poelsema, Bene

    2009-01-01

    The structural and electronic properties of self-lacing atomic chains on Pt modified Ge(001) surfaces have been studied using low-temperature scanning tunnelling microscopy and spectroscopy. The self-lacing chains have a cross section of only one atom, are perfectly straight, thousands of atoms long and virtually defect free. The atomic chains are composed of dimers that have their bonds aligned in a direction parallel to the chain direction. At low temperatures the atomic chains undergo a Peierls transition: the periodicity of the chains doubles from a 2 x to a 4 x periodicity and an energy gap opens up. Furthermore, at low temperatures (T<80 K) novel quasi-one-dimensional electronic states are found. These quasi-one-dimensional electronic states originate from an electronic state of the underlying terrace that is confined between the atomic chains.

  7. Flow boundary conditions for chain-end adsorbing polymer blends.

    Science.gov (United States)

    Zhou, Xin; Andrienko, Denis; Delle Site, Luigi; Kremer, Kurt

    2005-09-08

    Using the phenol-terminated polycarbonate blend as an example, we demonstrate that the hydrodynamic boundary conditions for a flow of an adsorbing polymer melt are extremely sensitive to the structure of the epitaxial layer. Under shear, the adsorbed parts (chain ends) of the polymer melt move along the equipotential lines of the surface potential whereas the adsorbed additives serve as the surface defects. In response to the increase of the number of the adsorbed additives the surface layer becomes thinner and solidifies. This results in a gradual transition from the slip to the no-slip boundary condition for the melt flow, with a nonmonotonic dependence of the slip length on the surface concentration of the adsorbed ends.

  8. Scattering of atoms by molecules adsorbed at solid surfaces

    International Nuclear Information System (INIS)

    Parra, Zaida.

    1988-01-01

    The formalism of collisional time-correlation functions, appropriate for scattering by many-body targets, is implemented to study energy transfer in the scattering of atoms and ions from molecules adsorbed on metal surfaces. Double differential cross-sections for the energy and angular distributions of atoms and ions scattered by a molecule adsorbed on a metal surface are derived in the limit of impulsive collisions and within a statistical model that accounts for single and double collisions. They are found to be given by the product of an effective cross-section that accounts for the probability of deflection into a solid angle times a probability per unit energy transfer. A cluster model is introduced for the vibrations of an adsorbed molecule which includes the molecular atoms, the surface atoms binding the molecule, and their nearest neighbors. The vibrational modes of CO adsorbed on a Ni(001) metal surface are obtained using two different cluster models to represent the on-top and bridge-bonding situations. A He/OC-Ni(001) potential is constructed from a strongly repulsive potential of He interacting with the oxygen atom in the CO molecule and a van der Waals attraction accounting for the He interaction with the free Ni(001) surface. A potential is presented for the Li + /OC-Ni(001) where a coulombic term is introduced to account for the image force. Trajectory studies are performed and analyzed in three dimensions to obtain effective classical cross-sections for the He/OC-Ni(001) and Li + /OC-Ni(001) systems. Results for the double differential cross-sections are presented as functions of scattering angles, energy transfer and collisional energy. Temperature dependence results are also analyzed. Extensions of the approach and inclusion of effects such as anharmonicity, collisions at lower energies, and applications of the approach to higher coverages are discussed

  9. CHAINS-PC, Decay Chain Atomic Densities

    International Nuclear Information System (INIS)

    1994-01-01

    1 - Description of program or function: CHAINS computes the atom density of members of a single radioactive decay chain. The linearity of the Bateman equations allows tracing of interconnecting chains by manually accumulating results from separate calculations of single chains. Re-entrant loops can be treated as extensions of a single chain. Losses from the chain are also tallied. 2 - Method of solution: The Bateman equations are solved analytically using double-precision arithmetic. Poles are avoided by small alterations of the loss terms. Multigroup fluxes, cross sections, and self-shielding factors entered as input are used to compute the effective specific reaction rates. The atom densities are computed at any specified times. 3 - Restrictions on the complexity of the problem: Maxima of 100 energy groups, 100 time values, 50 members in a chain

  10. Interaction of atomic hydrogen with ethylene adsorbed on nickel films

    International Nuclear Information System (INIS)

    Korchak, V.N.; Tret'yakov, I.I.; Kislyuk, M.U.

    1976-01-01

    The reactivity of ethylene adsorbed on the pure films of nickel at various temperatures was studied with respect to hydrogen atoms generated in the gaseous phase. The experiments were conducted in a glass vacuum apparatus enabling one to obtain the highest vacuum up to 2x20 -10 torr. The catalyst, nickel films, was produced by their deposition onto the walls of the glass reactor at a pressure of the residual gas of 10 -9 torr and a temperature of the walls of 25 deg C. Gas purity was analyzed by the mass spectrometric method. The ethylene adsorbed at the temperatures below 173 deg K reacted readily with the hydrogen atoms to yield ethane. The process ran without practically any activation energy involved and was limited by the attachment of the first hydrogen atom to the ethylene molecule. The efficiency of this interaction was 0.02 of the number of the hydrogen atoms collisions against the surface occupied by the ethylene. The adsorption of the ethylene at room and higher temperatures was accompanied by its disproportioning with the release of the hydrogen into the gaseous phase and a serious destruction of the ethylene molecules adsorbed to produce hydrogen residues interacting with neither molecular nor atomic hydrogen [ru

  11. First-principles studies on 3d transition metal atom adsorbed twin graphene

    Science.gov (United States)

    Li, Lele; Zhang, Hong; Cheng, Xinlu; Miyamoto, Yoshiyuki

    2018-05-01

    Twin graphene is a new two-dimensional semiconducting carbon allotrope which is proposed recently. The structural, magnetic and electronic properties are investigated for 3d transition metal (TM) atom adsorbed twin graphene by means of GGA+U calculations. The results show most of single 3d transition metal atom except Zn can make twin graphene magnetization. The adsorption of single TM atom can also make the twin graphene systems turn to half metal (V adsorption), half-semiconductor (Fe adsorption) or metal (Sc, Cr, Mn, Co and Cu adsorption). The semiconducting nature still exists for Ti, Ni and Zn adsorption. All the 3d TM adatoms belong to n-type doping for transferring charge to the neighboring C atoms and have strong covalent bond with these C atoms. The influence of Hubbard U value on half-metallic V adsorbed system is also considered. As the U increases, the system can gradually transform from metal to half metal and metal. The effect of the coverage is investigated for two TM atoms (Sc-Fe) adsorption, too. We can know TM atoms adsorbed twin graphene have potentials to be spintronic device and nanomagnets from the results.

  12. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    Science.gov (United States)

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  13. Effect of temperature on atom-atom collision chain length in metals

    International Nuclear Information System (INIS)

    Makarov, A.A.; Demkin, N.A.; Lyashchenko, B.G.

    1981-01-01

    Focused atom-atom collision chain lengths are calculated for fcc-crystals with account of thermal oscillations. The model of solid spheres with the Born-Merier potential has been used in the calculations. The dependence of chain lengths on the temperature, energy and movement direction of the first chain atom for Cu, Au, Ag, Pb, Ni is considered. The plot presented shows that the chain lengths strongly decrease with temperature growth, for example, for the gold at T=100 K the chain length equals up to 37 interatomic spacings, whereas at T=1000 K their length decreases down to 5 interatomic distances. The dependence of the energy loss by the chain atoms on the atom number in the chain is obtained in a wide range of crystal temperature and the primary chain atom energy [ru

  14. Symmetry chains for the atomic shell model. I. Classification of symmetry chains for atomic configurations

    International Nuclear Information System (INIS)

    Gruber, B.; Thomas, M.S.

    1980-01-01

    In this article the symmetry chains for the atomic shell model are classified in such a way that they lead from the group SU(4l+2) to its subgroup SOsub(J)(3). The atomic configurations (nl)sup(N) transform like irreducible representations of the group SU(4l+2), while SOsub(J)(3) corresponds to total angular momentum in SU(4l+2). The defining matrices for the various embeddings are given for each symmetry chain that is obtained. These matrices also define the projection onto the weight subspaces for the corresponding subsymmetries and thus relate the various quantum numbers and determine the branching of representations. It is shown in this article that three (interrelated) symmetry chains are obtained which correspond to L-S coupling, j-j coupling, and a seniority dependent coupling. Moreover, for l<=6 these chains are complete, i.e., there are no other chains but these. In articles to follow, the symmetry chains that lead from the group SO(8l+5) to SOsub(J)(3) will be discussed, with the entire atomic shell transforming like an irreducible representation of SO(8l+5). The transformation properties of the states of the atomic shell will be determined according to the various symmetry chains obtained. The symmetry lattice discussed in this article forms a sublattice of the larger symmetry lattice with SO(8l+5) as supergroup. Thus the transformation properties of the states of the atomic configurations, according to the various symmetry chains discussed in this article, will be obtained too. (author)

  15. Structures of adsorbed CO on atomically smooth and on stepped sngle crystal surfaces

    International Nuclear Information System (INIS)

    Madey, T.E.; Houston, J.E.

    1980-01-01

    The structures of molecular CO adsorbed on atomically smooth surfaces and on surfaces containing monatomic steps have been studied using the electron stimulated desorption ion angular distribution (ESDIAD) method. For CO adsorbed on the close packed Ru(001) and W(110) surfaces, the dominant bonding mode is via the carbon atom, with the CO molecular axis perpendicular to the plane of the surface. For CO on atomicaly rough Pd(210), and for CO adsorbed at step sites on four different surfaces vicinal to W(110), the axis of the molecule is tilted or inclined away from the normal to the surface. The ESDIAD method, in which ion desorption angles are related to surface bond angles, provides a direct determination of the structures of adsorbed molecules and molecular complexes on surfaces

  16. Chain formation of metal atoms

    DEFF Research Database (Denmark)

    Bahn, Sune Rastad; Jacobsen, Karsten Wedel

    2001-01-01

    The possibility of formation of single-atomic chains by manipulation of nanocontacts is studied for a selection of metals (Ni, Pd, Pt, Cu, Ag, Au). Molecular dynamics simulations show that the tendency for chain formation is strongest for Au and Pt. Density functional theory calculations indicate...... that the metals which form chains exhibit pronounced many-atom interactions with strong bonding in low coordinated systems....

  17. Concentration and saturation effects of tethered polymer chains on adsorbing surfaces

    Science.gov (United States)

    Descas, Radu; Sommer, Jens-Uwe; Blumen, Alexander

    2006-12-01

    We consider end-grafted chains at an adsorbing surface under good solvent conditions using Monte Carlo simulations and scaling arguments. Grafting of chains allows us to fix the surface concentration and to study a wide range of surface concentrations from the undersaturated state of the surface up to the brushlike regime. The average extension of single chains in the direction parallel and perpendicular to the surface is analyzed using scaling arguments for the two-dimensional semidilute surface state according to Bouchaud and Daoud [J. Phys. (Paris) 48, 1991 (1987)]. We find good agreement with the scaling predictions for the scaling in the direction parallel to the surface and for surface concentrations much below the saturation concentration (dense packing of adsorption blobs). Increasing the grafting density we study the saturation effects and the oversaturation of the adsorption layer. In order to account for the effect of excluded volume on the adsorption free energy we introduce a new scaling variable related with the saturation concentration of the adsorption layer (saturation scaling). We show that the decrease of the single chain order parameter (the fraction of adsorbed monomers on the surface) with increasing concentration, being constant in the ideal semidilute surface state, is properly described by saturation scaling only. Furthermore, the simulation results for the chains' extension from higher surface concentrations up to the oversaturated state support the new scaling approach. The oversaturated state can be understood using a geometrical model which assumes a brushlike layer on top of a saturated adsorption layer. We provide evidence that adsorbed polymer layers are very sensitive to saturation effects, which start to influence the semidilute surface scaling even much below the saturation threshold.

  18. Optical emissions from oxygen atom reactions with adsorbates

    Science.gov (United States)

    Oakes, David B.; Fraser, Mark E.; Gauthier-Beals, Mitzi; Holtzclaw, Karl W.; Malonson, Mark; Gelb, Alan H.

    1992-12-01

    Although most optical materials are inert to the ambient low earth orbit environment, high velocity oxygen atoms will react with adsorbates to produce optical emissions from the ultraviolet into the infrared. The adsorbates arise from chemical releases or outgassing from the spacecraft itself. We have been investigating kinetic and spectral aspects of these phenomenon by direct observation of the 0.2 to 13 micrometers chemiluminescence from the interaction of a fast atomic oxygen beam with a continuously dosed surface. The dosing gases include fuels, combustion products and outgassed species such as unsymmetrical dimethylhydrazine (UDMH), NO, H2O and CO. The surface studied include gold and magnesium fluoride. In order to relate the results to actual spacecraft conditions these phenomena have been explored as a function of O atom velocity, dosant flux and substrate temperature. UDMH dosed surfaces exhibit spectra typical (wavelength and intensity) of carbonaceous surfaces. The primary emitters are CO, CO2, and OH. H2O dosed surfaces are dominated by OH and /or H2O emission while CO dosed surfaces are dominated by CO and CO2 emissions. The nitric oxide dosed surface produces a glow from 0.4 to 5.4 micrometers due to NO2* continuum emission. The emission was observed to increase by a factor of two upon cooling the surface from 20 degree(s)C to -35 degree(s)C.

  19. Resonance studies of H atoms adsorbed on frozen H2 surfaces

    International Nuclear Information System (INIS)

    Crampton, S.B.

    1980-01-01

    Observations are reported of the ground state hyperfine resonance of hydrogen atoms stored in a 5 cm. diameter bottle coated with frozen molecular hydrogen. Dephasing of the hyperfine resonance while the atoms are adsorbed produces frequency shifts which vary by a factor of two over the temperature range 3.7 K to 4.6 K and radiative decay rates which vary by a factor of five over this range. The magnitudes and temperature dependences of the frequency shifts and decay rates are consistent with a non-uniform distribution of surface adsorption energies with mean about 38(8) K, in agreement with theoretical estimates for a smooth surface. Extrapolation of the 30 nanosec. mean adsorption times at 4.2 K predicts very long adsorption times for H on H 2 below 1 K. Studies of level population recovery rates provide evidence for surface electron spin exchange collisions between adsorbed atoms with collision duration long compared to the hyperfine period, suggesting that the atoms are partially mobile on the surface. The lowest rates observed for level population recovery set a lower limit of about 500 atom-surface collisions at 4.2 K without recombination

  20. The structure of n-alkane binary mixtures adsorbed on graphite

    International Nuclear Information System (INIS)

    Espeau, Philippe; White, John W.; Papoular, Robert J.

    2005-01-01

    The thermodynamics and structure of the surface adsorbed phase in binary C15-C16 and C15-C17 n-alkane mixtures confined in graphite pores have been studied by differential scanning calorimetry and small-angle X-ray scattering. The previously observed selective adsorption of the longer alkane for chain length differences greater than five carbon atoms is verified but reduced for chain length differences less than or equal to two. With a difference in chain length of one carbon atom, Vegard's law is followed for the melting points of the adsorbed mixture and the (0 2) d-spacing is a continuous function of the mole fraction x. With a two-carbon atom difference, samples aged for 1 week have a lamellar structure for which the entities A 1-x B x try to be commensurate with the substrate. The same samples aged for 1 month show a continuous parabolic x-dependence for both the melting points and the d-spacings. An explanation in terms of selective probability of adsorption is proposed based on crystallographic considerations

  1. The structure of n-alkane binary mixtures adsorbed on graphite

    Energy Technology Data Exchange (ETDEWEB)

    Espeau, Philippe [Laboratoire de Chimie Physique et Minerale, Faculte de Pharmacie, Universite Rene Descartes-Paris V, F-75006 Paris (France)]. E-mail: philippe.espeau@univ-paris5.fr; White, John W. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); Papoular, Robert J. [Laboratoire Leon Brillouin, CEA-CEN Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2005-12-15

    The thermodynamics and structure of the surface adsorbed phase in binary C15-C16 and C15-C17 n-alkane mixtures confined in graphite pores have been studied by differential scanning calorimetry and small-angle X-ray scattering. The previously observed selective adsorption of the longer alkane for chain length differences greater than five carbon atoms is verified but reduced for chain length differences less than or equal to two. With a difference in chain length of one carbon atom, Vegard's law is followed for the melting points of the adsorbed mixture and the (0 2) d-spacing is a continuous function of the mole fraction x. With a two-carbon atom difference, samples aged for 1 week have a lamellar structure for which the entities A{sub 1-x}B {sub x} try to be commensurate with the substrate. The same samples aged for 1 month show a continuous parabolic x-dependence for both the melting points and the d-spacings. An explanation in terms of selective probability of adsorption is proposed based on crystallographic considerations.

  2. Formation and properties of metal-oxygen atomic chains

    DEFF Research Database (Denmark)

    Thijssen, W.H.A.; Strange, Mikkel; de Brugh, J.M.J.A.

    2008-01-01

    of longer atomic chains. The mechanical and electrical properties of these diatomic chains have been investigated by determining local vibration modes of the chain and by measuring the dependence of the average chain-conductance on the length of the chain. Additionally, we have performed calculations......Suspended chains consisting of single noble metal and oxygen atoms have been formed. We provide evidence that oxygen can react with and be incorporated into metallic one-dimensional atomic chains. Oxygen incorporation reinforces the linear bonds in the chain, which facilitates the creation...

  3. Theoretical investigation of the use of nanocages with an adsorbed halogen atom as anode materials in metal-ion batteries.

    Science.gov (United States)

    Razavi, Razieh; Abrishamifar, Seyyed Milad; Rajaei, Gholamreza Ebrahimzadeh; Kahkha, Mohammad Reza Rezaei; Najafi, Meysam

    2018-02-21

    The applicability of C 44 , B 22 N 22 , Ge 44 , and Al 22 P 22 nanocages, as well as variants of those nanocages with an adsorbed halogen atom, as high-performance anode materials in Li-ion, Na-ion, and K-ion batteries was investigated theoretically via density functional theory. The results obtained indicate that, among the nanocages with no adsorbed halogen atom, Al 22 P 22 would be the best candidate for a novel anode material for use in metal-ion batteries. Calculations also suggest that K-ion batteries which utilize these nanocages as anode materials would give better performance and would yield higher cell voltages than the corresponding Li-ion and Na-ion batteries with nanocage-based anodes. Also, the results for the nanocages with an adsorbed halogen atom imply that employing them as anode materials would lead to higher cell voltages and better metal-ion battery performance than if the nanocages with no adsorbed halogen atom were to be used as anode materials instead. Results further implied that nanocages with an adsorbed F atom would give higher cell voltages and better battery performance than nanocages with an adsorbed Cl or Br atom. We were ultimately able to conclude that a K-ion battery that utilized Al 21 P 22 with an adsorbed F atom as its anode material would afford the best metal-ion battery performance; we therefore propose this as a novel highly efficient metal-ion battery. Graphical abstract The results of a theoretical investigation indicated that Al 22 P 22 is a better candidate for a high-performance anode material in metal-ion batteries than Ge 44 is. Calculations also showed that K-ion batteries with nanocage-based anodes would produce higher cell voltages and perform better than the equivalent Li-ion and Na-ion batteries with nanocage-based anodes, and that anodes based on nanocages with an adsorbed F atom would perform better than anodes based on nanocages with an adsorbed Cl or Br atom.

  4. Heat capacity of xenon adsorbed in nanobundle grooves

    International Nuclear Information System (INIS)

    Chishko, K.A.; Sokolova, E.S.

    2016-01-01

    A model of one-dimensional real gas under external transverse force field is applied to interpret the experimentally observed thermodynamical properties of xenon deposited into groves on the surface of carbon nanobundles. This non-ideal gas model with pair interaction is not quite adequate to describe the dense adsorbates (especially at low temperature limit), but it makes possible to take into account easily the particle exchange between 1D adsorbate and 3D atmosphere which becomes an essential factor since intermediate (for xenon - of order 35 K) up to high (approx 100 K) temperatures. In this paper we treat the 1D real gas with only Lennard-Jones pair interaction, but at presence of exact equilibrium conditions on the atom numbers between low-dimensional adsorbate and three-dimensional atmosphere of the experimental cell. The low-temperature branch of the heat capacity has been fitted separately within the elastic atomic chain model to get the best agreement between theory and experiment in as wide as possible region just from zero temperature. The gas approximation is introduced from the temperatures where the chain heat capacity tends definitely to 1D equipartition law. In this case the principal parameters for both models can be chosen in such a way that the heat capacity C(T) of the chain goes continuously into the corresponding curve of the gas approximation. So, it seems to be expected that adequate interpretation for temperature dependences of the atomic adsorbate heat capacity can be obtained through a reasonable combination of 1D gas and phonon approaches. The principal parameters of the gas approximation (such a desorption energy) found from the fitting between theory and experiment for xenon heat capacity are in good agreement with corresponding data known in literature.

  5. Defect-induced conductance oscillations in short atomic chains

    International Nuclear Information System (INIS)

    Wawrzyniak-Adamczewska, M; Kostyrko, T

    2012-01-01

    Electronic transport through a junction made of two gold electrodes connected with a gold chain containing a silver impurity is analyzed with a tight binding model and the density-functional theory. It is shown that the conductance depends in a simple way on the position of the impurity in the chain and the parity of the total number of atoms of the chain. For an odd chain the conductance takes on a higher value when the Ag impurity substitutes an even Au atom in the chain, and a lower one for an odd position of the Ag atom. In the case of an even chain the conductance hardly depends on the position of the Ag atom. This new kind of a defect-induced parity oscillation of the conductance is significantly more prominent than the well-known even-odd effect related to the dependence of the conductance on the parity of number of atoms in perfect chains. (paper)

  6. Density of states of adsorbed sulphur atoms on pristine and defective graphene layers

    International Nuclear Information System (INIS)

    Arellano, J S

    2017-01-01

    The density of states for adsorbed sulphur atom on a graphene layer system is discussed for pristine graphene layer and for mono and divacancies on the graphene layer. To our knowledge this is the first time that an entire adsorption of the sulphur atom is reported at the plane of the carbon atoms, when there is a pair of closer vacancies at the graphene layer. (paper)

  7. Anomalous I-V curve for mono-atomic carbon chains

    International Nuclear Information System (INIS)

    Song Bo; Fang Haiping; Sanvito, Stefano

    2010-01-01

    The electronic transport properties of mono-atomic carbon chains were studied theoretically using a combination of density functional theory and the non-equilibrium Green's functions method. The I-V curves for the chains composed of an even number of atoms and attached to gold electrodes through sulfur exhibit two plateaus where the current becomes bias independent. In contrast, when the number of carbon atoms in the chain is odd, the electric current simply increases monotonically with bias. This peculiar behavior is attributed to dimerization of the chains, directly resulting from their one-dimensional nature. The finding is expected to be helpful in designing molecular devices, such as carbon-chain-based transistors and sensors, for nanoscale and biological applications.

  8. Experimental realization of suspended atomic chains composed of different atomic species

    International Nuclear Information System (INIS)

    Bettini, Jefferson; Ugarte, Daniel; Sato, Fernando; Galvao, Douglas Soares; Coura, Pablo Zimmerman; Dantas, Socrates de Oliveira

    2006-01-01

    We report high resolution transmission electron microscopy (HRTEM) and molecular dynamics results of the first experimental test of suspended atomic chains composed of different atomic species formed from spontaneous stretching of metallic nanowires. (author)

  9. Geometric stability and electronic structure of infinite and finite phosphorus atomic chains

    International Nuclear Information System (INIS)

    Qiao Jingsi; Zhou Linwei; Ji Wei

    2017-01-01

    One-dimensional mono- or few-atomic chains were successfully fabricated in a variety of two-dimensional materials, like graphene, BN, and transition metal dichalcogenides, which exhibit striking transport and mechanical properties. However, atomic chains of black phosphorus (BP), an emerging electronic and optoelectronic material, is yet to be investigated. Here, we comprehensively considered the geometry stability of six categories of infinite BP atomic chains, transitions among them, and their electronic structures. These categories include mono- and dual-atomic linear, armchair, and zigzag chains. Each zigzag chain was found to be the most stable in each category with the same chain width. The mono-atomic zigzag chain was predicted as a Dirac semi-metal. In addition, we proposed prototype structures of suspended and supported finite atomic chains. It was found that the zigzag chain is, again, the most stable form and could be transferred from mono-atomic armchair chains. An orientation dependence was revealed for supported armchair chains that they prefer an angle of roughly 35 ° –37 ° perpendicular to the BP edge, corresponding to the [110] direction of the substrate BP sheet. These results may promote successive research on mono- or few-atomic chains of BP and other two-dimensional materials for unveiling their unexplored physical properties. (special topic)

  10. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface

    International Nuclear Information System (INIS)

    Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2015-01-01

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green’s function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4p z atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices

  11. Chains of benzenes with lithium-atom adsorption: Vibrations and spontaneous symmetry breaking

    Science.gov (United States)

    Ortiz, Yenni P.; Stegmann, Thomas; Klein, Douglas J.; Seligman, Thomas H.

    2017-09-01

    We study effects of different configurations of adsorbates on the vibrational modes as well as symmetries of polyacenes and poly-p-phenylenes focusing on lithium atom adsorption. We found that the spectra of the vibrational modes distinguish the different configurations. For more regular adsorption schemes the lowest states are bending and torsion modes of the skeleton, which are essentially followed by the adsorbate. On poly-p-phenylenes we found that lithium adsorption reduces and often eliminates the torsion between rings thus increasing symmetry. There is spontaneous symmetry breaking in poly-p-phenylenes due to double adsorption of lithium atoms on alternating rings.

  12. DOS cones along atomic chains

    International Nuclear Information System (INIS)

    Kwapiński, Tomasz

    2017-01-01

    The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin–orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears. (paper)

  13. DOS cones along atomic chains

    Science.gov (United States)

    Kwapiński, Tomasz

    2017-03-01

    The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin-orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears.

  14. sup(60)Co hot atom chemistry of tris(acetylacetonato) cobalt(III) adsorbed on silica gel

    International Nuclear Information System (INIS)

    Nishioji, H.; Sakai, Y.; Tominaga, T.

    1985-01-01

    The sup(60)Co hot atom reactions were studied in tris(acetylacetonato)cobalt(III) adsorbed on silica gel surface. sup(57)Fe Moessbauer spectra of tris(acetylacetonato)iron(III) in the corresponding system were also measured in order to examine the state of dispersion of complex molecules on silica gel. The retention formation processes were discussed in terms of the dependence of sup(60)Co retention on the adsorbed amount (concentration) of cobalt(III) complexes. (author)

  15. Self-interacting polymer chains terminally anchored to adsorbing surfaces of three-dimensional fractal lattices

    Science.gov (United States)

    Živić, I.; Elezović-Hadžić, S.; Milošević, S.

    2018-01-01

    We have studied the adsorption problem of self-attracting linear polymers, modeled by self-avoiding walks (SAWs), situated on three-dimensional fractal structures, exemplified by 3d Sierpinski gasket (SG) family of fractals as containers of a poor solvent. Members of SG family are enumerated by an integer b (b ≥ 2), and it is assumed that one side of each SG fractal is an impenetrable adsorbing surface. We calculate the critical exponents γ1 ,γ11, and γs, which are related to the numbers of all possible SAWs with one, both, and no ends anchored to the adsorbing boundary, respectively. By applying the exact renormalization group (RG) method (for the first three members of the SG fractal family, b = 2 , 3, and 4), we have obtained specific values of these exponents, for θ-chain and globular polymer phase. We discuss their mutual relations and relations with corresponding values pertinent to extended polymer chain phase.

  16. Anomalous conductance oscillations and half-metallicity in atomic Ag-O chains

    DEFF Research Database (Denmark)

    Strange, Mikkel; Thygesen, Kristian Sommer; Sethna, James P

    2008-01-01

    . The conductances of the chains exhibit weak even-odd oscillations around an anomalously low value of 0.1G(0) (G(0) = 2e(2)/h) which coincide with the averaged experimental conductance in the long chain limit. The unusual conductance properties are explained in terms of a resonating-chain model, which takes...... the reflection probability and phase shift of a single bulk-chain interface as the only input. The model also explains the conductance oscillations for other metallic chains.......Using spin density functional theory, we study the electronic and magnetic properties of atomically thin, suspended chains containing silver and oxygen atoms in an alternating sequence. Chains longer than 4 atoms develop a half-metallic ground state implying fully spin-polarized charge carriers...

  17. Formation and structural phase transition in Co atomic chains on a Cu(775) surface

    International Nuclear Information System (INIS)

    Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.; Klavsyuk, A. L.

    2017-01-01

    The formation of Co atomic chains on a Cu(775) surface is investigated by the kinetic Monte Carlo method. It is found that the length of Co atomic chains formed as a result of self-organization during epitaxial growth is a random quantity and its mean value depends on the parameters of the experiment. The existence of two structural phases in atomic chains is detected using the density functional theory. In the first phase, the separations between an atom and its two nearest neighbors in a chain are 0.230 and 0.280 nm. In the second phase, an atomic chain has identical atomic spacings of 0.255 nm. It is shown that the temperature of the structural phase transition depends on the length of the atomic chain.

  18. Formation and structural phase transition in Co atomic chains on a Cu(775) surface

    Energy Technology Data Exchange (ETDEWEB)

    Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.; Klavsyuk, A. L., E-mail: klavsyuk@physics.msu.ru [Moscow State University (Russian Federation)

    2017-01-15

    The formation of Co atomic chains on a Cu(775) surface is investigated by the kinetic Monte Carlo method. It is found that the length of Co atomic chains formed as a result of self-organization during epitaxial growth is a random quantity and its mean value depends on the parameters of the experiment. The existence of two structural phases in atomic chains is detected using the density functional theory. In the first phase, the separations between an atom and its two nearest neighbors in a chain are 0.230 and 0.280 nm. In the second phase, an atomic chain has identical atomic spacings of 0.255 nm. It is shown that the temperature of the structural phase transition depends on the length of the atomic chain.

  19. The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains

    International Nuclear Information System (INIS)

    An, Yipeng; Zhang, Mengjun; Wang, Tianxing; Jiao, Zhaoyong; Wu, Dapeng; Fu, Zhaoming; Wang, Kun

    2016-01-01

    Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μ B for B n N n−1 , 2 μ B for B n N n , and 3 μ B for B n N n+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short B n N n+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long B n N n+1 chains under high bias voltages and other types of BN atomic chains (B n N n−1 and B n N n ). The proposed short B n N n+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.

  20. Electronic Conduction through Atomic Chains, Quantum Well and Quantum Wire

    International Nuclear Information System (INIS)

    Sharma, A. C.

    2011-01-01

    Charge transport is dynamically and strongly linked with atomic structure, in nanostructures. We report our ab-initio calculations on electronic transport through atomic chains and the model calculations on electron-electron and electron-phonon scattering rates in presence of random impurity potential in a quantum well and in a quantum wire. We computed synthesis and ballistic transport through; (a) C and Si based atomic chains attached to metallic electrodes, (b) armchair (AC), zigzag (ZZ), mixed, rotated-AC and rotated-ZZ geometries of small molecules made of 2S, 6C and 4H atoms attaching to metallic electrodes, and (c) carbon atomic chain attached to graphene electrodes. Computed results show that synthesis of various atomic chains are practically possible and their transmission coefficients are nonzero for a wide energy range. The ab-initio calculations on electronic transport have been performed with the use of Landauer-type scattering formalism formulated in terms of Grben's functions in combination with ground-state DFT. The electron-electron and electron-phonon scattering rates have been calculated as function of excitation energy both at zero and finite temperatures for disordered 2D and 1D systems. Our model calculations suggest that electron scattering rates in a disordered system are mainly governed by effective dimensionality of a system, carrier concentration and dynamical screening effects.

  1. Energetics of a Li Atom adsorbed on B/N doped graphene with monovacancy

    International Nuclear Information System (INIS)

    Rani, Babita; Jindal, V.K.; Dharamvir, Keya

    2016-01-01

    We use density functional theory (DFT) to study the adsorption properties and diffusion of Li atom across B/N-pyridinic graphene. Regardless of the dopant type, B atoms of B-pyridinic graphene lose electron density. On the other hand, N atoms (p-type dopants) have tendency to gain electron density in N-pyridinic graphene. Higher chemical reactivity and electronic conductivity of B/N-pyridinic graphene are responsible for stronger binding of Li with the substrates as compared to pristine graphene. The binding energy of Li with B/N-pyridinic graphene exceeds the cohesive energy of bulk Li, making it energetically unfavourable for Li to form clusters on these substrates. Li atom gets better adsorbed on N-pyridinic graphene due to an additional p-p hybridization of the orbitals while Li on B-pyridinic prefers the ionic bonding. Also, significant distortion of N-pyridinic graphene upon Li adsorption is a consequence of the change in bonding mechanism between Li atom and the substrate. Our results show that bonding character and hence binding energies between Li and graphene can be tuned with the help of B/N doping of monovacancy defects. Further, the sites for most stable adsorption are different for the two types of doped and defective graphene, leading to greater Li uptake capacity of B-pyridinic graphene near the defect. In addition, B-pyridinic graphene offering lower diffusion barrier, ensures better Li kinetics. Thus, B-pyridinic graphene presents itself as a better anode material for LIBs as compared to N-pyridinic graphene. - Graphical abstract: Adsorption and diffusion of Li atom across the B/N doped monovacancy graphene is studied using ab-initio DFT calculations. Our results show that bonding mechanism and binding of Li with graphene can be tuned with the help of N/B doping of defects. Also, B-pyridinic graphene presents itself as a better anode material for lithium ion batteries as compared to N-pyridinic graphene. Display Omitted - Highlights: • Density

  2. Energetics of a Li Atom adsorbed on B/N doped graphene with monovacancy

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Babita, E-mail: babitabaghla15@gmail.com [Department of Physics, Panjab University, Chandigarh 160014 (India); Department of Physics, Punjabi University, Patiala 147002 (India); Jindal, V.K. [Department of Physics, Panjab University, Chandigarh 160014 (India); Dharamvir, Keya, E-mail: keya@pu.ac.in [Department of Physics, Panjab University, Chandigarh 160014 (India)

    2016-08-15

    We use density functional theory (DFT) to study the adsorption properties and diffusion of Li atom across B/N-pyridinic graphene. Regardless of the dopant type, B atoms of B-pyridinic graphene lose electron density. On the other hand, N atoms (p-type dopants) have tendency to gain electron density in N-pyridinic graphene. Higher chemical reactivity and electronic conductivity of B/N-pyridinic graphene are responsible for stronger binding of Li with the substrates as compared to pristine graphene. The binding energy of Li with B/N-pyridinic graphene exceeds the cohesive energy of bulk Li, making it energetically unfavourable for Li to form clusters on these substrates. Li atom gets better adsorbed on N-pyridinic graphene due to an additional p-p hybridization of the orbitals while Li on B-pyridinic prefers the ionic bonding. Also, significant distortion of N-pyridinic graphene upon Li adsorption is a consequence of the change in bonding mechanism between Li atom and the substrate. Our results show that bonding character and hence binding energies between Li and graphene can be tuned with the help of B/N doping of monovacancy defects. Further, the sites for most stable adsorption are different for the two types of doped and defective graphene, leading to greater Li uptake capacity of B-pyridinic graphene near the defect. In addition, B-pyridinic graphene offering lower diffusion barrier, ensures better Li kinetics. Thus, B-pyridinic graphene presents itself as a better anode material for LIBs as compared to N-pyridinic graphene. - Graphical abstract: Adsorption and diffusion of Li atom across the B/N doped monovacancy graphene is studied using ab-initio DFT calculations. Our results show that bonding mechanism and binding of Li with graphene can be tuned with the help of N/B doping of defects. Also, B-pyridinic graphene presents itself as a better anode material for lithium ion batteries as compared to N-pyridinic graphene. Display Omitted - Highlights: • Density

  3. Chains of benzenes with lithium-atom adsorption: Vibrations and spontaneous symmetry breaking

    OpenAIRE

    Ortiz, Yenni P.; Stegmann, Thomas; Klein, Douglas J.; Seligman, Thomas H.

    2016-01-01

    We study effects of different configurations of adsorbates on the vibrational modes as well as symmetries of polyacenes and poly-p-phenylenes focusing on lithium atom adsorption. We found that the spectra of the vibrational modes distinguish the different configurations. For more regular adsorption schemes the lowest states are bending and torsion modes of the skeleton, which are essentially followed by the adsorbate. On poly-p-phenylenes we found that lithium adsorption reduces and often eli...

  4. Atomic carbon chains as spin-transmitters: An ab initio transport study

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka

    2010-01-01

    An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi......An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin...

  5. Miscibility and interaction between 1-alkanol and short-chain phosphocholine in the adsorbed film and micelles.

    Science.gov (United States)

    Takajo, Yuichi; Matsuki, Hitoshi; Kaneshina, Shoji; Aratono, Makoto; Yamanaka, Michio

    2007-09-01

    The miscibility and interaction of 1-hexanol (C6OH) and 1-heptanol (C7OH) with 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) in the adsorbed films and micelles were investigated by measuring the surface tension of aqueous C6OH-DHPC and aqueous C7OH-DHPC solutions. The surface density, the mean molecular area, the composition of the adsorbed film, and the excess Gibbs energy of adsorption g(H,E), were estimated. Further, the critical micelle concentration of the mixtures was determined from the surface tension versus molality curves; the micellar composition was calculated. The miscibility of the 1-alkanols and DHPC molecules in the adsorbed film and micelles was examined using the phase diagram of adsorption (PDA) and that of micellization (PDM). The PDA and the composition dependence of g(H,E) indicated the non-ideal mixing of the 1-alkanols and DHPC molecules due to the attractive interaction between the molecules in the adsorbed film, while the PDM indicated that the 1-alkanol molecules were not incorporated in the micelles within DHPC rich region. The dependence of the mean molecular area of the mixtures on the surface composition suggested that the packing property of the adsorbed film depends on the chain length of 1-alkanol: C6OH expands the DHPC adsorbed film more than C7OH.

  6. Electron-stimulated desorption of cesium atoms from cesium layers adsorbed on gold-covered tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ageev, V N; Kuznetsov, Yu A; Potekhina, N D, E-mail: kuznets@ms.ioffe.r [A F Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021, St Petersburg (Russian Federation)

    2010-03-03

    The electron-stimulated desorption (ESD) yields and energy distributions (ED) for neutral cesium atoms have been measured from cesium layers adsorbed on a gold-covered tungsten surface as a function of electron energy, gold film thickness, cesium coverage and substrate temperature. The measurements have been carried out using a time-of-flight method and surface ionization detector in the temperature range 160-300 K. A measurable ESD yield for Cs atoms is observed only after deposition of more than one monolayer of gold and cesium on a tungsten surface at a temperature T = 300 K, which is accompanied by the formation of a CsAu semiconductor film covered with a cesium atom monolayer. The Cs atom ESD yield as a function of incident electron energy has a resonant character and consists of two peaks, the appearance of which depends on both electron energy and substrate temperature. The first peak has an appearance threshold at an electron energy of 57 eV and a substrate temperature of 300 K that is due to Au 5p{sub 3/2} core level excitation in the substrate. The second peak appears at an electron energy of 24 eV and a substrate temperature of 160 K. It is associated with a Cs 5s core level excitation in the Cs adsorbed layer. The Au 5p{sub 3/2} level excitation corresponds to a single broad peak in the ED with a maximum at a kinetic energy of 0.45 eV at a substrate temperature T = 300 K, which is split into two peaks with maxima at kinetic energies of 0.36 and 0.45 eV at a substrate temperature of 160 K, associated with different Cs atom ESD channels. The Cs 5s level excitation leads to an ED for Cs atoms with a maximum at a kinetic energy of approx 0.57 eV which exists only at T < 240 K and low Cs concentrations. The mechanisms for all the Cs atom ESD channels are proposed and compared with the Na atom ESD channels in the Na-Au-W system.

  7. Friction and diffusion dynamics of adsorbates at surfaces

    NARCIS (Netherlands)

    Fusco, C.

    2005-01-01

    A theoretical study of the motion of adsorbates (e. g. atoms, molecules or clusters) on solid surfaces is presented, with a focus on surface diffusion and atomic-scale friction. These two phenomena are inextricably linked, because when an atomic or molecular adsorbate diffuses, or is pulled, it

  8. Effective embedded-atom potential for metallic adsorbates on crystalline surfaces

    International Nuclear Information System (INIS)

    Förster, G D; Magnin, Y; Rabilloud, F; Calvo, F

    2014-01-01

    Based on the embedded-atom method (EAM), an analytical effective potential is developed to model the interaction of a metallic adsorbate on a perfect crystalline substrate, which is also metallic. The many-body character of the original EAM potential is preserved in the adsorbate energy and in the alteration of the substrate energy due to the presence of the adsorbate. A mean-field-type version neglecting corrugation of the substrate is first derived based on rigorous integration of individual monolayers, followed by an approximate form for the perturbation of the substrate energy. Lateral corrugation is subsequently included by additional phenomenological terms respecting the symmetry of the substrate, again preserving the many-body nature of the original potential. The effective model contains four parameters to describe uncorrugated substrates and eight extra parameters to describe every order of the Fourier lateral expansion. These parameters were fitted to reproduce the adsorption energy of a sample of random configurations of realistic 2D and 3D clusters deposited on the (1 1 1) fcc surface, for metals for which popular EAM models have been parametrized. As a simple application, the local relaxation of pre-formed icosahedral or truncated octahedral clusters soft-landed and exposing (1 1 1) faces in epitaxy to the substrate has been simulated at 0 and 300 K. The deformation of small clusters to wet the substrate is correctly captured by the effective model. This agreement with the exact potential suggests that the present model should be useful for treating metallic environments in large-scale surface studies, notably in structural optimization or as a template for more general models parametrized from ab initio data. (paper)

  9. The potentials and challenges of electron microscopy in the study of atomic chains

    Science.gov (United States)

    Banhart, Florian; Torre, Alessandro La; Romdhane, Ferdaous Ben; Cretu, Ovidiu

    2017-04-01

    The article is a brief review on the potential of transmission electron microscopy (TEM) in the investigation of atom chains which are the paradigm of a strictly one-dimensional material. After the progress of TEM in the study of new two-dimensional materials, microscopy of free-standing one-dimensional structures is a new challenge with its inherent potentials and difficulties. In-situ experiments in the TEM allowed, for the first time, to generate isolated atomic chains consisting of metals, carbon or boron nitride. Besides having delivered a solid proof for the existence of atomic chains, in-situ TEM studies also enabled us to measure the electrical properties of these fundamental linear structures. While ballistic quantum conductivity is observed in chains of metal atoms, electrical transport in chains of sp1-hybridized carbon is limited by resonant states and reflections at the contacts. Although substantial progress has been made in recent TEM studies of atom chains, fundamental questions have to be answered, concerning the structural stability of the chains, bonding states at the contacts, and the suitability for applications in nanotechnology. Contribution to the topical issue "The 16th European Microscopy Congress (EMC 2016)", edited by Richard Brydson and Pascale Bayle-Guillemaud

  10. Clarification of the mechanism of sulfur trioxide electrolysis. Evaluation of SO3 and O atom adsorbed on Pt surface

    International Nuclear Information System (INIS)

    Suzuki, Chikashi; Nakagiri, Toshio

    2008-01-01

    We developed a hybrid thermo-chemical process, which included a SO 3 electrolysis process utilizing the heat supplied by a fast breeder reactor (FBR), as a new hydrogen production process. To clarify the mechanism of SO 3 electrolysis, we evaluated the electronic states of SO 3 and O atom adsorbed on the Pt (111) surface using first-principles calculations with a slab model. Moreover, we evaluated the chemical bonding states of SO 3 and adsorbed O using molecular orbital calculation on the basis of the calculations using a slab model. We found that there were two stable adsorbed SO 3 configurations on the Pt surface. From the molecular orbital calculation, it was found that the S-O bond became weak by SO 3 absorption, and it was conjectured that SO 3 dissociation proceeded through the intermediate state of adsorbed SO 2 and adsorbed O on the Pt surface. Moreover, we derived the O coverage considering the adsorbed SO 2 and evaluated the influence of SO 3 adsorption energy on the O coverage. (author)

  11. A Solid-State Deuterium NMR and SFG Study of the Side Chain Dynamics of Peptides Adsorbed onto Surfaces

    Science.gov (United States)

    Breen, Nicholas F.; Weidner, Tobias; Li, Kun; Castner, David G.; Drobny, Gary P.

    2011-01-01

    The artificial amphiphilic peptide LKα14 adopts a helical structure at interfaces, with opposite orientation of its leucine (L, hydrophobic) and lysine (K, hydrophilic) side chains. When adsorbed onto surfaces, different residue side chains necessarily have different proximities to the surface, depending on both their position in the helix and the composition of the surface itself. Deuterating the individual leucine residues (isopropyl-d7) permits the use of solid-state deuterium NMR as a site-specific probe of side chain dynamics. In conjunction with SFG as a probe of the peptide binding face, we demonstrate that the mobility of specific leucine side chains at the interface is quantifiable in terms of their surface proximity. PMID:19764755

  12. Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors

    Science.gov (United States)

    Thorwart, Michael

    2018-01-01

    Realizing Majorana bound states (MBS) in condensed matter systems is a key challenge on the way toward topological quantum computing. As a promising platform, one-dimensional magnetic chains on conventional superconductors were theoretically predicted to host MBS at the chain ends. We demonstrate a novel approach to design of model-type atomic-scale systems for studying MBS using single-atom manipulation techniques. Our artificially constructed atomic Fe chains on a Re surface exhibit spin spiral states and a remarkable enhancement of the local density of states at zero energy being strongly localized at the chain ends. Moreover, the zero-energy modes at the chain ends are shown to emerge and become stabilized with increasing chain length. Tight-binding model calculations based on parameters obtained from ab initio calculations corroborate that the system resides in the topological phase. Our work opens new pathways to design MBS in atomic-scale hybrid structures as a basis for fault-tolerant topological quantum computing. PMID:29756034

  13. Electronic and transport properties of a carbon-atom chain in the core of semiconducting carbon nanotubes

    International Nuclear Information System (INIS)

    Chen Jiangwei; Yang Linfeng; Yang Huatong; Dong Jinming

    2003-01-01

    Using the tight-binding calculations, we have studied electronic and transport properties of the semiconducting single-walled carbon nanotubes (SSWNTs) doped by a chain of carbon-atoms, which can be well controlled by density of the encapsulated carbon atoms. When it is lower, weak coupling between the chain atoms and the tube produces flat bands near the Fermi level, which means a great possibility of superconductivity and ferromagnetism for the combined system. The weak coupling also leads to a significant conductance at the Fermi level, which is contributed by both of the tube and the encapsulated carbon-atom chain. Increasing density of the chain carbon atoms, the flat bands near the Fermi level disappear, and the current may be carried only by the carbon-atom chain, thus making the system become an ideal one-dimensional quantum wire with its conducting chain enclosed by a SWNT insulator

  14. Comment on "Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers"

    Science.gov (United States)

    Bonfanti, Matteo; Martinazzo, Rocco

    2018-03-01

    It is shown that the theoretical prediction of a transient magnetization in bilayer and multilayer graphene (M. Moaied et al., Phys. Rev. B 91, 155419 (2015), 10.1103/PhysRevB.91.155419) relies on an incorrect physical scenario for adsorption, namely, one in which H atoms adsorb barrierless on graphitic substrates and form a random adsorption pattern of monomers. Rather, according to experimental evidence, H atom sticking is an activated process, and adsorption is under kinetic control, largely ruled by a preferential sticking mechanism that leads to stable, nonmagnetic dimers at all but the smallest coverages (Theory and experiments are reconciled by reconsidering the hydrogen atom adsorption energetics with the help of van der Waals-inclusive density functional calculations that properly account for the basis set superposition error. It is shown that today van der Waals-density functional theory predicts a shallow physisorption well that nicely agrees with available experimental data and suggests that the hydrogen atom adsorption barrier in graphene is 180 meV high, within ˜5 meV accuracy.

  15. Neutralization of Rubidium Adsorbate Electric Fields by Electron Attachment

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, J. A. [Univ. of Oklahoma, Norman, OK (United States); Kim, E. [Univ. of Nevada, Las Vegas, NV (United States); Rittenhouse, S. T. [Western Washington Univ., Bellingham, WA (United States); US Naval Academy, Annapolis, MD (United States); Weck, Philippe F [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sadeghpour, H. R. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Shaffer, J. P. [Univ. of Oklahoma, Norman, OK (United States)

    2015-10-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric elds resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the Rb induces a negative electron affnity (NEA) on the quartz surface. The NEA surface allows for low energy electrons to bind to the surface and cancel the electric eld from the Rb adsorbates. Our results have implications for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface.

  16. Ion beam focusing by the atomic chains of a crystal lattice

    International Nuclear Information System (INIS)

    Shulga, V.I.

    1975-01-01

    A study is made of the focusing of a parallel ion beam by a pair of close packed atomic chains of a crystal. The focal length of this system has been calculated to the approximation of continuous potential of chain in the general form and also for a number of specific potentials of ion-atom interactions. Ar ion beam focusing by a Cu chain pair is discusssed in detail. For this case, the focal length has been calculated as a function of ion energy using the method of computer simulation of ion trajectories in the chain field. The calculations were made on the basis of the Born-Mayer potential with various constants. A pronounced dependence of focal length on the constant in this potential has been found. (author)

  17. First principles studies of the electronic properties and catalytic activity of single-walled carbon nanotube doped with Pt clusters and chains

    International Nuclear Information System (INIS)

    Hayes, Kayla E.; Lee, Hee-Seung

    2012-01-01

    Highlights: ► Electronic and magnetic properties of (5, 5)-SWNT doped with Pt clusters and chains. ► Pt-doping can change metallic (5, 5)-SWNT to semiconducting CNT. ► Oxygen adsorption on Pt-doped (5, 5)-SWNT is barrierless process. ► Pt-doping reduces the activation barrier of oxygen dissociation reaction. ► Adsorbed oxygen has 2 O 2 - – character. - Abstract: We report the results of density functional theory calculations on the electronic structures, geometrical parameters, and magnetic properties of a wide variety of Pt clusters/chains adsorbed on metallic (5,5) single-walled carbon nanotube (SWNT). It was found that the electronic band structures of Pt/CNT systems are very sensitive to the small changes in the geometries of Pt clusters and chains. In some cases, metallic (5, 5)-SWNT becomes a small-gap semiconducting nanotube with adsorbed Pt clusters and chains. We also investigated the dissociation of molecular oxygen on the (5, 5)-SWNT doped with a single Pt atom via the nudged elastic band (NEB) method. The NEB results showed that the activation barrier is lowered even with a single Pt atom compared to that of pristine SWNT. It was found that the electronic structure of molecular oxygen adsorbed on Pt-doped CNT resembles that of 2 O 2 - , which should facilitate the dissociation process.

  18. A study of atom zigzag chains on the surface of tungsten

    International Nuclear Information System (INIS)

    Audiffren, M.; Traimond, P.; Bardon, J.; Drechsler, M.

    1978-01-01

    Nishigaki and Nakamura have observed zigzag chains on the central (011) face of tungsten after field evaporation at T > 140 K. In this paper, a study of the formation, disappearance and structure of such chains is described. Tungsten tips of small radii down to 60 A were used. Chains of 3 to 9 spots, that are clearly visible, are found even at 90 K. Four different structure models of the zigzag chains are discussed, including the multibranch model proposed by the japanese authors. The interpretation of the experimental results shows fairly clearly that the real zigzag chain structure is a special non-dense structure. It must be formed by a local displacement of the tungsten adatoms in the field. Without the field, a zigzag chain is transformed into a two-dimensional cluster of the nearest neighbour atom by a small increase in temperature. If the field is reintroduced, the cluster can revert to the initial zigzag structure. The zigzag structure is interpreted as being caused by forces of repulsion between the atom dipoles. (Auth.)

  19. Atomic force microscopy measurements of topography and friction on dotriacontane films adsorbed on a SiO2 surface

    DEFF Research Database (Denmark)

    Trogisch, S.; Simpson, M.J.; Taub, H.

    2005-01-01

    We report comprehensive atomic force microscopy (AFM) measurements at room temperature of the nanoscale topography and lateral friction on the surface of thin solid films of an intermediate-length normal alkane, dotriacontane (n-C32H66), adsorbed onto a SiO2 surface. Our topographic and frictional...

  20. A theoretical study of adsorbate-adsorbate interactions on Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    the barrier for dissociation, whereas S will increase it. The interaction with alkali atoms is mainly of an electrostatic nature. The poisoning by S is due to two kinds of repulsive interactions: a Pauli repulsion and a reduced covalent bond strength between the adsorbate and the surface d-electrons. In order...... to investigate these different interactions in more detail, we look at three different species (N atoms, and terminally bonded N(2) and CO) and use them as probes to study their interaction with two modifier atoms (Na and S). The two modifier atoms have very different properties, which allows us to decouple...

  1. Potentials and scattering cross sections for collisions of He atoms with adsorbed CO

    International Nuclear Information System (INIS)

    Liu, W.K.; Gumhalter, B.

    1986-05-01

    Ab initio calculations of the total scattering cross section for the collision system He → CO/Pt(111) within the renormalized distorted wave Born approximation are reported. The interaction potential for this atom-adsorbate system consists of the usual two-body gas phase-like potential as well as two additional substrate mediated van de Waals contributions, all with similar long range behaviour. Comparison of the calculated cross sections for various incident velocities and angles with available experimental data is made without using any adjustable parameters to fit the data, and the importance of including the substrate-mediated forces is emphasized. (author)

  2. Majorana spin in magnetic atomic chain systems

    Science.gov (United States)

    Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei

    2018-03-01

    In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.

  3. Chain reaction. History of the atomic bomb

    International Nuclear Information System (INIS)

    Mania, Hubert

    2010-01-01

    Henri becquerel tracked down in 1896 a strange radiation, which was called radioactivity by Marie Curie. In the following centuries German scientists Max Planck, Albert Einstein and Werner Heisenberg presented fundamental contributions to understand processes in the atomic nucleus. At Goettingen, center of the international nuclear physics community, the American student J. Robert Oppenheimer admit to this physical research. In the beginning of 1939 the message of Otto Hahns' nuclear fission electrified researchers. The first step, unleashing atomic energy, was done. A half year later the Second World War begun. And suddenly being friend with and busily communicating physicians were devided into hostile power blocs as bearers of official secrets. The author tells in this exciting book the story of the first atomic bomb as a chain reaction of ideas, discoveries and visions, of friendships, jealousy and intrigues of scientists, adventurers and genius. (orig./GL)

  4. An important atomic process in the CVD growth of graphene: Sinking and up-floating of carbon atom on copper surface

    International Nuclear Information System (INIS)

    Li, Yingfeng; Li, Meicheng; Gu, TianSheng; Bai, Fan; Yu, Yue; Trevor, Mwenya; Yu, Yangxin

    2013-01-01

    By density functional theory (DFT) calculations, the early stages of the growth of graphene on copper (1 1 1) surface are investigated. At the very first time of graphene growth, the carbon atom sinks into subsurface. As more carbon atoms are adsorbed nearby the site, the sunken carbon atom will spontaneously form a dimer with one of the newly adsorbed carbon atoms, and the formed dimer will up-float on the top of the surface. We emphasize the role of the co-operative relaxation of the co-adsorbed carbon atoms in facilitating the sinking and up-floating of carbon atoms. In detail: when two carbon atoms are co-adsorbed, their co-operative relaxation will result in different carbon–copper interactions for the co-adsorbed carbon atoms. This difference facilitates the sinking of a single carbon atom into the subsurface. As a third carbon atom is co-adsorbed nearby, it draws the sunken carbon atom on top of the surface, forming a dimer. Co-operative relaxations of the surface involving all adsorbed carbon atoms and their copper neighbors facilitate these sinking and up-floating processes. This investigation is helpful for the deeper understanding of graphene synthesis and the choosing of optimal carbon sources or process.

  5. Negative Differential Resistance in Atomic Carbon Chain-Graphene Junctions

    International Nuclear Information System (INIS)

    An Liping; Liu Chunmei; Liu Nianhua

    2012-01-01

    We investigate the electronic transport properties of atomic carbon chain-graphene junctions by using the density-functional theory combining with the non-equilibrium Green's functions. The results show that the transport properties are sensitively dependent on the contact geometry of carbon chain. From the calculated I-V curve we find negative differential resistance (NDR) in the two types of junctions. The NDR can be considered as a result of molecular orbitals moving related to the bias window. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. A simple analytical model for electronic conductance in a one dimensional atomic chain across a defect

    International Nuclear Information System (INIS)

    Khater, Antoine; Szczesniak, Dominik

    2011-01-01

    An analytical model is presented for the electronic conductance in a one dimensional atomic chain across an isolated defect. The model system consists of two semi infinite lead atomic chains with the defect atom making the junction between the two leads. The calculation is based on a linear combination of atomic orbitals in the tight-binding approximation, with a single atomic one s-like orbital chosen in the present case. The matching method is used to derive analytical expressions for the scattering cross sections for the reflection and transmission processes across the defect, in the Landauer-Buttiker representation. These analytical results verify the known limits for an infinite atomic chain with no defects. The model can be applied numerically for one dimensional atomic systems supported by appropriate templates. It is also of interest since it would help establish efficient procedures for ensemble averages over a field of impurity configurations in real physical systems.

  7. First-principles description of atomic gold chains on Ge(001)

    KAUST Repository

    Ló pez-Moreno, S.; Muñ oz, A.; Romero, A. H.; Schwingenschlö gl, Udo

    2010-01-01

    We have performed density-functional theory calculations, including the spin-orbit correction, to investigate atomic gold chains on Ge(001). A set of 26 possible configurations of the Au/Ge(001) system with c(4×2) and c(8×2) symmetries is studied. Our data show that the c(4×2) order results in the lowest energy, which is not in direct agreement with recent experiments. Using total-energy calculations, we are able to explain these differences. We address the electronic band structure and apply the Tersoff-Hamann approach to correlate our data to scanning-tunneling microscopy (STM). We obtain two highly competitive structures of the atomic Au chains for which we report simulated STM images in order to clarify the composition of the experimental Au/Ge(001) surface.

  8. First-principles description of atomic gold chains on Ge(001)

    KAUST Repository

    López-Moreno, S.

    2010-01-25

    We have performed density-functional theory calculations, including the spin-orbit correction, to investigate atomic gold chains on Ge(001). A set of 26 possible configurations of the Au/Ge(001) system with c(4×2) and c(8×2) symmetries is studied. Our data show that the c(4×2) order results in the lowest energy, which is not in direct agreement with recent experiments. Using total-energy calculations, we are able to explain these differences. We address the electronic band structure and apply the Tersoff-Hamann approach to correlate our data to scanning-tunneling microscopy (STM). We obtain two highly competitive structures of the atomic Au chains for which we report simulated STM images in order to clarify the composition of the experimental Au/Ge(001) surface.

  9. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    Science.gov (United States)

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  10. Dynamical Negative Differential Resistance in Antiferromagnetically Coupled Few-Atom Spin Chains

    Science.gov (United States)

    Rolf-Pissarczyk, Steffen; Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; McMurtrie, Gregory; Loth, Sebastian

    2017-11-01

    We present the appearance of negative differential resistance (NDR) in spin-dependent electron transport through a few-atom spin chain. A chain of three antiferromagnetically coupled Fe atoms (Fe trimer) was positioned on a Cu2 N /Cu (100 ) surface and contacted with the spin-polarized tip of a scanning tunneling microscope, thus coupling the Fe trimer to one nonmagnetic and one magnetic lead. Pronounced NDR appears at the low bias of 7 mV, where inelastic electron tunneling dynamically locks the atomic spin in a long-lived excited state. This causes a rapid increase of the magnetoresistance between the spin-polarized tip and Fe trimer and quenches elastic tunneling. By varying the coupling strength between the tip and Fe trimer, we find that in this transport regime the dynamic locking of the Fe trimer competes with magnetic exchange interaction, which statically forces the Fe trimer into its high-magnetoresistance state and removes the NDR.

  11. Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains

    International Nuclear Information System (INIS)

    Derevianko, Andrei; Porsev, Sergey G.

    2002-01-01

    In light of new data on neutron distributions from experiments with antiprotonic atoms [Trzcinska et al., Phys. Rev. Lett. 87, 082501 (2001)], we reexamine the role of nuclear-structure uncertainties in the interpretation of measurements of parity violation in atoms using chains of isotopes of the same element. With these new nuclear data, we find an improvement in the sensitivity of isotopic chain measurements to 'new physics' beyond the standard model. We compare possible constraints on 'new physics' with the most accurate to date single-isotope probe of parity violation in the Cs atom. We conclude that presently isotopic chain experiments employing atoms with nuclear charges Z < or approx. 50 may result in more accurate tests of the weak interaction

  12. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains

    OpenAIRE

    Sabater, Carlos; Untiedt, Carlos; van Ruitenbeek, Jan M

    2015-01-01

    This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high volta...

  13. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    Energy Technology Data Exchange (ETDEWEB)

    López-Moreno, S., E-mail: sinlopez@uacam.mx [Centro de Investigación en Corrosión, Universidad Autónoma de Campeche, Av. Héroe de Nacozari 480, Campeche, Campeche 24029 (Mexico); Romero, A. H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-04-21

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O{sub 2} molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  14. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    Science.gov (United States)

    López-Moreno, S.; Romero, A. H.

    2015-04-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  15. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    International Nuclear Information System (INIS)

    López-Moreno, S.; Romero, A. H.

    2015-01-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O 2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered

  16. Controlling stray electric fields on an atom chip for experiments on Rydberg atoms

    Science.gov (United States)

    Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.

    2018-02-01

    Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.

  17. Electronic transport in large systems through a QUAMBO-NEGF approach: Application to atomic carbon chains

    International Nuclear Information System (INIS)

    Fang, X.W.; Zhang, G.P.; Yao, Y.X.; Wang, C.Z.; Ding, Z.J.; Ho, K.M.

    2011-01-01

    The conductance of single-atom carbon chain (SACC) between two zigzag graphene nanoribbons (GNR) is studied by an efficient scheme utilizing tight-binding (TB) parameters generated via quasi-atomic minimal basis set orbitals (QUAMBOs) and non-equilibrium Green's function (NEGF). Large systems (SACC contains more than 50 atoms) are investigated and the electronic transport properties are found to correlate with SACC's parity. The SACCs provide a stable off or on state in broad energy region (0.1-1 eV) around Fermi energy. The off state is not sensitive to the length of SACC while the corresponding energy region decreases with the increase of the width of GNR. -- Highlights: → Graphene has many superior electronic properties. → First-principles calculation are accurate but limited to system size. → QUAMBOs construct tight-binding parameters with spatial localization, and then use divide-and-conquer method. → SACC (single carbon atom chain): structure and transport show even-odd parity, and long chains are studied.

  18. Density functional theory calculations on alkali and the alkaline Ca atoms adsorbed on graphene monolayers

    International Nuclear Information System (INIS)

    Dimakis, Nicholas; Valdez, Danielle; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade; Vargas, Sarah; Saenz, Justin

    2017-01-01

    Highlights: • Li, K, Na, and Ca graphene interaction is primarily ionic, whereas small covalent interactions also co-exist in these cases. • Van der Waals interactions are revealed by comparing adatom-graphene geometries between 1.4% and 3% adatom coverages and using Grimme corrections. • The Li, K, Na graphene interactions are accurately described by both PBE0 and PBE functionals. For Ca/graphene, the PBE0 functional should not be used. • For Li, K, and Na adsorbed on graphene, adatom-graphene interaction weakens as the adatom coverages increases. • The Ca-graphene interaction strength, which is stronger at high coverages, is opposite to increases in the Ca–4s orbital population. - Abstract: The adsorption of the alkali Li, K, and Na and the alkaline Ca on graphene is studied using periodic density functional theory (DFT) under various adatom coverages. The charge transfers between the adatom and the graphene sheet and the almost unchanged densities-of-states spectra in the energy region near and below the Fermi level support an ionic bond pattern between the adatom and the graphene atoms. However, the presence of small orbital overlap between the metal and the nearest graphene atom is indicative of small covalent bonding. Van der Waals interactions are examined through a semiempirical correction in the DFT functional and by comparing adatom-graphene calculations between 3% and 1.4% adatom coverages. Optimized adatom-graphene geometries identify the preferred adatom sites, whereas the adatom-graphene strength is correlated with the adsorption energy and the adatom distance from the graphene plane. Calculated electronic properties and structural parameters are obtained using hybrid functionals and a generalized gradient approximation functional paired with basis sets of various sizes. We found that due to long range electrostatic forces between the alkali/alkaline adatoms and the graphene monolayer, the adatom-graphene structural and electronic

  19. Density functional theory calculations on alkali and the alkaline Ca atoms adsorbed on graphene monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, Nicholas, E-mail: nicholas.dimakis@utrgv.edu [Department of Physics, University of Texas Rio Grande Valley, Edinburg, TX (United States); Valdez, Danielle; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade [Department of Physics, University of Texas Rio Grande Valley, Edinburg, TX (United States); Vargas, Sarah; Saenz, Justin [Robert Vela High School, Edinburg, TX (United States)

    2017-08-15

    Highlights: • Li, K, Na, and Ca graphene interaction is primarily ionic, whereas small covalent interactions also co-exist in these cases. • Van der Waals interactions are revealed by comparing adatom-graphene geometries between 1.4% and 3% adatom coverages and using Grimme corrections. • The Li, K, Na graphene interactions are accurately described by both PBE0 and PBE functionals. For Ca/graphene, the PBE0 functional should not be used. • For Li, K, and Na adsorbed on graphene, adatom-graphene interaction weakens as the adatom coverages increases. • The Ca-graphene interaction strength, which is stronger at high coverages, is opposite to increases in the Ca–4s orbital population. - Abstract: The adsorption of the alkali Li, K, and Na and the alkaline Ca on graphene is studied using periodic density functional theory (DFT) under various adatom coverages. The charge transfers between the adatom and the graphene sheet and the almost unchanged densities-of-states spectra in the energy region near and below the Fermi level support an ionic bond pattern between the adatom and the graphene atoms. However, the presence of small orbital overlap between the metal and the nearest graphene atom is indicative of small covalent bonding. Van der Waals interactions are examined through a semiempirical correction in the DFT functional and by comparing adatom-graphene calculations between 3% and 1.4% adatom coverages. Optimized adatom-graphene geometries identify the preferred adatom sites, whereas the adatom-graphene strength is correlated with the adsorption energy and the adatom distance from the graphene plane. Calculated electronic properties and structural parameters are obtained using hybrid functionals and a generalized gradient approximation functional paired with basis sets of various sizes. We found that due to long range electrostatic forces between the alkali/alkaline adatoms and the graphene monolayer, the adatom-graphene structural and electronic

  20. A time-dependent density functional theory investigation of plasmon resonances of linear Au atomic chains

    International Nuclear Information System (INIS)

    Liu Dan-Dan; Zhang Hong

    2011-01-01

    We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time-dependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases, the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition, the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics, different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing, optical spectroscopy, and so on. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Petrosyan, D.; Valiente, M.

    2015-01-01

    We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...

  2. Bloch Oscillations in the Chains of Artificial Atoms Dressed with Photons

    Directory of Open Access Journals (Sweden)

    Ilay Levie

    2018-06-01

    Full Text Available We present a model of one-dimensional chain of two-level artificial atoms driven with DC field and quantum light simultaneously in a strong coupling regime. The interaction of atoms with light leads to electron-photon entanglement (dressing of the atoms with light. The driving via dc field leads to the Bloch oscillations (BO in the chain of dressed atoms. We consider the mutual influence of dressing and BO and show that scenario of oscillations dramatically differs from predicted by the Jaynes-Cummings and Bloch-Zener models. We study the evolution of the population inversion, tunneling current, photon probability distribution, mean number of photons, and photon number variance, and show the influence of BO on the quantum-statistical characteristics of light. For example, the collapse-revivals picture and vacuum Rabi-oscillations are strongly modulated with Bloch frequency. As a result, quantum properties of light and degree of electron-photon entanglement become controllable via adiabatic dc field turning. On the other hand, the low-frequency tunneling current depends on the quantum light statistics (in particular, for coherent initial state it is modulated accordingly the collapse-revivals picture. The developed model is universal with respect to the physical origin of artificial atom and frequency range of atom-light interaction. The model is adapted to the 2D-heterostructures (THz frequencies, semiconductor quantum dots (optical range, and Josephson junctions (microwaves. The data for numerical simulations are taken from recently published experiments. The obtained results open a new way in quantum state engineering and nano-photonic spectroscopy.

  3. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles

    Science.gov (United States)

    Chohan, Urslaan K.; Jimenez-Melero, Enrique; Koehler, Sven P. K.

    2016-11-01

    We have computed adsorption energies, vibrational frequencies, surface relaxation and buckling for hydrogen adsorbed on a body-centred-cubic Fe(110) surface as a function of the degree of H coverage. This adsorption system is important in a variety of technological processes such as the hydrogen embrittlement in ferritic steels, which motivated this work, and the Haber-Bosch process. We employed spin-polarised density functional theory to optimise geometries of a six-layer Fe slab, followed by frozen mode finite displacement phonon calculations to compute Fe-H vibrational frequencies. We have found that the quasi-threefold (3f) site is the most stable adsorption site, with adsorption energies of ∼3.0 eV/H for all coverages studied. The long-bridge (lb) site, which is close in energy to the 3f site, is actually a transition state leading to the stable 3f site. The calculated harmonic vibrational frequencies collectively span from 730 to 1220 cm-1, for a range of coverages. The increased first-to-second layer spacing in the presence of adsorbed hydrogen, and the pronounced buckling observed in the Fe surface layer, may facilitate the diffusion of hydrogen atoms into the bulk, and therefore impact the early stages of hydrogen embrittlement in steels.

  4. Generation of multipartite entangled states for chains of atoms in the framework of cavity-QED

    Energy Technology Data Exchange (ETDEWEB)

    Gonta, Denis

    2010-07-07

    Cavity quantum electrodynamics is a research field that studies electromagnetic fields in confined spaces and the radiative properties of atoms in such fields. Experimentally, the simplest example of such system is a single atom interacting with modes of a high-finesse resonator. Theoretically, such system bears an excellent framework for quantum information processing in which atoms and light are interpreted as bits of quantum information and their mutual interaction provides a controllable entanglement mechanism. In this thesis, we present several practical schemes for generation of multipartite entangled states for chains of atoms which pass through one or more high-finesse resonators. In the first step, we propose two schemes for generation of one- and two-dimensional cluster states of arbitrary size. These schemes are based on the resonant interaction of a chain of Rydberg atoms with one or more microwave cavities. In the second step, we propose a scheme for generation of multipartite W states. This scheme is based on the off-resonant interaction of a chain of three-level atoms with an optical cavity and a laser beam. We describe in details all the individual steps which are required to realize the proposed schemes and, moreover, we discuss several techniques to reveal the non-classical correlations associated with generated small-sized entangled states. (orig.)

  5. Generation of multipartite entangled states for chains of atoms in the framework of cavity-QED

    International Nuclear Information System (INIS)

    Gonta, Denis

    2010-01-01

    Cavity quantum electrodynamics is a research field that studies electromagnetic fields in confined spaces and the radiative properties of atoms in such fields. Experimentally, the simplest example of such system is a single atom interacting with modes of a high-finesse resonator. Theoretically, such system bears an excellent framework for quantum information processing in which atoms and light are interpreted as bits of quantum information and their mutual interaction provides a controllable entanglement mechanism. In this thesis, we present several practical schemes for generation of multipartite entangled states for chains of atoms which pass through one or more high-finesse resonators. In the first step, we propose two schemes for generation of one- and two-dimensional cluster states of arbitrary size. These schemes are based on the resonant interaction of a chain of Rydberg atoms with one or more microwave cavities. In the second step, we propose a scheme for generation of multipartite W states. This scheme is based on the off-resonant interaction of a chain of three-level atoms with an optical cavity and a laser beam. We describe in details all the individual steps which are required to realize the proposed schemes and, moreover, we discuss several techniques to reveal the non-classical correlations associated with generated small-sized entangled states. (orig.)

  6. Structure of solid surfaces and of adsorbates by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1977-01-01

    LEED theory has developed to the point where the diffraction beam intensities can be computed using the locations of the surface atoms as the only adjustable parameters. The position of atoms in many clean monatomic solid surfaces and the surface structures of ordered monolayers of adsorbed atoms have been determined this way. Surface crystallography studies are now extended to small hydrocarbon molecules that are adsorbed on metal surfaces. These studies are reviewed

  7. Order-disorder transitions in adsorbed systems on magnetic surfaces

    International Nuclear Information System (INIS)

    Aguilera-Granja, F.; Moran-Lopez, J.L.; Instituto Politecnico Nacional, Mexico City. Centro de Investigacion y de Estudios Avanzados); Falicov, L.M.

    1984-01-01

    It is investigated the effect of adsorbed atoms on the magnetic properties of ferromagnets. The Ising model is employed considering nearest neigbours with antiferromagnetic coupling between atoms. (M.W.O.) [pt

  8. Motion of Adsorbed Nano-Particles on Azobenzene Containing Polymer Films

    Directory of Open Access Journals (Sweden)

    Sarah Loebner

    2016-12-01

    Full Text Available We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions.

  9. From single magnetic adatoms on superconductors to coupled spin chains

    Science.gov (United States)

    Franke, Katharina J.

    Magnetic adsorbates on conventional s-wave superconductors lead to exchange interactions that induce Yu-Shiba-Rusinov (YSR) states inside the superconducting energy gap. Here, we employ tunneling spectroscopy at 1.1 K to investigate magnetic atoms and chains on superconducting Pb surfaces. We show that individual Manganese (Mn) atoms give rise to a distinct number of YSR-states. The single-atom junctions are stable over several orders of magnitude in conductance. We identify single-electron tunneling as well as Andreev processes. When the atoms are brought into sufficiently close distance, the Shiba states hybridize, thus giving rise to states with bonding and anti-bonding character. It has been shown that the Pb(110) surface supports the self-assembly of Fe chains, which exhibit fingerprints of Majorana bound states. Using superconducting tips, we resolve a rich subgap structure including peaks at zero energy and low-energy resonances, which overlap with the putative Majorana states. We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft through collaborative research Grant Sfb 658, and through Grant FR2726/4, as well by the European Research Council through Consolidator Grant NanoSpin.

  10. Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms

    Science.gov (United States)

    Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor

    2017-12-01

    Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.

  11. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher James [ORNL; Das, Sadananda [ORNL; Oyola, Yatsandra [ORNL; Mayes, Richard T. [ORNL; Saito, Tomonori [ORNL; Brown, Suree [ORNL; Gill, Gary [PNNL; Kuo, Li-Jung [PNNL; Wood, Jordana [PNNL

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  12. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    International Nuclear Information System (INIS)

    Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M

    2016-01-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed. (paper)

  13. Efficient Functionalization of Polyethylene Fibers for the Uranium Extraction from Seawater through Atom Transfer Radical Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Neti, Venkata S. [Chemical; Das, Sadananda [Chemical; Brown, Suree [Department; Janke, Christopher J. [Materials; Kuo, Li-Jung [Marine; Gill, Gary A. [Marine; Dai, Sheng [Chemical; Department; Mayes, Richard T. [Chemical

    2017-09-14

    Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g- U/kg of adsorbent) in laboratory screening tests using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. The modest capacity in 21- days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).

  14. Numerical study of friction of flake and adsorbed monolayer on atomically clean substrate

    International Nuclear Information System (INIS)

    Matsukawa, Hiroshi; Haraguchi, Kazuhiro; Ozaki, Shinsuke

    2007-01-01

    Frictional behaviors of flake and adsorbed monolayer on substrate can be observed by Frictional force microscope and Quartz crystal microbalance experiments and are typical problems in nano-friction. Computer simulations had been played important roles in understanding those behaviors, but in most of them the driving direction coincides with one of the crystal axes of the substrate. Here we report our numerical results of direction dependence of friction of flake and adsorbed monolayer. We found a new kind of dynamical phase transition in which flake and adsorbed monlayer change their structure relative to the substrate and make incommensurae structure to reduce kinetic frictional force after certain transition time. When the driving velocity is decreased the transition time tends to diverge at certain critical velocity for the flake. For the adsorbed monlayer the transition time tends to diverge at certain critical magnitudes of the external force or the interaction strength between adsorbates when they are decreased

  15. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains.

    Science.gov (United States)

    Sabater, Carlos; Untiedt, Carlos; van Ruitenbeek, Jan M

    2015-01-01

    This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a 'Berry force'. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.

  16. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains

    Directory of Open Access Journals (Sweden)

    Carlos Sabater

    2015-12-01

    Full Text Available This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.

  17. X-ray emission spectroscopy applied to glycine adsorbed on Cu(110): An atom and symmetry projected view

    Energy Technology Data Exchange (ETDEWEB)

    Hasselstroem, J.; Karis, O.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    When a molecule is adsorbed on a metal surface by chemical bonding new electronic states are formed. For noble and transition metals these adsorption-induced states overlap with the much more intense metal d-valence band, making them difficult to probe by for instance direct photoemission. However, it has recently been shown that X-ray emission spectroscopy (XES) can be applied to adsorbate systems. Since the intermediate state involves a core hole, this technique has the power to project out the partial density of states around each atomic site. Both the excitation and deexcitation processes are in general governed by the dipole selection rules. For oriented system, it is hence possible to obtain a complete separation into 2p{sub x}, 2p{sub y} and 2p{sub z} contributions using angular resolved measurements. The authors have applied XES together with other core level spectroscopies to glycine adsorption on Cu(110). Glycine (NH{sub 2}CH{sub 2}COOH) is the smallest amino acid and very suitable to study by core level spectroscopy since it has several functional groups, all well separated in energy by chemical shifts. Its properties are futhermore of biological interest. In summary, the authors have shown that it is possible to apply XES to more complicated molecular adsorbates. The assignment of different electronic states is however not as straight forward as for simple diatomic molecules. For a complete understanding of the redistribution and formation of new electronic states associated with the surface chemical bond, experimental data must be compared to theoretical calculations.

  18. Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination

    International Nuclear Information System (INIS)

    Pourreza, Nahid; Hoveizavi, Reza

    2005-01-01

    A simultaneous preconcentration method was developed for determination of trace amounts of Cu, Fe and Pb by atomic absorption spectrometry. The method is based on the retention of their methylthymol blue complexes by naphthalene methyltrioctyl ammonium chloride adsorbent in a column. The adsorbed metal complexes were eluted from the column with nitric acid and Cu, Fe and Pb were determined by flame atomic absorption spectrometry. Several parameters such as pH of the sample solution, ligand concentration, volume of the sample and the amount of methyltrioctyl ammonium chloride loaded on naphthalene were evaluated. The effect of diverse ions on the preconcentration was also investigated. A preconcentration factor of up to 100 or more can easily be achieved depending on the volume of the sample taken. The calibration graphs were obtained in the range of 5-40, 10-100 and 10-200 ng ml -1 for Cu, Fe and Pb in the initial solution, respectively, when using 500 ml of the solution. The detection limit based on three standard deviations of the blank was 0.54, 3.1, and 4.5 ng ml -1 for Cu, Fe and Pb, respectively. The relative standard deviations (R.S.D.) of 0.62-1.4% for Cu, 1.9-3.4% for Fe and 1.0-2.2% for Pb were obtained. The method was applied to the determination of Cu, Fe and Pb in river and wastewater samples

  19. Structural and electronic properties of the adsorbed and defected Cu nanowires: A density-functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Ying-Ni [College of Physics and Information Technology, Shaanxi Normal University, Xian 710062, Shaanxi (China); Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, Xinjiang (China); Zhang, Jian-Min, E-mail: jianm_zhang@yahoo.com [College of Physics and Information Technology, Shaanxi Normal University, Xian 710062, Shaanxi (China); Fan, Xiao-Xi [Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, Xinjiang (China); Xu, Ke-Wei [College of Physics and Mechanical and Electronic Engineering, Xian University of Arts and Science, Xian 710065, Shaanxi (China)

    2014-12-01

    Using first-principles calculations based on density-functional theory, we systematically investigate the influence of adsorbates (CO molecule and O atom) and defects (adsorb one extra Cu atom and monovacancy) on the structural and electronic properties of Cu{sub 5-1}NW and Cu{sub 6-1}NW. For both nanowires, CO molecule prefers to adsorb on the top site, while O atom prefers to adsorb on the center site. The hybridization between the CO and Cu states is dominated by the donation–backdonation process, which leads to the formation of bonding/antibonding pairs, 5σ{sub b}/5σ{sub a} and 2π{sub b}{sup ⁎}/2π{sub a}{sup ⁎}. The larger adsorption energies, larger charge transfers to O adatom and larger decrease in quantum conductance 3G{sub 0} for an O atom adsorbed on the Cu{sub 5-1}NW and Cu{sub 6-1}NW show both Cu{sub 5-1}NW and Cu{sub 6-1}NW can be used as an O sensor. Furthermore, the decrease in quantum conductance 1G{sub 0} for a CO molecule adsorbed on the Cu{sub 6-1}NW also shows the Cu{sub 6-1}NW can be used to detect CO molecule. So we expect these results may have implications for CuNW based chemical sensing. High adsorption energy of one extra Cu atom and relatively low formation energy of a monovacancy suggest that these two types of defects are likely to occur in the fabrication of CuNWs. One extra Cu atom does not decrease the quantum conductance, while a Cu monovacancy leads to a drop of the quantum conductance.

  20. Surface-enhanced Raman Spectroscopy of Ethephone Adsorbed on Silver Surface

    International Nuclear Information System (INIS)

    Lee, Chul Jae; Kim, Hee Jin; Karim, Mohammad Rezaul; Lee, Mu Sang

    2006-01-01

    We investigated the Surface-enhanced Raman Spectroscopy (SERS) spectrum of ethephone (2- chloroethylphosphonic acid). We observed significant signals in the ordinary Raman spectrum for solid-state ethephone as well as when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids that were prepared by the γ - irradiation method. The influence of pH and the influence of anion (Cl - , Br - , I - ) on the adsorption orientation were investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions. The chlorine atom or the chlorine and two oxygen atoms were adsorbed on the colloidal silver surface. Among halide ions, Br - and I - were more strongly adsorbed on the colloidal silver surfaces. As a result, the adsorption of ethephone was less effective due to their steric hinderance

  1. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    International Nuclear Information System (INIS)

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of 4 He adsorbed on metallic films. In contrast to measurements of 4 He adsorbed on all other insulating substrates, we have shown that 4 He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, 4 He adsorbed on sapphire and on Ag films and H 2 adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs

  2. Single-atom contacts with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Kroeger, J; Neel, N; Sperl, A; Wang, Y F; Berndt, R

    2009-01-01

    The tip of a cryogenic scanning tunnelling microscope is used to controllably contact single atoms adsorbed on metal surfaces. The transition between tunnelling and contact is gradual for silver, while contact to adsorbed gold atoms is abrupt. The single-atom junctions are stable and enable spectroscopic measurements of, e.g., the Abrikosov-Suhl resonance of single Kondo impurities.

  3. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Chohan, Urslaan K.; Jimenez-Melero, Enrique [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Dalton Cumbrian Facility, The University of Manchester, Moor Row CA24 3HA (United Kingdom); Koehler, Sven P.K., E-mail: sven.koehler@manchester.ac.uk [Dalton Cumbrian Facility, The University of Manchester, Moor Row CA24 3HA (United Kingdom); School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-11-30

    Highlights: • Potential energy surfaces for H diffusion on Fe(110) calculated. • Full vibrational analysis of surface modes performed. • Vibrational analysis establishes lb site as a transition state to the 3f site. • Pronounced buckling observed in the Fe surface layer. - Abstract: We have computed adsorption energies, vibrational frequencies, surface relaxation and buckling for hydrogen adsorbed on a body-centred-cubic Fe(110) surface as a function of the degree of H coverage. This adsorption system is important in a variety of technological processes such as the hydrogen embrittlement in ferritic steels, which motivated this work, and the Haber–Bosch process. We employed spin-polarised density functional theory to optimise geometries of a six-layer Fe slab, followed by frozen mode finite displacement phonon calculations to compute Fe–H vibrational frequencies. We have found that the quasi-threefold (3f) site is the most stable adsorption site, with adsorption energies of ∼3.0 eV/H for all coverages studied. The long-bridge (lb) site, which is close in energy to the 3f site, is actually a transition state leading to the stable 3f site. The calculated harmonic vibrational frequencies collectively span from 730 to 1220 cm{sup −1}, for a range of coverages. The increased first-to-second layer spacing in the presence of adsorbed hydrogen, and the pronounced buckling observed in the Fe surface layer, may facilitate the diffusion of hydrogen atoms into the bulk, and therefore impact the early stages of hydrogen embrittlement in steels.

  4. Quantum quench in an atomic one-dimensional Ising chain.

    Science.gov (United States)

    Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C

    2013-08-02

    We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.

  5. Catalytic behavior of ‘Pt-atomic chain encapsulated gold nanotube’: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Nigam, Sandeep, E-mail: snigam@barc.gov.in; Majumder, Chiranjib [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-05-23

    With an aim to design novel material and explore its catalytic performance towards CO oxidation, Pt atomic chain was introduced inside gold nanotube (Au-NT). Theoretical calculations at the level of first principles formalism was carried out to investigate the atomic and electronic properties of the composite. Geometrically Pt atoms prefer to align in zig-zag fashion. Significant electronic charge transfer from inside Pt atoms to the outer wall Au atoms is observed. Interaction of O{sub 2} with Au-NT wall follows by injection of additional electronic charge in the anti-bonding orbital of oxygen molecule leading to activation of the O-O bond. Further interaction of CO molecule with the activated oxygen molecule leads to spontaneous oxidation reaction and formation of CO{sub 2}.

  6. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes.

    Science.gov (United States)

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-08-21

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).

  7. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Science.gov (United States)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  8. Influence of adsorbed carbon dioxide on hydrogen electrosorption in palladium-platinum-rhodium alloys

    International Nuclear Information System (INIS)

    Lukaszewski, M.; Grden, M.; Czerwinski, A.

    2004-01-01

    Carbon dioxide electroreduction was applied to examine the processes of hydrogen electrosorption (adsorption, absorption and desorption) by thin electrodeposits of Pd-Pt-Rh alloys under conditions of cyclic voltammetric (CV) experiments. Due to different adsorption characteristics towards the adsorption product of the electroreduction of CO 2 (reduced CO 2 ) exhibited by the alloy components hydrogen adsorption and hydrogen absorption signals can be distinguished on CV curves. Reduced CO 2 causes partial blocking of hydrogen adsorbed on surface Pt and Rh atoms, without any significant effect on hydrogen absorption into alloy. It reflects the fact that adsorbed hydrogen bonded to Pd atoms does not participate in CO 2 reduction, while hydrogen adsorbed on Pt and Rh surface sites is inactive in the absorption reaction. In contrast, CO is adsorbed on all alloy components and causes a marked inhibition of hydrogen sorption (both adsorption and absorption)/desorption reactions

  9. Vanadium (4) complexing in phase of adsorbent with benzimidazole groups

    International Nuclear Information System (INIS)

    Shvoeva, O.P.; Kuchava, G.P.; Evtikova, G.A.; Belyaeva, V.K.; Myasoedova, G.V.; Marov, I.N.

    1989-01-01

    Equilibrium and kinetic characteristics of V 4+ sorption by POLYORGS XI-H adsorbent with benzimidazole groups (BIm) are investigated. Using ESR method it is stated that [VO 2+ ]:[BIm]1:2 complex, where VO 2+ is combined with nitrogen atoms of two imidazole groups, is formed in adsorbent phase. The highest distribution factor of 4.7x10 3 is attained at pH6

  10. Development of adsorbents for recovery of uranium from seawater

    International Nuclear Information System (INIS)

    Egawa, Hiroaki; Furusaki, Shintaro.

    1987-01-01

    The largest subject for putting the extraction of uranium from seawater in practical use is the development of high performance adsorbents for uranium. In this paper, the way of thinking about the development of adsorbents for extracting uranium from seawater and the recent reports on this subject are described. Next, the research on the adsorbing capacity and adsorbing rate of the adsorbents developed so far is summarized, and the way of thinking about the evaluation of adsorbent performance which is the base of the design of a system for extracting uranium from seawater is explained, taking amidoxime type adsorbent as the example. For Japan where energy resources are scant, the uranium contained in seawater, which is estimated to be about 4.2 billion t, is the most luring important element. Uranium is contained in seawater is very low concentration of 3 ppb, and exists as anion complex salt. In 1960s, the Harwell Atomic Energy Research Establishment in UK found out that titanium oxide hydrate is the most promising as the adsorbent. Also a number of organic absorbents have been developed. In order to bring adsorbents in contact with seawater, pumping, ocean current and wave force are utilized. Adsorbents are in spherical, fiber and film forms, and held as fixed beds and fluidized beds. (Kako, I.) 48 refs

  11. Numerical analysis of the performance of an atomic iodine laser amplifier chain

    International Nuclear Information System (INIS)

    Uchiyama, T.; Witte, K.J.

    1981-05-01

    The performance of an atomic iodine laser amplifier chain with output pulse powers close to 2 TW is analyzed by a numerical solution of the Maxwell-Bloch equations. Two subjects are discussed in detail. The first one refers to the pulse compression occurring in the chain as a result of saturation and some related aspects such as damage to components, self-focussing, correlation between the input and output pulse shapes, and the means of pulse shape control. The second deals with various schemes suited for achieving extraction efficiencies of about or larger than 55%. These include the single-pass and double-pass schemes, pulses with two carrier frequencies and a variation of the pulse carrier frequency. In addition, the response of the chain to a variation of those parameters which are most easily subject to change in a routine operation is investigated. (orig.)

  12. Infrared spectroscopic and voltammetric study of adsorbed CO on stepped surfaces of copper monocrystalline electrodes

    International Nuclear Information System (INIS)

    Koga, O.; Teruya, S.; Matsuda, K.; Minami, M.; Hoshi, N.; Hori, Y.

    2005-01-01

    Voltammetric and infrared (IR) spectroscopic measurements were carried out to study adsorbed CO on two series of copper single crystal electrodes n(111)-(111) and n(111)-(100) in 0.1M KH 2 PO 4 +0.1M K 2 HPO 4 at 0 o C. Reversible voltammetric waves were observed below -0.55V versus SHE for adsorption of CO which displaces preadsorbed phosphate anions. The electric charge of the redox waves is proportional to the step atom density for both single crystal series. This fact indicates that phosphate anions are specifically adsorbed on the step sites below -0.55V versus SHE. Voltammetric measurements indicated that (111) terrace of Cu is covered with adsorbed CO below -0.5V versus SHE. Nevertheless, no IR absorption band of adsorbed CO is detected from (111) terrace. Presence of adsorbed CO on (111) terrace is presumed which is not visible by the potential difference spectroscopy used in the present work. IR spectroscopic measurements showed that CO is reversibly adsorbed with an on-top manner on copper single crystal electrodes of n(111)-(111) and n(111)-(100) with approximately same wavenumber of C?O stretching vibration of 2070cm -1 . The IR band intensity is proportional to the step atom density. Thus CO is adsorbed on (111) or (100) steps on the single crystal surfaces. An analysis of the IR band intensity suggested that one CO molecule is adsorbed on every two or more Cu step atom of the monocrystalline surface. The spectroscopic data were compared with those reported for uhv system. The C-O stretching wavenumber of adsorbed CO in the electrode-electrolyte system is 30-40cm -1 lower than those in uhv system

  13. Vanadium (4) complexing in phase of adsorbent with benzimidazole groups

    Energy Technology Data Exchange (ETDEWEB)

    Shvoeva, O P; Kuchava, G P; Evtikova, G A; Belyaeva, V K; Myasoedova, G V; Marov, I N [AN SSSR, Moscow (USSR). Inst. Geokhimii i Analiticheskoj Khimii

    1989-04-01

    Equilibrium and kinetic characteristics of V{sup 4+} sorption by POLYORGS XI-H adsorbent with benzimidazole groups (BIm) are investigated. Using ESR method it is stated that (VO{sup 2+}):(BIm)1:2 complex, where VO{sup 2+} is combined with nitrogen atoms of two imidazole groups, is formed in adsorbent phase. The highest distribution factor of 4.7x10{sup 3} is attained at pH6.

  14. Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer

    DEFF Research Database (Denmark)

    Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.

    2016-01-01

    We have developed an efficient computational method to treat long, one-dimensional systems of strongly-interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete...... demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly-perfect state transfer....

  15. Electron ionization and spin polarization control of Fe atom adsorbed graphene irradiated by a femtosecond laser

    International Nuclear Information System (INIS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Li, Xin; Qu, Liangti; Lu, Yongfeng

    2015-01-01

    We investigate the structural properties and ionized spin electrons of an Fe–graphene system, in which the time-dependent density functional theory (TDDFT) within the generalized gradient approximation is used. The electron dynamics, including electron ionization and ionized electron spin polarization, is described for Fe atom adsorbed graphene under femtosecond laser irradiation. The theoretical results show that the electron ionization and ionized electron spin polarization are sensitive to the laser parameters, such as the incident angle and the peak intensity. The spin polarization presents the maximum value under certain laser parameters, which may be used as a source of spin-polarized electrons. - Highlights: • The structural properties of Fe–graphene system are investigated. • The electron dynamics of Fe–graphene system under laser irradiation are described. • The Fe–graphene system may be used as a source of spin-polarized electrons

  16. Electronic properties of adsorbates and clean surfaces of metals and semiconductors

    International Nuclear Information System (INIS)

    Lecante, J.

    1980-01-01

    This paper surveys recent progress in experimental studies on electronic properties of adsorbates and clean metal surfaces. Electron spectroscopy and particularly angle resolved photoelectron spectroscopy appears to be a very powerful tool to get informations on electronic levels of adsorbates or clean surfaces. Moreover this technique may also give informations about the atomic geometry of the surface. Experimental investigation about surface plasmons, surface states, core level shifts are presented for clean surfaces. As examples of adsorbate covered surfaces two typical cases are chosen: two dimensional band structure and oriented molecules. Finally the photoelectron diffraction may be used for surface structure determination either in the case of an adsorbate or a clean metal surface [fr

  17. Chain reaction. History of the atomic bomb; Kettenreaktion. Die Geschichte der Atombombe

    Energy Technology Data Exchange (ETDEWEB)

    Mania, Hubert

    2010-07-01

    Henri becquerel tracked down in 1896 a strange radiation, which was called radioactivity by Marie Curie. In the following centuries German scientists Max Planck, Albert Einstein and Werner Heisenberg presented fundamental contributions to understand processes in the atomic nucleus. At Goettingen, center of the international nuclear physics community, the American student J. Robert Oppenheimer admit to this physical research. In the beginning of 1939 the message of Otto Hahns' nuclear fission electrified researchers. The first step, unleashing atomic energy, was done. A half year later the Second World War begun. And suddenly being friend with and busily communicating physicians were devided into hostile power blocs as bearers of official secrets. The author tells in this exciting book the story of the first atomic bomb as a chain reaction of ideas, discoveries and visions, of friendships, jealousy and intrigues of scientists, adventurers and genius. (orig./GL)

  18. Surface-enhanced raman spectroscopy of quinomethionate adsorbed on silver colloids

    International Nuclear Information System (INIS)

    Kim, Mak Soon; Kang, Jae Soo; Park, Si Bum; Lee, Mu Sang

    2003-01-01

    We have studied the surface-enhanced Raman spectroscopy (SERS) spectrum of quinomethionate (6-methyl-1,3-dithiolo(4,5-b)quinoxalin-2-one), which is an insecticide or fungicide used on vegetables and wheat. We observed no signals in the ordinary Raman spectra of solid-state quinomethionate, but when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids prepared by the Creighton et al. method. The influence of pH and the aggregation inductors (Cl - , Br - , I - , F - ) on the adsorption mechanism was investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions: The one N atom or two N atoms are chemisorbed on an Ag surface. An important contribution of the chemical mechanism was inferred when the one N atom was perpendicularly adsorbed on a surface. It is possible that quinomethionate can be detected to about 10 -5 M

  19. Photoemission spectroscopy of surfaces and adsorbates

    International Nuclear Information System (INIS)

    Chiang, T.C.; Kaindl, G.; Himpsel, F.J.; Eastman, D.E.

    1982-01-01

    Core level photoelectron spectroscopy is providing new information concerning the electronic properties of adsorbates and surfaces. Several examples will be discussed, including studies of adsorbed rare gas submonolayers and multilayers as well as clean metal surfaces. For rare gas multilayers adsorbed on metal surfaces, the photoelectrons and Auger electrons exhibit well-resolved increases in kinetic energy with decreasing distance between the excited atom and the substrate, allowing a direct labeling of the layers. These energy shifts are mainly due to the substrate screening effects, and can be described well by an image-charge model. For a Kr/Xe bilayer system prepared by first coating a Pd substrate with a monolayer of Kr and then overcoating with a layer of Xe, a thermally activated layer inversion process is observed when the temperature is raised, with Xe coming in direct contact with the substrate. For rare gas submonolayers adsorbed on the Al(111) surface, coverage-dependent core level shift and work function measurements provide information about the adatom spatial distributions, polarizabilities, and dipole moments for the ground and excited states. We have also studied the 2p core level shifts for a clean Al(001) surface relative to the bulk. The shifts have a large contribution from the initial-state effects

  20. Preconcentration of Co, Ni, Cd and Zn on naphthalene–2,4,6-trimorpholino-1,3,5-triazin adsorbent and flame atomic absorption determination

    Directory of Open Access Journals (Sweden)

    TAYYEBEH MADRAKIAN

    2010-05-01

    Full Text Available A preconcentration method was developed for the determination of trace amounts of Co, Ni, Cd and Zn by atomic absorption spectrometry. The method is based on the retention of the metal cations by naphthalene–2,4,6-trimorpholino-1,3,5-triazin adsorbent in a column. The adsorbed metals were then eluted from the column with hydrochloric acid and the Co, Ni, Cd and Zn were determined by flame atomic absorption spectrometry. The optimal extraction and elution conditions were studied. The effects of diverse ions on the preconcentration were also investigated. A preconcentration factor of 250 for Co(II, Ni(II and Zn(II, and 400 for Cd(II can easily be achieved. Calibration graphs were obtained and the detection limits of the method for Co(II, Ni(II, Cd(II and Zn(II were 0.51, 0.49, 0.17 and 0.10 ng mL-1, respectively. The relative standard deviations (RSD of 0.37–2.31 % for Co, 0.37–3.73 % for Ni, 2.20–2.40 % for Cd and 1.50–2.56 % for Zn were obtained. The method was also used for the simultaneous preconcentration of these elements and the method was successfully applied to their preconcentration and determination. The method was applied to the determination of Co, Ni, Cd and Zn in several real samples.

  1. Adsorbed Polymer Nanolayers on Solids: Mechanism, Structure and Applications

    Science.gov (United States)

    Sen, Mani Kuntal

    In this thesis, by combining various advanced x-ray scattering, spectroscopic and other surface sensitive characterization techniques, I report the equilibrium polymer chain conformations, structures, dynamics and properties of polymeric materials at the solid-polymer melt interfaces. Following the introduction, in chapter 2, I highlight that the backbone chains (constituted of CH and CH2 groups) of the flattened polystyrene (PS) chains preferentially orient normal to the weakly interactive substrate surface via thermal annealing regardless of the initial chain conformations, while the orientation of the phenyl rings becomes randomized, thereby increasing the number of surface-segmental contacts (i.e., enthalpic gain) which is the driving force for the flattening process of the polymer chains even onto a weakly interactive solid. In chapter 3, I elucidate the flattened structures in block copolymer (BCP) thin films where both blocks lie flat on the substrate, forming a 2D randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. In chapter 4, I reveal the presence of an irreversibly adsorbed BCP layer which showed suppressed dynamics even at temperatures far above the individual glass transition temperatures of the blocks. Furthermore, this adsorbed BCP layer plays a crucial role in controlling the microdomain orientation in the entire film. In chapter 5, I report a radically new paradigm of designing a polymeric coating layer of a few nanometers thick ("polymer nanolayer") with anti-biofouling properties.

  2. Role of adsorbates on current fluctuations in DC field emission

    International Nuclear Information System (INIS)

    Luong, M.; Bonin, B.; Long, H.; Safa, H.

    1996-01-01

    Field emission experiments in DC regime usually show important current fluctuations for a fixed electric field. These fluctuations are attributed to adsorbed layers (molecules or atoms), liable to affect the work function, height and shape of the potential barrier binding the electron in the metal. The role of these adsorbed species is investigated by showing that the field emission from a well desorbed sample is stable and reproducible and by comparing the emission from the same sample before and after desorption. (author)

  3. Band mapping of surface states vs. adsorbate coverage

    International Nuclear Information System (INIS)

    Rotenberg, E.; Kevan, S.D.; Denlinger, J.D.; Chung, Jin-Wook

    1997-01-01

    The theory of electron bands, which arises from basic quantum mechanical principles, has been the cornerstone of solid state physics for over 60 years. Simply put, an energy band is an electron state in a solid whose energy varies with its momentum (similar to, but with a more complicated dependence than, how a free electron's energy is proportional to its momentum squared). Much attention over the last 15 years has been given to the study of band structure of surfaces and interfaces, especially as the applications of these two-dimensional systems have become increasingly important to industry and science. The ultraESCA endstation at beamline 7.01 at the Advanced Light Source was developed for very high-energy - (∼50 meV) and angular - ( 12 photons/sec) makes the detailed study of the evolution of bands possible. The authors are interested in learning how, when one forms a chemical bond between a metal and an overlaying atom or molecule, the resulting charge transfer to or from the adsorbate affects the surface bands. In some cases of interest, intermediate coverages lead to different band structure than at the extremes of clean and saturated surfaces. Surfaces of tungsten are particularly interesting, as their atomic geometry has been shown to be exquisitely sensitive to both the surface vibrational and electronic properties. In this study, the authors looked at the surface bands of tungsten ((110) surface), as a function both of coverage and mass of overlaying atoms. The adsorbed atoms were hydrogen and the alkali atoms lithium and cesium

  4. Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb(II) ions from contaminated waters; kinetics and thermodynamic study.

    Science.gov (United States)

    Piri, Somayeh; Zanjani, Zahra Alikhani; Piri, Farideh; Zamani, Abbasali; Yaftian, Mohamadreza; Davari, Mehdi

    2016-01-01

    Nowadays significant attention is to nanocomposite compounds in water cleaning. In this article the synthesis and characterization of conductive polyaniline/clay (PANI/clay) as a hybrid nanocomposite with extended chain conformation and its application for water purification are presented. Clay samples were obtained from the central plain of Abhar region, Abhar, Zanjan Province, Iran. Clay was dried and sieved before used as adsorbent. The conductive polyaniline was inflicted into the layers of clay to fabricate a hybrid material. The structural properties of the fabricated nanocomposite are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The elimination process of Pb(II) and Cd(II) ions from synthetics aqueous phase on the surface of PANI/clay as adsorbent were evaluated in batch experiments. Flame atomic absorption instrument spectrophotometer was used for determination of the studied ions concentration. Consequence change of the pH and initial metal amount in aqueous solution, the procedure time and the used adsorbent dose as the effective parameters on the removal efficiency was investigated. Surface characterization was exhibited that the clay layers were flaked in the hybrid nanocomposite. The results show that what happen when a nanocomposite polyaniline chain is inserted between the clay layers. The adsorption of ions confirmed a pH dependency procedure and a maximum removal value was seen at pH 5.0. The adsorption isotherm and the kinetics of the adsorption processes were described by Temkin model and pseudo-second-order equation. Time of procedure, pH and initial ion amount have a severe effect on adsorption efficiency of PANI/clay. By using suggested synthesise method, nano-composite as the adsorbent simply will be prepared. The prepared PANI/clay showed excellent adsorption capability for decontamination of Pb ions from contaminated water. Both of suggested synthesise and

  5. Stability of gold atoms and dimers adsorbed on graphene

    International Nuclear Information System (INIS)

    Varns, R; Strange, P

    2008-01-01

    We report density functional theory (DFT) calculations for gold atoms and dimers on the surface of graphene. The calculations were performed using the plane wave pseudopotential method. Calculations were performed for a variety of geometries, and both the graphene surface and gold atoms were allowed to fully relax. In agreement with experiment, our results show that the gold-gold interaction is considerably stronger than the gold-graphene interaction, implying that uniform coverage could not be attained. The minimum energy configuration for a single gold atom is found to be directly above a carbon atom, while for the dimer it is perpendicular to the surface and directly above a carbon-carbon bond. Our results are consistent with previous similar calculations

  6. Solid state nuclear magnetic resonance spectroscopy of polymer thin films: chain conformation, dynamics, and morphology

    International Nuclear Information System (INIS)

    Nasreddine, V.F.

    2003-01-01

    This dissertation presents solid-state NMR studies of the chain conformation, dynamics and morphology of three adsorbed polymer systems: two random semi-crystalline copolymers, poly(ethylene-co-acrylic acid) (PEA) and poly(propylene-co-acrylic acid) (PPA), and an amorphous homopolymer, poly(n-butyl methacrylate) (PnBMA). Zirconia (ZrO 2 ) was chosen as the substrate for all three polymers since the binding of carboxylic acids to this metal oxide is well understood. The choice of polymers was based on their particular bulk conformational and dynamic properties as well as their common use in polymer coatings. These studies are motivated by the general lack of a microscopic picture of adsorbed polymers, which can be provided by NMR, and the relevance of chain conformation and dynamics to important polymer film properties such as adhesion. First the chain conformation and surface binding of adsorbed PEA as a function of acrylic acid content are characterized by 13 C cross polarization - magic angle spinning (CP-MAS), 2D 1 H- 13 C wideline separation (WISE) and 1 H spin diffusion NMR experiments and FTIR-PAS (Fourier transform infrared photoacoustic spectroscopy) measurements. The most important finding is that the chain conformation of adsorbed PEA is determined primarily by the sticker group density rather than the surface coverage. The second study of PEA concerns the chain dynamics in the bulk and adsorbed states. Variable temperature NMR experiments provide evidence that ethylene segments of adsorbed PEA form partially folded loops rather than flat extended trains. Finally 129 Xe NMR studies, used to probe the morphology of adsorbed PEA, show a bulk-like signal only for the highest loadings. The second system investigated, PPA, is another semi-crystalline random copolymer which binds to zirconia via carboxylate linkages. The 13 C CP-MAS NMR spectra of adsorbed PPAC unexpectedly show splittings normally associated with chain-chain packing in the crystalline regions

  7. The role of adsorbed water on the friction of a layer of submicron particles

    Science.gov (United States)

    Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev

    2011-01-01

    Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near μ = 0.6 at low slip speeds to a coefficient near μ = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to μ = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to μ = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 μm. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.

  8. Temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom adsorbed on a surface

    International Nuclear Information System (INIS)

    Dino, Wilson Agerico; Kasai, Hideaki; Rodulfo, Emmanuel Tapas; Nishi, Mayuko

    2006-01-01

    Manifestations of the Kondo effect on an atomic length scale on and around a magnetic atom adsorbed on a nonmagnetic surface differ depending on the spectroscopic mode of operation of the scanning tunneling microscope. Two prominent signatures of the Kondo effect that can be observed at surfaces are the development of a sharp resonance (Yosida-Kondo resonance) at the Fermi level, which broadens with increasing temperature, and the splitting of this sharp resonance upon application of an external magnetic field. Until recently, observing the temperature and magnetic field dependence has been a challenge, because the experimental conditions strongly depend on the system's critical temperature, the so-called Kondo temperature T K . In order to clearly observe the temperature dependence, one needs to choose a system with a large T K . One can thus perform the experiments at temperatures T K . However, because the applied external magnetic field necessary to observe the magnetic field dependence scales with T K , one needs to choose a system with a very small T K . This in turn means that one should perform the experiments at very low temperatures, e.g., in the mK range. Here we discuss the temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom on a metal surface, in relation to recent experimental developments

  9. ε-Polylysine-based thermo-responsive adsorbents for immunoglobulin adsorption-desorption under mild conditions.

    Science.gov (United States)

    Maruyama, Masashi; Shibuya, Keisuke

    2017-08-22

    Thermo-responsive adsorbents for immunoglobulin G (IgG) employing ε-polylysine (EPL) as a polymer backbone were developed. The introduction of mercaptoethylpyridine (MEP) as an IgG-binding ligand and hydrophobization of side chains afforded thermo-responsive IgG adsorbents, whose thermo-responsive IgG desorption ratio was up to 88% (EPL/MEP derivative 3m). The changes in surface densities of active MEP groups, which are caused by thermal conformational changes of the adsorbents, play key roles for IgG desorption. Although a trade-off of IgG adsorption capacity and IgG desorption ratio was observed, the present study offers a novel molecular design for thermo-responsive adsorbents with high synthetic accessibility and potentially low toxicity.

  10. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf

    Science.gov (United States)

    Bello, Olugbenga Solomon; Adegoke, Kayode Adesina; Akinyunni, Opeyemi Omowumi

    2017-06-01

    A new and novel adsorbent was obtained by impregnation of Moringa oleifera leaf in H2SO4 and NaOH, respectively. Prepared adsorbents were characterized using elemental analysis, FT-IR, SEM, TGA and EDX analyses, respectively. The effects of operational parameters, such as pH, moisture content, ash content, porosity and iodine number on these adsorbents were investigated and compared with those of commercial activated carbon (CAC). EDX results of acid activated M. oleifera leaf have the highest percentage of carbon by weight (69.40 %) and (76.11 %) by atom, respectively. Proximate analysis showed that the fixed carbon content of acid activated M. oleifera leaf (69.14 ± 0.01) was the highest of all adsorbents studied. Conclusively, the present investigation shows that acid activated M. oleifera leaf is a good alternative adsorbent that could be used in lieu of CAC for recovery of dyes and heavy metal from aqueous solutions and other separation techniques.

  11. Diffusion of radionuclide chains through an adsorbing medium

    International Nuclear Information System (INIS)

    Burkholder, H.C.; DeFigh-Price, C.

    1977-01-01

    The diffusion of radionuclide chains from an underground nuclear waste disposal site through the surrounding geologic medium to the surface is investigated for impulse and band releases. Numerical calculation of the analytical solutions shows that differences in adsorption characteristics among chain members and radioactive decay during transit reduce radionuclide discharges to the biosphere. Results suggest that molecular diffusion is unlikely to be an important transfer mechanism from geologic isolation, and that disposal of radionuclides in deep geologic formations and in the seabed under conditions of very low or nonexistent water flow is likely to be very effective in preventing radioactivity releases to the biosphere

  12. Investigation of the adsorption of polymer chains on amine-functionalized double-walled carbon nanotubes.

    Science.gov (United States)

    Ansari, R; Ajori, S; Rouhi, S

    2015-12-01

    Molecular dynamics (MD) simulations were used to study the adsorption of different polymer chains on functionalized double-walled carbon nanotubes (DWCNTs). The nanotubes were functionalized with two different amines: NH2 (a small amine) and CH2-NH2 (a large amine). Considering three different polymer chains, all with the same number of atoms, the effect of polymer type on the polymer-nanotube interaction was studied. In general, it was found that covalent functionalization considerably improved the polymer-DWCNT interaction. By comparing the results obtained with different polymer chains, it was observed that, unlike polyethylene and polyketone, poly(styrene sulfonate) only weakly interacts with the functionalized DWCNTs. Accordingly, the smallest radius of gyration was obtained with adsorbed poly(styrene sulfonate). It was also observed that the DWCNTs functionalized with the large amine presented more stable interactions with polyketone and poly(styrene sulfonate) than with polyethylene, whereas the DWCNTs functionalized with the small amine showed better interfacial noncovalent bonding with polyethylene.

  13. Mercury chemisorption by sulfur adsorbed in porous materials

    NARCIS (Netherlands)

    Steijns, M.; Peppelenbos, A.; Mars, P.

    1976-01-01

    The sorption of mercury vapor by adsorbed sulfur in the zeolites CaA (= 5A) and NaX (=13X) and two types of active carbon has been measured at a temperature of 50°C. With increasing degree of micropore filling by sulfur the fraction of sulfur accessible to mercury atoms decreased for CaA and NaX.

  14. Transporting method for adsorbing tower and the adsorbing tower

    International Nuclear Information System (INIS)

    Shimokawa, Nobuhiro.

    1996-01-01

    A cylindrical plastic bag is disposed to the upper surface of an adsorbing tower so as to surround a suspending piece. One opening of the bag is sealed, and other opening is secured in a sealed state to a bag holding portion disposed to glove box at a gate for the adsorbing tower box. The adsorbing tower is transported into the glove box, and after the completion of the operation of the adsorbing tower, the adsorbing tower is taken out in a state that the bag is restricted and sealed at a portion below the adsorbing tower. The bag may be made of a vinyl plastic, the bag holding portion may be a short-cylindrical protrusion, and may have an O-ring groove at the outer surface. Even if the adsorbing tower is heavy, the adsorbing tower can be carried out easily in a state where it is sealed gas tightly. (N.H.)

  15. Adsorption configurations of two nitrogen atoms on graphene

    International Nuclear Information System (INIS)

    Rani, Babita; Jindal, V. K.; Dharamvir, Keya

    2014-01-01

    We present calculations for different possible configurations of two nitrogen adatoms on graphene using the code VASP, based on Density Functional Theory (DFT). Two N atoms adsorbed on the graphene sheet can share a bond in two ways. They take positions either just above two adjacent carbon atoms or they form a bridge across opposite bonds of a hexagon in the graphene sheet. Both these configurations result into structural distortion of the sheet. Another stable configuration involving two N atoms consists of an N 2 molecule which is physisorbed at a distance 3.69 Å on the graphene sheet. Two N atoms can also be adsorbed on alternate bridge sites of neighbouring hexagons of graphene. This configuration again leads to distortion of the sheet in perpendicular direction

  16. Organic adsorbates on metal surfaces. PTCDA and NTCDA on AG(110)

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Afshin

    2010-02-22

    Polyaromatic molecules functionalized with carboxylic groups have served as model systems for the growth of organic semiconducting films on a large variety of substrates. Most non-reactive substrates allow for a growth mode compatible with the bulk phase of the molecular crystal with two molecules in the unit cell, but some more reactive substrates including Ag(111) and Ag(110) can induce substantial changes in the first monolayer (ML). In the specific case of Ag(110), the adsorbate unit cell of both NTCDA and PTCDA resembles a brickwall structure, with a single molecule in the unit cell. From this finding, it can be concluded that the adsorbate-substrate interaction is stronger than typical inter-molecular binding energies in the respective bulk phases. In the present work, the interactions between small Ag(110) clusters and a single NTCDA or PTCDA molecule are investigated with different ab initio techniques. Four major ingredients contribute to the binding between adsorbate and substrate: Directional bonds between Ag atoms in the topmost layer and the oxygen atoms of the molecule, Pauli repulsion between filled orbitals of molecule and substrate, an attractive van-der-Waals interaction, and a negative net charge on the molecule inducing positive image charges in the substrate, resulting therefore in an attractive Coulomb interaction between these opposite charges. As both Hartree-Fock theory and density functional theory with typical gradient-corrected density functional do not contain any long range correlation energy required for dispersion interactions, we compare these approaches with the fastest numerical technique where the leading term of the van-der-Waals interaction is included, i.e. second order Moeller-Plesset theory (MP2). Both Hartree-Fock and density functional theory result in bended optimized geometries where the adsorbate is interacting mainly via the oxygen atoms, with the core of the molecule repelled from the substrate. Only at the MP2 level

  17. Alternative types of molecule-decorated atomic chains in Au–CO–Au single-molecule junctions

    Directory of Open Access Journals (Sweden)

    Zoltán Balogh

    2015-06-01

    Full Text Available We investigate the formation and evolution of Au–CO single-molecule break junctions. The conductance histogram exhibits two distinct molecular configurations, which are further investigated by a combined statistical analysis. According to conditional histogram and correlation analysis these molecular configurations show strong anticorrelations with each other and with pure Au monoatomic junctions and atomic chains. We identify molecular precursor configurations with somewhat higher conductance, which are formed prior to single-molecule junctions. According to detailed length analysis two distinct types of molecule-affected chain-formation processes are observed, and we compare these results to former theoretical calculations considering bridge- and atop-type molecular configurations where the latter has reduced conductance due to destructive Fano interference.

  18. Adsorbed layers on (111)InAs faces in contact with In-As-Cl-H gas phase, and the possibility of phase transitions in the adsorbed layers

    Science.gov (United States)

    Chernov, A. A.; Ruzaikin, M. P.

    1981-04-01

    Adsorption of various species existing in the In-As-Cl-H CVD gaseous system on both InAs (111) faces is considered. Arsenic is supposed to be adsorbed in the form of triangles As 3 and tetrahedrons As 4, each of them occupying 3 atomic sites above In or As atoms on (111)In or (111)As, respectively. The system of polyatomic adsorption equations was used to find the coverages of the faces by various species. Admolecule-surface bond strengths are taken to be equal to the ones for the single bonds in molecules. Pauling electronegativities were used to find the effective charges of the atoms in the adsorption layer. Thus, the dipole moments of adsorbed molecules which arise are directed along the In-As bonds in the InAs lattice. With this geometry, the calculated electrostatic dipole-dipole attraction between InCl molecules forming a dense layer on (111)As exceeds 12 kcal/mol. Thus, condensation of the two-dimensional gas of adsorbed InCl molecules should be expected. Corresponding S-shape isotherms θ( P) are calculated for different As 3 vapor pressures, θ and P being the surface coverage and bulk vapor pressure of InCl. Intervals of {InCl 3}/{H 2} ratios at different temperatures where the two-dimensional condensation may occur, are presented for realistic CVD conditions. Two-dimensional condensation may result in sharp changes in kinetic coefficient and thus in autho-oscillations in growth rate and doping level creating periodic superstructures. Nucleation and CVD growth processes are discussed.

  19. Probing the dynamics of 3He atoms adsorbed on MCM-41 with pulsed NMR

    Science.gov (United States)

    Huan, C.; Masuhara, N.; Adams, J.; Lewkowitz, M.; Sullivan, N. S.

    2018-03-01

    We report measurements of the nuclear spin-spin and spin-lattice relaxation times for 3He adsorbed on MCM-41 for temperatures 0.08 < T < 1.2 K. Deviations from Curie behavior are observed at low temperatures. The relaxation times exhibit a two-component behavior representing the differing dynamics of the mobile quasi-free molecules in the center of the tubes compared to the adsorbed layer on the walls. The amplitudes of the two components provide an accurate measure of the number of fluid-like molecules traveling in the center of the nanotubes.

  20. The state of physically adsorbed substances in microporous adsorbents

    International Nuclear Information System (INIS)

    Fomkin, A.A.

    1987-01-01

    Xe, Kr, Ar, CF 3 Cl, CH 4 adsorption in NaX microporous zeolite of 0.98 Na 2 OxAl 2 O 3 x2.36SiO 2 x0.02H 2 O is studied. Some properties of adsorbates (density, coefficients of expansion, enthalpy, heat capacity) are determined and discussed. The adsorbate in the microporous adsorbent is shown to be a particular state of a substance. Liniarity of adsorption isosteres and sharp changes during isosteric heat capacity of the adsorbate points to the fact that in microporous adsorbents phase transformations of the second type are possible

  1. The relationship between vacuum and atomic collisions in solids

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.

    1980-01-01

    Atomic collision events in solids are frequently stimulated by external irradiation with energetic heavy ions. This requires production, acceleration and manipulation of ion beams in vacuum system with ensuing problems arising in perturbations to ion beam quality from gas phase collisions. In addition the dynamic interaction between the gas phase and any surfaces at which atomic collisions are under investigation can lead to perturbation to the collision events by adsorbed contaminant. This review discusses both gas phase requirements for ion accelerators to minimize deleterious effects and outlines some of the processes which occur in atomic collisions due to the presence of adsorbed impurities. Finally it is shown how certain atomic collision processes involving elastic scattering may be employed to investigate surface adsorption and related effects. (author)

  2. Atomistics of Ge deposition on Si(100) by atomic layer epitaxy.

    Science.gov (United States)

    Lin, D S; Wu, J L; Pan, S Y; Chiang, T C

    2003-01-31

    Chlorine termination of mixed Ge/Si(100) surfaces substantially enhances the contrast between Ge and Si sites in scanning tunneling microscopy observations. This finding enables a detailed investigation of the spatial distribution of Ge atoms deposited on Si(100) by atomic layer epitaxy. The results are corroborated by photoemission measurements aided by an unusually large chemical shift between Cl adsorbed on Si and Ge. Adsorbate-substrate atomic exchange during growth is shown to be important. The resulting interface is thus graded, but characterized by a very short length scale of about one monolayer.

  3. Linear response theory of activated surface diffusion with interacting adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Marti' nez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A.S.; Vega, J.L. [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Rojas-Lorenzo, G. [Instituto Superior de Tecnologi' as y Ciencias Aplicadas, Ave. Salvador Allende, esq. Luaces, 10400 La Habana (Cuba); Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain); Miret-Artes, S., E-mail: s.miret@imaff.cfmac.csic.es [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain)

    2010-05-12

    Graphical abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed. - Abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed.

  4. Heat transfer between adsorbate and laser-heated hot electrons

    International Nuclear Information System (INIS)

    Ueba, H; Persson, B N J

    2008-01-01

    Strong short laser pulses can give rise to a strong increase in the electronic temperature at metal surfaces. Energy transfer from the hot electrons to adsorbed molecules may result in adsorbate reactions, e.g. desorption or diffusion. We point out the limitations of an often used equation to describe the heat transfer process in terms of a friction coupling. We propose a simple theory for the energy transfer between the adsorbate and hot electrons using a newly introduced heat transfer coefficient, which depends on the adsorbate temperature. We calculate the transient adsorbate temperature and the reaction yield for a Morse potential as a function of the laser fluency. The results are compared to those obtained using a conventional heat transfer equation with temperature-independent friction. It is found that our equation of energy (heat) transfer gives a significantly lower adsorbate peak temperature, which results in a large modification of the reaction yield. We also consider the heat transfer between different vibrational modes excited by hot electrons. This mode coupling provides indirect heating of the vibrational temperature in addition to the direct heating by hot electrons. The formula of heat transfer through linear mode-mode coupling of two harmonic oscillators is applied to the recent time-resolved study of carbon monoxide and atomic oxygen hopping on an ultrafast laser-heated Pt(111) surface. It is found that the maximum temperature of the frustrated translation mode can reach high temperatures for hopping, even when direct friction coupling to the hot electrons is not strong enough

  5. Toward an effective adsorbent for polar pollutants: Formaldehyde adsorption by activated carbon

    International Nuclear Information System (INIS)

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-01-01

    Highlights: • Activated carbon fiber with mild activation condition is useful as adsorbent for polar pollutants. • Diverse variations are investigated for developing an effective adsorbent. • Surface functional group is the most important factor for capacity as a adsorbent. • Surface functional groups on ACFs are investigated using micro-ATR FTIR. -- Abstract: Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital

  6. Magnetic properties of a single iron atomic chain encapsulated in armchair carbon nanotubes: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63, 46000 Safi (Morocco); Jabar, A. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63, 46000 Safi (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université Grenoble Alpes, 25 rue des Martyrs BP 166, 38042 Grenoble cedex 9 (France)

    2017-06-15

    Highlights: • Magnetic properties of Fe atom chain wrapped in armchair carbon nanotubes have been studied. • Transition temperature of iron and carbon have been calculated using Monte Carlo simulations. • The multiples magnetic hysteresis have been found. - Abstract: The magnetic properties have been investigated of FeCu{sub x}C{sub 1−x} for a Fe atom chain wrapped in armchair (N,N) carbon nanotubes (N = 4,6,8,10,12) diluted by Cu{sup 2+} ions using Monte Carlo simulations. The thermal total magnetization and magnetic susceptibility are found. The reduced transition temperatures of iron and carbon have been calculated for different N and the exchange interactions. The total magnetization is obtained for different exchange interactions and crystal field. The Magnetic hysteresis cycles are obtained for different N, the reduced temperatures and exchange interactions. The multiple magnetic hysteresis is found. This system shows it can be used as magnetic nanostructure possessing potential current and future applications in permanent magnetism, magnetic recording and spintronics.

  7. Modeling adsorption: Investigating adsorbate and adsorbent properties

    Science.gov (United States)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  8. Effect of solvent quality and chain density on normal and frictional forces between electrostatically anchored thermoresponsive diblock copolymer layers

    DEFF Research Database (Denmark)

    An, Junxue; Liu, Xiaoyan; Dedinaite, Andra

    2017-01-01

    and a thermoresponsive block of poly(2-isopropyl-2-oxazoline), PIPOZ. We find that at a given temperature different polymer chain densities at the silica surface are achieved depending on the previous temperature history. We explore how this affects surface and friction forces between such layers using the atomic force......Equilibration in adsorbing polymer systems can be very slow, leading to different physical properties at a given condition depending on the pathway that was used to reach this state. Here we explore this phenomenon using a diblock copolymer consisting of a cationic anchor block....... The friction forces decrease in the cooling stage due to rehydration of the PIPOZ chain. A consequence of the adsorption hysteresis is that the friction forces measured at 25 °C are significantly lower after exposure to a temperature of 40 °C than prior to heating, which is due to higher polymer chain density...

  9. 4He adsorbed in cylindrical silica nanopores: Effect of size on the single-atom mean kinetic energy

    International Nuclear Information System (INIS)

    Andreani, C.; Senesi, R.; Pantalei, C.

    2007-01-01

    This paper reports a study of the short-time dynamics of helium confined in silica nanopores (xerogel powder), with average pore diameters of 24 and 160 A. The longitudinal momentum distribution of helium adsorbed in xerogels has been determined via deep inelastic neutron scattering (DINS) measurements performed on the VESUVIO spectrometer at the ISIS spallation source. DINS measurements, in the attosecond time scale (i.e., 10 -16 -10 -15 s), were performed at a temperature of T=2.5 K and saturated vapor pressure conditions, with 95% pore volume filling. The average wave-vector transfer q was about 130 A -1 . For confined helium, significant changes in the values of the single-particle mean kinetic energies K > are found in the bulk phase. These are 32.6±8.7 K for the 24 A and 24.4±5.3 K for the 160 A pore diameters, remarkably higher than K >=16.2±0.4 K, the value of normal liquid 4 He at T=2.5 K and saturated vapor pressure conditions. The results are interpreted in terms of a model where 4 He atoms are arranged in concentric annuli along the cylindrical pore axis, with K > mainly dependent on the ratio between the atomic 'effective' diameter and the pore diameter. The number of solid layers close to pore surface is found to be strongly pore-size dependent with one single solid layer for 24 A diameter pore and three solid layers for 160 A diameter pore

  10. Manipulation of perpendicular magnetic anisotropy of single Fe atom adsorbed graphene via MgO(1 1 1) substrate

    Science.gov (United States)

    Fu, Mingming; Tang, Weiqing; Wu, Yaping; Ke, Congming; Guo, Fei; Zhang, Chunmiao; Yang, Weihuang; Wu, Zhiming; Kang, Junyong

    2018-05-01

    Perpendicular magnetic anisotropy is significantly important for realizing a long-term retention of information for spintronics devices. Inspired by 2D graphene with its high charge carrier mobility and long spin diffusion length, we report a first-principles design framework on perpendicular magnetic anisotropy engineering of a Fe atom adsorbed graphene by employing a O-terminated MgO (1 1 1) substrate. Determined by the adsorption sites of the Fe atom, a tunable magnetic anisotropy is realized in Fe/graphene/MgO (1 1 1) structure, with the magnetic anisotropy energy of  ‑0.48 meV and 0.23 meV, respectively, corresponding to the in-plane and out of plane easy magnetizations. Total density of states suggest a half-metallicity with a 100% spin polarization in the system. Decomposed densities of Fe-3d states reveal the orbital contributions to the magnetic anisotropy for different Fe adsorption sites. Bonding interaction and charge redistribution regulated by MgO substrate are found responsible for the novel perpendicular magnetic anisotropy engineering in the system. The effective manipulation of perpendicular magnetic anisotropy in present work offers some references for the design and construction of 2D spintronics devices.

  11. Bolalipid fiber aggregation can be modulated by the introduction of sulfur atoms into the spacer chains.

    Science.gov (United States)

    Graf, Gesche; Drescher, Simon; Meister, Annette; Haramus, Vasyl M; Dobner, Bodo; Blume, Alfred

    2013-03-01

    The aggregation behavior in aqueous suspension of two symmetrical single-chain bolaamphiphiles, namely 12,21-dithiadotriacontane-1,32-diyl-bis [2-(tri-methylammonio)ethylphosphate] (PC-C32SS-PC) and 12,21-dithiadotriacontane-1,32-diyl-bis[2-(dimethylammonio)ethylphosphate] (Me(2)PE-C32SS-Me(2)PE), containing sulfur as heteroatoms in the chains, was studied using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), small angle neutron scattering (SANS), and transmission electron microscopy (TEM). The rheological properties of hydrogels formed by the aggregation into nanofibers were studied by oscillatory rheology. Based on the well-characterized behavior of bolalipids with long alkyl chains which at room temperature can form a network of nanofibers leading to the formation of a hydrogel, we investigated whether the incorporation of two heteroatoms of sulfur into the spacer chain of the molecules has an influence on the aggregation properties. Compared to the analogues without sulfur, the fibrous aggregates formed by sulfur containing compounds are less stable and build weaker viscoelastic gels. This is due to a perturbation of the packing of the chains as the sulfur atoms change the bond angle in the chain compared to the molecules with pure alkyl chains leading to kinks in the chain. For the bolaamphiphile with the Me(2)PE headgroups this effect is less pronounced due to the possibility of forming stabilizing hydrogen bonds between the headgroups. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Adsorption of 3d transition metal atoms on graphene-like gallium nitride monolayer: A first-principles study

    Science.gov (United States)

    Chen, Guo-Xiang; Li, Han-Fei; Yang, Xu; Wen, Jun-Qing; Pang, Qing; Zhang, Jian-Min

    2018-03-01

    We study the structural, electronic and magnetic properties of 3d transition metal (TM) atoms (Cr, Mn, Fe, Co, Ni and Cu) adsorbed GaN monolayer (GaN-ML) using first-principles calculations. The results show that, for 6 different TM adatoms, the most stable adsorption sites are the same. The adsorption of TM atoms results in significant lattice distortions. A covalent chemical bonding character between TM adatom and GaN-ML is found in TM adsorbed systems. Except for Ni adsorbed system, all TM adsorbed systems show spin polarization implying that the adsorption of TM induces magnetization. The magnetic moments of the adsorbed systems are concentrated on the TM adatoms and the nearest-neighbor N atoms of the adsorption site contributed slightly. Our analysis shows that the GaN-ML properties can be effectively modulated by TM adsorption, and exhibit various electronic and magnetic properties, such as magnetic metals (Fe adsorption), half-metal (Co adsorption), and spin gapless semiconductor (Cu adsorption). These present properties of TM adsorbed GaN-ML may be of value in electronics and spintronics applications.

  13. Observation of isolated carbon atoms and the study of their mobility on Pt clusters by NMR

    International Nuclear Information System (INIS)

    Wang, P.; Ansermet, J.; Slichter, C.P.; Sinfelt, J.H.

    1985-01-01

    The authors have used NMR to determine the structure of surface species after the C-C bond scission of adsorbed acetylene and ethylene on Pt clusters produced by heating the samples to 690 K. They have found the species to be predominantly isolated carbon atoms adsorbed on Pt surfaces. They have studied the mobility of adsorbed carbon atoms from motional narrowing of the 13 C line shapes and motion-induced shortening of the spin-lattice relaxation times. They have found that the carbon atoms on Pt clusters are very mobile, their activation energy of 7 +- 1 kcal/mole for translational motion being less than half that of CO on Pt clusters

  14. Redox functionality mediated by adsorbed oxygen on a Pd oxide film over a Pd(100) thin structure: a first-principles study

    International Nuclear Information System (INIS)

    Kusakabe, K; Ikuno, Y k; Nagara, H; Harada, K

    2009-01-01

    Stable oxygen sites on a PdO film over a Pd(100) thin structure with a (√5x√5)R27 o surface unit cell are determined using the first-principles electronic structure calculations with the generalized gradient approximation. The adsorbed monatomic oxygen goes to a site bridging two twofold-coordinated Pd atoms or to a site bridging a twofold-coordinated Pd atom and a fourfold-coordinated Pd atom. Estimated reaction energies of CO oxidation by reduction of the oxidized PdO film and N 2 O reduction mediated by oxidation of the PdO film are both exothermic. Motion of the adsorbed oxygen atom between the two stable sites is evaluated using the nudged elastic band method, where an energy barrier for a translational motion of the adsorbed oxygen may become ∼0.45 eV, which is low enough to allow fluxionality of the surface oxygen at high temperatures. The oxygen fluxionality is allowed by the existence of twofold-coordinated Pd atoms on the PdO film, whose local structure has a similarity to that of Pd catalysts for the Suzuki-Miyaura cross-coupling. Although NO x (including NO 2 and NO) reduction is not always catalyzed by the PdO film only, we conclude that continual redox reactions may happen mediated by oxygen-adsorbed PdO films over a Pd surface structure, when the influx of NO x and CO continues, and when the reaction cycle is kept on a well-designed oxygen surface.

  15. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; Mehio, Nada; Li, Meijun; Gill, Gary; Tsouris, Costas; Mayes, Richard T.; Saito, Tomonori; Dai, Sheng

    2016-04-20

    The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly- (vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligands (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42-3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.

  16. Differential Pair Distribution Function Study of the Structure of Arsenate Adsorbed on Nanocrystalline [gamma]-Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei; Harrington, Richard; Tang, Yuanzhi; Kubicki, James D.; Aryanpour, Masoud; Reeder, Richard J.; Parise, John B.; Phillips, Brian L. (SBU); (Penn)

    2012-03-15

    Structural information is important for understanding surface adsorption mechanisms of contaminants on metal (hydr)oxides. In this work, a novel technique was employed to study the interfacial structure of arsenate oxyanions adsorbed on {gamma}-alumina nanoparticles, namely, differential pair distribution function (d-PDF) analysis of synchrotron X-ray total scattering. The d-PDF is the difference of properly normalized PDFs obtained for samples with and without arsenate adsorbed, otherwise identically prepared. The real space pattern contains information on atomic pair correlations between adsorbed arsenate and the atoms on {gamma}-alumina surface (Al, O, etc.). PDF results on the arsenate adsorption sample on {gamma}-alumina prepared at 1 mM As concentration and pH 5 revealed two peaks at 1.66 {angstrom} and 3.09 {angstrom}, corresponding to As-O and As-Al atomic pair correlations. This observation is consistent with those measured by extended X-ray absorption fine structure (EXAFS) spectroscopy, which suggests a first shell of As-O at 1.69 {+-} 0.01 {angstrom} with a coordination number of 4 and a second shell of As-Al at 3.13 {+-} 0.04 {angstrom} with a coordination number of 2. These results are in agreement with a bidentate binuclear coordination environment to the octahedral Al of {gamma}-alumina as predicted by density functional theory (DFT) calculation.

  17. Differential pair distribution function study of the structure of arsenate adsorbed on nanocrystalline γ-alumina.

    Science.gov (United States)

    Li, Wei; Harrington, Richard; Tang, Yuanzhi; Kubicki, James D; Aryanpour, Masoud; Reeder, Richard J; Parise, John B; Phillips, Brian L

    2011-11-15

    Structural information is important for understanding surface adsorption mechanisms of contaminants on metal (hydr)oxides. In this work, a novel technique was employed to study the interfacial structure of arsenate oxyanions adsorbed on γ-alumina nanoparticles, namely, differential pair distribution function (d-PDF) analysis of synchrotron X-ray total scattering. The d-PDF is the difference of properly normalized PDFs obtained for samples with and without arsenate adsorbed, otherwise identically prepared. The real space pattern contains information on atomic pair correlations between adsorbed arsenate and the atoms on γ-alumina surface (Al, O, etc.). PDF results on the arsenate adsorption sample on γ-alumina prepared at 1 mM As concentration and pH 5 revealed two peaks at 1.66 Å and 3.09 Å, corresponding to As-O and As-Al atomic pair correlations. This observation is consistent with those measured by extended X-ray absorption fine structure (EXAFS) spectroscopy, which suggests a first shell of As-O at 1.69 ± 0.01 Å with a coordination number of ~4 and a second shell of As-Al at ~3.13 ± 0.04 Å with a coordination number of ~2. These results are in agreement with a bidentate binuclear coordination environment to the octahedral Al of γ-alumina as predicted by density functional theory (DFT) calculation.

  18. Carbyne from first principles: chain of C atoms, a nanorod or a nanorope.

    Science.gov (United States)

    Liu, Mingjie; Artyukhov, Vasilii I; Lee, Hoonkyung; Xu, Fangbo; Yakobson, Boris I

    2013-11-26

    We report an extensive study of the properties of carbyne using first-principles calculations. We investigate carbyne's mechanical response to tension, bending, and torsion deformations. Under tension, carbyne is about twice as stiff as the stiffest known materials and has an unrivaled specific strength of up to 7.5 × 10(7) N·m/kg, requiring a force of ∼10 nN to break a single atomic chain. Carbyne has a fairly large room-temperature persistence length of about 14 nm. Surprisingly, the torsional stiffness of carbyne can be zero but can be "switched on" by appropriate functional groups at the ends. Further, under appropriate termination, carbyne can be switched into a magnetic semiconductor state by mechanical twisting. We reconstruct the equivalent continuum elasticity representation, providing the full set of elastic moduli for carbyne, showing its extreme mechanical performance (e.g., a nominal Young's modulus of 32.7 TPa with an effective mechanical thickness of 0.772 Å). We also find an interesting coupling between strain and band gap of carbyne, which is strongly increased under tension, from 2.6 to 4.7 eV under a 10% strain. Finally, we study the performance of carbyne as a nanoscale electrical cable and estimate its chemical stability against self-aggregation, finding an activation barrier of 0.6 eV for the carbyne-carbyne cross-linking reaction and an equilibrium cross-link density for two parallel carbyne chains of 1 cross-link per 17 C atoms (2.2 nm).

  19. Complexation of lysozyme with adsorbed PtBS-b-SCPI block polyelectrolyte micelles on silver surface.

    Science.gov (United States)

    Papagiannopoulos, Aristeidis; Christoulaki, Anastasia; Spiliopoulos, Nikolaos; Vradis, Alexandros; Toprakcioglu, Chris; Pispas, Stergios

    2015-01-20

    We present a study of the interaction of the positively charged model protein lysozyme with the negatively charged amphiphilic diblock polyelectrolyte micelles of poly(tert-butylstyrene-b-sodium (sulfamate/carboxylate)isoprene) (PtBS-b-SCPI) on the silver/water interface. The adsorption kinetics are monitored by surface plasmon resonance, and the surface morphology is probed by atomic force microscopy. The micellar adsorption is described by stretched-exponential kinetics, and the micellar layer morphology shows that the micelles do not lose their integrity upon adsorption. The complexation of lysozyme with the adsorbed micellar layers depends on the micelles arrangement and density in the underlying layer, and lysozyme follows the local morphology of the underlying roughness. When the micellar adsorbed amount is small, the layers show low capacity in protein complexation and low resistance in loading. When the micellar adsorbed amount is high, the situation is reversed. The adsorbed layers both with or without added protein are found to be irreversibly adsorbed on the Ag surface.

  20. Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures

    DEFF Research Database (Denmark)

    Schnadt, Joachim; Xu, Wei; Vang, Ronnie Thorbjørn

    2010-01-01

    a large tolerance to monatomic surface steps on the Ag(110) surface. The observed behaviour is explained in terms of strong intermolecular hydrogen bonding and a strong surface-mediated directionality, assisted by a sufficient degree of molecular backbone flexibility. In contrast, the same kind of step......-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent...... bonds to the surface, a situation which is also achieved on Ag(110) by annealing to 200 degrees C. These results show that the formation of particular self-assembled molecular nanostructures depends significantly on a subtle balance between the adsorbate-adsorbate and adsorbate-substrate interactions...

  1. Electrochemical characterization of irreversibly adsorbed germanium on platinum stepped surfaces vicinal to Pt(1 0 0)

    International Nuclear Information System (INIS)

    Rodriguez, P.; Herrero, E.; Solla-Gullon, J.; Vidal-Iglesias, F.J.; Aldaz, A.; Feliu, J.M.

    2005-01-01

    The electrochemical behavior of germanium irreversibly adsorbed at stepped surfaces vicinal to the Pt(1 0 0) pole is reported. The process taking part on the (1 0 0) terraces is evaluated from charge density measurements and calibration lines versus the terrace dimension are plotted. On the series Pt(2n - 1,1,1) having (1 1 1) monoatomic steps, the charge involved in the redox process undergone by the irreversibly adsorbed germanium is able to account for (n - 0.5) terrace atoms, thus suggesting some steric difficulties in the growth of the adlayer on the (1 0 0) terraces. Conversely, no steric problems are apparent in the series Pt(n,1,0) in which more open (1 0 0) steps are present on the (1 0 0) terraces. In this latter case the charge density under the germanium redox peaks is proportional to the number of terrace atoms. Some comparison is made with other stepped surfaces to understand the behavior and stability of germanium irreversibly adsorbed on the different platinum surface sites

  2. Entropic solvation force between surfaces modified by grafted chains: a density functional approach

    Directory of Open Access Journals (Sweden)

    O. Pizio

    2010-01-01

    Full Text Available The behavior of a hard sphere fluid in slit-like pores with walls modified by grafted chain molecules composed of hard sphere segments is studied using density functional theory. The chains are grafted to opposite walls via terminating segments forming pillars. The effects of confinement and of "chemical" modification of pore walls on the entropic solvation force are investigated in detail. We observe that in the absence of adsorbed fluid the solvation force is strongly repulsive for narrow pores and attractive for wide pores. In the presence of adsorbed fluid both parts of the curve of the solvation force may develop oscillatory behavior dependent on the density of pillars, the number of segments and adsorption conditions. Also, the size ratio between adsorbed fluid species and chain segments is of importance for the development of oscillations. The choice of these parameters is crucial for efficient manipulation of the solvation force as desired for pores of different width.

  3. Electron transport through monovalent atomic wires

    DEFF Research Database (Denmark)

    Lee, Y. J.; Brandbyge, Mads; Puska, M. J.

    2004-01-01

    at the chain determine the conductance. As a result, the conductance for noble-metal chains is close to one quantum of conductance, and it oscillates moderately so that an even number of chain atoms yields a higher value than an odd number. The conductance oscillations are large for alkali-metal chains......Using a first-principles density-functional method we model electron transport through linear chains of monovalent atoms between two bulk electrodes. For noble-metal chains the transport resembles that for free electrons over a potential barrier whereas for alkali-metal chains resonance states...... and their phase is opposite to that of noble-metal chains....

  4. Photoelectron diffraction studies of small adsorbates on single crystal surfaces

    International Nuclear Information System (INIS)

    Pascal, Mathieu

    2002-01-01

    The structural determination of small molecules adsorbed on single crystal surfaces has been investigated using scanned energy mode photoelectron diffraction (PhD). The experimental PhD data were compared to theoretical models using a simulation program based on multiple scattering calculations. Three adsorption systems have been examined on Ag(110), Cu(110) and Cu(111) crystals. The structure of the (2x1)-O adsorption phase on Ag(110) revealed that the O atoms occupied the long bridge site and are almost co-planar with the top layer of Ag atoms. The best agreement between multiple scattering theory and experiment has been obtained for a missing-row (or equivalently an 'added- row') reconstruction. Alternative buckled-row and unreconstructed surface models can be excluded. The adsorption of the benzoate species on Cu(110) has been found to occur via the carboxylate group. The molecules occupy short bridge sites with the O atoms being slightly displaced from atop sites and are aligned along the close-packed azimuth. The tilt of the molecule with respect to the surface and the degree to which the surface is relaxed have also been investigated. The adsorption of methyl on Cu(111) was studied using either azomethane or methyl iodide to prepare the surface layers. At saturation coverage the preferred adsorption site is the fcc threefold hollow site, whereas at half saturation coverage ∼ 30 % of the methyl species occupy the hop threefold hollow sites. Best agreement between theory and experiment corresponded to a methyl group adsorbed with C 3v symmetry. The height of the C above the surface in a pure methyl layer was 1.66 ± 0.02 A, but was reduced to 1.62 ± 0.02 A in the presence of co-adsorbed iodine, suggesting that iodine increases the strength of adsorption. Iodine was also found to occupy the fee threefold hollow sites with a Cu-l bondlength of 2.61 ± 0.02 A. (author)

  5. The role of polymer nanolayer architecture on the separation performance of anion-exchange membrane adsorbers: I. Protein separations.

    Science.gov (United States)

    Bhut, Bharat V; Weaver, Justin; Carter, Andrew R; Wickramasinghe, S Ranil; Husson, Scott M

    2011-11-01

    This contribution describes the preparation of strong anion-exchange membranes with higher protein binding capacities than the best commercial resins. Quaternary amine (Q-type) anion-exchange membranes were prepared by grafting polyelectrolyte nanolayers from the surfaces of macroporous membrane supports. A focus of this study was to better understand the role of polymer nanolayer architecture on protein binding. Membranes were prepared with different polymer chain graft densities using a newly developed surface-initiated polymerization protocol designed to provide uniform and variable chain spacing. Bovine serum albumin and immunoglobulin G were used to measure binding capacities of proteins with different size. Dynamic binding capacities of IgG were measured to evaluate the impact of polymer chain density on the accessibility of large size protein to binding sites within the polyelectrolyte nanolayer under flow conditions. The dynamic binding capacity of IgG increased nearly linearly with increasing polymer chain density, which suggests that the spacing between polymer chains is sufficient for IgG to access binding sites all along the grafted polymer chains. Furthermore, the high dynamic binding capacity of IgG (>130 mg/mL) was independent of linear flow velocity, which suggests that the mass transfer of IgG molecules to the binding sites occurs primarily via convection. Overall, this research provides clear evidence that the dynamic binding capacities of large biologics can be higher for well-designed macroporous membrane adsorbers than commercial membrane or resin ion-exchange products. Specifically, using controlled polymerization leads to anion-exchange membrane adsorbers with high binding capacities that are independent of flow rate, enabling high throughput. Results of this work should help to accelerate the broader implementation of membrane adsorbers in bioprocess purification steps. Copyright © 2011 Wiley Periodicals, Inc.

  6. Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N.C.R.; Hvilsted, S.

    1996-01-01

    Atomic force and scanning near-field optical microscopic investigations have been carried out on a polarization holographic grating recorded in an azobenzene side-chain Liquid crystalline polyester. It has been found that immediately following laser irradiation, a topographic surface grating...

  7. Atomic oxygen adsorption and its effect on the oxidation behaviour of ZrB2-ZrC-SiC in air

    International Nuclear Information System (INIS)

    Gao Dong; Zhang Yue; Xu Chunlai; Song Yang; Shi Xiaobin

    2011-01-01

    Research highlights: → Atomic oxygen was adsorbed on the surface of ZrB 2 -ZrC-SiC ceramics. → Atomic oxygen was preferred reacted with borides according to XPS spectra. → The atomic oxygen adsorption is detrimental to the oxidation resistance. → The porosity should be the major reason which provides diffusion path for the atomic oxygen. → The structure evolution of the ceramics during oxidation is analyzed. - Abstract: Atomic oxygen is adsorbed on the surface of the hot-pressed ZrB 2 -ZrC-SiC ceramic composites, and then the ceramic composites are oxidized in air up to 1500 deg. C with the purpose of clarifying the effect of atomic oxygen adsorption on the oxidation behaviour of the ceramic composites. The XPS spectra are employed to identify the adsorption mechanism of atomic oxygen on the surface of the ceramic composites, and the formation of O-B, O-Zr, and O-Si bonds indicates that atomic oxygen is chemically adsorbed on the surface of the ceramic. In addition, atomic oxygen is preferred to be adsorbed on the surface of borides according to the Zr 3d core level spectrum. On the other hand, the atomic oxygen adsorption is detrimental to the oxidation resistance according to experimental results, and the porosity of the ceramic should be the major reason which provides diffusion path for the atomic oxygen. Furthermore, the structure evolution of the ceramic composites during oxidation process is analyzed.

  8. Preconcentration, Separation and Determination of lead(II) with Methyl Thymol Blue Adsorbed on Activated Carbon Using Flame Atomic Absorption Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A.; Ghaderi, Ali R. [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2008-02-15

    An on-line system for preconcentration and separation of lead(II) is presented. The method is based on the complex formation of Pb(II) with adsorbed Methyl thymol blue on activated carbon. The conditions of preparing the solid phase reagent and of quantitative recovery of Pb(II) from diluted solutions, such as acidity of aqueous phase, solid phase capacity, and flow variables were studied as well as effect of potential interfering ions. After preconcentration step, the metal ions are eluted automatically by 5 ml of 0.5 M HNO{sub 3} solution and the lead ions content was determined by flame atomic absorption spectrometry. Under the optimum conditions, the lead ions in aqueous samples were separated and preconcentrated about 1000-fold by the column. The detection limit was 0.001 μg mL{sup -1}. Lead has been determined in river and tap water samples, with recovery of 98 to 102%.

  9. Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s

    Energy Technology Data Exchange (ETDEWEB)

    Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L., E-mail: aburin@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2016-07-21

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.

  10. Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s

    Science.gov (United States)

    Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L.

    2016-07-01

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.

  11. Effects of carbon nanofiller characteristics on PTT chain conformation and dynamics: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Asadinezhad, Ahmad, E-mail: asadinezhad@cc.iut.ac.ir; Kelich, Payam

    2017-01-15

    Highlights: • Poly (trimethylene terephthalate) (PTT) conformation adopts a folded shape near nanofiller surface. • Graphene and carbon nanotube with different size and chemistry were simulated. • Graphene functionalization induces stronger confinement on PTT chain conformation. • PTT chain motion alters in dynamics mode as it becomes adsorbed onto nanofillers. • PTT reveals further changes near graphene than carbon nanotube surface. - Abstract: The effects of nanofiller chemistry and geometry on static and dynamic properties of an aromatic polyester, poly (trimethylene terephthalate), were addressed thanks to long-run classical molecular dynamics simulation. Two carbon nanofillers, graphene and carbon nanotube, were employed, where graphene was used in pristine and functionalized forms and carbon nanotube was used in two different diameters. The nanofiller geometry and chemistry were found to exert significant effects on conformation and dynamic behavior of PTT chain at the interface within the time scale the simulation was performed. It was found that PTT chain underwent interaction of van der Waals type with nanofiller via two subsequent phases, adsorption and orientation. The former stage, with definite characteristic time, involved translation of polymer chain toward interface while the latter was controlled by vibrational motions of chain atoms. The consequence of interaction was an increase in conformational order of polymer chain by transition to folded shape being favorable for any subsequent structural ordering (crystallization). The interaction of polymer with nanofiller gave rise to a reduction in overall mobility of polymer chain characterized by crossover from normal diffusive motion to subdiffusive mode.

  12. Effects of carbon nanofiller characteristics on PTT chain conformation and dynamics: A computational study

    International Nuclear Information System (INIS)

    Asadinezhad, Ahmad; Kelich, Payam

    2017-01-01

    Highlights: • Poly (trimethylene terephthalate) (PTT) conformation adopts a folded shape near nanofiller surface. • Graphene and carbon nanotube with different size and chemistry were simulated. • Graphene functionalization induces stronger confinement on PTT chain conformation. • PTT chain motion alters in dynamics mode as it becomes adsorbed onto nanofillers. • PTT reveals further changes near graphene than carbon nanotube surface. - Abstract: The effects of nanofiller chemistry and geometry on static and dynamic properties of an aromatic polyester, poly (trimethylene terephthalate), were addressed thanks to long-run classical molecular dynamics simulation. Two carbon nanofillers, graphene and carbon nanotube, were employed, where graphene was used in pristine and functionalized forms and carbon nanotube was used in two different diameters. The nanofiller geometry and chemistry were found to exert significant effects on conformation and dynamic behavior of PTT chain at the interface within the time scale the simulation was performed. It was found that PTT chain underwent interaction of van der Waals type with nanofiller via two subsequent phases, adsorption and orientation. The former stage, with definite characteristic time, involved translation of polymer chain toward interface while the latter was controlled by vibrational motions of chain atoms. The consequence of interaction was an increase in conformational order of polymer chain by transition to folded shape being favorable for any subsequent structural ordering (crystallization). The interaction of polymer with nanofiller gave rise to a reduction in overall mobility of polymer chain characterized by crossover from normal diffusive motion to subdiffusive mode.

  13. Adsorbed Organic Material and Its Control on Wettability

    DEFF Research Database (Denmark)

    Matthiesen, Jesper; Hassenkam, Tue; Bovet, Nicolas Emile

    2017-01-01

    salinity. Here we quantified the response of sandstone core plug material in its preserved state (i.e., after storage in kerosene) and after the same core plug material was treated with ethanol and ozone to remove adsorbed organic compounds. We used the chemical force microscopy (CFM) mode of atomic force...... surfaces in artificial seawater (ASW; 35,600 ppm) and in ASW diluted to ∼1,500 ppm (ASW-low). Both before and after the ethanol/ozone treatment, and for both the alkane and the carboxylate functionalized tips, the adhesion was lower in ASW diluted to ∼1,500 ppm than in ASW. For both alkane and carboxylate...... ethanol/ozone treatment, to be a result of the loss of the organic material that was originally adsorbed on these surfaces, which adds to the charge density and thereby to the salinity dependent EDL force. Investigating the same area on the same pore surface, before and after removal of the organic...

  14. Migration of radionuclide chains through an adsorbing medium

    International Nuclear Information System (INIS)

    Lester, D.H.; Jansen, G.; Burkholder, H.C.

    1974-12-01

    The migration of actinides and other radionuclides from an underground geologic nuclear waste disposal site through a soil column to a surface water body was investigated for impulse and band releases. Numerical calculation of the analytical solutions revealed that differences in adsorption characteristics between chain members, axial dispersion, and radioactive decay all act to reduce radionuclide discharge rates at the exit of the soil column. The results of the study may have important implications in the underground storage and disposal of nuclear waste. (U.S.)

  15. Radiation-induced catalysis of fatty acids adsorbed onto clay minerals

    International Nuclear Information System (INIS)

    Negron-Mendoza, A.; Ramos-Bernal, S.; Colin-Garcia, M.; Mosqueira, F.G.

    2015-01-01

    We studied the behavior of small fatty (acetic acid) and dicarboxylic acids (succinic and malonic acids) adsorbed onto Na + -montmorillonite (a clay mineral) and exposed to gamma radiation. A decarboxylation reaction was found to predominate when the clay was present. This preferential synthesis promoted the formation of a compound with one less carbon atom than its target compound. In the system without clay, dimerization was the predominate outcome following radiolysis. (author)

  16. Characterization and comprehension of zeolite NaY/mesoporous SBA-15 composite as adsorbent for paraquat

    Energy Technology Data Exchange (ETDEWEB)

    Osakoo, Nattawut, E-mail: natawut.work@gmail.com [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand); Pansakdanon, Chaianun [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand); Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Sosa, Narongrit; Deekamwong, Krittanun; Keawkumay, Chalermpan; Rongchapo, Wina [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand); Chanlek, Narong [Synchrotron Light Research Institute, Nakhon Ratchasima, 30000 (Thailand); Jitcharoen, Juthamas [Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Prayoonpokarach, Sanchai [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand); Wittayakun, Jatuporn, E-mail: jatuporn@g.sut.ac.th [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand)

    2017-06-01

    NaY was synthesized from fumed silica and further modified to form a composite with SBA-15. Textural properties and basicity of the composite NaY-SBA-15 were between those of the parent materials. Paraquat adsorption on NaY was 204.1 mg/g, higher than that on NaY synthesized with rice husk silica from the previous work. SBA-15 was a poor adsorbent for paraquat. Based on the weight of NaY, the adsorption capacity of analytical-grade paraquat on the NaY-SBA-15 composite was 241.5 mg/g-NaY. Moreover, the composite adsorbed blue dye from a commercial grade paraquat. Interaction between the NaY-SBA-15 and paraquat could be from C and N atoms in paraquat with oxygen atom on NaY-SBA-15. - Highlights: • Zeolite NaY/mesoporous SBA-15 composite was synthesized with a simple method. • NaY and SBA-15 coexisted in the composite confirmed by FTIR, CO{sub 2}-TPD and XPS. • Adsorption capacity of paraquat (mg/g-NaY) was improved by NaY and SBA-15 composite. • C and N atoms in paraquat could interact with oxygen atom on NaY-SBA-15 composite.

  17. Effect of lattice-gas atoms on the adsorption behaviour of thioether molecules.

    Science.gov (United States)

    Pan, Yi; Yang, Bing; Hulot, Catherine; Blechert, Siegfried; Nilius, Niklas; Freund, Hans-Joachim

    2012-08-21

    Using STM topographic imaging and spectroscopy, we have investigated the adsorption of two thioether molecules, 1,2-bis(phenylthio)benzene and (bis(3-phenylthio)-phenyl)sulfane, on noble and transition metal surfaces. The two substrates show nearly antipodal behaviour. Whereas complexes with one or two protruding centres are observed on Au(111), only flat and uniform ad-structures are found on NiAl(110). The difference is ascribed to the possibility of the thioethers to form metal-organic complexes by coordinating lattice-gas atoms on the Au(111), while only the pristine molecules adsorb on the alloy surface. The metal coordination in the first case is driven by the formation of strong Au-S bonds and enables the formation of characteristic monomer, dimer and chain-like structures of the thioethers, using the Au atoms as linkers. A similar mechanism is not available on the NiAl, because no lattice gas develops at this surface at room temperature. Our work demonstrates how surface properties, i.e. the availability of mobile ad-species, determine the interaction of organic molecules with metallic substrates.

  18. Linear-chain model to explain density of states and Tsub(c) changes with atomic ordering

    International Nuclear Information System (INIS)

    Junod, A.

    1978-01-01

    The effect of long-range atomic order on the electronic density of states has been recalculated for the A15-type structure within the linear-chain model. It is found that a defect concentration c reduces the density of states at the Fermi level by a factor (1 + c/c 0 )(c/c 0 ) -3 [ln(1 + c/c 0 )] 3 . This result is in qualitative agreement with experimental data on the specific heat, magnetic susceptibility and superconducting transition temperature of V 3 Au. (author)

  19. Novel structures of oxygen adsorbed on a Zr(0001) surface predicted from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bo [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China); Wang, Jianyun [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Lv, Jian [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); College of Materials Science and Engineering, Jilin University, Changchun, 130012 (China); Gao, Xingyu [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Zhao, Yafan [CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Wang, Yanchao, E-mail: wyc@calypso.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China); College of Materials Science and Engineering, Jilin University, Changchun, 130012 (China); Song, Haifeng, E-mail: song_haifeng@iapcm.ac.cn [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Ma, Yanming [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China)

    2017-01-30

    Highlights: • Two stable structures of O adsorbed on a Zr(0001) surface are predicted with SLAM. • A stable structure of O adsorbed on a Zr(0001) surface is proposed with MLAM. • The calculated work function change is agreement with experimental value. - Abstract: The structures of O atoms adsorbed on a metal surface influence the metal properties significantly. Thus, studying O chemisorption on a Zr surface is of great interest. We investigated O adsorption on a Zr(0001) surface using our newly developed structure-searching method combined with first-principles calculations. A novel structural prototype with a unique combination of surface face-centered cubic (SFCC) and surface hexagonal close-packed (SHCP) O adsorption sites was predicted using a single-layer adsorption model (SLAM) for a 0.5 and 1.0 monolayer (ML) O coverage. First-principles calculations based on the SLAM revealed that the new predicted structures are energetically favorable compared with the well-known SFCC structures for a low O coverage (0.5 and 1.0 ML). Furthermore, on basis of our predicted SFCC + SHCP structures, a new structure within multi-layer adsorption model (MLAM) was proposed to be more stable at the O coverage of 1.0 ML, in which adsorbed O atoms occupy the SFCC + SHCP sites and the substitutional octahedral sites. The calculated work functions indicate that the SFCC + SHCP configuration has the lowest work function of all known structures at an O coverage of 0.5 ML within the SLAM, which agrees with the experimental trend of work function with variation in O coverage.

  20. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Science.gov (United States)

    Wei, Wei; Yang, Lei; Zhong, Wenhui; Cui, Jing; Wei, Zhenggui

    2015-03-01

    In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (Xc = 0.23) and had better adsorption capacity for FA than those (Xc = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long term. Findings of the present work highlight the potential for using poorly crystalline HAP nanoparticles as an effective and recyclable adsorbent for FA removal from aqueous solution.

  1. The kinetics of formation and transformation of silver atoms on solid surfaces subjected to ionizing irradiation

    International Nuclear Information System (INIS)

    Popovich, G.M.

    1988-01-01

    The paper discusses the results obtained in ESR-assisted studies of the kinetics of formation and transformation of silver atoms generated by γ-irradiation of silver-containing carriers. Three types of dependences have been established: (1) extreme; (2) saturation curves and (3) step-like. All the kinetic curves display, after a definite period of time, stable concentrations of adsorbed silver atoms per unit of the surface at a given temperature. Depending on the temperature of the experiment, the composition and nature of the carrier, the number of adsorbed silver ions, the irradiation dose and conditions of the experiment, a stable concentration of silver atoms at a given temperature may be equal to, higher or lower than the number of silver atoms measured immediately after γ-irradiation at a temperature of liquid nitrogen. A kinetic scheme is proposed to explain the obtained curves. The model suggests that the silver atoms adsorbed on the surface, as well as those formed after γ-irradiation, are bonded to the surface by various energies, which are related to heterogeneity of the carrier surface. (author)

  2. Quasi-elastic helium-atom scattering from surfaces: experiment and interpretation

    International Nuclear Information System (INIS)

    Jardine, A.P.; Ellis, J.; Allison, W.

    2002-01-01

    Diffusion of an adsorbate is affected both by the adiabatic potential energy surface in which the adsorbate moves and by the rate of thermal coupling between the adsorbate and substrate. In principle both factors are amenable to investigation through quasi-elastic broadening in the energy spread of a probing beam of helium atoms. This review provides a topical summary of both the quasi-elastic helium-atom scattering technique and the available data in relation to the determination of diffusion parameters. In particular, we discuss the activation barriers deduced from experiment and their relation to the adiabatic potential and the central role played by the friction parameter, using the CO/Cu(001) system as a case study. The main issues to emerge are the need for detailed molecular dynamics simulations in the interpretation of data and the desirability of significantly greater energy resolution in the experiments themselves. (author)

  3. Mediatorless electron transfer in glucose dehydrogenase/laccase system adsorbed on carbon nanotubes

    International Nuclear Information System (INIS)

    Ratautas, D.; Marcinkevičienė, L.; Meškys, R.; Kulys, J.

    2015-01-01

    Highlights: • Glucose dehydrogenase from Ewingella americana (GDH) demonstrated an effective mediatorless oxidation of glucose on single-walled carbon nanotubes (SWCNT). • Laccase from Trichaptum abietinum (LAC) exhibited mediatorless oxygen reduction when the enzyme was adsorbed on SWCNT. • Simultaneous adsorption of GDH and LAC on SWCNT formed an electron transfer chain in which glucose and lactose were oxidized by oxygen in mediatorless manner. - Abstract: A mediatorless electron transfer in the chain of glucose dehydrogenase (GDH) and laccase (LAC) catalysing the oxidation of glucose by molecular oxygen was studied. To demonstrate mediatorless processes, the GDH from Ewingella americana was adsorbed on single-walled carbon nanotubes (SWCNT). The effective mediatorless oxidation of glucose proceeded at 0.2–0.4 V vs. SCE. The electrode was most active at pH 6.1, and generated 0.8 mA cm −2 biocatalytic current in the presence of 50 mM glucose. The electrode showed a bell-shaped pH dependence with pK a values of 4.1 and 7.5. LAC from Trichaptum abietinum adsorbed on SWCNT exhibited mediatorless oxygen reduction at electrode potential less than 0.65 V. The electrode was most active at pH 3.0–4.0 and generated 1.1 mA cm −2 biocatalytic current in the presence of 0.254 mM oxygen, with an apparent pK a of 1.0 and 5.4. The electrodes prepared by simultaneous adsorption of GDH and LAC on SWCNT exhibited glucose oxidation at a potential higher than 0.25 V. The oxygen consumption in the chain was demonstrated using a Clark-type oxygen electrode. The dependence of oxygen consumption on glucose and lactose concentrations as well as activity of the system on pH were measured. A model of the pH dependence as well as mediatorless consecutive glucose oxidation with oxygen catalysed by LAC/GDH system is presented. This work provides a novel approach towards the synthesis of artificial multi enzyme systems by wiring oxidoreductases with SWCNT, and offers a better

  4. Stability, structural and electronic properties of benzene molecule adsorbed on free standing Au layer

    Energy Technology Data Exchange (ETDEWEB)

    Katoch, Neha, E-mail: nehakatoch2@gmail.com; Kapoor, Pooja; Sharma, Munish; Ahluwalia, P. K. [Physics Department, Himachal Pradesh University, Shimla, Himachal Pradesh, India 171005 (India); Kumar, Ashok [Center for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India, 151001 (India)

    2016-05-23

    We report stability and electronic properties of benzene molecule adsorbed on the Au atomic layer within the framework of density function theory (DFT). Horizontal configuration of benzene on the top site of Au monolayer prefers energetically over other studied configurations. On the adsorption of benzene, the ballistic conductance of Au monolayer is found to decrease from 4G{sub 0} to 2G{sub 0} suggesting its applications for the fabrications of organic sensor devices based on the Au atomic layers.

  5. Surface effects on the mechanical elongation of AuCu nanowires: De-alloying and the formation of mixed suspended atomic chains

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, M. J. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, R. Sergio B. de Holanda 777, 13083-859 Campinas-SP (Brazil); Laboratório Nacional de Nanotecnologia-LNNANO, 13083-970 Campinas-SP (Brazil); Autreto, P. A. S.; Galvao, D. S., E-mail: galvao@ifi.unicamp.br; Ugarte, D. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, R. Sergio B. de Holanda 777, 13083-859 Campinas-SP (Brazil); Bettini, J. [Laboratório Nacional de Nanotecnologia-LNNANO, 13083-970 Campinas-SP (Brazil); Sato, F.; Dantas, S. O. [Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora-MG (Brazil)

    2015-03-07

    We report here an atomistic study of the mechanical deformation of Au{sub x}Cu{sub (1−x)} atomic-size wires (nanowires (NWs)) by means of high resolution transmission electron microscopy experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfaces that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.

  6. Surface effects on the mechanical elongation of AuCu nanowires: De-alloying and the formation of mixed suspended atomic chains

    International Nuclear Information System (INIS)

    Lagos, M. J.; Autreto, P. A. S.; Galvao, D. S.; Ugarte, D.; Bettini, J.; Sato, F.; Dantas, S. O.

    2015-01-01

    We report here an atomistic study of the mechanical deformation of Au x Cu (1−x) atomic-size wires (nanowires (NWs)) by means of high resolution transmission electron microscopy experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfaces that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed

  7. Distribution of metal and adsorbed guest species in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  8. Distribution of metal and adsorbed guest species in zeolites

    International Nuclear Information System (INIS)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes 129 Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of 129 Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, 129 Xe NMR is insensitive to fine structural details at room temperature

  9. LEED crystallography studies of the structure of clean and adsorbate-covered Ir, Pt and Rh crystal surfaces

    International Nuclear Information System (INIS)

    Koestner, R.J.

    1982-08-01

    There have only been a few Low Energy Electron Diffraction (LEED) intensity analyses carried out to determine the structure of molecules adsorbed on metal surfaces; most surface crystallography studies concentrated on the structure of clean unreconstructed or atomic adsorbate-covered transition metal faces. The few molecular adsorption systems already investigated by dynamical LEED are CO on Ni(100), Cu(100) and Pd(100) as well as C 2 H 2 and C 2 H 4 adsorbed on Pt(111). The emphasis of this thesis research has been to extend the applicability of LEED crystallography to the more complicated unit cells found in molecular overlayers on transition metals or in there constructed surfaces of clean transition metals

  10. Advances in single chain technology.

    Science.gov (United States)

    Gonzalez-Burgos, Marina; Latorre-Sanchez, Alejandro; Pomposo, José A

    2015-10-07

    The recent ability to manipulate and visualize single atoms at atomic level has given rise to modern bottom-up nanotechnology. Similar exquisite degree of control at the individual polymeric chain level for producing functional soft nanoentities is expected to become a reality in the next few years through the full development of so-called "single chain technology". Ultra-small unimolecular soft nano-objects endowed with useful, autonomous and smart functions are the expected, long-term valuable output of single chain technology. This review covers the recent advances in single chain technology for the construction of soft nano-objects via chain compaction, with an emphasis in dynamic, letter-shaped and compositionally unsymmetrical single rings, complex multi-ring systems, single chain nanoparticles, tadpoles, dumbbells and hairpins, as well as the potential end-use applications of individual soft nano-objects endowed with useful functions in catalysis, sensing, drug delivery and other uses.

  11. Two-pulse atomic coherent control spectroscopy of Eley-Rideal reactions: An application of an atom laser

    International Nuclear Information System (INIS)

    Joergensen, Solvejg; Kosloff, Ronnie

    2003-01-01

    A spectroscopic application of the atom laser is suggested. The spectroscopy termed 2PACC (two-pulse atomic coherent control) employs the coherent properties of matter waves from a two-pulse atom laser. These waves are employed to control a gas-surface chemical recombination reaction. The method is demonstrated for an Eley-Rideal reaction of a hydrogen or alkali atom-laser pulse where the surface target is an adsorbed hydrogen atom. The reaction yields either a hydrogen or alkali hydride molecule. The desorbed gas-phase molecular yield and its internal state is shown to be controlled by the time and phase delay between two atom-laser pulses. The calculation is based on solving the time-dependent Schroedinger equation in a diabatic framework. The probability of desorption which is the predicted 2PACC signal has been calculated as a function of the pulse parameters

  12. Ligations of Gold Atoms with Iron Porphyrin

    DEFF Research Database (Denmark)

    Zhang, Ling; Kepp, Kasper Planeta; Ulstrup, Jens

    Gold is an exotic material with d-electrons deciding electronic mappings andconfigurations of adsorbed molecules. The specific interaction of Au atoms and S-, Ncappedmolecules make gold nanoparticles widely applied in the medicine transport andimmunoassay. Density functional theory demonstrates t...

  13. Recombination of chlorine atoms on plasma-conditioned stainless steel surfaces in the presence of adsorbed Cl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, Luc; Poirier, Jean-Sebastien; Margot, Joelle [Departement de Physique, Universite de Montreal, Montreal, Quebec, H3C 3J7 (Canada); Khare, Rohit; Guha, Joydeep; Donnelly, Vincent M, E-mail: luc.stafford@umontreal.c, E-mail: vmdonnelly@uh.ed [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204 (United States)

    2009-03-07

    We investigated the interactions of atomic and molecular chlorine with plasma-conditioned stainless steel surfaces through both experiments and modelling. The recombination of Cl during adsorption and desorption of Cl{sub 2} was characterized using a rotating-substrate technique in which portions of the cylindrical substrate surface are periodically exposed to an inductively coupled chlorine plasma and then to an Auger electron spectrometer in separate, differentially pumped chambers. After several hours of exposure to the Cl{sub 2} plasma, the stainless steel substrate became coated with a Si-oxychloride-based layer (Fe : Si : O : Cl {approx} 1 : 13 : 13 : 3) due to chlorine adsorption and the erosion of the silica discharge tube. Desorption of Cl{sub 2} from this surface was monitored through measurements of pressure rises in the Auger chamber as a function of substrate rotation frequency. Significant adsorption and desorption of Cl{sub 2} was observed with the plasma off, similar to that observed previously on plasma-conditioned anodized aluminium surfaces, but with much faster desorption rates that are most likely attributable to the smoother and non-porous stainless steel surface morphology. When the plasma was turned on, a much larger pressure rise was observed due to Langmuir-Hinshelwood recombination of Cl atoms. Recombination coefficients, {gamma}{sub Cl}, ranged from 0.004 to 0.03 and increased with Cl-to-Cl{sub 2} number density ratio. This behaviour was observed previously for anodized aluminium surfaces, and was explained by the blocking of Cl recombination sites by adsorbed Cl{sub 2}. Application of this variable recombination coefficient to the modelling of high-density chlorine plasmas gives a much better agreement with measured Cl{sub 2} percent dissociations compared with predictions obtained with a recombination coefficient that is independent of plasma conditions.

  14. Many-body dispersion effects in the binding of adsorbates on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Reinhard J. [Department of Chemistry, Yale University, New Haven, Connecticut 06520 (United States); Ruiz, Victor G.; Tkatchenko, Alexandre [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany)

    2015-09-14

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic–inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate–surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.

  15. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Chris [ORNL; Yatsandra, Oyola [ORNL; Mayes, Richard [ORNL; none,; Gill, Gary [PNNL; Li-Jung, Kuo [PNNL; Wood, Jordana [PNNL; Sadananda, Das [ORNL

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  16. Graphene symmetry-breaking with molecular adsorbates: modeling and experiment

    Science.gov (United States)

    Groce, M. A.; Hawkins, M. K.; Wang, Y. L.; Cullen, W. G.; Einstein, T. L.

    2012-02-01

    Graphene's structure and electronic properties provide a framework for understanding molecule-substrate interactions and developing techniques for band gap engineering. Controlled deposition of molecular adsorbates can create superlattices which break the degeneracy of graphene's two-atom unit cell, opening a band gap. We simulate scanning tunneling microscopy and spectroscopy measurements for a variety of organic molecule/graphene systems, including pyridine, trimesic acid, and isonicotinic acid, based on density functional theory calculations using VASP. We also compare our simulations to ultra-high vacuum STM and STS results.

  17. Removing 3,5-Dichlorophenol from Wastewater by Alternative Adsorbents

    Directory of Open Access Journals (Sweden)

    Kobetičová Hana

    2014-12-01

    Full Text Available The main objective of this paper is to evaluate an efficiency of 3,5 - dichlorophenol removal from wastewater by using alternative adsorbents. Chlorophenols are organic compounds consisting of a benzene ring, OH groups and also atoms of chlorine. Chlorophenols may have a huge isomere variety that means there are differences in their chemical and physical properties. Due to their toxicity it is necessary to remove them from waste water and in this paper an alternative way of such process is described.

  18. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents.

    Science.gov (United States)

    Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2014-12-02

    Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS.

  19. Light-induced atomic desorption and related phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Burchianti, A; Bogi, A; Marinelli, C; Mariotti, E; Moi, L [CNISM and Physics Department, University of Siena, 53100 Siena (Italy)], E-mail: burchianti@unisi.it

    2009-07-15

    We review some recent studies on light-induced atomic desorption (LIAD) from dielectric surfaces. Alkali-metal atoms adsorbed either on organic films or on porous glass are released into the vapor phase under illumination. The measurements were performed in Pyrex resonance cells either coated with siloxane films or containing a porous glass sample. In both cases, the experimental results show that LIAD can be used to produce atomic densities suitable for most atomic physics experiments. Moreover, we find that photoinduced effects, correlated with LIAD, produce reversible formation and evaporation of alkali-metal clusters in porous glass. These processes depend on the light frequency, making the porous glass transmittance controllable by light.

  20. Newton's Cradle and Entanglement Transport in a Flexible Rydberg Chain

    International Nuclear Information System (INIS)

    Wuester, S.; Ates, C.; Eisfeld, A.; Rost, J. M.

    2010-01-01

    In a regular, flexible chain of Rydberg atoms, a single electronic excitation localizes on two atoms that are in closer mutual proximity than all others. We show how the interplay between excitonic and atomic motion causes electronic excitation and diatomic proximity to propagate through the Rydberg chain as a combined pulse. In this manner entanglement is transferred adiabatically along the chain, reminiscent of momentum transfer in Newton's cradle.

  1. Modified Li chains as atomic switches

    KAUST Repository

    Wunderlich, Thomas; Akgenc, Berna; Eckern, Ulrich; Schuster, Cosima; Schwingenschlö gl, Udo

    2013-01-01

    We present electronic structure and transport calculations for hydrogen and lithium chains, using density functional theory and scattering theory on the Green's function level, to systematically study impurity effects on the transmission coefficient

  2. Eliminating Heavy Metals from Water with NanoSheet Minerals as Adsorbents

    Directory of Open Access Journals (Sweden)

    Shaoxian Song

    2017-12-01

    Full Text Available Heavy metals usually referred to those with atomic weights ranging from 63.5 to 200.6. Because of natural-mineral dissolution and human activities such as mining, pesticides, fertilizer, metal planting and batteries manufacture, etc., these heavy metals, including zinc, copper, mercury, lead, cadmium and chromium have been excessively released into water courses, like underground water, lake and river, etc. The ingestion of the heavy metals-contaminated water would raise serious health problems to human beings even at a low concentration. For instance, lead can bring human beings about barrier to the normal function of kidney, liver and reproductive system, while zinc can cause stomach cramps, skin irritations, vomiting and anemia. Mercury is a horrible neurotoxin that may result in damages to the central nervous system, dysfunction of pulmonary and kidney, chest and dyspnea. Chromium (VI has been proved can cause many diseases ranging from general skin irritation to severe lung carcinoma. Accordingly, the World Health Organization announced the maximum contaminant levels (MCL for the heavy metals in drinking water. There are numerous processes for eliminating heavy metals from water in order to provide citizens safe drinking water, including precipitation, adsorption, ion exchange, membrane separation and biological treatment, etc. Adsorption is considered as a potential process for deeply removing heavy metals, in which the selection of adsorbents plays a predominant role. Nano-sheet minerals as the adsorbents are currently the hottest researches in the field. They are obtained from layered minerals, such as montmorillonite, graphite and molybdenite, through the processing of intercalation, electrochemical and mechanical exfoliation, etc. Nano-sheet minerals are featured by their large specific surface area, relatively low costs and active adsorbing sites, leading to be effective and potential adsorbents for heavy metals removal from water

  3. Orientational epitaxy in adsorbed monolayers

    International Nuclear Information System (INIS)

    Novaco, A.D.; McTague, J.P.

    1977-01-01

    The ground state for adsorbed monolayers on crystalline substrates is shown to involve a definite relative orientation of the substrate and adsorbate crystal axes, even when the relative lattice parameters are incommensurate. The rotation angle which defines the structure of the monolayer-substrate system is determined by the competition between adsorbate-substrate and adsorbate-adsorbate energy terms, and is generally not a symmetry angle. Numerical predictions are presented for the rare gas-graphite systems, whose interaction potentials are rather well known. Recent LEED data for some of these systems appear to corroborate these predictions

  4. LEED crystallography studies of the structure of clean and adsorbate-covered Ir, Pt and Rh crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Koestner, R.J.

    1982-08-01

    There have only been a few Low Energy Electron Diffraction (LEED) intensity analyses carried out to determine the structure of molecules adsorbed on metal surfaces; most surface crystallography studies concentrated on the structure of clean unreconstructed or atomic adsorbate-covered transition metal faces. The few molecular adsorption systems already investigated by dynamical LEED are CO on Ni(100), Cu(100) and Pd(100) as well as C/sub 2/H/sub 2/ and C/sub 2/H/sub 4/ adsorbed on Pt(111). The emphasis of this thesis research has been to extend the applicability of LEED crystallography to the more complicated unit cells found in molecular overlayers on transition metals or in there constructed surfaces of clean transition metals.

  5. XPS and NEXAFS analysis of dimethyl sulfide adsorbed on the Rh(PVP) nanoparticle surface

    International Nuclear Information System (INIS)

    Niwa, Hironori; Ogawa, Satoshi; Yagi, Shinya; Kutluk, Galif

    2010-01-01

    We have studied the adsorption reaction of dimethyl sulfide (DMS: (CH 3 ) 2 S) on the surface of Rh(PVP) nanoparticles by using AFM, XPS and NEXAFS techniques. The AFM images show the degree of dispersion of the Rh(PVP) nanoparticles depends on the amount of them. The in-situ XPS results indicate that the dissociation reaction of DMS into atomic S does not depend upon the existence of the Rh(PVP) nanoparticles. The NEXAFS results show that there is a strong chemical bonding between Rh(PVP) nanoparticle and atomic S. The ex-situ XPS results show the atomic S adsorbed on the Rh(PVP) nanoparticles partially desorb by exposing to the air. (author)

  6. The Atomic Views of Flat Supply Chains in China

    Directory of Open Access Journals (Sweden)

    Sekhar Chattopadhyay

    2010-09-01

    Full Text Available China's domestic supply chain networks are getting flat and unbalanced despite its spectacular growth and rise to the enviable position in the global supply chain arena in recent times. The aftermath of continued investment explosion, especially in the coastal areas of the mainland, calls for an interwoven relationship of Chinese companies with the rest of the global supply chains. However, with new information and communication technologies, the real-time problems arising from this flattened supply chains are much more complex, multifaceted and multidimensional. China needs to re-think and re-focus on better alignment to the western values and cultures while managing its global business activities. This paper discusses four recently developed enterprise models in the light of several case studies conducted recently in Australia, China and India to characterise these new flat supply chains: People-Centric, Molecular Organization, Globally Dispersed and Disaggregated Value Chain. These, apparently different but inherently similar models have a vibrant architecture and system behaviour in their core and propose an alternative approach to address challenges of unbalanced domestic flat supply chains in China and helps the Chinese manufacturers to explore an approach to embrace Western values and cultures by enlarging their sphere of influence.

  7. Method of identification of unbranched chain reaction with cross termination of chain

    International Nuclear Information System (INIS)

    Poluehktov, V.A.; Begishev, I.R.

    1977-01-01

    Gas-phase chlorination of unsymmetrical difluoroethane initiated by gamma quanta of Co 60 has been studied. At decreased temperatures the only hydrogen is replaced by a chlorine atom. Over a wide range of ratios of the initial reagents, the reaction occurs with a chain rupture. An analysis of the kinetics of such a reaction provides a method for identification of an unbranched chain reaction with a cross-rupture of the chain

  8. Structural, electronic, and magnetic properties of pristine and oxygen-adsorbed graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, R.H.; Veiga, R.G.A. [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, CEP 38400-902, Uberlandia, MG (Brazil); Srivastava, G.P., E-mail: gps@excc.ex.ac.uk [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2010-07-15

    The structural, electronic and magnetic properties of pristine and oxygen-adsorbed (3,0) zigzag and (6,1) armchair graphene nanoribbons have been investigated theoretically, by employing the ab initio pseudopotential method within the density functional scheme. The zigzag nanoribbon is more stable with antiferromagnetically coupled edges, and is semiconducting. The armchair nanoribbon does not show any preference for magnetic ordering and is semiconducting. The oxygen molecule in its triplet state is adsorbed most stably at the edge of the zigzag nanoribbon. The Stoner metallic behaviour of the ferromagnetic nanoribbons and the Slater insulating (ground state) behaviour of the antiferromagnetic nanoribbons remain intact upon oxygen adsorption. However, the local magnetic moment of the edge carbon atom of the ferromagnetic zigzag ribbon is drastically reduced, due to the formation of a spin-paired C-O bond.

  9. The adsorber loop concept for the contact between seawater and adsorber granulate

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    For the production of 1 kg uranium from seawater about 10 9 kg seawater - depending on the extraction efficiency - have to be processed in a production plant. Such high seawater flows have to be put through adsorber beds the area of which depends on the flow velocity of the water in the bed. For a typical polyamidoxim (PAO) adsorber granulate with a grain size distribution of 0.3 to 1.2 mm the velocity in a fluidized bed is limited to about 1 cm/s in order to prevent carry out of the adsorber material. The consequences of this rather low bed velocity are large and expensive bed areas for technical production plants. The present paper deals with the so-called ''adsorber loop concept'' in which the adsorber granulate is carried along with the seawater to be processed in a loop-like configuration and is separated again from the water before this is leaving the adsorption unit. This concept enables considerably higher seawater velocities thus reducing the bed area. Theoretical considerations are presented together with experimental results from field tests. (author)

  10. Density functional study of TaSin (n = 1-3, 12) clusters adsorbed to graphene surface

    International Nuclear Information System (INIS)

    Guo Ping; Zheng Lin; Zheng Jiming; Zhang Ruizhi; Yang Luna; Ren, Zhaoyu

    2011-01-01

    A plane-wave density functional theory (DFT) calculations have been performed to investigate structural and electronic properties of TaSi n (n = 1-3, 12) clusters supported by graphene surface. The resulting adsorption structures are described and discussed in terms of stability, bonding, and electron transfer between the cluster and the graphene. The TaSi n clusters on graphene surface favor their free-standing ground-state structures. Especially in the cases of the linear TaSi 2 and the planar TaSi 3 , the graphene surface may catalyze the transition of the TaSi n clusters from an isomer of lower dimensionality into the ground-state structure. The adsorption site and configuration of TaSi n on graphene surface are dominated by the interaction between Ta atom and graphene. Ta atom prefers to adsorb on the hollow site of graphene, and Si atoms tend to locate on the bridge site. Further, the electron transfer is found to proceed from the cluster to the surface for n = 1 and 2, while its direction reverses as n > 2. For the case of TaSi, chemisorption is shown to prevail over physisorption as the dominant mode of surface-adsorbate interaction by charge density analysis.

  11. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  12. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    International Nuclear Information System (INIS)

    Oliveira, Luiz C.A.; Goncalves, Maraisa; Oliveira, Diana Q.L.; Guerreiro, Mario C.; Guilherme, Luiz R.G.; Dallago, Rogerio M.

    2007-01-01

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g -1 ) and textile dye reactive red (163 mg g -1 ), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials

  13. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz C.A. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil)]. E-mail: luizoliveira@ufla.br; Goncalves, Maraisa [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Oliveira, Diana Q.L. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guerreiro, Mario C. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guilherme, Luiz R.G. [Universidade Federal de Lavras, Depto. de Ciencia do solo, CEP 37200.000, Lavras-MG (Brazil); Dallago, Rogerio M. [URI-Campus Erechim, Av. 7 Setembro 1621, Centro, CEP 99700-000, Depto de Quimica, Erechim-RS (Brazil)

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g{sup -1}) and textile dye reactive red (163 mg g{sup -1}), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  14. Max Auwaerter Price lecture: building and probing atomic structures

    International Nuclear Information System (INIS)

    Ternes, M.

    2008-01-01

    Full text: The control of the geometric, electronic, and magnetic properties of atomic-scale nanostructures is a prerequisite for the understanding and fabrication of new materials and devices. Two routes lead towards this goal: Atomic manipulation of single atoms and molecules by scanning probe microscopy, or patterning using self-assembly. Atomic manipulation has been performed since almost 20 years, but it has been difficult to answer the simple question: how much force does it take to manipulate atoms and molecules on surfaces? To address this question, we used a combined atomic force and scanning tunneling microscope to simultaneously measure the force and the current between an adsorbate and a tip during atomic manipulation. We found that the force it takes to move an atom depends crucially on the binding between adsorbate and surface. Our results indicate that for moving metal atoms on metal surfaces, the lateral force component plays the dominant role. Measuring the forces during manipulation yielded the full potential energy landscape of the tip-sample interaction. Surprisingly, the potential energy barriers are comparable to diffusion barriers, which are obtained in the absence of a probe tip. Furthermore, we used the scanning tunneling microscope to assemble magnetic structures on a thin insulator. We found, that the spin of the atom is influenced by the magnetocrystalline anisotropy of the supporting surface which lifts the spin degeneracy of the ground state and enables the identification of individual atoms. The ground state of atoms with half-integer spin remains always degenerated at zero field due to Kramers theorem. We found that if these states differ by an orbital momentum of m = ±1 the localized spin is screened by the surrounding conducting electrons of the non-magnetic host and form a many-electron spin-singlet at sufficiently low temperature. (author)

  15. Study on the GaAs(110) surface using emitted atom spectrometry

    International Nuclear Information System (INIS)

    Gayone, J.E.; Sanchez, E.A.; Grizzi, O.; Universidad Nacional de Cuyo, Mendoza

    1998-01-01

    The facilities implemented at Bariloche for the ion scattering spectrometry is described, and recent examples of the technique application to determine the atomic structure and the composition of metallic and semiconductor surfaces, pure and with different adsorbates. The surface analysis technique using emitted atom spectrometry is discussed. The sensitivity to the GaAs(110) surface atomic relaxation is presented, and the kinetic of hydrogen adsorption by the mentioned surface is studied

  16. Engineering Single-Atom Cobalt Catalysts toward Improved Electrocatalysis.

    Science.gov (United States)

    Wan, Gang; Yu, Pengfei; Chen, Hangrong; Wen, Jianguo; Sun, Cheng-Jun; Zhou, Hua; Zhang, Nian; Li, Qianru; Zhao, Wanpeng; Xie, Bing; Li, Tao; Shi, Jianlin

    2018-04-01

    The development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition-metal sites in carbon as noble-metal-free candidates. Recently, the discovery of single-atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal-adsorbates interactions in single-atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X-ray spectroscopic and electrochemical studies. The as-designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt-based catalysts. More importantly, the illustration of the active sites in SAC indicates metal-natured catalytic sites and a media-dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single-atom catalysts design and electrocatalytic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China); Yang, Lei; Zhong, Wenhui; Cui, Jing [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Wei, Zhenggui, E-mail: weizhenggui@gmail.com [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Poorly crystalline HAP was firstly used for FA removal from aqueous solution. • The maximum adsorption capacity was determined to be 90.20 mg/g at 318 K. • Adsorption kinetics, isotherms and thermodynamic have been studied in detail. • Adsorption mechanism involved surface complexation, electrostatic interaction and hydrogen bonding. - Abstract: In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (X{sub c} = 0.23) and had better adsorption capacity for FA than those (X{sub c} = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long

  18. Investigating the properties and interaction mechanism of nano-silica in polyvinyl alcohol/polyacrylamide blends at an atomic level.

    Science.gov (United States)

    Wei, Qinghua; Wang, Yanen; Wang, Shuzhi; Zhang, Yingfeng; Chen, Xiongbiao

    2017-11-01

    The nano-silica can be incorporated into polymers for improved mechanical properties. Notably, the interaction between nano-silica and polymer is of a microscopic phenomenon and thus, hard to observe and study by using experimental methods. Based on molecular dynamics, this paper presents a study on the properties and the interaction mechanism of nano-silica in the polyvinyl alcohol (PVA)/polyacrylamide (PAM) blends at an atomic level. Specifically, six blends of PVA/PAM with varying concentrations of nano-silica (0-13wt%) and two interfacial interaction models of polymers on the silica surface were designed and analyzed at an atomic level in terms of concentration profile, mechanical properties, fractional free volume (FFV), dynamic properties of polymers and X-ray diffraction patterns. The concentration profile results and micromorphologies of equilibrium models suggest PAM molecular chains are easier to be adsorbed on the silica surface than PVA molecular chains in blends. The incorporation of nano-silica into the PVA/PAM blends can increase the blend mechanical properties, densities, and semicrystalline character. Meanwhile, the FFV and the mobility of polymer chain decrease with the silica concentration, which agrees with the results of mechanical properties, densities, and semicrystalline character. Our results also illustrate that an analysis of binding energies and pair correlation functions (PCF) allows for the discovery of the interaction mechanism of nano-silica in PVA/PAM blends; and that hydrogen bond interactions between polar functional groups of polymer molecular chains and the hydroxyl groups of the silica surface are involved in adsorption of the polymers on the silica surface, thus affecting the interaction mechanism of nano-silica in PVA/PAM blend systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Magnetic character of holmium atom adsorbed on platinum surface

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Shapiro, D.S.; Kolorenč, Jindřich; Lichtenstein, A.I.

    2017-01-01

    Roč. 7, č. 1 (2017), s. 1-6, č. článku 2751. ISSN 2045-2322 R&D Projects: GA ČR GC15-05872J Grant - others:GA MŠk(CZ) LM2015042 Institutional support: RVO:68378271 Keywords : rare-earth adatoms * density-functional theory * single-atom magnets Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.259, year: 2016

  20. Facile preparation of salt-tolerant anion-exchange membrane adsorber using hydrophobic membrane as substrate.

    Science.gov (United States)

    Fan, Jinxin; Luo, Jianquan; Chen, Xiangrong; Wan, Yinhua

    2017-03-24

    In this study, a polyvinylidene fluoride (PVDF) hydrophobic membrane with high mechanical property was used as substrate to prepare salt-tolerant anion-exchange (STAE) membrane adsorber. Effective hydrophilization and functionalization of PVDF membrane was realized via polydopamine (PDA) deposition, thus overcoming the drawbacks of hydrophobic substrates including poor water permeability, inert property as well as severe non-specific adsorption. The following polyallylamine (PAH) coupling was carried out at pH 10.0, where unprotonated amine groups on PAH chains were more prone to couple with PDA. This membrane adsorber could remain 75% of protein binding capacity when NaCl concentration increased from 0 to 150mM, while its protein binding capacity was independent of flow rate from 10 to 100 membrane volume (MV)/min due to its high mechanical strength (tensile strength: 43.58±2.30MPa). With 200mM NaCl addition at pH 7.5, high purity (above 99%) and high recovery (almost 100%) of Immunoglobulin G (IgG) were obtained when using the STAE membrane adsorber to separate IgG/human serum albumin (HSA) mixture, being similar to that without NaCl at pH 6.0 (both under the flow rate of 10-100MV/min). Finally, the reliable reusability was confirmed by five reuse cycles of protein binding and elution operations. In comparison with commercial membrane adsorber, the new membrane adsorber exhibited a better mechanical property, higher IgG polishing efficiency and reusability, while the protein binding capacity was lower due to less NH 2 density on the membrane. The outcome of this work not only offers a facile and effective approach to prepare membrane adsorbers based on hydrophobic membranes, but also demonstrates great potential of this new designed STAE membrane adsorbers for efficient monoclonal antibody (mAb) polishing. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Differences between tethered polyelectrolyte chains adsorbed onto bare mica and hydrophobically modified mica, comparison with theory.

    Science.gov (United States)

    Balastre, Marc; Tamashiro, Mario N.; Hernandez, Ernesto; Pincus, Philip; Tirrell, Matthew

    2001-03-01

    End-grafted polymers generated from the adsorption of asymmetric diblock copolymers on solid surface play an important role in many areas of science and technology. While the small insoluble block acts as an anchor, the charged soluble block confers useful properties to the surface. This study looks at tethered layers of poly(styrene sulfonate)/poly(t-butyl styrene) (PtBS-PSS) adsorbed on both mica (hydrophilic) and octadecyltriethoxysilane (OTE) modified mica (hydrophobic). Normal compressing forces at two different constant grafting densities (bare and modified mica) were measured with the surface force apparatus and compared with theoretical prediction. The effect of salt concentration (Cs) upon the thickness of the self-assembled layers (Lo) was measured in each case. For adsorption of diblock copolymers onto OTE the resulting scaling relationship is much closer to the brush theory, Lo Cs-1/3. This result suggests that the adsorbed amount on mica is not high enough to form a brush.

  2. Atomic bonding between metal and graphene

    KAUST Repository

    Wang, Hongtao; Feng, Qiong; Cheng, Yingchun; Yao, Yingbang; Wang, Qingxiao; Li, Kun; Schwingenschlö gl, Udo; Zhang, Xixiang; Yang, Wei

    2013-01-01

    and graphene, agreeing well with density functional theory studies. Single Cr atoms are located in the valleys of a zigzag edge, and few-atom ensembles preferentially form atomic chains by self-assembly. Low migration barriers lead to rich dynamics of metal

  3. Determination of Vanadium Binding Mode on Seawater-Contacted Polyamidoxime Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhicheng [Lawrence Berkeley National Laboratory (LBNL); Rao, Linfeng [Lawrence Berkeley National Laboratory (LBNL); Abney, Carter W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryantsev, Vyacheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Aleksandr [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Adsorbents developed for the recovery of uranium from seawater display poor selectivity over other transition metals present in the ocean, with vanadium particularly problematic. To improve selectivity, an indispensable step is the positive identification of metal binding environments following actual seawater deployment. In this work we apply x-ray absorption fine structure (XAFS) spectroscopy to directly investigate the vanadium binding environment on seawater-deployed polyamidoxime adsorbents. Comparison of the x-ray absorption near edge spectra (XANES) reveal marked similarities to recently a reported non-oxido vanadium (V) structure formed upon binding with cyclic imidedioxime, a byproduct of generating amidoxime functionalities. Density functional theory (DFT) calculations provided a series of putative vanadium binding environments for both vanadium (IV) and vanadium (V) oxidation states, and with both amidoxime and cyclic imidedioxime. Fits of the extended XAFS (EXAFS) data confirmed vanadium (V) is bound exclusively by the cyclic imidedioxime moiety in a 1:2 metal:ligand fashion, though a modest structural distortion is also observed compared to crystal structure data and computationally optimized geometries which is attributed to morphology effects from the polymer graft chain and the absence of crystal packing interactions. These results demonstrate that improved selectivity for uranium over vanadium can be achieved by suppressing the formation of cyclic imidedioxime during preparation of polyamidoxime adsorbents for seawater uranium recovery.

  4. Collective migration of adsorbed atoms on a solid surface in the laser radiation field

    International Nuclear Information System (INIS)

    Andreev, V V; Ignat'ev, D V; Telegin, Gennadii G

    2004-01-01

    The lateral (in the substrate plane) interaction between dipoles induced in particles adsorbed on a solid surface is studied in a comparatively weak laser radiation field with a Gaussian transverse distribution. It is shown that the particles migrate over the surface in the radial direction either outside an illuminated spot with the formation of a 'crater' or inside the spot with the formation of a 'mound'. (interaction of laser radiation with matter. laser plasma)

  5. Role of structure and glycosylation of adsorbed protein films in biolubrication.

    Directory of Open Access Journals (Sweden)

    Deepak H Veeregowda

    Full Text Available Water forms the basis of lubrication in the human body, but is unable to provide sufficient lubrication without additives. The importance of biolubrication becomes evident upon aging and disease, particularly under conditions that affect secretion or composition of body fluids. Insufficient biolubrication, may impede proper speech, mastication and swallowing, underlie excessive friction and wear of articulating cartilage surfaces in hips and knees, cause vaginal dryness, and result in dry, irritated eyes. Currently, our understanding of biolubrication is insufficient to design effective therapeutics to restore biolubrication. Aim of this study was to establish the role of structure and glycosylation of adsorbed protein films in biolubrication, taking the oral cavity as a model and making use of its dynamics with daily perturbations due to different glandular secretions, speech, drinking and eating, and tooth brushing. Using different surface analytical techniques (a quartz crystal microbalance with dissipation monitoring, colloidal probe atomic force microscopy, contact angle measurements and X-ray photo-electron spectroscopy, we demonstrated that adsorbed salivary conditioning films in vitro are more lubricious when their hydrophilicity and degree of glycosylation increase, meanwhile decreasing their structural softness. High-molecular-weight, glycosylated proteins adsorbing in loops and trains, are described as necessary scaffolds impeding removal of water during loading of articulating surfaces. Comparing in vitro and in vivo water contact angles measured intra-orally, these findings were extrapolated to the in vivo situation. Accordingly, lubricating properties of teeth, as perceived in 20 volunteers comprising of equal numbers of male and female subjects, could be related with structural softness and glycosylation of adsorbed protein films on tooth surfaces. Summarizing, biolubrication is due to a combination of structure and glycosylation

  6. Cooperative effect of adsorbed cations on electron transport and recombination behavior in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kou, Dongxing; Liu, Weiqing; Hu, Linhua; Dai, Songyuan

    2013-01-01

    Highlights: • Disclose the mechanism of cooperative effects of adsorbed cations in DSCs. • Characterize the influence of adsorption of Im + s on photoinduced electron density. • The effect of Li + is orderly enhanced in DSCs with increasing alkyl chain length. • The DSCs efficiencies are relatively depended on the trade-off between J sc and FF. -- Abstract: Lithium ion (Li + ) and imidazolium cations (Im + s) had been reported to have competitive effects on the photoinduced electrons in TiO 2 -electrolyte systems. Herein, a further investigation about their cooperative effect in dye-sensitized solar cells (DSCs) using organic liquid electrolyte is developed by altering alkyl chain length. Imidazolium iodides (Im + I − s) with different alkyl chain length (3, 6, and 12) were synthesized and used as iodide sources. The adsorption amount of Im + s onto TiO 2 , band edge shifts, trap states distribution, electron recombination/transport processes and ion transport within the electrolyte for DSCs were detected. It is found that the multilayered adsorption of Im + s can induce a lower photoinduced electron density. In-depth characterizations indicate that this negative effect can be reduced as the adsorption amount decreased with increasing alkyl chain length and the effect of Li + is consequently strengthened in varying degrees. The decisive role of Li + in cation-controlled interfacial charge injection process finally contributes an ordinal increase of short-circuit photocurrent density J sc for DSCs with increasing alkyl chain length because of the increasing charge injection efficiency η inj . Additionally, a large power dissipation in ions transport process is induced by the long alkyl chain of Im + s. Overall, the cell efficiencies are relatively dependent of the trade-off between J sc and FF, which is essentially related to the cooperative effect of adsorbed cations

  7. Chemical and structural characterization of copper adsorbed on mosses (Bryophyta)

    Energy Technology Data Exchange (ETDEWEB)

    González, Aridane G., E-mail: aridaneglez@gmail.com [GET (Géosciences Environnement Toulouse) UMR 5563CNRS, 14 Avenue Edouard Belin, F-31400 Toulouse (France); Jimenez-Villacorta, Felix [Instituto de Ciencia de Materiales Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Beike, Anna K. [Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg (Germany); State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart (Germany); Reski, Ralf [Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg (Germany); BIOSS—Centre for Biological Signalling Studies, 79104 Freiburg (Germany); FRIAS—Freiburg Institute for Advanced Studies, 79104 Freiburg (Germany); Adamo, Paola [Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples (Italy); Pokrovsky, Oleg S. [GET (Géosciences Environnement Toulouse) UMR 5563CNRS, 14 Avenue Edouard Belin, F-31400 Toulouse (France); BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk (Russian Federation); Institute of Ecological Problems of the North, Russian Academy of Science, Arkhangelsk (Russian Federation)

    2016-05-05

    Highlights: • Cu{sup 2+} was adsorbed on four mosses used in moss-bag pollution monitoring technique. • Thermodynamic approach was used to model Cu speciation based on XAS results. • All studied mosses have ∼4.5 O/N atoms at ∼1.95 Å around Cu likely in a pseudo-square geometry. • Cu(II)-carboxylates and Cu(II)-phosphoryls are the main moss surface binding groups. • Moss growing in batch reactor yielded ∼20% of Cu(I) in the form of Cu–S(CN) complexes. - Abstract: The adsorption of copper on passive biomonitors (devitalized mosses Hypnum sp., Sphagnum denticulatum, Pseudoscleropodium purum and Brachythecium rutabulum) was studied under different experimental conditions such as a function of pH and Cu concentration in solution. Cu assimilation by living Physcomitrella patents was also investigated. Molecular structure of surface adsorbed and incorporated Cu was studied by X-ray Absorption Spectroscopy (XAS). Devitalized mosses exhibited the universal adsorption pattern of Cu as a function of pH, with a total binding sites number 0.05–0.06 mmolg{sub dry}{sup −1} and a maximal adsorption capacity of 0.93–1.25 mmolg{sub dry}{sup −1} for these devitalized species. The Extended X-ray Absorption Fine Structure (EXAFS) fit of the first neighbor demonstrated that for all studied mosses there are ∼4.5 O/N atoms around Cu at ∼1.95 Å likely in a pseudo-square geometry. The X-ray Absorption Near Edge Structure (XANES) analysis demonstrated that Cu(II)-cellulose (representing carboxylate groups) and Cu(II)-phosphate are the main moss surface binding moieties, and the percentage of these sites varies as a function of solution pH. P. patens exposed during one month to Cu{sup 2+} yielded ∼20% of Cu(I) in the form of Cu–S(CN) complexes, suggesting metabolically-controlled reduction of adsorbed and assimilated Cu{sup 2+}.

  8. Chemical and structural characterization of copper adsorbed on mosses (Bryophyta)

    International Nuclear Information System (INIS)

    González, Aridane G.; Jimenez-Villacorta, Felix; Beike, Anna K.; Reski, Ralf; Adamo, Paola; Pokrovsky, Oleg S.

    2016-01-01

    Highlights: • Cu 2+ was adsorbed on four mosses used in moss-bag pollution monitoring technique. • Thermodynamic approach was used to model Cu speciation based on XAS results. • All studied mosses have ∼4.5 O/N atoms at ∼1.95 Å around Cu likely in a pseudo-square geometry. • Cu(II)-carboxylates and Cu(II)-phosphoryls are the main moss surface binding groups. • Moss growing in batch reactor yielded ∼20% of Cu(I) in the form of Cu–S(CN) complexes. - Abstract: The adsorption of copper on passive biomonitors (devitalized mosses Hypnum sp., Sphagnum denticulatum, Pseudoscleropodium purum and Brachythecium rutabulum) was studied under different experimental conditions such as a function of pH and Cu concentration in solution. Cu assimilation by living Physcomitrella patents was also investigated. Molecular structure of surface adsorbed and incorporated Cu was studied by X-ray Absorption Spectroscopy (XAS). Devitalized mosses exhibited the universal adsorption pattern of Cu as a function of pH, with a total binding sites number 0.05–0.06 mmolg dry −1 and a maximal adsorption capacity of 0.93–1.25 mmolg dry −1 for these devitalized species. The Extended X-ray Absorption Fine Structure (EXAFS) fit of the first neighbor demonstrated that for all studied mosses there are ∼4.5 O/N atoms around Cu at ∼1.95 Å likely in a pseudo-square geometry. The X-ray Absorption Near Edge Structure (XANES) analysis demonstrated that Cu(II)-cellulose (representing carboxylate groups) and Cu(II)-phosphate are the main moss surface binding moieties, and the percentage of these sites varies as a function of solution pH. P. patens exposed during one month to Cu 2+ yielded ∼20% of Cu(I) in the form of Cu–S(CN) complexes, suggesting metabolically-controlled reduction of adsorbed and assimilated Cu 2+ .

  9. Site-dependent atomic and molecular affinities of hydrocarbons, amines and thiols on diamond nanoparticles

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S.

    2016-04-01

    Like many of the useful nanomaterials being produced on the industrial scale, the surface of diamond nanoparticles includes a complicated mixture of various atomic and molecular adsorbates, attaching to the facets following synthesis. Some of these adsorbates may be functional, and adsorption is encouraged to promote applications in biotechnology and nanomedicine, but others are purely adventurous and must be removed prior to use. In order to devise more effective treatments it is advantageous to know the relative strength of the interactions of the adsorbates with the surface, and ideally how abundant they are likely to be under different conditions. In this paper we use a series of explicit electronic structure simulations to map the distribution of small hydrocarbons, amines and thiols on a 2.9 nm diamond nanoparticle, with atomic level resolution, in 3-D. We find a clear relationship between surface reconstructions, facet orientation, and the distribution of the different adsorbates; with a greater concentration expected on the (100) and (110) facets, particularly when the supersaturation in the reservoir is high. Adsorption on the (111) facets is highly unlikely, suggesting that controlled graphitization may be a useful stage in the cleaning and treatment of nanodiamonds, prior to the deliberate coating with functional adsorbates needed for drug delivery applications.

  10. XAS signatures of Am(III) adsorbed onto magnetite and maghemite

    DEFF Research Database (Denmark)

    Finck, N.; Radulescu, L.; Schild, D.

    2016-01-01

    Trivalent americium was adsorbed on magnetite and maghemite under similar chemical conditions and the local environment probed by EXAFS spectroscopy. In both samples, partially hydrated Am(III) binds the surface but slightly different surface complexes were identified. On Fe3O4, Am(III) forms...... monomeric tridentate surface complexes similar to that reported for Pu(III) at the (111) surface. In contrast, the lower number of detected Fe atoms may suggest that Am(III) forms monomeric bidentate surface complexes on γ-Fe2O3. Alternatively, the lower Fe coordination number can also be due...

  11. Influences of H on the Adsorption of a Single Ag Atom on Si(111-7 × 7 Surface

    Directory of Open Access Journals (Sweden)

    Lin Xiu-Zhu

    2009-01-01

    Full Text Available Abstract The adsorption of a single Ag atom on both clear Si(111-7 × 7 and 19 hydrogen terminated Si(111-7 × 7 (hereafter referred as 19H-Si(111-7 × 7 surfaces has been investigated using first-principles calculations. The results indicated that the pre-adsorbed H on Si surface altered the surface electronic properties of Si and influenced the adsorption properties of Ag atom on the H terminated Si surface (e.g., adsorption site and bonding properties. Difference charge density data indicated that covalent bond is formed between adsorbed Ag and H atoms on 19H-Si(111-7 × 7 surface, which increases the adsorption energy of Ag atom on Si surface.

  12. Phonon lineshapes in atom-surface scattering

    Energy Technology Data Exchange (ETDEWEB)

    MartInez-Casado, R [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A S; Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, E-28006 Madrid (Spain)

    2010-08-04

    Phonon lineshapes in atom-surface scattering are obtained from a simple stochastic model based on the so-called Caldeira-Leggett Hamiltonian. In this single-bath model, the excited phonon resulting from a creation or annihilation event is coupled to a thermal bath consisting of an infinite number of harmonic oscillators, namely the bath phonons. The diagonalization of the corresponding Hamiltonian leads to a renormalization of the phonon frequencies in terms of the phonon friction or damping coefficient. Moreover, when there are adsorbates on the surface, this single-bath model can be extended to a two-bath model accounting for the effect induced by the adsorbates on the phonon lineshapes as well as their corresponding lineshapes.

  13. Atomic-Scale Control of Electron Transport through Single Molecules

    DEFF Research Database (Denmark)

    Wang, Y. F.; Kroger, J.; Berndt, R.

    2010-01-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure...

  14. Effect of nitrogen doping on titanium carbonitride-derived adsorbents used for arsenic removal

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jisun [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Soonjae [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Keunsu [Computational Science Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Jinhong [Samsung Electronics Co.Ltd.,(Maetan dong) 129, Samsung-ro Yeongtong-gu, Suwonsi, Gyeonggi-do 443-742, Repubilc of Korea (Korea, Republic of); Ha, Daegwon [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Chang-Gu [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); An, Byungryul [Department of Civil Engineering, Sangmyung University, Cheonan, Chungnam 31066 (Korea, Republic of); Lee, Sang-Hyup [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Mizuseki, Hiroshi, E-mail: mizuseki@kist.re.kr [Computational Science Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Jae-Woo, E-mail: plead36@kist.re.kr [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Energy and Environmental Engineering, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kang, Shinhoo, E-mail: shinkang@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-01-25

    Highlights: • The N-doping can improve the As adsorption performance of carbon-based materials. • The material features high micro- and small meso-pores with exceptional surface area. • Pyrrolic N atoms distributed uniformly on the micropores act as adsorption sites. • The synthesis temperature affected pore properties and surface functional groups. - Abstract: Arsenic in water and wastewater is considered to be a critical contaminant as it poses harmful health risks. In this regard, to meet the stringent regulation of arsenic in aqueous solutions, nitrogen doped carbon-based materials (CN) were prepared as adsorbents and tested for the removal of arsenic ion from aqueous solutions. Nitrogen-doped carbon (CNs) synthesized by chlorination exhibited well-developed micro- and small meso-pores with uniform pore structures. The structure and characteristics of the adsorbents thus developed were confirmed by field-emission scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Among the CNs developed, CN700 exhibited high adsorption capacity for arsenic (31.08 mg/g). The adsorption efficiency for arsenic ion was confirmed to be affected by pyrrolic nitrogen and micro-pores. These results suggest that CNs are useful adsorbents for the treatment of arsenic, and in particular, CN700 demonstrates potential for application as an adsorbent for the removal of anionic heavy metals from wastewater and sewage.

  15. First-principles investigations of electronic and magnetic properties of SrTiO3 (001) surfaces with adsorbed ethanol and acetone molecules

    Science.gov (United States)

    Adeagbo, Waheed A.; Fischer, Guntram; Hergert, Wolfram

    2011-05-01

    First-principles methods based on density functional theory are used to investigate the electronic and magnetic properties of molecular interaction of the TiO2 terminated SrTiO3 (100) surface with ethanol or acetone. Both the perfect surface and the surface with an oxygen or a titanium vacancy in the top layer are considered. Ethanol and acetone are preferentially adsorbed molecularly via their respective oxygen atom on top of the Ti atom on the perfect surface. In case of an oxygen vacancy the adsorption of ethanol or acetone occurs directly on top of the vacancy and does not significantly affect the magnetism caused by the vacancy. In the case of a titanium vacancy both adsorbates occupy positions above Ti atoms. During this adsorption process the ethanol molecule dissociates into a CH3CO radical and three hydrogen atoms. The latter form hydroxide bonds with three of the four dangling oxygen bonds around the Ti vacancy and any magnetic moment induced by the Ti vacancy is annihilated. Thus the ethanol and acetone have a different impact on the surface magnetism of the SrTiO3 (100) surface.

  16. Positronium chemistry in porous adsorbents

    International Nuclear Information System (INIS)

    Foti, G.; Nagy, L.G.; Moravcsik, G.; Schay, G.

    1981-01-01

    Kinetic studies on the annihilation of orthopositronium in porous adsorbents have been performed using lifetime spectroscopy. The positron source applied was 22 Na with 0.2 MBq activity. The adsorbents investigated were silica gels of different particle size and pore structure. The appearance of the long-lived component in the lifetime spectra can be explained by the diffusion of the orthopositronium into the pores affected by the particle size and the pore size of the adsorbent, the coverage on it and the chemical nature of the adsorbate. The long-term aim of the work is to determine and to explain these effects. (author)

  17. Negative chromatography of hepatitis B virus-like particle: Comparative study of different adsorbent designs.

    Science.gov (United States)

    Lee, Micky Fu Xiang; Chan, Eng Seng; Tan, Wen Siang; Tam, Kam Chiu; Tey, Beng Ti

    2016-05-06

    Purification of virus-like particles (VLPs) in bind-and-elute mode has reached a bottleneck. Negative chromatography has emerged as the alternative solution; however, benchmark of negative chromatography media and their respective optimized conditions are absent. Hence, this study was carried out to compare the performance of different negative chromatography media for the purification of hepatitis B VLPs (HB-VLPs) from clarified Escherichia coli feedstock. The modified anion exchange media, core-shell adsorbents (InertShell and InertLayer 1000) and polymer grafted adsorbents (SQ) were compared. The results of chromatography from packed bed column of core-shell adsorbents showed that there is a trade-off between the purity and recovery of HB-VLPs in the flowthrough fraction due to the shell thickness. Atomic force microscopic analysis revealed funnel-shaped pore channels in the shell layer which may contribute to the entrapment of HB-VLPs. A longer residence time at a lower feed flow rate (0.5ml/min) improved slightly the HB-VLPs purity in all modified adsorbents, but the recovery in InertShell reduced substantially. The preheat-treatment is not recommended for the negative chromatography as the thermal-induced co-aggregation of HCPs and HB-VLPs would flow along with HB-VLPs and thus reduced the HB-VLPs purity in the flowthrough. Further reduction in the feedstock concentration enhanced the purity of HB-VLPs especially in InertLayer 1000 but reduced substantially the recovery of HB-VLPs. In general, the polymer grafted adsorbent, SQ, performed better than the core-shell adsorbents in handling a higher feedstock concentration. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Applications of core level spectroscopy to adsorbates

    International Nuclear Information System (INIS)

    Nilsson, Anders

    2002-01-01

    In the following review different applications of core-level spectroscopy to atomic and molecular adsorbates will be shown. Core-holes are created through core-level ionization and X-ray absorption processes and the core-hole decays by radiant and non-radiant processes. This forms the basis for X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, Auger electron spectroscopy and X-ray emission spectroscopy. We will demonstrate how we can use the different methods to obtain information about the chemical state, local geometric structure, nature of chemical bonding and dynamics in electron transfer processes. The adsorption of N 2 and CO on Ni(100) will be used as prototype systems for chemisorption while N 2 on graphite and Ar on Pt for physisorption

  19. Ecological applications of the irradiated adsorbents

    International Nuclear Information System (INIS)

    Tusseyev, T.

    2004-01-01

    Full text: In our previous works it was shown that after irradiation some adsorbents gain new interesting properties such as increasing (or decreasing) of their adsorption capacity, selectivity in relation to some gases, change of chemical bounds of gas molecules with adsorbent surface as well as other properties. We investigated a lot of adsorbents with semiconducting and dielectric properties. A high temperature superconductor was investigated also. Adsorbents were irradiated by ultraviolet (UV) and gamma - radiation, reactor (n.γ) - radiation, α-particles (E=40-50 MeV), protons ( E=30 MeV), and also He-3 ions (E-29-60 MeV). The following techniques were used: volumetric (manometrical), mass-spectrometer and IR spectroscopic methods, and also method of electronic - paramagnetic resonance (spin paramagnetic resonance) The obtained results allow to speak about creation of new adsorbents for gas purification (clearing) from harmful impurities, gas selection into components, an increasing of adsorbing surface. Thus one more advantage of the irradiated adsorbents is that they have 'memory effect', i.e. they can be used enough long time after irradiation. In laboratory conditions we built the small-sized adsorptive pump on the basis of the irradiated zeolites which are capable to work in autonomous conditions. It was found, that some of adsorbents after irradiation gain (or lose) selectivity in relation to definite gases. So, silica gel, which one in initial state does not adsorb hydrogen, after gamma irradiation it becomes active in relation to hydrogen. Some of rare earths oxides also show selectivity in relation to hydrogen and oxygen depending on a type of irradiation. Thus, it is possible to create different absorbents, depending on a solved problem, using a way or selection of adsorbents, either of radiation type and energy, as a result obtained adsorbents can be used for various ecological purposes

  20. Cost analysis of seawater uranium recovered by a polymeric adsorbent system

    International Nuclear Information System (INIS)

    Schneider, E.; Lindner, H.; Sachde, D.; Flicker, M.

    2014-01-01

    In tandem with its adsorbent development and marine testing efforts, the United States Department of Energy, Office of Nuclear Energy, routinely updates and expands its cost analysis of technologies for extracting uranium from seawater. If informed by repeatable data from field tests, a rigorous cost analysis can convincingly establish seawater uranium as a “backstop” to conventional uranium resources. A backstop provides an essentially unlimited supply of an otherwise exhaustible resource. Its role is to remove the uncertainty around the long-term sustainability of the resource. The cost analysis ultimately aims to demonstrate a uranium production cost that is sustainable for the nuclear power industry, with no insurmountable technical or environmental roadblocks. It is also a tool for guiding further R&D, identifying inputs and performance factors where further development would offer the greatest reduction in costs and/or uncertainties. A life cycle discounted cash flow methodology is used to calculate the uranium production cost and its uncertainty from the costs of fundamental inputs including chemicals and materials, labor, equipment, energy carriers and facilities. The inputs themselves are defined by process flow models of the adsorbent fabrication and grafting, mooring at sea, recovery, and elution and purification steps in the seawater uranium recovery process. Pacific Northwest National Laboratory (PNNL) has carried out marine tests of the Oak Ridge National Laboratory amidoxime grafted polymer adsorbent in natural seawater. Multiple test campaigns demonstrated that after 60 days of immersion the uranium uptake averaged 3090 ± 310 μg U/g of adsorbent. Past ocean experiments on similar material by the Japan Atomic Energy Agency (JAEA) demonstrated that the adsorbent may be used in the sea six times before being replaced, with 5% uptake degradation per reuse. The mooring and recovery system envisioned for the adsorbent is similar to one proposed by

  1. Reactivity Control of Rhodium Cluster Ions by Alloying with Tantalum Atoms.

    Science.gov (United States)

    Mafuné, Fumitaka; Tawaraya, Yuki; Kudoh, Satoshi

    2016-02-18

    Gas phase, bielement rhodium and tantalum clusters, RhnTam(+) (n + m = 6), were prepared by the double laser ablation of Rh and Ta rods in He carrier gas. The clusters were introduced into a reaction gas cell filled with nitric oxide (NO) diluted with He and were subjected to collisions with NO and He at room temperature. The product species were observed by mass spectrometry, demonstrating that the NO molecules were sequentially adsorbed on the RhnTam(+) clusters to form RhnTam(+)NxOx (x = 1, 2, 3, ...) species. In addition, oxide clusters, RhnTam(+)O2, were also observed, suggesting that the NO molecules were dissociatively adsorbed on the cluster, the N atoms migrated on the surface to form N2, and the N2 molecules were released from RhnTam(+)N2O2. The reactivity, leading to oxide formation, was composition dependent: oxide clusters were dominantly formed for the bielement clusters containing both Rh and Ta atoms, whereas such clusters were hardly formed for the single-element Rhn(+) and Tam(+) clusters. DFT calculations indicated that the Ta atoms induce dissociation of NO on the clusters by lowering the dissociation energy, whereas the Rh atoms enable release of N2 by lowering the binding energy of the N atoms on the clusters.

  2. Development of novel nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric.

    Science.gov (United States)

    Bondar, Yuliia; Kuzenko, Svetlana; Han, Do-Hung; Cho, Hyun-Kug

    2014-01-01

    A nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric was synthesized for selective removal of Cs ions from contaminated waters by a two-stage synthesis: radiation-induced graft polymerization of acrylic acid monomer onto the nonwoven polypropylene fabric surface with subsequent in situ formation of potassium nickel hexacyanoferrate (KNiHCF) nanoparticles within the grafted chains. Data of scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy confirmed the formation of KNiHCF homogeneous phase on the fabric surface, which consisted of crystalline cubic-shaped nanoparticles (70 to 100 nm). The efficiency of the synthesized adsorbent for removal of cesium ions was evaluated under various experimental conditions. It has demonstrated a rapid adsorption process, high adsorption capacity over a wide pH range, and selectivity in Cs ion removal from model solutions with high concentration of sodium ions.

  3. Interactions between kaolinite Al−OH surface and sodium hexametaphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yonghua, E-mail: hyh19891102@163.com [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Liu, Wenli; Zhou, Jia [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chen, Jianhua [College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China)

    2016-11-30

    Highlights: • Sodium hexametaphosphate (NaHMP) can adsorb on kaolinite Al−OH terminated (001) surface easily. • The oxygen atoms of hexametaphosphate form strong hydrogen bonds with the hydrogen atoms of kaolinite Al−OH surface. • The electrostatic force is the main interaction between NaHMP and Al−OH surface. • The linear hexaphosphate −[PO{sub 3}]{sub m}− chains adsorb stably than −[HPO{sub 3}]{sub m}− chains. - Abstract: To investigate the dispersion mechanism of sodium hexametaphosphate on kaolinite particles, we simulated the interaction between linear polyphosphate chains and kaolinite Al−OH terminated surface by molecular dynamics, as well as the interaction between the [HPO{sub 4}]{sup 2−} anion and kaolinite Al−OH surface by density functional theory (DFT). The calculated results demonstrate that hexametaphosphate can be adsorbed by the kaolinite Al−OH surface. The oxygen atoms of hexametaphosphate anions may receive many electrons from the Al−OH surface and form hydrogen bonds with the hydrogen atoms of surface hydroxyl groups. Moreover, electrostatic force dominates the interactions between hexametaphosphate anions and kaolinite Al−OH surface. Therefore, after the adsorption of hexametaphosphate on kaolinite Al−OH surface, the kaolinite particles carry more negative charge and the electrostatic repulsion between particles increases. In addition, the adsorption of −[PO{sub 3}]{sub m}− species on the Al−OH surface should be more stable than the adsorption of −[HPO{sub 3}]{sub m}− species.

  4. Iodine removal adsorbent histories, aging and regeneration

    International Nuclear Information System (INIS)

    Hunt, J.R.; Rankovic, L.; Lubbers, R.; Kovach, J.L.

    1976-01-01

    The experience of efficiency changes with life under various test conditions is described. The adsorbents were periodically removed from both standby and continuously operating systems and tested under various test methods for residual iodine adsorption efficiency. Adsorbent from several conventional ''sampler'' cartridges versus the bulk adsorbent was also tested showing deficiency in the use of cartridge type sampling. Currently required test conditions were found inadequate to follow the aging of the adsorbent because pre-equilibration of the sample acts as a regenerant and the sample is not tested in the ''as is'' condition. The most stringent test was found to be the ambient temperature, high humidity test to follow the aging of the adsorbent. Several methods were evaluated to regenerate used adsorbents; of these high temperature steaming and partial reimpregnation were found to produce adsorbents with near identical properties of freshly prepared adsorbents

  5. Adsorption of UO2+2 by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group

    International Nuclear Information System (INIS)

    Choi, Seong-Ho; Nho, Young Chang

    2000-01-01

    The polyethylene (PE) adsorbents were prepared by a radiation-induced grafting of acrylonitrile (AN), acrylic acid (AA), and the mixture of AN/AA onto PE film, and by subsequent amidoximation of cyano groups of poly-AN graft chains. With an increase of AA composition in AN/AA monomer mixture, the water uptake of the grafted polyethylene film increased. In AN/AA mixture, the maximum adsorption of UO 2+ 2 was observed in the adsorbent with a ratio of AN/AA (50/50, mol%) in copolymer. The amidoxime, carboxyl, and amidoxime/carboxyl groups onto PE acted as a chelating site for the selected UO 2+ 2 . The complex structure of polyethylene with three functional groups and UO 2+ 2 was confirmed by Fourier Transform Infrared (FTIR) spectroscopy. (author)

  6. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh

    2009-02-17

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl 2-in-silica gel + water system for cooling applications, and (ii) activated carbon (Maxsorb III) + methane system for gas storage. © Copyright 2009 American Chemical Society.

  7. Nuclear magnetic resonance study of the structure of simple molecules adsorbed on metal surfaces: acetylene on platinum

    International Nuclear Information System (INIS)

    Wang, P.K.

    1984-01-01

    We have used NMR to determine the structure of acetylene (HC - CH) adsorbed at room temperature on small platinum particles by studying the 13 C- 13 C, 13 C- 1 H, and 1 H- 1 H dipolar interactions among the nuclei in the adsorbed molecules. We find a model of 77% CCH 2 and 23% HCCH to be the only one consistent with all of our data. The C-C bond length of the majority species, CCH 2 , is determined as 1.44 +- 0.02 A, midway between a single and double bond, suggesting that both carbon atoms bond to the surface. 36 references, 29 figures, 1 table

  8. Comparison of several classical density functional theories for the adsorption of flexible chain molecules into cylindrical nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Hlushak, S. P., E-mail: stepan.hlushak@gmail.com [Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235 (United States); Institute for Condensed Matter Physics, Svientsitskoho 1, 79011 Lviv (Ukraine); Cummings, P. T. [Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235 (United States); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); McCabe, C. [Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235 (United States); Department of Chemistry, Vanderbilt University, Nashville 37235 (United States)

    2013-12-21

    Adsorption of flexible oligomers into narrow cylindrical pores has been studied by means of several versions of classical density functional theory (CDFT) and Monte Carlo simulation. The adsorption process is interesting to study due to the competition between the entropic depletion of oligomers from the pores and the wall–oligomer attraction. It is also challenging to describe using current CDFTs, which tend to overestimate the amount of the adsorbed fluid. From a comparison of several different CDFT approaches, we find that this is due to the assumption of ideal or freely jointed chain conformations. Moreover, it is demonstrated that it is impossible to obtain a reasonable description of the adsorption isotherms without taking into account accurate contact values in the distribution functions describing the structure of the reference monomer fluid. At low densities, more accurate result are obtained in comparison with Monte Carlo simulation data when accurate contact values are incorporated into the theory rather than the more commonly used hard-sphere contact value. However, even the CDFT with accurate contact values still overestimates the amount of the adsorbed fluid due to the ideal or freely jointed chain approximation, used for the description of chain conformations in most CDFT approaches. We find that significant improvement can achieved by employing self-consistent field theory, which samples self-avoiding chain conformations and decreases the number of possible chain conformations, and, consequently, the amount of the adsorbed fluid.

  9. Comparison of several classical density functional theories for the adsorption of flexible chain molecules into cylindrical nanopores.

    Science.gov (United States)

    Hlushak, S P; Cummings, P T; McCabe, C

    2013-12-21

    Adsorption of flexible oligomers into narrow cylindrical pores has been studied by means of several versions of classical density functional theory (CDFT) and Monte Carlo simulation. The adsorption process is interesting to study due to the competition between the entropic depletion of oligomers from the pores and the wall-oligomer attraction. It is also challenging to describe using current CDFTs, which tend to overestimate the amount of the adsorbed fluid. From a comparison of several different CDFT approaches, we find that this is due to the assumption of ideal or freely jointed chain conformations. Moreover, it is demonstrated that it is impossible to obtain a reasonable description of the adsorption isotherms without taking into account accurate contact values in the distribution functions describing the structure of the reference monomer fluid. At low densities, more accurate result are obtained in comparison with Monte Carlo simulation data when accurate contact values are incorporated into the theory rather than the more commonly used hard-sphere contact value. However, even the CDFT with accurate contact values still overestimates the amount of the adsorbed fluid due to the ideal or freely jointed chain approximation, used for the description of chain conformations in most CDFT approaches. We find that significant improvement can achieved by employing self-consistent field theory, which samples self-avoiding chain conformations and decreases the number of possible chain conformations, and, consequently, the amount of the adsorbed fluid.

  10. Comparison of several classical density functional theories for the adsorption of flexible chain molecules into cylindrical nanopores

    International Nuclear Information System (INIS)

    Hlushak, S. P.; Cummings, P. T.; McCabe, C.

    2013-01-01

    Adsorption of flexible oligomers into narrow cylindrical pores has been studied by means of several versions of classical density functional theory (CDFT) and Monte Carlo simulation. The adsorption process is interesting to study due to the competition between the entropic depletion of oligomers from the pores and the wall–oligomer attraction. It is also challenging to describe using current CDFTs, which tend to overestimate the amount of the adsorbed fluid. From a comparison of several different CDFT approaches, we find that this is due to the assumption of ideal or freely jointed chain conformations. Moreover, it is demonstrated that it is impossible to obtain a reasonable description of the adsorption isotherms without taking into account accurate contact values in the distribution functions describing the structure of the reference monomer fluid. At low densities, more accurate result are obtained in comparison with Monte Carlo simulation data when accurate contact values are incorporated into the theory rather than the more commonly used hard-sphere contact value. However, even the CDFT with accurate contact values still overestimates the amount of the adsorbed fluid due to the ideal or freely jointed chain approximation, used for the description of chain conformations in most CDFT approaches. We find that significant improvement can achieved by employing self-consistent field theory, which samples self-avoiding chain conformations and decreases the number of possible chain conformations, and, consequently, the amount of the adsorbed fluid

  11. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  12. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    Science.gov (United States)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock

  13. Few-particle quantum magnetism with ultracold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Murmann, Simon

    2015-11-25

    This thesis reports on the deterministic preparation of magnetically ordered states in systems of few fermionic atoms. We follow the concept of quantum simulation and use {sup 6}Li atoms in two different hyperfine states to mimic the behavior of electrons in a solidstate system. In a first experiment, we simulate the two-site Hubbard model by using two atoms in an isolated double-well potential. We prepare the two-particle ground state of this model with a fidelity exceeding 90%. By introducing strong repulsive interactions, we are able to realize a pure spin model and describe the energy spectrum with a two-site Heisenberg Hamiltonian. In a second experiment, we realize Heisenberg spin chains of up to four atoms in a single strongly-elongated trapping potential. Here, the atoms self-align along the potential axis due to strong repulsive interactions. We introduce two novel measurement techniques to identify the state of the spin chains and thereby confirm that we can deterministically prepare antiferromagnetic ground-state systems. This constitutes the first observation of quantum magnetism with fermionic atoms that exceeds nearest-neighbor correlations. Both the double-well system and the spin chains can be seen as building blocks of larger ground-state spin systems. Their deterministic preparation therefore opens up a new bottom-up approach to the experimental realization of quantum many-body systems with ultracold atoms.

  14. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  15. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Linghao; Wu, Rongting; Bao, Deliang; Ren, Junhai; Zhang, Yanfang; Zhang, Haigang; Huang, Li; Wang, Yeliang; Du, Shixuan; Huan, Qing; Gao, Hong-Jun

    2015-05-29

    Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms adsorbed at the centers of H2Nc molecules and formed Fe-H2Nc complexes at low coverage. DFT calculations show that the configuration of Fe at the center of a molecule is the most stable site, in good agreement with the experimental observations. After an Fe-H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe-H2Nc complex monolayer. Furthermore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.

  16. Mass and Force Sensing of an Adsorbate on a Beam Resonator Sensor

    Directory of Open Access Journals (Sweden)

    Yin Zhang

    2015-06-01

    Full Text Available The mass sensing superiority of a micro-/nano-mechanical resonator sensor over conventional mass spectrometry has been, or at least is being firmly established. Because the sensing mechanism of a mechanical resonator sensor is the shifts of resonant frequencies, how to link the shifts of resonant frequencies with the material properties of an analyte formulates an inverse problem. Besides the analyte/adsorbate mass, many other factors, such as position and axial force, can also cause the shifts of resonant frequencies. The in situ measurement of the adsorbate position and axial force is extremely difficult if not impossible, especially when an adsorbate is as small as a molecule or an atom. Extra instruments are also required. In this study, an inverse problem of using three resonant frequencies to determine the mass, position and axial force is formulated and solved. The accuracy of the inverse problem solving method is demonstrated, and how the method can be used in the real application of a nanomechanical resonator is also discussed. Solving the inverse problem is helpful to the development and application of a mechanical resonator sensor for two reasons: reducing extra experimental equipment and achieving better mass sensing by considering more factors.

  17. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate.

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-14

    Long spin-relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition-metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables the direct addressing of the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have a surprisingly long spin-relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin-relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes to process the spin information.

  18. Determination of Arsenic in Soil Alkali by Graphite Furnace Atomic Absorption Spectrophotometery Using Modified Corn Silk Fiber as Adsorbent

    International Nuclear Information System (INIS)

    Zhou, X.; Ju, S.; Liu, M.; Zhao, Y.

    2015-01-01

    A safe, rapid, simple and environmentally friendly method based modified corn silk fiber (MC), chemical modified with succinic anhydride (C/sub 4/H/sub 4/O/sub 3/), was developed for the extraction and preconcentration of As(III) in food additives soil alkali sample prior to graphite furnace atomic absorption spectrometry (GFAAS) analysis. The structure and properties of VC (unmodified corn silk fiber) and MC were analyzed and discussed by means of FTIR, SEM and TG, and the effect of adsorbent amount, pH, soil alkali solution concentration, adsorption time and adsorption temperature were carefully optimized. Under the optimum conditions, the relative standard deviations (RSD, n=6) were 1.27-3.05%, the calibration graph was linear in the range of 0-100 meu g/ L and the limits of detection (LOD) was 0.13 meu g/L. The surface of MC became loose and porous which increased the adsorption area. Comparing with VC, carboxy groups were measured in MC and the increase of negative electron group in fiber molecular made its coordination combining ability with As(III) enhanced; In comparison with the removal arsenic rate of VC, MC's significantly increased by 2.86 fold. The recovery rate of soil alkali, treated by VC and MC, reached to 96.85% and 94.32%, and it did not affected the function of soil alkali. (author)

  19. New type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. III. Recycle use of adsorbent

    International Nuclear Information System (INIS)

    Omichi, H.; Katakai, A.; Sugo, T.; Okamoto, J.

    1986-01-01

    An amidoxime-group adsorbent for recovering uranium from seawater was made by radiation-induced graft polymerization of acrylonitrile onto polymeric fiber, followed by amidoximation. Uranium adsorption of the adsorbent contacted with seawater in a column increased with the increase in flow rate, then leveled off. The relationship between uranium adsorption in a batch process and the ratio of the amount of seawater to that of adsorbent was found to be effective in evaluating adsorbent contacted with any amount of seawater. The conditioning of the adsorbent with an alkaline solution at higher temperature (∼80 0 C) after the acid desorption recovered the adsorption ability to the original level. This made it possible to apply the adsorbent to recycle use. On the other hand, the adsorbent conditioned at room temperature or that without conditioning lost adsorption ability during recycle use. The increase in water uptake was observed as one of the physical changes produced during recycle use of the alkaline-conditioned adsorbent, while the decrease in water uptake was observed with the unconditioned adsorbent. The IR spectra of the adsorbent showed a probability of reactions of amidoxime groups with acid and alkaline solutions, which can explain the change in uranium adsorption during the adsorption-desorption cycle

  20. The adventure of atom. Vol.1

    International Nuclear Information System (INIS)

    La Gorce, P.M. de; Bacher, P.; Bourgeois, J.; Bussac, J.; Cauquais, C.; Gauvenet, A.; Goldschmidt, B.; Le Baut, Y.; Mezin, M.

    1992-01-01

    In the first volume on the ambiguous adventure of atom, the authors present the history of atom conquest with the discoveries of natural and artificial radioactivity and chain reactions, before to explain the first military uses

  1. Spontaneous symmetry breaking by double lithium adsorption in polyacenes

    International Nuclear Information System (INIS)

    Ortiz, Yenni. P.; Seligman, Thomas H.

    2010-01-01

    We show that adsorption of one lithium atom to polyacenes, i.e. chains of linearly fused benzene rings, will cause such chains to be slightly deformed. If we adsorb a second identical atom on the opposite side of the same ring, this deformation is dramatically enhanced despite the fact that a symmetric configuration seems possible. We argue, that this may be due to an instability of the Jahn-Teller type possibly indeed to a Peierls instability.

  2. The condensation of water on adsorbed viruses.

    Science.gov (United States)

    Alonso, José María; Tatti, Francesco; Chuvilin, Andrey; Mam, Keriya; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-11-26

    The wetting and dewetting behavior of biological nanostructures and to a greater degree single molecules is not well-known even though their contact with water is the basis for all biology. Here, we show that environmental electron microscopy (EM) can be applied as a means of imaging the condensation of water onto viruses. We captured the formation of submicrometer water droplets and filaments on single viral particles by environmental EM and by environmental transmission EM. The condensate structures are compatible with capillary condensation between adsorbed virus particles and with known droplet shapes on patterned surfaces. Our results confirm that such droplets exist down to condensation/evaporation cycle as expected from their stability in air and water. Moreover we developed procedures that overcome problems of beam damage and of resolving structures with a low atomic number.

  3. Fragmentation kinetics of a Morse oscillator chain under tension

    International Nuclear Information System (INIS)

    Stember, Joseph N.; Ezra, Gregory S.

    2007-01-01

    The bond dissociation kinetics of tethered atomic (Morse potential) chains under tensile stress is studied. Both RRKM (fully anharmonic, Monte Carlo) and RRK (harmonic appproximation) theory are applied to predict bond dissociation rate constants as a function of energy and tensile force. For chains with N ≥ 3 atoms a hybrid statistical theory is used involving a harmonic approximation for motion in the transition state for bond dissociation. For chains with N = 2-5 atoms, while the RRK approximation significantly overestimates the dissociation rate constant, the fully anharmonic RRKM rate is quite close to simulation results. For the N = 2 chain, a novel approach to the extraction of decay rate constants based on the classical spectral theorem is implemented. Good agreement between the RRKM and dynamical rate constants is obtained for N = 2 despite the fact that the reactant phase space contains a significant fraction of relatively short-lived trajectories

  4. Transport through a Single Octanethiol Molecule

    NARCIS (Netherlands)

    Kockmann, D.; Poelsema, Bene; Zandvliet, Henricus J.W.

    2009-01-01

    Octanethiol molecules adsorbed on Pt chains are studied with scanning tunneling microscopy and spectroscopy at 77 K. The head of the octanethiol binds to a Pt atom and the tail is lying flat down on the chain. Open-loop current time traces reveal that the molecule wags its tail and attaches to the

  5. Photoconductivities from band states and a dissipative electron dynamics: Si(111) without and with adsorbed Ag clusters

    International Nuclear Information System (INIS)

    Vazhappilly, Tijo; Hembree, Robert H.; Micha, David A.

    2016-01-01

    A new general computational procedure is presented to obtain photoconductivities starting from atomic structures, combining ab initio electronic energy band states with populations from density matrix theory, and implemented for a specific set of materials based on Si crystalline slabs and their nanostructured surfaces without and with adsorbed Ag clusters. The procedure accounts for charge mobility in semiconductors in photoexcited states, and specifically electron and hole photomobilities at Si(111) surfaces with and without adsorbed Ag clusters using ab initio energy bands and orbitals generated from a generalized gradient functional, however with excited energy levels modified to provide correct bandgaps. Photoexcited state populations for each band and carrier type were generated using steady state solution of a reduced density matrix which includes dissipative medium effects. The present calculations provide photoexcited electronic populations and photoinduced mobilities resulting from applied electric fields and obtained from the change of driven electron energies with their electronic momentum. Extensive results for Si slabs with 8 layers, without and with adsorbed Ag clusters, show that the metal adsorbates lead to substantial increases in the photomobility and photoconductivity of electrons and holes

  6. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1980-01-01

    Radioactive krypton-85 is released to the atmosphere in the off-gas from nuclear reprocessing plants. Three main methods have been suggested for removal of krypton from off-gas streams: cryogenic distillation; fluorocarbon absorption; and adsorption on solid sorbents. Use of solid adsorbents is the least developed of these methods, but offers the potential advantages of enhanced safety and lower operating costs. An experimental laboratory program was developed that will be used to investigate systematically many solid adsorbents (such as zeolites, i.e., mordenites) for trapping krypton in air. The objective of this investigation is to find an adsorbent that is more economical than silver-exchanged mordenite. Various physical and chemical characteristics such as adsorption isotherms, decontamination factors, co-adsorption, regeneration, and the mechanism and kinetics of noble gas adsorption were used to characterize the adsorbents. In the experimental program, a gas chromatograph using a helium ionization detector was used to measure the krypton in air before and after the adsorbent bed. This method can determine directly decontamination factors greater than 100

  7. Principle and Reconstruction Algorithm for Atomic-Resolution Holography

    Science.gov (United States)

    Matsushita, Tomohiro; Muro, Takayuki; Matsui, Fumihiko; Happo, Naohisa; Hosokawa, Shinya; Ohoyama, Kenji; Sato-Tomita, Ayana; Sasaki, Yuji C.; Hayashi, Kouichi

    2018-06-01

    Atomic-resolution holography makes it possible to obtain the three-dimensional (3D) structure around a target atomic site. Translational symmetry of the atomic arrangement of the sample is not necessary, and the 3D atomic image can be measured when the local structure of the target atomic site is oriented. Therefore, 3D local atomic structures such as dopants and adsorbates are observable. Here, the atomic-resolution holography comprising photoelectron holography, X-ray fluorescence holography, neutron holography, and their inverse modes are treated. Although the measurement methods are different, they can be handled with a unified theory. The algorithm for reconstructing 3D atomic images from holograms plays an important role. Although Fourier transform-based methods have been proposed, they require the multiple-energy holograms. In addition, they cannot be directly applied to photoelectron holography because of the phase shift problem. We have developed methods based on the fitting method for reconstructing from single-energy and photoelectron holograms. The developed methods are applicable to all types of atomic-resolution holography.

  8. Analytic study of the chain dark decomposition reaction of iodides - atomic iodine donors - in the active medium of a pulsed chemical oxygen-iodine laser: 1. Criteria for the development of the branching chain dark decomposition reaction of iodides

    International Nuclear Information System (INIS)

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, Aleksandr I; Sorokin, Vadim N

    2009-01-01

    The scheme of chemical processes proceeding in the active medium of a pulsed chemical oxygen-iodine laser (COIL) is analysed. Based on the analysis performed, the complete system of differential equations corresponding to this scheme is replaced by a simplified system of equations describing in dimensionless variables the chain dark decomposition of iodides - atomic iodine donors, in the COIL active medium. The procedure solving this system is described, the basic parameters determining the development of the chain reaction are found and its specific time intervals are determined. The initial stage of the reaction is analysed and criteria for the development of the branching chain decomposition reaction of iodide in the COIL active medium are determined. (active media)

  9. Cell for studying electron-adsorbed gas interactions; Cellule d'etudes des interactions electron-gaz adsorbe

    Energy Technology Data Exchange (ETDEWEB)

    Golowacz, H; Degras, D A [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, Deptartement de Physique des Plasmas et de la Fusion Controlee, Service de Physique Appliquee, Service de Physique des Interractions Electroniques, Section d' Etude des Interactions Gaz-Solides

    1967-07-01

    The geometry and the technology of a cell used for investigations on electron-adsorbed gas interactions are described. The resonance frequencies of the surface ions which are created by the electron impact on the adsorbed gas are predicted by simplified calculations. The experimental data relative to carbon monoxide and neon are in good agreement with these predictions. (authors) [French] Les caracteristiques geometriques et technologiques generales d'une cellule d'etude des interactions entre un faisceau d'electrons et un gaz adsorbe sont donnees. Un calcul simplifie permet de prevoir les frequences de resonance des ions de surface crees par l'impact des electrons sur le gaz adsorbe. Les donnees experimentales sur l'oxyde de carbone et le neon confirment les previsions du calcul. (auteurs)

  10. Aqueous Processing of Si3N4 Powder with Chem-Adsorbed Silanes

    National Research Council Canada - National Science Library

    Colic, Miroslav

    1996-01-01

    .... Addition of salt to dispersed silicon nitride slurries with particles coated with polyethyleneglycol-silane, caused the collapse of the 22 atoms long chains and residual electrical double layer...

  11. Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to Pimphales promelas: Influence of Adsorbate Molecular Size and Configuration.

    Science.gov (United States)

    Linard, Erica N; Apul, Onur G; Karanfil, Tanju; van den Hurk, Peter; Klaine, Stephen J

    2017-08-15

    Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.

  12. Single atom self-diffusion on nickel surfaces

    International Nuclear Information System (INIS)

    Tung, R.T.; Graham, W.R.

    1980-01-01

    Results of a field ion microscope study of single atom self-diffusion on Ni(311), (331), (110), (111) and (100) planes are presented, including detailed information on the self-diffusion parameters on (311), (331), and (110) surfaces, and activation energies for diffusion on the (111), and (100) surfaces. Evidence is presented for the existence of two types of adsorption site and surface site geometry for single nickel atoms on the (111) surface. The presence of adsorbed hydrogen on the (110), (311), and (331) surfaces is shown to lower the onset temperature for self-diffusion on these planes. (orig.)

  13. Extreme event statistics in a drifting Markov chain

    Science.gov (United States)

    Kindermann, Farina; Hohmann, Michael; Lausch, Tobias; Mayer, Daniel; Schmidt, Felix; Widera, Artur

    2017-07-01

    We analyze extreme event statistics of experimentally realized Markov chains with various drifts. Our Markov chains are individual trajectories of a single atom diffusing in a one-dimensional periodic potential. Based on more than 500 individual atomic traces we verify the applicability of the Sparre Andersen theorem to our system despite the presence of a drift. We present detailed analysis of four different rare-event statistics for our system: the distributions of extreme values, of record values, of extreme value occurrence in the chain, and of the number of records in the chain. We observe that, for our data, the shape of the extreme event distributions is dominated by the underlying exponential distance distribution extracted from the atomic traces. Furthermore, we find that even small drifts influence the statistics of extreme events and record values, which is supported by numerical simulations, and we identify cases in which the drift can be determined without information about the underlying random variable distributions. Our results facilitate the use of extreme event statistics as a signal for small drifts in correlated trajectories.

  14. The adsorber loop concept for the contact between seawater and adsorber granulate

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    The present paper deals with the so-called ''adsorber loop concept'' in which the adsorber granulate is carried along with the seawater to be processed in a loop-like configuration and is separated again from the depleted water before this is leaving the adsorption unit. This concept enables high seawater velocities thus reducing the required bed area. Theoretical considerations are presented together with experimental results from field tests. (orig.) [de

  15. Photoenhanced atomic layer epitaxy. Hikari reiki genshiso epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Mashita, M.; Kawakyu, Y. (Toshiba corp., Tokyo (Japan))

    1991-10-01

    The growth temperature range was greatly expanded of atomic layer epitaxy (ALE) expected as the growth process of ultra-thin stacks. Ga layers and As layers were formed one after the other on a GaAs substrate in the atmosphere of trimethylgallium (TMG) or AsH{sub 2} supplied alternately, by KrF excimer laser irradiation normal to the substrate. As a result, the growth temperature range was 460-540{degree}C nearly 10 times that of 500 {plus minus} several degrees centigrade in conventional thermal growth method. Based on the experimental result where light absorption of source molecules adsorbed on a substrate surface was larger than that under gaseous phase condition, new adsorbed layer enhancement model was proposed to explain above irradiation effect verifying it by experiments. As this photoenhancement technique is applied to other materials, possible fabrication of new crystal structures as a super lattice with ultra-thin stacks of single atomic layers is expected because of a larger freedom in material combination for hetero-ALE. 11 refs., 7 figs.

  16. Sulfur dimers adsorbed on Au(111) as building blocks for sulfur octomers formation: A density functional study

    International Nuclear Information System (INIS)

    Hernandez-Tamargo, Carlos E.; Montero-Alejo, Ana Lilian; Pujals, Daniel Codorniu; Mikosch, Hans; Hernández, Mayra P.

    2014-01-01

    Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO 2 gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage

  17. Sulfur dimers adsorbed on Au(111) as building blocks for sulfur octomers formation: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Tamargo, Carlos E.; Montero-Alejo, Ana Lilian [Laboratory of Computational and Theoretical Chemistry (LQCT), Faculty of Chemistry, Havana University, Havana 10400 (Cuba); Pujals, Daniel Codorniu [Higher Institute of Technologies and Applied Sciences (InSTEC), Havana 10400 (Cuba); Mikosch, Hans [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/E164-EC, 1060 Vienna (Austria); Hernández, Mayra P., E-mail: mayrap@imre.oc.uh.cu [Instituto de Ciencias y Tecnologías de Materiales (IMRE), Havana 10400 (Cuba)

    2014-07-28

    Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO{sub 2} gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage.

  18. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Motojima, K.; Kawamura, F.

    1984-01-01

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  19. Modified Li chains as atomic switches

    KAUST Repository

    Wunderlich, Thomas

    2013-09-06

    We present electronic structure and transport calculations for hydrogen and lithium chains, using density functional theory and scattering theory on the Green\\'s function level, to systematically study impurity effects on the transmission coefficient. To this end we address various impurity configurations. Tight-binding results allow us to interpret our the findings. We analyze under which circumstances impurities lead to level splitting and/or can be used to switch between metallic and insulating states. We also address the effects of strongly electronegative impurities.

  20. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    International Nuclear Information System (INIS)

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W.P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-01-01

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  1. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  2. Atom location using recoil ion spectroscopy

    International Nuclear Information System (INIS)

    O'Connor, D.J.

    1985-01-01

    Low energy ion scattering (LEIS) using inert gas and alkali ions is widely used in studies of the surface atomic layer. The extreme surface sensitivity of this technique ensures that it yields both compositional and structural information on clean and adsorbate covered surfaces. Low Energy Negative recoil Spectroscopy (LENRS) has been applied to a study of oxygen on Ni(110) to gauge the sensitivity to coverage and site location

  3. Conductance of single atoms and molecules studied with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Neel, N; Kroeger, J; Limot, L; Berndt, R

    2007-01-01

    The conductance of single atoms and molecules is investigated with a low-temperature scanning tunnelling microscope. In a controlled and reproducible way, clean Ag(111) surfaces, individual silver atoms on Ag(111) as well as individual C 60 molecules adsorbed on Cu(100) are contacted with the tip of the microscope. Upon contact the conductance changes discontinuously in the case of the tip-surface junction while the tip-atom and tip-molecule junctions exhibit a continuous transition from the tunnelling to the contact regime

  4. Smallest Nanoelectronic with Atomic Devices with Precise Structures

    Science.gov (United States)

    Yamada, Toshishige

    2000-01-01

    Since its invention in 1948, the transistor has revolutionized our everyday life - transistor radios and TV's appeared in the early 1960s, personal computers came into widespread use in the mid-1980s, and cellular phones, laptops, and palm-sized organizers dominated the 1990s. The electronics revolution is based upon transistor miniaturization; smaller transistors are faster, and denser circuitry has more functionality. Transistors in current generation chips are 0.25 micron or 250 nanometers in size, and the electronics industry has completed development of 0.18 micron transistors which will enter production within the next few years. Industry researchers are now working to reduce transistor size down to 0.13 micron - a thousandth of the width of a human hair. However, studies indicate that the miniaturization of silicon transistors will soon reach its limit. For further progress in microelectronics, scientists have turned to nanotechnology to advance the science. Rather than continuing to miniaturize transistors to a point where they become unreliable, nanotechnology offers the new approach of building devices on the atomic scale [see sidebar]. One vision for the next generation of miniature electronics is atomic chain electronics, where devices are composed of atoms aligned on top of a substrate surface in a regular pattern. The Atomic Chain Electronics Project (ACEP) - part of the Semiconductor Device Modeling and Nanotechnology group, Integrated Product Team at the NAS Facility has been developing the theory of understanding atomic chain devices, and the author's patent for atomic chain electronics is now pending.

  5. Phase properties of elastic waves in systems constituted of adsorbed diatomic molecules on the (001) surface of a simple cubic crystal

    Science.gov (United States)

    Deymier, P. A.; Runge, K.

    2018-03-01

    A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.

  6. Quantum chemical investigation on the role of Li adsorbed on anatase (101) surface nano-materials on the storage of molecular hydrogen.

    Science.gov (United States)

    Srinivasadesikan, V; Raghunath, P; Lin, M C

    2015-06-01

    Lithiation of TiO2 has been shown to enhance the storage of hydrogen up to 5.6 wt% (Hu et al. J Am Chem Soc 128:11740-11741, 2006). The mechanism for the process is still unknown. In this work we have carried out a study on the adsorption and diffusion of Li atoms on the surface and migration into subsurface layers of anatase (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT+U). The model consists of 24 [TiO2] units with 11.097 × 7.655 Å(2) surface area. Adsorption energies have been calculated for different Li atoms (1-14) on the surface. A maximum of 13 Li atoms can be accommodated on the surface at two bridged O, Ti-O, and Ti atom adsorption sites, with 83 kcal mol(-1) adsorption energy for a single Li atom adsorbed between two bridged O atoms from where it can migrate into the subsurface layer with 27 kcal mol(-1) energy barrier. The predicted adsorption energies for H2 on the lithiated TiO2 (101) surface with 1-10 Li atoms revealed that the highest adsorption energies occurred on 1-Li, 5-Li, and 9-Li surfaces with 3.5, 4.4, and 7.6 kcal mol(-1), respectively. The values decrease rapidly with additional H2 co-adsorbed on the lithiated surfaces; the maximum H2 adsorption on the 9Li-TiO2(a) surface was estimated to be only 0.32 wt% under 100 atm H2 pressure at 77 K. The result of Bader charge analysis indicated that the reduction of Ti occurred depending on the Li atoms covered on the TiO2 surface.

  7. Sustainable conversion of agro-wastes into useful adsorbents

    Science.gov (United States)

    Bello, Olugbenga Solomon; Owojuyigbe, Emmanuel Seun; Babatunde, Monsurat Abiodun; Folaranmi, Folasayo Eunice

    2017-11-01

    Preparation and characterization of raw and activated carbon derived from three different selected agricultural wastes: kola nut pod raw and activated (KNPR and KNPA), bean husk raw and activated (BHR and BHA) and coconut husk raw and activated (CHR and CHA) were investigated, respectively. Influences of carbonization and acid activation on the activated carbon were investigated using SEM, FTIR, EDX, pHpzc and Boehm titration techniques, respectively. Carbonization was done at 350 °C for 2 h followed by activation with 0.3 M H3PO4 (ortho-phosphoric acid). Results obtained from SEM, FTIR, and EDX revealed that, carbonization followed by acid activation had a significant influence on morphology and elemental composition of the samples. SEM showed well-developed pores on the surface of the precursors after acid treatment, FTIR spectra revealed reduction, broadening, disappearance or appearance of new peaks after acid activation. EDX results showed highest percentage of carbon by atom respectively in the order BHA > KNPA > CHA respectively. The pHpzc was found to be 5.32, 4.57 and 3.69 for KNPA, BHA and CHA, respectively. Boehm titration result compliments that of pHpzc, indicating that the surfaces of the prepared adsorbents are predominantly acidic. This study promotes a sustainable innovative use of agro-wastes in the production of cheap and readily available activated carbons, thereby ensuring more affordable water and effluent treatment adsorbents.

  8. Radiolytic stability of gibbsite and boehmite with adsorbed water

    Energy Technology Data Exchange (ETDEWEB)

    Huestis, Patricia; Pearce, Carolyn I.; Zhang, X.; N' Diaye, Alpha T.; Rosso, Kevin M.; LaVerne, Jay A.

    2018-04-01

    Aluminum oxyhydroxide (boehmite, AlOOH) and aluminum hydroxide (gibbsite, Al(OH)3) powders with adsorbed water were irradiated with -rays and 5 MeV He ions (α-particles) in order to determine overall radiation stability and chemical modification to the surface. No variation in overall phase or crystallinity due to radiolysis was observed with X-ray diffraction (XRD) and Raman spectroscopy for doses up to 2 MGy with -rays and 175 MGy with α-particles. Temperature programed desorption (TPD) of the water from the surface to the gas phase indicated that the water was chemisorbed and strongly bound. Water adsorption sites are of similar energy for both gibbsite and boehmite. Observation of the water adsorbed on the surface of gibbsite and boehmite with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed broad peaks at 3100-3600 cm-1 due to OH stretching that slowly decreased on heating to 500oC, which corresponds well with the water vapor evolution observed with TPD. Both materials were found to be amorphous following heating to 500oC. X-ray photoelectron spectroscopy (XPS) indicated surface reduction of Al(III) to Al metal on radiolysis with α-particles. Complete loss of chemisorbed water and the formation of bulk O atoms was observed following radiolysis with α-particles.

  9. Adsorption of selenium atoms at the Si(1 1 1)-7 x 7 surface: A combination of scanning tunnelling microscopy and density functional theory studies

    International Nuclear Information System (INIS)

    Wu, S.Q.; Zhou Yinghui; Wu Qihui; Pakes, C.I.; Zhu Zizhong

    2011-01-01

    Graphical abstract: A selenium atom, which adsorbs at site close to a Si adatom and bonds with this Si adatom and one of its backbonding Si atoms on the Si(1 1 1)-7 x 7 surface, will break the Si-Si bond and consequently disorder the Si reconstruction surface. Research highlights: → STM and DFT are used to study the adsorption properties of Se atoms on a Si surface. → The adsorption site of Se atom on the Si surface has been identified. → The electronic effect of Se atom on the adsorbed Si surface has been ivestigaed. → The Se atom weakens the bond between two Si atom bonding with the Se atom. - Abstract: The adsorption of selenium (Se) atoms at the Si(1 1 1)-7 x 7 surface has been investigated using both scanning tunnelling microscopy (STM) and density functional theory calculations. A single Se atom prefers to adsorb at sites close to a Si adatom and bonds with this Si adatom and one of its backbonding Si atoms. The adsorption sites are referred to as A*-type sites in this article. The density of the conduction band (empty states) of the Si adatom increases as a result of the adsorption of a Se atom, which causes the Si adatom to become brighter in the empty state STM images. At the same time, the adsorption of the Se atom weakens the bonding between the Si adatom and its backbonding Si atom due to the charge transfer from them to the Se atom, and consequently destructs the ordered Si(1 1 1)-7 x 7 surface with increasing Se coverage.

  10. Volatile organic compounds adsorption using different types of adsorbent

    Directory of Open Access Journals (Sweden)

    Pimanmes Chanayotha

    2014-09-01

    Full Text Available Adsorbents were synthesized from coconut shell, coal and coke by pyrolysis followed by chemical activation process. These synthesized materials were used as adsorbents in adsorption test to determine the amount of volatile organic compounds (VOCs namely, 2-Hydroxyethyl methacrylate (HEMA, Octamethylcyclotetrasiloxane and Alkanes standard solution (C8-C20. The adsorption capacities of both synthesized adsorbents and commercial grade adsorbents (Carbotrap™ B and Carbotrap™ C were also compared. It was found that adsorbent A402, which was produced from coconut shell, activated with 40% (wt. potassium hydroxide and at activating temperature of 800°C for 1 hr, could adsorb higher amount of both HEMA and Octamethylcyclotetrasiloxane than other synthesized adsorbents. The maximum adsorption capacity of adsorbent A402 in adsorbing HEMA and Octamethylcyclotetrasiloxane were 77.87% and 50.82% respectively. These adsorption capabilities were 79.73% and 70.07% of the adsorption capacity of the commercial adsorbent Carbotrap™ B respectively. All three types of the synthesized adsorbent (A402, C302, C402 showed the capability to adsorb alkanes standard solution through the range of C8-C20 . However, their adsorption capacities were high in a specific range of C10-C11. The result from the isotherm plot was indicated that surface adsorption of synthesized adsorbent was isotherm type I while the surface adsorption of commercial adsorbent was isotherm type III.

  11. Surface Chirality of Gly-Pro Dipeptide Adsorbed on a Cu(110) Surface.

    Science.gov (United States)

    Cruguel, Hervé; Méthivier, Christophe; Pradier, Claire-Marie; Humblot, Vincent

    2015-07-01

    The adsorption of chiral Gly-Pro dipeptide on Cu(110) has been characterized by combining in situ polarization modulation infrared reflection absorption spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS). The chemical state of the dipeptide, and its anchoring points and adsorption geometry, were determined at various coverage values. Gly-Pro molecules are present on Cu(110) in their anionic form (NH2 /COO(-)) and adsorb under a 3-point binding via both oxygen atoms of the carboxylate group and via the nitrogen atom of the amine group. Low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) have shown the presence of an extended 2D chiral array, sustained via intermolecular H-bonds interactions. Furthermore, due to the particular shape of the molecule, only one homochiral domain is formed, creating thus a truly chiral surface. © 2015 Wiley Periodicals, Inc.

  12. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh; Saha, Bidyut Baran; Ng, Kim Choon; Koyama, Shigeru; Srinivasan, Kandadai

    2009-01-01

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations

  13. Investigations to increase the efficiency of fluorine and boron removal from groundwater using radiation-induced graft polymerization adsorbent

    International Nuclear Information System (INIS)

    Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Sugihara, Kozo; Hoshina, Hiroyuki; Seko, Noriaki; Kasai, Noboru; Ueki, Yuji; Tamada, Masao

    2010-01-01

    The Japan Atomic Energy Agency is performing a research project in the Mizunami Underground Research Laboratory (MIU) to build a firm scientific and technological basis for the studies of the deep underground environment in crystalline rock. In the project, it is necessary to reduce the fluorine and boron concentrations in groundwater pumped from the MIU shafts to levels below the environmental standards. This is done at the MIU water treatment facility using coagulation and ion exchange treatment for fluorine and boron, respectively. In addition, in 2006, research started on the efficient treatment of groundwater for removal of fluorine and boron using a radiation-induced graft polymerization adsorbent. The adsorbent removed boron at a flow rate (space velocity (SV)=120 h -1 ) higher than that of a general ion exchange resin (SV=10 h -1 ) and the adsorbent could be used repeatedly. It was also apparent that the pH of groundwater had an influence on adsorption performance. With respect to fluorine removal, more than 90% of fluorine was removed. However, the adsorbent for fluorine showed a lower adsorption capacity than that for boron. The reason for this difference is considered to be related to the initial concentration difference between fluorine and boron in the groundwater. Therefore, it is necessary to define the initial concentrations of dissolved materials, which can be used as better indicators of the performance of the adsorbent. (author)

  14. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Nørskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced...... and the effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small...... influence on the position of the top of the volcano, that is, on which metal is the best catalyst....

  15. In Situ Adsorption Studies at the Solid/Liquid Interface: Characterization of Biological Surfaces and Interfaces Using Sum Frequency Generation Vibrational Spectroscopy, Atomic Force Microscopy, and Quartz Crystal Microbalance

    International Nuclear Information System (INIS)

    Phillips, D.C.

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste

  16. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Diana Christine [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste.

  17. DFT Modeling of Cross-Linked Polyethylene: Role of Gold Atoms and Dispersion Interactions.

    Science.gov (United States)

    Blaško, Martin; Mach, Pavel; Antušek, Andrej; Urban, Miroslav

    2018-02-08

    Using DFT modeling, we analyze the concerted action of gold atoms and dispersion interactions in cross-linked polyethylene. Our model consists of two oligomer chains (PEn) with 7, 11, 15, 19, or 23 carbon atoms in each oligomer cross-linked with one to three Au atoms through C-Au-C bonds. In structures with a single gold atom the C-Au-C bond is located in the central position of the oligomer. Binding energies (BEs) with respect to two oligomer radical fragments and Au are as high as 362-489 kJ/mol depending on the length of the oligomer chain. When the dispersion contribution in PEn-Au-PEn oligomers is omitted, BE is almost independent of the number of carbon atoms, lying between 293 and 296 kJ/mol. The dispersion energy contributions to BEs in PEn-Au-PEn rise nearly linearly with the number of carbon atoms in the PEn chain. The carbon-carbon distance in the C-Au-C moiety is around 4.1 Å, similar to the bond distance between saturated closed shell chains in the polyethylene crystal. BEs of pure saturated closed shell PEn-PEn oligomers are 51-187 kJ/mol. Both Au atoms and dispersion interactions contribute considerably to the creation of nearly parallel chains of oligomers with reasonably high binding energies.

  18. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  19. Wannier-function-based constrained DFT with nonorthogonality-correcting Pulay forces in application to the reorganization effects in graphene-adsorbed pentacene

    Science.gov (United States)

    Roychoudhury, Subhayan; O'Regan, David D.; Sanvito, Stefano

    2018-05-01

    Pulay terms arise in the Hellmann-Feynman forces in electronic-structure calculations when one employs a basis set made of localized orbitals that move with their host atoms. If the total energy of the system depends on a subspace population defined in terms of the localized orbitals across multiple atoms, then unconventional Pulay terms will emerge due to the variation of the orbital nonorthogonality with ionic translation. Here, we derive the required exact expressions for such terms, which cannot be eliminated by orbital orthonormalization. We have implemented these corrected ionic forces within the linear-scaling density functional theory (DFT) package onetep, and we have used constrained DFT to calculate the reorganization energy of a pentacene molecule adsorbed on a graphene flake. The calculations are performed by including ensemble DFT, corrections for periodic boundary conditions, and empirical Van der Waals interactions. For this system we find that tensorially invariant population analysis yields an adsorbate subspace population that is very close to integer-valued when based upon nonorthogonal Wannier functions, and also but less precisely so when using pseudoatomic functions. Thus, orbitals can provide a very effective population analysis for constrained DFT. Our calculations show that the reorganization energy of the adsorbed pentacene is typically lower than that of pentacene in the gas phase. We attribute this effect to steric hindrance.

  20. Method for modifying trigger level for adsorber regeneration

    Science.gov (United States)

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  1. A novel fiber-based adsorbent technology

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.A. [Chemica Technologies, Inc., Bend, OR (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  2. Theoretical and experimental studies for selective removal of antimony from zircaloy using thiourea grafted polystyrene adsorbent. Contributed Paper MS-01

    International Nuclear Information System (INIS)

    Arora, Jyotsna S.; Gaikar, Vilas G.

    2014-01-01

    During the dissolution step in nuclear fuel reprocessing, hulls consisting of essentially zircaloy clad are produced as high active solid waste. For recovery and reuse of zircaloy from this solid waste, 58 Co and 125 Sb which are present as the activation products of cobalt and tin in zircaloy tubes need to be separated. The present work involves selective sorption of antimony on thiourea grafted polymeric adsorbent in the presence of cobalt and zirconium. The effect of pH for the optimum uptake of antimony ions was studied. Since the variation in pH influences the antimony species formed in the solution, density functional theoretical (DFT) studies were performed in order to understand the complexation of the metal species with the grafted adsorbent at the molecular level. The highest occupied molecular orbital (HOMO) of the adsorbent which is located on S atom of loaded thiourea interacts with lowest unoccupied molecular orbital (LUMO) of Sb(V). The grafted adsorbent exhibits higher interaction with antimony species as compared to cobalt and zirconium. The metal-S bond distances are in good agreement with the XRD values for similar systems. Including the effect of solvation model helps in validation of simulation results with experimental adsorption data suggesting the application of thiourea grafted adsorbent for antimony separation. (author)

  3. Novel Fiber-Based Adsorbent Technology; FINAL

    International Nuclear Information System (INIS)

    Nixon, P.G.; Tsukamoto, T.; Brose, D.J.

    2001-01-01

    The overall of this Department of Energy (DOE) Phase II SBIR program was to develop a new class of highly robust fiber-based adsorbents for recovery of heavy metals from aqueous waste-streams. The fiber-based adsorbents,when commercialized,will be used for clean up metals in aqueous waste-streams emanating from DOE facilities,industry,mining,and groundwater-cleanup operations.The amount of toxic waste released by these streams is of great significance.The U.S.Environment Protection Agency (EPA) reports that in 1990 alone,4.8 billion pounds of toxic chemicals were released into the environment.Of this waste,the metals-containing waste was the second largest contributor,representing 569 million pounds. This report presents the results of the Phase II program,which successfully synthesized noval fiber-based adsorbents for the removal of Group 12 metals(i.e.mercury),Group 14 metals (lead),and Group 10 metals(platinum and palladium) from contaminated groundwater and industrial waste streams.These fiber-based adsorbents are ideally suited for the recovery of metal ions from aqueous waste streams presently not treatable due to the degrading nature of corrosive chemicals or radioactive components in the feed stream. The adsorbents developed in this program rely on chemically resistant and robust carbon fibers and fabrics as supports for metal-ion selective ligands.These adsorbents demonstrate loading capacities and selectivities for metal ions exceeding those of conventional ion-exchange resins.The adsorbents were also used to construct filter modules that demonstrate minimal fouling,minimal compaction,chemical and physical robustness,and regeneration of metal loading capacity without loss of performance

  4. Catalysts of Cu(II) and Co(II) ions adsorbed in chitosan used in transesterification of soy bean and babassu oils - a new route for biodiesel syntheses.

    Science.gov (United States)

    da Silva, Rondinelly Brandão; Lima Neto, Alcides Fernandes; Soares Dos Santos, Lucas Samuel; de Oliveira Lima, José Renato; Chaves, Mariana Helena; Dos Santos, José Ribeiro; de Lima, Geraldo Magela; de Moura, Edmilson Miranda; de Moura, Carla Verônica Rodarte

    2008-10-01

    Catalysts of Cu(II) and Co(II) adsorbed in chitosan was used in transesterification of soy bean and babassu oils. The catalysts were characterized by infrared, atomic absorption and TG, and biodiesels was characterized by infrared, NMR, CG, TG, physic chemistry analysis. The maximum adsorption values found for copper and cobalt cations were 1.584 and 1.260mgg(-1), respectively, in 180min. However, conversion of oils in biodiesel was better when used Co(II) adsorbed in chitosan.

  5. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples.

    Science.gov (United States)

    Yilmaz, Erkan; Ocsoy, Ismail; Ozdemir, Nalan; Soylak, Mustafa

    2016-02-04

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L(-)(1) and 8.8 μg L(-)(1), respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Characterisation of phase transition in adsorbed monolayers at the air/water interface.

    Science.gov (United States)

    Vollhardt, D; Fainerman, V B

    2010-02-26

    Recent work has provided experimental and theoretical evidence that a first order fluid/condensed (LE/LC) phase transition can occur in adsorbed monolayers of amphiphiles and surfactants which are dissolved in aqueous solution. Similar to Langmuir monolayers, also in the case of adsorbed monolayers, the existence of a G/LE phase transition, as assumed by several authors, is a matter of question. Representative studies, at first performed with a tailored amphiphile and later with numerous other amphiphiles, also with n-dodecanol, provide insight into the main characteristics of the adsorbed monolayer during the adsorption kinetics. The general conditions necessary for the formation of a two-phase coexistence in adsorbed monolayers can be optimally studied using dynamic surface pressure measurements, Brewster angle microscopy (BAM) and synchrotron X-ray diffraction at grazing incidence (GIXD). A characteristic break point in the time dependence of the adsorption kinetics curves indicates the phase transition which is largely affected by the concentration of the amphiphile in the aqueous solution and on the temperature. Formation and growth of condensed phase domains after the phase transition point are visualised by BAM. As demonstrated by a tailored amphiphile, various types of morphological textures of the condensed phase can occur in different temperature regions. Lattice structure and tilt angle of the alkyl chains in the condensed phase of the adsorbed monolayer are determined using GIXD. The main growth directions of the condensed phase textures are correlated with the two-dimensional lattice structure. The results, obtained for the characteristics of the condensed phase after a first order main transition, are supported by experimental bridging to the Langmuir monolayers. Phase transition of adsorbing trace impurities in model surfactants can strongly affect the characteristics of the main component. Dodecanol present as minor component in aqueous sodium

  7. Energy band modulation of graphane by hydrogen-vacancy chains: A first-principles study

    Directory of Open Access Journals (Sweden)

    Bi-Ru Wu

    2014-08-01

    Full Text Available We investigated a variety of configurations of hydrogen-vacancy chains in graphane by first-principles density functional calculation. We found that graphane with two zigzag H-vacancy chains segregated by one or more H chain is generally a nonmagnetic conductor or has a negligible band gap. However, the same structure is turned into a semiconductor and generates a magnetic moment if either one or both of the vacancy chains are blocked by isolated H atoms. If H-vacancy chains are continuously distributed, the structure is similar to a zigzag graphene nanoribbon embedded in graphane. It was also found that the embedded zigzag graphene nanoribbon is antiferromagnetic, and isolated H atoms left in the 2-chain nanoribbon can tune the band gap and generate net magnetic moments. Similar effects are also obtained if bare carbon atoms are present outside the nanoribbon. These results are useful for designing graphene-based nanoelectronic circuits.

  8. WGS-Adsorbent Reaction Studies at Laboratory Scale

    International Nuclear Information System (INIS)

    Marano, M.; Torreiro, Y.

    2014-01-01

    This document reports the most significant results obtained during the experimental work performed under task WGS adsorbent experimental studies within CAPHIGAS project (National Research Plan 2008-2011, ref: ENE2009-08002). The behavior of the binary adsorbent-catalyst system which will be used in the hybrid system is described in this document. Main results reported here were used during the design and development of the hybrid system adsorbent catalyst- membrane proposed in the CAPHIGAS project. The influence of main operating parameters and the optimized volume ratio adsorbent-catalyst are also presented in this report. (Author)

  9. The atomic structure of transition metal clusters

    International Nuclear Information System (INIS)

    Riley, S.J.

    1995-01-01

    Chemical reactions are used to probe the atomic (geometrical) structure of isolated clusters of transition metal atoms. The number of adsorbate molecules that saturate a cluster, and/or the binding energy of molecules to cluster surfaces, are determined as a function of cluster size. Systematics in these properties often make it possible to propose geometrical structures consistent with the experimental observations. We will describe how studies of the reactions of cobalt and nickel clusters with ammonia, water, and nitrogen provide important and otherwise unavailable structural information. Specifically, small (less than 20 atoms) clusters of cobalt and nickel atoms adopt entirely different structures, the former having packing characteristic of the bulk and the latter having pentagonal symmetry. These observations provide important input for model potentials that attempt to describe the local properties of transition metals. In particular, they point out the importance of a proper treatment of d-orbital binding in these systems, since cobalt and nickel differ so little in their d-orbital occupancy

  10. Cross-Sectional Imaging of Boundary Lubrication Layer Formed by Fatty Acid by Means of Frequency-Modulation Atomic Force Microscopy.

    Science.gov (United States)

    Hirayama, Tomoko; Kawamura, Ryota; Fujino, Keita; Matsuoka, Takashi; Komiya, Hiroshi; Onishi, Hiroshi

    2017-10-10

    To observe in situ the adsorption of fatty acid onto metal surfaces, cross-sectional images of the adsorption layer were acquired by frequency-modulation atomic force microscopy (FM-AFM). Hexadecane and palmitic acid were used as the base oil and typical fatty acid, respectively. A Cu-coated silicon wafer was prepared as the target substrate. The solvation structure formed by hexadecane molecules at the interface between the Cu substrate and the hexadecane was observed, and the layer pitch was found to be about 0.6 nm, which corresponds to the height of hexadecane molecules. This demonstrates that hexadecane molecules physically adsorbed onto the surface due to van der Waals forces with lying orientation because hexadecane is a nonpolar hydrocarbon. When hexadecane with palmitic acid was put on the Cu substrate instead of pure hexadecane, an adsorption layer of palmitic acid was observed at the interface. The layer pitch was about 2.5-2.8 nm, which matches the chain length of palmitic acid molecules well. This indicates that the original adsorption layer was monolayer or single bilayer in the local area. In addition, a cross-sectional image captured 1 h after observation started to reveal that the adsorbed additive layer gradually grew up to be thicker than about 20 nm due to an external stimulus, such as cantilever oscillation. This is the first report of in situ observation of an adsorbed layer by FM-AFM in the tribology field and demonstrates that FM-AFM is useful for clarifying the actual boundary lubrication mechanism.

  11. Synthesis and Optimization of Chitosan Nanoparticles of Shrimp shell as Adsorbent of Pb2+ Ions

    Directory of Open Access Journals (Sweden)

    Sulistyani Sulistyani

    2017-11-01

    Full Text Available Synthesis and optimization of chitosan nanoparticles from shrimp shell as an adsorbent of Pb2+ ions has been done. Chitosan is obtained through several stages, namely deproteinase, demineralization and deacetylation. Deproteinase by using 2 N NaOH solution (a ratio of 1:6 w/v while stirring at 90 °C for 1 hour. Demineralization by using 1 N HCl solution (a ratio of 1:12 w/v while stirring at room temperature for 1 hour. Deacetylation by using 50% NaOH solution (a ratio of 1:10 w/v at 120 °C for 3 hours. Chitosan nanoparticles are obtained by adding a solution of 1% CH3COOH and a few drops of NH3 concentrated at 90 °C to form a white gel is then washed to pH neutral and dried. Characterization of chitosan include analysis of degree of deacetylation by using FTIR and analysis of particle size by using Particle Size Analyzer (PSA. Chitosan nanoparticles was then applied as an adsorbent of lead. Optimization of chitosan as an adsorbent include contact time and pH. Concentration of lead is determined using Atomic Absorption Spectroscopy (AAS. The results showed chitosan synthesis product has a size of ~600 nm, so that it can be expressed as nanoparticles with a degree of deacetylation of 62.69%. Chitosan nanoparticles as adsorbent optimum at pH 3 and a contact time of 2 hours with an adsorption capacity of 13,25 mg/g .

  12. Low-energy 4He+ scattering from deuterium adsorbed on stepped Pd(331)

    International Nuclear Information System (INIS)

    Ellis, W.P.; Bastasz, R.

    1996-01-01

    We have taken angle-resolved data for the scattering of low-energy ( 4 He + from deuterium adsorbed on a stepped Pd(331) surface. The impact geometry was up the staircase, that is, the 4 He + beam was perpendicular to and directly incident onto the unshadowed Pd ledge atoms. A strong quasi-elastic scattering signal of 4 He + from D ( 4 He + /D) was observed at a forward scattering angle of θ = 25 degrees and an incidence angle of α = 76 degrees from the (331) normal. The results agree with shadow cone calculations of scattering first from Pd ledge atoms followed by a second event, 4 He + /D. The resultant adsorption geometry shows D to reside in the quasi- threefold ledge site on the surface directly above the bulk fcc octahedral void. These results are consistent with the previous 4 He + scattering study of the geometrically related Pd(110)- D(ads) system

  13. Surface enhanced Raman scattering of new acridine based fluorophore adsorbed on silver electrode

    Science.gov (United States)

    Solovyeva, Elena V.; Myund, Liubov A.; Denisova, Anna S.

    2015-10-01

    4,5-Bis(N,N-di(2-hydroxyethyl)iminomethyl)acridine (BHIA) is a new acridine based fluoroionophore and a highly-selective sensor for cadmium ion. The direct interaction of the aromatic nitrogen atom with a surface is impossible since there are bulky substituents in the 4,5-positions of the acridine fragment. Nevertheless BHIA molecule shows a reliable SERS spectrum while adsorbed on a silver electrode. The analysis of SERS spectra pH dependence reveals that BHIA species adsorbed on a surface can exist in both non-protonated and protonated forms. The adsorption of BHIA from alkaline solution is accompanied by carbonaceous species formation at the surface. The intensity of such "carbon bands" turned out to be related with the supporting electrolyte (KCl) concentration. Upon lowering the electrode potential the SERS spectra of BHIA do not undergo changes but the intensity of bands decreases. This indicates that the adsorption mechanism on the silver surface is realized via aromatic system of acridine fragment. In case of such an adsorption mechanism the chelate fragment of the BHIA molecule is capable of interaction with the solution components. Addition of Cd2+ ions to a system containing BHIA adsorbed on a silver electrode in equilibrium with the solution leads to the formation of BHIA/Cd2+ complex which desorption causes the loss of SERS signal.

  14. Atomic spin-chain realization of a model for quantum criticality

    NARCIS (Netherlands)

    Toskovic, R.; van den Berg, R.; Spinelli, A.; Eliens, I.S.; van den Toorn, B.; Bryant, B.; Caux, J.-S.; Otte, A.F.

    The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices; on the other hand, they can be

  15. Biodegradation of Medium Chain Hydrocarbons by Acinetobacter venetianus 2AW Immobilized to Hair-Based Adsorbent Mats (Postprint)

    Science.gov (United States)

    2010-09-01

    open- water oil spills or treatment of large contaminated volumes such as ballast water or holding ponds. The practi- cal application of the mat is...SS, Al-Hasan RH, Salamah S, Al-Dabbous A. Biore- mediation of oily sea water by bacteria immobilized in biofilms coating macroalgae . Int Biodeter...adsorbent, for in situ degradation of hydrocarbons, has practical application in the bioremediation of oil in water emulsions. acinetobacter

  16. Accessing the dynamics of end-grafted flexible polymer chains by atomic force-electrochemical microscopy. Theoretical modeling of the approach curves by the elastic bounded diffusion model and Monte Carlo simulations. Evidence for compression-induced lateral chain escape.

    Science.gov (United States)

    Abbou, Jeremy; Anne, Agnès; Demaille, Christophe

    2006-11-16

    The dynamics of a molecular layer of linear poly(ethylene glycol) (PEG) chains of molecular weight 3400, bearing at one end a ferrocene (Fc) label and thiol end-grafted at a low surface coverage onto a gold substrate, is probed using combined atomic force-electrochemical microscopy (AFM-SECM), at the scale of approximately 100 molecules. Force and current approach curves are simultaneously recorded as a force-sensing microelectrode (tip) is inserted within the approximately 10 nm thick, redox labeled, PEG chain layer. Whereas the force approach curve gives access to the structure of the compressed PEG layer, the tip-current, resulting from tip-to-substrate redox cycling of the Fc head of the chain, is controlled by chain dynamics. The elastic bounded diffusion model, which considers the motion of the Fc head as diffusion in a conformational field, complemented by Monte Carlo (MC) simulations, from which the chain conformation can be derived for any degree of confinement, allows the theoretical tip-current approach curve to be calculated. The experimental current approach curve can then be very satisfyingly reproduced by theory, down to a tip-substrate separation of approximately 2 nm, using only one adjustable parameter characterizing the chain dynamics: the effective diffusion coefficient of the chain head. At closer tip-substrate separations, an unpredicted peak is observed in the experimental current approach curve, which is shown to find its origin in a compression-induced escape of the chain from within the narrowing tip-substrate gap. MC simulations provide quantitative support for lateral chain elongation as the escape mechanism.

  17. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    Mario Enrique Santander Muñoz

    2015-01-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic poly-acrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  18. Desorption of H atoms from graphite (0001) using XUV free electron laser pulses

    DEFF Research Database (Denmark)

    Siemer, B.; Olsen, Thomas; Hoger, T.

    2010-01-01

    The desorption of neutral H atoms from graphite with femtosecond XUV pulses is reported. The velocity distribution of the atoms peaks at extremely low kinetic energies. A DFT-based electron scattering calculation traces this distribution to desorption out of specific adsorption sites on graphite......, and identifies the highest vibrational state in the adsorbate potential as a major source for the slow atoms. It is evident that multiple electron scattering processes are required for this desorption. A direct electronic excitation of a repulsive hydrogen-carbon bond seems not to be important....

  19. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1982-01-01

    An experimental laboratory program was conducted to develop economical solid adsorbents for the retention of krypton from a dissolver off-gas stream. The study indicates that a solid adsorbent system is feasible and competitive with other developing systems which utilize fluorocarbon absorption nd cryogenic distillation. This technology may have potential applications not only in nuclear fuel reprocessing plants, but also in nuclear reactors and in environmental monitoring. Of the 13 prospective adsorbents evaluated with respect to adsorption capacity and cost, the commercially available hydrogen mordenite was the most cost-effective material at subambient temperatures (-40 0 to -80 0 C). Silver mordenite has a higher capacity for krypton retention, but is 50 times more expensive than hydrogen mordenite

  20. Study of the Adsorption of Atoms and Molecules on Silicon Surfaces: Crystallographics and Electronic Structure

    International Nuclear Information System (INIS)

    Bengio, Silvina

    2003-01-01

    This thesis work has been concerned with adsorption properties of silicon surfaces.The atomic and electronic structure of molecules and atoms adsorbed on Si has been investigated by means of photoemission experiments combined with synchrotron radiation.The quantitative atomic structure determination was held applying the photoelectron diffraction technique.This technique is sensible to the local structure of a reference atomic specie and has elemental and chemical-state specificity.This approach has been applied to three quite different systems with different degrees of complexity, Sb/Si(111) √3x √3R30 0 , H 2 O/Si(100)2x1 and NH 3 /Si(111)7x7.Our results show that Sb which forms a ( √3√3)R30 0 phase produces a bulklike-terminated Si(111)1x1 substrate free of stacking faults.Regarding the atomic structure of its interface, this study strongly favours the T4-site milkstool model over the H3 one.An important aspect regarding the H 2 O/Si(100)(2x1) system was establishing the limits of precision with which one can determine not only the location of the adsorbed hydroxyl (OH) species, but also the extent to which this adsorption modifes the asymmetric dimers of the clean surface to which it is bonded.On the Si(111)(7x7) surface the problem is particularly complex because there are several different potentially active sites for NH3 adsorption and fragmentation.The application of the PhD method, however, has shown that the majority of the N atoms are on so-called 'rest atom' sites when deposited at RT.This is consistent with the N in the NH2 chemical state.This investigation represents the first quantitative structural study of any molecular adsorbate on the complex Si(111)(7x7) surface.This atomic structures determination shows the PhD is a powerful tool for the atomic structure determination.The molecular systems interacting with the active sites of the substrate fragments producing a short-range order surface.This long-range disorder is produced by the

  1. Design, construction and test run of a solid adsorption solar refrigerator using activated carbon/methanol, as adsorbent/adsorbate pair

    International Nuclear Information System (INIS)

    Anyanwu, E.E.; Ezekwe, C.I.

    2003-01-01

    The design, construction and test run of a solid adsorption solar refrigerator are presented. It used activated carbon/methanol as the adsorbent/adsorbate pair. The refrigerator has three major components: collector/generator/adsorber, condenser and evaporator. Its flat plate type collector/generator/adsorber used clear plane glass sheet of effective exposed area of 1.2 m 2 . The steel condenser tube with a square plan view was immersed in pool of stagnant water contained in a reinforced sandcrete tank. The evaporator is a spirally coiled copper tube immersed in stagnant water. Adsorbent cooling during the adsorption process is both by natural convection of air over the collector plate and tubes and night sky radiation facilitated by removing the collector box end cover plates. Ambient temperatures during the adsorbate generation and adsorption process varied over 18.5-34 deg. C. The refrigerator yielded evaporator temperatures ranging over 1.0-8.5 deg. C from water initially in the temperature range 24-28 deg. C. Accordingly, the maximum daily useful cooling produced was 266.8 kJ/m 2 of collector area

  2. Study on the adsorption performance of composite adsorbent of CaCl2 and expanded graphite with ammonia as adsorbate

    International Nuclear Information System (INIS)

    Li, S.L.; Wu, J.Y.; Xia, Z.Z.; Wang, R.Z.

    2009-01-01

    A novel constant volume test unit was built to study the adsorption performance of a new type composite adsorbent. This test unit can measure the adsorption isosteres of the working pairs. The adsorption isosteres are the curves of the adsorption pressure variation with the adsorption temperatures at constant adsorption quantities. Compared to the former test results of isothermals and isobars, the isosteres are better for the calculation of the adsorption heat, desorption heat and the selection the adsorption working pairs. Three experimental results were obtained: the first result was that the expanded graphite powders were superior to the expandable graphite powders to facilitate the transportation of working fluid in the composite adsorbent. The second one was that the composite adsorbent treated by solution is more homogeneous than the simple mixed composite adsorbent and the treated composite adsorbent has a better mass transfer performance. The last one was that the adsorption isosteres was the same one not only in the heating process but also in the cooling process and this performance was not relevant to the homogeneity of the composite adsorbent

  3. Electronic structure and transport of a carbon chain between graphene nanoribbon leads

    International Nuclear Information System (INIS)

    Zhang, G P; Fang, X W; Yao, Y X; Wang, C Z; Ho, K M; Ding, Z J

    2011-01-01

    The electronic structure and transport property of a carbon chain between two graphene nanoribbon leads are studied using an ab initio tight-binding (TB) model and Landauer's formalism combined with a non-equilibrium Green's function. The TB Hamiltonian and overlap matrices are extracted from first-principles density functional calculations through the quasi-atomic minimal basis orbital scheme. The accuracy of the TB model is demonstrated by comparing the electronic structure from the TB model with that from first-principles density functional theory. The results of electronic transport on a carbon atomic chain connected to armchair and zigzag graphene ribbon leads, such as different transport characters near the Fermi level and at most one quantized conductance, reveal the effect of the electronic structure of the leads and the scattering from the atomic chain. In addition, bond length alternation and an interesting transmission resonance are observed in the atomic chain connected to zigzag graphene ribbon leads. Our approach provides a promising route to quantitative investigation of both the electronic structure and transport property of large systems.

  4. New Fiber Materials with Sorption Capacity at 5.0 g-U/kg Adsorbent under Marine Testing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Tomonori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, Sadananda [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schlafer, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, G. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flicker Byers, M. [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2016-03-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) has focused on assuring that nuclear fuel resources are available in the United States for a long term. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. Extraction of the uranium resource in seawater can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to make the seawater uranium recovery technology a cost competitive, viable technology. Under this program, Oak Ridge National Laboratory (ORNL) has developed several novel adsorbents, which enhanced the uranium capacity 4-5 times from the state-of-the art Japanese adsorbents. Uranium exists uniformly at a concentration of ~3.3 ppb in seawater. Because of the vast volume of the oceans, the total estimated amount of uranium in seawater is approximately 1000 times larger than its amount in terrestrial resources. However, due to the low concentration, a significant challenge remains for making the extraction of uranium from seawater a commercially viable alternative technology. The biggest challenge for this technology to overcome to efficiently reduce the extraction cost is to develop adsorbents with increased uranium adsorption capacity. Two major approaches were investigated for synthesizing novel adsorbents with enhanced uranium adsorption capacity. One method utilized conventional radiation induced graft polymerization (RIGP) to synthesize adsorbents on high-surface area trunk fibers and the other method utilized a chemical grafting technique, atom-transfer radical polymerization (ATRP). Both approaches have shown promising uranium extraction

  5. Atomically precise cluster catalysis towards quantum controlled catalysts

    International Nuclear Information System (INIS)

    Watanabe, Yoshihide

    2014-01-01

    Catalysis of atomically precise clusters supported on a substrate is reviewed in relation to the type of reactions. The catalytic activity of supported clusters has generally been discussed in terms of electronic structure. Several lines of evidence have indicated that the electronic structure of clusters and the geometry of clusters on a support, including the accompanying cluster-support interaction, are strongly correlated with catalytic activity. The electronic states of small clusters would be easily affected by cluster–support interactions. Several studies have suggested that it is possible to tune the electronic structure through atomic control of the cluster size. It is promising to tune not only the number of cluster atoms, but also the hybridization between the electronic states of the adsorbed reactant molecules and clusters in order to realize a quantum-controlled catalyst. (review)

  6. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Chemically modified Moringa oleifera seed husks as low cost adsorbent for removal of copper from aqueous solution

    Science.gov (United States)

    Ghafar, Faridah; Mohtar, Aminullah; Sapawe, Norzahir; Hadi, Norulakmal Nor; Salleh, Marmy Roshaidah Mohd

    2017-12-01

    Moringa oleifera husks (MOH) are an agricultural byproduct that may have potential as adsorbent for removal of heavy metal ions in wastewater such as copper (Cu2+). The release of Cu2+ to the environment by the mining and electroplating industries cause a major problem because it is toxic and can cause liver and kidney problems. Hence, it is important to remove copper before the wastewater can be discharged to the environment. In order to increase the adsorption capacity, the MOH was chemically modified using citric acid. The raw and modified MOH were analyzed using Fourier Transform Infra-Red (FTIR) for identification of functional groups present at the adsorbent surface. The adsorption study was carried out using the batch technique in water bath shaker investigating different parameters; adsorbent dosage (30 - 70 g/L), initial concentration of copper (30 - 150 mg/L), contact time (2 - 90 min), temperature (27 - 60 °C) at constant agitation of 100 rpm. The concentrations of copper in aqueous solution before and after the adsorption process was analyzed using Atomic Absorption Spectrum (AAS). The highest percentage removal of copper was found at 10g/L of adsorbent dosage with 30 mg/L of initial concentration and temperature 30 °C. It was also observed that the adsorption of copper by MOH was approaching to equilibrium at 60 min of reaction time. From the FTIR analysis, it was found that the MOH contains hydroxyl, carboxyl and amine groups. The high adsorption capacity of modified MOH to remove copper from aqueous solution makes it preferable and attractive alternative to commercial adsorbent.

  8. A simple electron multiplexer

    International Nuclear Information System (INIS)

    Dobrzynski, L; Akjouj, A; Djafari-Rouhani, B; Al-Wahsh, H; Zielinski, P

    2003-01-01

    We present a simple multiplexing device made of two atomic chains coupled by two other transition metal atoms. We show that this simple atomic device can transfer electrons at a given energy from one wire to the other, leaving all other electron states unaffected. Closed-form relations between the transmission coefficients and the inter-atomic distances are given to optimize the desired directional electron ejection. Such devices can be adsorbed on insulating substrates and characterized by current surface technologies. (letter to the editor)

  9. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  10. Bias-dependent oscillatory electron transport of monatomic sulfur chains

    KAUST Repository

    Yu, Jing-Xin; Cheng, Yan; Sanvito, Stefano; Chen, Xiang-Rong

    2012-01-01

    The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green's function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients. © 2012 American Institute of Physics.

  11. Bias-dependent oscillatory electron transport of monatomic sulfur chains

    KAUST Repository

    Yu, Jing-Xin

    2012-01-01

    The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green\\'s function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients. © 2012 American Institute of Physics.

  12. Structure and dynamics of confined flexible and unentangled polymer melts in highly adsorbing cylindrical pores

    International Nuclear Information System (INIS)

    Carrillo, Jan-Michael Y.; Sumpter, Bobby G.

    2014-01-01

    Coarse-grained molecular dynamics simulations are used to probe the dynamic phenomena of polymer melts confined in nanopores. The simulation results show excellent agreement in the values obtained for the normalized coherent single chain dynamic structure factor, (S(Q,Δt))/(S(Q,0)) . In the bulk configuration, both simulations and experiments confirm that the polymer chains follow Rouse dynamics. However, under confinement, the Rouse modes are suppressed. The mean-square radius of gyration 〈R g 2 〉 and the average relative shape anisotropy 〈κ 2 〉 of the conformation of the polymer chains indicate a pancake-like conformation near the surface and a bulk-like conformation near the center of the confining cylinder. This was confirmed by direct visualization of the polymer chains. Despite the presence of these different conformations, the average form factor of the confined chains still follows the Debye function which describes linear ideal chains, which is in agreement with small angle neutron scattering experiments (SANS). The experimentally inaccessible mean-square displacement (MSD) of the confined monomers, calculated as a function of radial distance from the pore surface, was obtained in the simulations. The simulations show a gradual increase of the MSD from the adsorbed, but mobile layer, to that similar to the bulk far away from the surface

  13. Hydrogen storage behavior of one-dimensional TiBx chains

    International Nuclear Information System (INIS)

    Li Fen; Zhao Jijun; Chen Zhongfang

    2010-01-01

    We designed a series of one-dimensional TiB x (x = 2-6) chains used for hydrogen storage. Among them, TiB 5 possesses the lowest heat of formation and the highest binding energy, and is the most energetically favorable configuration. The binding energy per atom in TiB 5 is even larger than that in a Ti dimer, which suggests the preference of Ti atoms to combine with B 5 clusters rather than clustering. Each Ti atom in the TiB 5 chain can host four hydrogen molecules (corresponding to a hydrogen storage capacity of 7.3 wt%) with an average binding energy of 43.7 kJ mol -1 /H 2 . The significant charge transfer and strong Kubas σ-H 2 interaction between H 2 and Ti atoms contribute to the ideal dihydrogen binding energies.

  14. Adsorbent synthesis of polypyrrole/TiO(2) for effective fluoride removal from aqueous solution for drinking water purification: Adsorbent characterization and adsorption mechanism.

    Science.gov (United States)

    Chen, Jie; Shu, Chiajung; Wang, Ning; Feng, Jiangtao; Ma, Hongyu; Yan, Wei

    2017-06-01

    More than 20 countries are still suffering problems of excessive fluoride containing water, and greater than 8mg/L fluoride groundwater has been reported in some villages in China. In order to meet the challenge in the drinking water defluoridation engineering, a high efficiency and affinity defluoridation adsorbent PPy/TiO 2 composite was designed and synthetized by in-situ chemical oxidative polymerization. Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction Investigator (XRD), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TG), N 2 isotherm analysis, Scanning Electron Microscopy (SEM) and Zeta potential analysis were conducted to characterize surface and textural properties of the as-prepared PPy/TiO 2 , and the possibility of fluoride adsorption was carefully estimated by adsorption isotherm and kinetic studies. Characterization investigations demonstrate the uniqueness of surface and textural properties, such as suitable specific surface area and abundant positively charged nitrogen atoms (N + ), which indicate the composite is a suitable material for the fluoride adsorption. Adsorption isotherms and kinetics follow better with Langmuir and pseudo-second-order model, respectively. The maximum adsorption capacity reaches 33.178mg/g at 25°C according to Langmuir model, and particular interest was the ability to reduce the concentration of fluoride from 11.678mg/L to 1.5mg/L for drinking water at pH of 7 within 30min. Moreover, the adsorbent can be easily recycled without the loss of adsorption capacity after six cycles, greatly highlighting its outstanding affinity to fluoride, low-cost and novel to be used in the purification of fluoride containing water for drinking. Furthermore, the adsorption mechanism was extensively investigated and discussed by FTIR investigation and batch adsorption studies including effect of pH, surface potential and thermodynamics. The adsorption is confirmed to be a spontaneous and exothermic

  15. Investigation of A-3 adsorbent-ditolylmethane two-phase system

    International Nuclear Information System (INIS)

    Ermakov, V.A.; Benderskaya, O.S.

    1988-01-01

    Compatibility of A-3 adsorbent, produced on the basis of palygoskite clay, with organic coolant of nuclear reactors-ditolylmethane (DTM)- and the possibility to use the given adsorbent for DTM purification from surfactant impurities are investigated. Compatibility of the adsorbent with DTM was evaluated by the concentration of its constituents in liquid phase. Sufactant adsorption was observed by the change in acid number of coolant, optical density at λ=396 nm and adsorbate mass in the adsorbent. From spent adsorbent the coolant was washed out by n-heptane, and the adsorbate - by methylene chloride, othanol and water in succession. On the basis of the results obtained the conclusion is made that A3 possesses a high chemical stability in DTM medium, i.e. it is compatible with DTM and can be used for its purification from surfactant impurities sorbed on heat-transferring surface

  16. Kape barako (coffea liberica) grounds as adsorbent for the removal of lead in lead-enriched Marikina river water samples

    International Nuclear Information System (INIS)

    Valera, Florenda S.; Garcia, Jhonard John L.

    2015-01-01

    Kape Barako (Coffee liberica) grounds (residue left after brewing ground coffee) were used as adsorbent for the removal of lead in Marikina River water samples. The sundried coffee grounds showed 9.30% moisture after drying in the oven. The coffee grounds were determined using Shimadzu AA-6501S Atomic Adsorption Spectrometer. The lead concentration was determined to be 4.7 mg/kg in coffee grounds and below detection limit in the Marikina River water samples. The adsorption studies were done at room temperature, and the optimized parameters were a contact time of 3 hours, an adsorbent dose of 3.0 g/L and 4.0 mg/L Pb-enriched water samples. The maximum uptake capacity was found to be 14.2 mg of lead/g adsorbent. The adsorption studies were done at room temperature, and the optimized parameters were a contact time of 3 hours, an adsorbent dose of 3.0 g/L and 4.0 mg/L Pb-enriched water samples. Analyses of the coffee grounds before and after lead adsorption using Shimadzu IR-Affinity-I Fourier Transform Infrared Spectrometer showed marked difference in the spectra, indicating interaction between Pb and the functional groups of the coffee grounds. (author)

  17. Excitation of bond-alternating spin-1/2 Heisenberg chains by tunnelling electrons

    International Nuclear Information System (INIS)

    Gauyacq, J-P; Lorente, N

    2014-01-01

    Inelastic electron tunneling spectra (IETS) are evaluated for spin-1/2 Heisenberg chains showing different phases of their spin ordering. The spin ordering is controlled by the value of the two different Heisenberg couplings on the two sides of each of the chain's atoms (bond-alternating chains). The perfect anti-ferromagnetic phase, i.e. a unique exchange coupling, marks a topological quantum phase transition (TQPT) of the bond-alternating chain. Our calculations show that the TQPT is recognizable in the excited states of the chain and hence that IETS is in principle capable of discriminating the phases. We show that perfectly symmetric chains, such as closed rings mimicking infinite chains, yield the same spectra on both sides of the TQPT and IETS cannot reveal the nature of the spin phase. However, for finite size open chains, both sides of the TQPT are associated with different IETS spectra, especially on the edge atoms, thus outlining the transition. (paper)

  18. Irradiation Degradation of Adsorbents for Minor Actinides Recovery

    International Nuclear Information System (INIS)

    Watanabe, S.; Sano, Y.; Kofuji, H.; Takeuchi, M.; Koizumi, T.

    2015-01-01

    Extraction chromatography is one of the promising technologies for minor actinides (MA: Am and Cm) recovery from high-level liquid waste. The degradation behaviour of the organic species in the adsorbents under radiation exposure is important to discuss the safety and durability of the adsorbent in the extraction chromatography process. In this study, gamma-ray irradiation experiments on TODGA/SiO 2 -P adsorbent were carried out to investigate the degradation products from radiolysis of the adsorbent. The degraded organic species eluted from the adsorbent and those remaining inside the adsorbent were thoroughly identified by GC/MS, FT-IR and NMR analyses. The species suspected as hydrolysis products of TODGA were mainly detected from the analyses. Since some radicals such as.H or.OH are generated by the gamma-ray irradiation on water molecules, it was discussed that the radicals products from radiolysis of HNO 3 solution are related to the degradation reaction of the extractants. (authors)

  19. Investigations Into the Reusability of Amidoxime-Based Polymeric Uranium Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Schlafer, Nicholas J. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Wai, Chien M. [Univ. of Idaho, Moscow, ID (United States); LCW Supercritical Technologies, Seattle, WA (United States); Pan, H. B. [Univ. of Idaho, Moscow, ID (United States)

    2016-09-28

    Significant advancements in amidoxime-based polymeric adsorbents to extract uranium from seawater are achieved in recent years. The success of uranium adsorbent development can help provide a sustainable supply of fuel for nuclear reactors. To bring down the production cost of this new technology, in addition to the development of novel adsorbents with high uranium capacity and manufacture cost, the development of adsorbent re-using technique is critical because it can further reduce the cost of the adsorbent manufacture. In our last report, the use of high concentrations of bicarbonate solution (3M KHCO3) was identified as a cost-effective, environmental friendly method to strip uranium from amidoxime-based polymeric adsorbents. This study aims to further improve the method for high recovery of uranium capacity in re-uses and to evaluate the performance of adsorbents after multiple re-use cycles. Adsorption of dissolved organic matter (DOM) on the uranium adsorbents during seawater exposure can hinder the uranium adsorption and slow down the adsorption rate. An additional NaOH rinse (0.5 M NaOH, room temperature) was applied after the 3 M KHCO3 elution to remove natural organic matter from adsorbents. The combination of 3 M KHCO3 elution and 0.5 M NaOH rinse significantly improves the recovery of uranium adsorption capacity in the re-used adsorbents. In the first re-use, most ORNL adsorbents tested achieve ~100% recovery by using 3 M KHCO3 elution + 0.5 M NaOH rinse approach, in comparison to 54% recovery when only 3 M KHCO3 elution was applied. A significant drop in capacity was observed when the adsorbents went through more than one re-use. FTIR spectra revealed that degradation of amidoxime ligands occurs during seawater exposure, and is more significant the longer the exposure time. Significantly elevated ratios of Ca/U and Mg/U in re-used adsorbents support the decrease in abundance of amidoxime ligands and increase carboxylate group from FT-IR analysis. The

  20. Quasiclassical Studies of Eley-Rideal and Hot Atom Reactions on Surface: H(D)→D(H)+Cu(111)

    International Nuclear Information System (INIS)

    Vurdu, C.D.

    2004-01-01

    Randomly distributed hydrogen adsorbates on the surface of Cu(1 1 1) are used to form 0.50, 0.25 and 0.15 monolayers of coverages to simulate D(H)→H(D) + Cu(111) system at 30 K and 94 K surface temperatures. The interaction of this system is mimicked by a LEPS function which is parameterized by using the energy points which were calculated by a density-functional theory method and the generalized gradient approximation for the exchange-correlation energy for various configurations of one a,nd two hydrogen atoms on the Cu(111) surface. Our results on H 2 , D 2 , and HD formations via Eley-Redial and hot-atom mechanisms will be presented at these temperatures. Probabilities for the rotational, vibrational, total and translational energy distributions of the products are calculated. In addition traping onto the surface, inelastic reflection of the incident projectile and penetration of the adsorbate or projectile atom into the slab is analyzed. Hot-atom pathways for product formations are shown to make significant contributions

  1. The inter-adsorbate interaction mediated by Shockley-type surface state electrons and dipole moment: Cs and Ba atoms absorbed on Ag (1 1 1) films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuyuan [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Zhang, Hong, E-mail: hongzhang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Miyamoto, Yoshiyuki [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba 305-8568 (Japan)

    2014-01-15

    Through first-principles investigation, we display the formation process of Shockley-type surface states which emerges on silver thin films along Ag (1 1 1) orientation with increasing thicknesses from 6 to 21 layers. We look at the surface state band for various adatoms adsorbed on 6, 12, 18 layers strained Ag (1 1 1) films with different coverage, and discuss the long range interaction mediated by surface state electrons. We discovered that film's thickness can modulate the surface state mediated interaction drastically, but the dipole–dipole repulsive interaction is not affected by slab thickness. This factor had never been discussed in detail. Therefore, adatoms adsorbed on thin films have strong attractive interaction which leads to small adsorption separation and the tendency of island formation. For different coverage or different adsorbate types, both surface states and dipole moment are modulated. The three factors, film's thickness, adsorbate coverage and adatoms types, could help us learn more about the interactions between adatoms and exploit advanced ways to control surface geometry structures of self-assembly.

  2. The inter-adsorbate interaction mediated by Shockley-type surface state electrons and dipole moment: Cs and Ba atoms absorbed on Ag (1 1 1) films

    International Nuclear Information System (INIS)

    Zhang, Shuyuan; Zhang, Hong; Miyamoto, Yoshiyuki

    2014-01-01

    Through first-principles investigation, we display the formation process of Shockley-type surface states which emerges on silver thin films along Ag (1 1 1) orientation with increasing thicknesses from 6 to 21 layers. We look at the surface state band for various adatoms adsorbed on 6, 12, 18 layers strained Ag (1 1 1) films with different coverage, and discuss the long range interaction mediated by surface state electrons. We discovered that film's thickness can modulate the surface state mediated interaction drastically, but the dipole–dipole repulsive interaction is not affected by slab thickness. This factor had never been discussed in detail. Therefore, adatoms adsorbed on thin films have strong attractive interaction which leads to small adsorption separation and the tendency of island formation. For different coverage or different adsorbate types, both surface states and dipole moment are modulated. The three factors, film's thickness, adsorbate coverage and adatoms types, could help us learn more about the interactions between adatoms and exploit advanced ways to control surface geometry structures of self-assembly.

  3. Rapid Determination of Trace Palladium in Active Pharmaceutical Ingredients by Magnetic Solid-Phase Extraction and Flame Atomic Absorption Spectrometry

    Science.gov (United States)

    Yin, Q. H.; Zhu, D. M.; Yang, D. Z.; Hu, Q. F.; Yang, Y. L.

    2018-01-01

    Clutaraldehyde cross-linked magnetic chitosan nanoparticles were synthesized and used as an adsorbent for the dispersive solid-phase extraction of palladium in active pharmaceutical ingredients (APIs) prior to analysis by a flame atomic absorption spectrophotometer. FT-IR, X-ray diffraction, and TEM were used to characterize the adsorbent. Various parameters of experimental performance, such as adsorbent amount, pH, adsorption time, desorption solutions, coexisting ions, and adsorbent reusability, were investigated and optimized. Under the optimized conditions, good linearity was achieved in the 5.0-500 μg/L concentration range, with correlation coefficients of 0.9989. The limit of detection is 2.8 μg/L and the recoveries of spiked samples ranged from 91.7 to 97.6%. It was confirmed that the GMCNs nanocomposite was a promising adsorbing material for extraction and preconcentration of Pd in APIs.

  4. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Erkan [Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri 38039 (Turkey); Ocsoy, Ismail [Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039 (Turkey); Nanotechnology Research Center (ERNAM), Erciyes University, Kayseri 38039 (Turkey); Ozdemir, Nalan [Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri 38039 (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri 38039 (Turkey)

    2016-02-04

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L{sup −1} and 8.8 μg L{sup −1}, respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. - Highlights: • The synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers is reported. • The nanoflowers were utilized for solid phase microextraction of

  5. Processing method and device for iodine adsorbing material

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi; Shiga, Reiko.

    1997-01-01

    An iodine adsorbing material adsorbing silver compounds is reacted with a reducing gas, so that the silver compounds are converted to metal silver and stored. Then, the silver compounds are not melted or recrystallized even under a highly humid condition, accordingly, peeling of the adsorbed materials from a carrier can be prevented, and the iodine adsorbing material can be stored stably. Since the device is disposed in an off gas line for discharging off gases from a nuclear power facility, the iodine adsorbing material formed by depositing silver halides to the carrier is contained, and a reducing or oxidizing gas is supplied to the vessel as required, and silver halides can be converted to metal silver or the metal silver can be returned to silver halide. (T.M.)

  6. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  7. Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Kim, Doo Won; Kim, Bohye; Yang, Kap Seung [Chonnam National Univ., Gwangju (Korea, Republic of); Lim, Yongkyun; Park, Eun Nam [Microfilter Co., Ltd, Seoul (Korea, Republic of)

    2013-02-15

    The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents.

  8. Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

    International Nuclear Information System (INIS)

    Kim, Dae Ho; Kim, Doo Won; Kim, Bohye; Yang, Kap Seung; Lim, Yongkyun; Park, Eun Nam

    2013-01-01

    The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents

  9. Physical adsorption at the nanoscale: Towards controllable scaling of the substrate-adsorbate van der Waals interaction

    Science.gov (United States)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi; Tkatchenko, Alexandre

    2017-06-01

    The Lifshitz-Zaremba-Kohn (LZK) theory is commonly considered as the correct large-distance limit for the van der Waals (vdW) interaction of adsorbates (atoms, molecules, or nanoparticles) with solid substrates. In the standard approximate form, implicitly based on local dielectric functions, the LZK approach predicts universal power laws for vdW interactions depending only on the dimensionality of the interacting objects. However, recent experimental findings are challenging the universality of this theoretical approach at finite distances of relevance for nanoscale assembly. Here, we present a combined analytical and numerical many-body study demonstrating that physical adsorption can be significantly enhanced at the nanoscale. Regardless of the band gap or the nature of the adsorbate specie, we find deviations from conventional LZK power laws that extend to separation distances of up to 10-20 nm. Comparison with recent experimental observations of ultra-long-ranged vdW interactions in the delamination of graphene from a silicon substrate reveals qualitative agreement with the present theory. The sensitivity of vdW interactions to the substrate response and to the adsorbate characteristic excitation frequency also suggests that adsorption strength can be effectively tuned in experiments, paving the way to an improved control of physical adsorption at the nanoscale.

  10. HBr Formation from the Reaction between Gas-phase Bromine Atom and Vibrationally Excited Chemisorbed Hydrogen Atoms on a Si(001)-(2 x 1) Surface

    International Nuclear Information System (INIS)

    Ree, J.; Yoon, S. H.; Park, K. G.; Kim, Y. H.

    2004-01-01

    We have calculated the probability of HBr formation and energy disposal of the reaction exothermicity in HBr produced from the reaction of gas-phase bromine with highly covered chemisorbed hydrogen atoms on a Si (001)-(2 x 1) surface. The reaction probability is about 0.20 at gas temperature 1500 K and surface temperature 300 K. Raising the initial vibrational state of the adsorbate(H)-surface(Si) bond from the ground to v = 1, 2 and 3 states causes the vibrational, translational and rotational energies of the product HBr to increase equally. However, the vibrational and translational motions of product HBr share most of the reaction energy. Vibrational population of the HBr molecules produced from the ground state adsorbate-surface bond (vHSi = 0) follows the Boltzmann distribution, but it deviates seriously from the Boltzmann distribution when the initial vibrational energy of the adsorbate-surface bond increases. When the vibration of the adsorbate-surface bond is in the ground state, the amount of energy dissipated into the surface is negative, while it becomes positive as vHSi increases. The energy distributions among the various modes weakly depends on surface temperature in the range of 0-600 K, regardless of the initial vibrational state of H(ad)-Si(s) bond

  11. Non-local electron transport through normal and topological ladder-like atomic systems

    Science.gov (United States)

    Kurzyna, Marcin; Kwapiński, Tomasz

    2018-05-01

    We propose a locally protected ladder-like atomic system (nanoconductor) on a substrate that is insensitive to external perturbations. The system corresponds to coupled atomic chains fabricated on different surfaces. Electron transport properties of such conductors are studied theoretically using the model tight-binding Su-Schriffer-Hegger (SSH) Hamiltonian and Green's function formalism. We have found that the conductance of the system is almost insensitive to single adatoms and oscillates as a function of the side chain length with very large periods. Non-local character of the electron transport was observed also for topological SSH chains where nontrivial end states survive in the presence of disturbances as well as for different substrates. We have found that the careful inspection of the density of states or charge waves can provide the information about the atom energy levels and hopping amplitudes. Moreover, the ladder-like geometry allows one to distinguish between normal and topological zero-energy states. It is important that topological chains do not reveal Friedel oscillations which are observed in non-topological chains.

  12. Superheavy-element spectroscopy: Correlations along element 115 decay chains

    Science.gov (United States)

    Rudolph, D.; Forsberg, U.; Sarmiento, L. G.; Golubev, P.; Fahlander, C.

    2016-05-01

    Following a brief summary of the region of the heaviest atomic nuclei yet created in the laboratory, data on more than hundred α-decay chains associated with the production of element 115 are combined to investigate time and energy correlations along the observed decay chains. Several of these are analysed using a new method for statistical assessments of lifetimes in sets of decay chains.

  13. Chitin Adsorbents for Toxic Metals: A Review

    Directory of Open Access Journals (Sweden)

    Ioannis Anastopoulos

    2017-01-01

    Full Text Available Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4-N-acetyl-d-glucosamine is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth.

  14. Live microbial cells adsorb Mg2+ more effectively than lifeless organic matter

    Science.gov (United States)

    Qiu, Xuan; Yao, Yanchen; Wang, Hongmei; Duan, Yong

    2018-03-01

    The Mg2+ content is essential in determining different Mg-CaCO3 minerals. It has been demonstrated that both microbes and the organic matter secreted by microbes are capable of allocating Mg2+ and Ca2+ during the formation of Mg-CaCO3, yet detailed scenarios remain unclear. To investigate the mechanism that microbes and microbial organic matter potentially use to mediate the allocation of Mg2+ and Ca2+ in inoculating systems, microbial mats and four marine bacterial strains ( Synechococcus elongatus, Staphylococcus sp., Bacillus sp., and Desulfovibrio vulgaris) were incubated in artificial seawater media with Mg/Ca ratios ranging from 0.5 to 10.0. At the end of the incubation, the morphology of the microbial mats and the elements adsorbed on them were analyzed using scanning electronic microscopy (SEM) and energy diffraction spectra (EDS), respectively. The content of Mg2+ and Ca2+ adsorbed by the extracellular polysaccharide substances (EPS) and cells of the bacterial strains were analyzed with atomic adsorption spectroscopy (AAS). The functional groups on the surface of the cells and EPS of S. elongatus were estimated using automatic potentiometric titration combined with a chemical equilibrium model. The results show that live microbial mats generally adsorb larger amounts of Mg2+ than Ca2+, while this rarely is the case for autoclaved microbial mats. A similar phenomenon was also observed for the bacterial strains. The living cells adsorb more Mg2+ than Ca2+, yet a reversed trend was observed for EPS. The functional group analysis indicates that the cell surface of S. elongatus contains more basic functional groups (87.24%), while the EPS has more acidic and neutral functional groups (83.08%). These features may be responsible for the different adsorption behavior of Mg2+ and Ca2+ by microbial cells and EPS. Our work confirms the differential Mg2+ and Ca2+ mediation by microbial cells and EPS, which may provide insight into the processes that microbes use to

  15. The inverse problem of sensing the mass and force induced by an adsorbate on a beam nanomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun [Faculty of Information and Automation, Kunming University of Science and Technology, Kunming, Yunnan Province 65005 (China); Zhang, Yin [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 (China)

    2016-06-08

    The mass sensing superiority of a micro/nanomechanical resonator sensor over conventional mass spectrometry has been, or at least, is being firmly established. Because the sensing mechanism of a mechanical resonator sensor is the shifts of resonant frequencies, how to link the shifts of resonant frequencies with the material properties of an analyte formulates an inverse problem. Besides the analyte/adsorbate mass, many other factors such as position and axial force can also cause the shifts of resonant frequencies. The in-situ measurement of the adsorbate position and axial force is extremely difficult if not impossible, especially when an adsorbate is as small as a molecule or an atom. Extra instruments are also required. In this study, an inverse problem of using three resonant frequencies to determine the mass, position and axial force is formulated and solved. The accuracy of the inverse problem solving method is demonstrated and how the method can be used in the real application of a nanomechanical resonator is also discussed. Solving the inverse problem is helpful to the development and application of mechanical resonator sensor on two things: reducing extra experimental equipments and achieving better mass sensing by considering more factors.

  16. Recent progress on R and D of innovative extractants and adsorbents for partitioning of minor actinides at JAEA

    International Nuclear Information System (INIS)

    Kimura, Takaumi; Morita, Yasuji; Koma, Yoshikazu

    2010-01-01

    The R and D effort on partitioning of minor actinides (MA) at the Japan Atomic Energy Agency (JAEA) has been concentrated on development and improvement of innovative extractants and adsorbents as the fundamental studies and of MA recovery process as the advanced aqueous reprocessing system in fast reactor cycle technology development (FaCT) project. This paper reviews current status and prospects of the R and D activities on the partitioning of MA at JAEA. (authors)

  17. Cantor spectra of magnetic chain graphs

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Vašata, D.

    2017-01-01

    Roč. 50, č. 16 (2017), č. článku 165201. ISSN 1751-8113 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : quantum chain graph * magnetic field * almost Mathieu operator * Cantor spectrum Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.857, year: 2016

  18. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, A.; Nilsson, A.; Martensson, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  19. Hydrogenation of ethene catalyzed by Ir atom deposited on γ-Al2O3(001) surface: From ab initio calculations

    International Nuclear Information System (INIS)

    Chen, Yongchang; Sun, Zhaolin; Song, Lijuan; Li, Qiang; Xu, Ming

    2012-01-01

    Ethene hydrogenation reaction, catalyzed by an iridium atom adsorbed on γ-Al 2 O 3 (001) surface, is studied via ab initio calculations based on density functional theory (DFT). The catalyzed reaction process and activation energy are compared with the counterparts of a reaction occurs in vacuum condition. It is found that the activation energy barrier is substantially lowered by the adsorbed Ir atom on the γ-Al 2 O 3 (001). The catalyzed reaction is modeled in two steps: (1) Hydrogen molecular dissolution and then bonded with C 2 H 4 molecular. (2) Desorption of the C 2 H 6 molecular from the surface. -- Highlights: ► The ethene hydrogenation reaction is simulated with nudged elastic band methods. ► The catalytic effect of the Ir atom on γ-Al 2 O 3 (001) surface is modeled. ► Details of the catalytic reaction are exhibited.

  20. Adsorption of polymer chains at penetrable interfaces

    International Nuclear Information System (INIS)

    Gerasimchuk, I. V.; Sommer, J.-U.; Gerasimchuk, V. S.

    2011-01-01

    We investigate the problem of adsorption (localization) of polymer chains in the system of two penetrable interfaces within the mean-field approximation. The saturation of the polymer system in the limit case of zero bulk concentration is studied. We find the exact solution of this mean-field polymer adsorption problem that opens the possibility to treat various localization problems for polymer chains in such environments using appropriate boundary conditions. The exact solution is controlled by a single scaling variable that describes the coupling between the interfaces due to the polymer chains. We obtain a nonmonotonic behavior of the amount of adsorbed polymers as a function of the distance between the interfaces. This leads to a high-energy and a low-energy phase for the double layer with respect to the amount of polymers localized. At the saturation point, we find the total energy of the system and determine the force acting between the interfaces to be strictly attractive and to monotonically decay to zero when the interface distance increases.

  1. Inverse kinetic solvent isotope effect in TiO2 photocatalytic dehalogenation of non-adsorbable aromatic halides: a proton-induced pathway.

    Science.gov (United States)

    Chang, Wei; Sun, Chunyan; Pang, Xibin; Sheng, Hua; Li, Yue; Ji, Hongwei; Song, Wenjing; Chen, Chuncheng; Ma, Wanhong; Zhao, Jincai

    2015-02-09

    An efficient redox reaction between organic substrates in solution and photoinduced h(+) vb /e(-) cb on the surface of photocatalysts requires the substrates or solvent to be adsorbed onto the surface, and is consequentially marked by a normal kinetic solvent isotope effect (KSIE ≥ 1). Reported herein is a universal inverse KSIE (0.6-0.8 at 298 K) for the reductive dehalogenation of aromatic halides which cannot adsorb onto TiO2 in a [D0 ]methanol/[D4 ]methanol solution. Combined with in situ ATR-FTIR spectroscopy investigations, a previously unknown pathway for the transformation of these aromatic halides in TiO2 photocatalysis was identified: a proton adduct intermediate, induced by released H(+) /D(+) from solvent oxidation, accompanies a change in hybridization from sp(2) to sp(3) at a carbon atom of the aromatic halides. The protonation event leads these aromatic halides to adsorb onto the TiO2 surface and an ET reaction to form dehalogenated products follows. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Charge transfer properties of pentacene adsorbed on silver: DFT study

    Energy Technology Data Exchange (ETDEWEB)

    N, Rekha T.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in [PG & Research Department of Physics, Lady Doak College, Madurai 625002 (India)

    2015-06-24

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  3. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  4. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  5. Scanning tunneling microscopy I general principles and applications to clean and adsorbate-covered surfaces

    CERN Document Server

    Wiesendanger, Roland

    1992-01-01

    Scanning Tunneling Microscopy I provides a unique introduction to a novel and fascinating technique that produces beautiful images of nature on an atomic scale. It is the first of three volumes that together offer a comprehensive treatment of scanning tunneling microscopy, its diverse applications, and its theoretical treatment. In this volume the reader will find a detailed description of the technique itself and of its applications to metals, semiconductors, layered materials, adsorbed molecules and superconductors. In addition to the many representative results reviewed, extensive references to original work will help to make accessible the vast body of knowledge already accumulated in this field.

  6. Applications of IBSOM and ETEM for solving the nonlinear chains of atoms with long-range interactions

    Science.gov (United States)

    Foroutan, Mohammadreza; Zamanpour, Isa; Manafian, Jalil

    2017-10-01

    This paper presents a number of new solutions obtained for solving a complex nonlinear equation describing dynamics of nonlinear chains of atoms via the improved Bernoulli sub-ODE method (IBSOM) and the extended trial equation method (ETEM). The proposed solutions are kink solitons, anti-kink solitons, soliton solutions, hyperbolic solutions, trigonometric solutions, and bellshaped soliton solutions. Then our new results are compared with the well-known results. The methods used here are very simple and succinct and can be also applied to other nonlinear models. The balance number of these methods is not constant contrary to other methods. The proposed methods also allow us to establish many new types of exact solutions. By utilizing the Maple software package, we show that all obtained solutions satisfy the conditions of the studied model. More importantly, the solutions found in this work can have significant applications in Hamilton's equations and generalized momentum where solitons are used for long-range interactions.

  7. Combination of rice husk and coconut shell activated adsorbent to adsorb Pb(II) ionic metal and it’s analysis using solid-phase spectrophotometry (sps)

    Science.gov (United States)

    Rohmah, D. N.; Saputro, S.; Masykuri, M.; Mahardiani, L.

    2018-03-01

    The purpose of this research was to know the effect and determine the mass comparation which most effective combination between rice husk and coconut shell activated adsorbent to adsorb Pb (II) ion using SPS method. This research used experimental method. Technique to collecting this datas of this research is carried out by several stages, which are: (1) carbonization of rice husk and coconut shell adsorbent using muffle furnace at a temperature of 350°C for an hour; (2) activation of the rice husk and coconut shell adsorbent using NaOH 1N and ZnCl2 15% activator; (3) contacting the adsorbent of rice husk and coconut shell activated adsorbent with liquid waste simulation of Pb(II) using variation comparison of rice husk and coconut shell, 1:0; 0:1; 1:1; 2:1; 1:2; (4) analysis of Pb(II) using Solid-Phase Spectrophotometry (SPS); (5) characterization of combination rice husk and coconut shell activated adsorbent using FTIR. The result of this research show that the combined effect of combination rice husk and coconut shell activated adsorbent can increase the ability of the adsorbent to absorb Pb(II) ion then the optimum adsorbent mass ratio required for absorbing 20 mL of Pb(II) ion with a concentration of 49.99 µg/L is a ratio of 2:1 with the absorption level of 97,06%Solid-Phase Spectrophotometry (SPS) is an effective method in the level of µg/L, be marked with the Limit of Detection (LOD) of 0.03 µg/L.

  8. Kinetic analysis of interaction between N atoms and O-covered Ru(0001)

    International Nuclear Information System (INIS)

    Kang, Kai; Kleyn, A. W.; Gleeson, M. A.

    2015-01-01

    Eley-Rideal (ER) reactions involving neutral atoms heavier than hydrogen reacting with adsorbed atoms of similar mass were first observed in recent molecular beam experiments by Zaharia et al. [Phys. Rev. Lett. 113, 053201 (2014)]. Through analysis of two types of measurements, they obtained different estimations for the N–O ER reaction cross section, one of which is unexpectedly high. This was qualitatively accounted for by invoking a secondary effect whereby the presence of N adatoms on the surface acted to “shield” O adatoms from prompt recombinative desorption. We apply a rate equation model that includes two ER processes involving different adsorbed species (N–O ad and N–N ad ) and an N-adsorption process to the full-beam exposure subset of the experimental data in order to study the reaction kinetics. Values for the individual reaction cross sections are derived. The measured N 2 response can be well described by the model, but it is insufficient to completely describe the NO response. Modeling of different exposures is used to evaluate the qualitative picture presented by Zaharia et al

  9. Liquid crystals with novel terminal chains as ferroelectric liquid crystal hosts

    International Nuclear Information System (INIS)

    Cosquer, G.Y.

    2000-02-01

    Changes to the molecular structure of liquid crystals can have a significant effect upon their mesomorphism and ferroelectric properties. Most of the research in liquid crystal for display applications concentrates on the design and synthesis of novel mesogenic cores to which straight terminal alkyl or alkoxy chains are attached. However, little is known about the effects upon the mesomorphism and ferroelectric properties of varying the terminal chains. The compounds prepared in this work have a common core - a 2,3-difluoroterphenyl unit with a nine-atom alkyl (nonyl) or alkoxy (octyloxy) chain at the 4-position, but with an unusual chain at the 4''-position. In some cases the terminal chain contains hetero atoms such as silicon, oxygen, chlorine and bromine or has a bulky end group. In total 46 final materials were synthesised in an attempt to understand the effect of an unusual terminal chains on mesomorphism and for some of these compounds the effect upon the switching times when added to a standard ferroelectric mixture were investigated. It was found that most compounds containing a bulky end group only displayed a smectic C phase, compounds with a halogen substituent as an end unit displayed a smectic A phase and that increasing the chain flexibility by introducing an oxygen atom in the chain reduces the melting and clearing points. The electro-optical measurements carried out on ferroelectric mixtures containing a bulky end group compound showed that shorter switching times were produced than for the ferroelectric mixture containing a straight chain compound. It is suggested that a bulky end group diminishes te extent of interlayer mixing in the chiral smectic C phase and therefore the molecules move more easily with ferroelectric switching. (author)

  10. 2D-PES/XAS method for atomic-layer-resolved magnetic structure analysis

    International Nuclear Information System (INIS)

    Matsui, F.; Daimon, H.; Matsushita, T.; Guo, F.Z.

    2008-01-01

    Photoelectron and Auger electron angular distributions from a localized core level provide information on atomic configurations. Forward-focusing peaks indicate the directions of atoms surrounding the excited atom. X-ray absorption fine structure and X-ray magnetic circular dichroism measurements by Auger electron yield detection on the other hand are excellent methods for studying of the electronic and magnetic structures of surfaces, adsorbates, and thin films. However, all the information from atoms within the electron mean-free-path region is averaged into the obtained spectra. Here, we introduce a new method of X-ray absorption spectroscopy (XAS) combined with measurements of Auger electron angular distribution using a display-type analyzer. Taking advantage of the forward-focusing peak as an excellent element- and site-selective probe, 2D-XAS enables direct access to the individual electronic and magnetic structures of each atomic layer. This method was applied to studying the electronic and magnetic structures of Ni thin film at atomic level. (author)

  11. Removal of adsorbent particles od copper ions by Jet flotation

    International Nuclear Information System (INIS)

    Santander, M.; Tapia, P.; Pavez, O.; Valderrama, L.; Guzman, D.

    2009-01-01

    The present study shows the results obtained on the removal of copper ions from synthetic effluents by using the adsorbent particles flotation technique (APF) in a Jet flotation cell (Jameson type). In a typical experimental run, a mineral with high quartz content was used as adsorbent particles in the adsorption and flotation experiments, to determine optimal pH conditions, adsorbent particles concentration; flotation reagents dosage and air/effluent flow ratio for applying in the Jet cell to maximize the efficiency of copper ions adsorptions and the removal of particles adsorbents containing the absorbed copper ions. The results indicate the at pH>7 and at adsorbent particles concentration of 2 kg.m - 3, 99% of copper ions is adsorbed and, when the air/effluent flow ratio applied in the Jet cell is 0,2, 98% of absorbent particles containing the adsorbed copper ions is removed. (Author) 39 refs.

  12. Radiation-Induced Grafting for the Synthesis of Adsorbents for Phosphate and Chromate Removal from Aqueous Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kavakli, P A; Kavakli, C; Guven, O [Department of Chemistry, Hacettepe University, Beytepe, 06800, Ankara (Turkey)

    2012-09-15

    Nonwoven fabrics made of PE coated PP fibres were irradiated by accelerated electrons in inert atmospheres for grafting of two different monomers, glycidyl methacrylate and dimethylaminoethyl methacrylate. Grafting conditions were optimized by a systematic investigation of the effects of absorbed dose, monomer concentration, grafting reaction temperature and duration. 150% grafted copolymers were later modified by protonation and quaternization of poly(dimethylaminoethyl methacrylate) chains and by Cu(II) loading of dipyridyl amine modified poly(glycidyl methacrylate) graft chains. The PE/PP based adsorbents thus prepared were used for their suitability of removing phosphate and chromate ions from aqueous systems. Adsorption/removal studies were carried out in both batch and continuous flow type systems. The selectivity of adsorption of phosphate ions in the presence of other competing anions were also checked showing the enhanced selectivity for phosphate ions. (author)

  13. Adatom Bond Dissociation in the Collision Between an Adsorbed Atom and Incident Diatomic Molecule: A Classical Trajectory Study

    International Nuclear Information System (INIS)

    Bayhan, U.

    2004-01-01

    The collisional dissociation of the Atom-Surface bond in the diatomic molecule (gas) / atom (ads) collision taking place on a bcc-structure surface have been studied by classical trajectory methods over the collision energy ranges and the attractive well depth of the diatomic molecule (gas) / atom (ads) interactions

  14. Properties and selection criteria for adsorbents

    International Nuclear Information System (INIS)

    Wirth, H.

    1976-01-01

    The paper gives a survey of the most important industrial adsorbents and of their suitability for different purposes. With special consideration of activated carbon, the properties and characteristic data are discussed which are used for assessing adsorbents. These, among other things, are as follows: specific surface area, pore size distribution, adsorption isotherms, hydrophobic properties, catalytic properties, chemical resistance, heat resistance, particle size and hardness. (orig.) [de

  15. Pulsed-laser atom-probe field-ion microscopy

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Tsong, T.T.

    1980-01-01

    A time-of-flight atom-probe field-ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom-probe without using high-voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short-duration voltage pulse, can be examined using pulsed-laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well-defined studies of surface chemical reactions. In addition to atom-probe operation, pulsed-laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed-laser atom-probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field-ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7-ns laser pulse are also presented

  16. Ca-Embedded C2N: an efficient adsorbent for CO2 capture.

    Science.gov (United States)

    Liu, Yuzhen; Meng, Zhaoshun; Guo, Xiaojian; Xu, Genjian; Rao, Dewei; Wang, Yuhui; Deng, Kaiming; Lu, Ruifeng

    2017-10-25

    Carbon dioxide as a greenhouse gas causes severe impacts on the environment, whereas it is also a necessary chemical feedstock that can be converted into carbon-based fuels via electrochemical reduction. To efficiently and reversibly capture CO 2 , it is important to find novel materials for a good balance between adsorption and desorption. In this study, we performed first-principles calculations and grand canonical Monte Carlo (GCMC) simulations, to systematically study metal-embedded carbon nitride (C 2 N) nanosheets for CO 2 capture. Our first-principles results indicated that Ca atoms can be uniformly trapped in the cavity center of C 2 N structure, while the transition metals (Sc, Ti, V, Cr, Mn, Fe, Co) are favorably embedded in the sites off the center of the cavity. The determined maximum number of CO 2 molecules with strong physisorption showed that Ca-embedded C 2 N monolayer is the most promising CO 2 adsorbent among all considered metal-embedded materials. Moreover, GCMC simulations revealed that at room temperature the gravimetric density for CO 2 adsorbed on Ca-embedded C 2 N reached 50 wt% at 30 bar and 23 wt% at 1 bar, higher than other layered materials, thus providing a satisfactory system for the CO 2 capture and utilization.

  17. Mixed-matrix membrane adsorbers for protein separation

    NARCIS (Netherlands)

    Avramescu, M.E.; Borneman, Z.; Wessling, M.

    2003-01-01

    The separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an

  18. Explicit all-atom modeling of realistically sized ligand-capped nanocrystals

    KAUST Repository

    Kaushik, Ananth P.; Clancy, Paulette

    2012-01-01

    We present a study of an explicit all-atom representation of nanocrystals of experimentally relevant sizes (up to 6 nm), capped with alkyl chain ligands, in vacuum. We employ all-atom molecular dynamics simulation methods in concert with a well

  19. Atomic clocks comparison by means of television chain

    International Nuclear Information System (INIS)

    Silva, J.M.

    1974-09-01

    The various methods and techniques of time and frequency dissemination are presented. One of them, the Line 10 Method, was used to compare two atomic clocks, localized in different places is a distance of more or less four-hundred kilometers. The results are compared with parallel results obtained with another method, physical transport, giving the necessary experimental basis of the applicability of the Line 10 Method in Brazil [pt

  20. Thermodynamics of gas adsorption on solid adsorbents

    International Nuclear Information System (INIS)

    Budrugeac, P.

    1979-01-01

    Starting with several hypotheses about the adsorbtion system and the adsorption phenomenon, a thermodynamic treatment of gas adsorption on solid adsorbants is presented. The relationships for determination from isotherms and calorimetric data of thermodynamic functions are derived. The problem of the phase changes in adsorbed layer is discussed. (author)

  1. Influence of Adsorbed Water on the Oxygen Evolution Reaction on Oxides

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Vojvodic, Aleksandra

    2015-01-01

    We study the interface between adsorbed water and stoichiometric, defect-free (110) rutile oxide surfaces of TiO2, RuO2, and IrO2 in order to understand how water influences the stabilities of the intermediates of the oxygen evolution reaction (OER). In our model the water is treated as explicitly...... molecules binding to bridging oxygens. The third chain interacts weakly and predominantly with the H2O molecules of the second layer, resembling bulk water. We find that the stability of the water layer close to the oxide surface is almost the same as the one found on flat metal surfaces, such as the Pt(111...... of RuO2 and IrO2, while it is increased by similar to 0.4 eV for TiO2....

  2. Performance of adsorbent-embedded heat exchangers using binder-coating method

    KAUST Repository

    Li, Ang; Thu, Kyaw; Ismail, Azhar Bin; Shahzad, Muhammad Wakil; Ng, Kim Choon

    2016-01-01

    The performance of adsorption (AD) chillers or desalination cycles is dictated by the rates of heat and mass transfer of adsorbate in adsorbent-packed beds. Conventional granular-adsorbent, packed in fin-tube heat exchangers, suffered from poor heat

  3. Chain-end modification of living anionic polybutadiene with diphenylethylenes and styrenes

    NARCIS (Netherlands)

    Donkers, E.H.D.; Willemse, R.X.E.; Klumperman, B.

    2005-01-01

    The first step in the transformation of poly(butadienyl)lithium into a macromolecular atom transfer radical polymerization initiator or reversible addition-fragmentation chain transfer agent is the modification of the anionic chain end into a suitable leaving/reinitiating group. We have investigated

  4. Effect of substrate thickness on ejection of phenylalanine molecules adsorbed on free-standing graphene bombarded by 10 keV C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Golunski, M. [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow (Poland); Verkhoturov, S.V.; Verkhoturov, D.S.; Schweikert, E.A. [Department of Chemistry, Texas A& M University, College Station, TX 77840 (United States); Postawa, Z., E-mail: zbigniew.postawa@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow (Poland)

    2017-02-15

    Highlights: • Substrate thickness has a prominent effect on the molecular ejection mechanism. • Collisions with projectile atoms leads to molecular ejection at thin substrates. • Interactions with deforming graphene sheet ejects molecules from thicker substrates. • Probability of fragmentation process decreases with the graphene substrate thickness. - Abstract: Molecular dynamics computer simulations have been employed to investigate the effect of substrate thickness on the ejection mechanism of phenylalanine molecules deposited on free-standing graphene. The system is bombarded from the graphene side by 10 keV C{sub 60} projectiles at normal incidence and the ejected particles are collected both in transmission and reflection directions. It has been found that the ejection mechanism depends on the substrate thickness. At thin substrates mostly organic fragments are ejected by direct collisions between projectile atoms and adsorbed molecules. At thicker substrates interaction between deforming topmost graphene sheet and adsorbed molecules becomes more important. As this process is gentle and directionally correlated, it leads predominantly to ejection of intact molecules. The implications of the results to a novel analytical approach in Secondary Ion Mass Spectrometry based on ultrathin free-standing graphene substrates and a transmission geometry are discussed.

  5. Selectivity of β-Sitosterol Imprinted Polymers as Adsorbent

    Science.gov (United States)

    Fauziah, St.; Hariani Soekamto, Nunuk; Taba, Paulina; Bachri Amran, Muh

    2018-03-01

    Molecularly Imprinted Polymers (MIPs) are smart materials that have been used as adsorbents in separation processes of compounds because they have a memorial effect to a certain compound. In this research, MIP synthesized was used as adsorbent for β-sitosterol. The objective of the research was to know the selectivity of MIP in adsorbing β-sitosterol. The concentrations of β-sitosterol after adsorption and desorption were analyzed by a UV-Vis spectrophotometer and the selectivity test was analyzed by HPLC. Result showed that the MIP had high adsorption ability ( qe ). The recovery of β-sitosterol from MIP for the adsorption-desorption process was 68.48%. The MIP was very selective to β-sitosterol compared to cholesterol because it can adsorb β-sitosterol as many as 100%, whereas the adsorption of cholesterol was only 30.27 %.

  6. THE MECHANISM OF SURFACE DIFFUSION OF H AND D ATOMS ON AMORPHOUS SOLID WATER: EXISTENCE OF VARIOUS POTENTIAL SITES

    Energy Technology Data Exchange (ETDEWEB)

    Hama, Tetsuya; Kuwahata, Kazuaki; Watanabe, Naoki; Kouchi, Akira; Chigai, Takeshi [Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819 (Japan); Kimura, Yuki [Department of Earth and Planetary Materials Science, Tohoku University, Sendai 980-8578 (Japan); Pirronello, Valerio, E-mail: hama@lowtem.hokudai.ac.jp [Dipartimento di Fisica e Astronomia, Universita' di Catania, I-95125 Catania, Sicily (Italy)

    2012-10-01

    To understand elementary processes leading to H{sub 2} formation, and the hydrogenation and deuteration reactions of adsorbed species on dust grains in dense clouds, we experimentally investigated the diffusion of atomic hydrogen and deuterium on amorphous solid water (ASW) at temperatures of 8-15 K. The present study extended our previous study for selective detections of H and D atoms, and of H{sub 2} (J = 0 and 1) and D{sub 2} (J = 0 and 1) molecules adsorbed on ASW using both photo-stimulated desorption and resonance-enhanced multiphoton ionization, to investigate potential sites on ASW for diffusion, recombination dynamics, and the diffusion mechanism of H and D atoms. Our results demonstrate that the ASW surface contains various potential sites that can be categorized into at least three groups: very shallow, middle-, and deep-potential sites, with diffusion activation energies of {<=}18, 22 (23 meV for D atoms), and {>=}30 meV, respectively. The present study pictured the outline of H{sub 2} formation on cosmic ice dust at low temperatures: H atoms landing on the dust will diffuse rapidly at the abundant shallow and middle sites on ASW, and finally become trapped at deep sites. The H atoms that arrive next recombine with such trapped H atoms to yield H{sub 2} molecules. The small isotopic difference between the diffusion of H and D atoms on ASW indicates that the diffusion mechanism can be explained by thermal hopping, at least at middle-potential sites.

  7. Gold recovery from low concentrations using nanoporous silica adsorbent

    Science.gov (United States)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  8. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1981-08-01

    Over a dozen prospective adsorbents for krypton were studied and evaluated with respect to adsorption capacity and cost for dissolver off-gas streams from nuclear reprocessing plants. Results show that, at subambient temperature (-40 0 to -80 0 C), the commercially available hydrogen mordenite has sufficient adsorptive capacity to be the most cost-effective material studied. Silver mordenite has a higher capacity for krypton retention, but is 50 times more expensive than hydrogen mordenite. The results indicate that a solid adsorbent system is feasible and competitive with other developing systems whih utilize fluorocarbon absorption and cryogenic distillation

  9. Browns Ferry charcoal adsorber incident

    International Nuclear Information System (INIS)

    Mays, G.T.

    1979-01-01

    The article reviews the temperature excursion in the charcoal adsorber beds of the Browns Ferry Unit 3 off-gas system that occurred on July 17, 1977. Significant temperature increases were experienced in the charcoal adsorber beds when charcoal fines were ignited by the ignition of a combustible mixture of hydrogen and oxygen in the off-gas system. The Browns Ferry off-gas system is described, and events leading up to and surrounding the incident are discussed. The follow-up investigation by Tennessee Valley Authority and General Electric Company personnel and their recommendations for system and operational modifications are summarized

  10. Selected spectroscopic results on element 115 decay chains

    International Nuclear Information System (INIS)

    Rudolph, D.; Forsberg, U.; Golubev, P.; Sarmiento, L.G.; Yakushev, A.; Andersson, L.L.; Di Nitto, A.; Duellmann, Ch.E.; Gates, J.M.; Gregorich, K.E.

    2015-01-01

    Thirty correlated α-decay chains were observed in an experiment studying the fusion-evaporation reaction 48 Ca + 243 Am at the GSI Helmholtzzentrum fuer Schwerionenforschung. The decay characteristics of the majority of these 30 chains are consistent with previous observations and interpretations of such chains to originate from isotopes of element Z = 115. High-resolution α-photon coincidence spectroscopy in conjunction with comprehensive Monte-Carlo simulations allow to propose excitation schemes of atomic nuclei of the heaviest elements, thereby probing nuclear structure models near the 'Island of Stability' with unprecedented experimental precision. (author)

  11. Adsorção de xantatos sobre pirita Adsorption of xanthate on pyrite

    Directory of Open Access Journals (Sweden)

    Fábio Garcia Penha

    2001-10-01

    Full Text Available This paper presents a study of adsorption of xanthate with alkyl chain of two (C2XK, four (C4XK and eight (C8XK atoms of carbon, on pyrite from Santa Catarina, Brazil. The results showed that pyrite surface changes from hydrophilic to hydrophobic when xanthate is adsorbed increasing the contact angle to 35º for C2XK, and to 90º for C4XK and C8XK. The rate of flotation of pyrite particles after adsorption increases with the increase of the number of carbon atoms in the alkyl chain in agreement with the results of contact angle measurements.

  12. Phase behaviour of charged colloidal sphere dispersions with added polymer chains

    International Nuclear Information System (INIS)

    Fortini, Andrea; Dijkstra, Marjolein; Tuinier, Remco

    2005-01-01

    We study the stability of mixtures of highly screened repulsive charged spheres and non-adsorbing ideal polymer chains in a common solvent using free volume theory. The effective interaction between charged colloids in an aqueous salt solution is described by a screened Coulomb pair potential, which supplements the pure hard-sphere interaction. The ideal polymer chains are treated as spheres that are excluded from the colloids by a hard-core interaction, whereas the interaction between two ideal chains is set to zero. In addition, we investigate the phase behaviour of charged colloid-polymer mixtures in computer simulations, using the two-body (Asakura-Oosawa pair potential) approximation to the effective one-component Hamiltonian of the charged colloids. Both our results obtained from simulations and from free volume theory show similar trends. We find that the screened Coulomb repulsion counteracts the effect of the effective polymer-mediated attraction. For mixtures of small polymers and relatively large charged colloidal spheres, the fluid-crystal transition shifts to significantly larger polymer concentrations with increasing range of the screened Coulomb repulsion. For relatively large polymers, the effect of the screened Coulomb repulsion is weaker. The resulting fluid-fluid binodal is only slightly shifted towards larger polymer concentrations upon increasing the range of the screened Coulomb repulsion. In conclusion, our results show that the miscibility of dispersions containing charged colloids and neutral non-adsorbing polymers increases upon increasing the range of the screened Coulomb repulsion, or upon lowering the salt concentration, especially when the polymers are small compared to the colloids

  13. Transitions of tethered chain molecules under tension.

    Science.gov (United States)

    Luettmer-Strathmann, Jutta; Binder, Kurt

    2014-09-21

    An applied tension force changes the equilibrium conformations of a polymer chain tethered to a planar substrate and thus affects the adsorption transition as well as the coil-globule and crystallization transitions. Conversely, solvent quality and surface attraction are reflected in equilibrium force-extension curves that can be measured in experiments. To investigate these effects theoretically, we study tethered chains under tension with Wang-Landau simulations of a bond-fluctuation lattice model. Applying our model to pulling experiments on biological molecules we obtain a good description of experimental data in the intermediate force range, where universal features dominate and finite size effects are small. For tethered chains in poor solvent, we observe the predicted two-phase coexistence at transitions from the globule to stretched conformations and also discover direct transitions from crystalline to stretched conformations. A phase portrait for finite chains constructed by evaluating the density of states for a broad range of solvent conditions and tensions shows how increasing tension leads to a disappearance of the globular phase. For chains in good solvents tethered to hard and attractive surfaces we find the predicted scaling with the chain length in the low-force regime and show that our results are well described by an analytical, independent-bond approximation for the bond-fluctuation model for the highest tensions. Finally, for a hard or slightly attractive surface the stretching of a tethered chain is a conformational change that does not correspond to a phase transition. However, when the surface attraction is sufficient to adsorb a chain it will undergo a desorption transition at a critical value of the applied force. Our results for force-induced desorption show the transition to be discontinuous with partially desorbed conformations in the coexistence region.

  14. Improved hopcalite procedure for the determination of mercury vapor in air by flameless atomic absorption.

    Science.gov (United States)

    Rathje, A O; Marcero, D H

    1976-05-01

    Mercury vapor is efficiently trapped from air by passage through a small glass tube filled with hopcalite. The hopcalite and adsorbed mercury are dissolved in a mixture of nitric and hydrochloric acids. Solution is rapid and complete, with no loss of mercury. Analysis is completed by flameless atomic absorption.

  15. Adsorption of metal atoms at a buckled graphene grain boundary using model potentials

    International Nuclear Information System (INIS)

    Helgee, Edit E.; Isacsson, Andreas

    2016-01-01

    Two model potentials have been evaluated with regard to their ability to model adsorption of single metal atoms on a buckled graphene grain boundary. One of the potentials is a Lennard-Jones potential parametrized for gold and carbon, while the other is a bond-order potential parametrized for the interaction between carbon and platinum. Metals are expected to adsorb more strongly to grain boundaries than to pristine graphene due to their enhanced adsorption at point defects resembling those that constitute the grain boundary. Of the two potentials considered here, only the bond-order potential reproduces this behavior and predicts the energy of the adsorbate to be about 0.8 eV lower at the grain boundary than on pristine graphene. The Lennard-Jones potential predicts no significant difference in energy between adsorbates at the boundary and on pristine graphene. These results indicate that the Lennard-Jones potential is not suitable for studies of metal adsorption on defects in graphene, and that bond-order potentials are preferable

  16. Extraction and Determination of Pb(II by Organic Functionalisation of Graphenes Adsorbed on Surfactant Coated C18 in Environmental Sample

    Directory of Open Access Journals (Sweden)

    A. Moghimi

    2013-11-01

    Full Text Available A novel, simple, sensitive and effective method has been developed for preconcentration of lead. This solid-phase extraction adsorbent was synthesized by functionalization of graphenes with covalently linked N-methyl-glycine and 3, 4-dihydroxybenzaldehyde onto the surfaces of graphite. The method is based on selective chelation of Pb (II on surfactant coated C18, modified with functionalization of graphenes (graphene-f-OH. The adsorbed ions were then eluted with 4 ml of 4 M nitric acid and determined by flame atomic absorption spectrometry (FAAS at 283.3 for Pb. The influence of flow rates of sample and eluent solutions, pH, breakthrough volume, effect of foreign ions were investigated on chelation and recovery. 1.5 g of surfactant coated C18 adsorbs 40 mg of the functionalization of graphenes (graphene-f-OH base which in turn can retain15.2±0.8mg of each of the two ions. The limit of detection (3σ for Pb(II was found to be 3.20 ng l -1. The enrichment factor for both ions is 100. The mentioned method was successfully applied on the determination of Pb in different water samples.

  17. Extraction and Determination of Pb(II by Organic Functionalisation of Graphenes Adsorbed on Surfactant Coated C18 in Environmental Sample

    Directory of Open Access Journals (Sweden)

    A. Moghimi

    2014-05-01

    Full Text Available A novel, simple, sensitive and effective method has been developed for preconcentration of lead. This solidphase extraction adsorbent was synthesized by functionalization of graphenes with covalently linked N-methyl-glycine and 3, 4-dihydroxybenzaldehyde onto the surfaces of graphite. The method is based on selective chelation of Pb (II on surfactant coated C18, modified with functionalization of graphenes (graphene-f-OH. The adsorbed ions were then eluted with 4 ml of 4 M nitric acid and determined by flame atomic absorption spectrometry (FAAS at 283.3 for Pb. The influence of flow rates of sample and eluent solutions, pH, breakthrough volume, effect of foreign ions were investigated on chelation and recovery. 1.5 g of surfactant coated C18 adsorbs 40 mg of the functionalization of graphenes (graphene-f-OH base which in turn can retain15.2±0.8mg of each of the two ions. The limit of detection (3σ for Pb(II was found to be 3.20 ng l -1. The enrichment factor for both ions is 100. The mentioned method was successfully applied on the determination of Pb in different water samples

  18. Adsorption of β-galactosidase on silica and aluminosilicate adsorbents

    Science.gov (United States)

    Atyaksheva, L. F.; Dobryakova, I. V.; Pilipenko, O. S.

    2015-03-01

    It is shown that adsorption of β-galactosidase of Aspergillus oryzae fungi on mesoporous and biporous silica and aluminosilicate adsorbents and the rate of the process grow along with the diameter of the pores of the adsorbent. It is found that the shape of the adsorption isotherms changes as well, depending on the texture of the adsorbent: the Michaelis constant rises from 0.3 mM for the enzyme in solution to 0.4-0.5 mM for the enzyme on a surface in the hydrolysis of o-nitrophenyl-β-D-galactopyranoside. It is concluded that β-galactosidase displays its maximum activity on the surface of biporous adsorbents.

  19. Soliton Analysis in Complex Molecular Systems: A Zig-Zag Chain

    Science.gov (United States)

    Christiansen, P. L.; Savin, A. V.; Zolotaryuk, A. V.

    1997-06-01

    A simple numerical method for seeking solitary wavesolutions of a permanent profile in molecular systems of big complexity is presented. The method is essentially based on the minimization of a finite-dimensional function which is chosen under an appropriate discretization of time derivatives in equations of motion. In the present paper, it is applied to a zig-zag chain backbone of coupled particles, each of which has twodegrees of freedom (longitudinal and transverse). Both topological and nontopological soliton solutions are treated for this chain when it is (i) subjected to a two-dimensional periodic substrate potential or (ii) considered as an isolated object, respectively. In the first case, which may be considered as a zig-zag generalization of the Frenkel-Kontorova chain model, two types of kink solutions with different topological charges, describing vacancies of one or two atoms (I- or II-kinks) and defects with excess one or two atoms in the chain (I- or II-antikinks), have been found. The second case (isolated chain) is a generalization of the well-known Fermi-Pasta-Ulam chain model, which takes into account transverse degrees of freedom of the chain molecules. Two types of stable nontopological soliton solutions which describe either (i) a supersonic solitary wave of longitudinal stretching accompanied by transverse slendering or (ii) supersonic pulses of longitudinal compression propagating together with localized transverse thickening (bulge) have been obtained.

  20. Simulation Assisted Analysis of the Intrinsic Stiffness for Short DNA Molecules Imaged with Scanning Atomic Force Microscopy.

    Directory of Open Access Journals (Sweden)

    Haowei Wang

    Full Text Available Studying the mechanical properties of short segments of dsDNA can provide insight into various biophysical phenomena, from DNA looping to the organization of nucleosomes. Scanning atomic force microscopy (AFM is able to acquire images of single DNA molecules with near-basepair resolution. From many images, one may use equilibrium statistical mechanics to quantify the intrinsic stiffness (or persistence length of the DNA. However, this approach is highly dependent upon both the correct microscopic polymer model and a correct image analysis of DNA contours. These complications have led to significant debate over the flexibility of dsDNA at short length scales. We first show how to extract accurate measures of DNA contour lengths by calibrating to DNA traces of simulated AFM data. After this calibration, we show that DNA adsorbed on an aminopropyl-mica surface behaves as a worm-like chain (WLC for contour lengths as small as ~20 nm. We also show that a DNA binding protein can modify the mechanics of the DNA from that of a WLC.

  1. Transfer of chirality from adsorbed chiral molecules to the substrates highlighted by circular dichroism in angle-resolved valence photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Contini, G.; Turchini, S.; Sanna, Simone

    2012-01-01

    Studies of self-assembled chiral molecules on achiral metallic surfaces have mostly focused on the determination of the geometry of adsorbates and their electronic structure. The aim of this paper is to provide direct information on the chirality character of the system and on the chirality...... transfer from molecules to substrate by means of circular dichroism in the angular distribution of valence photoelectrons for the extended domain of the chiral self-assembled molecular structure, formed by alaninol adsorbed on Cu(100). We show, by the dichroic behavior of a mixed molecule–copper valence...... state, that the presence of molecular chiral domains induces asymmetry in the interaction with the substrate and locally transfers the chiral character to the underlying metal atoms participating in the adsorption process; combined information related to the asymmetry of the initial electronic state...

  2. Production of Flocculants, Adsorbents, and Dispersants from Lignin.

    Science.gov (United States)

    Chen, Jiachuan; Eraghi Kazzaz, Armin; AlipoorMazandarani, Niloofar; Hosseinpour Feizi, Zahra; Fatehi, Pedram

    2018-04-10

    Currently, lignin is mainly produced in pulping processes, but it is considered as an under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl groups that can participate in chemical reactions to produce value-added products. Flocculants, adsorbents, and dispersants have a wide range of applications in industry, but they are mainly oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically discusses the advantages and disadvantages of various approaches to produce such products. The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and possible scenarios to overcome these challenges for commercial use of these products in industry are discussed.

  3. Protein purification using magnetic adsorbent particles

    DEFF Research Database (Denmark)

    Franzreb, M; Siemann-Herzberg, M.; Hobley, Timothy John

    2006-01-01

    The application of functionalised magnetic adsorbent particles in combination with magnetic separation techniques has received considerable attention in recent years. The magnetically responsive nature of such adsorbent particles permits their selective manipulation and separation in the presence...... separations are fast, gentle, scaleable, easily automated, can achieve separations that would be impossible or impractical to achieve by other techniques, and have demonstrated credibility in a wide range of disciplines, including minerals processing, wastewater treatment, molecular biology, cell sorting...

  4. The application of neutron reflectometry and atomic force microscopy in the study of corrosion inhibitor films

    International Nuclear Information System (INIS)

    John, Douglas; Blom, Annabelle; Bailey, Stuart; Nelson, Andrew; Schulz, Jamie; De Marco, Roland; Kinsella, Brian

    2006-01-01

    Corrosion inhibitor molecules function by adsorbing to a steel surface and thus prevent oxidation of the metal. The interfacial structures formed by a range of corrosion inhibitor molecules have been investigated by in situ measurements based on atomic force microscopy and neutron reflectometry. Inhibitors investigated include molecules cetyl pyridinium chloride (CPC), dodecyl pyridinium chloride (DPC), 1-hydroxyethyl-2-oleic imidazoline (OHEI) and cetyl dimethyl benzyl ammonium chloride (CDMBAC). This has shown that the inhibitor molecules adsorb onto a surface in micellar structures. Corrosion measurements confirmed that maximum inhibition efficiency coincides with the solution critical micelle concentration

  5. A nuclear standard high-efficiency adsorber for iodine

    International Nuclear Information System (INIS)

    Wang Jianmin; Qian Yinge

    1988-08-01

    The structure of a nuclear standard high-efficiency adsorber, adsorbent and its performance are introduced. The performance and structure were compared with the same kind product of other firms. The results show that the leakage rate is less than 0.005%

  6. Atomic bonding between metal and graphene

    KAUST Repository

    Wang, Hongtao

    2013-03-07

    To understand structural and chemical properties of metal-graphene composites, it is crucial to unveil the chemical bonding along the interface. We provide direct experimental evidence of atomic bonding between typical metal nano structures and graphene, agreeing well with density functional theory studies. Single Cr atoms are located in the valleys of a zigzag edge, and few-atom ensembles preferentially form atomic chains by self-assembly. Low migration barriers lead to rich dynamics of metal atoms and clusters under electron irradiation. We demonstrate no electron-instigated interaction between Cr clusters and pristine graphene, though Cr has been reported to be highly reactive to graphene. The metal-mediated etching is a dynamic effect between metal clusters and pre-existing defects. The resolved atomic configurations of typical nano metal structures on graphene offer insight into modeling and simulations on properties of metal-decorated graphene for both catalysis and future carbon-based electronics. © 2013 American Chemical Society.

  7. Sensitivity of photoelectron diffraction to conformational changes of adsorbed molecules: Tetra-tert-butyl-azobenzene/Au(111

    Directory of Open Access Journals (Sweden)

    A. Schuler

    2017-01-01

    Full Text Available Electron diffraction is a standard tool to investigate the atomic structure of surfaces, interfaces, and adsorbate systems. In particular, photoelectron diffraction is a promising candidate for real-time studies of structural dynamics combining the ultimate time resolution of optical pulses and the high scattering cross-sections for electrons. In view of future time-resolved experiments from molecular layers, we studied the sensitivity of photoelectron diffraction to conformational changes of only a small fraction of molecules in a monolayer adsorbed on a metallic substrate. 3,3′,5,5′-tetra-tert-butyl-azobenzene served as test case. This molecule can be switched between two isomers, trans and cis, by absorption of ultraviolet light. X-ray photoelectron diffraction patterns were recorded from tetra-tert-butyl-azobenzene/Au(111 in thermal equilibrium at room temperature and compared to patterns taken in the photostationary state obtained by exposing the surface to radiation from a high-intensity helium discharge lamp. Difference patterns were simulated by means of multiple-scattering calculations, which allowed us to determine the fraction of molecules that underwent isomerization.

  8. Noble gas separation with the use of inorganic adsorbents

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.C.; Christian, J.D.; Paplawsky, W.J.

    1979-01-01

    A noble gas separation process is proposed for application to airborne nuclear fuel reprocessing plant effluents. The process involves the use of inorganic adsorbents for the removal of contaminant gases and noble gas separation through selective adsorption. Water and carbon dioxide are removed with selected zeolites that do not appreciably adsorb the noble gases. Xenon is essentially quantitatively removed with a specially developed adsorbent using conventional adsorption-desorption techniques. Oxygen is removed to low ppM levels by the use of a rapid cycle adsorption technique on a special adsorbent leaving a krypton-nitrogen mixture. Krypton is separated from nitrogen with a special adsorbent operated at about -80 0 C. Because the separation process does not require high pressures and oxygen is readily removed to sufficiently limit ozone formation to insignificant levels, appreciable capital and operating cost savings with this process are possible compared with other proposed processes. In addition, the proposed process is safer to operate

  9. Application of atomic force microscopy to the study of natural and model soil particles.

    Science.gov (United States)

    Cheng, S; Bryant, R; Doerr, S H; Rhodri Williams, P; Wright, C J

    2008-09-01

    The structure and surface chemistry of soil particles has extensive impact on many bulk scale properties and processes of soil systems and consequently the environments that they support. There are a number of physiochemical mechanisms that operate at the nanoscale which affect the soil's capability to maintain native vegetation and crops; this includes soil hydrophobicity and the soil's capacity to hold water and nutrients. The present study used atomic force microscopy in a novel approach to provide unique insight into the nanoscale properties of natural soil particles that control the physiochemical interaction of material within the soil column. There have been few atomic force microscopy studies of soil, perhaps a reflection of the heterogeneous nature of the system. The present study adopted an imaging and force measurement research strategy that accounted for the heterogeneity and used model systems to aid interpretation. The surface roughness of natural soil particles increased with depth in the soil column a consequence of the attachment of organic material within the crevices of the soil particles. The roughness root mean square calculated from ten 25 microm(2) images for five different soil particles from a Netherlands soil was 53.0 nm, 68.0 nm, 92.2 nm and 106.4 nm for the respective soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. A novel analysis method of atomic force microscopy phase images based on phase angle distribution across a surface was used to interpret the nanoscale distribution of organic material attached to natural and model soil particles. Phase angle distributions obtained from phase images of model surfaces were found to be bimodal, indicating multiple layers of material, which changed with the concentration of adsorbed humic acid. Phase angle distributions obtained from phase images of natural soil particles indicated a trend of decreasing surface coverage with increasing depth in the soil column. This was consistent with

  10. Characterization of novel adsorbents for radiostrontium reduction in foods

    International Nuclear Information System (INIS)

    Puziy, A.M.; Bengtsson, G.B.; Hansen, H.S.

    1999-01-01

    Distribution coefficients, pH dependence, isotherms, kinetics and breakthrough curves of Sr binding have been measured on several types of adsorbents (carbons modified with titanium silicate, crystalline titanium silicate, mixed titanium-manganese oxide, and synthetic zeolites A4 and P) from different water solutions. It is concluded that acid-base properties of the adsorbent is very important for Sr binding. Titanium silicate based adsorbents had reduced chemical stability in an artificial food fluid below pH 2, the mixed titanium manganese oxide below pH 6, zeolite A4 below pH 5 and zeolite P below pH 7. Consideration is given to the feasibility of the adsorbents for food decontamination. (author)

  11. Methyl iodide tests on used adsorbents

    International Nuclear Information System (INIS)

    Kovach, J.L.

    1993-01-01

    This paper discusses the history of events leading to the current problems in radioiodine test conditions. These radioiodine tests are performed in the adsorbent media from both safety and non-safety related Nuclear Air Treatment Systems (NATS). The main problem addressed is that currently there are still numerous plant technical specifications for NATS which reference outdated test protocols for the surveillance testing of the radioactive methyl iodide performance of the adsorbents. Recommendations for correcting the test condition problems are presented. 7 refs

  12. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons.

    Science.gov (United States)

    Chiang, Hung-Lung; Lin, Kuo-Hsiung; Chen, Chih-Yu; Choa, Ching-Guan; Hwu, Ching-Shyung; Lai, Nina

    2006-05-01

    This study selected biosolids from a petrochemical waste-water treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl2) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl2-immersed biosolids pyrolyzed at 500 degrees C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high.

  13. Production of Flocculants, Adsorbents, and Dispersants from Lignin

    Directory of Open Access Journals (Sweden)

    Jiachuan Chen

    2018-04-01

    Full Text Available Currently, lignin is mainly produced in pulping processes, but it is considered as an under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl groups that can participate in chemical reactions to produce value-added products. Flocculants, adsorbents, and dispersants have a wide range of applications in industry, but they are mainly oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically discusses the advantages and disadvantages of various approaches to produce such products. The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and possible scenarios to overcome these challenges for commercial use of these products in industry are discussed.

  14. Effectiveness Study of Drinking Water Treatment Using Clays/Andisol Adsorbent in Lariat Heavy Metal Cadmium (Cd) and Bacterial Pathogens

    Science.gov (United States)

    Pranoto; Inayati; Firmansyah, Fathoni

    2018-04-01

    Water is a natural resource that is essential for all living creatures. In addition, water also caused of disease affecting humans. The existence of one of heavy metal pollutants cadmium (Cd) in the body of water is an environmental problem having a negative impact on the quality of water resources. Adsorption is one of the ways or methods that are often used for the treatment of wastewater. Clay and allophanic soil were used as Cd adsorbent by batch method. Ceramic filter was used to reduce Cd concentration in the ground water. This study aims to determine the effect of the composition of clay and Allophane, activation temperature and contact time on the adsorption capacity of Cd in the model solution. The optimum adsorption condition and the effectiveness of drinking water treatment in accordance with Regulation of the Minister of Health using clay/Andisol adsorbents in ensnare heavy metals Cd and bacterial pathogens. Identification and characterization of adsorbent is done by using NaF, Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), specific surface area and total acidity specific. The Cd metal concentrations were analysed by atomic absorption spectroscopy. Adsorption isotherms determined by Freundlich and Langmuir equations. Modified water purification technology using ceramic filters are made with a mixture of clay and Andisol composition. The results showed samples of clay and Andisol containing minerals. The optimum condition of adsorption was achieved at 200 °C of activation temperature, 60 minutes of contact time and the 60:40 of clay:Andisol adsorbent composition. Freundlich isotherm represented Cd adsorption on the clay/Andisol adsorbent with a coefficient of determination (R2=0.99) and constant (k=1.59), higher than Langmuir (R2=0.89). The measurement results show the water purification technology using ceramic filters effectively reduce E. coli bacterial and Cd content in the water.

  15. Calculation of single chain cellulose elasticity using fully atomistic modeling

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2011-01-01

    Cellulose nanocrystals, a potential base material for green nanocomposites, are ordered bundles of cellulose chains. The properties of these chains have been studied for many years using atomic-scale modeling. However, model predictions are difficult to interpret because of the significant dependence of predicted properties on model details. The goal of this study is...

  16. Surface parameter characterization of surface vibrations in linear chains

    International Nuclear Information System (INIS)

    Majlis, N.; Selzer, S.; Puszkarski, H.; Diep-The-Hung

    1982-12-01

    We consider the vibrations of a linear monatomic chain with a complex surface potential defined by the surface pinning parameter a=Aesup(-i psi). It is found that in the case of a semi-infinite chain a is connected with the surface vibration wave number k=s+it by the exact relations: s=psi, t=lnA. We also show that the solutions found can be regarded as approximate ones (in the limit L>>1) for surface vibrations of a finite chain consisting of L atoms. (author)

  17. Nuclear spin-spin coupling constants of linear carbon chains terminated by coronene molecules: a first principles study

    International Nuclear Information System (INIS)

    Oliveira, Joao Paulo Cavalcante; Mota, F. de Brito; Rivelino, Roberto

    2011-01-01

    Full text. Carbon nano wires made of long linear atomic chains have attracted considerable interest due to their potential applications in nano electronics. We report a density-functional-theory study of the nuclear spin-spin coupling constants for nano assemblies made of two coronene molecules bridged by carbon linear chains, considering distinct sizes and spin multiplicities. Also, we examine the effects of two terminal conformations (syn and anti) of the terminal anchor pieces on the magnetic properties of the carbon chains via 13 C NMR calculations. Our results reveal that simplified chemical models such as those based on cumulenes or polyynes are not appropriate to describe the linear chains with sp 2 terminations. For these types of atomic chains, the electronic ground state of the even-numbered chains can be singlet or triplet, whereas the ground state of the odd-numbered chains can be doublet or quartet. We discuss how the 13 C NMR chemical shift absorption is affected by increasing the size and changing the parity of the linear carbon chains. We have found that the J coupling constants between the carbon atoms in the linear chains present a well-defined pattern, in good accordance with our electronic structure calculations. For example, in the -C 4 - units we obtain couplings of 43.8, 114.5, 84.6, 114.5, and 43.8 Hz from one end to the other

  18. Thermal studies of poly(esters) containing silicon or germanium in the main chain

    International Nuclear Information System (INIS)

    Tagle, L.H.; Terraza, C.; Valenzuela, P.; Leiva, A.; Urzua, M.

    2005-01-01

    The thermal properties of poly(esters) containing Si and/or Ge in the main chain derived from the acid dichlorides bis(4-chloroformyl-phenyl)-dimethyl-silane, bis(4-chloroformyl-phenyl)-dimethyl-germane, bis(4-chloroformyl-phenyl)-diphenyl-silane and bis(4-chloroformyl-phenyl)-diphenyl-silane, and the diphenols bis(4-hydroxyphenyl)-dimethyl-silane, bis(4-hydroxyphenyl)-dimethyl-germane, bis(4-hydroxyphenyl)-diphenyl-silane and bis(4-hydroxyphenyl)-diphenyl-germane were studied by differential scanning calorimetry and dynamic thermogravimetry. Poly(esters) with two Si atoms in the main chain showed higher values of T g than those with two Ge atoms, and the same was observed for poly(esters) with phenyl groups bonded to the heteroatoms, instead of those with methyl groups. Thermal decomposition temperatures were also higher for those poly(esters) with two Si atoms in the main chain and those in which the heteroatom is bonded to phenyl groups, due to the higher polarity of the Si-C bond in front of the Ge-C

  19. Black molecular adsorber coatings for spaceflight applications

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  20. Nuclear structure notes on element 115 decay chains

    International Nuclear Information System (INIS)

    Rudolph, D.; Sarmiento, L. G.; Forsberg, U.

    2015-01-01

    Hitherto collected data on more than hundred α-decay chains stemming from element 115 are combined to probe some aspects of the underlying nuclear structure of the heaviest atomic nuclei yet created in the laboratory

  1. Nuclear structure notes on element 115 decay chains

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, D., E-mail: Dirk.Rudolph@nuclear.lu.se; Sarmiento, L. G.; Forsberg, U. [Department of Physics, Lund University, 22100 Lund (Sweden)

    2015-10-15

    Hitherto collected data on more than hundred α-decay chains stemming from element 115 are combined to probe some aspects of the underlying nuclear structure of the heaviest atomic nuclei yet created in the laboratory.

  2. Synthesis and properties of porous zeolite aluminosilicate adsorbents

    International Nuclear Information System (INIS)

    Shilina, A.S.; Milinchuk, V.K.; Burukhin, S.B.; Gordienko, A.B.

    2015-01-01

    Environmentally safe non-energy-intensive methods of the synthesis have been developed and the properties of solid inorganic nanostructured zeolite-like adsorbents of a broad spectrum have been studied. The sorption capacities of the adsorbents with respect to various components of water pollution have been determined [ru

  3. The development of an adsorbent for corrosion products in high-temperature water

    International Nuclear Information System (INIS)

    Kim, Yong Ik; Sung, Ki Woung; Kim, Kwang Rag; Kim, Yu Hwan; Koo, Jae Hyoo

    1996-08-01

    In order to use as adsorbent for removal of the soluble corrosion products, mainly Co 60 under PWR reactor coolant conditions (300 deg C, 160 kg/cm 2 ), stable ZrO 2 adsorbent was prepared using sol-gel process from zirconyl nitrate, AlO adsorbent was prepared by hydrolysis of aluminum isopropoxide, and titanium tetraisopropoxide, respectively. The prepared adsorbents were calcined at various temperature and analyzed by physical properties and the Co 2+ adsorption capacity. And it was shown that the Co 2+ adsorption capacity of the TiO 2 -Al 2 O 3 adsorbents were found to have larger than that of ZrO 2 and Al 2 O 3 adsorbents in high-temperature water. ZrO 2 , Al 2 O 3 and TiO 2 -Al 2 O 3 adsorbents were found to be suitable high-temperature adsorbents for the removal of dissolved corrosion products, mainly Co in PWR reactor coolant conditions. 15 tabs., 51 figs., 55 refs. (Author)

  4. Coherent radiation from atoms and a channeled particle

    International Nuclear Information System (INIS)

    Epp, V.; Sosedova, M.A.

    2013-01-01

    Highlights: ► Impact of coherent atoms vibrations on radiation of a channeled particle is studied. ► Resonant amplification of atomic radiation is possible under certain conditions. ► Radiation of vibrating atoms forms an intense narrow peak in angular distribution. ► Radiation of atoms on resonance conditions is higher than that of channeled particle. -- Abstract: A new mechanism of radiation emitted at channeling of a relativistic charged particle in a crystal is studied. The superposition of coherent radiation from atoms, which are excited to vibrate in the crystal lattice by a channeled charged particle, with the ordinary channeling radiation is considered. It is shown that the coherent radiation from a chain of oscillating atoms forms a resonance peak on the tail of radiation emitted by the channeled particle

  5. Surface Design in Solid-State Dye Sensitized Solar Cells: Effects of Zwitterionic Co-adsorbents on Photovoltaic Performance

    KAUST Repository

    Wang, Mingkui

    2009-07-10

    In solid-state dye sensitized solar cells (SSDSCs) charge recombination at the dye-hole transporting material interface plays a critical role in the cell efficiency. For the first time we report on the influence of dipolar coadsorbents on the photovoltaic performance of sensitized hetero-junction solar cells. In the present study, we investigated the effect of two zwitterionic butyric acid derivatives differing only in the polar moiety attached to their common 4 carbon-chain acid, i.e., 4-guanidinobutyric acid (GBA) and 4-aminobutyric acid (ABA). These two molecules were implemented as coadsorbents in conjunction with Z907Na dye on the SSDSC. It was found that a Z907Na/GBA dye/co-adsorbent combination increases both the open circuit voltage (V oc) and short-circuit current density ( Jsc) as compared to using Z907Na dye alone. The Z907Na/ABA dye/co-adsorbent combination increases the Jsc. Impedance and transient photovoltage investigations elucidate the cause of these remarkable observations. ©2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Atomic and molecular adsorption on Fe(110)

    Science.gov (United States)

    Xu, Lang; Kirvassilis, Demetrios; Bai, Yunhai; Mavrikakis, Manos

    2018-01-01

    Iron is the principal catalyst for the ammonia synthesis process and the Fischer-Tropsch process, as well as many other heterogeneously catalyzed reactions. It is thus of fundamental importance to understand the interactions between the iron surface and various reaction intermediates. Here, we present a systematic study of atomic and molecular adsorption behavior over Fe(110) using periodic, self-consistent density functional theory (DFT-GGA) calculations. The preferred binding sites, binding energies, and the corresponding surface deformation energies of five atomic species (H, C, N, O, and S), six molecular species (NH3, CH4, N2, CO, HCN, and NO), and eleven molecular fragments (CH, CH2, CH3, NH, NH2, OH, CN, COH, HCO, NOH, and HNO) were determined on the Fe(110) surface at a coverage of 0.25 monolayer. The binding strengths calculated using the PW91 functional decreased in the following order: C > CH >N > O > S > NH > COH > CN > CH2 > NOH > OH > HNO > HCO > NH2 > H > NO > HCN > CH3 > CO > N2 > NH3. No stable binding structures were observed for CH4. The estimated diffusion barriers and pathways, as well as the adsorbate-surface and intramolecular vibrational modes of all the adsorbates at their preferred binding sites, were identified. Using the calculated adsorption energetics, we constructed the potential energy surfaces for a few surface reactions including the decomposition of methane, ammonia, dinitrogen, carbon monoxide, and nitric oxide. These potential energy surfaces provide valuable insight into the ability of Fe(110) to catalyze common elementary steps.

  7. Creation of the technical adsorbent from local raw materials

    International Nuclear Information System (INIS)

    Isobaev, M.D.; Davlatnazarova, M.D.; Abdullaev, T.H.

    2016-01-01

    The results showed the possibility of obtaining effective adsorbents of walnut shell and the sunflower for environmental purposes, in particular for the purification of polluted waters from heavy metals. It has been shown, that 1 g of walnut shell adsorbent can adsorb on its surface ions of lead in amount of 47% by weight. The dependence of the adsorption activity of the semi-coke received from walnut shell from particle size and concentration of the solution. (author)

  8. A semiflexible alternating copolymer chain adsorption on a flat and a fluctuating surface

    International Nuclear Information System (INIS)

    Mishra, Pramod Kumar

    2010-01-01

    A lattice model of a directed self-avoiding walk is used to investigate adsorption properties of a semiflexible alternating copolymer chain on an impenetrable flat and fluctuating surface in two (square, hexagonal and rectangular lattice) and three dimensions (cubic lattice). In the cubic lattice case the surface is two-dimensional impenetrable flat and in two dimensions the surface is a fluctuating impenetrable line (hexagonal lattice) and also flat impenetrable line (square and rectangular lattice). Walks of the copolymer chains are directed perpendicular to the plane of the surface and at a suitable value of monomer surface attraction, the copolymer chain gets adsorbed on the surface. To calculate the exact value of the monomer surface attraction, the directed walk model has been solved analytically using the generating function method to discuss results when one type of monomer of the copolymer chain has attractive, repulsive or no interaction with the surface. Results obtained in the flat surface case show that, for a stiffer copolymer chain, adsorption transition occurs at a smaller value of monomer surface attraction than a flexible copolymer chain while in the case of a fluctuating surface, the adsorption transition point is independent of bending energy of the copolymer chain. These features are similar to that of a semiflexible homopolymer chain adsorption.

  9. A semiflexible alternating copolymer chain adsorption on a flat and a fluctuating surface.

    Science.gov (United States)

    Mishra, Pramod Kumar

    2010-04-21

    A lattice model of a directed self-avoiding walk is used to investigate adsorption properties of a semiflexible alternating copolymer chain on an impenetrable flat and fluctuating surface in two (square, hexagonal and rectangular lattice) and three dimensions (cubic lattice). In the cubic lattice case the surface is two-dimensional impenetrable flat and in two dimensions the surface is a fluctuating impenetrable line (hexagonal lattice) and also flat impenetrable line (square and rectangular lattice). Walks of the copolymer chains are directed perpendicular to the plane of the surface and at a suitable value of monomer surface attraction, the copolymer chain gets adsorbed on the surface. To calculate the exact value of the monomer surface attraction, the directed walk model has been solved analytically using the generating function method to discuss results when one type of monomer of the copolymer chain has attractive, repulsive or no interaction with the surface. Results obtained in the flat surface case show that, for a stiffer copolymer chain, adsorption transition occurs at a smaller value of monomer surface attraction than a flexible copolymer chain while in the case of a fluctuating surface, the adsorption transition point is independent of bending energy of the copolymer chain. These features are similar to that of a semiflexible homopolymer chain adsorption.

  10. Soliton analysis in complex molecular systems: A zig-zag chain

    International Nuclear Information System (INIS)

    Christiansen, P.L.; Savin, A.V.; Zolotaryuk, A.V.

    1997-01-01

    A simple numerical method for seeking solitary wave solutions of a permanent profile in molecular systems of big complexity is presented. The method is essentially based on the minimization of a finite-dimensional function which is chosen under an appropriate discretization of time derivatives in equations of motion. In the present paper, it is applied to a zig-zag chain backbone of coupled particles, each of which has two degrees of freedom (longitudinal and transverse). Both topological and nontopological soliton solutions are treated for this chain when it is (i) subjected to a two-dimensional periodic substrate potential or (ii) considered as an isolated object, respectively. In the first case, which may be considered as a zig-zag generalization of the Frenkel-Kontorova chain model, two types of kink solutions with different topological charges, describing vacancies of one or two atoms (I- or II-kinks) and defects with excess one or two atoms in the chain (I- or II-antikinks), have been found. The second case (isolated chain) is a generalization of the well-known Fermi-Pasta-Ulam chain model, which takes into account transverse degrees of freedom of the chain molecules. Two types of stable nontopological soliton solutions which describe either (i) a supersonic solitary wave of longitudinal stretching accompanied by transverse slandering or supersonic pulses of longitudinal compression propagating together with localized transverse thickening (bulge) have been obtained. 32 refs., 11 figs

  11. Removal of VOCs from air stream with corrugated sheet as adsorbent

    Directory of Open Access Journals (Sweden)

    Rabia Arshad

    2016-10-01

    Full Text Available A large proportional of volatile organic compounds (VOCs are released into the environment from various industrial processes. The current study elucidates an application of a simple adsorption phenomenon for removal of three main types of VOCs, i.e., benzene, xylene and toluene, from an air stream. Two kinds of adsorbents namely acid digested adsorbent and activated carbon are prepared to assess the removal efficiency of each adsorbent in the indoor workplace environment. The results illustrate that the adsorbents prepared from corrugated sheets were remarkably effective for the removal of each pollutant type. Nevertheless, activated carbon showed high potential of adsorbing the targeted VOC compared to the acid digested adsorbent. The uptake by the adsorbents was in the following order: benzene > xylene > toluene. Moreover, maximum adsorption of benzene, toluene and xylene occurred at 20 °C and 1.5 cm/s for both adsorbents whereas minimum success was attained at 30 °C and 1.0 cm/s. However, adsorption pattern are found to be similar for each of the the three aromatic hydrocarbons. It is concluded that the corrugated sheets waste can be a considered as a successful and cost-effective solution towards effective removal of targeted pollutants in the air stream.

  12. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Hung-Lung Chiang; Kuo-Hsiung Lin; Chih-Yu Chen; Ching-Guan Choa; Ching-Shyung Hwu; Nina Lai [China Medical University, Taichung (Taiwan). Department of Risk Management

    2006-05-15

    This study selected biosolids from a petrochemical wastewater treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl{sub 2}) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl{sub 2}-immersed biosolids pyrolyzed at 500{sup o}C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high. 18 refs., 9 figs., 3 tabs.

  13. Adsorption of SO{sub 2} on Li atoms deposited on MgO (1 0 0) surface: DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Eid, Kh.M., E-mail: Kheid98@hotmail.com [Physics Department, Faculty of Education, Ain Shams University, Cairo 11757 (Egypt); Ammar, H.Y. [Department of Physics, Faculty of Science, Najran University, Najran 1988 (Saudi Arabia)

    2011-05-01

    The adsorption of sulfur dioxide molecule (SO{sub 2}) on Li atom deposited on the surfaces of metal oxide MgO (1 0 0) on both anionic and defect (F{sub s}-center) sites located on various geometrical defects (terrace, edge and corner) has been studied using density functional theory (DFT) in combination with embedded cluster model. The adsorption energy (E{sub ads}) of SO{sub 2} molecule (S-atom down as well as O-atom down) in different positions on both of O{sup -2} and F{sub s} sites is considered. The spin density (SD) distribution due to the presence of Li atom is discussed. The geometrical optimizations have been done for the additive materials and MgO substrate surfaces (terrace, edge and corner). The oxygen vacancy formation energies have been evaluated for MgO substrate surfaces. The ionization potential (IP) for defect free and defect containing of the MgO surfaces has been calculated. The adsorption properties of SO{sub 2} are analyzed in terms of the E{sub ads}, the electron donation (basicity), the elongation of S-O bond length and the atomic charges on adsorbed materials. The presence of the Li atom increases the catalytic effect of the anionic O{sup -2} site of MgO substrate surfaces (converted from physisorption to chemisorption). On the other hand, the presence of the Li atom decreases the catalytic effect of the F{sub s}-site of MgO substrate surfaces. Generally, the SO{sub 2} molecule is strongly adsorbed (chemisorption) on the MgO substrate surfaces containing F{sub s}-center.

  14. Competitive Adsorption of a Two-Component Gas on a Deformable Adsorbent

    OpenAIRE

    Usenko, A. S.

    2013-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary in adsorption due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas taking into account variations in adsorption properties of the adsorbent in adsorption is obtained. We establi...

  15. A COMPREHENSIVE STUDY OF HYDROGEN ADSORBING TO AMORPHOUS WATER ICE: DEFINING ADSORPTION IN CLASSICAL MOLECULAR DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, John L.; Lewis, Steven P.; Stancil, P. C. [Department of Physics and Astronomy and the Center for Simulational Physics, University of Georgia, Athens, GA 30602 (United States)

    2016-11-01

    Gas–grain and gas–phase reactions dominate the formation of molecules in the interstellar medium (ISM). Gas–grain reactions require a substrate (e.g., a dust or ice grain) on which the reaction is able to occur. The formation of molecular hydrogen (H{sub 2}) in the ISM is the prototypical example of a gas–grain reaction. In these reactions, an atom of hydrogen will strike a surface, stick to it, and diffuse across it. When it encounters another adsorbed hydrogen atom, the two can react to form molecular hydrogen and then be ejected from the surface by the energy released in the reaction. We perform in-depth classical molecular dynamics simulations of hydrogen atoms interacting with an amorphous water-ice surface. This study focuses on the first step in the formation process; the sticking of the hydrogen atom to the substrate. We find that careful attention must be paid in dealing with the ambiguities in defining a sticking event. The technical definition of a sticking event will affect the computed sticking probabilities and coefficients. Here, using our new definition of a sticking event, we report sticking probabilities and sticking coefficients for nine different incident kinetic energies of hydrogen atoms [5–400 K] across seven different temperatures of dust grains [10–70 K]. We find that probabilities and coefficients vary both as a function of grain temperature and incident kinetic energy over the range of 0.99–0.22.

  16. Ionogenic adsorbents based on local raw materials for radiation protection

    International Nuclear Information System (INIS)

    Isobaev, M.D.; Davlatnazarova, M.; Turdialiev, M.Z.; Abdullayev, T.H.; Pulatov, E.H.

    2012-01-01

    The successful management of uranium wastes and creating the conditions for effective rehabilitation activities require special adsorbents capable of holding on the surface complexes, including radioactive elements. Currently tested and have shown promising synthetic adsorbents based pitted apricot fruits and other fruit plants. This report presents data for the establishment of ionic type available adsorbents based on Tajikistan coal. As the base for the creation of this type of adsorbent were taken the coal of the 'Ziddi' deposits. As follows from our data on the chemical composition, the studied coals contain more than 20% of the ash. According to the available literature theses ashes contains various minerals compositions that can form the adsorbent's active surface. Thus, the model for this type of activated carbon can serve as a mixture of zeolite, ion exchange resins and activated carbon itself.

  17. Performance of adsorbent-embedded heat exchangers using binder-coating method

    KAUST Repository

    Li, Ang

    2016-01-01

    The performance of adsorption (AD) chillers or desalination cycles is dictated by the rates of heat and mass transfer of adsorbate in adsorbent-packed beds. Conventional granular-adsorbent, packed in fin-tube heat exchangers, suffered from poor heat transfer in heating (desorption) or cooling (adsorption) processes of the batch-operated cycles, with undesirable performance parameters such as higher footprint of plants, low coefficient of performance (COP) of AD cycles and higher capital cost of the machines. The motivation of present work is to mitigate the heat and mass "bottlenecks" of fin-tube heat exchangers by using a powdered-adsorbent cum binder coated onto the fin surfaces of exchangers. Suitable adsorbent-binder pairs have been identified for the silica gel adsorbent with pore surface areas up to 680 m2/g and pore diameters less than 6 nm. The parent silica gel remains largely unaffected despite being pulverized into fine particles of 100 μm, and yet maintaining its water uptake characteristics. The paper presents an experimental study on the selection and testing processes to achieve high efficacy of adsorbent-binder coated exchangers. The test results indicate 3.4-4.6 folds improvement in heat transfer rates over the conventional granular-packed method, resulting a faster rate of water uptake by 1.5-2 times on the suitable silica gel type. © 2015 Elsevier Ltd. All rights reserved.

  18. Modification of Oil Palm Plantation Wastes as Oil Adsorbent for Palm Oil Mill Effluent (POME)

    International Nuclear Information System (INIS)

    Noraisah Jahi; Ling, E.S.; Rizafizah Othaman; Suria Ramli

    2015-01-01

    This research was conducted to modify oil palm solid wastes chemically to become oil adsorbent for palm oil mill effluent (POME). The purpose of modification on oil palm leaves (OPL) and oil palm frond (OPF) was to change the hydrophilic nature to a more hydrophobic character. This study also exploited the production of sorbent materials with high efficiency in the oil uptake for POME from OPL and OPF. Chemical modification was carried out using 200 mL of 1.0 M lauric acid solution for 6 hrs at room temperature. The modified OPL and OPF were preceded to adsorption test for POME and the capacity of oil adsorbed was compared between them. FTIR analysis supported the modification to occur with the increase in a peak of C-H group and the presence of C=O originated from lauric acid structure chain. The hydrophobicity of modified OPL and OPF samples was supported by XRD and contact angle analysis with modified OPL became more hydrophobic than the modified OPF, which had been 38.15 % and 24.67 % respectively. Both the analyses proved that the result from the oil adsorption test on POME showed the presence of a new peak attribute at C=C stretching of aromatics for the oil in POME proved that it was attached on the sorbent materials. Based on SEM analysis, the perforated and rough surface had been observed on modified OPL and OPF samples because oil layers on OPL and OPF surfaces were observed on the modified samples after the adsorption test. All the analyses in the study agreed that the results from oil adsorption test showed that the modified OPL had higher adsorption capacity than the modified OPF with the percentage of oil uptake at 83.74 % and 39.84 % respectively. The prepared adsorbent showed the potential to be used as a low-cost adsorbent in oil for POME. (author)

  19. The development of an adsorbent for corrosion products in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Ik; Sung, Ki Woung; Kim, Kwang Rag; Kim, Yu Hwan; Koo, Jae Hyoo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-08-01

    In order to use as adsorbent for removal of the soluble corrosion products, mainly Co{sup 60} under PWR reactor coolant conditions (300 deg C, 160 kg/cm{sup 2}), stable ZrO{sub 2} adsorbent was prepared using sol-gel process from zirconyl nitrate, AlO adsorbent was prepared by hydrolysis of aluminum isopropoxide, and titanium tetraisopropoxide, respectively. The prepared adsorbents were calcined at various temperature and analyzed by physical properties and the Co{sup 2+} adsorption capacity. And it was shown that the Co{sup 2+} adsorption capacity of the TiO{sub 2}-Al{sub 2}O{sub 3} adsorbents were found to have larger than that of ZrO{sub 2} and Al{sub 2}O{sub 3} adsorbents in high-temperature water. ZrO{sub 2}, Al{sub 2}O{sub 3} and TiO{sub 2}-Al{sub 2}O{sub 3} adsorbents were found to be suitable high-temperature adsorbents for the removal of dissolved corrosion products, mainly Co in PWR reactor coolant conditions. 15 tabs., 51 figs., 55 refs. (Author).

  20. Removal of arsenic from water using nano adsorbents and challenges: A review.

    Science.gov (United States)

    Lata, Sneh; Samadder, S R

    2016-01-15

    Many researchers have used nanoparticles as adsorbents to remove water pollutants including arsenic after modifying the properties of nanoparticles by improving reactivity, biocompatibility, stability, charge density, multi-functionalities, and dispersibility. For arsenic removal, nano adsorbents emerged as the potential alternatives to existing conventional technologies. The present study critically reviewed the past and current available information on the potential of nano adsorbents for arsenic removal from contaminated water and the challenges involved in that. The study discussed the separation and regeneration techniques of nano adsorbents and the performance thereof. The study evaluated the adsorption efficiency of the various nanoparticles based on size of nanoparticles, types of nano adsorbents, method of synthesis, separation and regeneration of the nano adsorbents. The study found that more studies are required on suitable holding materials for the nano adsorbents to improve the permeability and to make the technology applicable at the field condition. The study will help the readers to choose suitable nanomaterials and to take up further research required for arsenic removal using nano adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Atomic scattering from an adsorbed monolayer solid with a helium beam that penetrates to the substrate

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, L.W.; Dammann, Bernd

    2013-01-01

    Diffraction and one-phonon inelastic scattering of a thermal energy helium atomic beam are evaluated in the situation that the target monolayer lattice is so dilated that the atomic beam penetrates to the interlayer region between the monolayer and the substrate. The scattering is simulated......(1 × 1) commensurate monolayer solid of H2/KCl(001). For the latter, there are cases where part of the incident beam is trapped in the interlayer region for times exceeding 50 ps, depending on the spacing between the monolayer and the substrate and on the angle of incidence. The feedback effect...

  2. Design and performance prediction of a new generation adsorption chiller using composite adsorbent

    International Nuclear Information System (INIS)

    Gong, L.X.; Wang, R.Z.; Xia, Z.Z.; Chen, C.J.

    2011-01-01

    Research highlights: → Composite adsorbent 'employing lithium chloride in silica gel' and water as working pair. → A new type adsorbent bed is used to accommodate the composite adsorbent. → A dynamic model of the adsorption chiller is built. → The coefficient of performance (COP) and the cooling capacity will be improved. -- Abstract: This paper presents a novel adsorption chiller using composite adsorbent 'employing lithium chloride in silica gel' as adsorbent and water as adsorbate. A new type adsorbent bed is used to accommodate the composite adsorbent. The mass recovery between two adsorbent beds usually results in the adsorbate unbalance. So a novel auto water makeup unite is used to solve the problem. A dynamic model of the adsorption chiller is built based on the adsorption isotherms to predict the performance. The simulation result shows that the coefficient of performance (COP) and the cooling capacity will increase by using this new composite adsorbent. When the temperatures of hot water inlet, cooling water inlet, and chilled water inlet are 363, 303 and 293 K, COP will be 0.43, and the cooling capacity will be 5.295 kW. Also operation strategy is optimized. Different temperatures of hot water inlet, cooling water inlet and chilling water inlet will result in different COP and cooling capacity.

  3. Development of Short Range Repulsive Inter-Particle Forces in Aqueous Si3N4 Slurries with Chem-Adsorbed Silanes

    National Research Council Canada - National Science Library

    Colic, Miroslav

    1997-01-01

    .... Addition of salt to dispersed silicon nitride slurries with particles coated with polyethyleneglycol-silane, caused the collapse of the 22 atoms long chains and residual electrical double layer...

  4. Carbon/Attapulgite Composites as Recycled Palm Oil-Decoloring and Dye Adsorbents

    Directory of Open Access Journals (Sweden)

    Guangyan Tian

    2018-01-01

    Full Text Available Activated clay minerals have been widely used in the edible oil refining industry for decolorization of crude oil by adsorption, and so far many methods have been used to improve their decolorization efficiency. Herein, we successfully prepared a series of carbon/attapulgite (C/APT composite adsorbents by a one-step in-situ carbonization process with natural starch (St as the carbon source. It has been revealed that the adsorbent had better decolorization efficiency for crude palm oil than acid-activated APT. However, more than a million tons of decolorized waste is produced every year in the oil-refining industry, which was often treated as solid waste and has not yet been reutilized effectively. In order to explore a viable method to recycle and reuse the decolorant, the waste decolorant was further prepared into new C/APT adsorbents for the removal of dyes from wastewater, and then the dyes adsorbed on the adsorbent were used as the carbon sources to produce new C/APT adsorbents by a cyclic carbonization process. The results showed that the adsorbents prepared from the decolorized waste could remove more than 99.5% of the methylene blue (MB, methyl violet (MV, and malachite green (MG dyes from the simulated wastewater with the dye concentration of 200 mg/L, and the C/APT–Re adsorbent consecutively regenerated five times using the adsorbed dyes as a carbon source still exhibit good adsorption efficiency for dyes. As a whole, this process opens a new avenue to develop efficient decolorants of palm oil and achieves recyclable utilization of decolored waste.

  5. Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Zhan Zhiming; Liu Jibing

    2011-01-01

    A scheme of two-dimensional atom localization based on a coherence-controlled absorption spectrum in an N-tripod-type five-level system is proposed, in which the atom interacts with a weak probe field and three standing-wave fields. Position information of the atom can be achieved by measuring the probe absorption. It is found that the localization properties are significantly improved due to the interaction of dark resonances. It is also shown that the localization factors depend strongly on the system parameters that lead to such spatial structures of localization as chain-like, wave-like, '8'-like, spike-like, crater-like and heart-like patterns. By properly adjusting the system parameters, we can achieve a high-precision and high-resolution atom localization under certain conditions.

  6. Side chain polysiloxanes with phthalocyanine moieties

    Directory of Open Access Journals (Sweden)

    T. Ganicz

    2012-05-01

    Full Text Available Side chain polysiloxane with 5-(pentyloxy-3-methyloxy-9,10,16,17,23,24-hexakis(octenyloxyphthalocyanine moieties is synthesized by hydrosilylation reaction. The phase behavior and thermooptical properties of the polysiloxane and starting 2-(pent-4-enyloxy-3-methyloxy-9,10,16,17,23,24-hexakis(octenyloxyphthalocyanine is examined by POM (Polarizing optical microscopy, TOA (thermooptical analysis, DSC (differential scanning calorimetry, AFM (atomic force microscopy and SAXS (small angle X-ray scattering studies. The effect of the attachment of phthalocyanine to polysiloxane chains over phase transitions and phase morphology is discussed in details.

  7. Collective effects, relaxation and localization of hole levels in atoms, molecules, solids, and adsorbates

    International Nuclear Information System (INIS)

    Wendin, G.

    1979-01-01

    Recent progress in descriptions of photoelectron spectra is reviewed with emphasis on cases where the one-electron and quasi-particle approximations break down and the hole level becomes spread over a number of discrete lines or a continuum or both. Unifying aspects and similarities between interaction processes in atoms, molecules and solids are stressed. 38 references

  8. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingling, E-mail: lasier_wang@hotmail.com [College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, Fujian (China); Environmental Engineering and Science Program, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Han, Changseok [ORISE Post-doctoral Fellow, The U.S. Environmental Protection Agency, ORD, NRMRL, STD, CPB, 26 W. Martin Luther King Jr. Drive, Cincinnati, OH 45268 (United States); Nadagouda, Mallikarjuna N. [The U.S. Environmental Protection Agency, ORD, NRMRL, WSWRD, WQMB, 26 W. Martin Luther King Jr. Drive, Cincinnati, OH 45268 (United States); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Nireas-International Water Research Centre, School of Engineering, University of Cyprus, PO Box 20537, 1678, Nicosia (Cyprus)

    2016-08-05

    Highlights: • An innovative adsorbent was successfully synthesized to remove humic acid. • The adsorbent possessed high adsorption capacity for humic acid. • The adsorption capacity remarkably increased after an acid modification. • The adsorption capacity was proportional to the amount of ZnO coated on zeolite. • Electrostatic interactions are a major factor at the first stage of the process. - Abstract: Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO{sub 3}){sub 2}·6H{sub 2}O functionalization of zeolite 4A. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The synthesized materials were characterized by porosimetry analysis, scanning electron microscopy, X-Ray diffraction analysis, and high resolution transmission electron microscopy. The maximum adsorption capacity of the adsorbents at 21 ± 1 °C was about 60 mgC g{sup −1}. The results showed that the positive charge density of ZnO-coated zeolite adsorbents was proportional to the amount of ZnO coated on zeolite and thus, ZnO-coated zeolite adsorbents exhibited a greater affinity for negatively charged ions. Furthermore, the adsorption capacity of ZnO-coated zeolite adsorbents increased markedly after acid modification. Adsorption experiments demonstrated ZnO-coated zeolite adsorbents possessed high adsorption capacity to remove HA from aqueous solutions mainly due to strong electrostatic interactions between negative functional groups of HA and the positive charges of ZnO-coated zeolite adsorbents.

  9. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    International Nuclear Information System (INIS)

    Wang, Lingling; Han, Changseok; Nadagouda, Mallikarjuna N.; Dionysiou, Dionysios D.

    2016-01-01

    Highlights: • An innovative adsorbent was successfully synthesized to remove humic acid. • The adsorbent possessed high adsorption capacity for humic acid. • The adsorption capacity remarkably increased after an acid modification. • The adsorption capacity was proportional to the amount of ZnO coated on zeolite. • Electrostatic interactions are a major factor at the first stage of the process. - Abstract: Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO_3)_2·6H_2O functionalization of zeolite 4A. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The synthesized materials were characterized by porosimetry analysis, scanning electron microscopy, X-Ray diffraction analysis, and high resolution transmission electron microscopy. The maximum adsorption capacity of the adsorbents at 21 ± 1 °C was about 60 mgC g"−"1. The results showed that the positive charge density of ZnO-coated zeolite adsorbents was proportional to the amount of ZnO coated on zeolite and thus, ZnO-coated zeolite adsorbents exhibited a greater affinity for negatively charged ions. Furthermore, the adsorption capacity of ZnO-coated zeolite adsorbents increased markedly after acid modification. Adsorption experiments demonstrated ZnO-coated zeolite adsorbents possessed high adsorption capacity to remove HA from aqueous solutions mainly due to strong electrostatic interactions between negative functional groups of HA and the positive charges of ZnO-coated zeolite adsorbents.

  10. Concurrent removal of elemental mercury and SO2 from flue gas using a thiol-impregnated CaCO3-based adsorbent: a full factorial design study.

    Science.gov (United States)

    Balasundaram, Karthik; Sharma, Mukesh

    2018-03-22

    Mercury (Hg) emitted from coal-based thermal power plants (CTPPs) can accumulate and bio-magnify in the food chain, thereby posing a risk to humans and wildlife. The central idea of this study was to develop an adsorbent which can concurrently remove elemental mercury (Hg 0 ) and SO 2 emitted from coal-based thermal power plants (CTPPs) in a single unit operation. Specifically, a composite adsorbent of CaCO 3 impregnated with 2-mercaptobenimidazole (2-MBI) (referred to as modified calcium carbonate (MCC)) was developed. While 2-MBI having sulfur functional group could selectively adsorb Hg 0 , CaCO 3 could remove SO 2 . Performance of the adsorbent was evaluated in terms of (i) removal (%) of Hg 0 and SO 2 , (ii) adsorption mechanism, (iii) adsorption kinetics, and (iv) leaching potential of mercury from spent adsorbent. The adsorption studies were performed using a 2 2 full factorial design of experiments with 15 ppbV of Hg 0 and 600 ppmV of SO 2 . Two factors, (i) reaction temperature (80 and 120 °C; temperature range in flue gas) and (ii) mass of 2-MBI (10 and 15 wt%), were investigated for the removal of Hg 0 and SO 2 (as %). The maximum Hg 0 and SO 2 removal was 86 and 93%, respectively. The results of XPS characterization showed that chemisorption is the predominant mechanism of Hg 0 and SO 2 adsorption on MCC. The Hg 0 adsorption on MCC followed Elovich kinetic model which is also indicative of chemisorption on heterogeneous surface. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) leached mercury from the spent adsorbent were within the acceptable levels defined in these tests. The engineering significance of this study is that the 2-MBI-modified CaCO 3 -based adsorbent has potential for concurrent removal of Hg 0 and SO 2 in a single unit operation. With only minor process modifications, the newly developed adsorbent can replace CaCO 3 in the flue-gas desulfurization (FGD) system.

  11. Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.M.; Xu, Z.W.; Pan, B.C.; Hong, C.H.; Jia, K.; Jiang, P.J.; Zhang, Q.J.; Pan, B.J. [Nanjing University, Nanjing (China)

    2008-09-15

    Removal of phthalate esters from water has been of considerable concern recently. In the present study, the adsorptive removal performance of diethyl phthalate (DEP) from water was investigated with the aminated polystyrene resin (NDA-101) and oxidized polystyrene resin (NDA-702). In addition, the commercial homogeneous polystyrene resin (XAD-4) and acrylic ester resin (Amberlite XAD-7) as well as coal-based granular activated carbon (AC-750) were chosen for comparison. The corresponding equilibrium isotherms are well described by the Freundlich equation and the adsorption capacities for DEP followed the order NDA-702 > NDA-101 > AC-750 > XAD-4 > XAD-7. Analysis of adsorption mechanisms suggested that these adsorbents spontaneously adsorb DEP molecules driven mainly by enthalpy change, and the adsorption process was derived by multiple adsorbent-adsorbate interactions such as hydrogen bonding, {pi}-{pi} stacking, and micropore filling. The information related to the adsorbent surface heterogeneity and the adsorbate-adsorbate interaction was obtained by Do's model. All the results indicate that heterogeneous resins NDA-702 and NDA-101 have excellent potential as an adsorption material for the removal of DEP from the contaminated water.

  12. Sub-nanometer resolution XPS depth profiling: Sensing of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Szklarczyk, Marek, E-mail: szklarcz@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Macak, Karol; Roberts, Adam J. [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Takahashi, Kazuhiro [Kratos XPS Section, Shimadzu Corp., 380-1 Horiyamashita, Hadano, Kanagawa 259-1304 (Japan); Hutton, Simon [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Głaszczka, Rafał [Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Blomfield, Christopher [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom)

    2017-07-31

    Highlights: • Angle resolved photoelectron depth profiling of nano thin films. • Sensing atomic position in SAM films. • Detection of direction position of adsorbed molecules. - Abstract: The development of a method capable of distinguishing a single atom in a single molecule is important in many fields. The results reported herein demonstrate sub-nanometer resolution for angularly resolved X-ray photoelectron spectroscopy (ARXPS). This is made possible by the incorporation of a Maximum Entropy Method (MEM) model, which utilize density corrected electronic emission factors to the X-ray photoelectron spectroscopy (XPS) experimental results. In this paper we report on the comparison between experimental ARXPS results and reconstructed for both inorganic and organic thin film samples. Unexpected deviations between experimental data and calculated points are explained by the inaccuracy of the constants and standards used for the calculation, e.g. emission factors, scattering intensity and atomic density through the studied thickness. The positions of iron, nitrogen and fluorine atoms were determined in the molecules of the studied self-assembled monolayers. It has been shown that reconstruction of real spectroscopic data with 0.2 nm resolution is possible.

  13. The Atom-Bond Connectivity Index of Catacondensed Polyomino Graphs

    OpenAIRE

    Chen, Jinsong; Liu, Jianping; Li, Qiaoliang

    2013-01-01

    Let G=(V,E) be a graph. The atom-bond connectivity (ABC) index is defined as the sum of weights ((du+dv−2)/dudv)1/2 over all edges uv of G, where du denotes the degree of a vertex u of G. In this paper, we give the atom-bond connectivity index of the zigzag chain polyomino graphs. Meanwhile, we obtain the sharp upper bound on the atom-bond connectivity index of catacondensed polyomino graphs with h squares and determine the corresponding extremal graphs.

  14. Removal of Cu (II and Zn (II from water with natural adsorbents from cassava agroindustry residues

    Directory of Open Access Journals (Sweden)

    Daniel Schwantes

    2015-07-01

    Full Text Available Current study employs solid residues from the processing industry of the cassava (Manihot esculenta Crantz (bark, bagasse and bark + bagasse as natural adsorbents for the removal of metal ions Cu(II and Zn(II from contaminated water. The first stage comprised surface morphological characterization (SEM, determination of functional groups (IR, point of zero charge and the composition of naturally existent minerals in the biomass. Further, tests were carried out to evaluate the sorption process by kinetic, equilibrium and thermodynamic studies. The adsorbents showed a surface with favorable adsorption characteristics, with adsorption sites possibly derived from lignin, cellulose and hemicellulose. The dynamic equilibrium time for adsorption was 60 min. Results followed pseudo-second-order, Langmuir and Dubinin-Radushkevich models, suggesting a chemisorption monolayer. The thermodynamic parameters suggested that the biosorption process of Cu and Zn was endothermic, spontaneous or independent according to conditions. Results showed that the studied materials were potential biosorbents in the decontamination of water contaminated by Cu(II and Zn(II. Thus, the above practice complements the final stages of the cassava production chain of cassava, with a new disposal of solid residues from the cassava agroindustry activity.

  15. Mott-insulating phases in unidimensional multi-components fermionic cold atoms

    International Nuclear Information System (INIS)

    Nonne, Heloise

    2011-01-01

    This thesis is devoted to the investigation of the Mott insulating phases arising in one-dimensional multicomponent fermionic cold atoms systems. The first part of this work is the study of a model with alkaline-earth cold atoms with nuclear spin I = 1/2. Those atoms enjoy an additional orbital degree of freedom, due to the presence of a metastable excited state; they thus have a total of four components. Our investigation is carried at half-filling, at strong and at weak couplings by means of analytic methods (conformal theory, bosonization, refermionization, renormalisation group). We found that the zero temperature phase diagram of the system is very rich: it contains seven Mott insulating phases, among which three are particularly interesting, since they display a hidden order, related to the Haldane physics of the antiferromagnetic spin-1 Heisenberg chain. Our conclusions are checked against numerical simulations, that were carried out with the density matrix renormalization group (DMRG) algorithm for intermediate couplings. The comparison shows an adiabatic continuity between the different regimes. A similar study for a model of cold atoms with hyperfine spin-3/2 highlights the Haldane physics in the charge sector of the degrees of freedom, with an effective model given by an antiferromagnetic pseudo-spin-1 chain. This analysis provides us an opportunity to investigate the zero temperature properties of the SO(5) bilinear-bi-quadratic Heisenberg chain. We show the presence of two gapped phases: one is dimerized, the other has a hidden symmetry (Z 2 x Z 2 ) 2 and spin-3/2 edge states, and they are separated by a critical point that belongs to the SO(5) 1 universality class. Finally, we investigate half-integer hyperfine spin cold atoms systems with 2N components which generalized the results obtained for the hyperfine spin-3/2 model. This leads us to find an even/odd effect according to the parity of N, very similar to the even/odd effect of spin chains

  16. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    Science.gov (United States)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  17. High Precision Atomic Mass Measurements: Tests of CVC and IMME

    International Nuclear Information System (INIS)

    Eronen, Tommi

    2011-01-01

    Atomic mass is one of the key ingredients in testing the Conserved Vector Current (CVC) hypothesis and Isobaric Mass Multiplet Equation (IMME). With JYFLTRAP Penning trap installation at the University of Jyvaeskylae, Finland, several atomic massses related to these studies have been measured. The performed atomic mass measurements for CVC tests cover almost all the nuclei that are relevant for these studies. To test IMME, masses in two isobaric mass chains (A = 23 and A = 32) have been determined.

  18. High Precision Atomic Mass Measurements: Tests of CVC and IMME

    Energy Technology Data Exchange (ETDEWEB)

    Eronen, Tommi [Department of Physics, University of Jyvaeskylae, FI-40014 University of Jyvaeskylae (Finland); Collaboration: JYFLTRAP Collaboration

    2011-11-30

    Atomic mass is one of the key ingredients in testing the Conserved Vector Current (CVC) hypothesis and Isobaric Mass Multiplet Equation (IMME). With JYFLTRAP Penning trap installation at the University of Jyvaeskylae, Finland, several atomic massses related to these studies have been measured. The performed atomic mass measurements for CVC tests cover almost all the nuclei that are relevant for these studies. To test IMME, masses in two isobaric mass chains (A = 23 and A = 32) have been determined.

  19. Vibration spectra of single atomic nanocontacts

    International Nuclear Information System (INIS)

    Bourahla, B; Khater, A; Rafil, O; Tigrine, R

    2006-01-01

    This paper introduces a simple model for an atomic nanocontact, where its mechanical properties are analysed by calculating numerically the local spectral properties at the contact atom and the nearby atoms. The standard methodology for calculating phonon spectral densities is extended to enable the calculation of localized contact modes and local density of states (DOS). The model system considered for the nanocontact consists of two sets of triple parallel semi-infinite atomic chains joined by a single atom in between. The matching method is used, in the harmonic approximation, to calculate the local Green's functions for the irreducible set of sites that constitute the inhomogeneous nanocontact domain. The Green's functions yield the vibration spectra and the DOS for the atomic sites. These are numerically calculated for different cases of elastic hardening and softening of the nanocontact domain. The purpose is to investigate how the local dynamics respond to local changes in the elastic environment. The analysis of the spectra and of the DOS identifies characteristic features and demonstrates the central role of a core subset of these sites for the dynamics of the nanocontact. The system models a situation which may be appropriate for contact atomic force microscopy

  20. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    Science.gov (United States)

    Ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  1. Magnetic conveyor belt for transporting and merging trapped atom clouds.

    Science.gov (United States)

    Hänsel, W; Reichel, J; Hommelhoff, P; Hänsch, T W

    2001-01-22

    We demonstrate an integrated magnetic device which transports cold atoms near a surface with very high positioning accuracy. Time-dependent currents in a lithographic conductor pattern create a moving chain of potential wells; atoms are transported in these wells while remaining confined in all three dimensions. We achieve mean fluxes up to 10(6) s(-1) with a negligible heating rate. An extension of this device allows merging of atom clouds by unification of two Ioffe-Pritchard potentials. The unification, which we demonstrate experimentally, can be performed without loss of phase space density. This novel, all-magnetic atom manipulation offers exciting perspectives, such as trapped-atom interferometry.

  2. Effects of adsorbed pyridine derivatives and ultrathin atomic-layer-deposited alumina coatings on the conduction band-edge energy of TiO2 and on redox-shuttle-derived dark currents.

    Science.gov (United States)

    Katz, Michael J; Vermeer, Michael J D; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T

    2013-01-15

    Both the adsorption of t-butylpyridine and the atomic-layer deposition of ultrathin conformal coatings of insulators (such as alumina) are known to boost open-circuit photovoltages substantially for dye-sensitized solar cells. One attractive interpretation is that these modifiers significantly shift the conduction-edge energy of the electrode, thereby shifting the onset potential for dark current arising from the interception of injected electrons by solution-phase redox shuttle components such as Co(phenanthroline)(3)(3+) and triiodide. For standard, high-area, nanoporous photoelectrodes, band-edge energies are difficult to measure directly. In contrast, for flat electrodes they are readily accessible from Mott-Schottky analyses of impedance data. Using such electrodes (specifically TiO(2)), we find that neither organic nor inorganic electrode-surface modifiers shift the conduction-band-edge energy sufficiently to account fully for the beneficial effects on electrode behavior (i.e., the suppression of dark current). Additional experiments reveal that the efficacy of ultrathin coatings of Al(2)O(3) arises chiefly from the passivation of redox-catalytic surface states. In contrast, adsorbed t-butylpyridine appears to suppress dark currents mainly by physically blocking access of shuttle molecules to the electrode surface. Studies with other derivatives of pyridine, including sterically and/or electronically diverse derivatives, show that heterocycle adsorption and the concomitant suppression of dark current does not require the coordination of surface Ti(IV) or Al(III) atoms. Notably, the favorable (i.e., negative) shifts in onset potential for the flow of dark current engendered by organic and inorganic surface modifiers are additive. Furthermore, they appear to be largely insensitive to the identity of shuttle molecules.

  3. Black Sprayable Molecular Adsorber Coating

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this technology project is to develop, optimize, and flight qualify a black version of the molecular adsorber coating and a conductive version...

  4. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  5. Ab initio electronic structure calculations for Mn linear chains deposited on CuN/Cu(001) surfaces

    International Nuclear Information System (INIS)

    Barral, Maria Andrea; Weht, Ruben; Lozano, Gustavo; Maria Llois, Ana

    2007-01-01

    In a recent experiment, scanning tunneling microscopy has been used to obtain a direct probe of the magnetic interaction in linear manganese chains arranged by atomic manipulation on thin insulating copper nitride islands grown on Cu(001). The local spin excitation spectra of these chains have been measured with inelastic electron tunneling spectroscopy. Analyzing the spectroscopic results with a Heisenberg Hamiltonian the interatomic coupling strength within the chains has been obtained. It has been found that the coupling strength depends on the deposition sites of the Mn atoms on the islands. In this contribution, we perform ab initio calculations for different arrangements of infinite Mn chains on CuN in order to understand the influence of the environment on the value of the magnetic interactions

  6. Polyphenolic resin synthesis: optimizing plantain peel biomass as heavy metal adsorbent

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Cordero

    2015-08-01

    Full Text Available AbstractPolyphenolic resol resins were obtained from an ethanolic extraction of green plantain peels (Musa paradisiaca grown in Colombia. A synthesis was then performed by polycondensation in an alkaline pH solution in order to perform research on phenolic resin production with high mechanical performance. The polymers were characterized by DSC and TGA analyses and the resins showed a melting point of 94 °C and the typical properties of resol resins. Moreover, the synthesis was controlled using the infrared technique (FTIR where different organic functional groups present in the polymers obtained are observed. The obtained resins were used as heavy metal adsorbents in which the content of those toxic agents is measured by Atomic Absorption Analysis (AA indicating that these resins have a high retention affinity to Pb+2, Ni+2 and Cr+3 (79.01%, 98.48%, 94.14%, respectively as determined by Freundlich isotherms.

  7. Condition of granulating titanium-activated carbon composite adsorbent and its adsorption for uranium

    International Nuclear Information System (INIS)

    Miyai, Yoshitaka; Kitamura, Takao; Katoh, Shunsaku; Miyazaki, Hidetoshi

    1979-01-01

    The powdery titanium-activated carbon composite adsorbent was granulated, and the strength and uranium adsorptivity of the granulated adsorbent were studied in relation to its granulating condition. By use of polyvinylalcohol (PVA) with degree of polymerization above 2,000 as binder, the granular adsorbent with as much the same strength as commercial granular activated carbon was obtained. Addition of PVA did not affect the amount of adsorbed uranium in equilibrium, but decreased the adsorption rate. Effect of granule size between 2-5 mm on the uranium adsorption rate was that the uranium adsorption rate changed proportionally to surface area of assumed sphere. As a test for practical use, 5 times repetitions of adsorption and desorption were carried out on the same granular adsorbent. During this repetition the adsorbent containing formalized PVA revealed smaller weight loss than non-treated adsorbent. The amount of adsorbed uranium decreased with increasing repetition times, and reason of this was discussed. (author)

  8. Force Spectroscopy of Hyaluronan by AFM; From H-bonded Networks Towards Single Chain Behavior

    NARCIS (Netherlands)

    Giannotti, M.I.; Rinaudo, Marguerite; Vancso, Gyula J.

    2007-01-01

    The conformational behavior of hyaluronan (HA) polysaccharide chains in aqueous NaCl solution was characterized directly at the single-molecule level. This comunication reports on one of the first single-chain atomic force microscopy (AFM) experiments performed at variable temperatures,

  9. Adsorption of uranium on adsorbents produced from used tires

    International Nuclear Information System (INIS)

    Mahramanlioglu, M.

    2003-01-01

    Potential use of adsorbents produced from used tires for the removal of uranium from aqueous solutions is investigated. Two different adsorbents were used including char and activated carbon produced from used tires. The surface area was larger on activated carbon. Adsorption experiments were carried out as a function of time, adsorbent concentration, pH and initial concentration of uranium. The adsorption kinetics was found to follow the Lagergren equation. The rate constants of intraparticle diffusion and mass transfer coefficients were calculated. It was shown that the equilibrium data could be fitted by the Langmuir and Freundlich equations. The adsorption of uranium in the presence of different cations were also studied and the results were correlated with the ionic potential of the cations. It was demonstrated that the activated carbon produced from used tires can be considered as an adsorbent that has a commercial potential for uranium removal. (author)

  10. The Effect of the Shape of Atomic Potential on the Diffraction Pattern ...

    African Journals Online (AJOL)

    We have simulated the diffraction patterns of both periodic and quasiperiodic monatomic chains using the code Laue (written by Silsbee and Drager) and investigated the effects of the shape of the atomic potential. Three fundamental differences between the diffraction patterns of periodic and quasiperiodic monatomic chain ...

  11. First-principles study on electron transport properties of carbon-silicon mixed chains

    Science.gov (United States)

    Hu, Wei; Zhou, Qinghua; Liang, Yan; Liu, Wenhua; Wang, Tao; Wan, Haiqing

    2018-03-01

    In this paper, the transport properties of carbon-silicon mixed chains are studied by using the first-principles. We studied five atomic chain models. In these studies, we found that the equilibrium conductances of atomic chains appear to oscillate, the maximum conductance and the minimum conductance are more than twice the difference. Their I-V curves are linear and show the behavior of metal resistance, M5 system and M2 system current ratio is the largest in 0.9 V, which is 3.3, showing a good molecular switch behavior. In the case of bias, while the bias voltage increases, the transmission peaks move from the Fermi level. The resonance transmission peak height is reduced near the Fermi level. In the higher energy range, a large resonance transmission peak reappears, there is still no energy cut-off range.

  12. Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Ding Chunling; Li Jiahua; Yang Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhan Zhiming [School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Liu Jibing, E-mail: clding2006@126.com, E-mail: huajia_li@163.com [Department of Physics, Hubei Normal University, Huangshi 435002 (China)

    2011-07-28

    A scheme of two-dimensional atom localization based on a coherence-controlled absorption spectrum in an N-tripod-type five-level system is proposed, in which the atom interacts with a weak probe field and three standing-wave fields. Position information of the atom can be achieved by measuring the probe absorption. It is found that the localization properties are significantly improved due to the interaction of dark resonances. It is also shown that the localization factors depend strongly on the system parameters that lead to such spatial structures of localization as chain-like, wave-like, '8'-like, spike-like, crater-like and heart-like patterns. By properly adjusting the system parameters, we can achieve a high-precision and high-resolution atom localization under certain conditions.

  13. BLOCKS - PDB ATOM matching - DB-SPIRE | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us DB-SPIRE BLOCKS - PDB ATOM matching Data detail Data name BLOCKS - PDB ATOM matching DOI 10....18908/lsdba.nbdc00411-008 Description of data contents Sequence numbers of PDB entries/chains whose ATOM mat...ches a BLOCKS entry Data file File name: dbspire_blocks_pdb_atom.zip File URL: ftp://ftp.biosciencedbc.jp/ar...chive/dbspire/LATEST/dbspire_blocks_pdb_atom.zip File size: 6.2 MB Simple search ...URL http://togodb.biosciencedbc.jp/togodb/view/dbspire_blocks_pdb_atom#en Data acquisition method BLOCKS, PD

  14. Adsorption of short-chain fluids at solid substrates from density functional theory

    International Nuclear Information System (INIS)

    Bryk, P.; Bucior, K.; Sokolowski, S.; Zukocinski, G.

    2005-01-01

    We use microscopic density functional theory to investigate the adsorption of short-chains at solid surfaces. The fluid is modeled as freely-jointed tangent spheres that interact via a short-ranged attractive potential. Within the framework of fundamental measure theory we study how the structure and surface phase behaviour of adsorbed fluid changes when the chain length is increased. We observe that the wetting temperature rescaled by the bulk critical temperature decreases with an increase of the chain length. For longer chains this temperature reaches a plateau. For the surface critical temperature an inverse effect is observed, i.e. the surface critical temperature increases with the chain length and then attains a plateau. Furthermore, we analyze how the layering transitions change with the change of the chain length and with relative strength of the fluid-solid interaction. The critical temperature of the first layering transition, rescaled by the bulk critical temperature increases slightly with an increase of the chain length. We have found that for longer chains the layering transitions within consecutive layers are shifted towards very low temperatures and that their sequence is finally replaced by a single transition. Finally we investigate capillary condensation of chain fluid in slit-like pores. We find that for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. (author)

  15. Dynamics of cyanophenyl alkylbenzoate molecules in the bulk and in a surface layer adsorbed onto aerosil. Variation of the lengths of the alkyl chain

    Energy Technology Data Exchange (ETDEWEB)

    Frunza, Stefan [National Institute of Materials Physics, R-077125 Magurele (Romania); Schoenhals, Andreas [BAM Federal Institute of Materials Research and Testing, D-12205 Berlin (Germany); Frunza, Ligia, E-mail: lfrunza@infim.ro [National Institute of Materials Physics, R-077125 Magurele (Romania); Beica, Traian; Zgura, Irina; Ganea, Paul [National Institute of Materials Physics, R-077125 Magurele (Romania); Stoenescu, Daniel [Telecom-Bretagne, Departement d' Optique, Technopole Brest-Iroise 29238 Cedex (France)

    2010-06-16

    Graphical abstract: The temperature dependence of the molecular mobility in composites shows an Arrhenius-type regime at low temperature and a glassy-type one at higher temperature separated by a crossover phenomenon. - Abstract: The molecular mobility of 4-butyl- and 4-pentyl-4'-cyanophenyl benzoate (CP4B, CP5B) and their composites prepared from aerosil A380 was investigated by broadband dielectric spectroscopy in a large temperature range. Thermogravimetric and infrared investigations were additionally performed. High silica density (larger than 7 g aerosil/1 g of liquid crystal) was selected to observe a thin layer adsorbed on the surface of the silica particles. The data were compared with those of the member of the series with six carbon atoms in the alkyl tail. Bulk CP4B and CP5B show the dielectric behaviour expected for liquid crystals. For the composites one relaxation process is observed at frequencies much lower than those for the corresponding bulk, which was assigned to the dynamics of the molecules in a surface layer. The temperature dependence of the relaxation rates (and of the dielectric strength) shows a crossover behaviour with two distinguished regimes. At higher temperatures the data obey the Vogel-Fulcher-Tammann law, whereas an Arrhenius law is observed at lower temperature, in a close similarity to the behaviour of a constrained dynamic glass transition. The estimated Vogel and crossover temperature is independent on the tail length, while the activation energy for the low temperature branch increases weakly with increasing the alkyl tail.

  16. Stripping scattering of fast atoms on surfaces of metal-oxide crystals and ultrathin films; Streifende Streuung schneller Atome an Oberflaechen von Metalloxid-Kristallen und ultraduennen Filmen

    Energy Technology Data Exchange (ETDEWEB)

    Blauth, David

    2010-03-11

    In the framework of the present dissertation the interactions of fast atoms with surfaces of bulk oxides, metals and thin films on metals were studied. The experiments were performed in the regime of grazing incidence of atoms with energies of some keV. The advantage of this scattering geometry is the high surface sensibility and thus the possibility to determine the crystallographic and electronic characteristics of the topmost surface layer. In addition to these experiments, the energy loss and the electron emission induced by scattered projectiles was investigated. The energy for electron emission and exciton excitation on Alumina/NiAl(110) and SiO{sub 2}/Mo(112) are determined. By detection of the number of projectile induced emitted electrons as function of azimuthal angle for the rotation of the target surface, the geometrical structure of atoms forming the topmost layer of different adsorbate films on metal surfaces where determined via ion beam triangulation. (orig.)

  17. Preparation of metal adsorbents from chitin/chitosan by radiation technology

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Nguyen Quoc Hien; Ngo Quang Huy; Thai My Phe; Dao Van Hoang; Nguyen Van Hung

    2004-01-01

    The methods of preparation of metal adsorbents basing on chitin/chitosan were developed. That include the adsorbent from chitin grafted with acrylic acid by different irradiation doses; the clinging chitosan gel beads; the coagulable solution and the chitosan composite filter. The process of metal adsorption for each adsorbent was studied as adsorption kinetic, isothermal adsorption. The results have been applied for removal of some elements as Hg, Pb, Cd, U, Cu, ect. in the wastewater. (NHA)

  18. Significant improvements in stability and reproducibility of atomic-scale atomic force microscopy in liquid

    International Nuclear Information System (INIS)

    Akrami, S M R; Nakayachi, H; Fukuma, T; Watanabe-Nakayama, T; Asakawa, H

    2014-01-01

    Recent advancement of dynamic-mode atomic force microscopy (AFM) for liquid-environment applications enabled atomic-scale studies on various interfacial phenomena. However, instabilities and poor reproducibility of the measurements often prevent systematic studies. To solve this problem, we have investigated the effect of various tip treatment methods for atomic-scale imaging and force measurements in liquid. The tested methods include Si coating, Ar plasma, Ar sputtering and UV/O 3 cleaning. We found that all the methods provide significant improvements in both the imaging and force measurements in spite of the tip transfer through the air. Among the methods, we found that the Si coating provides the best stability and reproducibility in the measurements. To understand the origin of the fouling resistance of the cleaned tip surface and the difference between the cleaning methods, we have investigated the tip surface properties by x-ray photoelectron spectroscopy and contact angle measurements. The results show that the contaminations adsorbed on the tip during the tip transfer through the air should desorb from the surface when it is immersed in aqueous solution due to the enhanced hydrophilicity by the tip treatments. The tip surface prepared by the Si coating is oxidized when it is immersed in aqueous solution. This creates local spots where stable hydration structures are formed. For the other methods, there is no active mechanism to create such local hydration sites. Thus, the hydration structure formed under the tip apex is not necessarily stable. These results reveal the desirable tip properties for atomic-scale AFM measurements in liquid, which should serve as a guideline for further improvements of the tip treatment methods. (paper)

  19. Investigations into Alternative Desorption Agents for Amidoxime-Based Polymeric Uranium Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wai, Chien [LCW Supercritical Technologies, Inc., Seattle, WA (United States); Pan, Horng-Bin [Univ. of Idaho, Moscow, ID (United States)

    2015-06-01

    Amidoxime-based polymeric braid adsorbents that can extract uranium (U) from seawater are being developed to provide a sustainable supply of fuel for nuclear reactors. A critical step in the development of the technology is to develop elution procedures to selectively remove U from the adsorbents and to do so in a manner that allows the adsorbent material to be reused. This study investigates use of high concentrations of bicarbonate along with targeted chelating agents as an alternative means to the mild acid elution procedures currently in use for selectively eluting uranium from amidoxime-based polymeric adsorbents.

  20. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of

  1. Enhanced vanillin production from ferulic acid using adsorbent resin.

    Science.gov (United States)

    Hua, Dongliang; Ma, Cuiqing; Song, Lifu; Lin, Shan; Zhang, Zhaobin; Deng, Zixin; Xu, Ping

    2007-03-01

    High vanillin productivity was achieved in the batch biotransformation of ferulic acid by Streptomyces sp. strain V-1. Due to the toxicity of vanillin and the product inhibition, fed-batch biotransformation with high concentration of ferulic acid was unsuccessful. To solve this problem and improve the vanillin yield, a biotransformation strategy using adsorbent resin was investigated. Several macroporous adsorbent resins were chosen to adsorb vanillin in situ during the bioconversion. Resin DM11 was found to be the best, which adsorbed the most vanillin and the least ferulic acid. When 8% resin DM11 (wet w/v) was added to the biotransformation system, 45 g l(-1) ferulic acid could be added continually and 19.2 g l(-1) vanillin was obtained within 55 h, which was the highest vanillin yield by bioconversion until now. This yield was remarkable for exceeding the crystallization concentration of vanillin and therefore had far-reaching consequence in its downstream processing.

  2. Competitive adsorption of a two-component gas on a deformable adsorbent

    International Nuclear Information System (INIS)

    Usenko, A S

    2014-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas is obtained, taking into account variations in the adsorption properties of the adsorbent in adsorption. We establish bistability and tristability of the system caused by variations in adsorption properties of the adsorbent in competitive adsorption of gas particles on it. We derive conditions under which adsorption isotherms of a binary gas mixture have two stable asymptotes. It is shown that the specific features of the behavior of the system under study can be described in terms of a potential of the known explicit form. (paper)

  3. Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements.

    Science.gov (United States)

    Ferrari, Lucia; Kaufmann, Josef; Winnefeld, Frank; Plank, Johann

    2010-07-01

    Polyelectrolyte-based dispersants are commonly used in a wide range of industrial applications to provide specific workability to colloidal suspensions. Their working mechanism is based on adsorption onto the surfaces of the suspended particles. The adsorbed polymer layer can exercise an electrostatic and/or a steric effect which is responsible for achieving dispersion. This study is focused on the dispersion forces induced by polycarboxylate ether-based superplasticizers (PCEs) commonly used in concrete. They are investigated by atomic force microscopy (AFM) applying standard silicon nitride tips exposed to solutions with different ionic compositions in a wet cell. Adsorption isotherms and zeta potential analysis were performed to characterize polymer displacement in the AFM system on nonreactive model substrates (quartz, mica, calcite, and magnesium oxide) in order to avoid the complexity of cement hydration products. The results show that PCE is strongly adsorbed by positively charged materials. This fact reveals that, being silicon nitride naturally positively charged, in most cases the superplasticizer adsorbs preferably on the silicon nitride tip than on the AFM substrate. However, the force-distance curves displayed repulsive interactions between tip and substrates even when polymer was poorly adsorbed on both. These observations allow us to conclude that the dispersion due to PCE strongly depends on the particle charge. It differs between colloids adsorbing and not adsorbing PCE, and leads to different forces acting between the particles. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Waste Material Adsorbents for Zinc Removal from Wastewater: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Haider M. Zwain

    2014-01-01

    Full Text Available This review examines a variety of adsorbents and discusses mechanisms, modification methods, recovery and regeneration, and commercial applications. A summary of available researches has been composed by a wide range of potentially low-cost modified adsorbents including activated carbon, natural source adsorbents (clay, bentonite, zeolite, etc., biosorbents (black gram husk, sugar-beet pectin gels, citrus peels, banana and orange peels, carrot residues, cassava waste, algae, algal, marine green macroalgae, etc., and byproduct adsorbents (sawdust, lignin, rice husk, rice husk ash, coal fly ash, etc.. From the literature survey, different adsorbents were compared in terms of Zn2+ adsorption capacity; also Zn2+ adsorption capacity was compared with other metals adsorption. Thus, some of the highest adsorption capacities reported for Zn2+ are 168 mg/g powdered waste sludge, 128.8 mg/g dried marine green macroalgae, 73.2 mg/g lignin, 55.82 mg/g cassava waste, and 52.91 mg/g bentonite. Furthermore, modification of adsorbents can improve adsorption capacity. Regeneration cost is important, but if consumption of virgin adsorbent is reduced, then multiple economic, industrial, and environmental benefits can be gained. Finally, the main drawback of the already published Zn2+ adsorption researches is that their use is still in the laboratory stage mostly without scale-up, pilot studies, or commercialization.

  5. Superhydrophilic surfaces from short and medium chain solvo-surfactants

    Directory of Open Access Journals (Sweden)

    Valentin Romain

    2013-01-01

    Full Text Available Pure monoglycerides (GM-Cs and glycerol carbonate esters (GCE-Cs are two families of oleochemical molecules composed of a polar part, glycerol for GM-Cs, glycerol carbonate for GCE-Cs, and a fatty acid lipophilic part. From a chemical point of view, GM-Cs include two free oxygen atoms in the hydroxyl functions and one ester function between the fatty acid and the glycerol parts. GCE-Cs contain two blocked oxygen atoms in the cyclic carbonate backbone and three esters functions: two endocyclic in the five-membered cyclic carbonate function, one exocyclic between the fatty acid and glycerol carbonate parts. At the physico-chemical level, GMCs and GCE-Cs are multifunctional molecules with amphiphilic structures: a common hydrophobic chain to the both families and a polar head, glycerol for GMs and glycerol carbonate for GCE-Cs. Physicochemical properties depend on chain lengths, odd or even carbon numbers on the chain, and glyceryl or cyclocarbonic polar heads. The solvo-surfactant character of GM-Cs and overall GCE-Cs were discussed through the measurements of critical micellar concentration (CMC or critical aggregation concentration (CAC. These surface active glycerol esters/glycerol carbonate esters were classified following their hydrophilic/hydrophobic character correlated to their chain length (LogPoctanol/water = f(atom carbon number. Differential scanning calorimetry and optical polarized light microscopy allow us to highlight the selfassembling properties of the glycerol carbonate esters alone and in presence of water. We studied by thermal analysis the polymorphic behaviour of GCE-Cs, and the correlation between their melting points versus the chain lengths. Coupling the self-aggregation and crystallization properties, superhydrophilic surfaces were obtained by formulating GM-Cs and GCE-Cs. An efficient durable water-repellent coating of various metallic and polymeric surfaces was allowed. Such surfaces coated by self-assembled fatty acid

  6. Examination of uranium recovery technique from sea water using natural components for adsorbent

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Masaki, Hiroyuki; Shimizu, Takao; Tokiwai, Moriyasu

    2010-01-01

    In this study, we investigated the potency of natural components as adsorbent for uranium recovery from seawater. In addition, cost evaluation of uranium recovery from seawater using natural components for adsorbents was performed. Furthermore, new ideas on reservation system of adsorbents at sea area were proposed. Several poly-phenols were selected as adsorbent reagents, then they were adsorbed on the support such as cotton fiber by several methods as the followings; chemical syntheses, electrical beam irradiation, and traditional dyeing. As a result, the adsorbent made by traditional dyeing method using gallnut tannin as natural component, was showed high performance for uranium recovery from seawater on only the first. It was evaluated that traditional dyeing method had also advantage in the manufacturing cost, comparing with earlier method. Additionally, it was considered that reservation system of adsorbent at sea was able to be simplified compared with earlier system. Consequently, uranium recovery from sea water using natural components as adsorbent proposed in this study had a potency of practical use. (author)

  7. Coalescence of 3-phenyl-propynenitrile on Cu(111) into interlocking pinwheel chains

    Science.gov (United States)

    Luo, Miaomiao; Lu, Wenhao; Kim, Daeho; Chu, Eric; Wyrick, Jon; Holzke, Connor; Salib, Daniel; Cohen, Kamelia D.; Cheng, Zhihai; Sun, Dezheng; Zhu, Yeming; Einstein, T. L.; Bartels, Ludwig

    2011-10-01

    3-phenyl-propynenitrile (PPN) adsorbs on Cu(111) in a hexagonal network of molecular trimers formed through intermolecular interaction of the cyano group of one molecule with the aromatic ring of its neighbor. Heptamers of trimers coalesce into interlocking pinwheel-shaped structures that, by percolating across islands of the original trimer coverage, create the appearance of gear chains. Density functional theory aids in identifying substrate stress associated with the chemisorption of PPN's acetylene group as the cause of this transition.

  8. C-C Coupling on Single-Atom-Based Heterogeneous Catalyst.

    Science.gov (United States)

    Zhang, Xiaoyan; Sun, Zaicheng; Wang, Bin; Tang, Yu; Nguyen, Luan; Li, Yuting; Tao, Franklin Feng

    2018-01-24

    Compared to homogeneous catalysis, heterogeneous catalysis allows for ready separation of products from the catalyst and thus reuse of the catalyst. C-C coupling is typically performed on a molecular catalyst which is mixed with reactants in liquid phase during catalysis. This homogeneous mixing at a molecular level in the same phase makes separation of the molecular catalyst extremely challenging and costly. Here we demonstrated that a TiO 2 -based nanoparticle catalyst anchoring singly dispersed Pd atoms (Pd 1 /TiO 2 ) is selective and highly active for more than 10 Sonogashira C-C coupling reactions (R≡CH + R'X → R≡R'; X = Br, I; R' = aryl or vinyl). The coupling between iodobenzene and phenylacetylene on Pd 1 /TiO 2 exhibits a turnover rate of 51.0 diphenylacetylene molecules per anchored Pd atom per minute at 60 °C, with a low apparent activation barrier of 28.9 kJ/mol and no cost of catalyst separation. DFT calculations suggest that the single Pd atom bonded to surface lattice oxygen atoms of TiO 2 acts as a site to dissociatively chemisorb iodobenzene to generate an intermediate phenyl, which then couples with phenylacetylenyl bound to a surface oxygen atom. This coupling of phenyl adsorbed on Pd 1 and phenylacetylenyl bound to O ad of TiO 2 forms the product molecule, diphenylacetylene.

  9. Understanding ensemble protein folding at atomic detail

    International Nuclear Information System (INIS)

    Wallin, Stefan; Shakhnovich, Eugene I

    2008-01-01

    Although far from routine, simulating the folding of specific short protein chains on the computer, at a detailed atomic level, is starting to become a reality. This remarkable progress, which has been made over the last decade or so, allows a fundamental aspect of the protein folding process to be addressed, namely its statistical nature. In order to make quantitative comparisons with experimental kinetic data a complete ensemble view of folding must be achieved, with key observables averaged over the large number of microscopically different folding trajectories available to a protein chain. Here we review recent advances in atomic-level protein folding simulations and the new insight provided by them into the protein folding process. An important element in understanding ensemble folding kinetics are methods for analyzing many separate folding trajectories, and we discuss techniques developed to condense the large amount of information contained in an ensemble of trajectories into a manageable picture of the folding process. (topical review)

  10. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    Science.gov (United States)

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  11. Introduction to the numerical solutions of Markov chains

    CERN Document Server

    Stewart, Williams J

    1994-01-01

    A cornerstone of applied probability, Markov chains can be used to help model how plants grow, chemicals react, and atoms diffuse - and applications are increasingly being found in such areas as engineering, computer science, economics, and education. To apply the techniques to real problems, however, it is necessary to understand how Markov chains can be solved numerically. In this book, the first to offer a systematic and detailed treatment of the numerical solution of Markov chains, William Stewart provides scientists on many levels with the power to put this theory to use in the actual world, where it has applications in areas as diverse as engineering, economics, and education. His efforts make for essential reading in a rapidly growing field. Here, Stewart explores all aspects of numerically computing solutions of Markov chains, especially when the state is huge. He provides extensive background to both discrete-time and continuous-time Markov chains and examines many different numerical computing metho...

  12. A model for the chain-to-plane charge transfer in YBa2Cu3O6+x

    International Nuclear Information System (INIS)

    Matic, V. M.; Lazarov, N. Dj.; Milic, M.

    2012-01-01

    A model for the chain-to-plane charge transfer is proposed to account for the two plateaus, at 60 K and at 90 K, of the T c (x) characteristics of the YBa 2 Cu 3 O 6+x high-T c superconductor. It is assumed that the number of holes transferred from a CuO chain of length l to two nearby CuO 2 sheets is proportional to l (that is, to the number of oxygen atoms in the chain), if the chain length is greater than, or equal to, a certain critical chain length, l cr , that is required to trigger the charge transfer process. No holes are assumed to have been transferred from chains of length l cr . The calculated T c (x) dependence is found to be in excellent agreement with the experimentally reported T c (x). The critical chain length parameter is estimated to be equal to l cr = 11 (eleven oxygen atoms in a chain), which is a greater value than that obtained in the previously proposed model for the chain-to-plane charge transfer (l cr = 4). The results obtained out of the proposed model are briefly discussed

  13. Graft copolymerization of polystyrene onto chitosan congress as an adsorbent for the removal of heavy metal ions

    International Nuclear Information System (INIS)

    Dela Mines, Remedel D.; Muncal, Danilet Vi A.

    2013-01-01

    Chitosan is primarily composed of glucosamine, 2-amino-2-deoxy-β-D-glucose. Chitosan has different types of reactive functional groups. Both hydroxyl and amino groups are possible sites for the reaction to incorporate new and desired functional groups. By modification of these groups various materials for different field of application can be achieved. Chitosan has been used as adsorbent for the removal of heavy metal ions from aqueous solution through adsorption process. Properties of chitosan, such as solubility, mechanical stability and adsorption compatibility, are enhanced by grafting. In this study, chitosan was graft copolymerized with polystyrene for wastewater treatment and evaluated its effectiveness in removing toxic heavy metals by adsorption. Chitosan-graft-polystyrene was characterized by FTIR spectroscopy, and SEM. Adsorption study of the copolymer is carried out as a function of adsorbent dose, pH, and contact time. Residual concentration was measured by Atomic Absorption Spectroscopy. To get an insight of the rate of adsorption and the rate limiting step of the transport mechanism, kinetic analysis was utilized. Langmuir equation/isotherm was used for proper quantification of the sorption equilibrium in the bio sorption process (author)

  14. A kinetic Monte Carlo study on the role of defects and detachment in the formation and growth of In chains on Si(100)

    International Nuclear Information System (INIS)

    Albao, Marvin A; Chuang, F-C; Evans, J W

    2009-01-01

    Deposition on a Si(100) surface and subsequent self-assembly of In atoms into one-dimensional (1D) atomic chains at room temperature is investigated via kinetic Monte Carlo simulation of a suitable atomistic model. Model development is guided by recent experimental observations in which 1D In chains nucleate effectively exclusively at C-type defects, although In atoms can detach from chains. We find that a monotonically decreasing form of the scaled island size distribution (ISD) is consistent with a high defect density which facilitates persistent chain nucleation even at relatively high coverages. The predominance of heterogeneous nucleation may be attributed to several factors including low surface diffusion barriers, a high defect density, and relatively weak In-In binding.

  15. Comparative evaluation of selected starches as adsorbent for Thin ...

    African Journals Online (AJOL)

    The most commonly used is silica gel which is an inorganic adsorbent. Organic substances like cellulose, polyethylene are also used. All these are imported into Nigeria and are unhealthy for economic policies. Most commonly used adsorbent may not be easy to produce locally, but starch, which is a very common product, ...

  16. Dynamic separation of Szilard-Chalmers reaction products applied to the trioxalatochromium ion adsorbed on anionic exchange resin

    International Nuclear Information System (INIS)

    Silva, J.B.S.

    1979-01-01

    A method of dynamic elution of recoiled 51 Cr +3 , formed by the Szilard-Chalmers reaction during the irradiation of trioxalatochromium ion adsorbed on anionic exchange resin is presented. The influence of some factors on the separation yield of chromium-51, such as: composition, concentration and flow rate of eluent, mesh size of the resin and irradiation time are studied. The results are compardd with those obtained by the static method, in which the recoiled atom is separated from the target after irradiation. Because of the high separation yield of chromium-51, the method of dynamic separation is proposed for routine production of this elemnt, with high specific activities. (author) [pt

  17. Polynomial pseudosupersymmetry underlying a two-level atom in an external electromagnetic field

    International Nuclear Information System (INIS)

    Samsonov, B.F.; Shamshutdinova, V.V.; Gitman, D.M.

    2005-01-01

    Chains of transformations introduced previously were studied in order to obtain electric fields with a time-dependent frequency for which the equation of motion of a two-level atom in the presence of these fields can be solved exactly. It is shown that a polynomial pseudosupersymmetry may be associated to such chains

  18. Bond length and electric current oscillation of long linear carbon chains: Density functional theory, MpB model, and quantum spin transport studies

    International Nuclear Information System (INIS)

    Oeiras, R. Y.; Silva, E. Z. da

    2014-01-01

    Carbon linear atomic chains attached to graphene have experimentally been produced. Motivated by these results, we study the nature of the carbon bonds in these nanowires and how it affects their electrical properties. In the present study we investigate chains with different numbers of atoms and we observe that nanowires with odd number of atoms present a distinct behavior than the ones with even numbers. Using graphene nanoribbons as leads, we identify differences in the quantum transport of the chains with the consequence that even and odd numbered chains have low and high electrical conduction, respectively. We also noted a dependence of current with the wire size. We study this unexpected behavior using a combination of first principles calculations and simple models based on chemical bond theory. From our studies, the electrons of carbon nanowires present a quasi-free electron behavior and this explains qualitatively the high electrical conduction and the bond lengths with unexpected values for the case of odd nanowires. Our study also allows the understanding of the electric conduction dependence with the number of atoms and their parity in the chain. In the case of odd number chains a proposed π-bond (MpB) model describes unsaturated carbons that introduce a mobile π-bond that changes dramatically the structure and transport properties of these wires. Our results indicate that the nature of bonds plays the main role in the oscillation of quantum electrical conduction for chains with even and odd number of atoms and also that nanowires bonded to graphene nanoribbons behave as a quasi-free electron system, suggesting that this behavior is general and it could also remain if the chains are bonded to other materials

  19. First-principles study of SF_6 decomposed gas adsorbed on Au-decorated graphene

    International Nuclear Information System (INIS)

    Zhang, Xiaoxing; Yu, Lei; Gui, Yingang; Hu, Weihua

    2016-01-01

    Graphical abstract: - Highlights: • We theoretically investigated the decomposed gaseous components of sulfur hexafluoride (SF_6), namely, H_2S, SO_2, SOF_2, and SO_2F_2, adsorbed on pristine and Au-embedded graphene based on DFT-D, in which the van der Waals effect is considered. • H_2S, SO_2, SOF_2, and SO_2F_2 are chemisorption on Au-doped graphene, appreciably stronger than physisorption on pristine graphene in which the van der Waals dominates. • Only H_2S exhibits n-type doping to Au-graphene, whereas the rest gases exhibit p-type doping. The n-type and p-type sensing behaviors that Au-doped graphene displays to different gases play a crucial role in selective sensing application. • Magnetic moments fluctuate substantially in the original Au-graphene when H_2S and SO_2 are adsorbed. While the adsorption effects of SOF_2 and SO_2F_2 generate magnetism quenching. The different changes of magnetic moments in every adsorption system provide another approach to selective detection. • The charge transfer mechanism is deeply discussed in this paper. - Abstract: We theoretically investigated the decomposed gaseous components of sulfur hexafluoride (SF_6), namely, H_2S, SO_2, SOF_2, and SO_2F_2, adsorbed on pristine and Au-embedded graphene based on the revised Perdew–Burke–Ernzerhof calculation, which empirically includes a dispersion correction (DFT-D) for van der Waals interaction with standard generalized gradient approximation. Pristine graphene exhibits weak adsorption and absence of charge transfer, which indicates barely satisfactory sensing for decomposed components. The Au atom introduces magnetism to the pristine graphene after metal-embedded decoration as well as enhances conductivity. All four molecules induce certain hybridization between the molecules and Au-graphene, which results in chemical interactions. SOF_2 and SO_2F_2 exhibit a strong chemisorption interaction with Au-graphene, while H_2S and SO_2 exhibit quasi-molecular binding

  20. Application of low-cost adsorbents for dye removal--a review.

    Science.gov (United States)

    Gupta, V K; Suhas

    2009-06-01

    Dyes are an important class of pollutants, and can even be identified by the human eye. Disposal of dyes in precious water resources must be avoided, however, and for that various treatment technologies are in use. Among various methods adsorption occupies a prominent place in dye removal. The growing demand for efficient and low-cost treatment methods and the importance of adsorption has given rise to low-cost alternative adsorbents (LCAs). This review highlights and provides an overview of these LCAs comprising natural, industrial as well as synthetic materials/wastes and their application for dyes removal. In addition, various other methods used for dye removal from water and wastewater are also complied in brief. From a comprehensive literature review, it was found that some LCAs, in addition to having wide availability, have fast kinetics and appreciable adsorption capacities too. Advantages and disadvantages of adsorbents, favourable conditions for particular adsorbate-adsorbent systems, and adsorption capacities of various low-cost adsorbents and commercial activated carbons as available in the literature are presented. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.