WorldWideScience

Sample records for atomic carbon nanowires

  1. Novel atomic force microscope cantilevers and piezoresistance of carbon nanotubes and germanium nanowires

    Science.gov (United States)

    Grow, Randal James

    2005-11-01

    There has been great interest in recent years in nanometer-scale materials and tools for fabricating and characterizing them. One such tool is the atomic force microscope (AFM), which has developed rapidly since its invention in 1986. Imaging soft or fragile samples with AFM requires low-spring-constant cantilevers to minimize the force on the sample. Silicon nitride is well suited to making such soft cantilevers, but it is not ideal for making sharp tips. We combined a silicon nitride cantilever with a sharp silicon tip to achieve a hybrid with both a low spring constant and a sharp tip. Carbon nanotubes have received great attention for their remarkable mechanical and electrical properties. Their electromechanical properties are also interesting, as a few groups have determined by deforming suspended nanotubes. Their change in resistance under strain is stronger than that of silicon, which is commonly used in mechanical sensors. However, the fragility of suspended tubes makes them impractical for mass-produced sensors. Tubes on surfaces are more robust. We fabricated micromachined pressure sensors using a thin silicon nitride membrane with metal-contacted carbon nanotubes on the surface. Deforming the membrane with gas pressure stretched the nanotube, and we measured the resistance changes. They were stronger than those of suspended nanotubes, probably because of local deformations in the nanotube caused by interaction with the surface. Nanowires of semiconductors such as silicon and germanium have also evoked much interest for electronics and optics applications. The piezoresistive effect in nanowires should also be larger than that of the bulk material, which could be useful for increasing the sensitivity of mechanical sensors or for enhancing the performance of nanowire transistors. We have fabricated pressure sensors with germanium nanowires as the sensing elements, and we have found the piezoresistance to be much stronger than in the bulk. We understand this

  2. Theoretical studies of the stretching behavior of carbon nanowires and their superplasticity

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Physics Department, Ocean University of China, Qingdao (China); Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, School of Material Science and Engineering, Shandong University (China)], E-mail: lihuilmy@hotmail.com; Sun, F.W.; Li, Y.F. [Physics Department, Ocean University of China, Qingdao (China); Liu, X.F. [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, School of Material Science and Engineering, Shandong University (China); Liew, K.M. [Department of Building and Construction, City University of Hong Kong, Kowloon (Hong Kong)

    2008-09-15

    The tensile deformation of carbon nanowire (CNW) is examined by molecular dynamics method. Results indicate that the carbon nanowire undergoes superplastic deformation. The maximum tensile strain of the carbon nanowire could increase to nearly 245% before tensile failure. The maximum stress for a CNW is 16.65 GPa which is lower than carbon nanotube. During the deformation, the carbon nanowire is found to be drawn a single atomic chain.

  3. Contacting nanowires and nanotubes with atomic precision for electronic transport

    KAUST Repository

    Qin, Shengyong

    2012-01-01

    Making contacts to nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Existing contacting techniques use top-down lithography and chemical etching, but lack atomic precision and introduce the possibility of contamination. Here, we report that a field-induced emission process can be used to make local contacts onto individual nanowires and nanotubes with atomic spatial precision. The gold nano-islands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable method to ensure both electrically conductive and mechanically reliable contacts. To demonstrate the wide applicability of the technique, nano-contacts are fabricated on silicide atomic wires, carbon nanotubes, and copper nanowires. The electrical transport measurements are performed in situ by utilizing the nanocontacts to bridge the nanostructures to the transport probes. © 2012 American Institute of Physics.

  4. Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires.

    Science.gov (United States)

    Zamani, Reza R; Hage, Fredrik S; Lehmann, Sebastian; Ramasse, Quentin M; Dick, Kimberly A

    2017-11-13

    Over the past decade, III-V heterostructure nanowires have attracted a surge of attention for their application in novel semiconductor devices such as tunneling field-effect transistors (TFETs). The functionality of such devices critically depends on the specific atomic arrangement at the semiconductor heterointerfaces. However, most of the currently available characterization techniques lack sufficient spatial resolution to provide local information on the atomic structure and composition of these interfaces. Atomic-resolution spectrum imaging by means of electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) is a powerful technique with the potential to resolve structure and chemical composition with sub-angstrom spatial resolution and to provide localized information about the physical properties of the material at the atomic scale. Here, we demonstrate the use of atomic-resolution EELS to understand the interface atomic arrangement in three-dimensional heterostructures in semiconductor nanowires. We observed that the radial interfaces of GaSb-InAs heterostructure nanowires are atomically abrupt, while the axial interface in contrast consists of an interfacial region where intermixing of the two compounds occurs over an extended spatial region. The local atomic configuration affects the band alignment at the interface and, hence, the charge transport properties of devices such as GaSb-InAs nanowire TFETs. STEM-EELS thus represents a very promising technique for understanding nanowire physical properties, such as differing electrical behavior across the radial and axial heterointerfaces of GaSb-InAs nanowires for TFET applications.

  5. The role of carbon contamination in metallic nanowires

    Directory of Open Access Journals (Sweden)

    Douglas Soares Galvão

    2004-06-01

    Full Text Available Metallic nanowires have attracted much attention in the last years due to new phenomena such as quantum conductance and the existence of unexpected long interatomic distances attaining 0.3-0.5 nm. These large distances represented a challenge for physical interpretation. In this work we present experimental data from high-resolution transmission electron microscopy and results from ab initio calculations for suspended gold chains and show that these large distances can be easily explained by the presence of carbon atoms as contaminants. In principle the present conclusions can be also applied to other metallic nanowires (such as Ag and Pt whose structures also present large interatomic distances.

  6. Synthesis and Characterization of Glassy Carbon Nanowires

    Directory of Open Access Journals (Sweden)

    C. M. Lentz

    2011-01-01

    Full Text Available The advent of carbon-based micro- and nanoelectromechanical systems has revived the interest in glassy carbon, whose properties are relatively unknown at lower dimensions. In this paper, electrical conductivity of individual glassy carbon nanowires was measured as a function of microstructure (controlled by heat treatment temperature and ambient temperature. The semiconducting nanowires with average diameter of 150 nm were synthesized from polyfurfuryl alcohol precursors and characterized using transmission electron and Raman microscopy. DC electrical measurements made at 90 K to 450 K show very strong dependence of temperature, following mixed modes of activation energy and hopping-based conduction.

  7. Looking into meta-atoms of plasmonic nanowire metamaterial

    KAUST Repository

    Tsai, Kuntong

    2014-09-10

    Nanowire-based plasmonic metamaterials exhibit many intriguing properties related to the hyperbolic dispersion, negative refraction, epsilon-near-zero behavior, strong Purcell effect, and nonlinearities. We have experimentally and numerically studied the electromagnetic modes of individual nanowires (meta-atoms) forming the metamaterial. High-resolution, scattering-type near-field optical microscopy has been used to visualize the intensity and phase of the modes. Numerical and analytical modeling of the mode structure is in agreement with the experimental observations and indicates the presence of the nonlocal response associated with cylindrical surface plasmons of nanowires.

  8. Indium Tin Oxide@Carbon Core–Shell Nanowire and Jagged Indium Tin Oxide Nanowire

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2010-01-01

    Full Text Available Abstract This paper reports two new indium tin oxide (ITO-based nanostructures, namely ITO@carbon core–shell nanowire and jagged ITO nanowire. The ITO@carbon core–shell nanowires (~50 nm in diameter, 1–5 μm in length, were prepared by a chemical vapor deposition process from commercial ITO nanoparticles. A carbon overlayer (~5–10 in thickness was observed around ITO nanowire core, which was in situ formed by the catalytic decomposition of acetylene gas. This carbon overlayer could be easily removed after calcination in air at an elevated temperature of 700°C, thus forming jagged ITO nanowires (~40–45 nm in diameter. The growth mechanisms of ITO@carbon core–shell nanowire and jagged ITO nanowire were also suggested.

  9. Pyramidal nanowire tip for atomic force microscopy and thermal imaging

    NARCIS (Netherlands)

    Burouni, N.; Sarajlic, Edin; Siekman, Martin Herman; Abelmann, Leon; Tas, Niels Roelof

    2012-01-01

    We present a novel 3D nanowire pyramid as scanning microscopy probe for thermal imaging and atomic force microscopy. This probe is fabricated by standard micromachining and conventional optical contact lithography. The probe features an AFM-type cantilever with a sharp pyramidal tip composed of four

  10. Scattering cross section of metal catalyst atoms in silicon nanowires

    DEFF Research Database (Denmark)

    Markussen, Troels; Rurali, R.; Cartoixa, X.

    2010-01-01

    strength of the different metal atoms. We find that Au, Ag, and Cu impurities have very similar scattering cross sections, while Al differs from the rest. Impurities located in the center of the wires scatter significantly more than impurities close to or at the surface. The results for nanowires...... are compared with bulk Si scattering calculations and good agreement is found. This agreement shows that the scattering results for the ultrathin nanowires (which are computationally feasible) are not dominated by finite size or surface effects, and indicate that the results can be extended to larger...

  11. Real-time observation of tubule formation from amorphous carbon nanowires under high-bias Joule heating.

    Science.gov (United States)

    Huang, J Y; Chen, S; Ren, Z F; Chen, G; Dresselhaus, M S

    2006-08-01

    The tubule formation process from amorphous carbon nanowires under high-bias-caused Joule heating was observed in real time in a high-resolution transmission electron microscope. The crystallization of the amorphous carbon nanowires occurred in two distinct ways: the formation of tubular graphitic basal planes parallel to the nanowire axis on the surface and the formation of nano-onions in the interior of the nanowire. The tubule formation mechanism is a process of solid-state atom diffusion at high temperatures. Energetically, the tubule formation is caused by the exceptionally low surface energy of the (0002) plane of graphite. Higher input power to the amorphous nanowires generally leads to improved graphitization and, in turn, to increased conductance. The results suggest that nanotube formation in the arc-discharge growth process may involve the formation and crystallization of amorphous carbon.

  12. Temperature effects on the occurrence of long interatomic distances in atomic chains formed from stretched gold nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, M J [Laboratorio Nacional de Luz SIncrotron, CP 6192, 13084-971 Campinas, SP (Brazil); Autreto, P A S; Rodrigues, V; Galvao, D S; Ugarte, D [Instituto de Fisica Gleb Wataghin, UNICAMP, CP 6165, 13083-970 Campinas, SP (Brazil); Legoas, S B [Departamento de Fisica, CCT, Universidade Federal de Roraima, 69304-000 Boa Vista, RR (Brazil); Sato, F, E-mail: dmugarte@ifi.unicamp.br [Departamento de Fisica, ICE, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, MG (Brazil)

    2011-03-04

    The origin of long interatomic distances in suspended gold atomic chains formed from stretched nanowires remains the object of debate despite the large amount of theoretical and experimental work. Here, we report new atomic resolution electron microscopy observations acquired at room and liquid-nitrogen temperatures and theoretical results from ab initio quantum molecular dynamics on chain formation and stability. These new data are suggestive that the long distances are due to contamination by carbon atoms originating from the decomposition of adsorbed hydrocarbon molecules.

  13. Enhanced synthesis of Sn nanowires with aid of Se atom via physical vapor transport

    Science.gov (United States)

    Cai, Huacheng; Wang, Wendong; Liu, Peiwen; Wang, Guangming; Liu, Ankang; He, Zhe; Cheng, Zhaofang; Zhang, Shengli; Xia, Minggang

    2015-06-01

    We demonstrate tin (Sn) nanowires growth enhanced by Selenium (Se) atoms via physical vapor transport (PVT) method. The Raman spectroscopy, X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy show that Sn nanowires are synthesized with a large quantity, good quality and high purity of Sn. The growth of Sn nanowires is attributed to Solid-Vapor-Liquid mechanism. The effects of gold nanoparticles catalyst, Si substrate, and Se atoms on Sn nanowires growth are discussed in detail. We find that Se atom plays a key role in the growth of Sn nanowires. The gaseous Sn atoms are absorbed by the eutectic alloy droplets of Se-Au at first. Then Sn atoms precipitate at the liquid-solid phase interface due to a supersaturated solution and form a one-dimensional nanostructure. In all, this PVT method could provide a simple and quick way to synthesize monocrystalline Sn nanowires with an advantage in both quality and quantity. The optical transmittance of Sn nanowires thin film with 2 μm2 density approaches 85-90% in visible wavelength. Therefore, the Sn nanowires thin film can be applied to transparent electrode along with their metallic property.

  14. GaN nanowire tips for nanoscale atomic force microscopy

    Science.gov (United States)

    Behzadirad, Mahmoud; Nami, Mohsen; Rishinaramagalam, Ashwin K.; Feezell, Daniel F.; Busani, Tito

    2017-05-01

    Imaging of high-aspect-ratio nanostructures with sharp edges and straight walls in nanoscale metrology by atomic force microscopy (AFM) has been challenging due to the mechanical properties and conical geometry of the majority of available commercial tips. Here we report on the fabrication of GaN probes for nanoscale metrology of high-aspect-ratio structures to enhance the resolution of AFM imaging and improve the durability of AFM tips. GaN nanowires were fabricated using bottom-up and top-down techniques and bonded to Si cantilevers to scan vertical trenches on Si substrates. Over several scans, the GaN probes demonstrated excellent durability while scanning uneven structures and showed resolution enhancements in topography images, independent of scan direction, compared to commercial Si tips.

  15. Atomic structure of self-organizing iridium induced nanowires on Ge(001)

    Energy Technology Data Exchange (ETDEWEB)

    Kabanov, N.S., E-mail: n.kabanov@utwente.nl [Faculty of Physics, Moscow State University, 119991 (Russian Federation); Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, Enschede 7500 AE (Netherlands); Heimbuch, R.; Zandvliet, H.J.W. [Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, Enschede 7500 AE (Netherlands); Saletsky, A.M.; Klavsyuk, A.L. [Faculty of Physics, Moscow State University, 119991 (Russian Federation)

    2017-05-15

    Highlights: • Ir/Ge(001) structure has been studied with DFT calculations and scanning tunneling microscopy. • Ir/Ge(001) nanowires are composed of Ge atoms and Ir atoms are located in subsurface positions. • The regions in the vicinity of the nanowires are very dynamic, even at temperatures as low as 77 K. - Abstract: The atomic structure of self-organizing iridium (Ir) induced nanowires on Ge(001) is studied by density functional theory (DFT) calculations and variable-temperature scanning tunneling microscopy. The Ir induced nanowires are aligned in a direction perpendicular to the Ge(001) substrate dimer rows, have a width of two atoms and are completely kink-less. Density functional theory calculations show that the Ir atoms prefer to dive into the Ge(001) substrate and push up the neighboring Ge substrate atoms. The nanowires are composed of Ge atoms and not Ir atoms as previously assumed. The regions in the vicinity of the nanowires are very dynamic, even at temperatures as low as 77 K. Time-resolved scanning tunneling microscopy measurements reveal that this dynamics is caused by buckled Ge substrate dimers that flip back and forth between their two buckled configurations.

  16. Atomic structure of self-organizing iridium induced nanowires on Ge(001)

    NARCIS (Netherlands)

    Kabanov, Nikolai; Heimbuch, Rene; Zandvliet, Henricus J.W.; Saletsky, A.M.; Klavsyuk, A.L.

    2017-01-01

    The atomic structure of self-organizing iridium (Ir) induced nanowires on Ge(001) is studied by density functional theory (DFT) calculations and variable-temperature scanning tunneling microscopy. The Ir induced nanowires are aligned in a direction perpendicular to the Ge(001) substrate dimer rows,

  17. Charge transport in a single superconducting tin nanowire encapsulated in a multiwalled carbon nanotube

    NARCIS (Netherlands)

    Tombros, Nikolaos; Buit, Luuk; Arfaoui, Imad; Tsoufis, Theodoros; Gournis, Dimitrios; Trikalitis, Pantelis N.; van der Molen, Sense Jan; Rudolf, Petra; van Wees, Bart J.

    The charge transport properties of single superconducting tin nanowires encapsulated by multiwalled carbon nanotubes have been investigated by multiprobe measurements. The multiwalled carbon nanotube protects the tin nanowire from oxidation and shape fragmentation and therefore allows us to

  18. Electric field-assisted deposition of nanowires on carbon nanotubes for nanoelectronics and sensor applications.

    Science.gov (United States)

    Sivakumar, Kousik; Panchapakesan, Balaji

    2005-02-01

    Manipulation and control of matter at the nanoscale and atomic scale levels are crucial for the success of nanoscale sensors and actuators. The ability to control and synthesize multilayer structures using carbon nanotubes that will enable the building of electronic devices within a nanotube is still in its infancy. In this paper, we present results on selective electric field-assisted deposition of metals on carbon nanotubes realizing metallic nanowire structures. Silver and platinum nanowires have been fabricated using this approach for their applications in chemical sensing as catalytic materials to sniff toxic agents and in the area of biomedical nanotechnology for construction of artificial muscles. Electric field-assisted deposition allows the deposition of metals with a high degree of selectivity on carbon nanotubes by manipulating the charges on the surface of the nanotubes and forming electrostatic double-layer supercapacitors. Deposition of metals primarily occurred due to electrochemical reduction, electrophoresis, and electro-osmosis inside the walls of the nanotube. SEM and TEM investigations revealed silver and platinum nanowires between 10 nm and 100 nm in diameter. The present technique is versatile and enables the fabrication of a host of different types of metallic and semiconducting nanowires using carbon nanotube templates for nanoelectronics and a myriad of sensor applications.

  19. Adsorption of alkali-metal atoms on GaN nanowires photocathode

    Science.gov (United States)

    Cui, Zhen; Li, Enling; Ke, Xizheng; Zhao, Taifei; Yang, Yufeng; Ding, Yingchun; Liu, Tong; Qu, Yao; Xu, Shan

    2017-11-01

    The adsorption of alkali-metal atoms on GaN nanowires photocathode was investigated by using first principles with density functional theory. The calculation of electronic and optical properties indicates that alkali metal adsorbed GaN nanowires are direct band gap semiconductor, and the band gap of GaN nanowires could be decreased by alkali metal adsorption. A new surface state near the Fermi level results from the Ga, N and alkali metal hybridization, which leads to form a metal electrical conductivity for GaN nanowires. More importantly, alkali metal adsorption can decrease the work function of GaN nanowires. Furthermore, the absorption spectrum of GaN nanowires is red shifted and moves to lower energy side because of alkali metal adsorption. Accordingly, this study will provide the theoretical basis for producing the alkali metal adsorbed GaN photoelectric devices.

  20. Preparation of nanowire specimens for laser-assisted atom probe tomography.

    Science.gov (United States)

    Blumtritt, H; Isheim, D; Senz, S; Seidman, D N; Moutanabbir, O

    2014-10-31

    The availability of reliable and well-engineered commercial instruments and data analysis software has led to development in recent years of robust and ergonomic atom-probe tomographs. Indeed, atom-probe tomography (APT) is now being applied to a broader range of materials classes that involve highly important scientific and technological problems in materials science and engineering. Dual-beam focused-ion beam microscopy and its application to the fabrication of APT microtip specimens have dramatically improved the ability to probe a variety of systems. However, the sample preparation is still challenging especially for emerging nanomaterials such as epitaxial nanowires which typically grow vertically on a substrate through metal-catalyzed vapor phase epitaxy. The size, morphology, density, and sensitivity to radiation damage are the most influential parameters in the preparation of nanowire specimens for APT. In this paper, we describe a step-by-step process methodology to allow a precisely controlled, damage-free transfer of individual, short silicon nanowires onto atom probe microposts. Starting with a dense array of tiny nanowires and using focused ion beam, we employed a sequence of protective layers and markers to identify the nanowire to be transferred and probed while protecting it against Ga ions during lift-off processing and tip sharpening. Based on this approach, high-quality three-dimensional atom-by-atom maps of single aluminum-catalyzed silicon nanowires are obtained using a highly focused ultraviolet laser-assisted local electrode atom probe tomograph.

  1. Electrical and Surface Properties of InAs/InSb Nanowires Cleaned by Atomic Hydrogen.

    Science.gov (United States)

    Webb, James L; Knutsson, Johan; Hjort, Martin; Gorji Ghalamestani, Sepideh; Dick, Kimberly A; Timm, Rainer; Mikkelsen, Anders

    2015-08-12

    We present a study of InAs/InSb heterostructured nanowires by X-ray photoemission spectroscopy (XPS), scanning tunneling microscopy (STM), and in-vacuum electrical measurements. Starting with pristine nanowires covered only by the native oxide formed through exposure to ambient air, we investigate the effect of atomic hydrogen cleaning on the surface chemistry and electrical performance. We find that clean and unreconstructed nanowire surfaces can be obtained simultaneously for both InSb and InAs by heating to 380 ± 20 °C under an H2 pressure 2 × 10(-6) mbar. Through electrical measurement of individual nanowires, we observe an increase in conductivity of 2 orders of magnitude by atomic hydrogen cleaning, which we relate through theoretical simulation to the contact-nanowire junction and nanowire surface Fermi level pinning. Our study demonstrates the significant potential of atomic hydrogen cleaning regarding device fabrication when high quality contacts or complete control of the surface structure is required. As hydrogen cleaning has recently been shown to work for many different types of III-V nanowires, our findings should be applicable far beyond the present materials system.

  2. Au nanowire junction breakup through surface atom diffusion

    Science.gov (United States)

    Vigonski, Simon; Jansson, Ville; Vlassov, Sergei; Polyakov, Boris; Baibuz, Ekaterina; Oras, Sven; Aabloo, Alvo; Djurabekova, Flyura; Zadin, Vahur

    2018-01-01

    Metallic nanowires are known to break into shorter fragments due to the Rayleigh instability mechanism. This process is strongly accelerated at elevated temperatures and can completely hinder the functioning of nanowire-based devices like e.g. transparent conductive and flexible coatings. At the same time, arranged gold nanodots have important applications in electrochemical sensors. In this paper we perform a series of annealing experiments of gold and silver nanowires and nanowire junctions at fixed temperatures 473, 673, 873 and 973 K (200 °C, 400 °C, 600 °C and 700 °C) during a time period of 10 min. We show that nanowires are especially prone to fragmentation around junctions and crossing points even at comparatively low temperatures. The fragmentation process is highly temperature dependent and the junction region breaks up at a lower temperature than a single nanowire. We develop a gold parametrization for kinetic Monte Carlo simulations and demonstrate the surface diffusion origin of the nanowire junction fragmentation. We show that nanowire fragmentation starts at the junctions with high reliability and propose that aligning nanowires in a regular grid could be used as a technique for fabricating arrays of nanodots.

  3. Conductive-probe atomic force microscopy characterization of silicon nanowire

    Directory of Open Access Journals (Sweden)

    Yu Linwei

    2011-01-01

    Full Text Available Abstract The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs were investigated using a conductive-probe atomic force microscopy (AFM. Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V. Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.

  4. Surface passivation of GaAs nanowires by the atomic layer deposition of AlN

    Energy Technology Data Exchange (ETDEWEB)

    Shtrom, I. V., E-mail: igorstrohm@mail.ru; Bouravleuv, A. D. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Samsonenko, Yu. B.; Khrebtov, A. I. [Russian Academy of Sciences, St. Petersburg National Research Academic University—Nanotechnology Research and Education Center (Russian Federation); Soshnikov, I. P. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Reznik, R. R.; Cirlin, G. E., E-mail: cirlin@beam.ioffe.ru [Russian Academy of Sciences, St. Petersburg National Research Academic University—Nanotechnology Research and Education Center (Russian Federation); Dhaka, V.; Perros, A.; Lipsanen, H. [Aalto University (Finland)

    2016-12-15

    It is shown that the atomic layer deposition of thin AlN layers can be used to passivate the surface states of GaAs nanowires synthesized by molecular-beam epitaxy. Studies of the optical properties of samples by low-temperature photoluminescence measurements shows that the photoluminescence-signal intensity can be increased by a factor of up to five by passivating the nanowires with a 25-Å-thick AlN layer.

  5. Atomically abrupt silicon-germanium axial heterostructure nanowires synthesized in a solvent vapor growth system.

    Science.gov (United States)

    Geaney, Hugh; Mullane, Emma; Ramasse, Quentin M; Ryan, Kevin M

    2013-04-10

    The growth of Si/Ge axial heterostructure nanowires in high yield using a versatile wet chemical approach is reported. Heterostructure growth is achieved using the vapor zone of a high boiling point solvent as a reaction medium with an evaporated tin layer as the catalyst. The low solubility of Si and Ge within the Sn catalyst allows the formation of extremely abrupt heterojunctions of the order of just 1-2 atomic planes between the Si and Ge nanowire segments. The compositional abruptness was confirmed using aberration corrected scanning transmission electron microscopy and atomic level electron energy loss spectroscopy. Additional analysis focused on the role of crystallographic defects in determining interfacial abruptness and the preferential incorporation of metal catalyst atoms near twin defects in the nanowires.

  6. Investigation of atomic species in Pt-induced nanowires on Ge(001) surface by combined atomic force and scanning tunneling microscopy

    Science.gov (United States)

    Inami, Eiichi; Sugimoto, Yoshiaki; Shinozaki, Takuya; Gurlu, Oguzhan; Yurtsever, Ayhan

    2017-10-01

    We have studied identification of atomic species in Pt-induced nanowires self-assembled on the Ge(001) surface by combining scanning tunneling microscopy (STM) and atomic force microscopy (AFM). A small number of Sn atoms substituted in the top atomic chains were utilized as references to identify the target atomic species. Force spectroscopy data taken above single atoms on the Sn-substituted nanowires showed that the ratio between the maximum attractive forces above the Sn and the pristine chain atoms exhibited a constant value of 0.86. The obtained ratio was identical to that between Sn and Ge atoms, strongly suggestive that the top ridge of the Pt-induced nanowire was composed of Ge dimers. Our findings also demonstrate that AFM chemical identification method can be used to identify the unknown atomic species on surfaces, regardless of the homogeneity in the atomic composition, which has not been addressed so far.

  7. Tensile manipulation of ultrathin gold nanowires at different sizes and atomic vacancies

    Science.gov (United States)

    Wang, Fenying; Fu, Yingqiang; Chi, Baozhu; Dai, Yanfeng; Zhao, Jianwei

    2016-09-01

    The fractures of ultrathin metallic nanowires usually exhibit their uncertainties at small scales. Here, statistics was used to study the uniaxial tension-induced deformation of ultrathin gold nanowires. With the same cross section of gold nanowires (5a × 5a × Ha), different sizes show various deformation mechanisms due to the moving styles of slipped crystalline planes. However, the deformations at different sizes (5a × 5a × 5a) and (5a × 5a × 25a) both show the sensitivity to one atomic vacancy, attributed to the dominant role of the same cross section. The statistical broken position distributions further provide that the deformation fracture is size dependent and sensitive to atomic vacancies, which is explained with the relationship between broken bonds and tensile wave propagation. For the size dependence of mechanical property, the nanowire height (H) of 10a is observed to be a transitional point, when the height is less than 10a, the mechanical strength is unstable, while above this transitional point, mechanical strengths decrease with the nanowire size increasing. Our work provides mechanistic insights into enhancing the reliability of metallic nanostructures by engineering the internal atomic imperfection and structural dimensions.

  8. Formation of Pt induced Ge atomic nanowires on Pt/Ge(001): a density functional theory study

    NARCIS (Netherlands)

    Vanpoucke, D.E.P.; Vanpoucke, Danny E.P.; Brocks, G.

    2008-01-01

    Pt deposited onto a Ge001 surface gives rise to the spontaneous formation of atomic nanowires on a mixed Pt-Ge surface after high-temperature annealing. We study possible structures of the mixed surface and the nanowires by total energy density functional theory calculations. Experimental

  9. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol

    National Research Council Canada - National Science Library

    Jinying Zhang; Rui Wang; Xi Zhu; Aifei Pan; Chenxiao Han; Xin Li; Dan Zhao; Chuansheng Ma; Wenjun Wang; Haibin Su; Chunming Niu

    2017-01-01

    ... by picosecond pulsed-laser irradiation. The as-grown T-carbon nanowires have the same diameter distribution as pristine carbon nanotubes, and have been characterized by high-resolution transmission electron microscopy, fast Fourier...

  10. Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates.

    Science.gov (United States)

    Yang, Yi; Ling, Yichuan; Wang, Gongming; Lu, Xihong; Tong, Yexiang; Li, Yat

    2013-03-07

    We report a general strategy for synthesis of gallium nitride (GaN) and indium nitride (InN) nanowires on conductive and flexible carbon cloth substrates. GaN and InN nanowires were prepared via a nanocluster-mediated growth method using a home built chemical vapor deposition (CVD) system with Ga and In metals as group III precursors and ammonia as a group V precursor. Electron microscopy studies reveal that the group III-nitride nanowires are single crystalline wurtzite structures. The morphology, density and growth mechanism of these nanowires are determined by the growth temperature. Importantly, a photoelectrode fabricated by contacting the GaN nanowires through a carbon cloth substrate shows pronounced photoactivity for photoelectrochemical water oxidation. The ability to synthesize group III-nitride nanowires on conductive and flexible substrates should open up new opportunities for nanoscale photonic, electronic and electrochemical devices.

  11. On-chip microplasma reactors using carbon nanofibres and tungsten oxide nanowires as electrodes

    NARCIS (Netherlands)

    Agiral, A.; Groenland, A.W.; Chinthaginjala, J.K.; Kumar Chinthaginjala, J.; Seshan, Kulathuiyer; Lefferts, Leonardus; Gardeniers, Johannes G.E.

    2008-01-01

    Carbon nanofibres (CNFs) and tungsten oxide (W18O49) nanowires have been incorporated into a continuous flow type microplasma reactor to increase the reactivity and efficiency of the barrier discharge at atmospheric pressure. CNFs and tungsten oxide nanowires were characterized by high-resolution

  12. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template

    Science.gov (United States)

    Woo, Ju Yeon; Han, Hyo; Kim, Ji Weon; Lee, Seung-Mo; Ha, Jeong Sook; Shim, Joon Hyung; Han, Chang-Soo

    2016-07-01

    The fabrication of nanostructures having diameters of sub-5 nm is very a important issue for bottom-up nanofabrication of nanoscale devices. In this work, we report a highly controllable method to create sub-5 nm nano-trenches and nanowires by combining area-selective atomic layer deposition (ALD) with single-walled carbon nanotubes (SWNTs) as templates. Alumina nano-trenches having a depth of 2.6 ∼ 3.0 nm and SiO2 nano-trenches having a depth of 1.9 ∼ 2.2 nm fully guided by the SWNTs have been formed on SiO2/Si substrate. Through infilling ZnO material by ALD in alumina nano-trenches, well-defined ZnO nanowires having a thickness of 3.1 ∼ 3.3 nm have been fabricated. In order to improve the electrical properties of ZnO nanowires, as-fabricated ZnO nanowires by ALD were annealed at 350 °C in air for 60 min. As a result, we successfully demonstrated that as-synthesized ZnO nanowire using a specific template can be made for various high-density resistive components in the nanoelectronics industry.

  13. Zinc oxide nanowires on carbon microfiber as flexible gas sensor

    Science.gov (United States)

    Tonezzer, M.; Lacerda, R. G.

    2012-03-01

    In the past years, zinc oxide nanowires (ZnO NWs) have been proven to be an excellent material for gas sensors. In this work, we used ZnO nanowires in a novel architecture integrated on a carbon microfiber (μC) textile. This innovative design permits us to obtain mechanical flexibility, while the absence of any lithographic technique allows a large-area and low-cost fabrication of gas sensors. The performances of the devices are investigated for both oxidizing and reducing gases. The nano-on-micro structure of the sensor provides a high surface-to-volume ratio, leading to a fast and intense response for both oxygen (O2) and hydrogen (H2) gases. The sensor response has an optimum temperature condition at 280 °C with a response value of 10 for oxygen and 11 for hydrogen. The limit of detection (LoD) has been found to be 2 and 4 ppm for oxygen and hydrogen, respectively. Additionally, the sensor response and recovery time is small being less than 10 s for both O2 and H2.

  14. In situ-growth of silica nanowires in ceramic carbon composites

    Directory of Open Access Journals (Sweden)

    Rahul Kumar

    2017-09-01

    Full Text Available An understanding of the processing and microstructure of ceramic–carbon composites is critical to development of these composites for applications needing electrically conducting, thermal shock resistant ceramic materials. In the present study green compacts of carbon ceramic composites were prepared either by slurry processing or dry powder blending of one or more of the three — clay, glass, alumina and carbon black or graphite. The dried green compacts were sintered at 1400 °C in flowing argon. The ceramic carbon composites except the ones without clay addition showed formation of silica nanowires. The silica nanowire formation was observed in both samples prepared by slip casting and dry powder compaction containing either carbon black or graphite. TEM micrographs showed presence of carbon at the core of the silica nanowires indicating that carbon served the role of a catalyst. Selected area electron diffraction (SAED suggested that the silica nanowires are amorphous. Prior studies have reported formation of silica nanowires from silicon, silica, silicon carbide but this is the first report ever on formation of silica nanowires from clay.

  15. Carbon nanowires generated by ion irradiation of hydrocarbon ices

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, O., E-mail: opuglisi@unict.it [Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, Catania 95125 (Italy); Compagnini, G.; D’Urso, L. [Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, Catania 95125 (Italy); Baratta, G.A.; Palumbo, M.E.; Strazzulla, G. [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Catania, Via S. Sofia 78, Catania 95123 (Italy)

    2014-05-01

    In this paper we present the formation of carbon nanowires (polyynes and polycumulenes) in the solid state by ion irradiation of frozen hydrocarbons (C{sub 6}H{sub 6} and C{sub 2}H{sub 2}). Irradiations have been performed using H{sup +} ions in the 100’s keV energy regime using fluences up to 5 × 10{sup 14} ions/cm{sup 2}. Beyond the intrinsic significance of these results in the field of material science, this work has been motivated by the fact that ion beam irradiation of hydrocarbon ices is one of the most important process thought to happen in several extraterrestrial environments where many spectroscopic features of polyyne molecules have been identified.

  16. Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes

    Directory of Open Access Journals (Sweden)

    Andrew J Stapleton, Rakesh A Afre, Amanda V Ellis, Joe G Shapter, Gunther G Andersson, Jamie S Quinton and David A Lewis

    2013-01-01

    Full Text Available Electrodes fabricated using commercially available silver nanowires (AgNWs and single walled carbon nanotubes (SWCNTs produced sheet resistances in the range 4–24 Ω squ−1 with specular transparencies up to 82 %. Increasing the aqueous dispersibility of SWCNTs decreased the bundle size present in the film resulting in improved SWCNT surface dispersion in the films without compromising transparency or sheet resistance. In addition to providing conduction pathways between the AgNW network, the SWCNTs also provide structural support, creating stable self-supporting films. Entanglement of the AgNWs and SWCNTs was demonstrated to occur in solution prior to deposition by monitoring the transverse plasmon resonance mode of the AgNWs during processing. The interwoven AgNW/SWCNT structures show potential for use in optoelectronic applications as transparent electrodes and as an ITO replacement.

  17. Well incorporation of carbon nanodots with silicon nanowire arrays featuring excellent photocatalytic performances.

    Science.gov (United States)

    Chen, Chia-Yun; Hsiao, Po-Hsuan; Wei, Ta-Cheng; Chen, Ting-Chen; Tang, Chien-Hsin

    2017-05-17

    Recently, silicon (Si) nanowires have been intensively applied for a wide range of optoelectronic applications. Nevertheless, rare explorations considering the photodegradation of organic pollutants based on Si nanowires were performed, and they still require vast improvement, in particular for their degradation efficiency. In this study, broad-band and high efficiency photocatalytic systems were demonstrated through the good incorporation of Si nanowires with highly fluorescent carbon nanodots. The photodegradation rate of these intriguing heterostructure arrays under a 580 nm light illumination is approximately 6 times higher than that of sole Si nanowires, and more than 3.6 and 4.5 times higher than that of Si nanowire incorporated with silver and gold nanoparticles, respectively. Optimizing the luminescent behaviors of carbon nanodots leads to the involvement of multiple light sources that activate the photoexcitation of carriers within the Si nanowires. This feature was further elucidated by examining the corresponding photocurrents under light illumination, which presents currents 1.9 times higher than those with the sole Si nanowires. In combination with excellent wettability with dye solutions, the present heterostructured nanowire arrays have promised the robust photocatalytic capability with retained efficiency after cycling uses, which may open up unique opportunities for future pollutant detoxification and wastewater treatment.

  18. Increased graphitization in electrospun single suspended carbon nanowires integrated with carbon-MEMS and carbon-NEMS platforms.

    Science.gov (United States)

    Sharma, Swati; Sharma, Ashutosh; Cho, Yoon-Kyoung; Madou, Marc

    2012-01-01

    Single suspended carbon nanowires (CNWs) integrated on carbon-MEMS (CMEMS) structures are fabricated by electrospinning of SU-8 photoresist followed by pyrolysis. These monolithic CNW-CMEMS structures enable fabrication of very high aspect ratio CNWs of predefined length. The CNWs thus fabricated display core-shell structures having a graphitic shell with a glassy carbon core. The electrical conductivity of these CNWs is increased by about 100% compared to glassy carbon as a result of enhanced graphitization. We suggest some tunable fabrication and pyrolysis parameters that may improve graphitization in the resulting CNWs, making them a good replacement for several carbon nanostructure-based devices. © 2012 American Chemical Society

  19. Detection of gas atoms with carbon nanotubes

    Science.gov (United States)

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  20. High Throughput Nanofabrication of Silicon Nanowire and Carbon Nanotube Tips on AFM Probes by Stencil-Deposited Catalysts

    DEFF Research Database (Denmark)

    Engstrøm, Daniel Southcott; Savu, Veronica; Zhu, Xueni

    2011-01-01

    A new and versatile technique for the wafer scale nanofabrication of silicon nanowire (SiNW) and multiwalled carbon nanotube (MWNT) tips on atomic force microscope (AFM) probes is presented. Catalyst material for the SiNW and MWNT growth was deposited on prefabricated AFM probes using aligned wafer...... scale nanostencil lithography. Individual vertical SiNWs were grown epitaxially by a catalytic vapor−liquid−solid (VLS) process and MWNTs were grown by a plasma-enhanced chemical vapor (PECVD) process on the AFM probes. The AFM probes were tested for imaging micrometers-deep trenches, where...

  1. A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires.

    Science.gov (United States)

    Kawashima, Ayato; Nomura, Shinfuku; Toyota, Hiromichi; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro

    2007-12-12

    A supercritical carbon dioxide (CO(2)) plasma process for fabricating one-dimensional tungsten oxide nanowires coated with amorphous carbon is presented. High-frequency plasma was generated in supercritical carbon dioxide at 20 MPa by using tungsten electrodes mounted in a supercritical cell, and subsequently an organic solvent was introduced with supercritical carbon dioxide into the plasma. Electron microscopy and Raman spectroscopy investigations of the deposited materials showed the production of tungsten oxide nanowires with or without an outer layer. The nanowires with an outer layer exhibited a coaxial structure with an outer concentric layer of amorphous carbon and an inner layer of tungsten oxide with a thickness and diameter of 20-30 and 10-20 nm, respectively.

  2. Zinc oxide nanowire photodetectors with single-walled carbon nanotube thin-film electrodes.

    Science.gov (United States)

    Ates, Elif Selen; Kucukyildiz, Seyda; Unalan, Husnu Emrah

    2012-10-24

    In this study, transparent and flexible zinc oxide (ZnO) nanowire ultraviolet (UV) photodetectors prepared via a solution-based method in which single-walled carbon nanotube (SWNT) thin films were used as transparent electrodes are reported. The photoresponse current was found to be in proportion with the ZnO nanowire density, and the nanowire density could be tuned to increase the photocurrent by a factor of 300. The decay time for the fabricated photodetectors was found to be as low as 16 s. This study suggests the possibility of fabricating inexpensive, visible-blind UV photodetectors via solution-based methods.

  3. Fabrication of carbon-coated silicon nanowires and their application in dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Junhee; Lim, Jeongmin; Kim, Minsoo; Lee, Hae-Seok; Jun, Yongseok; Kim, Donghwan

    2014-11-12

    We report the fabrication of silicon/carbon core/shell nanowire arrays using a two-step process, involving electroless metal deposition and chemical vapor deposition. In general, foreign shell materials that sheath core materials change the inherent characteristics of the core materials. The carbon coating functionalized the silicon nanowire arrays, which subsequently showed electrocatalytic activities for the reduction of iodide/triiodide. This was verified by cyclic voltammetry and electrochemical impedance spectroscopy. We employed the carbon-coated silicon nanowire arrays in dye-sensitized solar cells as counter electrodes. We optimized the carbon shells to maximize the photovoltaic performance of the resulting devices, and subsequently, a peak power conversion efficiency of 9.22% was achieved.

  4. ZnO nanowires grown on carbon cloth for flexible cold cathode.

    Science.gov (United States)

    Tang, Haoying; Liu, Tengjiao; Jiang, Peng

    2013-02-01

    Nanostructures grown on carbon cloth are recently attracted great interests for flexible field emitter and cold cathode. In this paper, we report high-aspect ratio ZnO nanowires grown on carbon cloth by a low-temperature solution chemical approach that can be used as a flexible and high performance cold cathode. The carbon cloth is covered by outward-grown ZnO nanowires uniformly and densely with spiny structures. The hybrid structures exhibits a turn-on electrical field of 4.36 V/microm and a field enhancement factor of 1157, which benefit from the high-aspect ratios of both ZnO nanowires and carbon cloth. These results demonstrate a low cost and scalable approach for flexible cold cathode lighting and field emission display.

  5. Urea route to coat inorganic nanowires, carbon fibers and nanotubes by boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Gomathi, A.; Ramya Harika, M. [Chemistry and Physics of Materials Unit, DST Unit on Nanoscience and CSIR Centre of Excellence in Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Rao, C.N.R. [Chemistry and Physics of Materials Unit, DST Unit on Nanoscience and CSIR Centre of Excellence in Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India)], E-mail: cnrrao@jncasr.ac.in

    2008-03-15

    A simple route involving urea as the nitrogen source has been employed to carry out boron nitride coating on carbon fibers, multi-walled carbon nanotubes and inorganic nanowires. The process involves heating the carbon fibers and nanotubes or inorganic nanowires in a mixture of H{sub 3}BO{sub 3} and urea, followed by a heat treatment at 1000 deg. C in a N{sub 2} atmosphere. We have been able to characterize the BN coating by transmission electron microscopy as well as X-ray photoelectron spectroscopy. The urea decomposition route affords a simple method to coat boron nitride on one-dimensional nanostructures.

  6. Atomistic simulations on the axial nanowelding configuration and contact behavior between Ag nanowire and single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jianlei, E-mail: cjlxjtu@mail.xjtu.edu.cn; Zhang, Jianwei [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); He, Xiaoqiao, E-mail: bcxqhe@cityu.edu.hk [City University of Hong Kong, Department of Architecture and Civil Engineering (Hong Kong); Yang, Xinjun [Fudan University, State Key Laboratory of Surface Physics and Department of Physics (China); Mei, Xuesong; Wang, Wenjun; Jiang, Gedong; Wang, Kedian [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); Yang, Lijun; Xie, Hui [Harbin Institute of Technology, State Key Laboratory of Robotics and Systems (China)

    2017-03-15

    As for the interesting new building blocks, the Ag nanowires (AgNWs) and single-walled carbon nanotubes (SWNTs) as the interesting new building blocks are viewed as the promising candidates for the next-generation interconnects due to their most remarkable electrical, thermal, optical, mechanical, and other properties. The axial nanowelding of head-to-head style and side-to-side style is relatively simulated with the molecular dynamics method. As for the head-to-head structural style, SWNTs will move toward the AgNWs and contact with the head of AgNWs. And, the part of the Ag nanowire may be subsequently encapsulated in SWNT with the core-filling Ag atom chain as the final atomic contact configuration during nanowelding, which is related to the nanowelding temperature. When the SWNTs and AgNWs are arranged by the side-to-side contact style, the SWNTs will move along the SWNT surface and may eventually catch up with the AgNW being neck and neck. Aiming at the final axial atomic configurations and the contact behavior during nanowelding process, the related dominant mechanism is revealed in this paper.

  7. Atomistic simulations on the axial nanowelding configuration and contact behavior between Ag nanowire and single-walled carbon nanotubes

    Science.gov (United States)

    Cui, Jianlei; Zhang, Jianwei; He, Xiaoqiao; Yang, Xinjun; Mei, Xuesong; Wang, Wenjun; Jiang, Gedong; Wang, Kedian; Yang, Lijun; Xie, Hui

    2017-03-01

    As for the interesting new building blocks, the Ag nanowires (AgNWs) and single-walled carbon nanotubes (SWNTs) as the interesting new building blocks are viewed as the promising candidates for the next-generation interconnects due to their most remarkable electrical, thermal, optical, mechanical, and other properties. The axial nanowelding of head-to-head style and side-to-side style is relatively simulated with the molecular dynamics method. As for the head-to-head structural style, SWNTs will move toward the AgNWs and contact with the head of AgNWs. And, the part of the Ag nanowire may be subsequently encapsulated in SWNT with the core-filling Ag atom chain as the final atomic contact configuration during nanowelding, which is related to the nanowelding temperature. When the SWNTs and AgNWs are arranged by the side-to-side contact style, the SWNTs will move along the SWNT surface and may eventually catch up with the AgNW being neck and neck. Aiming at the final axial atomic configurations and the contact behavior during nanowelding process, the related dominant mechanism is revealed in this paper.

  8. Solid source growth of Si oxide nanowires promoted by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Congxiang [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore); Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu, Wen-wen; Wang, Xingli [Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Xiaocheng [Laboratory of clean energy chemistry and materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18 Tianshui Middle Road, Lanzhou 730000 (China); Tan, Chong Wei [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore); Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Tay, Beng Kang, E-mail: ebktay@ntu.edu.sg [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore); Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Coquet, Philippe [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore)

    2014-09-30

    Highlights: • An array of well aligned and uniform CNTs is successfully fabricated by PECVD. • SiONW growth utilizes Si substrate as the source, ruling out the usage of silane. • With CNT array on the substrate, SiONW growth is improved significantly. • CNTs help dispersion of the catalysts and diffusion of the Si atoms. - Abstract: We report a method to promote solid source growth of Si oxide nanowires (SiONWs) by using an array of vertically aligned carbon nanotubes (CNTs). It starts with the fabrication of CNT array by plasma enhanced chemical vapor deposition (PECVD) on Si wafers, followed by growth of SiONWs. Herein, CNTs serve as a scaffold, which helps the dispersion of catalysts for SiONWs and also provides space for hydrogen which boosts the diffusion of Si atoms and hence formation of SiONWs. As the result, a three dimensional (3D) hybrid network of densely packed SiONWs and CNTs can be produced rapidly.

  9. Atomic Layer Deposited Coatings on Nanowires for High Temperature Water Corrosion Protection.

    Science.gov (United States)

    Yersak, Alexander S; Lewis, Ryan J; Liew, Li-Anne; Wen, Rongfu; Yang, Ronggui; Lee, Yung-Cheng

    2016-11-30

    Two-phase liquid-cooling technologies incorporating micro/nanostructured copper or silicon surfaces have been established as a promising thermal management solution to keep up with the increasing power demands of high power electronics. However, the reliability of nanometer-scale features of copper and silicon in these devices has not been well investigated. In this work, accelerated corrosion testing reveals that copper nanowires are not immune to corrosion in deaerated pure hot water. To solve this problem, we investigate atomic layer deposition (ALD) TiO 2 coatings grown at 150 and 175 °C. We measured no difference in coating thickness for a duration of 12 days. Using a core/shell approach, we grow ALD TiO 2 /Al 2 O 3 protective coatings on copper nanowires and demonstrate a preservation of nanoengineered copper features. These studies have identified a critical reliability problem of nanoscale copper and silicon surfaces in deaerated, pure, hot water and have successfully demonstrated a reliable solution using ALD TiO 2 /Al 2 O 3 protective coatings.

  10. Copper nanowire coated carbon fibers as efficient substrates for detecting designer drugs using SERS.

    Science.gov (United States)

    Halouzka, Vladimir; Halouzkova, Barbora; Jirovsky, David; Hemzal, Dusan; Ondra, Peter; Siranidi, Eirini; Kontos, Athanassios G; Falaras, Polycarpos; Hrbac, Jan

    2017-04-01

    Miniature Surface Enhanced Raman Scattering (SERS) sensors were fabricated by coating the carbon fiber microelectrodes with copper nanowires. The coating procedure, based on anodizing the copper wire in ultrapure water followed by cathodic deposition of the anode-derived material onto carbon fiber electrodes, provides a "clean" copper nanowire network. The developed miniature (10µm in diameter and 2mm in length) and nanoscopically rough SERS substrates are applicable in drug sensing, as shown by the detection and resolving of a range of seized designer drugs in trace amounts (microliter volumes of 10 -10 -10 -12 M solutions). The copper nanowire modified carbon microfiber substrates could also find further applications in biomedical and environmental sensing. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fabrication and Characterization of ZnS/Diamond-Like Carbon Core-Shell Nanowires

    Directory of Open Access Journals (Sweden)

    Jung Han Kim

    2016-01-01

    Full Text Available We fabricated ZnS/diamond-like carbon (DLC core-shell heterostructure nanowire using a simple two-step process: the vapor-liquid-solid method combined with radio frequency plasma enhanced chemical vapor deposition (rf PECVD. As a core nanowire, ZnS nanowires with face-centered cubic structure were synthesized with a sputtered Au thin film, which exhibit a length and a diameter of ~10 μm and ~30–120 nm . After rf PECVD for DLC coating, The length and width of the dense ZnS/DLC core-shell nanowires were a range of ~10 μm  and 50–150 nm , respectively. In addition, ZnS/DLC core-shell nanowires were characterized with scanning transmission electron microscopy. From the results, the products have flat and uniform DLC coating layer on ZnS nanowire in spite of high residual stress induced by the high sp3 fraction. To further understanding of the DLC coating layer, Raman spectroscopy was employed with ZnS/DLC core-shell nanowires, which reveals two Raman bands at 1550 cm−1 (G peak and 1330 cm−1 (D peak. Finally, we investigated the optical properties from ultraviolet to infrared wavelength region using ultraviolet-visible (UV-Vis and Fourier transform infrared (FT-IR spectrometry. Related to optical properties, ZnS/DLC core-shell nanowires exhibit relatively lower absorbance and higher IR transmittance than that of ZnS nanowires.

  12. Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

    Directory of Open Access Journals (Sweden)

    V. Fallahi

    2012-06-01

    Full Text Available The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls can be controlled through the domain walls separation. Also, we have represented another alternative way that enables us to handle easily the magnetoresistance of such a system as well as its conductance by utilizing the Rashba-type spin-orbit interaction induced by the external gates.

  13. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties.

    Science.gov (United States)

    Liu, Xing-Rui; Deng, Xin; Liu, Ran-Ran; Yan, Hui-Juan; Guo, Yu-Guo; Wang, Dong; Wan, Li-Jun

    2014-11-26

    Silicon nanowires (SiNWs) have attracted great attention as promising anode materials for lithium ion batteries (LIBs) on account of their high capacity and improved cyclability compared with bulk silicon. The interface behavior, especially the solid electrolyte interphase (SEI), plays a significant role in the performance and stability of the electrodes. We report herein an in situ single nanowire atomic force microscopy (AFM) method to investigate the interface electrochemistry of silicon nanowire (SiNW) electrode. The morphology and Young's modulus of the individual SiNW anode surface during the SEI growth were quantitatively tracked. Three distinct stages of the SEI formation on the SiNW anode were observed. On the basis of the potential-dependent morphology and Young's modulus evolution of SEI, a mixture-packing structural model was proposed for the SEI film on SiNW anode.

  14. Electrowetting properties of atomic layer deposited Al{sub 2}O{sub 3} decorated silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, K.; Rajavel, K. [Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu (India); Cameron, D. C. [ASTRaL, Lappeenranta University of Technology, Mikkeli (Finland); current address Miktech Oy, Mikkeli (Finland); Mangalaraj, D. [Department of NanoScience and Technology, Bharathiar University, Coimbatore, Tamil Nadu (India); Rajendrakumar, R. T., E-mail: buc@edu.in [Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu (India); Department of NanoScience and Technology, Bharathiar University, Coimbatore, Tamil Nadu (India)

    2015-06-24

    This paper reports the electrowetting properties of liquid droplet on superhydrophobic silicon nanowires with Atomic layer deposited (ALD) Al{sub 2}O{sub 3} as dielectric layer. Silicon wafer were etched by metal assisted wet chemical etching with silver as catalyst. ALD Al{sub 2}O{sub 3} films of 10nm thickness were conformally deposited over silicon nanowires. Al{sub 2}O{sub 3} dielectric film coated silicon nanowires was chemically modified with Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane to make it superhydrophobic(SHP). The contact angle was measured and all the samples exhibited superhydrophobic nature with maximum contact angles of 163° and a minimum contact angle hysteresis of 6°. Electrowetting induced a maximum reversible decrease of the contact angle of 20°at 150V in air.

  15. Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Biwei [Energy and Environmental Directory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA

    2017-07-11

    The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.

  16. Measurement of the inherent strength of carbon atomic chains

    Science.gov (United States)

    Mikhailovskij, I. M.; Sadanov, E. V.; Kotrechko, S.; Ksenofontov, V. A.; Mazilova, T. I.

    2013-01-01

    The intrinsic strength of freestanding carbon atomic chains was measured by in situ high-field mechanical testing of carbon atomic chains carried out inside a field-ion microscope. The determined breaking field strength corresponds to a tensile strength of carbon atomic chains at 5 K equal to 245 GPa. Carbon atomic chains also show exceptionally high-evaporation stability in electric fields up to 259 V/nm. The tensile strength of linear carbon chains significantly exceeds the tensile strength of known two-dimensional and three-dimensional carbon materials, including carbon nanotubes and graphene. Our results can be considered as direct experimental evidence for Pauling's prediction of bond stiffening with reduced atomic bond order.

  17. Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors.

    Science.gov (United States)

    Li, Ying; Mei, Yuan; Zhang, Lin-Qun; Wang, Jian-Hai; Liu, An-Ran; Zhang, Yuan-Jian; Liu, Song-Qin

    2015-10-01

    In this study, manganese oxide nanowires wrapped by nitrogen-doped carbon layers (MnO(x)@NCs) were prepared by carbonization of poly(o-phenylenediamine) layer coated onto MnO2 nanowires for high performance supercapacitors. The component and structure of the MnO(x)@NCs were controlled through carbonization procedure under different temperatures. Results demonstrated that this composite combined the high conductivity and high specific surface area of nitrogen-doped carbon layers with the high pseudo-capacitance of manganese oxide nanowires. The as-prepared MnO(x)@NCs exhibited superior capacitive properties in 1 M Na2SO4 aqueous solution, such as high conductivity (4.167×10(-3) S cm(-1)), high specific capacitance (269 F g(-1) at 10 mV s(-1)) and long cycle life (134 F g(-1) after 1200 cycles at a scan rate of 50 mV s(-1)). It is reckoned that the present novel hybrid nanowires can serve as a promising electrode material for supercapacitors and other electrochemical devices. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Thermal and quantum phase slips in niobium-nitride nanowires based on suspended carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Kohei; Takagi, Tasuku; Hashimoto, Takayuki [Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); Moriyama, Satoshi, E-mail: MORIYAMA.Satoshi@nims.go.jp; Komatsu, Katsuyoshi [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Morita, Yoshifumi, E-mail: morita@gunma-u.ac.jp [Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515 (Japan); Miki, Norihisa [Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); Tanabe, Takasumi [Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); Maki, Hideyuki, E-mail: maki@appi.keio.ac.jp [Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); JST-PRESTO, Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2016-05-30

    Superconducting nanowires have attracted considerable attention due to their unique quantum-mechanical properties, as well as their potential as next-generation quantum nanodevices, such as single-photon detectors, phase-slip (PS) qubits, and other hybrid structures. In this study, we present the results of one-dimensional (1D) superconductivity in nanowires fabricated by coating suspended carbon nanotubes with a superconducting thin niobium nitride (NbN) film. In the resistance-temperature characteristic curves, hallmarks of 1D superconductivity with PS events are observed with unconventional negative magnetoresistance. We also confirm that a crossover occurs between thermal and quantum PSs as the temperature is lowered.

  19. Structurally uniform and atomically precise carbon nanostructures

    Science.gov (United States)

    Segawa, Yasutomo; Ito, Hideto; Itami, Kenichiro

    2016-01-01

    Nanometre-sized carbon materials consisting of benzene units oriented in unique geometric patterns, hereafter named nanocarbons, conduct electricity, absorb and emit light, and exhibit interesting magnetic properties. Spherical fullerene C60, cylindrical carbon nanotubes and sheet-like graphene are representative forms of nanocarbons, and theoretical simulations have predicted several exotic 3D nanocarbon structures. At present, synthetic routes to nanocarbons mainly lead to mixtures of molecules with a range of different structures and properties, which cannot be easily separated or refined into pure forms. Some researchers believe that it is impossible to synthesize these materials in a precise manner. Obtaining ‘pure’ nanocarbons is a great challenge in the field of nanocarbon science, and the construction of structurally uniform nanocarbons, ideally as single molecules, is crucial for the development of functional materials in nanotechnology, electronics, optics and biomedical applications. This Review highlights the organic chemistry approach — more specifically, bottom-up construction with atomic precision — that is currently the most promising strategy towards this end.

  20. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction

    KAUST Repository

    Zhang, Zhonghai

    2013-02-26

    In this work, we propose a solution-based carbon precursor coating and subsequent carbonization strategy to form a thin protective carbon layer on unstable semiconductor nanostructures as a solution to the commonly occurring photocorrosion problem of many semiconductors. A proof-of-concept is provided by using glucose as the carbon precursor to form a protective carbon coating onto cuprous oxide (Cu2O) nanowire arrays which were synthesized from copper mesh. The carbon-layer-protected Cu2O nanowire arrays exhibited remarkably improved photostability as well as considerably enhanced photocurrent density. The Cu2O nanowire arrays coated with a carbon layer of 20 nm thickness were found to give an optimal water splitting performance, producing a photocurrent density of -3.95 mA cm-2 and an optimal photocathode efficiency of 0.56% under illumination of AM 1.5G (100 mW cm-2). This is the highest value ever reported for a Cu 2O-based electrode coated with a metal/co-catalyst-free protective layer. The photostability, measured as the percentage of the photocurrent density at the end of 20 min measurement period relative to that at the beginning of the measurement, improved from 12.6% on the bare, nonprotected Cu2O nanowire arrays to 80.7% on the continuous carbon coating protected ones, more than a 6-fold increase. We believe that the facile strategy presented in this work is a general approach that can address the stability issue of many nonstable photoelectrodes and thus has the potential to make a meaningful contribution in the general field of energy conversion. © 2013 American Chemical Society.

  1. Photoelectrochemical reduction of carbon dioxide using Ge doped GaN nanowire photoanodes

    Directory of Open Access Journals (Sweden)

    Yichen Wang

    2015-11-01

    Full Text Available We report on the direct conversion of carbon dioxide (CO2 in a photoelectrochemical cell consisting of germanium doped gallium nitride nanowire anode and copper (Cu cathode. Various products including methane (CH4, carbon monoxide (CO, and formic acid (HCOOH were observed under light illumination. A Faradaic efficiency of ∼10% was measured for HCOOH. Furthermore, this photoelectrochemical system showed enhanced stability for 6 h CO2 reduction reaction on low cost, large area Si substrates.

  2. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Aaretti Kaleva

    2017-07-01

    Full Text Available In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications.

  3. The peeling behavior of nanowires and carbon nanotubes from a substrate using continuum modeling

    Science.gov (United States)

    Li, Yue; Xiong, Yan; Zhou, Zhikang; Tang, Bingxian; Yang, Zhaoyao; Zhao, Junhua

    2017-02-01

    The peeling behavior of different nanowires or single-walled/multi-walled carbon nanotubes (CNTs) from a substrate is studied by using the Kendall model of the continuum mechanics, where a basic assumption is that the deformation of the part of the nanowire/nanotube attached to the substrate under peeling force is ignored. The cohesive energy between a nanowire (or a CNT) and a substrate is obtained through continuum modeling of the van der Waals interaction, which has high accuracy by comparison of our molecular dynamics simulations. Our analytical results show that the peeling behavior strongly depends on the peeling angle, the pre-tension, the separation distance toward the substrate, the radius, and the Young's modulus of the nanowire (or the CNT). In particular, the peeling forces with a generalized peeling model in the steady-state stage are compared with those of the classical Kendall model. In the generalized peeling model, the effect of the bending stiffness and cohesive energy between the bending nanowire and the substrate on peeling forces is considered. The obtained analytical solution should be of great help for understanding the interaction between the nanostructures and the substrates, and designing nanoelectromechanical systems.

  4. Defect formation and magnetic properties of carbon-doped ZnO nanowires by the first principles

    Science.gov (United States)

    Shi, Li-Bin; Li, Ming-Biao; Fei, Ying

    2013-02-01

    Theoretical calculation based on density functional theory (DFT) and local density approximation (LDA) with Hubbard parameters has been carried out in studying defect formation energy, transition energy and ferromagnetism of carbon-doped ZnO nanowires (NW). The formation and ionization characteristics of the defects [CO (B), CO (S), CZn (B), VO (B), VZn (B), IO (oct) and IZn (oct)] in ZnO NW are analyzed in the text. Ferromagnetic (FM) and antiferromagnetic (AFM) coupling between C atoms are also investigated by 9 different configurations. The FM and AFM stability are explained by the interaction of C energy level. In addition, the vacancies [VO (B) and VZn (B)] and interstitials [IO (oct) and IZn (oct)] affecting the FM coupling are also investigated. It is found that magnetic moment of C 2p can be mediated by these defects.

  5. Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO 2 Nanowires

    KAUST Repository

    Asayesh-Ardakani, Hasti

    2015-10-12

    There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WVO nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122¯) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.

  6. Technique for measurement of magnetostriction in an individual nanowire using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jin Park, Jung, E-mail: jjpark74@gmail.com; Flatau, Alison B. [Department of Aerospace Engineering, University of Maryland, College Park, Maryland 20742 (United States); Estrine, Eliot C.; Madhukar Reddy, Sai; Stadler, Bethanie J. H. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-05-07

    We have investigated a method for measuring the dimensions of an individual multilayered Fe-Ga/Cu nanowire (NW) as it changes with induced magnetization. In this study, we demonstrate the proposed approach and establish this as a viable method for measuring the magnetostrictive behavior of an individual Fe-Ga/Cu NW using atomic force microscopy (AFM). When an external magnetic field (∼300 Oe) was applied perpendicular to the NW axis, the NW length appeared minimized. When a field (∼1000 Oe) was applied parallel to the NW axis, the height profile of the NW was found to be higher than in the case with no parallel external field. Since both ends of the NW were welded to the substrate, the magnetic field induced dimensional change of the NW caused deflection of the NW in the upward direction, which was significant enough to be detected by AFM. An average height difference of 15 nm was measured with and without an applied field which was then used to calculate the magnetostriction of the multilayered NW.

  7. Rational Design of Hyperbranched Nanowire Systems for Tunable Superomniphobic Surfaces Enabled by Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bielinski, Ashley R.; Boban, Mathew; He, Yang; Kazyak, Eric; Lee, Duck H.; Wang, Chongmin; Tuteja, Anish; Dasgupta, Neil P.

    2017-01-24

    A method for tunable control of geometry in hyperbranched ZnO nanowire (NW) systems is reported, which enables the rational design and fabrication of superomniphobic surfaces. Branched NWs with tunable density and orientation were grown via a sequential hydrothermal process, in which atomic layer deposition (ALD) was used for NW seeding, disruption of epitaxy, and selective blocking of NW nucleation. This approach allows for the rational design and optimization of three-level hierarchical structures, in which the geometric parameters of each level of hierarchy can be individually controlled. We demonstrate the coupled relationships between geometry and contact angle for a variety of liquids, which is supported by mathematical models of structural superomniphobicity. The highest performing superomniphobic surface was designed with three levels of hierarchy and achieved the following advancing/receding contact angles, water: 172°/170°, hexadecane: 166°/156°, octane: 162°/145°, and heptane: 160°/130°. Low surface tension liquids were shown to bounce off the surface from a height of 7 cm without breaking through and wetting. This approach demonstrates the power of ALD as an enabling technique for hierarchical materials by design, spanning the macro, micro, and nano length scales.

  8. Nanowire-templated formation of SnO2/carbon nanotubes with enhanced lithium storage properties.

    Science.gov (United States)

    Zhou, Xiaosi; Yu, Le; Lou, Xiong Wen David

    2016-04-21

    In this work, we have designed and synthesized SnO2 nanotubes wrapped by a porous carbon layer via a multistep method. Single-crystalline MnO(x) nanowires are employed as the template. SnO2 is grown on MnO(x) nanowires by a simple hydrothermal method to generate MnO(x)/SnO2 core-shell nanocables, followed by further coating with a layer of polydopamine. After carbonization of polydopamine and selective removal of MnO(x) nanowires, carbon coated SnO2 nanotubes are obtained. This structure combines several advantages. First, the internal empty space of the tubular structure can buffer the huge volume variation during lithium insertion-extraction processes properly, leading to improved cycling performance. Second, the nanosized SnO2 subunits and porous carbon coating not only shorten the distance for lithium ion diffusion but also offer large electrode-electrolyte contact area for fast Li(+) crossing the interface, thus enabling improved rate capability. Third, the flexible carbon coating is closely covered onto the SnO2 nanocrystals, which could facilitate the electronic transport and also significantly mitigate the pulverization. As a result, the as-synthesized SnO2/C-NT nanocomposites exhibit a high reversible capacity of 596 mA h g(-1) after 200 cycles, as well as an outstanding rate capability.

  9. The influence of covering a germanium nanowire with a single wall carbon nanotube on mechanical properties: A molecular dynamics study

    Science.gov (United States)

    Abdollahi, M.; Davoodi, J.

    2017-07-01

    Semiconductor nanowires are potential candidates for applications in quantum information processing, Josephson junctions, and field-effect transistors. Therefore, this study focused on the effects of covering a germanium nanowire (GeNW) with a single wall carbon nanotube (CNT) on the stress-strain diagram, failure points, and Young's modulus using molecular dynamics simulations. To describe the interactions between atoms in the system, we used Tersoff potential. Also, a Nose-Hoover thermostat was employed to control temperature of the system. The stress-strain curves of GeNW and GeNW inside CNT (CNT-GeNW) were obtained at various temperatures, radii, and strain velocities. It was found that coverage of GeNW with CNT led to 2-6 fold improved Young's modulus. It was also determined that a significant part of the Young's modulus in CNT-GeNW is due to the presence of CNT. Moreover, we defined the behavior of Young's modulus of GeNW as well as CNT-GeNW in the [100], [110], and [111] crystallography direction and found that Young's modulus decreased with increasing temperature. In addition, by increasing strain velocity, Young's modulus decreased for GeNW but increased for CNT-GeNW. Finally, we observed that when a GeNW is covered by a CNT, its failure point increased as compared with GeNW.

  10. Imaging the atomic orbitals of carbon atomic chains with field-emission electron microscopy

    Science.gov (United States)

    Mikhailovskij, I. M.; Sadanov, E. V.; Mazilova, T. I.; Ksenofontov, V. A.; Velicodnaja, O. A.

    2009-10-01

    A recently developed high-field technique of atomic chains preparation has made it possible to attain the ultrahigh resolution of field-emission electron microscopy (FEEM), which can be used to direct imaging the intra-atomic electronic structure. By applying cryogenic FEEM, we are able to resolve the spatial configuration of atomic orbitals, which correspond to quantized states of the end atom in free-standing carbon atomic chains. Knowledge of the intra-atomic structure will make it possible to visualize generic aspects of quantum mechanics and also lead to approaches for a wide range of nanotechnological applications.

  11. First-principles calculations of GaN:Gd nanowires: Carbon-dopants-induced room-temperature ferromagnetism

    Directory of Open Access Journals (Sweden)

    Ruikuan Xie

    2017-11-01

    Full Text Available First-principle calculations of the electronic structure and magnetic interaction of C-Gd co-doped GaN nanowires have been performed. The room-temperature ferromagnetism in GaN:Gd nanowires is observed after the substitution of N atoms by C atoms. A p-d coupling is considered as the reason of the observed ferromagnetism. The striking feature is that such coupling is effected greatly by the position where the C atoms dope in. As the C-Gd distance increases this coupling decreases and the system won’t gain enough energy to stabilize the ferromagnetism.

  12. Special structures and properties of hydrogen nanowire confined in a single walled carbon nanotube at extreme high pressure

    Directory of Open Access Journals (Sweden)

    Yueyuan Xia

    2012-06-01

    Full Text Available Extensive ab initio molecular dynamics simulations indicate that hydrogen can be confined in single walled carbon nanotubes to form high density and high pressure H2 molecular lattice, which has peculiar shell and axial structures depending on the density or pressure. The band gap of the confined H2 lattice is sensitive to the pressure. Heating the system at 2000K, the H2 lattice is firstly melted to form H2 molecular liquid, and then some of the H2 molecules dissociate accompanied by drastic molecular and atomic reactions, which have essential effect on the electronic structure of the hydrogen system. The liquid hydrogen system at 2000K is found to be a particular mixed liquid, which consists of H2 molecules, H atoms, and H-H-H trimers. The dissociated H atoms and the trimers in the liquid contribute resonance electron states at the Fermi energy to change the material properties substantially. Rapidly cooling the system from 2000K to 0.01 K, the mixed liquid is frozen to form a mixed solid melt with a clear trend of band gap closure. It indicates that this solid melt may become a superconducting nanowire when it is further compressed.

  13. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Veer Dhaka

    2016-01-01

    Full Text Available Low temperature (∼200 °C grown atomic layer deposition (ALD films of AlN, TiN, Al2O3, GaN, and TiO2 were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP nanowires (NWs, and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL at low temperatures (15K, and the best passivation was achieved with a few monolayer thick (2Å film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL was achieved with a capping of 2nm thick Al2O3. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al2O3 layer increased the carrier decay time from 251 ps (as-etched nanopillars to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al2O3 provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  14. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dhaka, Veer, E-mail: veer.dhaka@aalto.fi; Perros, Alexander; Kakko, Joona-Pekko; Haggren, Tuomas; Lipsanen, Harri [Department of Micro- and Nanosciences, Micronova, Aalto University, P.O. Box 13500, FI-00076 (Finland); Naureen, Shagufta; Shahid, Naeem [Research School of Physics & Engineering, Department of Electronic Materials Engineering, Australian National University, Canberra ACT 2601 (Australia); Jiang, Hua; Kauppinen, Esko [Department of Applied Physics and Nanomicroscopy Center, Aalto University, P.O. Box 15100, FI-00076 (Finland); Srinivasan, Anand [School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, S-164 40 Kista (Sweden)

    2016-01-15

    Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  15. Atom Collision-Induced Resistivity of Carbon Nanotubes

    National Research Council Canada - National Science Library

    Hugo E. Romero; Kim Bolton; Arne Rosén; Peter C. Eklund

    2005-01-01

    We report the observation of unusually strong and systematic changes in the electron transport in metallic single-walled carbon nanotubes that are undergoing collisions with inert gas atoms or small molecules...

  16. Carbon doping of InSb nanowires for high-performance p-channel field-effect-transistors.

    Science.gov (United States)

    Yang, Zai-xing; Han, Ning; Wang, Fengyun; Cheung, Ho-Yuen; Shi, Xiaoling; Yip, SenPo; Hung, TakFu; Lee, Min Hyung; Wong, Chun-Yuen; Ho, Johnny C

    2013-10-21

    Due to the unique physical properties, small bandgap III-V semiconductor nanowires such as InAs and InSb have been extensively studied for the next-generation high-speed and high-frequency electronics. However, further CMOS applications are still limited by the lack of efficient p-doping in these nanowire materials for high-performance p-channel devices. Here, we demonstrate a simple and effective in situ doping technique in the solid-source chemical vapor deposition of InSb nanowires on amorphous substrates employing carbon dopants. The grown nanowires exhibit excellent crystallinity and uniform stoichiometric composition along the entire length of the nanowires. More importantly, the versatility of this doping scheme is illustrated by the fabrication of high-performance p-channel nanowire field-effect-transistors. High electrically active carbon concentrations of ~7.5 × 10(17) cm(-3) and field-effect hole mobility of ~140 cm(2) V(-1) s(-1) are achieved which are essential for compensating the electron-rich surface layers of InSb to enable heavily p-doped and high-performance device structures. All these further indicate the technological potency of this in situ doping technique as well as p-InSb nanowires for the fabrication of future CMOS electronics.

  17. Establishment of carbon atomic composition analysis by proton backscattering

    CERN Document Server

    Gotoh, Y; Fujii, R; Tsuji, H; Ishikawa, J

    2003-01-01

    Transition metal nitride and carbide thin films are expected to serve as a cathode material for cold cathodes. Since the atomic compositions of nitrogen and carbon will strongly affect the properties of the electron emission surface, quantification of these elements are necessary. In this report, we tried to quantify the carbon atomic compositions in the transition metal carbide thin films by resonant nuclear reaction of sup 1 sup 2 C(p, p) sup 1 sup 2 C.

  18. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Nuri Yazdani

    2014-03-01

    Full Text Available Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD. Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

  19. Shape anisotropy and hybridization enhanced magnetization in nanowires of Fe/MgO/Fe encapsulated in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Aryee, Dennis; Seifu, Dereje

    2017-05-01

    Arrays of tunneling magnetoresistance (TMR) nanowires were synthesized for the first time by filling Fe/MgO/Fe inside vertically grown and substrate supported carbon nanotubes. The magnetic properties of nanowires and planar nanoscale thin films of Fe/MgO/Fe showed several similarities, such as two-fold magnetic symmetry and ratio of orbital moment to spin moment. Nanowires of Fe/MgO/Fe showed higher saturation magnetization by a factor of 2.7 compared to planar thin films of Fe/MgO/Fe at 1.5 kOe. The enhanced magnetic properties likely resulted from shape anisotropy of the nanowires and as well as the hybridization that occur between the π- electronic states of carbon and 3d-bands of the Fe-surface.

  20. Investigation of the electronic transport in polarization-induced nanowires using conductive atomic force microscopy (AFM)

    Science.gov (United States)

    Selcu, Camelia; Carnevale, Santino C.; Kent, Thomas F.; Akyol, Fatih; Phillips, Patrick J.; Mills, Michael J.; Rajan, Siddharth; Pelz, Jonathan P.; Myers, Roberto C.

    2013-03-01

    In the search to improve short wavelength light emitting diodes (LED's), where the dislocations limit their performance and hole doping (Mg) is a fundamental challenge, the III-Nitride polarization-induced nanowire LED provides a promising system to address these problems. The new type of pn diode, polarization-induced nanowire LED (PINLED), was developed by linearly grading AlGaN composition of the nanowires (from GaN to AlN and back to GaN) from 0% to 100% and back to 0% Al (Carnevale et al, Nano Lett., 12, 915 (2012)). In III-Nitrides (Ga,Al/N), the effects of polarization are commonly observed at the surfaces and interfaces. Thus, in the case of the polarization-induced nanowire LEDs, taking advantage of the bound polarization charge, due to the grading of the AlGaN, the pn diodes are formed. The polarity of the nanowires determines the carrier type in each graded region, and therefore the diode orientation (n/p vs p/n). We used conductive AFM to investigate polarity of the PINLED's as well as hole conductivity in PINLED's made of AlGaN with and without acceptor doping. The results reveal that most of the wires are n-top/p-bottom (N-face), but some are p-top/n-bottom (Ga-face). Also, we found that the current density is 3 orders of magnitude larger in the case of the doped nanowires than the nanowires with no impurity doping.

  1. Synthesis of Nanoscale Heterostructures Comprised of Metal Nanowires, Carbon Nanotubes, and Metal Nanoparticles: Investigation of Their Structure and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Nitin Chopra

    2015-01-01

    Full Text Available One-dimensional nanoscale heterostructures comprised of multisegment gold-nickel nanowires, carbon nanotube, and nickel nanoparticles were fabricated in a unique approach combining top-down and bottom-up assembly methods. Porous alumina template was utilized for sequential electrodeposition of gold and nickel nanowire segments. This was followed by chemical vapor deposition growth of carbon nanotubes on multisegment gold-nickel nanowires, where nickel segment also acted as a carbon nanotube growth catalyst. The aligned arrays of these gold-nickel-carbon nanotube heterostructures were released from porous alumina template and then subjected to wet-chemical process to be decorated with nickel/nickel oxide core/shell nanoparticles. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy were utilized for morphology, interface, defect, and structure characterization. The electrochemical performance of these heterostructures was studied using cyclic voltammetry method and the specific capacitance of various heterostructures was estimated and compared.

  2. Green synthesis of carbon quantum dots embedded onto titanium dioxide nanowires for enhancing photocurrent

    Science.gov (United States)

    Yen, Yin-Cheng; Lin, Chia-Chi; Chen, Ping-Yu; Ko, Wen-Yin; Tien, Tzu-Rung; Lin, Kuan-Jiuh

    2017-05-01

    The green synthesis of nanowired photocatalyst composed of carbon quantum dots-titanium hybrid-semiconductors, CQDs/TiO2, are reported. Where graphite-based CQDs with a size less than 5 nm are directly synthesized in pure water electrolyte by a one-step electrochemistry approach and subsequently electrodeposited onto as-prepared TiO2 nanowires through a voltage-driven reduction process. Electron paramagnetic resonance studies show that the CQDs can generate singlet oxygen and/or oxygen radicals to decompose the kinetic H2O2 intermediate species upon UV light illumination. With the effect of peroxidase-like CQDs, photocurrent density of CQDs/TiO2 is remarkably enhanced by a 6.4 factor when compared with that of as-prepared TiO2.

  3. A novel investigation on carbon nanotube/ZnO, Ag/ZnO and Ag/carbon nanotube/ZnO nanowires junctions for harvesting piezoelectric potential on textile

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Azam, E-mail: azam.khan@liu.se; Edberg, Jesper; Nur, Omer; Willander, Magnus [Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-601 74 Norrköping (Sweden)

    2014-07-21

    In the present work, three junctions were fabricated on textile fabric as an alternative substrate for harvesting piezoelectric potential. First junction was formed on ordinary textile as (textile/multi-walled carbon nanotube film/zinc oxide nanowires (S1: T/CNTs/ZnO NWs)) and the other two were formed on conductive textile with the following layer sequence: conductive textile/zinc oxide nanowires (S2: CT/ZnO NWs) and conductive textile/multi-walled carbon nanotubes film/zinc oxide nanowires (S3: CT/CNTs/ZnO NWs). Piezoelectric potential was harvested by using atomic force microscopy in contact mode for the comparative analysis of the generated piezoelectric potential. ZnO NWs were synthesized by using the aqueous chemical growth method. Surface analysis of the grown nanostructures was performed by using scanning electron microscopy and transmission electron microscopy. The growth orientation and crystalline size were studied by using X-ray diffraction technique. This study reveals that textile as an alternative substrate have many features like cost effective, highly flexible, nontoxic, light weight, soft, recyclable, reproducible, portable, wearable, and washable for nanogenerators fabrication with acceptable performance and with a wide choice of modification for obtaining large amount of piezoelectric potential.

  4. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  5. One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125.

    Science.gov (United States)

    Paul, K Brince; Singh, Vikrant; Vanjari, Siva Rama Krishna; Singh, Shiv Govind

    2017-02-15

    Ovarian cancer is the most leading cause of cancer-related death in women . The carcinoma antigen-125, which is found on the surface of many ovarian cancer cells is known to be a gold standard clinical biomarker associated with life-threatening gynecological malignancy. In this work, we demonstrate a novel biosensor platform based on multiwalled carbon nanotubes embedded zinc oxide nanowire for the ultrasensitive detection of carcinoma antigen-125. Label free detection of the carcinoma antigen-125 was accomplished by differential voltammetry technique that demonstrated excellent sensitivity (90.14µA/(U/mL)/cm2) with a detection limit of 0.00113UmL-1 concentration. The fabricated immunosensor exhibits good performance with wider detection range (0.001UmL-1-1kUmL-1), reproducibility, selectivity, acceptable stability, and thus is a potential cost-effective methodology for point-of-care diagnosis. The multiwalled carbon nanotubes (MWCNTs) embedded highly oriented zinc oxide (ZnO) nanowires were synthesized by simple, low cost electrospinning technique. Compared to pure ZnO nanowires, electrochemical activity of MWCNTs embedded ZnO nanowires was found to be much higher. The calcination temperature was optimized to avoid any decomposition of the CNTs and to obtain multiwalled carbon nanotubes embedded highly crystalline ZnO nanowires. The salient feature of this biosensing platform is that one step calcination process is enough to create the functional groups on MWCNT-ZnO nanowire surface that are effective for the covalent conjugation of antibody without further surface modification. To the best of our knowledge, this is the first report on MWCNT-ZnO nanowire based immunosensor explored for the detection of cancer biomarker. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.

    Science.gov (United States)

    Cole, Milton W; Crespi, Vincent H; Dresselhaus, Mildred S; Dresselhaus, Gene; Fischer, John E; Gutierrez, Humberto R; Kojima, K; Mahan, Gerald D; Rao, Apparao M; Sofo, Jorge O; Tachibana, M; Wako, K; Xiong, Qihua

    2010-08-25

    This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C(60) and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature

  7. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review

    Science.gov (United States)

    Cole, Milton W.; Crespi, Vincent H.; Dresselhaus, Mildred S.; Dresselhaus, Gene; Fischer, John E.; Gutierrez, Humberto R.; Kojima, K.; Mahan, Gerald D.; Rao, Apparao M.; Sofo, Jorge O.; Tachibana, M.; Wako, K.; Xiong, Qihua

    2010-08-01

    This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C60 and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature

  8. Study of removal of Direct Yellow 12 by cadmium oxide nanowires loaded on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sadeghian, Batuol [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Kokhdan, Syamak Nasiri, E-mail: syamak.nasiri@yahoo.com [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Pebdani, Arezou Amiri [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sahraei, Reza; Daneshfar, Ali; Mihandoost, Asma [Department of Chemistry, University of Ilam, P.O. Box: 65315-516, Ilam (Iran, Islamic Republic of)

    2013-05-01

    In this research, cadmium oxide nanowires loaded on activated carbon (CdO-NW-AC) has been synthesized by a simple procedure and characterized by different techniques such as XRD, SEM and UV–vis spectrometry. This new adsorbent has been efficiently utilized for the removal of the Direct Yellow 12 (DY-12) from wastewater. To obtain maximum DY-12 removal efficiency, the influences of variables such as pH, DY-12 concentration, amount of CdO-NW-AC, contact time, and temperature have been examined and optimized in a batch method. Following the variable optimization, the experimental equilibrium data (at different concentration of DY-12) was fitted to conventional isotherm models such as Langmuir, Freundlich and Tempkin. The applicability of each method is based on the R{sup 2} and error analysis for each model. It was found that the experimental equilibrium data well fitted to the Langmuir isotherm model. The dependency of removal process to time and the experimental data follow second order kinetic model with involvement of intraparticle diffusion model. The negative value of Gibbs's free energy and positive value of adsorption enthalpy show the spontaneous and endothermic nature of adsorption process. - Graphical abstract: Typical FE-SEM image of the CdO nanowires. Highlights: ► Cadmium oxide nanowires loaded on activated carbon was utilized as an adsorbent. ► It was used for the removal of Direct Yellow 12 from aqueous solutions. ► The adsorption of Direct Yellow 12 on this adsorbent is endothermic in nature. ► The adsorption equilibrium data was well described by the Langmuir isotherm model.

  9. Fabrication of Te and Te-Au Nanowires-Based Carbon Fiber Fabrics for Antibacterial Applications.

    Science.gov (United States)

    Chou, Ting-Mao; Ke, Yi-Yun; Tsao, Yu-Hsiang; Li, Ying-Chun; Lin, Zong-Hong

    2016-02-06

    Pathogenic bacteria that give rise to diseases every year remain a major health concern. In recent years, tellurium-based nanomaterials have been approved as new and efficient antibacterial agents. In this paper, we developed the approach to directly grow tellurium nanowires (Te NWs) onto commercial carbon fiber fabrics and demonstrated their antibacterial activity. Those Te NWs can serve as templates and reducing agents for gold nanoparticles (Au NPs) to deposit. Three different Te-Au NWs with varied concentration of Au NPs were synthesized and showed superior antibacterial activity and biocompability. These results indicate that the as-prepared carbon fiber fabrics with Te and Te-Au NWs can become antimicrobial clothing products in the near future.

  10. Thermally induced local failures in quasi-one-dimensional systems: collapse in carbon nanotubes, neckling in nanowires, bubbles in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Nisoli, Cristiano [Los Alamos National Laboratory; Lookman, Turab [Los Alamos National Laboratory; Saxena, Avadh [Los Alamos National Laboratory; Abraham, Douglas [RUDOLF PEIERLS CENTRE

    2009-01-01

    Quasi one dimensional systems can suffer local structural failures-broadly defined-along their length: for instance, carbon nanotubes can collapse, nanowires can show bottlenecks below which conductance drops, bubbles open in DNA. We present a formalism to explore the occurrence of those thermally activated failures in complete generality, to calculate the average length between them as a function of the thermodynamic observables.

  11. Investigation of Ag-TiO2 Interfacial Reaction of Highly Stable Ag Nanowire Transparent Conductive Film with Conformal TiO2 Coating by Atomic Layer Deposition.

    Science.gov (United States)

    Yeh, Ming-Hua; Chen, Po-Hsun; Yang, Yi-Ching; Chen, Guan-Hong; Chen, Hsueh-Shih

    2017-03-29

    The atomic layer deposition (ALD) technique is applied to coat Ag nanowires (NWs) with a highly uniform and conformal TiO2 layer to improve the stability and sustainability of Ag NW transparent conductive films (TCFs) at high temperatures. The TiO2 layer can be directly deposited on Ag NWs with a surface polyvinylpyrrolidone (PVP) coat that acts a bed for TiO2 seeding in the ALD process. The ALD TiO2 layer significantly enhances the thermal stability at least 100 fold when aged between 200-400 °C and also provides an extra function of violet-blue light filtration for Ag NW TCFs. Investigation into the interaction between TiO2 and Ag reveals that the conformal TiO2 shell could effectively prevent Ag from 1D-to-3D ripening. However, Ag could penetrate the conformal TiO2 shell and form nanocrystals on the TiO2 shell surface when it is aged at 400 °C. According to experimental data and thermodynamic evaluation, the Ag penetration leads to an interlayer composed of mixed Ag-Ag2O-amorphous carbon phases and TiO2-x at the Ag-TiO2 interface, which is thought to be caused by extremely high vapor pressure of Ag at the Ag-TiO2 interface at a higher temperature (e.g., 400 °C).

  12. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.

    Science.gov (United States)

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-01-07

    It was found that carbon atomic emission can be excited in low temperature dielectric barrier discharge (DBD), and an atmospheric pressure, low power consumption, and compact microplasma carbon atomic emission spectrometer (AES) was constructed and used as a universal and sensitive gas chromatographic (GC) detector for detection of volatile carbon-containing compounds. A concentric DBD device was housed in a heating box to increase the plasma operation temperature to 300 °C to intensify carbon atomic emission at 193.0 nm. Carbon-containing compounds directly injected or eluted from GC can be decomposed, atomized, and excited in this heated DBD for carbon atomic emission. The performance of this new optical detector was first evaluated by determination of a series of volatile carbon-containing compounds including formaldehyde, ethyl acetate, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, and absolute limits of detection (LODs) were found at a range of 0.12-0.28 ng under the optimized conditions. Preliminary experimental results showed that it provided slightly higher LODs than those obtained by GC with a flame ionization detector (FID). Furthermore, it is a new universal GC detector for volatile carbon-containing compounds that even includes those compounds which are difficult to detect by FID, such as HCHO, CO, and CO2. Meanwhile, hydrogen gas used in conventional techniques was eliminated; and molecular optical emission detection can also be performed with this GC detector for multichannel analysis to improve resolution of overlapped chromatographic peaks of complex mixtures.

  13. A nine-atom rhodium-aluminum oxide cluster oxidizes five carbon monoxide molecules

    National Research Council Canada - National Science Library

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    ... catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium-aluminum oxide cluster...

  14. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.

    Science.gov (United States)

    Smirnov, Waldemar; Kriele, Armin; Hoffmann, René; Sillero, Eugenio; Hees, Jakob; Williams, Oliver A; Yang, Nianjun; Kranz, Christine; Nebel, Christoph E

    2011-06-15

    In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are

  15. Fiber and fabric solar cells by directly weaving carbon nanotube yarns with CdSe nanowire-based electrodes.

    Science.gov (United States)

    Zhang, Luhui; Shi, Enzheng; Ji, Chunyan; Li, Zhen; Li, Peixu; Shang, Yuanyuan; Li, Yibin; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan

    2012-08-21

    Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics.

  16. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.

    Science.gov (United States)

    Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin

    2015-07-07

    Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.

  17. Stability of conductance oscillations in carbon atomic chains

    Science.gov (United States)

    Yu, Jing-Xin; Hou, Zhi-Wei; Liu, Xiu-Ying

    2015-06-01

    The conductance stabilities of carbon atomic chains (CACs) with different lengths are investigated by performing theoretical calculations using the nonequilibrium Green’s function method combined with density functional theory. Regular even-odd conductance oscillation is observed as a function of the wire length. This oscillation is influenced delicately by changes in the end carbon or sulfur atoms as well as variations in coupling strength between the chain and leads. The lowest unoccupied molecular orbital in odd-numbered chains is the main transmission channel, whereas the conductance remains relatively small for even-numbered chains and a significant drift in the highest occupied molecular orbital resonance toward higher energies is observed as the number of carbon atoms increases. The amplitude of the conductance oscillation is predicted to be relatively stable based on a thiol joint between the chain and leads. Results show that the current-voltage evolution of CACs can be affected by the chain length. The differential and second derivatives of the conductance are also provided. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304079, 11404094, and 51201059), the Priority Scientific and Technological Project of Henan Province, China (Grant No. 14A140027), the School Fund (Grant No. 2012BS055), and the Plan of Natural Science Fundamental Research of Henan University of Technology, China (Grant No. 2014JCYJ15).

  18. Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors.

    Science.gov (United States)

    Woo, Ju Yeon; Kim, Kyun Kyu; Lee, Jongsoo; Kim, Ju Tae; Han, Chang-Soo

    2014-07-18

    Fabricating stretchable conductors through simple, cost-effective and scalable methods is a challenge. Here, we report on an approach used to develop nanowelded Ag nanowire/single-walled carbon nanotube (AgNW/SWCNT) hybrid films to be used as high-performance stretchable conductors. Plasmonic welding, which was done at the junctions of AgNWs in order to form hybrid AgNW/SWCNT conductors on an Ecoflex substrate, enabled excellent electrical and mechanical stability under large tensile strains of over 480% without the need to pre-strain. Furthermore, we demonstrate highly stretchable circuits that are used to power LED arrays. The LED arrays are formed using the plasmonic-welded AgNW/SWCNT/Ecoflex hybrid material, which demonstrates suitability for interconnector applications in flexible electronics.

  19. Joining and interconnect formation of nanowires and carbon nanotubes for nanoelectronics and nanosystems.

    Science.gov (United States)

    Cui, Qingzhou; Gao, Fan; Mukherjee, Subhadeep; Gu, Zhiyong

    2009-06-01

    Interconnect formation is critical for the assembly and integration of nanocomponents to enable nanoelectronics- and nanosystems-related applications. Recent progress on joining and interconnect formation of key nanomaterials, especially nanowires and carbon nanotubes, into functional circuits and/or prototype devices is reviewed. The nanosoldering technique through nanoscale lead-free solders is discussed in more detail in this Review. Various strategies of fabricating lead-free nanosolders and the utilization of the nanosoldering technique to form functional solder joints are reviewed, and related challenges facing the nanosoldering technique are discussed. A perspective is given for using lead-free nanosolders and the nanosoldering technique for the construction of complex and/or hybrid nanoelectronics and nanosystems.

  20. Highly flexible and transparent dielectric elastomer actuators using silver nanowire and carbon nanotube hybrid electrodes.

    Science.gov (United States)

    Lee, Ye Rim; Kwon, Hyungho; Lee, Do Hoon; Lee, Byung Yang

    2017-09-27

    We demonstrate a dielectric elastomer actuator (DEA) with a high areal strain value of 146% using hybrid electrodes of silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs). The addition of a very small amount of SWCNTs (∼35 ng mm-2) to a highly resistive AgNW network resulted in a remarkable reduction of the electrode sheet resistance by three orders, increasing the breakdown field by 183% and maximum strain, while maintaining the reduction of optical transmittance within 11%. The DEA based on our transparent and stretchable hybrid electrodes can be easily fabricated by a simple vacuum filtration and transfer process of the electrode film on a pre-strained dielectric elastomer membrane. We expect that our approach will be useful in the future for fabricating stretchable and transparent electrodes in various soft electronic devices.

  1. Silicon nanowire and carbon nanotube hybrid for room temperature multiwavelength light source.

    Science.gov (United States)

    Lo Faro, Maria Josè; D'Andrea, Cristiano; Messina, Elena; Fazio, Barbara; Musumeci, Paolo; Reitano, Riccardo; Franzò, Giorgia; Gucciardi, Pietro Giuseppe; Vasi, Cirino; Priolo, Francesco; Iacona, Fabio; Irrera, Alessia

    2015-11-23

    The realization of an innovative hybrid light source operating at room temperature, obtained by embedding a carbon nanotube (CNT) dispersion inside a Si nanowire (NW) array is reported. The NW/CNT system exhibits a peculiar photoluminescence spectrum, consisting of a wide peak, mainly observed in the visible range, due to quantum confined Si NWs, and of several narrower IR peaks, due to the different CNT chiralities present in the dispersion. The detailed study of the optical properties of the hybrid system evidences that the ratio between the intensity of the visible and the IR emissions can be varied within a wide range by changing the excitation wavelength or the CNT concentration; the conditions leading to the prevalence of one signal with respect to the other are identified. The multiplicity of emission spectra obtainable from this composite material opens new perspectives for Si nanostructures as active medium in light sources for Si photonics applications.

  2. Facile preparation of carbon wrapped copper telluride nanowires as high performance anodes for sodium and lithium ion batteries

    Science.gov (United States)

    Yu, Hong; Yang, Jun; Geng, Hongbo; Chao Li, Cheng

    2017-04-01

    Uniform carbon wrapped copper telluride nanowires were successfully prepared by using an in situ conversion reaction. The length of these nanowires is up to several micrometers and the width is around 30-40 nm. The unique one dimensional structure and the presence of conformal carbon coating of copper telluride greatly accommodate the large volumetric changes during cycling, significantly increase the electrical conductivity and reduce charge transfer resistance. The copper telluride nanowires show promising performance in a lithium ion battery with a discharge capacity of 130.2 mA h g-1 at a high current density of 6.0 A g-1 (26.74 C) and a stable cycling performance of 673.3 mA h g-1 during the 60th cycle at 100 mA g-1. When evaluated as anode material for a sodium ion battery, the copper telluride nanowires deliver a reversible capacity of 68.1 mA h g-1 at 1.0 A g-1 (˜4.46 C) and have a high capacity retention of 177.5 mA h g-1 during the 500th cycle at 100 mA g-1.

  3. Stability of Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, F.; Schiek, M.; Wallmann, I.

    2011-01-01

    The morphological stability of organic nanowires over time and under thermal load is of major importance for their use in any device. In this study the growth and stability of organic nanowires from a naphthyl end-capped thiophene grown by organic molecular beam deposition is investigated via...... atomic force microscopy (AFM). Aging experiments under ambient conditions already show substantial morphological changes. Nanoscopic organic clusters, which initially coexist with the nanowires, vanish within hours. Thermal annealing of nanowire samples leads to even more pronounced morphology changes......, such as a strong decrease in nanowire number density, a strong increase in nanowire height, and the formation of new types of crystallites. This happens even before sublimation of organic material starts. These experiments also shine new light on the formation process of the nanowires....

  4. Ordering of carbon atoms in boron carbide structure

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, V. I., E-mail: i2212@yandex.ru; Kovalev, I. D.; Konovalikhin, S. V.; Vershinnikov, V. I. [Russian Academy of Sciences, Institute of Structural Macrokinetics and Materials Science (Russian Federation)

    2013-05-15

    Boron carbide crystals have been obtained in the entire compositional range according to the phase diagram by self-propagating high-temperature synthesis (SHS). Based on the results of X-ray diffraction investigations, the samples were characterized by the unit-cell metric and reflection half-width in the entire range of carbon concentrations. A significant spread in the boron carbide unit-cell parameters for the same carbon content is found in the data in the literature; this spread contradicts the structural concepts for covalent compounds. The SHS samples have not revealed any significant spread in the unit-cell parameters. Structural analysis suggests that the spread of parameters in the literary data is related to the unique process of ordering of carbon atoms in the boron carbide structure.

  5. Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy

    Science.gov (United States)

    Shaw, Joseph E.; Perumal, Ajay; Bradley, Donal D. C.; Stavrinou, Paul N.; Anthopoulos, Thomas D.

    2016-05-01

    We use conductive atomic force microscopy (CAFM) to study the origin of long-range conductivity in model transparent conductive electrodes composed of networks of reduced graphene oxide (rGOX) and silver nanowires (AgNWs), with nanoscale spatial resolution. Pristine networks of rGOX (1-3 monolayers-thick) and AgNWs exhibit sheet resistances of ˜100-1000 kΩ/□ and 100-900 Ω/□, respectively. When the materials are deposited sequentially to form bilayer rGOX/AgNW electrodes and thermally annealed at 200 °C, the sheet resistance reduces by up to 36% as compared to pristine AgNW networks. CAFM was used to analyze the current spreading in both systems in order to identify the nanoscale phenomena responsible for this effect. For rGOX networks, the low intra-flake conductivity and the inter-flake contact resistance is found to dominate the macroscopic sheet resistance, while for AgNW networks the latter is determined by the density of the inter-AgNW junctions and their associated resistance. In the case of the bilayer rGOX/AgNWs' networks, rGOX flakes are found to form conductive "bridges" between AgNWs. We show that these additional nanoscopic electrical connections are responsible for the enhanced macroscopic conductivity of the bilayer rGOX/AgNW electrodes. Finally, the critical role of thermal annealing on the formation of these nanoscopic connections is discussed.

  6. Surface effects on the mechanical elongation of AuCu nanowires: De-alloying and the formation of mixed suspended atomic chains

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, M. J. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, R. Sergio B. de Holanda 777, 13083-859 Campinas-SP (Brazil); Laboratório Nacional de Nanotecnologia-LNNANO, 13083-970 Campinas-SP (Brazil); Autreto, P. A. S.; Galvao, D. S., E-mail: galvao@ifi.unicamp.br; Ugarte, D. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, R. Sergio B. de Holanda 777, 13083-859 Campinas-SP (Brazil); Bettini, J. [Laboratório Nacional de Nanotecnologia-LNNANO, 13083-970 Campinas-SP (Brazil); Sato, F.; Dantas, S. O. [Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora-MG (Brazil)

    2015-03-07

    We report here an atomistic study of the mechanical deformation of Au{sub x}Cu{sub (1−x)} atomic-size wires (nanowires (NWs)) by means of high resolution transmission electron microscopy experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfaces that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.

  7. Current-induced dynamics in carbon atomic contacts

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Gunst, Tue; Brandbyge, Mads

    2011-01-01

    of molecular-scale contacts. Systems based on molecules bridging electrically gated graphene electrodes may offer an interesting test-bed for these effects. Results: We employ a semi-classical Langevin approach in combination with DFT calculations to study the current-induced vibrational dynamics of an atomic......Background: The effect of electric current on the motion of atoms still poses many questions, and several mechanisms are at play. Recently there has been focus on the importance of the current-induced nonconservative forces (NC) and Berry-phase derived forces (BP) with respect to the stability...... voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed...

  8. Gas sensing properties of zinc stannate (Zn{sub 2}SnO{sub 4}) nanowires prepared by carbon assisted thermal evaporation process

    Energy Technology Data Exchange (ETDEWEB)

    Tharsika, T., E-mail: tharsika@siswa.um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Akbar, S.A., E-mail: akbar.1@osu.edu [Center for Industrial Sensors and Measurements (CISM), Department of Materials Science and Engineering, Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Sabri, M.F.M., E-mail: faizul@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Wong, Y.H., E-mail: yhwong@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-01-05

    Highlights: • Zn{sub 2}SnO{sub 4} nanowires are grown on Au/alumina substrate by a carbon assisted thermal evaporation process. • Optimum growth conditions for Zn{sub 2}SnO{sub 4} nanowires are determined. • Ethanol gas is selectively sensed with high sensitivity. - Abstract: Zn{sub 2}SnO{sub 4} nanowires are successfully synthesized by a carbon assisted thermal evaporation process with the help of a gold catalyst under ambient pressure. The as-synthesized nanowires are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) equipped with an energy dispersive X-ray spectroscopy (EDS). The XRD patterns and elemental mapping via TEM–EDS clearly indicate that the nanowires are Zn{sub 2}SnO{sub 4} with face centered spinel structure. HRTEM image confirms that Zn{sub 2}SnO{sub 4} nanowires are single crystalline with an interplanar spacing of 0.26 nm, which is ascribed to the d-spacing of (3 1 1) planes of Zn{sub 2}SnO{sub 4}. The optimum processing condition and a possible formation mechanism of these Zn{sub 2}SnO{sub 4} nanowires are discussed. Additionally, sensor performance of Zn{sub 2}SnO{sub 4} nanowires based sensor is studied for various test gases such as ethanol, methane and hydrogen. The results reveal that Zn{sub 2}SnO{sub 4} nanowires exhibit excellent sensitivity and selectivity toward ethanol with quick response and recovery times. The response of the Zn{sub 2}SnO{sub 4} nanowires based sensors to 50 ppm ethanol at an optimum operating temperature of 500 °C is about 21.6 with response and recovery times of about 116 s and 182 s, respectively.

  9. Controllable Synthesis of Copper Oxide/Carbon Core/Shell Nanowire Arrays and Their Application for Electrochemical Energy Storage

    Science.gov (United States)

    Zhan, Jiye; Chen, Minghua; Xia, Xinhui

    2015-01-01

    Rational design/fabrication of integrated porous metal oxide arrays is critical for the construction of advanced electrochemical devices. Herein, we report self-supported CuO/C core/shell nanowire arrays prepared by the combination of electro-deposition and chemical vapor deposition methods. CuO/C nanowires with diameters of ~400 nm grow quasi-vertically to the substrates forming three-dimensional arrays architecture. A thin carbon shell is uniformly coated on the CuO nanowire cores. As an anode of lithium ion batteries, the resultant CuO/C nanowire arrays are demonstrated to have high specific capacity (672 mAh·g−1 at 0.2 C) and good cycle stability (425 mAh·g−1 at 1 C up to 150 cycles). The core/shell arrays structure plays positive roles in the enhancement of Li ion storage due to fast ion/electron transfer path, good strain accommodation and sufficient contact between electrolyte and active materials. PMID:28347084

  10. Controllable Synthesis of Copper Oxide/Carbon Core/Shell Nanowire Arrays and Their Application for Electrochemical Energy Storage

    Directory of Open Access Journals (Sweden)

    Jiye Zhan

    2015-10-01

    Full Text Available Rational design/fabrication of integrated porous metal oxide arrays is critical for the construction of advanced electrochemical devices. Herein, we report self-supported CuO/C core/shell nanowire arrays prepared by the combination of electro-deposition and chemical vapor deposition methods. CuO/C nanowires with diameters of ~400 nm grow quasi-vertically to the substrates forming three-dimensional arrays architecture. A thin carbon shell is uniformly coated on the CuO nanowire cores. As an anode of lithium ion batteries, the resultant CuO/C nanowire arrays are demonstrated to have high specific capacity (672 mAh·g−1 at 0.2 C and good cycle stability (425 mAh·g−1 at 1 C up to 150 cycles. The core/shell arrays structure plays positive roles in the enhancement of Li ion storage due to fast ion/electron transfer path, good strain accommodation and sufficient contact between electrolyte and active materials.

  11. Manipulation and soldering of carbon nanotubes using atomic force microscope

    Science.gov (United States)

    Kashiwase, Yuta; Ikeda, Takayuki; Oya, Takahide; Ogino, Toshio

    2008-09-01

    Manipulation of carbon nanotubes (CNTs) by an atomic force microscope (AFM) and soldering of CNTs using Fe oxide nanoparticles are described. We succeeded to separate a CNT bundle into two CNTs or CNT bundles, to move the separated CNT to a desirable position, and to bind it to another bundle. For the accurate manipulation, load of the AFM cantilever and frequency of the scan were carefully selected. We soldered two CNTs using an Fe oxide nanoparticle prepared from a ferritin molecule. The adhesion forces between the soldered CNTs were examined by an AFM and it was found that the CNTs were bound, though the binding force was not strong.

  12. Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications

    Science.gov (United States)

    Al-Asadi, Ahmed S.; Henley, Luke Alexander; Wasala, Milinda; Muchharla, Baleeswaraiah; Perea-Lopez, Nestor; Carozo, Victor; Lin, Zhong; Terrones, Mauricio; Mondal, Kanchan; Kordas, Krisztian; Talapatra, Saikat

    2017-03-01

    Carbon nanotube/metal oxide based hybrids are envisioned as high performance electrochemical energy storage electrodes since these systems can provide improved performances utilizing an electric double layer coupled with fast faradaic pseudocapacitive charge storage mechanisms. In this work, we show that high performance supercapacitor electrodes with a specific capacitance of ˜192 F/g along with a maximum energy density of ˜3.8 W h/kg and a power density of ˜ 28 kW/kg can be achieved by synthesizing zinc oxide nanowires (ZnO NWs) directly on top of aligned multi-walled carbon nanotubes (MWCNTs). In comparison to pristine MWCNTs, these constitute a 12-fold of increase in specific capacitance as well as corresponding power and energy density values. These electrodes also possess high cycling stability and were able to retain ˜99% of their specific capacitance value over 2000 charging discharging cycles. These findings indicate potential use of a MWCNT/ZnO NW hybrid material for future electrochemical energy storage applications.

  13. Metallic WO2-Carbon Mesoporous Nanowires as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Wu, Rui; Zhang, Jingfang; Shi, Yanmei; Liu, Dali; Zhang, Bin

    2015-06-10

    The development of electrocatalysts to generate hydrogen, with good activity and stability, is a great challenge in the fields of chemistry and energy. Here we demonstrate a "hitting three birds with one stone" method to synthesize less toxic metallic WO2-carbon mesoporous nanowires with high concentration of oxygen vacancies (OVs) via calcination of inorganic/organic WO3-ethylenediamine hybrid precursors. The products exhibit excellent performance for H2 generation: the onset overpotential is only 35 mV, the required overpotentials for 10 and 20 mA/cm(2) are 58 and 78 mV, the Tafel slope is 46 mV/decade, the exchange current density is 0.64 mA/cm(2), and the stability is over 10 h. Further studies, in combination with density functional theory, demonstrate that the unusual electronic structure and the large amount of active sites, generated by the high concentration of OVs, as well as the closely attached carbon materials, were key factors for excellent performance. Our results experimentally and theoretically establish metallic transition metal oxides (TMOs) as intriguing novel electrocatalysts for H2 generation. Such TMOs with OVs might be promising candidates for other energy storage and conversion applications.

  14. Formation of Silicon/Carbon Core-Shell Nanowires Using Carbon Nitride Nanorods Template and Gold Catalyst

    Directory of Open Access Journals (Sweden)

    Ilyani Putri Jamal

    2013-01-01

    Full Text Available In this experiment, silicon/carbon (Si/C core-shell nanowires (NWs were synthesized using gold nanoparticles (Au NPs coated carbon nitride nanorods (CN NRs as a template. To begin with, the Au NPs coated CN NRs were prepared by using plasma-enhanced chemical vapor deposition assisted with hot-wire evaporation technique. Fourier transform infrared spectrum confirms the C–N bonding of the CN NRs, while X-ray diffraction pattern indicates the crystalline structure of the Au NPs and amorphous structure of the CN NRs. The Au NPs coated CN NRs were thermally annealed at temperature of 800°C in nitrogen ambient for one hour to induce the growth of Si/C core-shell NWs. The growth mechanism for the Si/C core-shell NWs is related to the nitrogen evolution and solid-liquid-solid growth process which is a result of the thermal annealing. The formation of Si/C core-shell NWs is confirmed by electron spectroscopic imaging analysis.

  15. An important atomic process in the CVD growth of graphene: Sinking and up-floating of carbon atom on copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingfeng [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206 (China); Su Zhou Institute, North China Electric Power University, Suzhou, 215123 (China); Gu, TianSheng [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206 (China); Bai, Fan [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 (China); Yu, Yue; Trevor, Mwenya [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206 (China); Yu, Yangxin [Department of Chemical Engineering, Tsinghua University, Beijing, 100084 (China)

    2013-11-01

    By density functional theory (DFT) calculations, the early stages of the growth of graphene on copper (1 1 1) surface are investigated. At the very first time of graphene growth, the carbon atom sinks into subsurface. As more carbon atoms are adsorbed nearby the site, the sunken carbon atom will spontaneously form a dimer with one of the newly adsorbed carbon atoms, and the formed dimer will up-float on the top of the surface. We emphasize the role of the co-operative relaxation of the co-adsorbed carbon atoms in facilitating the sinking and up-floating of carbon atoms. In detail: when two carbon atoms are co-adsorbed, their co-operative relaxation will result in different carbon–copper interactions for the co-adsorbed carbon atoms. This difference facilitates the sinking of a single carbon atom into the subsurface. As a third carbon atom is co-adsorbed nearby, it draws the sunken carbon atom on top of the surface, forming a dimer. Co-operative relaxations of the surface involving all adsorbed carbon atoms and their copper neighbors facilitate these sinking and up-floating processes. This investigation is helpful for the deeper understanding of graphene synthesis and the choosing of optimal carbon sources or process.

  16. Current-induced dynamics in carbon atomic contacts

    Directory of Open Access Journals (Sweden)

    Jing-Tao Lü

    2011-12-01

    Full Text Available Background: The effect of electric current on the motion of atoms still poses many questions, and several mechanisms are at play. Recently there has been focus on the importance of the current-induced nonconservative forces (NC and Berry-phase derived forces (BP with respect to the stability of molecular-scale contacts. Systems based on molecules bridging electrically gated graphene electrodes may offer an interesting test-bed for these effects.Results: We employ a semi-classical Langevin approach in combination with DFT calculations to study the current-induced vibrational dynamics of an atomic carbon chain connecting electrically gated graphene electrodes. This illustrates how the device stability can be predicted solely from the modes obtained from the Langevin equation, including the current-induced forces. We point out that the gate offers control of the current, independent of the bias voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed. Molecular dynamics including current-induced forces enables an energy redistribution mechanism among the modes, mediated by anharmonic interactions, which is found to be vital in the description of the electrical heating.Conclusion: We have developed a semiclassical Langevin equation approach that can be used to explore current-induced dynamics and instabilities. We find instabilities at experimentally relevant bias and gate voltages for the carbon-chain system.

  17. Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Joseph E.; Perumal, Ajay; Bradley, Donal D. C.; Stavrinou, Paul N.; Anthopoulos, Thomas D., E-mail: t.anthopoulos@ic.ac.uk [Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-05-21

    We use conductive atomic force microscopy (CAFM) to study the origin of long-range conductivity in model transparent conductive electrodes composed of networks of reduced graphene oxide (rGO{sub X}) and silver nanowires (AgNWs), with nanoscale spatial resolution. Pristine networks of rGO{sub X} (1–3 monolayers-thick) and AgNWs exhibit sheet resistances of ∼100–1000 kΩ/□ and 100–900 Ω/□, respectively. When the materials are deposited sequentially to form bilayer rGO{sub X}/AgNW electrodes and thermally annealed at 200 °C, the sheet resistance reduces by up to 36% as compared to pristine AgNW networks. CAFM was used to analyze the current spreading in both systems in order to identify the nanoscale phenomena responsible for this effect. For rGO{sub X} networks, the low intra-flake conductivity and the inter-flake contact resistance is found to dominate the macroscopic sheet resistance, while for AgNW networks the latter is determined by the density of the inter-AgNW junctions and their associated resistance. In the case of the bilayer rGO{sub X}/AgNWs' networks, rGO{sub X} flakes are found to form conductive “bridges” between AgNWs. We show that these additional nanoscopic electrical connections are responsible for the enhanced macroscopic conductivity of the bilayer rGO{sub X}/AgNW electrodes. Finally, the critical role of thermal annealing on the formation of these nanoscopic connections is discussed.

  18. A Monolithically Integrated Gallium Nitride Nanowire/Silicon Solar Cell Photocathode for Selective Carbon Dioxide Reduction to Methane.

    Science.gov (United States)

    Wang, Yichen; Fan, Shizhao; AlOtaibi, Bandar; Wang, Yongjie; Li, Lu; Mi, Zetian

    2016-06-20

    A gallium nitride nanowire/silicon solar cell photocathode for the photoreduction of carbon dioxide (CO2 ) is demonstrated. Such a monolithically integrated nanowire/solar cell photocathode offers several unique advantages, including the absorption of a large part of the solar spectrum and highly efficient carrier extraction. With the incorporation of copper as the co-catalyst, the devices exhibit a Faradaic efficiency of about 19 % for the 8e(-) photoreduction to CH4 at -1.4 V vs Ag/AgCl, a value that is more than thirty times higher than that for the 2e(-) reduced CO (ca. 0.6 %). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Unique Hoyle State of the Carbon Atom

    Directory of Open Access Journals (Sweden)

    Thorvaldsen, Steinar

    2015-05-01

    Full Text Available The famous astronomer Fred Hoyle (1915-2001 started his research career as an atheist. Hoyle’s most important contribution to astrophysics is the theory of nucleosynthesis, i.e. the idea that chemical elements such as carbon can form in stars on the basis of hydrogen and helium. Essentially here was his prediction that the carbon core has a state with a specific energy which is precisely adapted to the basic fusion process. This result was one of the most important breakthroughs in modern astrophysics, and the so called Hoyle state has become a cornerstone for state-ofthe- art nuclear theory. The calculations he made, eventually revealed a fine-tuning of the universe. Hoyle’s work in this area supported the anthropic principle that the universe was fine-tuned so that intelligent life would be possible. It is said that what really made him conclude that creation demanded intelligence, were his calculations of the special properties of the carbon atom. This shook his atheism fundamentally [1, p. 57]. In this paper we describe this discovery.

  20. Sensing performances of pure and hybridized carbon nanotubes-ZnO nanowire networks: A detailed study.

    Science.gov (United States)

    Lupan, Oleg; Schütt, Fabian; Postica, Vasile; Smazna, Daria; Mishra, Yogendra Kumar; Adelung, Rainer

    2017-11-07

    In this work, the influence of carbon nanotube (CNT) hybridization on ultraviolet (UV) and gas sensing properties of individual and networked ZnO nanowires (NWs) is investigated in detail. The CNT concentration was varied to achieve optimal conditions for the hybrid with improved sensing properties. In case of CNT decorated ZnO nanonetworks, the influence of relative humidity (RH) and applied bias voltage on the UV sensing properties was thoroughly studied. By rising the CNT content to about 2.0 wt% (with respect to the entire ZnO network) the UV sensing response is considerably increased from 150 to 7300 (about 50 times). With respect to gas sensing, the ZnO-CNT networks demonstrate an excellent selectivity as well as a high gas response to NH3 vapor. A response of 430 to 50 ppm at room temperature was obtained, with an estimated detection limit of about 0.4 ppm. Based on those results, several devices consisting of individual ZnO NWs covered with CNTs were fabricated using a FIB/SEM system. The highest sensing performance was obtained for the finest NW with diameter (D) of 100 nm,  with a response of about 4 to 10 ppm NH3 vapor at room temperature.

  1. Gas-Phase Growth of Heterostructures of Carbon Nanotubes and Bimetallic Nanowires

    Directory of Open Access Journals (Sweden)

    Whi Dong Kim

    2011-01-01

    Full Text Available A simple, inexpensive, and viable method for growing multiple heterostructured carbon nanotubes (CNTs over the entire surface of Ni-Al bimetallic nanowires (NWs in the gas phase was developed. Polymer-templated bimetallic nitrate NWs were produced by electrospinning in the first step, and subsequent calcination resulted in the formation of bimetallic oxide NWs by thermal decomposition. In the second step, free-floating bimetallic NWs were produced by spray pyrolysis in an environment containing hydrogen gas as a reducing gas. These NWs were continuously introduced into a thermal CVD reactor in order to grow CNTs in the gas phase. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, and Raman spectrometry analyses revealed that the catalytic Ni sites exposed in the non-catalytic Al matrix over the entire surface of the bimetallic NWs were seeded to radially grow highly graphitized CNTs, which resembled “foxtail” structures. The grown CNTs were found to have a relatively uniform diameter of approximately 10±2 nm and 10 to 15 walls with a hollow core. The average length of the gas-phase-grown CNTs can be controlled between 100 and 1000 nm by adjusting the residence time of the free-floating bimetallic NWs in the thermal CVD reactor.

  2. Highly Efficient Carbon Dioxide Hydrogenation to Methanol Catalyzed by Zigzag Platinum-Cobalt Nanowires.

    Science.gov (United States)

    Bai, Shuxing; Shao, Qi; Feng, Yonggang; Bu, Lingzheng; Huang, Xiaoqing

    2017-06-01

    Carbon dioxide (CO2 ) hydrogenation is an effective strategy for CO2 utilization, while unsatisfied conversion efficiencies remain great challenges. It is reported herein that zigzag Pt-Co nanowires (NWs) with Pt-rich surfaces and abundant steps/edges can perform as highly active and stable CO2 hydrogenation catalysts. It is found that tuning the Pt/Co ratio of the Pt-Co NWs, solvents, and catalyst supports could well optimize the CO2 hydrogenation to methanol (CH3 OH) with the Pt4 Co NWs/C exhibiting the best performance, outperforming all the previous catalysts. They are also very durable with limited activity decays after six catalytic cycles. The diffuse reflectance infrared Fourier transform spectroscopy result of CO2 adsorption shows that the Pt4 Co NWs/C undergoes the adsorption/activation of CO2 by forming appropriate carboxylate intermediates, and thus enhancing the CH3 OH production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cadmium hydroxide nanowire loaded on activated carbon as efficient adsorbent for removal of Bromocresol Green

    Science.gov (United States)

    Ghaedi, Mehrorang; Khajesharifi, Habibollah; Hemmati Yadkuri, Amin; Roosta, Mostafa; Sahraei, Reza; Daneshfar, Ali

    2012-02-01

    In the present research, cadmium hydroxide nanowire loaded on activated carbon (Cd(OH) 2-NW-AC) was synthesized and characterized. This new adsorbent was applied for the removal of Bromocresol Green (BCG) molecules from aqueous solutions. The influence of effective variables such as solution pH, contact time, initial BCG concentration, amount of Cd(OH) 2-NW-AC and temperature on the adsorption efficiency of BCG in batch system was examined. During all experiments BCG contents were determined by UV-Vis spectrophotometer. Fitting the experimental data to different kinetic models including pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion kinetic models show the suitability of the pseudo-second-order kinetic model to interpret in the experimental data. Equilibrium isotherm studies were examined by application of different conventional models such as Langmuir, Freundlich and Tempkin models to explain the experimental data. Based on considering R2 value as criterion the adsorption data well fitted to Langmuir model with maximum adsorption capacity of 108.7 mg g -1. Thermodynamic parameters (Gibb's free energy, entropy and enthalpy) of adsorption were calculated according to general procedure to take some information about the on-going adsorption process. The high negative value of Gibb's free energy and positive value of enthalpy show the feasibility and endothermic nature of adsorption process.

  4. The Relativistic Effects on the Carbon-Carbon Coupling Constants Mediated by a Heavy Atom.

    Science.gov (United States)

    Wodyński, Artur; Malkina, Olga L; Pecul, Magdalena

    2016-07-21

    The (2)JCC, (3)JCC, and (4)JCC spin-spin coupling constants in the systems with a heavy atom (Cd, In, Sn, Sb, Te, Hg, Tl, Pb, Bi, and Po) in the coupling path have been calculated by means of density functional theory. The main goal was to estimate the relativistic effects on spin-spin coupling constants and to explore the factors which may influence them, including the nature of the heavy atom and carbon hybridization. The methods applied range, in order of reduced complexity, from the Dirac-Kohn-Sham (DKS) method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component zeroth-order regular approximation (ZORA) Hamiltonians, to scalar effective core potentials (ECPs) with the nonrelativistic Hamiltonian. The use of DKS and ZORA methods leads to very similar results, and small-core ECPs of the MDF and MWB variety reproduce correctly the scalar relativistic effects. Scalar relativistic effects usually are larger than the spin-orbit coupling effects. The latter tend to influence the most the coupling constants of the sp(3)-hybridized carbon atoms and in compounds of the p-block heavy atoms. Large spin-orbit coupling contributions for the Po compounds are probably connected with the inverse of the lowest triplet excitation energy.

  5. Investigations into the impact of various substrates and ZnO ultra thin seed layers prepared by atomic layer deposition on growth of ZnO nanowire array

    Science.gov (United States)

    Ding, JN; Liu, YB; Tan, CB; Yuan, NY

    2012-07-01

    The impact of various substrates and zinc oxide (ZnO) ultra thin seed layers prepared by atomic layer deposition on the geometric morphology of subsequent ZnO nanowire arrays (NWs) fabricated by the hydrothermal method was investigated. The investigated substrates included B-doped ZnO films, indium tin oxide films, single crystal silicon (111), and glass sheets. Scanning electron microscopy and X-ray diffraction measurements revealed that the geometry and aligment of the NWs were controlled by surface topography of the substrates and thickness of the ZnO seed layers, respectively. According to atomic force microscopy data, we suggest that the substrate, fluctuate amplitude and fluctuate frequency of roughness on ZnO seed layers have a great impact on the alignment of the resulting NWs, whereas the influence of the seed layers' texture was negligible.

  6. In situ ellipsometry study of atomic hydrogen etching of extreme ultraviolet induced carbon layers

    NARCIS (Netherlands)

    Chen, J. Q.; E. Louis,; Harmsen, R.; T. Tsarfati,; Wormeester, H.; van Kampen, M.; van Schaik, W.; van de Kruijs, R.; F. Bijkerk,

    2011-01-01

    Atomic hydrogen based etching is generally considered an efficient method for the removal of carbon films resulting from photo-induced hydrocarbon dissociation, as occurs in extreme ultraviolet (EUV) photolithography environments. The etch rate of atomic hydrogen for three different kinds of carbon

  7. Porous CoFe{sub 2}O{sub 4} nanowire arrays on carbon cloth as binder-free anodes for flexible lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Saihua; Guo, Jinxin; Jiang, Fei; Su, Qingmei; Du, Gaohui, E-mail: gaohuidu@zjnu.edu.cn

    2016-07-15

    Highlights: • Hierarchal CoFe{sub 2}O{sub 4} nanowire arrays are directly grown on flexible carbon cloth. • Porous CoFe{sub 2}O{sub 4} nanowires are composed of many nanocrystals of 20–40 nm. • CoFe{sub 2}O{sub 4} nanowire arrays exhibit excellent rate capability and cycling stability. • Integrated CoFe{sub 2}O{sub 4}/carbon cloth electrodes show high flexibility and areal capacity. - Abstract: A three-dimensional CoFe{sub 2}O{sub 4} nanowire array on carbon cloth was fabricated with a hydrothermal method together with a post-annealing treatment. As a binder-free and flexible anode material for LIBs, it showed an improved electrochemical performance with high cycling stability and excellent rate capability. It exhibited an initial discharge capacity of 1615 mAh g{sup −1} and retained a reversible capacity of about 1204 mAh g{sup −1} after 200 cycles at a specific current of 500 mA g{sup −1}. The high capacity, outstanding rate performance and cycling stability can be attributed to the special configuration of hierarchal porous CoFe{sub 2}O{sub 4} nanowires on carbon cloth, which possess many advantages like short diffusion length, easy strain relaxation and fast electron transport. Moreover, the integrated CoFe{sub 2}O{sub 4} nanowires/carbon cloth electrode shows high flexibility and high areal capacity (2.41 mAh cm{sup −2}), which makes it suitable for use as a binder-free anode to build flexible LIBs.

  8. Atomic-scale understanding of dichlorobenzene-assisted poly 3-hexylthiophene-2,5-diyl nanowire formation mechanism

    Science.gov (United States)

    Yagmurcukardes, M.; Kiymaz, D.; Zafer, C.; Senger, R. T.; Sahin, H.

    2017-04-01

    Low-dimensional Poly 3-hexylthiophene-2,5-diyl (P3HT) structures that serve efficient exciton dissociation in organic solar cells, play a major role in increasing the charge collection, and hence, the efficiency of organic devices. In this study, we theoretically and experimentally investigate the Dichlorobenzene (DCB)-assisted formation of P3HT nanowires. Our experiments show that the solution of DCB molecules drive randomly oriented P3HT polymers to form well-stacked nanowires by stabilizing tail-tail and π-π interactions. Here the question is how DCB molecules migrate into the P3HT layers while forming the nanowire structure. Our density functional theory-based calculations reveal that the vertical migration of the DCB molecules between P3HT layers is forbidden due to a high energy barrier that stems from strong alkyl chain-DCB interaction. In contrast to vertical diffusion, lateral diffusion of DCB molecules in between P3HT layers is much more likely. Our results show that migration of a DCB molecule occurs through the alkyl groups with a low energy barrier. Therefore, laterally diffused DCB molecules assist nucleation of top-to-top stacking of P3HT polymers and formation of well-ordered nanowires.

  9. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions.

    Science.gov (United States)

    Zope, Rajendra R; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  10. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Energy Technology Data Exchange (ETDEWEB)

    Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Bhusal, Shusil; Basurto, Luis [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Jackson, Koblar [Physics Department and Science of Advanced Materials Ph.D. Program, Central Michigan University, Mt. Pleasant, Michigan 48859 (United States)

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  11. Pulling platinum atomic chains by carbon monoxide molecules.

    Science.gov (United States)

    Makk, P; Balogh, Z; Csonka, Sz; Halbritter, A

    2012-08-07

    The interaction of carbon monoxide molecules with atomic-scale platinum nanojunctions is investigated by low temperature mechanically controllable break junction experiments. Combining plateau length analysis, two-dimensional conductance-displacement histograms and conditional correlation analysis a comprehensive microscopic picture is proposed about the formation and evolution of Pt-CO-Pt single-molecule configurations. Our analysis implies that before pure Pt monoatomic chains are formed a CO molecule infiltrates the junction, first in a configuration that is perpendicular to the contact axis. This molecular junction is strong enough to pull a monoatomic platinum chain with the molecule being incorporated in the chain. Along the chain formation the molecule can either stay in the perpendicular configuration, or rotate to a parallel configuration. The evolution of the single-molecule configurations along the junction displacement shows quantitative agreement with theoretical predictions, justifying the interpretation in terms of perpendicular and parallel molecular alignment. Our analysis demonstrates that the combination of two-dimensional conductance-displacement histograms with conditional correlation analysis is a useful tool to analyze separately fundamentally different types of junction trajectories in single molecule break junction experiments.

  12. Carbon- and Binder-Free Core-Shell Nanowire Arrays for Efficient Ethanol Electro-Oxidation in Alkaline Medium.

    Science.gov (United States)

    Guo, Fen; Li, Yiju; Fan, Baoan; Liu, Yi; Lu, Lilin; Lei, Yang

    2018-01-23

    To achieve high electrochemical surface area (ECSA) and avoid carbon support and binder in the anode catalyst of direct ethanol fuel cell, herein, we design freestanding core-shell nickel@palladium-nickel nanowire arrays (Ni@Pd-Ni NAs) without carbon support and binder for high-efficiency ethanol electro-oxidation. Bare Ni nanowire arrays (Ni NAs) are first prepared using the facile template-assistant electrodeposition method. Subsequently, the Ni@Pd-Ni NAs are formed using one-step solution-based alloying reaction. The optimized Ni@Pd-Ni NA electrode with a high ECSA of 64.4 m2 g-1Pd exhibits excellent electrochemical performance (peak current density: 622 A g-1Pd) and cycling stability for ethanol electro-oxidation. The facilely obtained yet high-efficiency core-shell Ni@Pd-Ni NA electrode is a promising electrocatalyst, which can be utilized for oxygen reduction reaction, urea, hydrazine hydrate, and hydrogen peroxide electro-oxidation, not limited to the ethanol electro-oxidation.

  13. Ni/Mo2C nanowires and their carbon-coated composites as efficient catalysts for nitroarenes hydrogenation

    Science.gov (United States)

    Shu, Yijin; He, Sina; Xie, Lifang; Chan, Hang Cheong; Yu, Xiang; Yang, Lichun; Gao, Qingsheng

    2017-02-01

    The hydrogenation of nitroarenes to value-added aromatic amines requires active and selective catalysts. Due to the good efficiency, economic cost and high earth-abundance, Ni-based nanostructures emerge as the promising catalysts, which are however limited by the poor dispersion and unsatisfied durability. Herein, Mo2C nanowires was introduced as a versatile support towards the highly dispersive Ni owing to the strong metal-support interactions on carbide surface, accomplishing the high activity in the hydrogenation of 3-nitrobenzoic acid, 4-nitrobenzoic acid and nitrobenzene. However, the presence of water that promoted the selective hydrogenation unfortunately deactivated Ni species. An effective carbon coating was further introduced to remarkably enhance the stability, protecting active Ni from corrosive H+ and H2O. This work elucidates a feasible way towards efficient and stable catalysts by the introduction of both carbide supports and carbon coating, shedding some light on the development of high-performance catalysts.

  14. Beam-deposited platinum as versatile catalyst for bottom-up silicon nanowire synthesis

    Science.gov (United States)

    Hibst, N.; Knittel, P.; Kranz, C.; Mizaikoff, B.; Strehle, S.

    2014-10-01

    The controlled localized bottom-up synthesis of silicon nanowires on arbitrarily shaped surfaces is still a persisting challenge for functional device assembly. In order to address this issue, electron beam and focused ion beam-assisted catalyst deposition have been investigated with respect to platinum expected to form a PtSi alloy catalyst for a subsequent bottom-up nanowire synthesis. The effective implementation of pure platinum nanoparticles or thin films for silicon nanowire growth has been demonstrated recently. Beam-deposited platinum contains significant quantities of amorphous carbon due to the organic precursor and gallium ions for a focused ion beam-based deposition process. Nevertheless, silicon nanowires could be grown on various substrates regardless of the platinum purity. Additionally, p-type doping could be realized with diborane whereas n-type doping suppressed a nanowire growth. The rational utilization of this beam-assisted approach enables us to control the localized synthesis of single silicon nanowires at planar surfaces but succeeded also in single nanowire growth at the three-dimensional apex of an atomic force microscopy tip. Therefore, this catalyst deposition method appears to be a unique extension of current technologies to assemble complex nanowire-based devices.

  15. Atomic Resolution in Situ Imaging of a Double-Bilayer Multistep Growth Mode in Gallium Nitride Nanowires.

    Science.gov (United States)

    Gamalski, A D; Tersoff, J; Stach, E A

    2016-04-13

    We study the growth of GaN nanowires from liquid Au-Ga catalysts using environmental transmission electron microscopy. GaN wires grow in either ⟨112̅0⟩ or ⟨11̅00⟩ directions, by the addition of {11̅00} double bilayers via step flow with multiple steps. Step-train growth is not typically seen with liquid catalysts, and we suggest that it results from low step mobility related to the unusual double-height step structure. The results here illustrate the surprising dynamics of catalytic GaN wire growth at the nanoscale and highlight striking differences between the growth of GaN and other III-V semiconductor nanowires.

  16. SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black

    Directory of Open Access Journals (Sweden)

    Wang Feng-Lei

    2008-01-01

    Full Text Available Abstract SiC nanowires have been synthesized at 1,600 °C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO2nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism.

  17. SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black

    OpenAIRE

    Wang Feng-Lei; Zhang Li-Ying; Zhang Ya-Fei

    2008-01-01

    Abstract SiC nanowires have been synthesized at 1,600 °C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO2nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assis...

  18. Characterization of electrical properties in axial Si-Ge nanowire heterojunctions using off-axis electron holography and atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Zhaofeng [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA; Perea, Daniel E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Yoo, Jinkyoung [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; He, Yang [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pennsylvania 15261, USA; Colby, Robert J. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Barker, Josh E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Gu, Meng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Mao, Scott X. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pennsylvania 15261, USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Picraux, S. T. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Smith, David J. [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA; McCartney, Martha R. [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

    2016-09-13

    Doped Si-Ge nanowire (NW) heterojunctions were grown using the vapor-liquid-solid method with AuGa and Au catalyst particles. Transmission electron microscopy and off-axis electron holography (EH) were used to characterize the nanostructure and to measure the electrostatic potential profile across the junction resulting from electrically active dopants, while atom-probe tomography (APT) was used to determine the Si, Ge and total (active and inactive) dopant concentration profiles. A comparison of the measured potential profile with simulations indicated that Ga dopants unintentionally introduced during AuGa catalyst growth were electronically inactive despite APT results that showed considerable amounts of Ga in the Si region. 10% P in Ge and 100% B in Si were estimated to be activated, which was corroborated by in situ electron-holography biasing experiments. This combination of EH, APT, in situ biasing and simulations allows a better knowledge and understanding of the electrically active dopant distributions in NWs.

  19. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    Science.gov (United States)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    , by the purpose to integrate the carbon nanostructures in the carbon fibers by means of chemical vapor deposition (CVD) method, in order to develop the basic substrate of advanced carbon-based nanocomposite for atomic oxygen protection. The nanostructures grown onto the carbon fibers can be used to create multiscale hybrid carbon nanotube/carbon fiber composites where individual carbon fibers, which are several microns in diameter, are surrounded by nanotubes. The present objective is the setting-up of the CVD parameters for a reliable growth of carbon nanostructures on carbon fiber surface; after that, the results of a preliminary characterization related to atomic oxygen effects testing by means of a ground LEO simulation facility are reported and discussed.

  20. A first principles study on the CVD graphene growth on copper surfaces: A carbon atom incorporation to graphene edges

    Science.gov (United States)

    Tajima, Nobuo; Kaneko, Tomoaki; Nara, Jun; Ohno, Takahisa

    2016-11-01

    Carbon atom reactions in the chemical vapor deposition (CVD) processes for graphene production on copper surfaces have been studied by first principles molecular dynamics (MD) simulations at a typical CVD growth temperature. This study focuses on the processes of a carbon atom incorporation to graphene edges. The energy barriers of these carbon atom incorporation reactions have been calculated as ~ 1 eV, which are comparable or slightly larger than the barriers of carbon atom dimerization. We have also found that the surface copper atoms form step like structures to terminate the carbon dangling bonds at graphene edges, which are markedly different from the graphene-copper interactions observed in static calculations.

  1. Quantitative Atomic Force Microscopy with Carbon Monoxide Terminated Tips

    NARCIS (Netherlands)

    Sun, Zhixiang|info:eu-repo/dai/nl/314075674; Boneschanscher, Mark P.; Swart, Ingmar|info:eu-repo/dai/nl/304837652; Vanmaekelbergh, Daniel|info:eu-repo/dai/nl/304829137; Liljeroth, Peter|info:eu-repo/dai/nl/314007423

    2011-01-01

    Noncontact atomic force microscopy (AFM) has recently progressed tremendously in achieving atomic resolution imaging through the use of small oscillation amplitudes and well-defined modification of the tip apex. In particular, it has been shown that picking up simple inorganic molecules (such as CO)

  2. Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM

    KAUST Repository

    Cong, Chunxiao

    2013-02-01

    In-plane and out-of-plane arrangements of carbon atoms in graphene layers play critical roles in the fundamental physics and practical applications of these novel two-dimensional materials. Here, we report initial results on the edge/crystal orientations and stacking orders of bi-and tri-layer graphene (BLG and TLG) from Raman spectroscopy and transmission electron microscopy (TEM) experiments performed on the same sample. We introduce a new method of transferring graphene flakes onto a normal TEM grid. Using this novel method, we probed the BLG and TLG flakes that had been previously investigated by Raman scattering with high-resolution (atomic) TEM.

  3. Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM

    Science.gov (United States)

    Cong, Chunxiao; Li, Kun; Zhang, Xi Xiang; Yu, Ting

    2013-01-01

    In-plane and out-of-plane arrangements of carbon atoms in graphene layers play critical roles in the fundamental physics and practical applications of these novel two-dimensional materials. Here, we report initial results on the edge/crystal orientations and stacking orders of bi- and tri-layer graphene (BLG and TLG) from Raman spectroscopy and transmission electron microscopy (TEM) experiments performed on the same sample. We introduce a new method of transferring graphene flakes onto a normal TEM grid. Using this novel method, we probed the BLG and TLG flakes that had been previously investigated by Raman scattering with high-resolution (atomic) TEM. PMID:23378926

  4. Reply to ``Comment on `Imaging the atomic orbitals of carbon atomic chains with field-emission electron microscopy' ''

    Science.gov (United States)

    Mikhailovskij, I. M.; Sadanov, E. V.; Mazilova, T. I.; Ksenofontov, V. A.; Velicodnaja, O. A.

    2010-03-01

    In our recent paper [I. M. Mikhailovskij, E. V. Sadanov, T. I. Mazilova, V. A. Ksenofontov, and O. A. Velicodnaja, Phys. Rev. B 80, 165404 (2009)], we have presented evidence for field emission from individual orbitals of self-standing carbon chains, which can be used for real-space imaging of the end-atom orbitals with a field-emission electron microscope (FEEM). In this reply to the preceding Comment, we refer to the issues brought up there, which concern the viewpoint that the observed spontaneous mutual transformations of FEEM patterns have been attributed to the ligand-induced symmetry breaking by calling attention to the role of hydrogen atoms unavoidable in most nanostructured carbon materials.

  5. Quantitative Atomic Force Microscopy with Carbon Monoxide Terminated Tips

    OpenAIRE

    Sun, Zhixiang; Boneschanscher, Mark P.; Swart, Ingmar; Vanmaekelbergh, Daniel; Liljeroth, Peter

    2011-01-01

    Noncontact atomic force microscopy (AFM) has recently progressed tremendously in achieving atomic resolution imaging through the use of small oscillation amplitudes and well-defined modification of the tip apex. In particular, it has been shown that picking up simple inorganic molecules (such as CO) by the AFM tip leads to a well-defined tip apex and to enhanced image resolution. Here, we use the same approach to study the three-dimensional intermolecular interaction potential between two mol...

  6. Effects of Atomic-Scale Structure on the Fracture Properties of Amorphous Carbon - Carbon Nanotube Composites

    Science.gov (United States)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    The fracture of carbon materials is a complex process, the understanding of which is critical to the development of next generation high performance materials. While quantum mechanical (QM) calculations are the most accurate way to model fracture, the fracture behavior of many carbon-based composite engineering materials, such as carbon nanotube (CNT) composites, is a multi-scale process that occurs on time and length scales beyond the practical limitations of QM methods. The Reax Force Field (ReaxFF) is capable of predicting mechanical properties involving strong deformation, bond breaking and bond formation in the classical molecular dynamics framework. This has been achieved by adding to the potential energy function a bond-order term that varies continuously with distance. The use of an empirical bond order potential, such as ReaxFF, enables the simulation of failure in molecular systems that are several orders of magnitude larger than would be possible in QM techniques. In this work, the fracture behavior of an amorphous carbon (AC) matrix reinforced with CNTs was modeled using molecular dynamics with the ReaxFF reactive forcefield. Care was taken to select the appropriate simulation parameters, which can be different from those required when using traditional fixed-bond force fields. The effect of CNT arrangement was investigated with three systems: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. For each arrangement, covalent bonds are added between the CNTs and AC, with crosslink fractions ranging from 0-25% of the interfacial CNT atoms. The SWNT and MWNT array systems represent ideal cases with evenly spaced CNTs; the SWNT bundle system represents a more realistic case because, in practice, van der Waals interactions lead to the agglomeration of CNTs into bundles. The simulation results will serve as guidance in setting experimental processing conditions to optimize the mechanical properties of CNT

  7. Determination of Diclofenac on a Dysprosium Nanowire- Modified Carbon Paste Electrode Accomplished in a Flow Injection System by Advanced Filtering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Moosavi-Movahedi

    2009-09-01

    Full Text Available A new detection technique called Fast Fourier Transform Square-Wave Voltammetry (FFT SWV is based on measurements of electrode admittance as a function of potential. The response of the detector (microelectrode, which is generated by a redox processes, is fast, which makes the method suitable for most applications involving flowing electrolytes. The carbon paste electrode was modified by nanostructures to improve sensitivity. Synthesized dysprosium nanowires provide a more effective nanotube-like surface [1-4] so they are good candidates for use as a modifier for electrochemical reactions. The redox properties of diclofenac were used for its determination in human serum and urine samples. The support electrolyte that provided a more defined and intense peak current for diclofenac determination was a 0.05 mol L−1 acetate buffer pH = 4.0. The drug presented an irreversible oxidation peak at 850 mV vs. Ag/AgCl on a modified nanowire carbon paste electrode which produced high current and reduced the oxidation potential by about 100 mV. Furthermore, the signal-to-noise ratio was significantly increased by application of a discrete Fast Fourier Transform (FFT method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. To obtain the much sensivity the effective parameters such as frequency, amplitude and pH was optimized. As a result, CDL of 2.0 × 10−9 M and an LOQ of 5.0 × 10−9 M were found for the determination for diclofenac. A good recovery was obtained for assay spiked urine samples and a good quantification of diclofenac was achieved in a commercial formulation.

  8. Growth and structural characterization of III-V semiconductor nanowires

    OpenAIRE

    Rieger, Torsten

    2015-01-01

    In this thesis, the growth and structural properties of III-V semiconductor nanowires and nanowire heterostructures are studied. These nanowires represent structures suitable for both fundamental physics and applications in electronic devices such as (tunnel) field effect transistors. The III-V nanowires are grown with molecular beam epitaxy, high κ dielectric layers are deposited conformally around the nanowires by atomic layer deposition. The morphological and structural characteristics of ...

  9. Characterization of electrical properties in axial Si-Ge nanowire heterojunctions using off-axis electron holography and atom-probe tomography

    Science.gov (United States)

    Gan, Zhaofeng; Perea, Daniel E.; Yoo, Jinkyoung; He, Yang; Colby, Robert J.; Barker, Josh E.; Gu, Meng; Mao, Scott X.; Wang, Chongmin; Picraux, S. T.; Smith, David J.; McCartney, Martha R.

    2016-09-01

    Nanowires (NWs) consisting of P-doped Si/B-doped Ge axial heterojunctions were grown via vapor-liquid-solid synthesis using a combination of Au and AuGa catalyst particles. Off-axis electron holography (EH) was used to measure the electrostatic potential profile across the junction resulting from electrically active dopants, and atom-probe tomography (APT) was used to map total dopant concentration profiles. A comparison of the electrostatic potential profile measured from EH with simulations that were based on the APT results indicates that Ga atoms unintentionally introduced during AuGa catalyst growth were mostly electronically inactive. This finding was also corroborated by in situ electron-holography biasing experiments. Electronic band structure simulations guided by the experimental results helped to provide a much better explanation of the NW electrical behavior. Overall, this work demonstrates that the combination of EH, APT, in situ biasing, and simulations allows a more complete understanding of NW electrical properties to be developed.

  10. Long-range coupling of single atoms mediated by metallic nano-wires and metamaterials: collective decay rate modifications and level shifts

    Science.gov (United States)

    Dzsotjan, David; Fleischhauer, Michael

    2012-10-01

    We investigate the long-range coupling of individual atoms coupled to plasmon modes of metallic nanostructures. Placing a pair of emitters along a thin metallic wire, we observe a strong, wire- mediated long-range interaction between the emitters. As a result, super- and subradiance can occur over distances large compared to the resonant wavelength. The states with enhanced or suppressed decay rate are the symmetric or anti-symmetric single-excitation states. Coupling more atoms to a wire network with a nontrivial coupling topology leads to interesting entangled subradiant states of the system. A similar long-range superradiance effect can be observed when two emitters are coupled by a metamaterial slab (also known as a perfect lens) having a refractive index n=-1. Besides the modification of decay rates, dipole-dipole shifts enter due to the plasmon-mediated interaction. Based on the superradiance effect, we propose setups for building a two-qubit quantum phase gate for quantum emitters coupled by a nanowire and a perfect lens, respectively, where the qubits are strongly interacting and individually addressable at the same time.

  11. Atomic Layer Deposition on Carbon Nanotubes and their Assemblies

    Science.gov (United States)

    Stano, Kelly Lynn

    Global issues related to energy and the environment have motivated development of advanced material solutions outside of traditional metals ceramics, and polymers. Taking inspiration from composites, where the combination of two or more materials often yields superior properties, the field of organic-inorganic hybrids has recently emerged. Carbon nanotube (CNT)-inorganic hybrids have drawn widespread and increasing interest in recent years due to their multifunctionality and potential impact across several technologically important application areas. Before the impacts of CNT-inorganic hybrids can be realized however, processing techniques must be developed for their scalable production. Optimization in chemical vapor deposition (CVD) methods for synthesis of CNTs and vertically aligned CNT arrays has created production routes both high throughput and economically feasible. Additionally, control of CVD parameters has allowed for growth of CNT arrays that are able to be drawn into aligned sheets and further processed to form a variety of aligned 1, 2, and 3-dimensional bulk assemblies including ribbons, yarns, and foams. To date, there have only been a few studies on utilizing these bulk assemblies for the production of CNT-inorganic hybrids. Wet chemical methods traditionally used for fabricating CNT-inorganic hybrids are largely incompatible with CNT assemblies, since wetting and drying the delicate structures with solvents can destroy their structure. It is therefore necessary to investigate alternative processing strategies in order to advance the field of CNT-inorganic hybrids. In this dissertation, atomic layer deposition (ALD) is evaluated as a synthetic route for the production of large-scale CNT-metal oxide hybrids as well as pure metal oxide architectures utilizing CNT arrays, ribbons, and ultralow density foams as deposition templates. Nucleation and growth behavior of alumina was evaluated as a function of CNT surface chemistry. While highly graphitic

  12. Migration Mechanism for Atomic Hydrogen in Porous Carbon Materials

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, B.; Zhao, Y. F.; Ciobanu, C. V.

    2012-05-14

    To explain the fast kinetics of H in porous carbon, we propose that the migration relies on H hopping from a carbon nanotube (CNT) to another. Using density functional theory, we have found that the barrier for H hopping becomes smaller than that for diffusion along a tube for certain CNT separations, decreasting to less than 0.5 eV for separations of -3.1 {angstrom}. Such significant reduction occurs irrespective of radius, chirality, registry, and orientation of the two CNTs: the diffusion is thus facilitated by the porous nature of the material itself. The mechanism proposed is applicable for any porous carbon-based nanomaterials.

  13. Effect of Axial Torsion on sp Carbon Atomic Wires

    OpenAIRE

    Ravagnan, L.; Manini, N.; Cinquanta, E.; Onida, G.; Motta, C.; Sangalli, D.; Bordoni, A; Devetta, M.; Piseri, P.; Milani, P.

    2009-01-01

    Ab-initio calculations within Density Functional Theory combined with experimental Raman spectra on cluster-beam deposited pure carbon films provide a consistent picture of sp-carbon chains stabilized by sp^3 or sp^2 terminations, the latter being sensitive to torsional strain. This unexplored effect promises many exciting applications since it allows one to modify the conductive states near the Fermi level and to switch on and off the on-chain pi-electron magnetism.

  14. Effect of axial torsion on sp carbon atomic wires.

    Science.gov (United States)

    Ravagnan, Luca; Manini, Nicola; Cinquanta, Eugenio; Onida, Giovanni; Sangalli, Davide; Motta, Carlo; Devetta, Michele; Bordoni, Andrea; Piseri, Paolo; Milani, Paolo

    2009-06-19

    Ab initio calculations within density-functional theory combined with experimental Raman spectra on cluster-beam deposited pure-carbon films provide a consistent picture of sp-carbon chains stabilized by sp;{3} or sp;{2} terminations, the latter being sensitive to torsional strain. This unexplored effect promises many exciting applications since it allows one to modify the conductive states near the Fermi level and to switch on and off the on-chain pi-electron magnetism.

  15. Growth and Destruction of PAH Molecules in Reactions with Carbon Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Krasnokutski, Serge A.; Huisken, Friedrich; Jäger, Cornelia; Henning, Thomas [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena (Germany)

    2017-02-10

    A very high abundance of atomic carbon in the interstellar medium (ISM), and the high reactivity of these species toward different hydrocarbon molecules including benzene, raise questions regarding the stability of polycyclic aromatic hydrocarbon (PAH) molecules in space. To test the efficiency of destruction of PAH molecules via reactions with atomic carbon, we performed a set of laboratory and computational studies of the reactions of naphthalene, anthracene, and coronene molecules with carbon atoms in the ground state. The reactions were investigated in liquid helium droplets at T = 0.37 K and by quantum chemical computations. Our studies suggest that all small and all large catacondensed PAHs react barrierlessly with atomic carbon, and therefore should be efficiently destroyed by such reactions in a broad temperature range. At the same time, large compact pericondensed PAHs should be more inert toward such a reaction. In addition, taking into account their higher photostability, much higher abundances of pericondensed PAHs should be expected in various astrophysical environments. The barrierless reactions between carbon atoms and small PAHs also suggest that, in the ISM, these reactions could lead to the bottom-up formation of PAH molecules.

  16. Strain-induced metal-semiconductor transition observed in atomic carbon chains.

    Science.gov (United States)

    La Torre, A; Botello-Mendez, A; Baaziz, W; Charlier, J-C; Banhart, F

    2015-03-30

    Carbyne, the sp(1)-hybridized phase of carbon, is still a missing link in the family of carbon allotropes. While the bulk phases of carbyne remain elusive, the elementary constituents, that is, linear chains of carbon atoms, have already been observed using the electron microscope. Isolated atomic chains are highly interesting one-dimensional conductors that have stimulated considerable theoretical work. Experimental information, however, is still very limited. Here we show electrical measurements and first-principles transport calculations on monoatomic carbon chains. When the 1D system is under strain, the chains are semiconducting corresponding to the polyyne structure with alternating bond lengths. Conversely, when the chain is unstrained, the ohmic behaviour of metallic cumulene with uniform bond lengths is observed. This confirms the recent prediction of a metal-insulator transition that is induced by strain. The key role of the contacting leads explains the rectifying behaviour measured in monoatomic carbon chains in a nonsymmetric contact configuration.

  17. Strain-induced metal–semiconductor transition observed in atomic carbon chains

    Science.gov (United States)

    La Torre, A.; Botello-Mendez, A.; Baaziz, W.; Charlier, J. -C.; Banhart, F.

    2015-01-01

    Carbyne, the sp1-hybridized phase of carbon, is still a missing link in the family of carbon allotropes. While the bulk phases of carbyne remain elusive, the elementary constituents, that is, linear chains of carbon atoms, have already been observed using the electron microscope. Isolated atomic chains are highly interesting one-dimensional conductors that have stimulated considerable theoretical work. Experimental information, however, is still very limited. Here we show electrical measurements and first-principles transport calculations on monoatomic carbon chains. When the 1D system is under strain, the chains are semiconducting corresponding to the polyyne structure with alternating bond lengths. Conversely, when the chain is unstrained, the ohmic behaviour of metallic cumulene with uniform bond lengths is observed. This confirms the recent prediction of a metal–insulator transition that is induced by strain. The key role of the contacting leads explains the rectifying behaviour measured in monoatomic carbon chains in a nonsymmetric contact configuration. PMID:25818506

  18. Gold nanowires and the effect of impurities

    Directory of Open Access Journals (Sweden)

    Novaes Frederico

    2006-01-01

    Full Text Available AbstractMetal nanowires and in particular gold nanowires have received a great deal of attention in the past few years. Experiments on gold nanowires have prompted theory and simulation to help answer questions posed by these studies. Here we present results of computer simulations for the formation, evolution and breaking of very thin Au nanowires. We also discuss the influence of contaminants, such as atoms and small molecules, and their effect on the structural and mechanical properties of these nanowires.

  19. Nickel-cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon fiber cloth for high-performance flexible pseudocapacitive energy storage devices

    KAUST Repository

    Shakir, Imran

    2014-05-01

    Nickel-cobalt layered double hydroxide (Ni-Co LDH) nanoflakes-ZnO nanowires hybrid array has been directly synthesized on a carbon cloth substrate by a facile cost-effective two-step hydrothermal route. As electrode materials for flexible pseudocapacitors, Ni-Co LDH nanoflakes-ZnO nanowires hybrid array exhibits a significantly enhanced specific capacitance of 1927 Fg-1, which is a ∼1.8 time greater than pristine Ni-Co LDH nanoflakes. The synthesized Ni-Co LDH nanoflakes-ZnO nanowires hybrid array shows a maximum energy density of 45.55 Whkg-1 at a power density of 46.15 kWkg -1, which is 35% higher than the pristine Ni-Co LDH nanoflakes electrode. Moreover, Ni-Co LDH nanoflakes-ZnO nanowires hybrid array exhibit excellent excellent rate capability (80.3% capacity retention at 30 Ag -1) and cycling stability (only 3.98% loss after 3000 cycles), due to the significantly improved faradaic redox reaction. © 2014 Elsevier Ltd.

  20. Integrating Carbon Nanotubes For Atomic Force Microscopy Imaging Applications

    Science.gov (United States)

    Ye, Qi; Cassell, Alan M.; Liu, Hongbing; Han, Jie; Meyyappan, Meyya

    2004-01-01

    Carbon nanotube (CNT) related nanostructures possess remarkable electrical, mechanical, and thermal properties. To produce these nanostructures for real world applications, a large-scale controlled growth of carbon nanotubes is crucial for the integration and fabrication of nanodevices and nanosensors. We have taken the approach of integrating nanopatterning and nanomaterials synthesis with traditional silicon micro fabrication techniques. This integration requires a catalyst or nanomaterial protection scheme. In this paper, we report our recent work on fabricating wafer-scale carbon nanotube AFM cantilever probe tips. We will address the design and fabrication considerations in detail, and present the preliminary scanning probe test results. This work may serve as an example of rational design, fabrication, and integration of nanomaterials for advanced nanodevice and nanosensor applications.

  1. Weighing a single atom using a coupled plasmon–carbon nanotube system

    Directory of Open Access Journals (Sweden)

    Jin-Jin Li and Ka-Di Zhu

    2012-01-01

    Full Text Available We propose an optical weighing technique with a sensitivity down to a single atom, using a surface plasmon and a doubly clamped carbon nanotube resonator. The mass of a single atom is determined via the vibrational frequency shift of the carbon nanotube while the atom attaches to the nanotube surface. Owing to the ultralight mass and high quality factor of the carbon nanotube, and the spectral enhancement by the use of surface plasmon, this method results in a narrow linewidth (kHz and high sensitivity (2.3×10−28 Hzcenterdot g−1, which is five orders of magnitude more sensitive than traditional electrical mass detection techniques.

  2. The over-step coalescence of carbon atoms on copper surface in the CVD growth of graphene: density functional calculations

    Directory of Open Access Journals (Sweden)

    Yingfeng Li

    2013-05-01

    Full Text Available The ways in which carbon atoms coalesce over the steps on copper (111 surface are ascertained by density functional theory (DFT calculations in the context of chemical vapor deposition (CVD growth of graphene. Two strategies, (1 by putting carbon atoms on and under the steps separately and (2 by importing additional carbon atoms between the ones separated by the steps, have been attempted to investigate if an over-step coalescence of carbon atoms could take place. Based on analyses about the optimized configurations and adsorption energies of carbon atoms nearby the steps, as well as the energy evolution curve of the system throughout the geometry optimizations process, we determined the main way in which graphene grows over the steps continuously: the carbon atoms, adsorbed additionally on the locations between the already existing ones which are separated by the steps, link them (these carbon atoms separated by the steps together. The direct over-step coalescence of the carbon atoms separated by the steps is very difficult, although the energy barrier preventing their coalescence can be weakened by importing carbon atoms on and under the steps gradually. Our results imply potential applications in directing the fabrication of graphene with particular structure by controlling the surface topography of copper substrate.

  3. Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock

    Science.gov (United States)

    Narula, Chaitanya K.; Davison, Brian H.

    2015-11-13

    A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100°C and up to 550°C, wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.

  4. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Hou, Changjun, E-mail: houcj@cqu.edu.cn [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Huo, Danqun [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Yang, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Fa, Huanbao [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2016-02-28

    Graphical abstract: A novel and sensitive electrochemical biosensor based on hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH) was first developed for the detection of the specific-sequence target DNA. This schematic represents the fabrication procedure of our DNA biosensor. - Highlights: • An ultrasensitive DNA electrochemical biosensor was developed. • CuO NWs entangled with the SWCNTs formed a mesh structure with good conductivity. • It is the first time use of CuONWs-SWCNTs hybrid nanocomposite for DNA detection. • The biosensor is simple, selective, stable, and sensitive. • The biosensor has great potential for use in analysis of real samples. - Abstract: Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10{sup −14} to 1.0 × 10{sup −8} M), with a detection limit of 3.5 × 10{sup −15} M (signal/noise ratio of 3). The biosensor also showed high

  5. Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, Frank; Schiek, Manuela; Al-Shamery, Katharina

    Single crystalline nanowires from fluorescing organic molecules like para-phenylenes or thiophenes are supposed to become key elements in future integrated optoelectronic devices [1]. For a sophisticated design of devices based on nanowires the basic principles of the nanowire formation have...

  6. Trapping of metal Atoms on nanoprotrusions of carbon nanotubes

    DEFF Research Database (Denmark)

    Shao, Lidong; Zhang, Wei; Kuhn, Luise Theil

    2013-01-01

    Nanoprotrusions on CNTs are engineered using conventional lab treatments at a low temperature. The experimental set-up of applying a mild acid treatment with sonication and base washing is based on the development of introduced defects and vacancies. Compared with previous reports realizing...... selective metal depositions on individual carbon nanostructures, our work achieve a selective deposition of Pd nanoparticles on nanoprotrusions of CNTs in a bulk-phase. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  7. Electrocatalytic activity of NiO on silicon nanowires with a carbon shell and its application in dye-sensitized solar cell counter electrodes.

    Science.gov (United States)

    Kim, Junhee; Jung, Cho-long; Kim, Minsoo; Kim, Soomin; Kang, Yoonmook; Lee, Hae-seok; Park, Jeounghee; Jun, Yongseok; Kim, Donghwan

    2016-04-14

    To improve the catalytic activity of a material, it is critical to maximize the effective surface area by directly contacting the electrolyte. Nanowires are a promising building block for catalysts in electrochemical applications because of their large surface area. Nickel oxide (NiO) decoration was achieved by drop-casting a nickel-dissolved solution onto vertically aligned silicon nanowire arrays with a carbon shell (SiNW/C). Based on the hybridization of the NiO and silicon nanowire arrays with a carbon shell this study aimed to achieve a synergic effect for the catalytic activity performance. This study demonstrated that the resulting nanomaterial exhibits excellent electrocatalytic activity and performs well as a counter electrode for dye-sensitized solar cells (DSSCs). The compositions of the materials were examined using X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy. Their micro- and nano-structures were investigated using scanning electron microscopy and transmission electron microscopy. The electrochemical activity toward I(-)/I3(-) was examined using cyclic voltammetry and electrochemical impedance spectroscopy. The obtained peak power conversion efficiency of the DSSC based on the NiO@SiNW/C counter electrode was 9.49%, which was greater than that of the DSSC based on the Pt counter electrode.

  8. The effect of carbon nanotube chirality on the spiral flow of copper atoms in their cores

    Energy Technology Data Exchange (ETDEWEB)

    Lim, M.C.G., E-mail: M070041@e.ntu.edu.sg [Nanyang Technological University, School of Mechanical and Aerospace Engineering, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zhong, Z.W. [Nanyang Technological University, School of Mechanical and Aerospace Engineering, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2012-12-14

    The effect of carbon nanotube (CNT) chirality on the flow of copper atoms along its core has been investigated using molecular dynamics simulations. The investigation is conducted using CNTs of different chirality, and different flow conditions such as temperatures, bias voltages and the initial positions of the copper atoms. The results show that the atoms flow in a spiral fashion along the CNT channels. The effect is most evident in the CNT channel with zigzag CNTs. The movement of the copper atoms is more erratic when the temperature is increased at a low biased voltage, regardless of the types of channel used. The initial positions of the copper atoms affect the way they converge as they move downstream along the channel. A bias voltage of 4 V favours the initiation of a spiral flow, especially when the position of the copper atoms is far from the central axis of the channel. -- Highlights: Black-Right-Pointing-Pointer We model the transportation of copper atoms in armchair and zigzag CNT channels. Black-Right-Pointing-Pointer The spiral flow of copper atoms occurs in a semiconductor-semiconductor CNT. Black-Right-Pointing-Pointer The compact copper mass is predicted to occur at 673 K with a 4 V bias voltage.

  9. In situ-growth of silica nanowires in ceramic carbon composites

    OpenAIRE

    Rahul Kumar; Parag Bhargava

    2017-01-01

    An understanding of the processing and microstructure of ceramic–carbon composites is critical to development of these composites for applications needing electrically conducting, thermal shock resistant ceramic materials. In the present study green compacts of carbon ceramic composites were prepared either by slurry processing or dry powder blending of one or more of the three — clay, glass, alumina and carbon black or graphite. The dried green compacts were sintered at 1400 °C in flowing ar...

  10. Controllable High-Speed Rotation of Nanowires

    Science.gov (United States)

    Fan, D. L.; Zhu, F. Q.; Cammarata, R. C.; Chien, C. L.

    2005-06-01

    We report a versatile method for executing controllable high-speed rotation of nanowires by ac voltages applied to multiple electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 1800 rpm), definite chirality, and total angle of rotation. We have determined the torque due to the fluidic drag force on nanowire of different lengths. We also demonstrate a micromotor using a rotating nanowire driving a dust particle into circular motion. This method has been used to rotate magnetic and nonmagnetic nanowires as well as carbon nanotubes.

  11. Probing buried carbon nanotubes within polymer-nanotube composite matrices by Atomic Force Microscopy

    NARCIS (Netherlands)

    Phang, In Yee; Liu, Tianxi; Zhang, Wei-De; Schönherr, Holger; Vancso, Gyula J.

    2007-01-01

    Multi-walled carbon nanotubes (MW-CNT) inside a polyamide-6 (PA6)–MW-CNT composite were visualized by atomic force microscopy (i) in a field-assisted intermittent contact and (ii) in the tunneling (TUNA) mode. Individual buried MW-CNTs were clearly discerned within the PA6 matrix. An average

  12. Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe

    DEFF Research Database (Denmark)

    Kageshima, M.; Jensenius, Henriette; Dienwiebel, M.

    2002-01-01

    A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane surface were detected both in the frequency shift and dissipation. Due...

  13. Structural and chemical evolution of single-wall carbon nanotubes under atomic and molecular deuterium interaction

    NARCIS (Netherlands)

    Lisowski, W.F.; Keim, Enrico G.; van den Berg, A.H.J.; Smithers, M.A.; Smithers, Mark A.

    2005-01-01

    The interaction of atomic (D) and molecular (D2) deuterium, as present in a (D + D2) gas mixture, with single-wall carbon nanotubes (SWNTs) has been studied by means of a combination of scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The SWNT

  14. Dye-sensitized solar cells with vertically aligned TiO2 nanowire arrays grown on carbon fibers.

    Science.gov (United States)

    Cai, Xin; Wu, Hongwei; Hou, Shaocong; Peng, Ming; Yu, Xiao; Zou, Dechun

    2014-02-01

    One-dimensional semiconductor TiO2 nanowires (TNWs) have received widespread attention from solar cell and related optoelectronics scientists. The controllable synthesis of ordered TNW arrays on arbitrary substrates would benefit both fundamental research and practical applications. Herein, vertically aligned TNW arrays in situ grown on carbon fiber (CF) substrates through a facile, controllable, and seed-assisted thermal process is presented. Also, hierarchical TiO2 -nanoparticle/TNW arrays were prepared that favor both the dye loading and depressed charge recombination of the CF/TNW photoanode. An impressive conversion efficiency of 2.48 % (under air mass 1.5 global illumination) and an apparent efficiency of 4.18 % (with a diffuse board) due to the 3D light harvesting of the wire solar cell were achieved. Moreover, efficient and inexpensive wire solar cells made from all-CF electrodes and completely flexible CF-based wire solar cells were demonstrated, taking into account actual application requirements. This work may provide an intriguing avenue for the pursuit of lightweight, cost-effective, and high-performance flexible/wearable solar cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Silver nanowire-carbon fiber cloth nanocomposites synthesized by UV curing adhesive for electrochemical point-of-use water disinfection.

    Science.gov (United States)

    Hong, Xuesen; Wen, Junjie; Xiong, Xuhua; Hu, Yongyou

    2016-07-01

    Novel silver nanowire (AgNW) - carbon fiber cloth (CC) nanocomposites were synthesized by a rapid and facile method. Acting as filter in an electrical gravity filtration device, the AgNW-CC nanocomposites were applied to electrochemical point-of-use water disinfection. AgNW-CC nanocomposites were characterized by FESEM, XRD, and FTIR. Their disinfection performance toward Escherichia coli and bacteriophage MS2 was evaluated by inhibition zone tests, optical density growth curve tests, and flow tests. The results showed that complex 3D AgNW networks with controllable silver release (<100 ppb) were fabricated on CC by using UV curing adhesive. AgNW-CC nanocomposites exhibited excellent intrinsic antibacterial activities against E. coli. The concentration of AgNWs and UV adhesive controlled the released silver and hence led to the change in antibacterial activity. The external electric field significantly enhanced the disinfection efficiency of AgNW-CC nanocomposites. Over 99.999% removal of E. coli and MS2 could be achieved. More complex AgNW networks contributed to higher disinfection efficiency under 10 V and 10(6) CFU (PFU) mL(-1) of microorganism. UV adhesive could keep the disinfection performance from being affected by flow rate. The convenient synthesis and outstanding disinfection performance offer AgNW-CC nanocomposites opportunities in the application of electrochemical point-of-use drinking water disinfection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. MnO2 Nanowire/Biomass-Derived Carbon from Hemp Stem for High-Performance Supercapacitors.

    Science.gov (United States)

    Yang, MinHo; Kim, Dong Seok; Hong, Seok Bok; Sim, Jae-Wook; Kim, Jinsoo; Kim, Seung-Soo; Choi, Bong Gill

    2017-05-30

    Hierarchical 3D nanostructures based on waste biomass are being offered as promising materials for energy storage due to their processabilities, multifunctionalities, environmental benignities, and low cost. Here we report a facile, inexpensive, and scalable strategy for the fabrication of hierarchical porous 3D structure as electrode materials for supercapacitors based on MnO2 nanowires and hemp-derived activated carbon (HC). Vertical MnO2 wires are uniformly deposited onto the surface of HC using a one-step hydrothermal method to produce hierarchical porous structures with conductive interconnected 3D networks. HC acts as a near-ideal 3D current collector and anchors electroactive materials, and this confers a specific capacitance of 340 F g-1 at 1 A g-1 with a high rate capability (88% retention) of the 3D MnO2/HC composite because of its open-pore system, which facilitates ion and electron transports and synergistic contribution of two energy-storage materials. Moreover, asymmetric supercapacitors fabricated using 3D HC as the anode and 3D MnO2/HC as the cathode are able to store 33.3 Wh kg-1 of energy and have a power delivery of 14.8 kW kg-1.

  17. Spatial Distributions of Metal Atoms During Carbon SWNTs Formation: Measurements and Modelling

    Science.gov (United States)

    Cau, M.; Dorval, N.; Attal-Tretout, B.; Cochon, J. L.; Loiseau, A.; Farhat, S.; Hinkov, I.; Scott, C. D.

    2004-01-01

    Experiments and modelling have been undertaken to clarify the role of metal catalysts during single-wall carbon nanotube formation. For instance, we wonder whether the metal catalyst is active as an atom, a cluster, a liquid or solid nanoparticle [1]. A reactor has been developed for synthesis by continuous CO2-laser vaporisation of a carbon-nickel-cobalt target in laminar helium flow. The laser induced fluorescence technique [2] is applied for local probing of gaseous Ni, Co and CZ species throughout the hot carbon flow of the target heated up to 3500 K. A rapid depletion of C2 in contrast to the spatial extent of metal atoms is observed in the plume (Fig. 1). This asserts that C2 condenses earlier than Ni and Co atoms.[3, 4]. The depletion is even faster when catalysts are present. It may indicate that an interaction between metal atoms and carbon dimers takes place in the gas as soon as they are expelled from the target surface. Two methods of modelling are used: a spatially I-D calculation developed originally for the arc process [5], and a zero-D time dependent calculation, solving the chemical kinetics along the streamlines [6]. The latter includes Ni cluster formation. The peak of C2 density is calculated close to the target surface where the temperature is the highest. In the hot region, C; is dominant. As the carbon products move away from the target and mix with the ambient helium, they recombine into larger clusters, as demonstrated by the peak of C5 density around 1 mm. The profile of Ni-atom density compares fairly well with the measured one (Fig. 2). The early increase is due to the drop of temperature, and the final decrease beyond 6 mm results from Ni cluster formation at the eutectic temperature (approx.1600 K).

  18. Radiation Stability of Metal Nanowires

    Science.gov (United States)

    Bedin, S. A.; Makhin'ko, F. F.; Ovchinnikov, V. V.; Gerasimenko, N. N.; Zagorskiy, D. L.

    2017-01-01

    The aim of this work is to investigate the radiation stability of pure nickel and iron- nickel Fe0.56Ni0.44 alloy nanowires fabricated by matrix synthesis using polymer track membranes and Ar+ and Xe+ (E = 20 keV, j = 300 μA/cm2) beam irradiation. The dependence of the stability of nanowires on their diameter, fluence, and type of implanted ions is investigated. The assumption that the thermalized regions of dense cascades of atomic displacements (thermal spikes) play an important role in the nanowire structure change is made. These regions are nanosized zones of explosive energy release and heated to several thousands of degrees.

  19. Modeling the Mechanical Properties of Functionalized Carbon Nanotubes and Their Composites: Design at the Atomic Level

    Directory of Open Access Journals (Sweden)

    Qing-Sheng Yang

    2014-01-01

    Full Text Available This investigation focuses on the design of functionalization configuration at the atomic level to determine the influence of atomic structure on the mechanical properties of functionalized carbon nanotubes (F-CNTs and their composites. Tension and compressive buckling behaviors of different configurations of CNTs functionalized by H atoms are studied by a molecular dynamics (MD method. It is shown that H-atom functionalization reduces Young’s modulus of CNTs, but Young’s modulus is not sensitive to the functionalization configuration. The configuration does, however, affect the tensile strength and critical buckling stress of CNTs. Further, the stress-strain relations of composites reinforced by nonfunctionalized and various functionalized CNTs are analyzed.

  20. A new material with atomized cobalt-multiwalled carbon nanotubes: a possible substitute for human implants.

    Science.gov (United States)

    Joshi, Bharat; Gupta, Sachin; Kalra, Nitin; Gudyka, Russell; Santhanam, K S V

    2010-06-01

    A new material composed of atomized cobalt-multiwalled carbon nanotube has been produced and characterized by thermogravimetric analysis and polarization studies to estimate its lifetime. This does not show cobalt thermal oxidation suggesting that it is confined inside the carbon nanotube matrix. The density functional calculations in the literature predict a strong interaction leading to higher hybridization of cobalt atom and carbon nanotubes. A detailed investigation of the corrosion measurements shows that the new material of thickness 0.8 mm, 1 mm, 1.5 mm and 2 mm would last for 31, 39, 60 and 79 years and it would substitute with cobalt-chromium alloy that is used as a load bearing implant for patients with knee pain or partial denture implant.

  1. Carbon-coated ZnO mat passivation by atomic-layer-deposited HfO2 as an anode material for lithium-ion batteries.

    Science.gov (United States)

    Jung, Mi-Hee

    2017-11-01

    ZnO has had little consideration as an anode material in lithium-ion batteries compared with other transition-metal oxides due to its inherent poor electrical conductivity and large volume expansion upon cycling and pulverization of ZnO-based electrodes. A logical design and facile synthesis of ZnO with well-controlled particle sizes and a specific morphology is essential to improving the performance of ZnO in lithium-ion batteries. In this paper, a simple approach is reported that uses a cation surfactant and a chelating agent to synthesize three-dimensional hierarchical nanostructured carbon-coated ZnO mats, in which the ZnO mats are composed of stacked individual ZnO nanowires and form well-defined nanoporous structures with high surface areas. In order to improve the performance of lithium-ion batteries, HfO2 is deposited on the carbon-coated ZnO mat electrode via atomic layer deposition. Lithium-ion battery devices based on the carbon-coated ZnO mat passivation by atomic layer deposited HfO2 exhibit an excellent initial discharge and charge capacities of 2684.01 and 963.21mAhg(-1), respectively, at a current density of 100mAg(-1) in the voltage range of 0.01-3V. They also exhibit cycle stability after 125 cycles with a capacity of 740mAhg(-1) and a remarkable rate capability. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  3. Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices.

    Science.gov (United States)

    Lin, Yung-Chen; Lu, Kuo-Chang; Wu, Wen-Wei; Bai, Jingwei; Chen, Lih J; Tu, K N; Huang, Yu

    2008-03-01

    We report the formation of PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices from such heterostructures. Scanning electron microscopy studies show that silicon nanowires can be converted into PtSi nanowires through controlled reactions between lithographically defined platinum pads and silicon nanowires. High-resolution transmission electron microscopy studies show that PtSi/Si/PtSi heterostructure has an atomically sharp interface with epitaxial relationships of Si[110]//PtSi[010] and Si(111)//PtSi(101). Electrical measurements show that the pure PtSi nanowires have low resistivities approximately 28.6 microOmega.cm and high breakdown current densities>1x10(8) A/cm2. Furthermore, using single crystal PtSi/Si/PtSi nanowire heterostructures with atomically sharp interfaces, we have fabricated high-performance nanoscale field-effect transistors from intrinsic silicon nanowires, in which the source and drain contacts are defined by the metallic PtSi nanowire regions, and the gate length is defined by the Si nanowire region. Electrical measurements show nearly perfect p-channel enhancement mode transistor behavior with a normalized transconductance of 0.3 mS/microm, field-effect hole mobility of 168 cm2/V.s, and on/off ratio>10(7), demonstrating the best performing device from intrinsic silicon nanowires.

  4. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    Science.gov (United States)

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  5. In Situ Growth of Core-Sheath Heterostructural SiC Nanowire Arrays on Carbon Fibers and Enhanced Electromagnetic Wave Absorption Performance.

    Science.gov (United States)

    Yan, Liwen; Hong, Changqing; Sun, Boqian; Zhao, Guangdong; Cheng, Yehong; Dong, Shun; Zhang, Dongyang; Zhang, Xinghong

    2017-02-22

    Large-scale core-sheath heterostructural SiC nanowires were facilely grown on the surface of carbon fibers using a one-step chemical vapor infiltration process. The as-synthesized SiC nanowires consist of single crystalline SiC cores with a diameter of ∼30 nm and polycrystalline SiC sheaths with an average thickness of ∼60 nm. The formation mechanisms of core-sheath heterostructural SiC nanowires (SiC nws ) were discussed in detail. The SiC nws -CF shows strong electromagnetic (EM) wave absorption performance with a maximum reflection loss value of -45.98 dB at 4.4 GHz. Moreover, being coated with conductive polymer polypyrrole (PPy) by a simple chemical polymerization method, the SiC nws -CF/PPy nanocomposites exhibited superior EM absorption abilities with maximum RL value of -50.19 dB at 14.2 GHz and the effective bandwidth of 6.2 GHz. The SiC nws -CF/PPy nanocomposites in this study are very promising as absorber materials with strong electromagnetic wave absorption performance.

  6. Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications

    Science.gov (United States)

    Ramachandran, K.; Raj Kumar, T.; Babu, K. Justice; Gnana Kumar, G.

    2016-11-01

    The facile, time and cost efficient and environmental benign approach has been developed for the preparation of Nickel (Ni)-Cobalt (Co) alloy nanowires filled multiwalled carbon nanotubes (MWCNTs) with the aid of mesoporous silica nanoparticles (MSN)/Ni-Co catalyst. The controlled incorporation of Ni-Co nanostructures in the three dimensional (3D) pore structures of MSN yielded the catalytically active system for the MWCNT growth. The inner surface of MWCNTs was quasi-continuously filled with face-centered cubic (fcc) structured Ni-Co nanowires. The as-prepared nanostructures were exploited as non-enzymatic electrochemical sensor probes for the reliable detection of glucose. The electrochemical measurements illustrated that the fabricated sensor exhibited an excellent electrochemical performance toward glucose oxidation with a high sensitivity of 0.695 mA mM-1 cm-2, low detection limit of 1.2 μM, a wide linear range from 5 μM-10 mM and good selectivity. The unprecedented electrochemical performances obtained for the prepared nanocomposite are purely attributed to the synergistic effects of Ni-Co nanowires and MWCNTs. The constructed facile, selective and sensitive glucose sensor has also endowed its reliability in analyzing the human serum samples, which wide opened the new findings for exploring the novel nanostructures based glucose sensor devices with affordable cost and good stability.

  7. Recent Advances in Atomic Metal Doping of Carbon-based Nanomaterials for Energy Conversion.

    Science.gov (United States)

    Bayatsarmadi, Bita; Zheng, Yao; Vasileff, Anthony; Qiao, Shi-Zhang

    2017-06-01

    Nanostructured metal-contained catalysts are one of the most widely used types of catalysts applied to facilitate some of sluggish electrochemical reactions. However, the high activity of these catalysts cannot be sustained over a variety of pH ranges. In an effort to develop highly active and stable metal-contained catalysts, various approaches have been pursued with an emphasis on metal particle size reduction and doping on carbon-based supports. These techniques enhances the metal-support interactions, originating from the chemical bonding effect between the metal dopants and carbon support and the associated interface, as well as the charge transfer between the atomic metal species and carbon framework. This provides an opportunity to tune the well-defined metal active centers and optimize their activity, selectivity and stability of this type of (electro)catalyst. Herein, recent advances in synthesis strategies, characterization and catalytic performance of single atom metal dopants on carbon-based nanomaterials are highlighted with attempts to understand the electronic structure and spatial arrangement of individual atoms as well as their interaction with the supports. Applications of these new materials in a wide range of potential electrocatalytic processes in renewable energy conversion systems are also discussed with emphasis on future directions in this active field of research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Adsorption Sites of Hydrogen Atom on Pure and Mg-Doped Multi-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    A. A. Al-Ghamdi

    2012-01-01

    Full Text Available Hydrogen adsorption sites on pure multiwalled carbon nanotube (MWCNT and Mg-doped MWCNTs material system have been investigated using molecular dynamics (MD simulations as well as quantum chemical calculations. Through combining MWCNTs with Mg, the hydrogen adsorption sites energy on this Mg-MWCNTs system is found to be larger than that of the pure MWCNTs. Additionally, it was found that, through Mg-doping, new adsorption sites for hydrogen molecules are created in comparison with undoped nanotubes. It is also found that H atom is preferably adsorbed at every place near magnesium atom.

  9. A Molecular Dynamics of Cold Neutral Atoms Captured by Carbon Nanotube Under Electric Field and Thermal Effect as a Selective Atoms Sensor.

    Science.gov (United States)

    Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C

    2015-05-01

    Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.

  10. Observation of atomic carbon during photodissociation of nitrotoluenes in the vapor phase

    Science.gov (United States)

    Eilers, Hergen; Diez-y-Riega, Helena

    2014-05-01

    We perform laser-induced photodissociation fluorescence spectroscopy on mononitrotoluenes (MNTs) and dinitrotoluenes (DNTs) in the vapor phase and observe the spectrally overlapping fluorescence from nitric oxide (NO) and carbon (C). Energy-dispersive x-ray spectroscopy (EDS) and Raman spectroscopy of deposits found in the sample chamber confirm the presence of carbon. By comparing the observed fluorescence intensities with the Franck-Condon factors for NO, we are able to identify the presence or absence of fluorescence from carbon. 2-nitrotoluene and 4- nitrotoluene show carbon fluorescence for gate delays of up to 500 ns, while 2,4-dinitrotolune, 3,4-dinitrotolune, and 2,6-dinitrotolune show carbon fluorescence for gate delays of at least up to 1500 ns. The spectroscopic signal from atomic carbon in the vapor phase is observed at concentrations as low as 10 ppt. Based upon the observed S/N, detection at even lower concentrations appears feasible. Several non-nitrotoluene molecules including nitrobenzene, benzene, toluene, and CO2, are tested under identical conditions, but do not show any carbon emission. The presence of extra NO (simulation of NO pollutants) in the samples improves the S/N ratio for the detection of carbon. Energy transfer from laser-excited molecular nitrogen to NO, multiple decomposition channels in the electronic excited state of the nitrotoluene molecules, and interaction of NO with the excited-state decomposition process of the nitrotoluene molecules may all play a role.

  11. Optimization of metal atomic ratio of PdxRuyNiz on carbon support for ethanol oxidation

    Science.gov (United States)

    Charoen, Kanin; Warakulwit, Chompunuch; Prapainainar, Chaiwat; Seubsai, Anusorn; Chareonpanich, Metta; Prapainainar, Paweena

    2017-11-01

    The catalytic activity of palladium (Pd) on an alloy catalyst on carbon supports with regards to ethanol oxidation was enhanced by systematically varying the atomic ratio of Pd, ruthenium (Ru), and nickel (Ni) alloy catalyst. Each atomic ratio catalyst was investigated so as to find the highest current density per mass of palladium. Functionalized carbon black (C) and reduced graphene oxide (rGO) were used as carbon supports. The PdxRuyNiz/carbon catalysts were prepared by impregnation and reduction method with sodium borohydride (NaBH4) being used as the reducing agent. Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were used to characterize the functionalized carbon supports, and the synthesized PdxRuyNiz/carbon catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and inductively coupled plasma (ICP). The electrical properties of catalyst were performed by cyclic voltammetry (CV), chronoamperometry (CA), and CO-stripping to investigate the catalytic activity compared to 20%wt synthesized Pd/C. The results showed that Pd:Ru:Ni = 60:0:40 on rGO (Pd60Ni40/rGO) had the best metal atomic ratio and support for the electro-oxidation of ethanol. The maximum current density and the electrochemical surface area were 11,074 mA cm-2 mg-1Pd and 55.6 m2 g-1Pd, which were 1.7 and 2.67 times the corresponding values of synthesized Pd/C, respectively.

  12. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    KAUST Repository

    Kresse, T.

    2013-09-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    Science.gov (United States)

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  14. Electrocatalytic activity of atomic layer deposited Pt–Ru catalysts onto N-doped carbon nanotubes

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta; Larsen, Jackie Vincent; Verheijen, Marcel A.

    2014-01-01

    Pt–Ru catalysts of various compositions, between 0 and 100at.% of Ru, were deposited onto N-doped multi-walled carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) at 250°C. The Pt and Ru precursors were trimethyl(methylcyclopentadienyl)platinum (MeCpPtMe3) and bis(ethylcyclopentadienyl)rut......Pt–Ru catalysts of various compositions, between 0 and 100at.% of Ru, were deposited onto N-doped multi-walled carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) at 250°C. The Pt and Ru precursors were trimethyl(methylcyclopentadienyl)platinum (MeCpPtMe3) and bis......-up. For the compositions investigated, the catalysts with a Ru content of 29at.% exhibited highest catalytic activity....

  15. Small angle neutron and X-ray studies of carbon structures with metal atoms

    Science.gov (United States)

    Lebedev, V. T.; Szhogina, A. A.; Bairamukov, V. Yu

    2017-05-01

    Encapsulation of metal atoms inside carbon single-wall cages or within multi-layer cells has been realized using molecular precursors and high temperature processes transforming them into desirable structures. Endohedral fullerenols Fe@C60(OH)X with 3d-metal (iron) have been studied by SANS in aqueous solutions where they form stable globular clusters with radii R C ∼ 10-12 nm and aggregation numbers N C ∼ 104. This self-assembly is a crucial feature of paramagnetic fullerenols as perspective contrast agents for Magneto-Resonance Imaging in medicine. Cellular carbon-metal structures have been created by the pyrolysis of diphthalocyanines of lanthanides and actinides. It was established that these ultra porous matrices consist of globular cells of molecular precursor size (∼ 1 nm) which are aggregated into superstructures. This provides retain of metal atoms inside matrices which may serve for safety storage of spent fuel of nuclear power plants.

  16. Atomic carbon chains as spin-transmitters: An ab initio transport study

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka

    2010-01-01

    An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi......An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin......-polarization of the transmission in large energy ranges. The effect is due to the spin-polarized zig-zag edge terminating each graphene flake causing a spin-splitting of the graphene pi(z) bands, and the chain states. Transmission occurs when the graphene p-states resonate with similar states in the strongly hybridized edges...

  17. An exploding N-isocyanide reagent formally composed of anthracene, dinitrogen and a carbon atom.

    Science.gov (United States)

    Joost, Maximilian; Nava, Matthew; Transue, Wesley J; Cummins, Christopher C

    2017-10-17

    Targeted as an example of a compound composed of a carbon atom together with two stable neutral leaving groups, 7-isocyano-7-azadibenzonorbornadiene, CN2A (1, A = C14H10 or anthracene) has been synthesized and spectroscopically and structurally characterized. The terminal C atom of 1 can be transferred: mesityl nitrile oxide reacts with 1 to produce carbon monoxide, likely via intermediacy of the N-isocyanate OCN2A. Reaction of 1 with [RuCl2(CO)(PCy3)2] leads to [RuCl2(CO)(1)(PCy3)2] which decomposes unselectively: in the product mixture, the carbide complex [RuCl2(C)(PCy3)2] was detected. Upon heating in the solid state or in solution, 1 decomposes to A, N2 and cyanogen (C2N2) as substantiated using molecular beam mass spectrometry, IR and NMR spectroscopy techniques.

  18. Localised quantum states of atomic and molecular particles physisorbed on carbon-based nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kaprálová-Žďánská, Petra Ruth; Trachta, Michal; Bludský, Ota; Špirko, Vladimír

    2014-01-01

    Roč. 141, č. 11 (2014), "114702-1"-"114702-10" ISSN 0021-9606 R&D Projects: GA ČR GAP205/11/0571; GA ČR GAP208/11/0436; GA ČR GAP208/10/0725 Institutional support: RVO:68378271 ; RVO:61388963 Keywords : periodic structure * carbon nanostructures * graphene * quantum mechanics * physisorbed Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.952, year: 2014

  19. Field-ion microscopy of quantum oscillations of linear carbon atomic chains.

    Science.gov (United States)

    Mazilova, Tatjana I; Mikhailovskij, Igor M; Ksenofontov, Vjacheslav A; Sadanov, Evgenij V

    2009-02-01

    Field ion microscopic imaging of monatomic carbon chains near the ground quantum states and the visualization of their two-dimensional wave functions were demonstrated. Quantum motions with the frequency proportional to the electric field are detected and analyzed with subangstrom lateral resolution. Electric fields above 10(10) V/m can be used for control of a transverse vibration mode of atomic chains in the terahertz spectral range.

  20. Vibrational spectra of nanowires measured using laser doppler vibrometry and STM studies of epitaxial graphene : an LDRD fellowship report.

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Laura Butler

    2009-09-01

    A few of the many applications for nanowires are high-aspect ratio conductive atomic force microscope (AFM) cantilever tips, force and mass sensors, and high-frequency resonators. Reliable estimates for the elastic modulus of nanowires and the quality factor of their oscillations are of interest to help enable these applications. Furthermore, a real-time, non-destructive technique to measure the vibrational spectra of nanowires will help enable sensor applications based on nanowires and the use of nanowires as AFM cantilevers (rather than as tips for AFM cantilevers). Laser Doppler vibrometry is used to measure the vibration spectra of individual cantilevered nanowires, specifically multiwalled carbon nanotubes (MWNTs) and silver gallium nanoneedles. Since the entire vibration spectrum is measured with high frequency resolution (100 Hz for a 10 MHz frequency scan), the resonant frequencies and quality factors of the nanowires are accurately determined. Using Euler-Bernoulli beam theory, the elastic modulus and spring constant can be calculated from the resonance frequencies of the oscillation spectrum and the dimensions of the nanowires, which are obtained from parallel SEM studies. Because the diameters of the nanowires studied are smaller than the wavelength of the vibrometer's laser, Mie scattering is used to estimate the lower diameter limit for nanowires whose vibration can be measured in this way. The techniques developed in this thesis can be used to measure the vibrational spectra of any suspended nanowire with high frequency resolution Two different nanowires were measured - MWNTs and Ag{sub 2}Ga nanoneedles. Measurements of the thermal vibration spectra of MWNTs under ambient conditions showed that the elastic modulus, E, of plasma-enhanced chemical vapor deposition (PECVD) MWNTs is 37 {+-} 26 GPa, well within the range of E previously reported for CVD-grown MWNTs. Since the Ag{sub 2}Ga nanoneedles have a greater optical scattering efficiency than

  1. Enhancement of oxygen reduction activity of nanoshell carbons by introducing nitrogen atoms from metal phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Jun-ichi, E-mail: jozaki@cee.gunma-u.ac.j [Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Tanifuji, Shin-ichi; Furuichi, Atsuya; Yabutsuka, Katsutoshi [Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515 (Japan)

    2010-02-15

    Nanoshell carbon is a type of catalytically grown nanocarbon with a hollow, round, shell-like structure, with a diameter in the range of approximately 20-50 nm. It has been shown to possess the electrocatalytic activity for oxygen reduction reaction (ORR) and is also expected to be a non-Pt catalyst for polymer electrolyte fuel cells. This paper reports the synergetic enhancement of the ORR activity of nanoshell carbons caused by the coexistence of nitrogen atoms. The nanoshell carbons were prepared by the carbonization of furan resin in the presence of acetylacetonates (AAs) and of phthalocyanines (Pcs), which contained Fe, Co, and Ni. The Pc-derived nanoshells (MP-T series; M = Co or Fe, T = carbonization temperature) showed higher ORR activities than the AA-derived nanoshells (MA-T series; M = Co or Fe, T = carbonization temperature) when the same metal elements were employed. An XPS study revealed that nitrogen species were introduced to the surface of the nanoshells when Pcs were used as the nanoshell-forming catalysts, and that no metal species remained on the nanoshells. Principally, the ORR activity of the carbons was governed by the presence of the nanoshells and further enhancement could be achieved by the introduction of nitrogen atoms. 0.78 V of OCV and 0.21 W cm{sup -2} of the maximum power density were observed for a fuel cell whose MEA consisted of 3CoP1000 cathode and a commercial Pt/C anode, when it was operated at 80 deg. C under a pressurized condition of 0.35 MPa.

  2. Semiconductor nanowires and templates for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Xiang

    2009-07-15

    catalyzed germanium nanowires, a small process window has been determined where high aspect-ratio nanowires show single crystalline structure. Compositional analysis has been performed via electron energy loss spectroscopy (EELS) to monitor the presence of indium and bismuth in the nanowires. Both catalysts could be identified, validating their role as catalysts. A combined atomic force microscopy (AFM) and Raman spectroscopy characterization on single core-shell nanowires gives clear evidence of finite-size effects on the electron-phonon coupling, as well as the presence of strain. Field effect transistors were fabricated using gold, bismuth and indium catalyzed germanium nanowires. Initial room-temperature and temperature dependent transport measurements on gold and bismuth catalyzed nanowires show field effects. Indium catalyzed germanium nanowires show insulating behavior. (orig.)

  3. Quantification of tip-broadening in non-contact atomic force microscopy with carbon nanotube tips

    DEFF Research Database (Denmark)

    Meinander, Kristoffer; Jensen, Thomas N.; Simonsen, Soren B.

    2012-01-01

    Carbon nanotube terminated atomic force microscopy (AFM) probes have been used for the imaging of 5 nm wide surface supported Pt nanoclusters by non-contact (dynamic mode) AFM in an ultra-high vacuum. The results are compared to AFM measurements done with conventional Si-tips, as well as with tra......Carbon nanotube terminated atomic force microscopy (AFM) probes have been used for the imaging of 5 nm wide surface supported Pt nanoclusters by non-contact (dynamic mode) AFM in an ultra-high vacuum. The results are compared to AFM measurements done with conventional Si-tips, as well...... as with transmission electron microscopy images, which give accurate measures for cluster widths. Despite their ideal aspect ratio, tip-broadening is concluded to be a severe problem even when imaging with carbon nanotube tips, which overestimates the cluster width by several times the nominal width of the nanotube...... tip. This broadening is attributed to a bending of the carbon nanotubes, and not to pure geometrical factors, which coincidentally results in a significant improvement for relative height measurements of tightly spaced high aspect ratio structures, as compared to what can be achieved...

  4. Three-Dimensional NiCo2O4@Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor.

    Science.gov (United States)

    Kong, Dezhi; Ren, Weina; Cheng, Chuanwei; Wang, Ye; Huang, Zhixiang; Yang, Hui Ying

    2015-09-30

    In this article, we report a novel electrode of NiCo2O4 nanowire arrays (NWAs) on carbon textiles with a polypyrrole (PPy) nanosphere shell layer to enhance the pseudocapacitive performance. The merits of highly conductive PPy and short ion transport channels in ordered NiCo2O4 mesoporous nanowire arrays together with the synergistic effect between NiCo2O4 and PPy result in a high specific capacitance of 2244 F g(-1), excellent rate capability, and cycling stability in NiCo2O4/PPy electrode. Moreover, a lightweight and flexible asymmetric supercapacitor (ASC) device is successfully assembled using the hybrid NiCo2O4@PPy NWAs and activated carbon (AC) as electrodes, achieving high energy density (58.8 W h kg(-1) at 365 W kg(-1)), outstanding power density (10.2 kW kg(-1) at 28.4 W h kg(-1)) and excellent cycling stability (∼89.2% retention after 5000 cycles), as well as high flexibility. The three-dimensional coaxial architecture design opens up new opportunities to fabricate a high-performance flexible supercapacitor for future portable and wearable electronic devices.

  5. Carbon Co-Deposition During Gas Reduction of Water-Atomized Fe-Cr-Mo Powder

    Directory of Open Access Journals (Sweden)

    Ali B.

    2017-06-01

    Full Text Available The water atomization of iron powder with a composition of Fe-3Cr-0.5Mo (wt.% at 1600°C and 150 bar creates an oxide layer, which in this study was reduced using a mixture of methane (CH4 and argon (Ar gas. The lowest oxygen content was achieved with a 100 cc/min flow rate of CH4, but this also resulted in a co-deposition of carbon due to the cracking of CH4. This carbon can be used directly to create high-quality, sinter hardenable steel, thereby eliminating the need for an additional mixing step prior to sintering. An exponential relationship was found to exist between the CH4 gas flow rate and carbon content of the powder, meaning that its composition can be easily controlled to suit a variety of different applications.

  6. Atom Probe Tomography Examination of Carbon Redistribution in Quenched and Tempered 4340 Steel

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Amy J. [Los Alamos National Laboratory; Miller, Michael K. [ORNL; Alexander, David J. [Los Alamos National Laboratory; Field, Robert D. [Los Alamos National Laboratory; Clarke, Kester D. [Los Alamos National Laboratory

    2012-08-07

    Quenching and tempering produces a wide range of mechanical properties in medium carbon, low alloyed steels - Study fragmentation behavior as a function of heat-treatment. Subtle microstructural changes accompany the mechanical property changes that result from quenching and tempering - Characterize the location and distribution of carbon and alloying elements in the microstructure using atom probe tomography (APT). Perform complementary transmission electron microscopy (TEM). Tempering influences the mechanical properties and fragmentation of quenched 4340 (hemi-shaped samples). APT revealed carbon-enriched features that contain a maximum of {approx}12-14 at.% carbon after quenching to RT (the level of carbon is perhaps associated with the extent of autotempering). TEM confirmed the presence of twinned martensite and indicates {var_epsilon} ({eta}) transition carbides after oil quenching to RT. Tempering at 325 C resulted in carbon-enriched plates (> 25 at.% C) with no significant element partitioning (transition carbides?). Tempering at 450 C and 575 C resulted in cementite ({approx} 25 at.% C) during late stage tempering; Cr, Mn, Mo partitioned to cementite and Si partitioned to ferrite. Tempering at 575 C resulted in P segregation at cementite interfaces and the formation of Cottrell atmospheres.

  7. Mechanically induced cis-to-trans isomerization of carbon-carbon double bonds using atomic force microscopy.

    Science.gov (United States)

    Radiom, Milad; Kong, Phally; Maroni, Plinio; Schäfer, Mark; Kilbinger, Andreas F M; Borkovec, Michal

    2016-11-16

    Cis-to-trans isomerization of carbon-carbon double bonds can be induced by the application of mechanical force. Using single molecule force spectroscopy by means of atomic force microscopy (AFM) we pulled polymer molecules which contained cis double bonds in the backbone. In the force versus extension profiles of these polymers, a sudden extension increase is observed which is due to the conversion of shorter cis isomers into longer trans isomers. The added length to the polymer results in relaxation in probed force. We find that the isomerization occurs at forces of 800 ± 60 pN, independent of AFM tip and solid substrate chemistries. Investigation of similar polymers which exclusively contained single bonds in the backbone showed no evidence of a similar transition.

  8. Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo(2)O(4) nanowires for high-performance supercapacitor.

    Science.gov (United States)

    Xiong, Wei; Gao, Yongsheng; Wu, Xu; Hu, Xuan; Lan, Danni; Chen, Yangyang; Pu, Xuli; Zeng, Yan; Su, Jun; Zhu, Zhihong

    2014-01-01

    Novel biological carbon materials with highly ordered microstructure and large pore volume have caused great interest due to their multifunctional properties. Herein, we report the preparation of an interconnected porous carbon material by carbonizing the organic matrix of mollusc shell. The obtained three-dimensional carbon skeleton consists of hexangular and tightly arranged channels, which endow it with efficient electrolyte penetration and fast electron transfer, enable the mollusc shell based macroporous carbon material (MSBPC) to be an excellent conductive scaffold for supercapacitor electrodes. By growing NiCo2O4 nanowires on the obtained MSBPC, NiCo2O4/MSBPC composites were synthesized. When used on supercapacitor electrode, it exhibited anomalously high specific capacitance (∼1696 F/g), excellent rate performance (with the capacity retention of 58.6% at 15 A/g) and outstanding cycling stability (88% retention after 2000 cycles). Furthermore, an all-solid-state symmetric supercapacitor was also assembled based on this NiCo2O4/MSBPC electrode and showed good electrochemical performance with an energy density of 8.47 Wh/kg at 1 A/g, good stability over 10000 cycles. And we believe that more potential applications beyond energy storage can be developed based on this MSBPC.

  9. Differential determination of selenium(IV) and selenium(VI) with sodium diethyldithiocarbamate, ammonium pyrrolidinedithiocarbamate and dithizone by atomic-absorption spectrophotometry with a carbon-tube atomizer.

    Science.gov (United States)

    Kamada, T; Shiraishi, T; Yamamoto, Y

    1978-01-01

    The extraction behaviour of selenium(IV) and selenium(VI) with sodium diethyldithiocarbamate, ammonium pyrrolidinedithiocarbamate and dithizone in organic solvents has been investigated by means of flameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of selenium(IV) and differential determination of selenium(IV) and selenium(VI) have been developed. With sodium diethyldithiocarbamate and carbon tetrachloride, when the aqueous phase/organic solvent volume ratio is 5 and the injection volume in the carbon tube is 20 microl, the sensitivity for selenium is 0.4 ng/ml for 1% absorption. The relative standard deviations are ca. 3%. Interference by many metal ions can he prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of Se(IV) and Se(VI) in various types of water.

  10. Alumino-silicate catalyst and use for aromatization of hydrocarbons comprising 5 to 12 carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Alario, F.; Deves, J.M.

    1993-05-21

    The invention describes a composite catalyst which contains: a MFI structure zeolite in the form hydrogen, containing in its structure Silicon, Aluminium and / or Gallium at least; a matrix; platinum metals at least and additive metal chosen among Stain, Germanium, Indium, Copper, Iron, Molybdenum, Gallium, Thallium, Gold, Silver, Ruthenium, Chrome, Tungsten and Lead at least; an halogen chosen among Fluorine, Chlorine, Bromine and Iodine at least; possibly, doping element chosen among Gallium and Zinc and possibly alkaline or alkaline-earth metal in the matrix preferentially. The invention describes also the use of this catalyst for aromatization reactions of hydrocarbons containing 5 to 12 carbon atoms per molecule.

  11. An aromatization process for hydrocarbons containing from 2 to 4 carbon atoms per molecule

    Energy Technology Data Exchange (ETDEWEB)

    Alario, F.; Renard, P.

    1993-12-17

    The aromatization process consists in introducing a fraction composed of 2 to 4 carbon atoms per molecule compounds in a reaction zone which comprises: a first reaction space composed of at least one elementary catalytic zone of the fixed bed type (in which the fraction circulates); and a second reaction space with at least an elementary catalytic zone where the fraction circulates. This space is designed in such a way that the granular catalyst is progressively drawn-off from the last elementary zone, regenerated and subsequently re-introduced in the first elementary zone. 4 tabs.

  12. An aromatization process for hydrocarbons containing from 5 to 12 carbon atoms per molecule

    Energy Technology Data Exchange (ETDEWEB)

    Alario, F.; Renard, P.; Berthelin, M.; Thery, M.

    1993-12-17

    The aromatization process consists in introducing a fraction composed of 5 to 12 carbon atoms per molecule compounds in a reaction zone which comprises: a first reaction space composed of at least one elementary catalytic zone of the fixed bed type (in which the fraction circulates); and a second reaction space with at least an elementary catalytic zone where the fraction circulates. This space is designed in such a way that the granular catalyst is progressively drawn-off from the last elementary zone, regenerated and subsequently re-introduced in the first elementary zone. 2 tabs.

  13. MFI structure catalyst and utilization for aromatization hydrocarbons comprising 5 to 12 carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Alario, F.; Deves, J.M.

    1993-05-21

    The invention describes a composite catalyst which contains: a MFI structure zeolite containing, at least, an element chosen among alkaline or alkaline-earth metals, with a structure made of Silicon, Aluminium and / or Gallium; a matrix; platinum metals and additive metal chosen among Stain, Germanium, Indium, Copper, Iron, Molybdenum, Gallium, Thallium, Gold, Silver, Ruthenium, Chrome, Tungsten and Lead at least; an halogen chosen among Fluorine, Chlorine, Bromine and Iodine at least; Gallium and Zinc possibly; alkaline or alkaline-earth metal in the matrix preferentially. The invention describes also the use of this catalyst for aromatization reactions of hydrocarbons containing 5 to 12 carbon atoms per molecule.

  14. Building a multi-walled carbon nanotube-based mass sensor with the atomic force microscope

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Kuhle, A.; Marie, Rodolphe Charly Willy

    2005-01-01

    are used. The gold substrate is first covered with hydrophobic thiol molecules: octadecanthiol. The octadecanthiol molecules are then selectively removed from small areas by nanoshaving the gold substrate with the tip of an atomic force microscope (AFM) operating in contact mode. Hydrophilic thiols (2......We report an approach for building a mass sensor based on multi-walled carbon nanotubes (MWCNT). We propose a method with a great potential for the positioning of MWCNTs based on self-assembly onto patterned hydrophilic areas. For the experiments ultra flat mica substrates covered with gold...

  15. Active Sites Intercalated Ultrathin Carbon Sheath on Nanowire Arrays as Integrated Core-Shell Architecture: Highly Efficient and Durable Electrocatalysts for Overall Water Splitting.

    Science.gov (United States)

    Hou, Jungang; Wu, Yunzhen; Cao, Shuyan; Sun, Yiqing; Sun, Licheng

    2017-12-01

    The development of active bifunctional electrocatalysts with low cost and earth-abundance toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a great challenge for overall water splitting. Herein, metallic Ni 4 Mo nanoalloys are firstly implanted on the surface of NiMoO x nanowires array (NiMo/NiMoO x ) as metal/metal oxides hybrid. Inspired by the superiority of carbon conductivity, an ultrathin nitrogen-doped carbon sheath intercalated NiMo/NiMoO x (NC/NiMo/NiMoO x ) nanowires as integrated core-shell architecture are constructed. The integrated NC/NiMo/NiMoO x array exhibits an overpotential of 29 mV at 10 mA cm -2 and a low Tafel slope of 46 mV dec -1 for HER due to the abundant active sites, fast electron transport, low charge-transfer resistance, unique architectural structure and synergistic effect of carbon sheath, nanoalloys, and oxides. Moreover, as OER catalysts, the NC/NiMo/NiMoO x hybrids require an overpotential of 284 mV at 10 mA cm -2 . More importantly, the NC/NiMo/NiMoO x array as a highly active and stable electrocatalyst approaches ≈10 mA cm -2 at a voltage of 1.57 V, opening an avenue to the rational design and fabrication of the promising electrode materials with architecture structures toward the electrochemical energy storage and conversion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nanowire Lasers

    Directory of Open Access Journals (Sweden)

    Couteau C.

    2015-05-01

    Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  17. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

    Directory of Open Access Journals (Sweden)

    Alberto Milani

    2015-02-01

    Full Text Available Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs can be arranged in two possible structures: a sequence of double bonds (cumulenes, resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes, expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms and the type of termination (e.g., atom, molecular group or nanostructure. Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length. Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds.

  18. Molecular precursor derived silicon boron carbonitride/carbon nanotube and silicon oxycarbide/carbon nanotube composite nanowires for energy based applications

    Science.gov (United States)

    Bhandavat, Romil

    Molecular precursor derived ceramics (also known as polymer-derived ceramics or PDCs) are high temperature glasses that have been studied for applications involving operation at elevated temperatures. Prepared from controlled thermal degradation of liquid-phase organosilicon precursors, these ceramics offer remarkable engineering properties such as resistance to crystallization up to 1400 °C, semiconductor behavior at high temperatures and intense photoluminescence. These properties are a direct result of their covalent bonded amorphous network and free (-sp2) carbon along with mixed Si/B/C/N/O bonds, which otherwise can not be obtained through conventional ceramic processing techniques. This thesis demonstrates synthesis of a unique core/shell type nanowire structure involving either siliconboroncarbonitride (SiBCN) or siliconoxycarbide (SiOC) as the shell with carbon nanotube (CNT) acting as the core. This was made possible by liquid phase functionalization of CNT surfaces with respective polymeric precursor (e.g., home-made boron-modified polyureamethylvinylsilazane for SiBCN/CNT and commercially obtained polysiloxane for SiOC/CNT), followed by controlled pyrolysis in inert conditions. This unique architecture has several benefits such as high temperature oxidation resistance (provided by the ceramic shell), improved electrical conductivity and mechanical toughness (attributed to the CNT core) that allowed us to explore its use in energy conversion and storage devices. The first application involved use of SiBCN/CNT composite as a high temperature radiation absorbant material for laser thermal calorimeter. SiBCN/CNT spray coatings on copper substrate were exposed to high energy laser beams (continuous wave at 10.6 mum 2.5 kW CO2 laser, 10 seconds) and resulting change in its microstructure was studied ex-situ. With the aid of multiple techniques we ascertained the thermal damage resistance to be 15 kW/cm -2 with optical absorbance exceeding 97%. This represents

  19. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries

    Science.gov (United States)

    Liu, Bin; Wang, Xianfu; Chen, Haitian; Wang, Zhuoran; Chen, Di; Cheng, Yi-Bing; Zhou, Chongwu; Shen, Guozhen

    2013-01-01

    Toward the increasing demands of portable energy storage and electric vehicle applications, the widely used graphite anodes with significant drawbacks become more and more unsuitable. Herein, we report a novel scaffold of hierarchical silicon nanowires-carbon textiles anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si and commercial LiCoO2 materials were assembled to investigate their corresponding across-the-aboard performances, demonstrating their enhanced specific capacity (2950 mAh g−1 at 0.2 C), good repeatability/rate capability (even >900 mAh g−1 at high rate of 5 C), long cycling life, and excellent stability in various external conditions (curvature, temperature, and humidity). Above results light the way to principally replacing graphite anodes with silicon-based electrodes which was confirmed to have better comprehensive performances. PMID:23572030

  20. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries.

    Science.gov (United States)

    Liu, Bin; Wang, Xianfu; Chen, Haitian; Wang, Zhuoran; Chen, Di; Cheng, Yi-Bing; Zhou, Chongwu; Shen, Guozhen

    2013-01-01

    Toward the increasing demands of portable energy storage and electric vehicle applications, the widely used graphite anodes with significant drawbacks become more and more unsuitable. Herein, we report a novel scaffold of hierarchical silicon nanowires-carbon textiles anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si and commercial LiCoO2 materials were assembled to investigate their corresponding across-the-aboard performances, demonstrating their enhanced specific capacity (2950 mAh g(-1) at 0.2 C), good repeatability/rate capability (even >900 mAh g(-1) at high rate of 5 C), long cycling life, and excellent stability in various external conditions (curvature, temperature, and humidity). Above results light the way to principally replacing graphite anodes with silicon-based electrodes which was confirmed to have better comprehensive performances.

  1. Synthesis of silicon and germanium nanowires.

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Teresa J. (Arizona State University); Hsu, Julia W. P.

    2007-11-01

    The vapor-liquid-solid growth process for synthesis of group-IV semiconducting nanowires using silane, germane, disilane and digermane precursor gases has been investigated. The nanowire growth process combines in situ gold seed formation by vapor deposition on atomically clean silicon (111) surfaces, in situ growth from the gaseous precursor(s), and real-time monitoring of nanowire growth as a function of temperature and pressure by a novel optical reflectometry technique. A significant dependence on precursor pressure and growth temperature for the synthesis of silicon and germanium nanowires is observed, depending on the stability of the specific precursor used. Also, the presence of a nucleation time for the onset of nanowire growth has been found using our new in situ optical reflectometry technique.

  2. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Latorre, C., E-mail: carlos.herrero@usc.es [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain); Alvarez Mendez, J.; Barciela Garcia, J.; Garcia Martin, S.; Pena Crecente, R.M. [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain)

    2012-10-24

    Highlights: Black-Right-Pointing-Pointer The use of CNTs as sorbent for metal species in solid phase extraction has been described. Black-Right-Pointing-Pointer Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. Black-Right-Pointing-Pointer Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes - due to their high adsorption and desorption capacities - have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  3. Carbon Quantum Dot-Induced MnO2 Nanowire Formation and Construction of a Binder-Free Flexible Membrane with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance.

    Science.gov (United States)

    Lv, Haipeng; Gao, Xiujiao; Xu, Qunjie; Liu, Haimei; Wang, Yong-Gang; Xia, Yongyao

    2017-11-22

    Manganese oxides (MnO2) are regarded as typical and promising electrode materials for supercapacitors. However, the practical electrochemical performance of MnO2 is far from its theoretical value. Nowadays, numerous efforts are being devoted to the design and preparation of nanostructured MnO2 with the aim of improving its electrochemical properties. In this work, ultralong MnO2 nanowires were fabricated in a process induced by carbon quantum dots (CQDs); subsequently, a binder-free flexible electrode membrane was easily obtained by vacuum filtration of the MnO2 nanowires. The effects of the CQDs not only induced the formation of one-dimensional nanostructured MnO2, but also significantly improved the wettability between electrode and electrolyte. In other words, the MnO2 membrane demonstrated a superhydrophilic character in aqueous solution, indicating the sufficient and abundant contact probability between electrode and electrolyte. The binder-free flexible MnO2 electrode exhibited a preeminent specific capacitance of 340 F g-1 at 1 A g-1; even when the current density reached 20 A g-1, it still maintained 260 F g-1 (76% retention rate compared to that at 1 A g-1). Moreover, it also showed good cycling stability with 80.1% capacity retention over 10 000 cycles at 1 A g-1. Furthermore, an asymmetric supercapacitor was constructed using the MnO2 membrane and active carbon as the positive and negative electrodes, respectively, which exhibited a high energy density of 33.6 Wh kg-1 at 1.0 kW kg-1, and a high power density of 10 kW kg-1 at 12.5 Wh kg-1.

  4. Semiconductor nanowires: Controlled growth and thermal properties

    Science.gov (United States)

    Wu, Yiying

    This dissertation presents an experimental study of the controlled growth of semiconductor nanowires and their thermophysical properties. The synthesis of nanowires was based on the well-known Vapor-Liquid-Solid (VLS) mechanism in which the growth of nanowire is initiated by a nanosized liquid droplet. The prepared nanowires are single-crystalline with certain preferred growth direction. Nanowires with different compositions have been synthesized, including Si, Ge, boron and MgB2. The control of nanowire composition, diameter and orientation has also been achieved. In addition, a Pulsed Laser Ablation-Chemical Vapor Deposition (PLA-CVD) hybrid process was developed to synthesize Si/SiGe longitudinally superlattice nanowires. The thermal conductivity of individual pure Si nanowire and Si/SiGe nanowire was measured using a microfabricated suspended device over a temperature range of 20--320 K. The thermal conductivities of individual 22, 37, 56, and 115 nm diameter single crystalline intrinsic Si nanowires were much lower than the bulk value due to the strong phonon boundary scattering. Except for the 22 nm diameter nanowire, theoretical predictions using a modified Callaway model fit the experimental data very well. The data for the 22 nm diameter wire suggest that changes in phonon dispersion due to confinement can cause additional thermal conductivity reduction. The Si/SiGe superlattice nanowires with diameters of 83 run and 58 nm were also measured. Their thermal conductivities are smaller than pure Si nanowire with similar diameter, as well as Si/SiGe superlattice thin film with comparable period. Both the alloying scattering and the boundary scattering are believed to contribute to this reduction. Size dependent melting-recrystallization study of the carbon-sheathed semiconductor Ge nanowires was carried out in in-situ high temperature transmission electron microscope (TEM). Significant depression in melting temperature with decreasing size of the nanowires as

  5. Atomic Structures of Graphene, Benzene and Methane with Bond Lengths as Sums of the Single, Double and Resonance Bond Radii of Carbon

    OpenAIRE

    Heyrovska, Raji

    2008-01-01

    Two dimensional layers of graphene are currently drawing a great attention in fundamental and applied nanoscience. Graphene consists of interconnected hexagons of carbon atoms as in graphite. This article presents for the first time the structures of graphene at the atomic level and shows how it differs from that of benzene, due to the difference in the double bond and resonance bond based radii of carbon. The carbon atom of an aliphatic compound such as methane has a longer covalent single b...

  6. Experimental Investigation Of Segregation Of Carbon Atoms Due To Sub-Zero Cryogenic Treatment In Cold Work Tool Steel By Mechanical Spectroscopy And Atom Probe Tomography

    Directory of Open Access Journals (Sweden)

    Min N.

    2015-06-01

    Full Text Available In this work, we present mechanical spectroscopy of cold work tool steel subjected to sub-zero cryogenic soaking treatment to reveal the carbon segregation and the subsequent carbides refinement. The maximum of Snoek-Köster (SK peak height was obtained in the sample subjected to soaking 1h at −130°C cryogenic treatment. The SK peak height is reduced with prolonging the soaking time. The results indicate that an increase in the height of SK peak is connected with an increase in dislocation density and the number of segregated carbon atoms in the vicinity of dislocations or twin planes after martensite transformation at −130°C which is confirmed by corresponding TEM and atom probe tomography measurement. Hence, it is suggested that the isothermal martensite, formed during the cryogenic soaking treatment decreases (APT the height of SK peak.

  7. Atomic-Layer-Deposition Functionalized Carbonized Mesoporous Wood Fiber for High Sulfur Loading Lithium Sulfur Batteries.

    Science.gov (United States)

    Luo, Chao; Zhu, Hongli; Luo, Wei; Shen, Fei; Fan, Xiulin; Dai, Jiaqi; Liang, Yujia; Wang, Chunsheng; Hu, Liangbing

    2017-05-03

    Lithium-sulfur battery (LSB) as one of the most promising energy storage devices suffers from poor conductivity of sulfur and fast capacity decay triggered by the dissolution of polysulfides. In this work, functionalized carbonized mesoporous wood fiber (f-CMWF) is employed as a host to accommodate sulfur for the first time. Natural wood microfiber has unique hierarchical and mesoporous structure, which is well-maintained after carbonization. With such a hierarchical mesoporous structure, a high sulfur loading of 76 wt % is achieved in CMWF electrodes. The pore size of CMWF is tunable by atomic layer deposition (ALD) of a 5 nm Al 2 O 3 coating to form the f-CMWF. Such a thin layer slightly decreases the sulfur loading to 70%, but it remarkably promotes the cyclic stability of sulfur cathode, which delivers an initial capacity of 1115 mAh g -1 , and maintains a reversible capacity of 859 mAh g -1 for 450 cycles, corresponding to a slow capacity decay rate of 0.046% per cycle. More importantly, natural wood microfiber is first used as a raw material for sulfur encapsulating. This work is also critical for using low cost and mesoporous biomass carbon as bifunctional scaffold for LSB.

  8. Electron-beam-induced carbon contamination on silicon: characterization using Raman spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Lau, Deborah; Hughes, Anthony E; Muster, Tim H; Davis, Timothy J; Glenn, A Matthew

    2010-02-01

    Electron-beam-induced carbon film deposition has long been recognized as a side effect of scanning electron microscopy. To characterize the nature of this type of contamination, silicon wafers were subjected to prolonged exposure to 15 kV electron beam energy with a probe current of 300 pA. Using Raman spectroscopy, the deposited coating was identified as an amorphous carbon film with an estimated crystallite size of 125 A. Using atomic force microscopy, the cross-sectional profile of the coating was found to be raised and textured, indicative of the beam raster pattern. A map of the Raman intensity across the coating showed increased intensity along the edges and at the corner of the film. The intensity profile was in excess of that which could be explained by thickness alone. The enhancement was found to correspond with a modeled local field enhancement induced by the coating boundary and showed that the deposited carbon coating generated a localized disturbance in the opto-electrical properties of the substrate, which is compared and contrasted with Raman edge enhancement that is produced by surface structure in silicon.

  9. Simple-Cubic Carbon Frameworks with Atomically Dispersed Iron Dopants toward High-Efficiency Oxygen Reduction.

    Science.gov (United States)

    Wang, Biwei; Wang, Xinxia; Zou, Jinxiang; Yan, Yancui; Xie, Songhai; Hu, Guangzhi; Li, Yanguang; Dong, Angang

    2017-03-08

    Iron and nitrogen codoped carbons (Fe-N-C) have attracted increasingly greater attention as electrocatalysts for oxygen reduction reaction (ORR). Although challenging, the synthesis of Fe-N-C catalysts with highly dispersed and fully exposed active sites is of critical importance for improving the ORR activity. Here, we report a new type of graphitic Fe-N-C catalysts featuring numerous Fe single atoms anchored on a three-dimensional simple-cubic carbon framework. The Fe-N-C catalyst, derived from self-assembled Fe 3 O 4 nanocube superlattices, was prepared by in situ ligand carbonization followed by acid etching and ammonia activation. Benefiting from its homogeneously dispersed and fully accessible active sites, highly graphitic nature, and enhanced mass transport, our Fe-N-C catalyst outperformed Pt/C and many previously reported Fe-N-C catalysts for ORR. Furthermore, when used for constructing the cathode for zinc-air batteries, our Fe-N-C catalyst exhibited current and power densities comparable to those of the state-of-the-art Pt/C catalyst.

  10. Mechanism of DNA cleavage by cationic manganese porphyrins: hydroxylations at the 1'-carbon and 5'-carbon atoms of deoxyriboses as initial damages.

    OpenAIRE

    Pratviel, G; Pitié, M.; Bernadou, J.; Meunier, B

    1991-01-01

    Cationic manganese-porphyrin complexes, free or targetted with an intercalating agent, are able to cleave DNA using oxygen atom donors like potassium monopersulfate or magnesium monoperphthalate as coreactants. Detailed studies of the cleavage of calf thymus DNA, before and after a heating step, show that free bases and 5-methylene-2-furanone are the main reaction products, indicating that hydroxylation at the 1'-carbon atom is the main target of these chemical agents. These data confirm that...

  11. Direct observation of nanowire growth and decomposition

    DEFF Research Database (Denmark)

    Rackauskas, Simas; Shandakov, Sergey D; Jiang, Hua

    2017-01-01

    knowledge, so far this has been only postulated, but never observed at the atomic level. By means of in situ environmental transmission electron microscopy we monitored and examined the atomic layer transformation at the conditions of the crystal growth and its decomposition using CuO nanowires selected...

  12. Energy of the Isolated Metastable Iron-Nickel FCC Nanocluster with a Carbon Atom in the Tetragonal Interstice.

    Science.gov (United States)

    Bondarenko, Natalya V; Nedolya, Anatoliy V

    2017-12-01

    The energy of the isolated iron-nickel nanocluster was calculated by molecular mechanics method using Lennard-Jones potential. The cluster included a carbon atom that drifted from an inside octahedral interstice to a tetrahedral interstice in [Formula: see text] direction and after that in direction to the surface. In addition, one of 14 iron atoms was replaced by a nickel atom, the position of which was changing during simulation.The energy of the nanocluster was estimated at the different interatomic distances. As a result of simulation, the optimal interatomic distances of Fe-Ni-C nanocluster was chosen for the simulation, in which height of the potential barrier was maximal and face-centered cubic (FCC) nanocluster was the most stable.It is shown that there were three main positions of a nickel atom that significantly affected nanocluster's energy.The calculation results indicated that position of the carbon atom in the octahedral interstice was more energetically favorable than tetrahedral interstice in the case of FCC nanocluster. On the other side, the potential barrier was smaller in the direction [Formula: see text] than in the direction .This indicates that there are two ways for carbon atom to drift to the surface of the nanocluster.

  13. DFT study of Fe-Ni core-shell nanoparticles: stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth.

    Science.gov (United States)

    Yang, Zhimin; Wang, Qiang; Shan, Xiaoye; Li, Wei-qi; Chen, Guang-hui; Zhu, Hongjun

    2015-02-21

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs.

  14. X-ray photoelectron spectroscopy study of the functionalization of carbon metal-containing nanotubes with phosphorus atoms

    Energy Technology Data Exchange (ETDEWEB)

    Shabanova, I.N., E-mail: xps@fti.udm.ru; Terebova, N.S.

    2013-08-15

    Highlights: •Carbon metal-containing nanotubes (Me–Cu, Ni, Fe) were functionalized with chemical groups containing different concentrations of phosphorous. •The C1s and Me3s spectra were measured by the X-ray photoelectron spectroscopy method. •The values of the atomic magnetic moment of the carbon metal-containing nanotubes were determined. -- Abstract: In the present paper, carbon metal-containing (Me: Cu, Ni, Fe) nanotubes functionalized with phosphorus atoms (ammonium polyphosphate) were studied by X-ray photoelectron spectroscopy (XPS) on an X-ray electron magnetic spectrometer. It is found that the functionalization leads to the change of the metal atomic magnetic moment, i.e. the value of the atomic magnetic moment in the functionalized carbon metal-containing (Cu, Ni, Fe) nanotubes increases and is higher than that in pristine nanotubes. It is shown that the covalent bond of Me and P atoms is formed. This leads to an increase in the activity of the nanostructure surface which is necessary for the modification of materials.

  15. Dispersion C3 coefficients for the alkali-metal atoms interacting with a graphene layer and with a carbon nanotube

    CERN Document Server

    Arora, Bindiya; Sahoo, B K

    2013-01-01

    We evaluate separation dependent van der Waal dispersion ($C_3$) coefficients for the interactions of the Li, Na, K and Rb alkali atoms with a graphene layer and with a single walled carbon nanotube (CNT) using the hydrodynamic and Dirac models. The results from both the models are evaluated using accurate values of the dynamic polarizabilities of the above atoms. Accountability of these accurate values of dynamical polarizabilities of the alkali atoms in determination of the above $C_3$ coefficients are accentuated by comparing them with the coefficients evaluated using the dynamic dipole polarizabilities estimated from the single oscillator approximation which are typically employed in the earlier calculations. For practical description of the atom-surface interaction potentials the radial dependent $C_3$ coefficients are given for a wide range of separation distances between the ground states of the considered atoms and the wall surfaces and also for different values of nanotube radii. The coefficients for...

  16. The Effect of Atom Vacancy Defect on the Vibrational Behavior of Single-Walled Carbon Nanotubes: A Structural Mechanics Approach

    Directory of Open Access Journals (Sweden)

    S. K. Georgantzinos

    2014-04-01

    Full Text Available An atomistic structural mechanics method, which is based on the exclusive use of spring elements, is developed in order to study the effect of imperfections due to atom vacancy on the vibrational characteristics of single-walled carbon nanotubes (SWCNTs. The developed elements simulate the relative translations and rotations between atoms as well as the mass of the atoms. In this way, molecular mechanics theory can be applied directly because the atomic bonds are modeled by using exclusively physical variables such as bond stretching. The method is validated for its predictability comparing with vibration results found in the open literature for pristine nanotubes. Then, it is used for the vibration analysis of defective nanotubes. Imperfections such as one-atom vacancy, two-atom vacancy, and one carbon hexagonal cell vacancy are investigated. Their effect on vibrational behavior is explored for different defect positions, nanotube diameters, and support conditions. According to the obtained results, the fundamental frequency is decreased as the size of imperfection increases, and the percentage reduction in fundamental frequency due to the atomic vacancy defect is more affected for a single-clamped SWCNT than for a double-clamped one.

  17. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition

    Science.gov (United States)

    Pal, Partha P.; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V.; Kurochkin, Alexey V.; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I.; Nasibulin, Albert G.

    2016-12-01

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  18. Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects.

    Science.gov (United States)

    Schulze, A; Hantschel, T; Dathe, A; Eyben, P; Ke, X; Vandervorst, W

    2012-08-03

    The fabrication and integration of low-resistance carbon nanotubes (CNTs) for interconnects in future integrated circuits requires characterization techniques providing structural and electrical information at the nanometer scale. In this paper we present a slice-and-view approach based on electrical atomic force microscopy. Material removal achieved by successive scanning using doped ultra-sharp full-diamond probes, manufactured in-house, enables us to acquire two-dimensional (2D) resistance maps originating from different depths (equivalently different CNT lengths) on CNT-based interconnects. Stacking and interpolating these 2D resistance maps results in a three-dimensional (3D) representation (tomogram). This allows insight from a structural (e.g. size, density, distribution, straightness) and electrical point of view simultaneously. By extracting the resistance evolution over the length of an individual CNT we derive quantitative information about the resistivity and the contact resistance between the CNT and bottom electrode.

  19. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Science.gov (United States)

    Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng

    2006-09-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  20. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xue Kuanhong [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)], E-mail: khxue@njnu.edu.cn; Liu Jiamei [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Wei Ribing [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Chen Shaopeng [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)

    2006-09-11

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H{sub 2}SO{sub 4}, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E {sub pa} and E {sub pc} shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k {sup 0} increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  1. Doping incorporation paths in catalyst-free Be-doped GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Casadei, Alberto; Heiss, Martin; Colombo, Carlo; Ruelle, Thibaud; Fontcuberta i Morral, Anna [Laboratoire des Materiaux Semiconducteurs, Institut des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Krogstrup, Peter; Roehr, Jason A.; Upadhyay, Shivendra; Sorensen, Claus B.; Nygard, Jesper [Nano-Science Center and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark)

    2013-01-07

    The incorporation paths of Be in GaAs nanowires grown by the Ga-assisted method in molecular beam epitaxy have been investigated by electrical measurements of nanowires with different doping profiles. We find that Be atoms incorporate preferentially via the nanowire side facets, while the incorporation path through the Ga droplet is negligible. We also show that Be can diffuse into the volume of the nanowire giving an alternative incorporation path. This work is an important step towards controlled doping of nanowires and will serve as a help for designing future devices based on nanowires.

  2. Understanding the Atomic Scale Mechanisms that Control the Attainment of Ultralow Friction and Wear in Carbon-Based Materials

    Science.gov (United States)

    2016-01-16

    2015. 15. Invited. New Insights into Friction and Wear through In-Situ Nanotribology. Joint Symposium of the Surface Science Society of Japan and...and Carpick, R.W. Influence of Surface Passivation on the Friction and Wear Behavior of Ultrananocrystalline Diamond and Tetrahedral Amorphous Carbon...AFRL-AFOSR-JP-TR-2016-0053 Understanding the Atomic Scale Mechanism that controls the attainment of ultralow friction and wear in carbon based

  3. Ferromagnetism in Cr-doped passivated AlN nanowires

    KAUST Repository

    Kanoun, Mohammed

    2014-01-01

    We apply first principles calculations to predict the effect of Cr doping on the electronic and magnetic properties of passivated AlN nanowires. We compare the energetics of the possible dopant sites and demonstrate the favorable configuration ferromagnetic ordering. The charge density of the pristine passivated AlN nanowires is used to elucidate the bonding character. Spin density maps demonstrate an induced spin polarization for N atoms next to dopant atoms, though most of the magnetism is carried by the Cr atoms. Cr-doped AlN nanowires turn out to be interesting for spintronic devices. © 2014 the Partner Organisations.

  4. First-principles study of structural & electronic properties of pyramidal silicon nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Jariwala, Pinank; Thakor, P. B. [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Singh, Deobrat; Sonvane, Y. A., E-mail: yasonvane@gmail.com [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007 (India); Gupta, Sanjeev K. [Department of Physics, St. Xavier’s College, Ahmedabad 38 0009 (India)

    2016-05-23

    We have investigated the stable structural and electronic properties of Silicon (Si) nanowires having different cross-sections with 5-7 Si atoms per unit cell. These properties of the studied Si nanowires were significantly changed from those of diamond bulk Si structure. The binding energy increases as increasing atoms number per unit cell in different SiNWs structures. All the nanowires structures are behave like metallic rather than semiconductor in bulk systems. In general, the number of conduction channels increases when the nanowire becomes thicker. The density of charge revealed delocalized metallic bonding for all studied Si nanowires.

  5. Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

    Directory of Open Access Journals (Sweden)

    Gemma Rius

    2015-01-01

    Full Text Available Many nanofabrication methods based on scanning probe microscopy have been developed during the last decades. Local anodic oxidation (LAO is one of such methods: Upon application of an electric field between tip and surface under ambient conditions, oxide patterning with nanometer-scale resolution can be performed with good control of dimensions and placement. LAO through the non-contact mode of atomic force microscopy (AFM has proven to yield a better resolution and tip preservation than the contact mode and it can be effectively performed in the dynamic mode of AFM. The tip plays a crucial role for the LAO-AFM, because it regulates the minimum feature size and the electric field. For instance, the feasibility of carbon nanotube (CNT-functionalized tips showed great promise for LAO-AFM, yet, the fabrication of CNT tips presents difficulties. Here, we explore the use of a carbon nanofiber (CNF as the tip apex of AFM probes for the application of LAO on silicon substrates in the AFM amplitude modulation dynamic mode of operation. We show the good performance of CNF-AFM probes in terms of resolution and reproducibility, as well as demonstration that the CNF apex provides enhanced conditions in terms of field-induced, chemical process efficiency.

  6. Formation and Device Application of Ge Nanowire Heterostructures via Rapid Thermal Annealing

    OpenAIRE

    Tang, Jianshi; Wang, Chiu-Yen; Xiu, Faxian; Zhou, Yi; Chen, Lih-Juann; Wang, Kang L.

    2011-01-01

    We reviewed the formation of Ge nanowire heterostructure and its field-effect characteristics by a controlled reaction between a single-crystalline Ge nanowire and Ni contact pads using a facile rapid thermal annealing process. Scanning electron microscopy and transmission electron microscopy demonstrated a wide temperature range of 400~500°C to convert the Ge nanowire to a single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure with atomically sharp interfaces. More importantly, we studie...

  7. Fabrication and Gas-Sensing Properties of Ni-Silicide/Si Nanowires

    OpenAIRE

    Hsu, Hsun-Feng; Chen, Chun-An; Liu, Shang-Wu; Tang, Chun-Kai

    2017-01-01

    Ni-silicide/Si nanowires were fabricated by atomic force microscope nano-oxidation on silicon-on-insulator substrates, selective wet etching, and reactive deposition epitaxy. Ni-silicide nanocrystal-modified Si nanowire and Ni-silicide/Si heterostructure multi-stacked nanowire were formed by low- and high-coverage depositions of Ni, respectively. The Ni-silicide/Si Schottky junction and Ni-silicide region were attributed high- and low-resistance parts of nanowire, respectively, causing the re...

  8. Spatially resolved Raman spectroscopy on indium-catalyzed core-shell germanium nanowires: size effects

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Y; Zardo, I; Garma, T; Heiss, M; Fontcuberta i Morral, A [Walter Schottky Institut, Physik Department, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany); Cao, L Y; Brongersma, M L [Geballe Laboratory for Advanced Materials, 476 Lomita Mall, Stanford University, Stanford, CA 94305 (United States); Morante, J R; Arbiol, J [Departament d' Electronica, Universitat de Barcelona, 08028 Barcelona, CAT (Spain)

    2010-03-12

    The structure of indium-catalyzed germanium nanowires is investigated by atomic force microscopy, scanning confocal Raman spectroscopy and transmission electron microscopy. The nanowires are formed by a crystalline core and an amorphous shell. We find that the diameter of the crystalline core varies along the nanowire, down to few nanometers. Phonon confinement effects are observed in the regions where the crystalline region is the thinnest. The results are consistent with the thermally insulating behavior of the core-shell nanowires.

  9. Local modification of GaAs nanowires induced by laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Yazji, S; Zardo, I; Soini, M; Fontcuberta i Morral, A; Abstreiter, G [Walter Schottky Institut and Physik Department, Technische Universitaet Muenchen, Am Coulombwall 4, D-85748 Garching (Germany); Postorino, P, E-mail: ilaria.zardo@wsi.tum.de [Dipartimento di Fisica, Universita di Roma Sapienza, Piazzale Aldo Moro 5, I-00185 Roma (Italy)

    2011-08-12

    GaAs nanowires were heated locally under ambient air conditions by a focused laser beam which led to oxidation and formation of crystalline arsenic on the nanowire surface. Atomic force microscopy, photoluminescence and Raman spectroscopy experiments were performed on the same single GaAs nanowires in order to correlate their structural and optical properties. We show that the local changes of the nanowires act as a barrier for thermal transport which is of interest for thermoelectric applications.

  10. Single crystalline Ge(1-x)Mn(x) nanowires as building blocks for nanoelectronics.

    Science.gov (United States)

    van der Meulen, Machteld I; Petkov, Nikolay; Morris, Michael A; Kazakova, Olga; Han, Xinhai; Wang, Kang L; Jacob, Ajey P; Holmes, Justin D

    2009-01-01

    Magnetically doped Si and Ge nanowires have potential application in future nanowire spin-based devices. Here, we report a supercritical fluid method for producing single crystalline Mn-doped Ge nanowires with a Mn-doping concentration of between 0.5-1.0 atomic % that display ferromagnetism above 300 K and a superior performance with respect to the hole mobility of around 340 cm(2)/Vs, demonstrating the potential of using these nanowires as building blocks for electronic devices.

  11. Studies of single walled carbon nanotubes for biomedical, mechanical and electrical applications using atomic force microscopy

    Science.gov (United States)

    Lahiji, Roya Roientan

    The promise of carbon nanotubes to provide high-strength composites implies that carbon nanotubes might find widespread use throughout the world, implying that humans everywhere will be exposed to carbon nanotube-containing materials. In order to study what effects if any carbon nanotubes might have on the function of living cells, we have studied the association of single stranded DNA (ssDNA) with single wall carbon nanotubes (SWCNTs) as a first step toward understanding the interaction of SWCNTs with living matter. Studies have been performed on both as-received and chemically oxidized SWCNTs to better understand the preferential association of ssDNA with SWCNTs. Samples of T30 ssDNA:SWCNT were examined under ambient conditions using non-contact Atomic Force Microscopy (AFM)) techniques. AFM images of well-dispersed, as-received SWCNTs revealed isolated features on the SWCNT that are 1.4 to 2.8 nm higher than the bare SWCNT itself. X-ray Photoemission Spectroscopy (XPS) confirmed these features to be T30 ssDNA in nature. Chemically oxidizing SWCNTs before dispersion by sonication is found to be an effective way to increase the number of T30 ssDNA features. A series of experiments showed that free radical scavengers such as ascorbic acid and trolox can effectively prevent the conjugation of ssDNA to SWCNTs, suggesting a significant role of free radicals in this association. Also hybridization of the complimentary ssDNA sequences showed the covalent nature of this association. These results are important to understanding the precise mechanism of ssDNA:SWCNT association and provide valuable information for future use in electronics, biosensors and as a possible drug carrier into individual cells. If SWCNTs are used in biosensor or circuit design applications then it is important to note how much energy can be stored in a SWCNT based on its shape and configuration before a permanent damage is introduced to it. Therefore a study has been done on bending SWCNTs into

  12. 20(R- and 20(S-Simarolide Epimers Isolated from Simaba cuneata: Chemical Shifts Assignment of Carbon and Hydrogen Atoms

    Directory of Open Access Journals (Sweden)

    Vieira Ivo José Curcino

    1999-01-01

    Full Text Available The C25-quassinoids 20(R- and 20(S-simarolide were isolated from Simaba cuneata, Simaroubaceae. The structures of these two compounds were characterized by spectral data, including 1D and 2D NMR spectra which were also used for the complete assignment of the carbon and hydrogen atom chemical shifts.

  13. Relationship between Plasma Parameters and Carbon Atom Coordination in a-C:H Films Prepared by RF Glow Discharge Decomposition

    Science.gov (United States)

    Yamamoto, Kenji; Ichikawa, Yosuke; Nakayama, Takehisa; Tawada, Yoshihisa

    1988-08-01

    Amorphous C:H films were prepared by rf glow discharge decomposition from CH4 using a permanent magnet system to apply a static magnetic field perpendicular to the rf electric field. The structure and properties of a-C:H films have been investigated systematically with respect to the hydrogen content, hardness and coordination of carbon atoms as a function of rf power (self-bias voltage). The coordination of carbon atoms has been determined by solid-state 13C magic angle spinning nuclear magnetic resonance measurements. It is found that the fraction of graphitic (sp2) versus tetrahedral (sp3) bonding increases with increasing rf power (negative self-bias voltage). Film hardness is understood in terms of the balance between the incorporated hydrogen and the fraction of graphitic (sp2) versus tetrahedral (sp3) bonding. The production of ionic and neutral species from a glow discharge has also been monitored by mass spectroscopy and optical emission spectroscopy to investigate the relation between plasma parameters and carbon atom coordination. Using these measurements and negative self-bias measurements, it is shown that the coordination of carbon atoms is determined not only by the energy of impinging ions on the substrate but also by the type of active species. In addition, the neutral and ionic C2H2 related species are thought to be some of the species which increase the fraction of graphitic (sp2) versus tetrahedral (sp3) bonding.

  14. A diastereoselective unique route to cyclopropanes functionalized at all three ring carbon atoms from acyclic vinyl sulfone-modified carbohydrates.

    Science.gov (United States)

    Atta, Ananta Kumar; Pathak, Tanmaya

    2009-04-03

    In a departure from the current trend of using metal-catalyzed routes to cyclopropanation, pentosyl and hexosyl vinyl sulfone-modified carbohydrates having the terminal double bond and a suitably positioned leaving group are reacted in a stereoselective fashion with a series of nucleophiles to yield a myriad of cyclopropanes substituted at all three ring carbon atoms.

  15. Fragmentation of neutral carbon clusters formed by high velocity atomic collision; Fragmentation d'agregats de carbone neutres formes par collision atomique a haute vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, G

    2004-05-01

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  16. Experimental realization of suspended atomic chains composed of different atomic species

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Jefferson; Ugarte, Daniel [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Sato, Fernando; Galvao, Douglas Soares [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin; Coura, Pablo Zimmerman; Dantas, Socrates de Oliveira [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Inst. de Ciencias Exatas. Dept. de Fisica

    2006-07-01

    We report high resolution transmission electron microscopy (HRTEM) and molecular dynamics results of the first experimental test of suspended atomic chains composed of different atomic species formed from spontaneous stretching of metallic nanowires. (author)

  17. Periodic nanowire array at the crystal interface.

    Science.gov (United States)

    Nakamura, Atsutomo; Mizoguchi, Teruyasu; Matsunaga, Katsuyuki; Yamamoto, Takahisa; Shibata, Naoya; Ikuhara, Yuichi

    2013-07-23

    A dislocation in a crystalline material has dangling bonds at its core and a strong strain field in its vicinity. Consequently, the dislocation attracts solute atoms and forms a so-called Cottrell atmosphere along the dislocation. A crystalline dislocation can be used as a template to produce nanowires by selectively doping foreign atoms along the dislocation. However, control of the configuration, spacing, and density of the formed periodic nanowire array has heretofore been extremely difficult. Here we show a method for fabricating ordered, electrically conductive nanowire arrays using periodic dislocations at crystal interfaces. As a demonstration, we fabricated arrays of titanium nanowires arranged at intervals of either 13 or 90 nm and then confirmed by scanning probe microscopy that they exhibit electrical conductivity inside an insulating aluminum oxide. Significantly, we were able to precisely control nanowire periodicity by the choice of crystal orientation and/or crystal planes at the crystal interface. This simple method for the fabrication of periodic nanowire arrays of highly controlled density should be widely applicable to electrical, magnetic, and optical devices.

  18. Self-Assembled Fe-N-Doped Carbon Nanotube Aerogels with Single-Atom Catalyst Feature as High-Efficiency Oxygen Reduction Electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Shi, Qiurong [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Su, Dong [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton NY 11973 USA; Engelhard, Mark H. [Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Li, Xiaolin [Energy and Environmental Directory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xiao, Dongdong [Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Li, Dongsheng [Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Estevez, Luis [Energy and Environmental Directory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164 USA; Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2017-02-06

    Finely controlled synthesis of high active and robust non-precious metal catalysts with excellent electrocatalytic efficiency towards oxygen reduction reaction is extremely vital for successful implementation of fuel cells and metal batteries. Unprecedented oxygen reduction reaction electrocatalytic performances and the diversified synthetic procedure in term of favorable structure/morphology characteristics make transition metals-derived M–N–C (M=Fe, Co) structures the most promising nanocatalysts. Herein, using the nitrogen-containing small molecular and inorganic salt as precursors and ultrathin tellurium nanowires as templates, we successfully synthesized a series of well-defined M-N-doped hollow carbon nanowire aerogels through one step hydrothermal route and subsequent facile annealing treatment. Taking advantage of the porous nanostructures, one-dimensional building block as well as homogeneity of active sites, the resultant Fe-N-doped carbon hollow nanowire aerogels exhibited excellent ORR electrocatalytic performance even better than commercial Pt/C in alkaline solution, holding great potential in fuel cell applications.

  19. Atomic-scale scanning tunneling microscopy study of plasma-oxidized ultrahigh-modulus carbon fiber surfaces.

    Science.gov (United States)

    Paredes, J I; Martínez-Alonso, A; Tascón, J M D

    2003-02-15

    In the present work, scanning tunneling microscopy (STM) was employed to study the surface modification of ultrahigh modulus carbon fibers at the atomic level by oxygen plasma. As detected by STM, the distinctive feature of the fresh, untreated surface was the general presence of atomic-scale arrangements in different degrees of order (from atomic-sized spots without a clearly ordered disposition to triangular patterns identical to those typical of perfect graphite). Following fiber exposure to the plasma, the STM images showed evidence of the abstraction of carbon atoms from random locations on the fiber surface, giving rise to the development of defects (i.e., structural disorder), which in turn were the places where oxygen could be introduced during and after the plasma etching. It was observed that the most effective treatments in terms of extent of surface structural modification (disordering) and uniform introduction of oxygen were those carried out for just a few ( approximately 3) minutes. Considerably shorter exposures failed to provide a homogeneous modification and many locations on the fiber surface remained unaltered, retaining their original atomic-scale order, whereas longer treatments did not bring about further structural changes to the surface and only led to fiber consumption. These results are consistent with previous X-ray photoelectron spectroscopy measurements on these fibers and provide an atomic-level understanding of the saturation effect observed in the surface oxygen concentration of this and other types of carbon fibers with plasma oxidation. Such understanding may also prove helpful for the accurate control and optimization of fiber-matrix interaction in composite materials.

  20. Size Effect and Deformation Mechanism in Twinned Copper Nanowires

    Directory of Open Access Journals (Sweden)

    Jiapeng Sun

    2017-10-01

    Full Text Available Molecular dynamics simulations were performed to demonstrate the synergistic effects of the extrinsic size (nanowire length and intrinsic size (twin boundary spacing on the failure manner, yield strength, ductility and deformation mechanism of the twinned nanowires containing high density coherent twin boundaries CTBs paralleled to the nanowires’ axis. The twinned nanowires show an intense extrinsic size effect, i.e., shorter is stronger and more ductile, and an intense intrinsic size effect, i.e., thinner is stronger. Notably, the strengthening effect degradation of CTBs in the twinned nanowires is observed with an increase in nanowire length: remarkable strengthening effect can be obtained for the short nanowires, but the strengthening effect becomes less pronounced for the long nanowires. The twinned nanowires fail via a ductile manner or via a brittle manner depending on the synergistic effect of the nanowire length and twin boundary spacing. By atomic-level observation of the plastic deformation, we found that the emission of a trailing 30° partial from the free surface controls the yield behavior of the twinned nanowires. We also found that the special zigzag extended dislocations are formed by the dislocation–CTBs interactions, and propagate to sustain the plastic deformation.

  1. Bibliography of electron and photon cross sections with atoms and molecules published in the 20th century. Carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Makoto [Gaseous Electronics Institute, Nagoya, Aichi (Japan)

    2003-04-01

    A bibliography of original and review reports of experiments or theories of electron and photon cross sections and also electron swarm data are presented for atomic or molecular species with specified targets. These works covered 17 atoms and 51 molecules. The present bibliography is only for carbon dioxide (CO{sub 2}). About 1,240 papers were compiled. A comprehensive author index is included. The bibliography covers the period 1901 through 2000 for CO{sub 2}. Finally, author's comments for CO{sub 2} electron collision cross sections are given. (author)

  2. Heterojunction nanowires having high activity and stability for the reduction of oxygen: Formation by self-assembly of iron phthalocyanine with single walled carbon nanotubes (FePc/SWNTs)

    KAUST Repository

    Zhu, Jia

    2014-04-01

    A self-assembly approach to preparing iron phthalocyanine/single-walled carbon nanotube (FePc/SWNT) heterojunction nanowires as a new oxygen reduction reaction (ORR) electrocatalyst has been developed by virtue of water-adjusted dispersing in 1-cyclohexyl-pyrrolidone (CHP) of the two components. The FePc/SWNT nanowires have a higher Fermi level compared to pure FePc (d-band center, DFT. =. -0.69. eV versus -0.87. eV, respectively). Consequently, an efficient channel for transferring electron to the FePc surface is readily created, facilitating the interaction between FePc and oxygen, so enhancing the ORR kinetics. This heterojunction-determined activity in ORR illustrates a new stratagem to preparing non-noble ORR electrocatalysts of significant importance in constructing real-world fuel cells. © 2013 Elsevier Inc.

  3. Atomic Force Microscopy of DNA-wrapped Single-walled Carbon Nanotubes in Aqueous Solution.

    Science.gov (United States)

    Hayashida, Takuya; Umemura, Kazuo

    2016-07-01

    We evaluated hybrids of DNA and single-walled carbon nanotubes (SWNTs) in aqueous solution and in air using atomic force microscopy (AFM). Although intensive AFM observations of these hybrids were previously carried out for samples in air, this is the first report on AFM observations of these hybrids in solution. As expected, diameters of DNA-SWNT hybrids dramatically increased in tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid (TE) buffer solution. The data suggest that DNA molecules maintain their structures even on the SWNT surfaces. Furthermore, we simultaneously observed single DNA-SWNT hybrids using three different AFM modes in air and in the TE buffer solution. Height value of the hybrids was largest in the solution, and lowest for the mode that repulsive force is expected in air. For the bare SWNT molecules, height differences among the three AFM modes were much lower than those of the DNA-SWNT hybrids. DNA molecules adsorbed on SWNT surfaces flexibly changed their morphology as well as DNA molecules on flat surfaces such as mica. This is hopeful results for biological applications of DNA-SWNT hybrids. In addition, our results revealed the importance of the single-molecule approach to evaluate DNA structures on SWNT surfaces. Copyright © 2016. Published by Elsevier B.V.

  4. Atomic-force-microscopy nanowriting on ultrathin tetrahedral amorphous carbon films

    Science.gov (United States)

    Pivovarov, Pavel A.; Zavedeev, Evgeny V.; Frolov, Vadim D.; Roch, Teja; Scheibe, Hans-Joachim; Pimenov, Sergei M.

    2016-11-01

    We report the atomic-force-microscopy (AFM)-based nanolithography writing of surface patterns on ultrathin (nanoletters') is demonstrated, depending on the magnitude and duration of the voltage pulses applied between the ta-C film and conductive probe, and the relative humidity of ambient air. It is found that the AFM tip-assisted nanowriting process occurring under (1) the presence of adsorbed water layers on the ta-C surface, (2) the applied voltage of >4 V, and (3) the contact pressures in the GPa range results in the formation of a novel carbon phase in a nm-thick surface layer characterized by the lower density, lower mechanical strength, lower electrical conductivity, and increased nanofriction as compared to the original film. The structure of the tip-modified nm-thick layer on the ta-C film is assumed to be a structure of graphite oxide which can be further modified in the presence of water under high contact pressures.

  5. Mechanism and model of atomic hydrogen cleaning for different types of carbon contamination on extreme ultraviolet multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yuan [State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Lu, Qipeng, E-mail: Luqipeng51@126.com [State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033 (China); Gong, Xuepeng [State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033 (China)

    2016-08-01

    The use of atomic hydrogen to clean carbon contaminants on multilayers in extreme ultraviolet lithography systems has been extensively investigated. Additional knowledge of the cleaning rate would not only provide a better understanding of the reaction mechanism but would also inform the industry's cleaning process. In this paper, which focuses on the atomic-hydrogen-based carbon contamination cleaning process, a possible mechanism for the associated reactions is studied and a cleaning model is established. The calculated results are in good agreement with the existing experimental data in the literature. The influences of the main factors – such as activation energy and types of contamination – on the cleaning rate are addressed by the model. The model shows that the cleaning rate depends on the type of carbon contamination. The rate for a polymer-like carbon layer is higher than the rate for graphitic and diamond-like carbon layers. At 340 K, the rate for a polymer-like carbon layer is 10 times higher than for graphitic carbon layers. This model could be used effectively to predict and evaluate the cleaning rates for various carbon contamination types. - Highlights: • Mechanism of H{sup 0} cleaning with C contamination on EUV multilayers is given. • Reflectivity of multilayers rely on various types of C contamination is analyzed. • A model of H{sup 0} cleaning various types of C contamination layers is built. • Accurate predicting and evaluating the rate of H{sup 0} cleaning by the mode is proved. • It would be beneficial for improving H{sup 0} cleaning process of carbon layers.

  6. How Copper Nanowires Grow and How To Control Their Properties.

    Science.gov (United States)

    Ye, Shengrong; Stewart, Ian E; Chen, Zuofeng; Li, Bo; Rathmell, Aaron R; Wiley, Benjamin J

    2016-03-15

    Scalable, solution-phase nanostructure synthesis has the promise to produce a wide variety of nanomaterials with novel properties at a cost that is low enough for these materials to be used to solve problems. For example, solution-synthesized metal nanowires are now being used to make low cost, flexible transparent electrodes in touch screens, organic light-emitting diodes (OLEDs), and solar cells. There has been a tremendous increase in the number of solution-phase syntheses that enable control over the assembly of atoms into nanowires in the last 15 years, but proposed mechanisms for nanowire formation are usually qualitative, and for many syntheses there is little consensus as to how nanowires form. It is often not clear what species is adding to a nanowire growing in solution or what mechanistic step limits its rate of growth. A deeper understanding of nanowire growth is important for efficiently directing the development of nanowire synthesis toward producing a wide variety of nanostructure morphologies for structure-property studies or producing precisely defined nanostructures for a specific application. This Account reviews our progress over the last five years toward understanding how copper nanowires form in solution, how to direct their growth into nanowires with dimensions ideally suited for use in transparent conducting films, and how to use copper nanowires as a template to grow core-shell nanowires. The key advance enabling a better understanding of copper nanowire growth is the first real-time visualization of nanowire growth in solution, enabling the acquisition of nanowire growth kinetics. By measuring the growth rate of individual nanowires as a function of concentration of the reactants and temperature, we show that a growing copper nanowire can be thought of as a microelectrode that is charged with electrons by hydrazine and grows through the diffusion-limited addition of Cu(OH)2(-). This deeper mechanistic understanding, coupled to an

  7. Three-Dimensional Bimetal-Graphene-Semiconductor Coaxial Nanowire Arrays to Harness Charge Flow for the Photochemical Reduction of Carbon Dioxide.

    Science.gov (United States)

    Hou, Jungang; Cheng, Huijie; Takeda, Osamu; Zhu, Hongmin

    2015-07-13

    The photochemical conversion of carbon dioxide provides a straightforward and effective strategy for the highly efficient production of solar fuels with high solar-light utilization efficiency. However, the high recombination rate of photoexcited electron-hole (e-h) pairs and the poor photostability have greatly limited their practical applications. Herein, a practical strategy is proposed to facilitate the separation of e-h pairs and enhance the photostability in a semiconductor by the use of a Schottky junction in a bimetal-graphene-semiconductor stack array. Importantly, Au-Cu nanoalloys (ca. 3 nm) supported on a 3D ultrathin graphene shell encapsulating a p-type Cu2O coaxial nanowire array promotes the stable photochemical reduction of CO2 to methanol by the synergetic catalytic effect of interfacial modulation and charge-transfer channel design. This work provides a promising lead for the development of practical catalysts for sustainable fuel synthesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

    Science.gov (United States)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M.; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M.

    2016-01-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging. PMID:27319783

  9. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors

    Science.gov (United States)

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-01

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g-1 at 0.128 A g-1, which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g-1) and pure CF (0.6 F g-1) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  10. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

    Science.gov (United States)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M.; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M.

    2016-06-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.

  11. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability.

    Science.gov (United States)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M

    2016-06-20

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm(2). The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm(2), a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.

  12. Efficient Lithium-Ion Storage by Hierarchical Core-Shell TiO2 Nanowires Decorated with MoO2 Quantum Dots Encapsulated in Carbon Nanosheets.

    Science.gov (United States)

    Wang, Shitong; Zhang, Zhongtai; Yang, Yong; Tang, Zilong

    2017-07-19

    Rational design and surface engineering are the key to synthesizing high-performance electrode materials for electrocatalysis and energy conversion and storage applications. Herein, a novel three-dimensional (3D) nanoarchitecture of TiO2 nanowires decorated with MoO2 quantum dots encapsulated in carbon nanosheets was successfully synthesized by a simple polymerization method. Such a hierarchical nanostructure can not only exhibit the synergistic effect of structural stability of a 1D TiO2 substrate and high capacity of 0D MoO2 quantum dots but also prevent the aggregation and oxidation of MoO2. As a result, the novel 0D-1D-2D composite illustrates an initial discharge capacity of 470 mAh g(-1) at a high current density of 500 mA g(-1), especially a capacity retention of about 83% after 450 cycles. The present work highlights the designing strategy of nanoarchitectures containing high capacity materials for enhancing electrochemical performance of Ti-based materials.

  13. Agglomeration defects on irradiated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Steini Moura, Cassio [Faculty of Physics, Pontificia Universidade Catolica do Rio Grande do Sul, 90619-900, Porto Alegre, RS (Brazil); Balzaretti, Naira Maria; Amaral, Livio [Institute of Physics, Universidade Federal do Rio Grande do Sul, C.P.: 15051, 91501-070, Porto Alegre, RS (Brazil); Gribel Lacerda, Rodrigo; Pimenta, Marcos A. [Universidade Federal de Minas Gerais, C.P.: 702, 31270-901, Belo Horizonte, MG (Brazil)

    2012-03-15

    Aligned carbon nanotubes (CNT) were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  14. Agglomeration defects on irradiated carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Cássio Stein Moura

    2012-03-01

    Full Text Available Aligned carbon nanotubes (CNT were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  15. Electrochemical synthesis of elongated noble metal nanoparticles, such as nanowires and nanorods, on high-surface area carbon supports

    Science.gov (United States)

    Adzic, Radoslav; Blyznakov, Stoyan; Vukmirovic, Miomir

    2015-08-04

    Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.

  16. Microspheres for the Growth of Silicon Nanowires via Vapor-Liquid-Solid Mechanism

    Directory of Open Access Journals (Sweden)

    Arancha Gómez-Martínez

    2014-01-01

    Full Text Available Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. The resulting material is composed of the microspheres with the silicon nanowires attached on their surface.

  17. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng

    2010-01-13

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi2Se5 nanomaterials with a variety of morphologies. The synthesis of Bi 2Se5 nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with ∼ 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitais to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states. © 2010 American Chemical Society.

  18. Nanowire Optoelectronics

    Directory of Open Access Journals (Sweden)

    Wang Zhihuan

    2015-12-01

    Full Text Available Semiconductor nanowires have been used in a variety of passive and active optoelectronic devices including waveguides, photodetectors, solar cells, light-emitting diodes (LEDs, lasers, sensors, and optical antennas. We review the optical properties of these nanowires in terms of absorption, guiding, and radiation of light, which may be termed light management. Analysis of the interaction of light with long cylindrical/hexagonal structures with subwavelength diameters identifies radial resonant modes, such as Leaky Mode Resonances, or Whispering Gallery modes. The two-dimensional treatment should incorporate axial variations in “volumetric modes,”which have so far been presented in terms of Fabry–Perot (FP, and helical resonance modes. We report on finite-difference timedomain (FDTD simulations with the aim of identifying the dependence of these modes on geometry (length, width, tapering, shape (cylindrical, hexagonal, core–shell versus core-only, and dielectric cores with semiconductor shells. This demonstrates how nanowires (NWs form excellent optical cavities without the need for top and bottommirrors. However, optically equivalent structures such as hexagonal and cylindrical wires can have very different optoelectronic properties meaning that light management alone does not sufficiently describe the observed enhancement in upward (absorption and downward transitions (emission of light inNWs; rather, the electronic transition rates should be considered. We discuss this “rate management” scheme showing its strong dimensional dependence, making a case for photonic integrated circuits (PICs that can take advantage of the confluence of the desirable optical and electronic properties of these nanostructures.

  19. Evaluation of carbon nanotube probes in critical dimension atomic force microscopes

    Science.gov (United States)

    Choi, Jinho; Park, Byong Chon; Ahn, Sang Jung; Kim, Dal-Hyun; Lyou, Joon; Dixson, Ronald G.; Orji, Ndubuisi G.; Fu, Joseph; Vorburger, Theodore V.

    2016-07-01

    The decreasing size of semiconductor features and the increasing structural complexity of advanced devices have placed continuously greater demands on manufacturing metrology, arising both from the measurement challenges of smaller feature sizes and the growing requirement to characterize structures in more than just a single critical dimension. For scanning electron microscopy, this has resulted in increasing sophistication of imaging models. For critical dimension atomic force microscopes (CD-AFMs), this has resulted in the need for smaller and more complex tips. Carbon nanotube (CNT) tips have thus been the focus of much interest and effort by a number of researchers. However, there have been significant issues surrounding both the manufacture and use of CNT tips. Specifically, the growth or attachment of CNTs to AFM cantilevers has been a challenge to the fabrication of CNT tips, and the flexibility and resultant bending artifacts have presented challenges to using CNT tips. The Korea Research Institute for Standards and Science (KRISS) has invested considerable effort in the controlled fabrication of CNT tips and is collaborating with the National Institute of Standards and Technology on the application of CNT tips for CD-AFM. Progress by KRISS on the precise control of CNT orientation, length, and end modification, using manipulation and focused ion beam processes, has allowed us to implement ball-capped CNT tips and bent CNT tips for CD-AFM. Using two different generations of CD-AFM instruments, we have evaluated these tip types by imaging a line/space grating and a programmed line edge roughness specimen. We concluded that these CNTs are capable of scanning the profiles of these structures, including re-entrant sidewalls, but there remain important challenges to address. These challenges include tighter control of tip geometry and careful optimization of scan parameters and algorithms for using CNT tips.

  20. Nanofabrication of structures for the study of nanowire doping

    Science.gov (United States)

    Eichfeld, Chad

    A variety of techniques were developed for the characterization of nanowires and applied to the study of nanowire growth and dopant incorporation. A technique to selectively plate gold on the n-type regions of modulation-doped silicon nanowires for junction delineation was developed. The ability to electrolessly deposit metal on segments of nanowires could also facilitate electrical contact formation. More complicated structures such as controlled placement of forks along the nanowire could be made by placement of the gold catalyst at predetermined locations along a nanowire followed by a second growth. Additionally, a process was developed that focuses on using this plating ability to grow silicon nanowires horizontally from pre-determined locations. The processing was worked out and nanowires were grown horizontally from plated gold, but the selectivity of gold limited the ability to grow wires in only the desired locations. A silicon nanowire local electrode atom probe test structure is discussed from the initial design steps to successfully using the test structure to analyze silicon nanowires. Initial results using laser pulsed assisted local electrode atom probe indicated that the thermal properties of the nanowire prevent the tip from cooling fast enough and resulted in large thermal tails in the mass spectra. Thermal modeling was used to identify what nanowire diameters and metal coatings would allow the nanowire tip to cool sufficiently fast. A silver catalyzed silicon nanowire with a diameter large enough to allow for sufficient cooling was analyzed, and the concentration of silver in the silicon nanowire was below the detection limit of 10 ppm or 5 x 10 17 cm-3. The growth and characterization of Al catalyzed silicon nanowires is also discussed. Nanowires were grown at higher pressures and using H 2 as a carrier gas resulting in much higher growth rates than previously observed for Al catalyzed nanowires in the literature. The nanowires were

  1. Magnetic properties of a single iron atomic chain encapsulated in armchair carbon nanotubes: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63, 46000 Safi (Morocco); Jabar, A. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63, 46000 Safi (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université Grenoble Alpes, 25 rue des Martyrs BP 166, 38042 Grenoble cedex 9 (France)

    2017-06-15

    Highlights: • Magnetic properties of Fe atom chain wrapped in armchair carbon nanotubes have been studied. • Transition temperature of iron and carbon have been calculated using Monte Carlo simulations. • The multiples magnetic hysteresis have been found. - Abstract: The magnetic properties have been investigated of FeCu{sub x}C{sub 1−x} for a Fe atom chain wrapped in armchair (N,N) carbon nanotubes (N = 4,6,8,10,12) diluted by Cu{sup 2+} ions using Monte Carlo simulations. The thermal total magnetization and magnetic susceptibility are found. The reduced transition temperatures of iron and carbon have been calculated for different N and the exchange interactions. The total magnetization is obtained for different exchange interactions and crystal field. The Magnetic hysteresis cycles are obtained for different N, the reduced temperatures and exchange interactions. The multiple magnetic hysteresis is found. This system shows it can be used as magnetic nanostructure possessing potential current and future applications in permanent magnetism, magnetic recording and spintronics.

  2. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hainey, Mel F.; Redwing, Joan M. [Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-12-15

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  3. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    Science.gov (United States)

    Hainey, Mel F.; Redwing, Joan M.

    2016-12-01

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  4. Deformation mechanisms of Cu nanowires with planar defects

    Science.gov (United States)

    Tian, Xia; Yang, Haixia; Cui, Junzhi; Yu, Xingang; Wan, Rui

    2015-01-01

    Molecular dynamics simulations are used to investigate the mechanical behavior of Cu nanowires (NWs) with planar defects such as grain boundaries (GBs), twin boundaries (TBs), stacking faults (SFs), etc. To investigate how the planar defects affect the deformation and fracture mechanisms of naowires, three types of nanowires are considered in this paper: (1) polycrystalline Cu nanowire; (2) single-crystalline Cu nanowire with twin boundaries; and (3) single-crystalline Cu nanowire with stacking faults. Because of the large fraction of atoms at grain boundaries, the energy of grain boundaries is higher than that of the grains. Thus, grain boundaries are proved to be the preferred sites for dislocations to nucleate. Moreover, necking and fracture prefer to occur at the grain boundary interface owing to the weakness of grain boundaries. For Cu nanowires in the presence of twin boundaries, it is found that twin boundaries can strength nanowires due to the restriction of the movement of dislocations. The pile up of dislocations on twin boundaries makes them rough, inducing high energy in twin boundaries. Hence, twin boundaries can emit dislocations, and necking initiates at twin boundaries. In the case of Cu nanowires with stacking faults, all pre-existing stacking faults in the nanowires are observed to disappear during deformation, giving rise to a fracture process resembling the samples without stacking fault.

  5. Erosion of Carbon-based spacecraft structures in LEO by Atomic Oxygen

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1998-01-01

    Atomic oxygen is constantly generated on the topside of the atmosphere by ionizing radiation. The ionizing solar radiation, UV and particles, will on impact dissociate molecular oxygen to atomic oxygen. However, due to the ratio between the UV and the particle flux from the sun, and due to compar...

  6. Confined-interface-directed synthesis of Palladium single-atom catalysts on graphene/amorphous carbon

    DEFF Research Database (Denmark)

    Xi, Jiangbo; Sun, Hongyu; Zhang, Zheye

    2018-01-01

    The maximized atomic efficiency of supported catalysts is highly desired in heterogeneous catalysis. Therefore, the design and development of active, stable, and atomic metal-based catalysts remains a formidable challenge. To tackle these problems, it is necessary to investigate the interaction b...

  7. Mo{sub 6}S{sub 4.5}I{sub 4.5} Nanowires: Structure Studies by HRTEM and Aberration Corrected STEM

    Energy Technology Data Exchange (ETDEWEB)

    Nicolosi, Valeria [University of Dublin - Trinity College, Department of Physics, Dublin 2 (Ireland); Nellist, Peter [University of Dublin - Trinity College, Department of Physics, Dublin 2 (Ireland); Sloan, Jeremy [Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR (United Kingdom); Mihailovic, Dragan [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Mo6, Teslova 30, 1000 Ljubljana (Slovenia); Green, Malcom [Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR (United Kingdom); Blau, Werner J [University of Dublin - Trinity College, Department of Physics, Dublin 2 (Ireland); Coleman, Jonathan N [University of Dublin - Trinity College, Department of Physics, Dublin 2 (Ireland)

    2006-02-22

    The atomic structure of subnanometer diameter Mo{sub 6}S{sub 4.5}I{sub 4.5} nanowires and their superlattice packing in bundles have been studied by High Resolution Transmission Electron Microscopy (HRTEM) and Aberration Corrected Scanning Transmission Electron Microscopy (STEM). The individual nanowires are best described as one-dimensional Mo-chalcogenidehalide cluster polymers, composed of Mo octahedra, surrounded by iodine atoms and connected by bridging planes of 3 sulfur atoms. The nanowires are weakly bounded together into bundles by Van der Waals forces in a trigonal packing arrangement, with a nanowire to nanowire distance of 0.96 nm.

  8. Vertical nanowire architectures

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfl-Tempfli, M.; Piraux, L.

    2010-01-01

    Nanowires and statistics: A statistical process for reading ultradense arrays of nanostructured materials is presented (see image). The experimental realization is achieved through selective nanowire growth using porous alumina templates. The statistical patterning approach is found to provide ri...

  9. Clusters of interstitial carbon atoms near the graphite surface as a possible origin of dome-like features observed by STM

    OpenAIRE

    Elesin, V. F.; Openov, L. A.

    1999-01-01

    Formation of clusters of interstitial carbon atoms between the surface and second atomic layers of graphite is demonstrated by means of molecular dynamics simulations. It is shown that interstitial clusters result in the dome-like surface features that may be associated with some of the hillocks observed by STM on the irradiated graphite surface.

  10. Wrapping Aligned Carbon Nanotube Composite Sheets around Vanadium Nitride Nanowire Arrays for Asymmetric Coaxial Fiber-Shaped Supercapacitors with Ultrahigh Energy Density.

    Science.gov (United States)

    Zhang, Qichong; Wang, Xiaona; Pan, Zhenghui; Sun, Juan; Zhao, Jingxin; Zhang, Jun; Zhang, Cuixia; Tang, Lei; Luo, Jie; Song, Bin; Zhang, Zengxing; Lu, Weibang; Li, Qingwen; Zhang, Yuegang; Yao, Yagang

    2017-04-12

    The emergence of fiber-shaped supercapacitors (FSSs) has led to a revolution in portable and wearable electronic devices. However, obtaining high energy density FSSs for practical applications is still a key challenge. This article exhibits a facile and effective approach to directly grow well-aligned three-dimensional vanadium nitride (VN) nanowire arrays (NWAs) on carbon nanotube (CNT) fiber with an ultrahigh specific capacitance of 715 mF/cm(2) in a three-electrode system. Benefiting from their intriguing structural features, we successfully fabricated a prototype asymmetric coaxial FSS (ACFSS) with a maximum operating voltage of 1.8 V. From core to shell, this ACFSS consists of a CNT fiber core coated with VN@C NWAs as the negative electrode, Na2SO4 poly(vinyl alcohol) (PVA) as the solid electrolyte, and MnO2/conducting polymer/CNT sheets as the positive electrode. The novel coaxial architecture not only fully enables utilization of the effective surface area and decreases the contact resistance between the two electrodes but also, more importantly, provides a short pathway for the ultrafast transport of axial electrons and ions. The electrochemical results show that the optimized ACFSS exhibits a remarkable specific capacitance of 213.5 mF/cm(2) and an exceptional energy density of 96.07 μWh/cm(2), the highest areal capacitance and areal energy density yet reported in FSSs. Furthermore, the device possesses excellent flexibility in that its capacitance retention reaches 96.8% after bending 5000 times, which further allows it to be woven into flexible electronic clothes with conventional weaving techniques. Therefore, the asymmetric coaxial architectural design allows new opportunities to fabricate high-performance flexible FSSs for future portable and wearable electronic devices.

  11. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization.

    Science.gov (United States)

    Ghaedi, M; Shojaeipour, E; Ghaedi, A M; Sahraei, Reza

    2015-05-05

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1g), contact time (1-40min) and initial MG concentration (5, 10, 20, 70 and 100mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R(2)) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8mg/g at 25°C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Carbon nanotubes randomly decorated with gold clusters: from nano{sup 2}hybrid atomic structures to gas sensing prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Charlier, J-C; Zanolli, Z [Unite de Physico-Chimie et de Physique des Materiaux (PCPM), European Theoretical Spectroscopy Facility (ETSF), Universite Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve (Belgium); Arnaud, L; Avilov, I V; Felten, A; Pireaux, J-J [Centre de Recherche en Physique de la Matiere et du Rayonnement (PMR-LISE), Facultes Universitaires Notre-Dame de la Paix, 61 Rue de Bruxelles, B-5000 Namur (Belgium); Delgado, M [Sensotran, s.l., Avenida Remolar 31, E-08820 El Prat de Llobregat, Barcelona (Spain); Demoisson, F; Reniers, F [Service de Chimie Analytique et Chimie des Interfaces (CHANI), Universite Libre de Bruxelles, Faculte des Sciences, CP255, Boulevard du Triomphe 2, B-1050 Bruxelles (Belgium); Espinosa, E H; Ionescu, R; Leghrib, R; Llobet, E [Department of Electronic Engineering, Universitat Rovira i Virgili, Avenida Paisos Catalans 26, E-43007 Tarragona (Spain); Ewels, C P; Suarez-Martinez, I [Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes, 2 rue de la Houssiniere-BP 32229, F-44322 Nantes Cedex 3 (France); Guillot, J; Mansour, A; Migeon, H-N [Departement Science et Analyse des Materiaux, Centre de Recherche Public-Gabriel Lippmann, rue du Brill 41, L-4422 Belvaux (Luxembourg); Watson, G E, E-mail: jean-jacques.pireaux@fundp.ac.b [Vega Science Trust, Unit 118, Science Park SQ, Brighton, BN1 9SB (United Kingdom)

    2009-09-16

    Carbon nanotube surfaces, activated and randomly decorated with metal nanoclusters, have been studied in uniquely combined theoretical and experimental approaches as prototypes for molecular recognition. The key concept is to shape metallic clusters that donate or accept a fractional charge upon adsorption of a target molecule, and modify the electron transport in the nanotube. The present work focuses on a simple system, carbon nanotubes with gold clusters. The nature of the gold-nanotube interaction is studied using first-principles techniques. The numerical simulations predict the binding and diffusion energies of gold atoms at the tube surface, including realistic atomic models for defects potentially present at the nanotube surface. The atomic structure of the gold nanoclusters and their effect on the intrinsic electronic quantum transport properties of the nanotube are also predicted. Experimentally, multi-wall CNTs are decorated with gold clusters using (1) vacuum evaporation, after activation with an RF oxygen plasma and (2) colloid solution injected into an RF atmospheric plasma; the hybrid systems are accurately characterized using XPS and TEM techniques. The response of gas sensors based on these nano{sup 2}hybrids is quantified for the detection of toxic species like NO{sub 2}, CO, C{sub 2}H{sub 5}OH and C{sub 2}H{sub 4}.

  13. Carbon nanotubes randomly decorated with gold clusters: from nano2hybrid atomic structures to gas sensing prototypes.

    Science.gov (United States)

    Charlier, J-C; Arnaud, L; Avilov, I V; Delgado, M; Demoisson, F; Espinosa, E H; Ewels, C P; Felten, A; Guillot, J; Ionescu, R; Leghrib, R; Llobet, E; Mansour, A; Migeon, H-N; Pireaux, J-J; Reniers, F; Suarez-Martinez, I; Watson, G E; Zanolli, Z

    2009-09-16

    Carbon nanotube surfaces, activated and randomly decorated with metal nanoclusters, have been studied in uniquely combined theoretical and experimental approaches as prototypes for molecular recognition. The key concept is to shape metallic clusters that donate or accept a fractional charge upon adsorption of a target molecule, and modify the electron transport in the nanotube. The present work focuses on a simple system, carbon nanotubes with gold clusters. The nature of the gold-nanotube interaction is studied using first-principles techniques. The numerical simulations predict the binding and diffusion energies of gold atoms at the tube surface, including realistic atomic models for defects potentially present at the nanotube surface. The atomic structure of the gold nanoclusters and their effect on the intrinsic electronic quantum transport properties of the nanotube are also predicted. Experimentally, multi-wall CNTs are decorated with gold clusters using (1) vacuum evaporation, after activation with an RF oxygen plasma and (2) colloid solution injected into an RF atmospheric plasma; the hybrid systems are accurately characterized using XPS and TEM techniques. The response of gas sensors based on these nano(2)hybrids is quantified for the detection of toxic species like NO(2), CO, C(2)H(5)OH and C(2)H(4).

  14. Rational Design of Single Molybdenum Atoms Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction.

    Science.gov (United States)

    Chen, Wenxing; Pei, Jiajing; He, Chun-Ting; Wan, Jiawei; Ren, Hanlin; Zhu, Youqi; Wang, Yu; Dong, Juncai; Tian, Shubo; Cheong, Weng-Chon; Lu, Siqi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Zhuang, Zhongbin; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong

    2017-12-11

    The highly efficient electrochemical hydrogen evolution reaction (HER) provides a promising pathway to resolve energy and environment problems. An electrocatalyst was designed with single Mo atoms (Mo-SAs) supported on N-doped carbon having outstanding HER performance. The structure of the catalyst was probed by aberration-corrected scanning transmission electron microscopy (AC-STEM) and X-ray absorption fine structure (XAFS) spectroscopy, indicating the formation of Mo-SAs anchored with one nitrogen atom and two carbon atoms (Mo 1 N 1 C 2 ). Importantly, the Mo 1 N 1 C 2 catalyst displayed much more excellent activity compared with Mo 2 C and MoN, and better stability than commercial Pt/C. Density functional theory (DFT) calculation revealed that the unique structure of Mo 1 N 1 C 2 moiety played a crucial effect to improve the HER performance. This work opens up new opportunities for the preparation and application of highly active and stable Mo-based HER catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nanowire-based detector

    Science.gov (United States)

    Berggren, Karl K; Hu, Xiaolong; Masciarelli, Daniele

    2014-06-24

    Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.

  16. The solar photospheric abundance of carbon : Analysis of atomic carbon lines with the CO5BOLD solar model

    NARCIS (Netherlands)

    Caffau, E.; Ludwig, H.-G.; Bonifacio, P.; Faraggiana, R.; Steffen, M.; Freytag, B.; Kamp, I.; Ayres, T. R.

    Context. The analysis of the solar spectra using hydrodynamical simulations, with a specific selection of lines, atomic data, and method for computing deviations from local thermodynamical equilibrium, has led to a downward revision of the solar metallicity, Z. We are using the latest simulations

  17. Prismatic quantum heterostructures on MBE grown GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Fontcuberta i Morral, Anna [Walter Schottky Institut, TU Muenchen, Garching (Germany)

    2008-07-01

    Semiconductor nanowires are believed to play a decisive role in the electronic and optoelectronic devices of the XXI century. Their synthesis is a rapidly expanding field, due to the expectations that nanoscale objects and their associated phenomena have to offer to basic and applied science. Here we report on a new method for the growth of GaAs nanowires and related prismatic quantum heterostructures using Molecular Beam Epitaxy (MBE), by avoiding the use of gold as seed for the nanowires. The use of Molecular Beam Epitaxy presents an additional interest, as this technique allows us to produce ultra-pure nanowires and quantum heterostructures on the nanowire facets with very high crystalline quality and atomically sharp interfaces. This new versatility of MBE in the growth of nanostructures opens great possibilities for the generation of novel devices with additional optical and electronic functionalities, as it has been previously shown in planar structures.

  18. Self-Assembled PbSe Nanowire:Perovskite Hybrids

    KAUST Repository

    Yang, Zhenyu

    2015-12-02

    © 2015 American Chemical Society. Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  19. Synchrotron characterization of functional tin dioxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Domashevskaya, E. P., E-mail: ftt@phys.vsu.ru; Chuvenkova, O. A.; Turishchev, S. Yu. [Voronezh State University, Voronezh (Russian Federation)

    2015-12-31

    Wire-like crystals of tin dioxide were synthesized by a gas-transport technique. The wires, of mainly nanometric diameters, were characterized by spectroscopy and microscopy techniques with the use of highly brilliant and intense synchrotron radiation. We studied the influence of the surface chemical state and the oxygen vacancies on the atomic and electronic structure of the nanowires. The surface of the nanowires is covered by a few nanometers of tin suboxides. The lack of oxygen over the surface layers leads to specific sub-zone formation in a gap, as shown by synchrotron studies.

  20. Carbon Redistribution and Carbide Precipitation in a High-Strength Low-Carbon HSLA-115 Steel Studied on a Nanoscale by Atom Probe Tomography

    Science.gov (United States)

    Jain, Divya; Isheim, Dieter; Seidman, David N.

    2017-07-01

    HSLA-115 is a newly developed Cu-bearing high-strength low-carbon martensitic steel for use in Naval structural applications. This research provides, for the first time, a comprehensive compositional analysis of carbon redistribution and associated complex phase transformations in an isothermal aging study of HSLA-115 at 823 K (550 °C). Specifically, we characterize carbon segregation at lath boundaries, grain-refining niobium carbonitrides, cementite, and secondary hardening M2C carbides, in addition to copper precipitation, by 3D atom probe tomography (APT). Segregation of carbon (3 to 6 at. pct C) is observed at martensitic lath boundaries in the as-quenched and 0.12-hour aged microstructures. On further aging, carbon redistributes itself forming cementite and M2C carbides. Niobium carbonitride precipitates do not dissolve during the austenitizing treatment and are inherited in the as-quenched and aged microstructures; these are characterized along with cementite by synchrotron X-ray diffraction and APT. Sub-nanometer-sized M2C carbide precipitates are observed after the formation of Cu precipitates, co-located with the latter, indicating heterogeneous nucleation of M2C. The temporal evolution of the composition and morphology of M2C carbides at 823 K (550 °C) is described using APT; their precipitation kinetics is intertwined with Cu precipitates, affecting the bulk mechanical properties of HSLA-115. Phase compositions determined by APT are compared with computed compositions at thermodynamic equilibrium using ThermoCalc.

  1. Carbon Redistribution and Carbide Precipitation in a High-Strength Low-Carbon HSLA-115 Steel Studied on a Nanoscale by Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Divya; Isheim, Dieter; Seidman, David N. (NWU)

    2017-05-09

    HSLA-115 is a newly developed Cu-bearing high-strength low-carbon martensitic steel for use in Naval structural applications. This research provides, for the first time, a comprehensive compositional analysis of carbon redistribution and associated complex phase transformations in an isothermal aging study of HSLA-115 at 823 K (550 °C). Specifically, we characterize carbon segregation at lath boundaries, grain-refining niobium carbonitrides, cementite, and secondary hardening M2C carbides, in addition to copper precipitation, by 3D atom probe tomography (APT). Segregation of carbon (3 to 6 at. pct C) is observed at martensitic lath boundaries in the as-quenched and 0.12-hour aged microstructures. On further aging, carbon redistributes itself forming cementite and M2C carbides. Niobium carbonitride precipitates do not dissolve during the austenitizing treatment and are inherited in the as-quenched and aged microstructures; these are characterized along with cementite by synchrotron X-ray diffraction and APT. Sub-nanometer-sized M2C carbide precipitates are observed after the formation of Cu precipitates, co-located with the latter, indicating heterogeneous nucleation of M2C. The temporal evolution of the composition and morphology of M2C carbides at 823 K (550 °C) is described using APT; their precipitation kinetics is intertwined with Cu precipitates, affecting the bulk mechanical properties of HSLA-115. Phase compositions determined by APT are compared with computed compositions at thermodynamic equilibrium using ThermoCalc.

  2. Improved electroless plating method through ultrasonic spray atomization for depositing silver nanoparticles on multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xie, Ming [Kunming Institute of Precious Metals, Kunming 650106 (China); Liu, Yichun, E-mail: liuyichun@kmust.edu.cn [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yi, Jianhong [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2017-07-01

    Highlights: • Electroless plating method assisted by ultrasonic spray atomization was developed. • This method leads to much more uniform silver coatings on MWCNTs. • The plating parameters affect the layer morphologies a lot. - Abstract: A novel method was developed to deposit nanosized silver particles on multi-walled carbon nanotubes (MWCNTs). The electroless plating of silver on MWCNTs accomplished in small solution drops generated by ultrasonic spray atomization, which inhibited excessive growth of silver particles and led to much more uniform nanometer grain-sized coatings. The results showed that pretreatment was essential for silver particles to deposit on the MWCNTs, and the electrolyte concentration and reaction temperature were important parameters which had a great influence on the morphology and structure of the silver coatings. Possible mechanisms of this method are also discussed in the paper.

  3. Mechanism of DNA cleavage by cationic manganese porphyrins: hydroxylations at the 1'-carbon and 5'-carbon atoms of deoxyriboses as initial damages.

    Science.gov (United States)

    Pratviel, G; Pitié, M; Bernadou, J; Meunier, B

    1991-11-25

    Cationic manganese-porphyrin complexes, free or targetted with an intercalating agent, are able to cleave DNA using oxygen atom donors like potassium monopersulfate or magnesium monoperphthalate as coreactants. Detailed studies of the cleavage of calf thymus DNA, before and after a heating step, show that free bases and 5-methylene-2-furanone are the main reaction products, indicating that hydroxylation at the 1'-carbon atom is the main target of these chemical agents. These data confirm that metalloporphyrin derivatives interact with the minor groove of double-stranded DNA. Hydroxylation of one of the two C-H bonds at position-5' is another initial DNA damage, characterized by the formation of furfural as sugar degradation product. Besides these two main initial damage sites, a low contribution of a hydroxylation reaction at C4' can not be definitively discounted, while an hydroperoxidation route at C4' can be excluded.

  4. Effects of doping in 25-atom bimetallic nanocluster catalysts for carbon–carbon coupling reaction of iodoanisole and phenylacetylene

    Directory of Open Access Journals (Sweden)

    Zhimin Li

    2016-10-01

    Full Text Available We here report the catalytic effects of foreign atoms (Cu, Ag, and Pt doped into well-defined 25-gold-atom nanoclusters. Using the carbon-carbon coupling reaction of p-iodoanisole and phenylacetylene as a model reaction, the gold-based bimetallic MxAu25−x(SR18 (–SR=–SCH2CH2Ph nanoclusters (supported on titania were found to exhibit distinct effects on the conversion of p-iodoanisole as well as the selectivity for the Sonogashira cross-coupling product, 1-methoxy-4-(2-phenylethynylbenzene. Compared to Au25(SR18, the centrally doped Pt1Au24(SR18 causes a drop in catalytic activity but with the selectivity retained, while the AgxAu25−x(SR18 nanoclusters gave an overall performance comparable to Au25(SR18. Interestingly, CuxAu25−x(SR18 nanoclusters prefer the Ullmann homo-coupling pathway and give rise to product 4,4′-dimethoxy-1,1′-biphenyl, which is in opposite to the other three nanocluster catalysts. Our overall conclusion is that the conversion of p-iodoanisole is largely affected by the electronic effect in the bimetallic nanoclusters’ 13-atom core (i.e., Pt1Au12, CuxAu13−x, and Au13, with the exception of Ag doping, and that the selectivity is primarily determined by the type of atoms on the MxAu12−x shell (M=Ag, Cu, and Au in the nanocluster catalysts.

  5. Electrochemical Energy Storage Application and Degradation Analysis of Carbon-Coated Hierarchical NiCo2S4 Core-Shell Nanowire Arrays Grown Directly on Graphene/Nickel Foam.

    Science.gov (United States)

    Zou, Rujia; Yuen, Muk Fung; Yu, Li; Hu, Junqing; Lee, Chun-Sing; Zhang, Wenjun

    2016-02-01

    We developed a new electrode comprising thin carbon layer coated hierarchical NiCo2S4 core-shell nanowire arrays (NiCo2S4@C CSNAs) on graphene/Ni foam (Ni@G) substrates. The electrode showed outstanding electrochemical characteristics including a high specific capacitance of 253 mAh g(-1) at 3 A g(-1), high rate capability of 163 mAh g(-1) at 50 A g(-1) (~64.4% of that at 3 A g(-1)), and long-term cycling stability with a capacity retention of 93.9% after 5000 cycles. Comparative studies on the degradation of hierarchical NiCo2S4 CSNA electrodes with and without carbon coatings revealed that the morphology pulverization, structural separation at core/shell interface, and irretrievably chemical composition change of NiCo2S4 CSNAs electrode are major factors that deteriorate the electrochemical performance of the electrodes without carbon coating. The favorable roles of carbon coatings on hierarchical NiCo2S4 CSNAs were further clarified: (1) serving as a physical buffering layer that suppresses the structural breakdown; (2) retarding the chemical composition conversion of the NiCo2S4 CSNAs; and (3) providing extra path for charge transition in addition to the NiCo2S4 core nanowires. Understanding of the degradation mechanisms and the significance of the surface carbon coatings would provide useful guidelines for the design of new electrode materials for high-performance electrochemical devices.

  6. Aromatization process of hydrocarbons containing 2 to 4 carbon atoms in the presence of alumino-silicate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Alario, F.; Deves, J.M.

    1993-05-21

    The invention describes an aromatization process of hydrocarbons comprising 2 to 4 carbon atoms per molecule in the presence of a composite catalyst which contains: a MFI structure zeolite in the form hydrogen, containing in its structure Silicon, Aluminium and / or Gallium at least; a matrix; platinum metals at least and additive metal chosen among Stain, Germanium, Indium, Copper, Iron, Molybdenum, Gallium, Thallium, Gold, Silver, Ruthenium, Chrome, Tungsten and Lead at least; an halogen chosen among Fluorine, Chlorine, Bromine and Iodine at least; doping element chosen among Gallium and Zinc possibly and possibly alkaline or alkaline-earth metal.

  7. Aromatization process of hydrocarbons containing 2 to 4 carbon atoms in the presence of MFI structure zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Alario, F.; Deves, J.M.

    1993-05-21

    The invention describes an aromatization process of hydrocarbons comprising 2 to 4 carbon atoms per molecule in the presence of a composite catalyst which contains: a MFI structure zeolite containing an element chosen among alkaline or alkaline-earth metals, with a structure made of Silicon, Aluminium and / or Gallium; a matrix; platinum metals and additive metal chosen among Stain, Germanium, Indium, Copper, Iron, Molybdenum, Gallium, Thallium, Gold, Silver, Ruthenium, Chrome, Tungsten and Lead at least; an halogen chosen among Fluorine, Chlorine, Bromine and Iodine at least; Gallium and Zinc possibly; alkaline or alkaline-earth metal in the matrix preferentially. The invention describes also catalyst preparation and use for hydrocarbons aromatization reactions.

  8. Large-Scale Fabrication of Carbon Nanotube Probe Tips For Atomic Force Microscopy Critical Dimension Imaging Applications

    Science.gov (United States)

    Ye, Qi Laura; Cassell, Alan M.; Stevens, Ramsey M.; Meyyappan, Meyya; Li, Jun; Han, Jie; Liu, Hongbing; Chao, Gordon

    2004-01-01

    Carbon nanotube (CNT) probe tips for atomic force microscopy (AFM) offer several advantages over Si/Si3N4 probe tips, including improved resolution, shape, and mechanical properties. This viewgraph presentation discusses these advantages, and the drawbacks of existing methods for fabricating CNT probe tips for AFM. The presentation introduces a bottom up wafer scale fabrication method for CNT probe tips which integrates catalyst nanopatterning and nanomaterials synthesis with traditional silicon cantilever microfabrication technology. This method makes mass production of CNT AFM probe tips feasible, and can be applied to the fabrication of other nanodevices with CNT elements.

  9. Magnetic properties of a single iron atomic chain encapsulated in armchair carbon nanotubes: A Monte Carlo study

    Science.gov (United States)

    Masrour, R.; Jabar, A.; Hamedoun, M.; Benyoussef, A.; Hlil, E. K.

    2017-06-01

    The magnetic properties have been investigated of FeCuxC1-x for a Fe atom chain wrapped in armchair (N,N) carbon nanotubes (N = 4,6,8,10,12) diluted by Cu2+ ions using Monte Carlo simulations. The thermal total magnetization and magnetic susceptibility are found. The reduced transition temperatures of iron and carbon have been calculated for different N and the exchange interactions. The total magnetization is obtained for different exchange interactions and crystal field. The Magnetic hysteresis cycles are obtained for different N, the reduced temperatures and exchange interactions. The multiple magnetic hysteresis is found. This system shows it can be used as magnetic nanostructure possessing potential current and future applications in permanent magnetism, magnetic recording and spintronics.

  10. Attosecond angular flux of partial charges on the carbon atoms of benzene in non-aromatic excited state

    Science.gov (United States)

    Hermann, Gunter; Liu, ChunMei; Manz, Jörn; Paulus, Beate; Pohl, Vincent; Tremblay, Jean Christophe

    2017-09-01

    Recently, it was discovered that excitation of the oriented model benzene from its aromatic electronic ground state S0 (1A1g) to the non-aromatic S0 +S2 (1B1u) superposition state generates negative and positive partial charges on alternating carbon atoms. Subsequently, they vary periodically, due to adiabatic attosecond charge migration AACM. Here, we determine the angular electronic flux that mediates this new type of AACM, by means of quantum dynamics simulations. It is found to be periodic, with period τ bar = 590as , and with a pincer motion type pattern such that a total of 1.2 valence electrons flow concertedly between alternating sources and sinks at the carbon nuclei.

  11. Atomic force microscopy and electrochemical investigation on the corrosion behavior of carbon steel passivated by molybdate and chromate.

    Science.gov (United States)

    Chen, Zhenyu; Zhang, Xiulan; Huang, Ling; Guo, Xingpeng

    2013-02-01

    The effects of CrO(4)(2-) and MoO(4)(2-) ions on the corrosion behavior of carbon steel in 0.5 M NaCl solution have been studied using electrochemical measurements and atomic force microscopy. The results suggest that both ions have good inhibition effects on the general and pitting corrosion of carbon steel. At the same concentration, the inhibition efficiency of CrO(4)(2-) is higher than that of MoO(4)(2-). The passive film formed by CrO(4)(2-) is also much harder than that formed by MoO(4)(2-). The passive films formed by both ions are nonconductive. Copyright © 2012 Wiley Periodicals, Inc.

  12. Bond length and electric current oscillation of long linear carbon chains: density functional theory, MpB model, and quantum spin transport studies.

    Science.gov (United States)

    Oeiras, R Y; da Silva, E Z

    2014-04-07

    Carbon linear atomic chains attached to graphene have experimentally been produced. Motivated by these results, we study the nature of the carbon bonds in these nanowires and how it affects their electrical properties. In the present study we investigate chains with different numbers of atoms and we observe that nanowires with odd number of atoms present a distinct behavior than the ones with even numbers. Using graphene nanoribbons as leads, we identify differences in the quantum transport of the chains with the consequence that even and odd numbered chains have low and high electrical conduction, respectively. We also noted a dependence of current with the wire size. We study this unexpected behavior using a combination of first principles calculations and simple models based on chemical bond theory. From our studies, the electrons of carbon nanowires present a quasi-free electron behavior and this explains qualitatively the high electrical conduction and the bond lengths with unexpected values for the case of odd nanowires. Our study also allows the understanding of the electric conduction dependence with the number of atoms and their parity in the chain. In the case of odd number chains a proposed π-bond (MpB) model describes unsaturated carbons that introduce a mobile π-bond that changes dramatically the structure and transport properties of these wires. Our results indicate that the nature of bonds plays the main role in the oscillation of quantum electrical conduction for chains with even and odd number of atoms and also that nanowires bonded to graphene nanoribbons behave as a quasi-free electron system, suggesting that this behavior is general and it could also remain if the chains are bonded to other materials.

  13. In Situ Study of Noncatalytic Metal Oxide Nanowire Growth

    DEFF Research Database (Denmark)

    Rackauskas, Simas; Jiang, Hua; Wagner, Jakob Birkedal

    2014-01-01

    a catalyst is still widely disputed and unclear. Here, we show that the nanowire growth during metal oxidation is limited by a nucleation of a new layer. On the basis of in situ transmission electron microscope investigations we found that the growth occurs layer by layer at the lowest specific surface...... energy planes. Atomic layers nucleate at the edge of twin boundary ridges and form a long-range ordering along the twin boundary. We anticipate our study to be a starting point to employ defects for nanowire growth control and consequently shaping the geometry of nanowires in a similar manner...

  14. Atomic Scale Interface Manipulation, Structural Engineering, and Their Impact on Ultrathin Carbon Films in Controlling Wear, Friction, and Corrosion.

    Science.gov (United States)

    Dwivedi, Neeraj; Yeo, Reuben J; Yak, Leonard J K; Satyanarayana, Nalam; Dhand, Chetna; Bhat, Thirumaleshwara N; Zhang, Zheng; Tripathy, Sudhiranjan; Bhatia, Charanjit S

    2016-07-13

    Reducing friction, wear, and corrosion of diverse materials/devices using manipulation to engineer and control the friction, wear, corrosion, and structural characteristics of 0.7-1.7 nm carbon-based films on CoCrPt:oxide-based magnetic media. We demonstrate that when an atomically thin (∼0.5 nm) chromium nitride (CrNx) layer is sandwiched between the magnetic media and an ultrathin carbon overlayer (1.2 nm), it modifies the film-substrate interface, creates various types of interfacial bonding, increases the interfacial adhesion, and tunes the structure of carbon in terms of its sp(3) bonding. These contribute to its remarkable functional properties, such as stable and lowest coefficient of friction (∼0.15-0.2), highest wear resistance and better corrosion resistance despite being only ∼1.7 nm thick, surpassing those of ∼2.7 nm thick current commercial carbon overcoat (COC) and other overcoats in this work. While this approach has direct implications for advancing current magnetic storage technology with its ultralow thickness, it can also be applied to advance the protective and barrier capabilities of other ultrathin materials for associated technologies.

  15. SnCo nanowire array as negative electrode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Germano; Inguanta, Rosalinda; Piazza, Salvatore; Sunseri, Carmelo [Universita degli Studi di Palermo, Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Viale delle Scienze Ed. 6, 90128 Palermo (Italy); Damen, Libero; Arbizzani, Catia; Mastragostino, Marina [Universita degli Studi di Bologna, Dipartimento di Scienza dei Metalli, Elettrochimica e Tecniche Chimiche, Via San Donato 15, 40127 Bologna (Italy)

    2011-02-01

    Amorphous SnCo alloy nanowires (NWs) grown inside the channels of polycarbonate membranes by potentiostatic codeposition of the two metals (SnCo-PM) were tested vs. Li by repeated galvanostatic cycles in ethylene carbonate-dimethylcarbonate - LiPF{sub 6} for use as negative electrode in lithium ion batteries. These SnCo electrodes delivered an almost constant capacity value, near to the theoretical for an atomic ratio Li/Sn of 4.4 over more than 35 lithiation-delithiation cycles at 1 C. SEM images of fresh and cycled electrodes showed that nanowires remain partially intact after repeated lithiation-delithiation cycles; indeed, several wires expanded and became porous. Results of amorphous SnCo nanowires grown inside anodic alumina membranes (SnCo-AM) are also reported. The comparison of the two types of NW electrodes demonstrates that the morphology of the SnCo-PM is more suitable than that of the SnCo-AM for electrode stability over cycling. Optimization of NW technology should thus be a promising route to enhancing the mechanical strength and durability of tin-based electrodes. (author)

  16. Atomic Structure and Energy Distribution of Collapsed Carbon Nanotubes of Different Chiralities

    Directory of Open Access Journals (Sweden)

    Julia A. Baimova

    2015-01-01

    Full Text Available For carbon nanotubes of sufficiently large diameter at sufficiently low temperature, due to the action of the van der Waals forces, the ground state is a bilayer graphene with closed edges, the so-called collapsed configuration. Molecular dynamics simulation of collapsed carbon nanotubes is performed. The effect of length, diameter, and chirality of the nanotubes on their properties is investigated. It is shown that collapsed nanotubes after relaxation have rippled structure which is strongly dependent on the nanotube chirality. The structural properties are studied by calculating the radial distribution function and energy distribution along various regions in the collapsed carbon nanotubes.

  17. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yizhou; Liu, Xiangmei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062 (China); Yeung, Kelvin W.K. [Division of Spine Surgery, Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong (China); Chu, Paul K. [Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Shuilin, E-mail: shuilin.wu@gmail.com [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062 (China)

    2017-04-01

    Highlights: • Carbon naonotubes/chitosan/ZnO coating was first constructed on Ti implants. • This system endowed Ti implants with excellent self-antibacterial activity. • The amount of Zn could be precisely controlled by atom layer deposition. • This system could regulate cell behaviors on metallic implants. - Abstract: One-dimensional (1D) nanostructures of ZnO using atomic layer deposition (ALD) on chitosan (CS) modified carbon nanotubes (CNTs) were first introduced onto the surfaces of biomedical implants. When the content of ZnO is not sufficient, CNTs can strengthen the antibacterial activity against E. coli and S. aureus by 8% and 39%, respectively. CS can improve the cytocompatibility of CNTs and ZnO. The amount of Zn content can be controlled by changing the cycling numbers of ALD processes. This hybrid coating can not only endow medical implants with high self-antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of over 73% and 98%, respectively, but also regulate the proliferation and osteogenic differentiation of osteoblasts by controlling the amount of ZnO.

  18. First-principles investigation of graphitic carbon nitride monolayer with embedded Fe atom

    Science.gov (United States)

    Abdullahi, Yusuf Zuntu; Yoon, Tiem Leong; Halim, Mohd Mahadi; Hashim, Md. Roslan; Lim, Thong Leng

    2018-01-01

    Density-functional theory (DFT) calculations with spin-polarized generalized gradient approximation and Hubbard U correction are carried out to investigate the mechanical, structural, electronic and magnetic properties of graphitic heptazine with embedded Fe atom under bi-axial tensile strain and applied perpendicular electric field. It was found that the binding energy of heptazine with embedded Fe atom system decreases as larger tensile strain is applied, while it increases as larger electric field strength is applied. Our calculations also predict a band gap at a peak value of 5% tensile strain but at expense of the structural stability of the system. The band gap open up at 5% tensile strain is due to distortion in the structure caused by the repulsive effect in the cavity between the lone pairs of the edge nitrogen atoms and dxy /dx2 -y2 orbital of Fe atom, forcing the unoccupied pz- orbital is forced to shift toward higher energy. The electronic and magnetic properties of the heptazine with embedded Fe system under perpendicular electric field up to a peak value of 8 V/nm is also well preserved despite an obvious buckled structure. Such properties are desirable for diluted magnetic semiconductors, spintronics, and sensing devices.

  19. Electrochemical atomic layer deposition of Pt nanostructures on carbon paper and Ni foam; poster

    CSIR Research Space (South Africa)

    Louw, EK

    2012-07-01

    Full Text Available The cost of the platinum catalyst hinders the progress of direct methanol fuel cells (DMFCs) into the commercial world. Electrochemical atomic layer deposition (ECALD) method was used to reduce the amount of Pt used and to increase its utilization...

  20. Ab initio vibrations in nonequilibrium nanowires

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Engelund, Mads; Markussen, T

    2010-01-01

    predictions for the thermoelectric properties, while for the atomic gold chains we evaluate microscopically the damping of the vibrations, due to the coupling of the chain atoms to the modes in the bulk contacts. Both approaches are based on the combination of density-functional theory, and nonequilibrium......We review recent results on electronic and thermal transport in two different quasi one-dimensional systems: Silicon nanowires (SiNW) and atomic gold chains. For SiNW's we compute the ballistic electronic and thermal transport properties on equal footing, allowing us to make quantitative...

  1. Identification and characterization of icosahedral metallic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, Samuel; Serena, Pedro A. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, c/Sor Juana Ines de la Cruz 3, Cantoblanco, 28049-Madrid (Spain); Guerrero, Carlo [Departamento de Fisica, Facultad Experimental de Ciencias, La Universidad del Zulia, Maracaibo (Venezuela); Paredes, Ricardo [Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apto. 20632, Caracas 1020A (Venezuela); Garcia-Mochales, Pedro [Departamento de Fisica de la Materia Condensada, Facultad de Ciencias, Universidad Autonoma de Madrid, c/Tomas y Valiente 7, Cantoblanco, 28049-Madrid (Spain)

    2009-10-15

    We present and discuss an algorithm to identify ans characterize the long icosahedral structures (staggered pentagonal nanowires with 1-5-1-5 atomic structure) that appear in Molecular Dynamics simulations of metallic nanowires of different species subjected to stretching. The use of the algorithm allows the identification of pentagonal rings forming the icosahedral structure as well as the determination of its number n{sub p}, and the maximum length of the pentagonal nanowire L{sub p}{sup m}. The algorithm is tested with some ideal structures to show its ability to discriminate between pentagonal rings and other ring structures. We applied the algorithm to Ni nanowires with temperatures ranging between 4 K and 865 K, stretched along the[100] direction. We studied statistically the formation of pentagonal nanowires obtaining the distributions of length L{sub p}{sup m} and number of rings n{sub p} as function of the temperature. The L{sub p}{sup m} distribution presents a peaked shape, with peaks locate at fixes distances whose separation corresponds to the distance between two consecutive pentagonal rings. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Topological Insulator Nanowires and Nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Kong, D.S.

    2010-06-02

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi{sub 2}Se{sub 3} material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi{sub 2}Se{sub 3} nanomaterials with a variety of morphologies. The synthesis of Bi{sub 2}Se{sub 3} nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [11-20] direction with a rectangular crosssection and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with {approx}1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.

  3. Vertical Alignment of Single-Walled Carbon Nanotubes on Nanostructure Fabricated by Atomic Force Microscope

    National Research Council Canada - National Science Library

    Lee, Haiwon

    2007-01-01

    This project focused on the behavior of single-wall carbon nanotubes (SWCNTs) in the electrophoresis cells and aligned growth of SWCNTs by thermal chemical vapor deposition on selectively deposited metallic nanoparticle...

  4. Calculated vibrational frequencies for FeMo-co, the active site of nitrogenase, bearing hydrogen atoms and carbon monoxide.

    Science.gov (United States)

    Dance, Ian

    2011-06-28

    The intramolecular hydrogenation paradigm for the reducing actions of the enzyme nitrogenase postulates that the iron-molybdenum cofactor (FeMo-co, Fe(7)MoS(9)N(homocitrate)) as active site contains H atoms bound to Fe and S during the catalytic cycle, and that these H atoms are the reducing agents. The reduction of N(2) and of all other non-physiological substrates is strongly inhibited by carbon monoxide, except for the formation of H(2) from protons. It has been recently reported that vanadium nitrogenase and modified molybdenum nitrogenase reduce CO to hydrocarbons. Therefore many questions now arise about relationships between CO and H on the nitrogenase cofactors. In order to assist the interpretation of kinetic infrared spectral data, vibrational frequencies and modes have been calculated for a variety of possible structures in which FeMo-co bears H atoms, or CO ligands, or both. Fe-H stretching frequencies occur in the same spectral window as the C-O stretching frequencies, with lesser intensity, and both stretches are strongly coupled in some structures. Symmetrical bridging of CO between two Fe atoms of FeMo-co is destabilised by the presence of other ligands on Fe, and the reason for this is evident. Two results for bound formyl, HCO, are reported. These calculations of reference structures allow some interpretation of existing experimental spectra, but, more significantly, they suggest further kinetic infrared experiments to elucidate the chemical mechanism of catalysis by nitrogenase under normal turnover conditions. This journal is © The Royal Society of Chemistry 2011

  5. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam.

    Science.gov (United States)

    Xu, Shengyong; Tian, Mingliang; Wang, Jinguo; Xu, Jian; Redwing, Joan M; Chan, Moses H W

    2005-12-01

    We demonstrate that a high-intensity electron beam can be applied to create holes, gaps, and other patterns of atomic and nanometer dimensions on a single nanowire, to weld individual nanowires to form metal-metal or metal-semiconductor junctions, and to remove the oxide shell from a crystalline nanowire. In single-crystalline Si nanowires, the beam induces instant local vaporization and local amorphization. In metallic Au, Ag, Cu, and Sn nanowires, the beam induces rapid local surface melting and enhanced surface diffusion, in addition to local vaporization. These studies open up a novel approach for patterning and connecting nanomaterials in devices and circuits at the nanometer scale.

  6. Elastic properties and electron transport in InAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Migunov, Vadim

    2013-02-22

    The electron transport and elastic properties of InAs nanowires grown by chemical vapor deposition on InAs (001) substrate were studied experimentally, in-situ in a transmission electron microscope (TEM). A TEM holder allowing the measurement of a nanoforce while simultaneous imaging nanowire bending was used. Diffraction images from local areas of the wire were recorded to correlate elastic properties with the atomic structure of the nanowires. Another TEM holder allowing the application of electrical bias between the nanowire and an apex of a metallic needle while simultaneous imaging the nanowire in TEM or performing electron holography was used to detect mechanical vibrations in mechanical study or holographical observation of the nanowire inner potential in the electron transport studies. The combination of the scanning probe methods with TEM allows to correlate the measured electric and elastic properties of the nanowires with direct identification of their atomic structure. It was found that the nanowires have different atomic structures and different stacking fault defect densities that impacts critically on the elastic properties and electric transport. The unique methods, that were applied in this work, allowed to obtain dependencies of resistivity and Young's modulus of left angle 111 right angle -oriented InAs nanowires on defect density and diameter. It was found that the higher is the defect density the higher are the resistivity and the Young's modulus. Regarding the resistivity, it was deduced that the stacking faults increase the scattering of the electrons in the nanowire. These findings are consistent with the literature, however, the effect described by the other groups is not so pronounced. This difference can be attributed to the significant incompleteness of the physical models used for the data analysis. Regarding the elastic modulus, there are several mechanisms affecting the elasticity of the nanowires discussed in the thesis. It

  7. Advances in nanowire bioelectronics

    Science.gov (United States)

    Zhou, Wei; Dai, Xiaochuan; Lieber, Charles M.

    2017-01-01

    Semiconductor nanowires represent powerful building blocks for next generation bioelectronics given their attractive properties, including nanometer-scale footprint comparable to subcellular structures and bio-molecules, configurable in nonstandard device geometries readily interfaced with biological systems, high surface-to-volume ratios, fast signal responses, and minimum consumption of energy. In this review article, we summarize recent progress in the field of nanowire bioelectronics with a focus primarily on silicon nanowire field-effect transistor biosensors. First, the synthesis and assembly of semiconductor nanowires will be described, including the basics of nanowire FETs crucial to their configuration as biosensors. Second, we will introduce and review recent results in nanowire bioelectronics for biomedical applications ranging from label-free sensing of biomolecules, to extracellular and intracellular electrophysiological recording.

  8. Gold Nanowires : A Time-Dependent Density Functional Assessment of Plasmonic Behavior

    NARCIS (Netherlands)

    Piccini, GiovanniMaria; Havenith, Remco W. A.; Broer, Ria; Stener, Mauro

    2013-01-01

    The surface plasmon resonance has been theoretically investigated in gold nanowires by means of time-dependent density functional theory. Linear chains of Au atoms and nanowires with the structure of the fcc bulk gold grown along the <110 > and <111 > directions have been considered. The effects of

  9. A high-pressure atomic force microscope for imaging in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Lea, A. S.; Higgins, S. R.; Knauss, K. G.; Rosso, K. M.

    2011-01-01

    A high-pressure atomic force microscope(AFM) that enables in situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO2 (scCO2) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO2, precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations that change the fluidrefractive index and hence the laser path. We demonstrate with our apparatus in situ atomic scale imaging of a calcite (CaCO3) mineral surface in scCO2; both single, monatomic steps and dynamic processes occurring on the (101¯4) surface are presented. Finally, this new AFM provides unprecedented in situ access to interfacial phenomena at solid–fluid interfaces under pressure.

  10. Strain energy and lateral friction force distributions of carbon nanotubes manipulated into shapes by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Strus, Mark C; Lahiji, Roya R; Raman, Arvind; Reifenberger, Ron [Birck Nanotechnology Center, Purdue University, West Lafayette, IN (United States); Ares, Pablo [Nanotec Electronica, Madrid (Spain); Lopez, Vicente, E-mail: mark.strus@nist.go [Universidad Autonoma de Madrid, Madrid (Spain)

    2009-09-23

    The interplay between local mechanical strain energy and lateral frictional forces determines the shape of carbon nanotubes on substrates. In turn, because of its nanometer-size diameter, the shape of a carbon nanotube strongly influences its local electronic, chemical, and mechanical properties. Few, if any, methods exist for resolving the strain energy and static frictional forces along the length of a deformed nanotube supported on a substrate. We present a method using nonlinear elastic rod theory in which we compute the flexural strain energy and static frictional forces along the length of single walled carbon nanotubes (SWCNTs) manipulated into various shapes on a clean SiO{sub 2} substrate. Using only high resolution atomic force microscopy images of curved single walled nanotubes, we estimate flexural strain energy distributions on the order of attojoules per nanometer and the static frictional forces between a SWCNT and SiO{sub 2} surface to be a minimum of 230 pN nm{sup -1}.

  11. High yield polyol synthesis of round- and sharp-end silver nanowires with high aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nekahi, A.; Marashi, S.P.H., E-mail: pmarashi@aut.ac.ir; Fatmesari, D. Haghshenas

    2016-12-01

    Long silver nanowires (average length of 28 μm, average aspect ratio of 130) with uniform diameter along their length were produced by polyol synthesis of AgNO{sub 3} in ethylene glycol in the presence of PVP as preferential growth agent. Nanowires were produced with no addition of chloride salts such as NaCl or CuCl{sub 2} (or other additives such as Na{sub 2}S) which are usually used for lowering reduction rate of Ag ions by additional etchant of O{sub 2}/Cl{sup −}. Lower reduction rate was obtained by increasing the injection time of PVP and AgNO{sub 3} solutions, which was the significant factor in the formation of nanowires. Therefore, there was enough time for reduced Ag atoms to be deposited preferentially in the direction of PVP chains, resulting in high yield (the fraction of nanowires in the products) of nanowires (more than 95%) with high aspect ratio. The produced nanowires had both round- and sharp-ends with pentagonal cross section. Higher energy level of Ag atoms in borders of MTPs, which increases the dissolution rate of precipitated atoms, in addition to partial melting of MTPs at high synthesis temperatures, leads to the curving of the surfaces of exposed (111) crystalline planes in some MTPs and the formation of round-end silver nanowires. - Highlights: • Long silver nanowires with high aspect ratio of 130 were produced. • More than 95% nanowires were produced in products. • The produced nanowires had round- and sharp-ends with pentagonal cross section. • Additives were needed neither for high yield synthesis nor for round-end nanowires. • Melting and etching of MTPs in high energy borders resulted to round-end nanowires.

  12. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N

    2014-05-16

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures were simulated by varying the deposition energy of carbon atoms in the range of 1-120 eV. Intrinsic film characteristics (e.g. density and internal stress) were determined after the system reached equilibrium. Short- and intermediate-range carbon atom ordering is examined in the context of atomic hybridization and ring connectivity simulation results. It is shown that relatively high deposition energy (i.e., 80 eV) yields a multilayer film structure consisting of an intermixing layer, bulk film and surface layer, consistent with the classical subplantation model. The highest film density (3.3 g cm-3), sp3 fraction (∼43%), and intermediate-range carbon atom ordering correspond to a deposition energy of ∼80 eV, which is in good agreement with experimental findings. © 2014 IOP Publishing Ltd.

  13. Enhanced Photon Extraction from a Nanowire Quantum Dot Using a Bottom-Up Photonic Shell

    DEFF Research Database (Denmark)

    Jeannin, Mathieu; Cremel, Thibault; Häyrynen, Teppo

    2017-01-01

    Semiconductor nanowires offer the possibility to grow high-quality quantum-dot heterostructures, and, in particular, CdSe quantum dots inserted in ZnSe nanowires have demonstrated the ability to emit single photons up to room temperature. In this paper, we demonstrate a bottom-up approach...... to fabricate a photonic fiberlike structure around such nanowire quantum dots by depositing an oxide shell using atomic-layer deposition. Simulations suggest that the intensity collected in our NA=0.6 microscope objective can be increased by a factor 7 with respect to the bare nanowire case. Combining...

  14. Poly(glutamic acid) nanofibre modified glassy carbon electrode: Characterization by atomic force microscopy, voltammetry and electrochemical impedance

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Daniela Pereira; Zanoni, Maria Valnice Boldrin; Bergamini, Marcio Fernando [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual Paulista, Caixa Postal 355, 14800-900 Araraquara, S.P. (Brazil); Chiorcea-Paquim, Ana-Maria; Diculescu, Victor Constantin [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra (Portugal); Oliveira Brett, Ana-Maria [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra (Portugal)], E-mail: brett@ci.uc.pt

    2008-04-20

    Glassy carbon electrodes (GCE) were modified with poly(glutamic acid) acid films prepared using three different procedures: glutamic acid monomer electropolymerization (MONO), evaporation of poly(glutamic acid) (PAG) and evaporation of a mixture of poly(glutamic acid)/glutaraldehyde (PAG/GLU). All three films showed good adherence to the electrode surface. The performance of the modified GCE was investigated by cyclic voltammetry and differential pulse voltammetry, and the films were characterized by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The three poly(glutamic acid) modified GCEs were tested using the electrochemical oxidation of ascorbic acid and a decrease of the overpotential and the improvement of the oxidation peak current was observed. The PAG modified electrode surfaces gave the best results. AFM morphological images showed a polymeric network film formed by well-defined nanofibres that may undergo extensive swelling in solution, allowing an easier electron transfer and higher oxidation peaks.

  15. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures

    Science.gov (United States)

    Zhu, Yizhou; Liu, Xiangmei; Yeung, Kelvin W. K.; Chu, Paul K.; Wu, Shuilin

    2017-04-01

    One-dimensional (1D) nanostructures of ZnO using atomic layer deposition (ALD) on chitosan (CS) modified carbon nanotubes (CNTs) were first introduced onto the surfaces of biomedical implants. When the content of ZnO is not sufficient, CNTs can strengthen the antibacterial activity against E. coli and S. aureus by 8% and 39%, respectively. CS can improve the cytocompatibility of CNTs and ZnO. The amount of Zn content can be controlled by changing the cycling numbers of ALD processes. This hybrid coating can not only endow medical implants with high self-antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of over 73% and 98%, respectively, but also regulate the proliferation and osteogenic differentiation of osteoblasts by controlling the amount of ZnO.

  16. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS

    Energy Technology Data Exchange (ETDEWEB)

    Gunay, H. Burak; Ghods, Pouria [Carleton University, Department of Civil and Environmental Engineering, Ottawa (Canada); Isgor, O. Burkan, E-mail: burkan_isgor@carleton.ca [Carleton University, Department of Civil and Environmental Engineering, Ottawa (Canada); Carpenter, Graham J.C. [CanmetMATERIALS, NRCan, Ottawa (Canada); Wu, Xiaohua [Natural Research Council of Canada, Information and Communications Technologies, Ottawa (Canada)

    2013-06-01

    The atomic structure of oxide films formed on carbon steel that are exposed to highly alkaline simulated concrete pore solutions was investigated using Electron Energy Loss Spectroscopy (EELS). In particular, the effect of chloride exposure on film structure was studied in two types of simulated pore solutions: saturated calcium hydroxide (CH) and a solution prepared to represent typical concrete pore solutions (CP). It was shown that the films that form on carbon steel in simulated concrete pore solutions contained three indistinct layers. The inner oxide film had a structure similar to that of Fe{sup II}O, which is known to be unstable in the presence of chlorides. The outer oxide film mainly resembled Fe{sub 3}O{sub 4} (Fe{sup II}O·Fe{sub 2}{sup III}O{sub 3}) in the CH solution and α-Fe{sub 2}{sup III}O{sub 3}/Fe{sub 3}O{sub 4} in the CP solution. The composition of the transition layer between the inner and outer layers of the oxide film was mainly composed of Fe{sub 3}O{sub 4} (Fe{sup II}O·Fe{sub 2}{sup III}O{sub 3}). In the presence of chloride, the relative amount of the Fe{sup III}/Fe{sup II} increased, confirming that chlorides induce valence state transformation of oxides from Fe{sup II} to Fe{sup III}, and the difference between the atomic structures of oxide film layers diminished.

  17. The annealing of interstitial carbon atoms in high-resistivity n-type silicon after proton irradiation

    CERN Document Server

    Kuhnke, M; Lindström, G

    2002-01-01

    The annealing of interstitial carbon C sub i after 7-10 MeV and 23 GeV proton irradiations at room temperature in high-resistivity n-type silicon is investigated. Deep level transient spectroscopy is used to determine the defect parameters. The annealing characteristics of the impurity defects C sub i , C sub i C sub s , C sub i O sub i and VO sub i suggest that the mobile C sub i atoms are also captured at divacancy VV sites at the cluster peripheries and not only at C sub s and O sub i sites in the silicon bulk. The deviation of the electrical filling characteristic of C sub i from the characteristic of a homogeneously distributed defect can be explained by an aggregation of C sub i atoms in the environment of the clusters. The capture rate of electrons into defects located in the cluster environment is reduced due to a positive space charge region surrounding the negatively charged cluster core. The optical filling characteristic of C sub i suggests that the change of the triangle-shaped electric field dis...

  18. Metals on graphene and carbon nanotube surfaces: From mobile atoms to atomtronics to bulk metals to clusters and catalysts

    KAUST Repository

    Sarkar, Santanu C.

    2014-01-14

    In this Perspective, we present an overview of recent fundamental studies on the nature of the interaction between individual metal atoms and metal clusters and the conjugated surfaces of graphene and carbon nanotube with a particular focus on the electronic structure and chemical bonding at the metal-graphene interface. We discuss the relevance of organometallic complexes of graphitic materials to the development of a fundamental understanding of these interactions and their application in atomtronics as atomic interconnects, high mobility organometallic transistor devices, high-frequency electronic devices, organometallic catalysis (hydrogen fuel generation by photocatalytic water splitting, fuel cells, hydrogenation), spintronics, memory devices, and the next generation energy devices. We touch on chemical vapor deposition (CVD) graphene grown on metals, the reactivity of its surface, and its use as a template for asymmetric graphene functionalization chemistry (ultrathin Janus discs). We highlight some of the latest advances in understanding the nature of interactions between metals and graphene surfaces from the standpoint of metal overlayers deposited on graphene and SWNT thin films. Finally, we comment on the major challenges facing the field and the opportunities for technological applications. © 2013 American Chemical Society.

  19. From atoms to minerals: how calcium carbonates form and why we should care.

    Science.gov (United States)

    Diego Rodriguez-Blanco, Juan

    2017-04-01

    Calcium carbonate minerals are ubiquitous on Earth where they play a key role in many marine and terrestrial biomineralization processes, controlling the evolution of past and future ocean chemistry and a large part of the global carbon cycle. However, the mechanisms by which biominerals form and transform are not well understood because these processes frequently involve the formation of poorly-ordered and crystalline metastable phases (e.g., amorphous calcium carbonate, vaterite, monohydrocalcite). Furthermore, the degree of ordering, hydration and particle size of these phases and their crystallisation pathways are largely controlled by their origin and conditions of formation. These include a number of factors like temperature, pH, and concentration of foreign ions in solution (e.g., Mg2+, Sr2+, SO42-, organics, etc.). Over the last few years, new experimental and characterization approaches have been developed, combining classical characterization techniques with synchrotron-based methods that allow in situ and real-time monitoring of the reactions (e.g., time-resolved synchrotron-based scattering and diffraction, pair distribution function). These techniques have provided very useful data to attain the mechanisms and quantify the kinetics of crystallization in abiotic systems. I will present a series of results obtained from synchrotron- and lab-based experiments that shed light on the mechanisms of formation of a number of biominerals (e.g., vaterite, calcite, aragonite, monohydrocalcite, dolomite). These results provide a detailed understanding of how calcium carbonate phases form during biomineralization processes, the effects of seawater ions and organics during the formation and transformation of biominerals, and the implications for past and future ocean chemistry, CO2 capture and storage and industrial mineral synthesis.

  20. Matrix effects in the determination of molybdenum in plants by carbon furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Studnicki, M.

    1979-07-01

    Molybdenum is a microelement taken by plants in lower quantities than other microelements. The effects of different acids, cations, and anions important in plant materials are analyzed. A double-beam Instrumentation Laboratory atomic absorption spectrometer Model 251 with hydrogen background corrector, a graphite furnace IL 455, and Dohrmann Envirotech recorder Model SC 1200 were used. Acids strongly influence the Mo signal. Most of the phosphoric acid in the range 0.01 to 1% increased the signal. Ammonium salts of these acids also changed the Mo signal, but the sign of the change may be other than for the acids (for example, ammonium nitrates). Calcium chloride strongly decreased the signal. This influence was reduced in the presence of ammonium phosphate and the disodium salt of EDTA. 5 figures.

  1. Insights into gold-catalyzed plasma-assisted CVD growth of silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanghua, E-mail: wanghua.chen@polytechnique.edu; Roca i Cabarrocas, Pere [LPICM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France)

    2016-07-25

    Understanding and controlling effectively the behavior of metal catalyst droplets during the Vapor-Liquid-Solid growth of nanowires are crucial for their applications. In this work, silicon nanowires are produced by plasma-assisted Chemical Vapor Deposition using gold as a catalyst. The influence of hydrogen plasma on nanowire growth is investigated experimentally and theoretically. Interestingly, in contrast to conventional chemical vapor deposition, the growth rate of silicon nanowires shows a decrease as a function of their diameters, which is consistent with the incorporation of silicon via sidewall diffusion. We show that Ostwald ripening of catalyst droplets during nanowire growth is inhibited in the presence of a hydrogen plasma. However, when the plasma is off, the diffusion of Au atoms on the nanowire sidewall can take place. Based on this observation, we have developed a convenient method to grow silicon nanotrees.

  2. Fabrication of lateral electrodes on semiconductor nanowires through structurally matched insulation for functional optoelectronics.

    Science.gov (United States)

    Sheng, Yun; Sun, Huabin; Wang, Jianyu; Gao, Fan; Wang, Junzhuan; Pan, Lijia; Pu, Lin; Zheng, Youdou; Shi, Yi

    2013-01-18

    A strategy of using structurally matched alumina insulation to produce lateral electrodes on semiconductor nanowires is presented. Nanowires in the architecture are structurally matched with alumina insulation using selective anodic oxidation. Lateral electrodes are fabricated by directly evaporating metallic atoms onto the opposite sides of the nanowires. The integrated architecture with lateral electrodes propels carriers to transport them across nanowires and is crucially beneficial to the injection/extraction in optoelectronics. The matched architecture and the insulating properties of the alumina layer are investigated experimentally. ZnO nanowires are functionalized into an ultraviolet photodiode as an example. The present strategy successfully implements an advantageous architecture and is significant in developing diverse semiconductor nanowires in optoelectronic applications.

  3. Effects of surface atomistic modification on mechanical properties of gold nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiao-Yu [AML and CNMM, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072 (China); Xu, Yuanjie [Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072 (China); Wang, Gang-Feng [Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an 710049 (China); Gu, Yuantong [School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane 4001 (Australia); Feng, Xi-Qiao, E-mail: fengxq@tsinghua.edu.cn [AML and CNMM, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)

    2015-09-18

    Highlights: • Molecular dynamics simulations of surface modification effect of Au nanowires. • Surface modification can greatly affect the mechanical properties of nanowires. • Core–shell model is used to elucidate the effect of residual surface stress. - Abstract: Modulation of the physical and mechanical properties of nanowires is a challenging issue for their technological applications. In this paper, we investigate the effects of surface modification on the mechanical properties of gold nanowires by performing molecular dynamics simulations. It is found that by modifying a small density of silver atoms to the surface of a gold nanowire, the residual surface stress state can be altered, rendering a great improvement of its plastic yield strength. This finding is in good agreement with experimental measurements. The underlying physical mechanisms are analyzed by a core–shell nanowire model. The results are helpful for the design and optimization of advanced nanomaterial with superior mechanical properties.

  4. The formation of pentagonal Ni nanowires: dependence on the stretching direction and the temperature

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Mochales, P. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencias, Universidad Autonoma de Madrid, c/Francisco Tomas y Valiente 7, Cantoblanco, 28049 Madrid (Spain); Paredes, R. [Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apto. 20632, Caracas 1020A (Venezuela); Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, c/Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Pelaez, S.; Serena, P.A. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, c/Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain)

    2008-06-15

    We have constructed computational minimum cross-section histograms that statistically unveil the presence of preferred configuration during the breakage of Ni nanowires. The computed histograms showed strong dependence on the nanowire stretching direction. For the[100] and[110] stretching directions we have observed a very large peak associated to a minimum cross-section of 5 atoms. We have confirmed that the configurations that contribute to this peak are staggered pentagonal nanowires. We have found that the formation of these nanowires is enhanced by increasing the temperature up to 550 K. At higher temperatures, the formation of pentagonal nanowires declines due to the competence against the nanowire melting processes. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Ultra-long metal nanowire arrays on solid substrate with strong bonding

    Directory of Open Access Journals (Sweden)

    Chen Lan

    2011-01-01

    Full Text Available Abstract Ultra-long metal nanowire arrays with large circular area up to 25 mm in diameter were obtained by direct electrodeposition on metalized Si and glass substrates via a template-based method. Nanowires with uniform length up to 30 μm were obtained. Combining this deposition process with lithography technology, micrometre-sized patterned metal nanowire array pads were successfully fabricated on a glass substrate. Good adhesion between the patterned nanowire array pads and the substrate was confirmed using scanning acoustic microscopy characterization. A pull-off tensile test showed strong bonding between the nanowires and the substrate. Conducting atomic force microscopy (C-AFM measurements showed that approximately 95% of the nanowires were electrically connected with the substrate, demonstrating its viability to use as high-density interconnect.

  6. Nanowire Photovoltaic Devices

    Science.gov (United States)

    Forbes, David

    2015-01-01

    Firefly Technologies, in collaboration with the Rochester Institute of Technology and the University of Wisconsin-Madison, developed synthesis methods for highly strained nanowires. Two synthesis routes resulted in successful nanowire epitaxy: direct nucleation and growth on the substrate and a novel selective-epitaxy route based on nanolithography using diblock copolymers. The indium-arsenide (InAs) nanowires are implemented in situ within the epitaxy environment-a significant innovation relative to conventional semiconductor nanowire generation using ex situ gold nanoparticles. The introduction of these nanoscale features may enable an intermediate band solar cell while simultaneously increasing the effective absorption volume that can otherwise limit short-circuit current generated by thin quantized layers. The use of nanowires for photovoltaics decouples the absorption process from the current extraction process by virtue of the high aspect ratio. While no functional solar cells resulted from this effort, considerable fundamental understanding of the nanowire epitaxy kinetics and nanopatterning process was developed. This approach could, in principle, be an enabling technology for heterointegration of dissimilar materials. The technology also is applicable to virtual substrates. Incorporating nanowires onto a recrystallized germanium/metal foil substrate would potentially solve the problem of grain boundary shunting of generated carriers by restricting the cross-sectional area of the nanowire (tens of nanometers in diameter) to sizes smaller than the recrystallized grains (0.5 to 1 micron(exp 2).

  7. Metallic nanowire networks

    Science.gov (United States)

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  8. Evaluation of the nanotube intrinsic resistance across the tip-carbon nanotube-metal substrate junction by Atomic Force Microscopy

    Science.gov (United States)

    2011-01-01

    Using an atomic force microscope (AFM) at a controlled contact force, we report the electrical signal response of multi-walled carbon nanotubes (MWCNTs) disposed on a golden thin film. In this investigation, we highlight first the theoretical calculation of the contact resistance between two types of conductive tips (metal-coated and doped diamond-coated), individual MWCNTs and golden substrate. We also propose a circuit analysis model to schematize the «tip-CNT-substrate» junction by means of a series-parallel resistance network. We estimate the contact resistance R of each contribution of the junction such as Rtip-CNT, RCNT-substrate and Rtip-substrate by using the Sharvin resistance model. Our final objective is thus to deduce the CNT intrinsic radial resistance taking into account the calculated electrical resistance values with the global resistance measured experimentally. An unwished electrochemical phenomenon at the tip apex has also been evidenced by performing measurements at different bias voltages with diamond tips. For negative tip-substrate bias, a systematic degradation in color and contrast of the electrical cartography occurs, consisting of an important and non-reversible increase of the measured resistance. This effect is attributed to the oxidation of some amorphous carbon areas scattered over the diamond layer covering the tip. For a direct polarization, the CNT and substrate surface can in turn be modified by an oxidation mechanism. PMID:21711904

  9. The solid-liquid phase diagrams of binary mixtures of even saturated fatty acids differing by six carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Mariana C. [LPT, Department of Chemical Process, School of Chemical Engineering, University of Campinas, UNICAMP, P.O. Box 6066, 13083-970, Campinas-SP (Brazil); EXTRAE, Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, P.O. Box 6121, 13083-862, Campinas-SP (Brazil); CICECO, Departamento de Quimica da Universidade de Aveiro, 3810-193 Aveiro (Portugal); Rolemberg, Marlus P. [DETQI, Department of Chemical Technology, Federal University of Maranhao (UFMA), Sao Luis, Maranhao (Brazil); Meirelles, Antonio J.A. [EXTRAE, Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, P.O. Box 6121, 13083-862, Campinas-SP (Brazil); Coutinho, Joao A.P. [CICECO, Departamento de Quimica da Universidade de Aveiro, 3810-193 Aveiro (Portugal); Kraehenbuehl, M.A., E-mail: mak@feq.unicamp.br [LPT, Department of Chemical Process, School of Chemical Engineering, University of Campinas, UNICAMP, P.O. Box 6066, 13083-970, Campinas-SP (Brazil)

    2009-12-10

    This study was aimed at using the solid-liquid phase diagrams for three binary mixtures of saturated fatty acids, especially the phase transitions below the liquidus line. These mixtures are compounded by caprylic acid (C{sub 8:0}) + myristic acid (C{sub 14:0}), capric acid (C{sub 10:0}) + palmitic acid (C{sub 16:0}), lauric acid (C{sub 12:0}) + stearic acid (C{sub 18:0}), differing by six carbon atoms between carbon chains. The phase diagrams were obtained by differential scanning calorimetry (DSC). The polarized light microscopy was used to complement the characterization for a full grasp of the phase diagram. Not only do these phase diagrams present peritectic and eutectic reactions, but also metatectic reactions, due to solid-solid phase transitions common, in fatty acids. These findings have contributed to the elucidation of the phase behavior of these important biochemical molecules with implications in various industrial production.

  10. Formation and Device Application of Ge Nanowire Heterostructures via Rapid Thermal Annealing

    Directory of Open Access Journals (Sweden)

    Jianshi Tang

    2011-01-01

    Full Text Available We reviewed the formation of Ge nanowire heterostructure and its field-effect characteristics by a controlled reaction between a single-crystalline Ge nanowire and Ni contact pads using a facile rapid thermal annealing process. Scanning electron microscopy and transmission electron microscopy demonstrated a wide temperature range of 400~500°C to convert the Ge nanowire to a single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure with atomically sharp interfaces. More importantly, we studied the effect of oxide confinement during the formation of nickel germanides in a Ge nanowire. In contrast to the formation of Ni2Ge/Ge/Ni2Ge nanowire heterostructures, a segment of high-quality epitaxial NiGe was formed between Ni2Ge with the confinement of Al2O3 during annealing. A twisted epitaxial growth mode was observed in both two Ge nanowire heterostructures to accommodate the large lattice mismatch in the NixGe/Ge interface. Moreover, we have demonstrated field-effect transistors using the nickel germanide regions as source/drain contacts to the Ge nanowire channel. Our Ge nanowire transistors have shown a high-performance p-type behavior with a high on/off ratio of 105 and a field-effect hole mobility of 210 cm2/Vs, which showed a significant improvement compared with that from unreacted Ge nanowire transistors.

  11. Vertical Alignment of Single-Walled Carbon Nanotubes on Nanostructure Fabricated by Atomic Force Microscope

    Science.gov (United States)

    2009-12-16

    Technology, and Entrepreneurship , NST-4.3, San Diego, CA, August 2008. [10] J. E. Seo, T. J. Lee, K. W. Oh, M. M. Sung, J. W. Lee, W. Yi, H. Lee...T. Chen and J.-I, Chyi, Appl . Phys. Lett. 84, 2919 (2004). [30] J. L. Sauvajol, E. Anglaret, S. Rols and L. Alvarez, Car- bon 40, 1697 (2002). [31...Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl Phys Lett. 1999;74(25):3803-5. [2] Tombler TW, Zhou C, Alexseyev L, Kong

  12. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Science.gov (United States)

    Nandan, Ravi; Nanda, Karuna Kar

    2015-06-01

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min-1. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  13. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Ravi, E-mail: aerawat27@gmail.com; Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min{sup −1}. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  14. Nanowire Growth for Photovoltaics

    DEFF Research Database (Denmark)

    Holm, Jeppe Vilstrup

    the small footprint of grown nanowires relaxes the crystal matching constraint. 1.7eV is the ideal bandgap for a top junction in a dual junction solar cell, where silicon is the bottom junction. This can be obtained with GaAs0.8P0.2. We have demonstrated how to incorporate phosphorous(P) into Ga......-catalyzed nanowire growth, and grown GaAs1−xPx nanowires with different inclusions of P(x) directly on silicon. The incorporation of P was generally higher in nanowires than for planar growth at identical P flux percentage. More interestingly, the percentage of P in the nanowire was found to be a concave function...

  15. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    Science.gov (United States)

    deBoer, Gary; Scott, Carl

    2003-01-01

    Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal

  16. Structural, electronic, mechanical and quantum transport of ultrathin gold nanowire: A density functional approach

    Science.gov (United States)

    Jariwala, P. H.; Gupta, Sanjeev K.; Sonvane, Y. A.; Thakor, P. B.

    2017-06-01

    We have scrutinized the gold (Au) nanowires with distinct cross-section with 1-10 Au atoms for each unit cell by density-functional approach and performed first-principles computation. Here, we have investigated structural, electronic, transport and mechanical characteristic of Au nanowires. The structural characteristic of cubic bulk and nanowires of Au are very diverse from each other. The electronic density of state (DOS) and band structures of different formations express that all the nanowires are very good conductor in nature. The figure of conduction channels leans on number of atoms for each unit cell, diameter and structure of nanowires. We also inspect that the electronic thermal conductivities dependency on the temperature and we found that all the considered AuNWs have low conductivity than that of the bulk Au. Our results show that AuNWs have potential application in electronic devices like nanoelectro-mechanical systems (NEMS).

  17. Investigation of Nucleation Mechanism and Tapering Observed in ZnO Nanowire Growth by Carbothermal Reduction Technique

    Directory of Open Access Journals (Sweden)

    Oye Michael

    2011-01-01

    Full Text Available Abstract ZnO nanowire nucleation mechanism and initial stages of nanowire growth using the carbothermal reduction technique are studied confirming the involvement of the catalyst at the tip in the growth process. Role of the Au catalyst is further confirmed when the tapering observed in the nanowires can be explained by the change in the shape of the catalyst causing a variation of the contact area at the liquid–solid interface of the nanowires. The rate of decrease in nanowire diameter with length on the average is found to be 0.36 nm/s and this rate is larger near the base. Variation in the ZnO nanowire diameter with length is further explained on the basis of the rate at which Zn atoms are supplied as well as the droplet stability at the high flow rates and temperature. Further, saw-tooth faceting is noticed in tapered nanowires, and the formation is analyzed crystallographically.

  18. Semiconductor Nanowires from Materials Science and Device Physics Perspectives

    Science.gov (United States)

    Samuelson, Lars

    2005-03-01

    Realization of extremely down-scaled devices gives tough challenges related to technology and materials science. One reason for the concern is that top-down fabricated nano-devices tend to have their properties dominated by process-induced damage, rendering ultra-small devices not so useful. Alternatively, bottom-up fabrication methods may allow dimensions on the scale even below 10 nm, still with superb device properties. I will in this talk describe our research on catalytically induced growth of semiconductor nanowires. Our method uses catalytic gold nanoparticles, allowing tight control of diameter as well as position of where the nanowire grows, with our work completely focused on epitaxially nucleated nanowires in which the nanowire structure can be seen as a coherent, monolithic extension of the crystalline substrate material. One of the most important achievements in this field of research is the realization of atomically abrupt heterostructures within nanowires, in which the material composition can be altered within only one or a few monolayers, thus allowing 1D heterostructure devices to be realized. This has allowed a variety of quantum devices to be realized, such as single-electron transistors, resonant tunneling devices as well as memory storage devices. A related recent field of progress has been the realization of ideally nucleated III-V nanowires on Si substrates, cases where we have also reported functioning III-V heterostructure device structures on Si. All of these device related challenges evolve from an improved understanding of the materials science involved in nucleation of nanowires, in altering of composition of the growing nanowire, in control of the growth direction etc. I will give examples of these materials science issues and will especially dwell on the opportunities to form new kinds of materials, e.g. as 3D complex nanowire structures, resembling nanotrees or nanoforests.

  19. Nanowires and nanobelts, v.2 nanowires and nanobelts of functional materials

    CERN Document Server

    Wang, Zhong Lin

    2010-01-01

    Nanowires, nanobelts, nanoribbons, nanorods ..., are a new class of quasi-one-dimensional materials that have been attracting a great research interest in the last few years. These non-carbon based materials have been demonstrated to exhibit superior electrical, optical, mechanical and thermal properties, and can be used as fundamental building blocks for nano-scale science and technology, ranging from chemical and biological sensors, field effect transistors to logic circuits. Nanocircuits built using semiconductor nanowires demonstrated were declared a ""breakthrough in science"" by Science

  20. Ionisation D'atomes Par un Laser Carbon Dioxide Intense Par L'effet Tunnel

    Science.gov (United States)

    Xiong, Wei

    Cette these decrit des experiences d'ionisation d'atomes (Xe et K) par un laser CO_2 intense. Des spectrometres de masse et d'energie electronique ont ete developpes pour mesurer le nombre d'ions crees et l'energie des electrons acceleres par le gradient spatial du champ laser. Des details sur ces mesures sont fournis et justifies. On a mesure des energies d'electrons jusqu'a 1000eV, a une intensite de 10^{14} W/cm^2. Les mesures experimentales sont comparees avec deux types de theorie, qui decrivent le processus d'ionisation dans deux limites: l'interaction entre electron et noyau est beaucoup plus forte que celle entre electron et champ laser (processus multiphotonique), ou l'inverse (effect tunnel). Les resultats montrent que la courbe du nombre d'ions crees en fonction de l'intensite n'est pas tres sensible aux details du processus d'ionsisation. Par contre les spectres d'energie des electrons dependent fortement du processus d'ionisation, et on peut en deduire le taux d'ionisation. On trouve que la theorie multiphotonique ne fournit pas une explication satisfaisante aux resultats experimentaux, mais que la theorie de l'effet tunnel s'ajuste bien si on suppose que le seuil d'ionisation peut etre deplace legerement par le champ laser. Le deplacement necessaire du seuil est estime dans cette these, mais une explication theorique reste a trouver.

  1. Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes.

    Science.gov (United States)

    Rao, Rahul; Chen, Gugang; Arava, Leela Mohana Reddy; Kalaga, Kaushik; Ishigami, Masahiro; Heinz, Tony F; Ajayan, Pulickel M; Harutyunyan, Avetik R

    2013-01-01

    Growth of vertically aligned carbon nanotube (CNT) forests is highly sensitive to the nature of the substrate. This constraint narrows the range of available materials to just a few oxide-based dielectrics and presents a major obstacle for applications. Using a suspended monolayer, we show here that graphene is an excellent conductive substrate for CNT forest growth. Furthermore, graphene is shown to intermediate growth on key substrates, such as Cu, Pt, and diamond, which had not previously been compatible with nanotube forest growth. We find that growth depends on the degree of crystallinity of graphene and is best on mono- or few-layer graphene. The synergistic effects of graphene are revealed by its endurance after CNT growth and low contact resistances between the nanotubes and Cu. Our results establish graphene as a unique interface that extends the class of substrate materials for CNT growth and opens up important new prospects for applications.

  2. Towards atomic-level mechanics: Adhesive forces between aromatic molecules and carbon nanotubes

    Science.gov (United States)

    Lechner, Christoph; Sax, Alexander F.

    2017-10-01

    The adhesive forces for desorption of the four aromatic compounds benzene, anthracene, pyrene, and tetracene from a (8,0) carbon nanotube (CNT) are investigated and compared to the desorption from graphene. The desorption energies are found to be proportional to the size of the contact zone in the adsorbent/adsorbate complex while maximum adhesive forces are proportional to the part of the contact zone where attractive interactions are reduced when external forces pull on the adsorbate. To assess the influence of the curvature, type of CNT, and the adsorbate's orientation, the desorption processes from six zigzag CNT and four armchair CNT are studied for pyrene and tetracene. For some properties, the results are independent of the curvature of the adsorbent, whereas for others we find marked differences. Aspects of elasticity are considered as well as the influence of the Pauli exclusion principle on the equilibrium geometries in adsorbent/adsorbate complexes.

  3. Initial evaluation and comparison of plasma damage to atomic layer carbon materials using conventional and low T{sub e} plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine; Farmer, Damon B.; Engel, Michael; Neumayer, Deborah; Han, Shu-Jen; Engelmann, Sebastian U., E-mail: suengelm@us.ibm.com; Joseph, Eric A. [IBM, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Boris, David R.; Hernández, Sandra C.; Walton, Scott G. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Lock, Evgeniya H. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-01-15

    The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare these results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.

  4. An air gap moderates the performance of nanowire array transistors.

    Science.gov (United States)

    Yang, Tong; Mehta, Jeremy S; Mativetsky, Jeffrey M

    2017-03-24

    Solution-processed nanowires are promising for low-cost and flexible electronics. When depositing nanowires from solution, due to stacking of the nanowires, an air gap exists between the substrate and much of the active material. Here, using confocal Raman spectroscopy, we quantify the thickness of the air gap in transistors comprising organic semiconductor nanowires. The average air gap thickness is found to be unexpectedly large, being at least three times larger than the nanowire diameter, leading to a significant impact on transistor performance. The air gap acts as an additional dielectric layer that reduces the accumulation of charge carriers due to a gate voltage. Conventional determination of the charge carrier mobility ignores the presence of an air gap, resulting in an overestimate of charge carrier accumulation and an underestimate of charge carrier mobility. It is shown that the larger the air gap, the larger the mobility correction (which can be greater than an order of magnitude) and the larger the degradation in on-off current ratio. These results demonstrate the importance of minimizing the air gap and of taking the air gap into consideration when analyzing the electrical performance of transistors consisting of stacked nanowires. This finding is applicable to all types of stacked one-dimensional materials including organic and inorganic nanowires, and carbon nanotubes.

  5. Nanowire Growth for Photovoltaics

    DEFF Research Database (Denmark)

    Holm, Jeppe Vilstrup

    cells. Resonance effects between the light and nanowire causes an inherent concentration of the sunlight into the nanowires, and means that a sparse array of nanowires (less than 5% of the area) can absorb all the incoming light. The resonance effects, as well as a graded index of refraction, also traps...... of the percentage of P in the flux, while for planar growth it was a convex function. We have demonstrated GaAs0.8P0.2 nanowires and further grown a shell surrounding the core with the same composition. The lattice matched GaAsP core-shell nanowire were doped to produce radial p-i-n junctions in each...... of the nanowires, some of which were removed from their growth substrate and turned into single nanowire solar cells (SNWSC). The best device showed a conversion efficiency of 6.8% under 1.5AMG 1-sun illumination. In order to improve the efficiency a surface passivating shell consisting of highly doped, wide...

  6. Nanowire-based thermoelectrics

    Science.gov (United States)

    Ali, Azhar; Chen, Yixi; Vasiraju, Venkata; Vaddiraju, Sreeram

    2017-07-01

    Research on thermoelectrics has seen a huge resurgence since the early 1990s. The ability of tuning a material’s electrical and thermal transport behavior upon nanostructuring has led to this revival. Nevertheless, thermoelectric performances of nanowires and related materials lag far behind those achieved with thin-film superlattices and quantum dot-based materials. This is despite the fact that nanowires offer many distinct advantages in enhancing the thermoelectric performances of materials. The simplicity of the strategy is the first and foremost advantage. For example, control of the nanowire diameters and their surface roughnesses will aid in enhancing their thermoelectric performances. Another major advantage is the possibility of obtaining high thermoelectric performances using simpler nanowire chemistries (e.g., elemental and binary compound semiconductors), paving the way for the fabrication of thermoelectric modules inexpensively from non-toxic elements. In this context, the topical review provides an overview of the current state of nanowire-based thermoelectrics. It concludes with a discussion of the future vision of nanowire-based thermoelectrics, including the need for developing strategies aimed at the mass production of nanowires and their interface-engineered assembly into devices. This eliminates the need for trial-and-error strategies and complex chemistries for enhancing the thermoelectric performances of materials.

  7. 3D mechanical measurements with an atomic force microscope on 1D structures

    DEFF Research Database (Denmark)

    Kallesøe, Christian; Larsen, Martin Benjamin Barbour Spanget; Bøggild, Peter

    2012-01-01

    We have developed a simple method to characterize the mechanical properties of three dimensional nanostructures, such as nanorods standing up from a substrate. With an atomic force microscope the cantilever probe is used to deflect a horizontally aligned nanorod at different positions along...... the nanorod, using the apex of the cantilever itself rather than the tip normally used for probing surfaces. This enables accurate determination of nanostructures' spring constant. From these measurements, Young's modulus is found on many individual nanorods with different geometrical and material structures...... in a short time. Based on this method Young's modulus of carbon nanofibers and epitaxial grown III-V nanowires has been determined....

  8. Nanopatterning of ultrananocrystalline diamond nanowires.

    Science.gov (United States)

    Wang, Xinpeng; Ocola, Leonidas E; Divan, Ralu S; Sumant, Anirudha V

    2012-02-24

    We report the fabrication of horizontally aligned ultrananocrystalline diamond (UNCD) nanowires (NWs) via two different approaches. First, with the top-down approach by using electron beam lithography (EBL) and reactive ion etching (RIE) with a photo resist layer as an etch mask. Using this approach, we demonstrate fabrication of 50 µm long UNCD NWs with widths as narrow as 40 nm. We further present an alternative approach to grow UNCD NWs at pre-defined positions through a selective seeding process. No RIE was needed either to etch the NWs or to remove the mask. In this case, we achieved UNCD NWs with lengths of 50 µm and smallest width of 90 nm respectively. Characterization of these nanowires by using scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows that the UNCD NWs are well defined and fully released, with no indication of residual stress. Characterization using visible and ultraviolet (UV) Raman spectroscopy indicates that in both fabrication approaches, UNCD NWs maintain their intrinsic diamond structure.

  9. Nanopatterning of ultrananocrystalline diamond nanowires

    Science.gov (United States)

    Wang, Xinpeng; Ocola, Leonidas E.; Divan, Ralu S.; Sumant, Anirudha V.

    2012-02-01

    We report the fabrication of horizontally aligned ultrananocrystalline diamond (UNCD) nanowires (NWs) via two different approaches. First, with the top-down approach by using electron beam lithography (EBL) and reactive ion etching (RIE) with a photo resist layer as an etch mask. Using this approach, we demonstrate fabrication of 50 µm long UNCD NWs with widths as narrow as 40 nm. We further present an alternative approach to grow UNCD NWs at pre-defined positions through a selective seeding process. No RIE was needed either to etch the NWs or to remove the mask. In this case, we achieved UNCD NWs with lengths of 50 µm and smallest width of 90 nm respectively. Characterization of these nanowires by using scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows that the UNCD NWs are well defined and fully released, with no indication of residual stress. Characterization using visible and ultraviolet (UV) Raman spectroscopy indicates that in both fabrication approaches, UNCD NWs maintain their intrinsic diamond structure.

  10. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate.

    Science.gov (United States)

    Qin, Shuhui; Qin, Dongqi; Ford, Warren T; Resasco, Daniel E; Herrera, Jose E

    2004-01-14

    Polymer brushes with single-walled carbon nanotubes (SWNT) as backbones were synthesized by grafting n-butyl methacrylate (nBMA) from the ends and sidewalls of SWNT via atom transfer radical polymerization (ATRP). Carboxylic acid groups on SWNT were formed by nitric acid oxidation. The ATRP initiators were covalently attached to the SWNT by esterification of 2-hydroxyethyl 2'-bromopropionate with carboxylic acid groups. Methyl 2-bromopropionate (MBP) was added as free initiator during the brush preparation to control growth of the brushes and to monitor the polymerization kinetics. Size-exclusion chromatography (SEC) results show that the molecular weight of free poly(n-butyl methacrylate) (PnBMA) increased linearly with nBMA monomer conversion. PnBMA cleaved from the SWNT after high conversion had the same molecular weight as PnBMA produced in solution. Thermogravimetric analyses (TGA) show that the amount of PnBMA grown from the SWNT increased linearly with the molecular weight of the free PnBMA. The most highly PnBMA-functionalized SWNT dissolve in 1,2-dichlorobenzene, chloroform, and tetrahydrofuran, and solubility increases with the amount of PnBMA bound to SWNT. Near-infrared and Raman spectra indicate that the side walls of the SWNT were lightly functionalized by the nitric acid treatment and that the degree of functionalization of the SWNT did not change significantly during the formation of initiator or during the polymerization. Atomic force microscopy (AFM) images show contour lengths of the SWNT brushes on a mica surface from 200 nm to 2.0 microm and an average height of the backbone of 2-3 nm, indicating that the bundles of original SWNT were broken into individual tubes by functionalization and polymerization.

  11. Reaction of benzene with atomic carbon: pathways to fulvenallene and the fulvenallenyl radical in extraterrestrial atmospheres and the interstellar medium.

    Science.gov (United States)

    da Silva, Gabriel

    2014-06-05

    The reaction of benzene with ground-state atomic carbon, C((3)P), has been investigated using the G3X-K composite quantum chemical method. A suite of novel energetically favorable pathways that lead to previously unconsidered products are identified. Reaction is initiated by barrierless C atom cycloaddition to benzene on the triplet surface, producing a vibrationally excited [C7H6]* adduct that can dissociate to the cycloheptatrienyl radical (+ H) via a relatively loose transition state 4.4 kcal mol(-1) below the reactant energies. This study also identifies that this reaction adduct can isomerize to generate five-membered ring intermediates that can further dissociate to the global C7H5 minima, the fulvenallenyl radical (+ H), or to c-C5H4 and acetylene, with limiting barriers around 20 and 10 kcal mol(-1) below the reactants, respectively. If intersystem crossing to the singlet surface occurs, isomerization pathways that are lower-yet in energy are available leading to the C7H6 minima fulvenallene, with all barriers over 40 kcal mol(-1) below the reactants. From here further barrierless fragmentation to fulvenallenyl + H can proceed at ca. 25 kcal mol(-1) below the reactants. In the reducing atmospheres of planets like Jupiter and satellites like Titan, where benzene and C((3)P) are both expected, it is proposed that fulvenallene and the fulvenallenyl radical would be the dominant products of the C6H6 + C((3)P) reaction. Fulvenallenyl may also be a significant reaction product under collision-free conditions representative of the interstellar medium, although further work is required here to confirm the identity of the C7H5 radical product.

  12. Facile synthesis of analogous graphene quantum dots with sp2 hybridized carbon atom dominant structures and their photovoltaic application

    Science.gov (United States)

    Huang, Zhengcheng; Shen, Yongtao; Li, Yu; Zheng, Wenjun; Xue, Yunjia; Qin, Chengqun; Zhang, Bo; Hao, Jingxiang; Feng, Wei

    2014-10-01

    Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of ``pristine'' GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp2 hybridized carbon atom dominant structure and good solubility in organic solvents.Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of ``pristine'' GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel

  13. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  14. Controllable Fabricating Dielectric-Dielectric SiC@C Core-Shell Nanowires for High-Performance Electromagnetic Wave Attenuation.

    Science.gov (United States)

    Liang, Caiyun; Wang, Zhijiang

    2017-11-22

    Heterostructured dielectric-dielectric nanowires of SiC core and carbon shell (SiC@C) with high-performance electromagnetic wave absorption were synthesized by combining an interfacial in situ polymer encapsulation and carbonization process. This approach overcomes the shortcomings of previous reported methods to prepare carbon shell that both carbon shell and free carbon particles are formed simultaneously. In our developed approach, the core of SiC nanowires are first positively charged. Then the negative resorcinol-formaldehyde polymers as the carbon source are anchored on SiC nanowires under the attraction of electrostatic force, which well suppresses the nucleation of free carbon particles. The thickness of the carbon shell could be modulated from 4 to 20 nm by simply adjusting the moral ratio of resorcinol to SiC nanowires. The resulting SiC@C core-shell nanostructures without free carbon particles offer synergism among the SiC nanowires and the carbon shells, generating multiple dipolar polarization, surfaced polarization, and associated relaxations, which endow SiC@C hybrid nanowires with a minimum reflection loss (RL) value of -50 dB at the frequency of 12 GHz and an effective absorption bandwidth of 8 GHz with RL value under -10 dB at the optimized state. Our results demonstrate that SiC@C hybrid nanowires are promising candidates for electromagnetic wave absorption applications.

  15. Synthesis of crystalline CoFe{sub x} nanowire arrays through high voltage pulsed electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Renlong; Cao, Chuanbao, E-mail: cbcao@bit.edu.cn; Chen, Zhuo; Yao, Ruimin

    2014-08-01

    A high voltage pulsed electrochemical deposition (50 Hz, −50 V) technique was used to synthesize CoFe{sub x} (x=1.57, 2.02) nanowire arrays in anodic aluminum oxide templates. The nanowire arrays (NA) are different in diameter (NA A, 40 nm; NA B, 50 nm), center-to-center distance (NA A, 60 nm; NA B, 100 nm) and length (NA A, 4 μm; NA B, 8 μm). Microstructural characterization shows high crystallinity of the formed nanowires. The magnetic measurements indicate that the nanowire arrays possess uniaxial anisotropy with the easy magnetization axis along the nanowire. When magnetic field is applied in this direction, the coercivities of both nanowire arrays are larger than 1600 Oe. The shape difference between two magnetization hysteresis loops is due to dipolar magnetostatic interaction, and analytical calculation is performed to interpret the magnetic properties as a function of the wire geometry. The results suggest that during high voltage electrodeposition, reduced atoms are highly energetic and the crystallographic growth planes can be (110), (111) and (211). - Highlights: • High voltage pulsed electrochemical deposition technique (−50 V) is employed. • Nanowire arrays exhibit high coercivities (>1600 Oe). • Crystallites with high crystallinity and different growth orientations are discovered in the nanowires. • The high-energetic reduced atoms can stack on the usually reported (110) plane together with (111) or (211) plane. • The shape difference between two magnetization hysteresis loops is due to dipolar magnetostatic interaction.

  16. Ab initio study of Pt induced nanowires on Ge(001)

    NARCIS (Netherlands)

    Vanpoucke, D.E.P.

    2009-01-01

    The aim of this thesis: “Ab Initio Study of Pt Induced Nanowires on Ge(001)”, is to model the experimentally observed ‘Pt nanowires’ on Ge(001). These one-atom-thick wires can be hundreds of nanometers long while remaining defect and kink free, providing the ultimate wire any chip designer dreams

  17. Multiwalled carbon nanotubes microcolumn preconcentration and determination of gold in geological and water samples by flame atomic absorption spectrometry

    Science.gov (United States)

    Liang, Pei; Zhao, Ehong; Ding, Qiong; Du, Dan

    2008-06-01

    The potential of multiwalled carbon nanotubes (MWNTs) as solid-phase extraction adsorbent for the separation and preconcentration of gold has been investigated. Gold could be adsorbed quantitatively on MWNTs in the pH range of 1-6, and then eluted completely with 2 mL of 3% thiourea in 1 mol L - 1 HCl solution at a flow rate of 0.5 mL min - 1 . A new method using a microcolumn packed with MWNTs as sorbent has been developed for the preconcentration of trace amount of Au prior to its determination by flame atomic absorption spectrometry. Parameters influencing the preconcentration of Au, such as pH of the sample, sample flow rate and volume, elution solution and interfering ions, have been examined and optimized. Under the optimum experimental conditions, the detection limit of this method for Au was 0.15 µg L - 1 with an enrichment factor of 75, and the relative standard deviation (R.S.D) was 3.1% at the 100 µg L - 1 Au level. The method has been applied for the determination of trace amount of Au in geological and water samples with satisfactory results.

  18. Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing.

    Science.gov (United States)

    Choi, Taejin; Kim, Soo Hyeon; Lee, Chang Wan; Kim, Hangil; Choi, Sang-Kyung; Kim, Soo-Hyun; Kim, Eunkyoung; Park, Jusang; Kim, Hyungjun

    2015-01-15

    A useful strategy has been developed to fabricate carbon-nanotube-nickel (CNT-Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT-Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT-Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5 μM-2 mM, short response time (3 s), a low detection limit (2 μM), high sensitivity (1384.1 μA mM(-1) cm(-2)), and good selectivity and repeatability. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Facile synthesis of analogous graphene quantum dots with sp(2) hybridized carbon atom dominant structures and their photovoltaic application.

    Science.gov (United States)

    Huang, Zhengcheng; Shen, Yongtao; Li, Yu; Zheng, Wenjun; Xue, Yunjia; Qin, Chengqun; Zhang, Bo; Hao, Jingxiang; Feng, Wei

    2014-11-07

    Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of "pristine" GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp(2) hybridized carbon atom dominant structure and good solubility in organic solvents.

  20. Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances

    Science.gov (United States)

    Fiorentino, Giuseppe; Vollebregt, Sten; Tichelaar, F. D.; Ishihara, Ryoichi; Sarro, Pasqualina M.

    2015-02-01

    A study on the impact of atomic layer deposition (ALD) precursors diffusion on the performance of solid-state miniaturized nanostructure capacitor array is presented. Three-dimensional nanostructured capacitor array based on double conformal coating of multiwalled carbon nanotubes (MWCNTs) bundles is realized using ALD to deposit Al2O3 as dielectric layer and TiN as high aspect-ratio conformal counter-electrode on 2 μm long MWCNT bundles. The devices have a small footprint (from 100 μm2 to 2500 μm2) and are realized using an IC wafer-scale manufacturing process with high reproducibility (≤0.3E-12F deviation). To evaluate the enhancement of the electrode surface, the measured capacitance values are compared to a lumped circuital model. The observed discrepancies are explained with a partial coating of the CNT, that determine a limited use of the available electrode surface area. To analyze the CNT coating effectiveness, the ALD precursors diffusions inside the CNT bundle is studied using a Knudsen diffusion mechanism.

  1. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  2. Ballistic Majorana nanowire devices

    NARCIS (Netherlands)

    Gül, Önder

    2017-01-01

    The dissertation reports a series of electron transport experiments on semiconductor nanowires towards realizing the hypothesized topological quantum computation. A topological quantum computer manipulates information that is stored nonlocally in the topology of a physical system. Such an operation

  3. TEM Study of the Growth Mechanism, Phase Transformation, and Core/shell Structure of Semiconductor Nanowires

    Science.gov (United States)

    Wong, Tai Lun

    instantly due to high temperature annealing. Furthermore, the phase transformation preferred to begin at the defect and bending region of the nanowires, as the nickel can easily diffuse through the native oxide on the Si nanowires rather than the other regions. By removing the native oxide on the Si nanowires using HF, the temperature required for the phase transformation was decreased significantly. However, without the native oxide, the phase transformation became a multi-site nucleation process, and the nanowire became a polycrystalline and multiphase nickel silicide nanowires after the reaction. A simple and effective method is developed for fabricating high-quality vertically aligned ZnO nanowire arrays using carbonized photoresists. ZnO nanowires fabricated by this method show excellent alignment, crystal quality, and optical properties that are independent of the substrates. We further fabricated vertically aligned ZnO/a-Si core-shell heterojunction nanowire arrays through direct chemical vapor deposition (CVD) of amorphous silicon on ZnO nanowire surfaces. The thickness of the a-Si shells linearly increases with deposition time and the deposition rate was about 5nm/min at 530 °C. Since the Si shell is p-type and the ZnO core is intrinsic n-type semiconductors, the ZnO/ amorphous silicon core-shell nanowires naturally formed hetero p-n junctions. The antireflection property of the ZnO/amorphous silicon core-shell nanowires is dramatically enhanced due to the rough interface between the ZnO and amorphous silicon. Additionally, the intensity of the Photoluminescence spectrum of ZnO/amorphous silicon core-shell structures is decreasing with the thickness of the amorphous silicon shell increases.

  4. Development of the Atomic-Resolution Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Gai, Pratibha L.; Boyes, Edward D.; Yoshida, Kenta

    2016-01-01

    The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures...... is used to study steels, graphene, nanowires, etc. In this chapter, the experimental setup of the microscope column and its peripherals are described....

  5. Biofunctionalized Magnetic Nanowires

    KAUST Repository

    Kosel, Jurgen

    2013-12-19

    Magnetic nanowires can be used as an alternative method overcoming the limitations of current cancer treatments that lack specificity and are highly cytotoxic. Nanowires are developed so that they selectively attach to cancer cells via antibodies, potentially destroying them when a magnetic field induces their vibration. This will transmit a mechanical force to the targeted cells, which is expected to induce apoptosis on the cancer cells.

  6. A nanoscale quantum interface for single atoms

    Science.gov (United States)

    Tiecke, Tobias; Thompson, Jeff; Feist, Johannes; Yu, Chun; Akimov, Alexey; Chang, Darrick; Zibrov, Alexander; Vuletic, Vladan; Park, Hongkun; Lukin, Mikhail

    2012-02-01

    Neutral atoms are ideal quantum systems: they have long ground-state coherence times and strong optical cycling transitions that enable state detection and preparation. Building quantum networks of atoms interacting through photons is challenging, however, as many schemes for atom-photon interaction are inefficient or hard to scale. We propose a scheme to trap neutral atoms near silver nanowires, which are tightly confining waveguides for surface plasmons. The nanowire tip is used to generate a near-field optical trapping potential, and to enhance and efficiently collect spontaneous emission from the atom. We present experimental results on using the atom to sense the optical field at submicron distances from the wire and our current efforts towards loading the nanotrap.

  7. Nanowire field effect transistors principles and applications

    CERN Document Server

    Jeong, Yoon-Ha

    2014-01-01

    Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.

  8. Fabrication of stable Pd nanowire assisted by hydrogen in solution

    OpenAIRE

    Kiguchi, M.; Murakoshi, K

    2006-01-01

    We have mechanically fabricated a Pd nanowire in solution under electrochemical potential control. A clear feature appeared in the conductance histogram when the electrochemical potential of the Pd wire was kept at the hydrogen evolution potential. Conductance traces showed the Pd wire was stretched 0.4 nm in length just before breaking, suggesting that at least two Pd atoms might contribute to the formation of the Pd wire. The results indicate that a certain atomic configuration of the Pd na...

  9. Quantum emitters coupled to surface plasmons of an nanowire

    DEFF Research Database (Denmark)

    Dzsotjan, David; Sørensen, Anders Søndberg; Fleischhauer, Michael

    2010-01-01

    We investigate a system consisting of a single, as well as two emitters strongly coupled to surface plasmon modes of a nanowire using a Green's function approach. Explicit expressions are derived for the spontaneous decay rate into the plasmon modes and for the atom-plasmon coupling as well...... as a plasmon-mediated atom-atom coupling. Phenomena due to the presence of losses in the metal are discussed. In case of two atoms, we observe Dicke subradiance and superradiance resulting from their plasmon-mediated interaction. Based on this phenomenon, we propose a scheme for a deterministic two...

  10. Dimensional effects in semiconductor nanowires; Dimensionseffekte in Halbleiternanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Stichtenoth, Daniel

    2008-06-23

    Nanomaterials show new physical properties, which are determined by their size and morphology. These new properties can be ascribed to the higher surface to volume ratio, to quantum size effects or to a form anisotropy. They may enable new technologies. The nanowires studied in this work have a diameter of 4 to 400 nm and a length up to 100 {mu}m. The semiconductor material used is mainly zinc oxide (ZnO), zinc sulfide (ZnS) and gallium arsenide (GaAs). All nanowires were synthesized according to the vapor liquid solid mechanism, which was originally postulated for the growth of silicon whiskers. Respective modifications for the growth of compound semiconductor nanowires are discussed. Detailed luminescence studies on ZnO nanowires with different diameters show pronounced size effects which can be attributed to the origins given above. Similar to bulk material, a tuning of the material properties is often essential for a further functionalization of the nanowires. This is typical realized by doping the source material. It becomes apparent, that a controlled doping of nanowires during the growth process is not successful. Here an alternative method is chosen: the doping after the growth by ion implantation. However, the doping by ion implantation goes always along with the creation of crystal defects. The defects have to be annihilated in order to reach an activation of th introduced dopants. At high ion fluences and ion masses the sputtering of surface atoms becomes more important. This results in a characteristic change in the morphology of the nanowires. In detail, the doping of ZnO and ZnS nanowires with color centers (manganese and rare earth elements) is demonstrated. Especially, the intra 3d luminescence of manganese implanted ZnS nanostructures shows a strong dependence of the nanowire diameter and morphology. This dependence can be described by expanding Foersters model (which describes an energy transfer to the color centers) by a dimensional parameter

  11. Cleaved-Coupled Nanowire Lasers

    Science.gov (United States)

    2013-01-15

    fabricated with micrometer -scale gaps (26, 27). This Fig. 1. Single-frequency lasing in 9-μm (4:3) cleaved-coupled nanowires. (A) SEM images showing the...modulation of modes observed in cleaved-coupled nanowire lasers can be predicted using transfer matrix methods. Although the Vernier effect provides an...Following the Vernier effect, coupled nanowires with integer ratios would produce the free spectral range of the shorter nanowire. The lasing spectra

  12. Novel UV Initiator for Functionalization of Multiwalled Carbon Nanotubes by Atom Transfer Radical Polymerization Applied on Two Different Grades of Nanotubes

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Jankova Atanasova, Katja; Bøgelund, J.

    2010-01-01

    A novel nonoxidative method for preparation of functionalized multiwalled carbon nanotubes (MWCNT) has been developed based on a UV sensitive initiator for atom transfer radical polymerization (ATRP). The method has been investigated with respect to ligands and polymerization time for the prepara......A novel nonoxidative method for preparation of functionalized multiwalled carbon nanotubes (MWCNT) has been developed based on a UV sensitive initiator for atom transfer radical polymerization (ATRP). The method has been investigated with respect to ligands and polymerization time...... for the preparation of polystyrene functionalized MWCNT. It was found that pentamethyldiethylenetriamine (PMDETA) gave superior results with higher loading in shorter polymerization time. A comparative study of the method applied on two different grades of nonoxidized MWCNT has been performed, illustrating large...

  13. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.

    Science.gov (United States)

    Ali, Sajjad; Fu Liu, Tian; Lian, Zan; Li, Bo; Sheng Su, Dang

    2017-08-23

    The mechanism of CO oxidation by O 2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory. We determine that single Au atoms can be trapped effectively by the defects on SWCNTs. The defects on SWCNTs can enhance both the binding strength and catalytic activity of the supported single Au atom. Fundamental aspects such as adsorption energy and charge transfer are elucidated to analyze the adsorption properties of CO and O 2 and co-adsorption of CO and O 2 molecules. It is found that CO binds stronger than O 2 on Au supported SWCNT. We clearly demonstrate that the defected SWCNT surface promotes electron transfer from the supported single Au atom to O 2 molecules. On the other hand, this effect is weaker for pristine SWCNTs. It is observed that the high density of spin-polarized states are localized in the region of the Fermi level due to the strong interactions between Au (5d orbital) and the adjacent carbon (2p orbital) atoms, which influence the catalytic performance. In addition, we elucidate both the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms of CO oxidation by O 2 . For the LH pathway, the barriers of the rate-limiting step are calculated to be 0.02 eV and 0.05 eV for Au/m-SWCNT and Au/di-SWCNT, respectively. To regenerate the active sites, an ER-like reaction occurs to form a second CO 2 molecule. The ER pathway is observed on Au/m-SWCNT, Au/SW-SWCNT and Au/SWCNT in which the Au/m-SWCNT has a smaller barrier. The comparison with a previous study (Lu et al., J. Phys. Chem. C, 2009, 113, 20156-20160.) indicates that the curvature effect of SWCNTs is important for the catalytic property of the supported single Au. Overall, Au/m-SWCNT is identified as the most active catalyst for CO oxidation compared to pristine SWCNT, SW-SWCNT and di-SWCNT. Our findings give a

  14. Density-functional theory study of dimethyl carbonate synthesis by methanol oxidative carbonylation on single-atom Cu1/graphene catalyst

    Science.gov (United States)

    Sun, Wei; Shi, Ruina; Wang, Xuhui; Liu, Shusen; Han, Xiaoxia; Zhao, Chaofan; Li, Zhong; Ren, Jun

    2017-12-01

    The mechanism for dimethyl carbonate (DMC) synthesis by oxidation carbonylation of methanol on a single-atom Cu1/graphene catalyst was investigated by density-functional theory calculations. Carbon vacancies in graphene can significantly enhance the interaction between Cu atoms and graphene supports, and provide an increased transfer of electrons from Cu atoms to the graphene sheet. Compared with Cu-doped divacancy graphene (Cu/DG), Cu-doped monovacancy graphene (Cu/MG) provides a stronger interaction between adsorbents and the catalyst surface. Among the reaction processes over Cu1/graphene catalysts, CO insertion into methoxide was more favorable than dimethoxide. The rate-limiting step on the Cu/DG surface is the carbomethoxide reaction with methoxide, which is exothermic by 164.6 kJ mol-1 and has an activation barrier of 190.9 kJ mol-1 energy. Compared with that on the Cu crystal surface, Cu4 and Cu3Rh clusters, and the Cu2O(111) surface, the rate-determining step for DMC formation on Cu/MG, which is CO insertion into methoxide, needs to overcome the lowest barrier of 73.5 kJ mol-1 and is exothermic by 44.6 kJ mol-1. Therefore, Cu/MG was beneficial to the formation of DMC as a single-atom catalyst.

  15. Restricted access carbon nanotubes for direct extraction of cadmium from human serum samples followed by atomic absorption spectrometry analysis.

    Science.gov (United States)

    Barbosa, Adriano F; Barbosa, Valéria M P; Bettini, Jefferson; Luccas, Pedro O; Figueiredo, Eduardo C

    2015-01-01

    In this paper, we propose a new sorbent that is able to extract metal ions directly from untreated biological fluids, simultaneously excluding all proteins from these samples. The sorbent was obtained through the modification of carbon nanotubes (CNTs) with an external bovine serum albumin (BSA) layer, resulting in restricted access carbon nanotubes (RACNTs). The BSA layer was fixed through the interconnection between the amine groups of the BSA using glutaraldehyde as cross-linker. When a protein sample is percolated through a cartridge containing RACNTs and the sample pH is higher than the isoelectric point of the proteins, both proteins from the sample and the BSA layer are negatively ionized. Thus, an electrostatic repulsion prevents the interaction between the proteins from the sample on the RACNTs surface. At the same time, metal ions are adsorbed in the CNTs (core) after their passage through the chains of proteins. The Cd(2+) ion was selected for a proof-of-principle case to test the suitability of the RACNTs due to its toxicological relevance. RACNTs were able to extract Cd(2+) and exclude almost 100% of the proteins from the human serum samples in an online solid-phase extraction system coupled with thermospray flame furnace atomic absorption spectrometry. The limits of detection and quantification were 0.24 and 0.80 μg L(-1), respectively. The sampling frequency was 8.6h(-1), and the intra- and inter-day precisions at the 0.80, 15.0, and 30.0 μg L(-1) Cd(2+) levels were all lower than 10.1% (RSD). The recoveries obtained for human blood serum samples fortified with Cd(2+) ranged from 85.0% to 112.0%. The method was successfully applied to analyze Cd(2+) directly from six human blood serum samples without any pretreatment, and the observed concentrations ranged from

  16. Self-catalyzed Growth of InAs Nanowires on InP Substrate

    Science.gov (United States)

    Li, Bang; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2017-01-01

    We report on the self-catalyzed growth of InAs nanowires on InP substrate by metal-organic chemical vapor deposition. At a moderate V/III ratio, tapered nanowires are obtained, suggesting a strong surface diffusion effect. Dense twin faults are observed perpendicular to the nanowire growth direction due to the fluctuation of In atoms in the droplet originating from the surface diffusion effect. At a lower V/III ratio, the nanowires exhibit kinking, which is associated with a high adhesion due to a large sticking coefficient of TMIn. The twin faults are dramatically suppressed and even completely eliminated in the NW branch after kinking, which is attributed to a stable In supply with a negligible diffusion effect. This work provides a method for the fabrication of defect-free InAs nanowires.

  17. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates.

    Science.gov (United States)

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Tae-Wook; Leem, Dong-Seok; Lee, Takhee; Lee, Sang-Geul; Koh, Eui Kwan; Song, Kyung

    2007-01-01

    GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.

  18. Liquid-like behaviour of gold nanowire bridges

    Science.gov (United States)

    Naik, Jay P.; Cheneler, David; Bowen, James; Prewett, Philip D.

    2017-08-01

    A combination of Focused Ion Beam and Reactive Ion Etch was used to fabricate free standing gold nanowire bridges with radii of 30 nm and below. These were subjected to point loading to failure at their mid-points using an atomic force microscope, providing strength and deformation data. The results demonstrate a dimensionally dependent transition from conventional solid metallic properties to liquid-like behaviour including the unexpected reformation of a fractured bridge. The work reveals mechanical and materials properties of nanowires which could have significant impact on nanofabrication processes and nanotechnology devices such as Nano Electro Mechanical Systems.

  19. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    Claudon, Julien; Munsch, Matthieu; Bleuse, Joel

    2012-01-01

    Besides microcavities and photonic crystals, photonic nanowires have recently emerged as a novel resource for solidstate quantum optics. We will review recent studies which demonstrate an excellent control over the spontaneous emission of InAs quantum dots (QDs) embedded in single-mode Ga......As photonic wires. On the basic side, we have demonstrated a strong inhibition (x 1/16) of QD SpE in thin wires (d0.95 for d~λ/n), and polarization control in elliptical nanowires. A single QD in a photonic wire is thus an attractive system to explore the physics of the "one-dimensional atom" and build novel...

  20. Screw dislocation-driven epitaxial solution growth of ZnO nanowires seeded by dislocations in GaN substrates.

    Science.gov (United States)

    Morin, Stephen A; Jin, Song

    2010-09-08

    In the current examples of dislocation-driven nanowire growth, the screw dislocations that propagate one-dimensional growth originate from spontaneously formed highly defective "seed" crystals. Here we intentionally utilize screw dislocations from defect-rich gallium nitride (GaN) thin films to propagate dislocation-driven growth, demonstrating epitaxial growth of zinc oxide (ZnO) nanowires directly from aqueous solution. Atomic force microscopy confirms screw dislocations are present on the native GaN surface and ZnO nanowires grow directly from dislocation etch pits of heavily etched GaN surfaces. Furthermore, transmission electron microscopy confirms the existence of axial dislocations. Eshelby twist in the resulting ZnO nanowires was confirmed using bright-/dark-field imaging and twist contour analysis. These results further confirm the connection between dislocation source and nanowire growth. This may eventually lead to defect engineering strategies for rationally designed catalyst-free dislocation-driven nanowire growth for specific applications.

  1. Induced Superconductivity in Nanowires and Nanotubes

    Science.gov (United States)

    Kouwenhoven, Leo

    2007-03-01

    We study experimentally electron transport in 1 dimensional semiconductor nanowires (consisting of InAs and InP combinations) and carbon nanotubes. The wires are connected to superconducting source-drain contacts with gate electrodes in the substrate or on the surface. In the regime of weak coupling to the contacts we observe Coulomb blockade effects. We present level spectroscopy including a determination of the spin states. In the regime of strong coupling to the contacts interference effects are observed. In this regime and using superconducting contacts, we find supercurrents flowing through InAs-nanowires over micrometer length scales. The critical current is tunable by gate voltage, thus realizing so-called JOFETs (Josephson FETs) [1]. When we define quantum dots in between superconducting contacts the direction of the supercurrent is determined by the single electron spin state in the quantum dot [2,3]. 1. Yong-Joo Doh, Jorden A. van Dam, Aarnoud L. Roest, Erik P. A. M. Bakkers, Leo P. Kouwenhoven, and Silvano De Franceschi, Tunable supercurrent through semiconductor nanowires, Science 309, 272-275 (2005) 2. P. Jarillo-Herrero, J.A. van Dam and L.P. Kouwenhoven, Quantum supercurrent transistors in carbon nanotubes, Nature 439, 953-956 (2006) 3. Jorden A. Van Dam, Yuli V. Nazarov, Erik P.A.M. Bakkers, Silvano De Franceschi and Leo P. Kouwenhoven, Supercurrent reversal in quantum dots, Nature 442, 667-670 (2006)

  2. Carbon Slurry Secondary Atomization.

    Science.gov (United States)

    1986-09-01

    Include Area Code) 22c. OFFICE SYMBOL Eva M. Conlev 1 (513)255-7211 1 POSF DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY...Emulsions of Boiler Fuel Oils and Possibilities of Using Them as Liquid Fuels," Gospodarka Paliwami i Energia , Vol. 1, 1965, pp 5-9. (4) Law, C. K., Law, H

  3. Nanowire mesh solar fuels generator

    Science.gov (United States)

    Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin

    2016-05-24

    This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

  4. The Mechanical Properties of Nanowires

    Science.gov (United States)

    Wang, Shiliang; Shan, Zhiwei

    2017-01-01

    Applications of nanowires into future generation nanodevices require a complete understanding of the mechanical properties of the nanowires. A great research effort has been made in the past two decades to understand the deformation physics and mechanical behaviors of nanowires, and to interpret the discrepancies between experimental measurements and theoretical predictions. This review focused on the characterization and understanding of the mechanical properties of nanowires, including elasticity, plasticity, anelasticity and strength. As the results from the previous literature in this area appear inconsistent, a critical evaluation of the characterization techniques and methodologies were presented. In particular, the size effects of nanowires on the mechanical properties and their deformation mechanisms were discussed. PMID:28435775

  5. Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes

    KAUST Repository

    Chan, Candace K.

    2010-03-23

    Composite electrodes composed of silicon nanowires synthesized using the supercritical fluid-liquid-solid (SFLS) method mixed with amorphous carbon or carbon nanotubes were evaluated as Li-ion battery anodes. Carbon coating of the silicon nanowires using the pyrolysis of sugar was found to be crucial for making good electronic contact to the material. Using multiwalled carbon nanotubes as the conducting additive was found to be more effective for obtaining good cycling behavior than using amorphous carbon. Reversible capacities of 1500 mAh/g were observed for 30 cycles. © 2010 American Chemical Society.

  6. Improved Long-Term Stability of Transparent Conducting Electrodes Based on Double-Laminated Electrosprayed Antimony Tin Oxides and Ag Nanowires

    Directory of Open Access Journals (Sweden)

    Koo B.-R.

    2017-06-01

    Full Text Available We fabricated double-laminated antimony tin oxide/Ag nanowire electrodes by spin-coating and electrospraying. Compared to pure Ag nanowire electrodes and single-laminated antimony tin oxide/Ag nanowire electrodes, the double-laminated antimony tin oxide/Ag nanowire electrodes had superior transparent conducting electrode performances with sheet resistance ~19.8 Ω/□ and optical transmittance ~81.9%; this was due to uniform distribution of the connected Ag nanowires because of double lamination of the metallic Ag nanowires without Ag aggregation despite subsequent microwave heating at 250°C. They also exhibited excellent and superior long-term chemical and thermal stabilities and adhesion to substrate because double-laminated antimony tin oxide thin films act as the protective layers between Ag nanowires, blocking Ag atoms penetration.

  7. Nanojoining of crossed Ag nanowires: a molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jianlei, E-mail: cjlxjtu@mail.xjtu.edu.cn; Wang, Xuewen; Barayavuga, Theogene; Mei, Xuesong; Wang, Wenjun [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); He, Xiaoqiao, E-mail: bcxqhe@cityu.edu.hk [City University of Hong Kong, Department of Architecture and Civil Engineering (Hong Kong)

    2016-07-15

    Ag nanowires are considered to be the promising candidates for future electronic circuit owing to the excellent electrical and thermal properties, with the miniaturization of electronics devices into nanometer scale. Though interconnect technology between Ag nanowires (Ag NWs) is essential for nanofunctional devices, it lacks sufficient experimental data. Besides, the determination of Ag NW interconnection configuration is experimentally difficult to do for lacking the sufficient investigation of atomic configuration evolution during nanojoining process. So the nanojoining between the crossed Ag NWs with the same diameter of 2 nm and different lengths was performed by molecular dynamics simulation to explain the unclear nanojoining mechanism based on thermal effect. As the simulation results present, when the nanojoining temperature is relatively high, though the Ag NWs are connected with the interpenetration effect of Ag atoms at the crossed nanojunction area, the nanostructures of Ag NWs have been seriously deformed with shorter length and larger diameter, showing relatively more obvious melting characteristics based on the chaotic atomic structures. If the temperature is reduced to 300 K as cold welding, the crossed Ag NWs can be partially contacted with the partial mixture of Ag atoms, and the interstices always exist between the Si surface and the upper Ag nanowire. In addition, the obvious dislocation phenomenon will appear and evolve as time goes on. Consequently, the dominant mechanism was revealed for providing a fundamental understanding of how ‘hot’ and ‘cold’ welding technology affects the atomic contact configuration, respectively.

  8. Selective formation of tungsten nanowires

    Directory of Open Access Journals (Sweden)

    Bien Daniel

    2011-01-01

    Full Text Available Abstract We report on a process for fabricating self-aligned tungsten (W nanowires with polycrystalline silicon core. Tungsten nanowires as thin as 10 nm were formed by utilizing polysilicon sidewall transfer technology followed by selective deposition of tungsten by chemical vapor deposition (CVD using WF6 as the precursor. With selective CVD, the process is self-limiting whereby the tungsten formation is confined to the polysilicon regions; hence, the nanowires are formed without the need for lithography or for additional processing. The fabricated tungsten nanowires were observed to be perfectly aligned, showing 100% selectivity to polysilicon and can be made to be electrically isolated from one another. The electrical conductivity of the nanowires was characterized to determine the effect of its physical dimensions. The conductivity for the tungsten nanowires were found to be 40% higher when compared to doped polysilicon nanowires of similar dimensions.

  9. Piezoresistive boron doped diamond nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Wang, Xinpeng

    2017-07-04

    A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

  10. Transport and structural characterization of solution-processable doped ZnO nanowires

    KAUST Repository

    Noriega, Rodrigo

    2009-08-18

    The use of ZnO nanowires has become a widespread topic of interest in optoelectronics. In order to correctly assess the quality, functionality, and possible applications of such nanostructures it is important to accurately understand their electrical and optical properties. Aluminum- and gallium-doped crystalline ZnO nanowires were synthesized using a low-temperature solution-based process, achieving dopant densities of the order of 1020 cm-3. A non-contact optical technique, photothermal deflection spectroscopy, is used to characterize ensembles of ZnO nanowires. By modeling the free charge carrier absorption as a Drude metal, we are able to calculate the free carrier density and mobility. Determining the location of the dopant atoms in the ZnO lattice is important to determine the doping mechanisms of the ZnO nanowires. Solid-state NMR is used to distinguish between coordination environments of the dopant atoms.

  11. Synergistic effects of the aspect ratio of TiO2 nanowires and multi-walled carbon nanotube embedment for enhancing photovoltaic performance of dye-sensitized solar cells.

    Science.gov (United States)

    Ahn, Ji Young; Kim, Ji Hoon; Moon, Kook Joo; Park, So Dam; Kim, Soo Hyung

    2013-08-07

    The existence of numerous interfacial boundaries among TiO2 nanoparticles (NPs) accumulated in the photoelectrode layer of dye-sensitized solar cells (DSSCs) hinders the effective transport of photogenerated electrons to an electrode. Therefore, as a replacement for TiO2 NPs, one-dimensional TiO2 nanowires (NWs) can be suggested to provide pathways for fast electron transport by significantly reducing the number of interfacial boundaries. In order to provide direct evidence for the better performance of such longer TiO2 NWs than shorter TiO2 NWs, we examine the effect of the controlled aspect ratio of the TiO2 NWs randomly accumulated in the photoelectrode layer on the photovoltaic performance of DSSCs. It is clearly found that longer TiO2 NWs significantly improve the electron transport by reducing the TiO2/dye/electrolyte interfacial contact resistance. Furthermore, the embedment of multi-walled carbon nanotubes (MWCNTs) as an effective charge transfer medium in longer TiO2 NWs is proposed in this study to promote more synergistic effects, which lead to significant improvements in the photovoltaic properties of DSSCs.

  12. Warm ISM in the Sagittarius A Complex. I. Mid-J CO, atomic carbon, ionized atomic carbon, and ionized nitrogen sub-mm/FIR line observations with the Herschel-HIFI and NANTEN2/SMART telescopes

    Science.gov (United States)

    García, P.; Simon, R.; Stutzki, J.; Güsten, R.; Requena-Torres, M. A.; Higgins, R.

    2016-04-01

    Aims: We investigate the spatial and spectral distribution of the local standard of rest (LSR) velocity resolved submillimetre emission from the warm (25-90 K) gas in the Sgr A Complex, located in the Galactic centre. Methods: We present large-scale submillimetre heterodyne observations towards the Sgr A Complex covering ~300 arcmin2. These data were obtained in the frame of the Herschel EXtraGALactic guaranteed time key program (HEXGAL) with the Herschel-HIFI satellite and are complemented with submillimetre observations obtained with the NANTEN2/SMART telescope as part of the NANTEN2/SMART Central Nuclear Zone Survey. The observed species are CO(J = 4-3) at 461.0 GHz observed with the NANTEN2/SMART telescope, and [CI] 3P1-3P0 at 492.2 GHz, [CI] 3P2-3P1 at 809.3 GHz, [NII] 3P1-3P0 at 1461.1 GHz, and [CII] 2P3/2-2P1/2 at 1900.5 GHz observed with the Herschel-HIFI satellite. The observations are presented in a 1 km s-1 spectral resolution and a spatial resolution ranging from 46 arcsec to 28 arcsec. The spectral coverage of the three lower frequency lines is ±200 km s-1, while in the two high frequency lines, the upper LSR velocity limit is +94 km s-1 and +145 km s-1 for the [NII] and [CII] lines, respectively. Results: The spatial distribution of the emission in all lines is very widespread. The bulk of the carbon monoxide emission is found towards Galactic latitudes below the Galactic plane, and all the known molecular clouds are identified. Both neutral atomic carbon lines have their brightest emission associated with the +50 km s-1 cloud. Their spatial distribution at this LSR velocity describes a crescent-shape structure, which is probably the result of interaction with the energetic event (one or several supernovae explosions) that gave origin to the non-thermal Sgr A-East source. The [CII] and [NII] emissions have most of their flux associated with the thermal arched-filaments and the H region and bright spots in [CII] emission towards the central nuclear

  13. Stability of core-shell nanowires in selected model solutions

    Science.gov (United States)

    Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-01

    This paper presents the studies of stability of magnetic core-shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  14. Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth.

    Science.gov (United States)

    Wang, Yajun; Wang, Fengmei; He, Jun

    2013-11-21

    A novel ZnO/reduced graphene oxide (RGO)/CdS heterostructure was successfully synthesized via a facile three-step solution method. RGO serves as an interlayer between ZnO nanowires and CdS quantum dots (QDs), which provides a high speed charge transfer channel, leading to an enhanced charge separation efficiency. Under UV light irradiation, the photocatalytic activity of the ZnO/RGO/CdS heterostructure is 4.0 times and 1.9 times as high as those of pure ZnO and ZnO/RGO, respectively. Under visible light irradiation, the ZnO/RGO/CdS heterostructure shows a dramatic visible light photocatalytic activity which is 2.3 times higher than that of the ZnO/CdS photocatalyst. The photocurrent of the ZnO/RGO/CdS heterostructure under UV light irradiation was greatly enhanced and a photocurrent under visible light irradiation was observed. The enhanced photocatalytic activity and the extended light adsorption spectrum originate from the type-II ZnO/CdS band alignment and the introduction of RGO as a charge mediator. Our results might open up a promising way to develop novel and highly efficient RGO-based heterostructure photocatalysts.

  15. Directed organization of gold nanoclusters on silver nanowires: A step forward in heterostructure assembly

    Science.gov (United States)

    Sharma, Jadab; Vivek, J. P.; Vijayamohanan, Kunjukrishna P.; Singh, Poonam; Dharmadhikari, C. V.

    2006-05-01

    We investigate the directed assembly of tridecylamine protected gold nanoclusters of 4-5nm size on functionalized silver nanowires of 55-60nm diameter and the electron transfer behavior of this integrated structure using transmission electron microscopy, non-contact atomic force microscopy, and scanning tunneling microscopy/spectroscopy. Linear I-V for bare silver nanowire suggests metallic behavior but high tunnel resistance indicates presence of insulating layer on the surface. Identical I-Vs obtained for isolated gold nanoparticle and heterostructure suggests that electron transport across nanowires in the latter is governed by gold nanoparticles in contrast to expected ballistic or diffusive transport along their length.

  16. Electronic levels in silicon MaWCE nanowires: evidence of a limited diffusion of Ag

    Science.gov (United States)

    Venturi, Giulia; Castaldini, Antonio; Schleusener, Alexander; Sivakov, Vladimir; Cavallini, Anna

    2015-10-01

    Deep level transient spectroscopy (DLTS) was performed on lowly n-doped silicon nanowires grown by metal-assisted wet chemical etching (MaWCE) with silver as the catalyst in order to investigate the energetic scheme inside the bandgap. To observe the possible diffusion of atoms into the bulk, DLTS investigation was also performed on the samples after removing the nanowires. Two of the four energy levels observed in the nanowires were also detected inside the substrate. Based on these results and on literature data about deep levels in bulk silicon, some hypotheses are advanced regarding the identification of the defects responsible for the energy levels revealed.

  17. On the structural and electronic properties of Ir-silicide nanowires on Si(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Fatima,; Hossain, Sehtab; Mohottige, Rasika; Oncel, Nuri, E-mail: gulseren@fen.bilkent.edu.tr, E-mail: nuri.oncel@und.edu [Department of Physics and Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202 (United States); Can Oguz, Ismail; Gulseren, Oguz, E-mail: gulseren@fen.bilkent.edu.tr, E-mail: nuri.oncel@und.edu [Department of Physics, Bilkent University, Ankara (Turkey); Çakır, Deniz [Department of Physics, University of Antwerp, Antwerp 2610 (Belgium)

    2016-09-07

    Iridium (Ir) modified Silicon (Si) (001) surface is studied with Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Density Functional Theory (DFT). A model for Ir-silicide nanowires based on STM images and ab-initio calculations is proposed. According to our model, the Ir adatom is on the top of the substrate dimer row and directly binds to the dimer atoms. I-V curves measured at 77 K shows that the nanowires are metallic. DFT calculations confirm strong metallic nature of the nanowires.

  18. Nanoscale Wire Bonding of Individual Ag Nanowires on Au Substrate at Room Temperature

    Science.gov (United States)

    Peng, Peng; Guo, Wei; Zhu, Ying; Liu, Lei; Zou, Guisheng; Zhou, Y. Norman

    2017-07-01

    The controllable wire bonding of individual Ag nanowires onto a Au electrode was achieved at room temperature. The plastic deformation induced by pressure using nanoindentation could break the protective organic shell on the surface of the Ag nanowires and cause atomic contact to promote the diffusion and nanojoining at the Ag and Au interface. Severe slip bands were observed in the Ag nanowires after the deformation. A metallic bond was formed at the interface, with the Ag diffusing into the Au more than the Au diffused into the Ag. This nanoscale wire bonding might present opportunities for nanoscale packaging and nanodevice design.

  19. Stable and Controllable Synthesis of Silver Nanowires for Transparent Conducting Film

    Science.gov (United States)

    Liu, Bitao; Yan, Hengqing; Chen, Shanyong; Guan, Youwei; Wu, Guoguo; Jin, Rong; Li, Lu

    2017-03-01

    Silver nanowires without particles are synthesized by a solvothermal method at temperature 150 °C. Silver nanowires are prepared via a reducing agent of glycerol and a capping agent of polyvinylpyrrolidone ( M w ≈ 1,300,000). Both of them can improve the purity of the as-prepared silver nanowires. With controllable shapes and sizes, silver nanowires are grown continuously up to 10-20 μm in length with 40-50 nm in diameter. To improve the yield of silver nanowires, the different concentrations of AgNO3 synthesis silver nanowires are discussed. The characterizations of the synthesized silver nanowires are analyzed by UV-visible absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscope (AFM), and silver nanowires are pumped on the cellulose membrane and heated stress on the PET. Then, the cellulose membrane is dissolved by the steam of acetone to prepare flexible transparent conducting thin film, which is detected 89.9 of transmittance and 58 Ω/□. Additionally, there is a close loop connected by the thin film, a blue LED, a pair of batteries, and a number of wires, to determinate directly the film if conductive or not.

  20. All-(111) Surface Silicon Nanowires: Selective Functionalization for Biosensing Applications

    NARCIS (Netherlands)

    Masood, M.N.; Chen, S.; Carlen, Edwin; van den Berg, Albert

    e demonstrate the utilization of selective functionalization of carbon-silicon (C-Si) alkyl and alkenyl monolayers covalently linked to all-(111) surface silicon nanowire (Si-NW) biosensors. Terminal amine groups on the functional monolayer surfaces were used for conjugation of biotin

  1. Modelling the Energetics of Encapsulation of Atoms and Atomic ...

    Indian Academy of Sciences (India)

    user

    2015-07-04

    Jul 4, 2015 ... Modelling the Energetics of Encapsulation of. Atoms and Atomic Clusters into Carbon. Nanotubes: Insights from Analytical Approaches. R. S. Swathi. School of Chemistry. Indian Institute of Science Education and Research. Thiruvananthapuram, Kerala, India ...

  2. YBCO nanowires grown by the alumina template method

    Energy Technology Data Exchange (ETDEWEB)

    Koblischka, Michael R.; Hartmann, Uwe [Experimental Physics, Saarland University, Campus C 6 3, D-66123 Saarbruecken (Germany); Koblischka-Veneva, Anjela [Functional Materials, Saarland University, Campus C 6 3, D-66123 Saarbruecken (Germany); Skumryev, Vassil [Institut Catala de Recerca i Estudis Avancats (ICREA), Barcelona (Spain)

    2010-07-01

    YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) nanowires are grown by the anodized alumina template method, starting from pre-sintered YBCO powder. As templates, we have employed commercially available alumina templates with pore diameters of 30 nm and 100 nm, and an overall thickness of 50 {mu}m. An oxygen annealing step is required to obtain superconducting nanowires. Superconductivity with a transition temperature of 88 K is confirmed by means of magnetic susceptibility measurements. The resulting nanowires are analyzed in detail employing electron microscopy and atomic force microscopy. The separation of the nanowires of the templates is not yet established, but individual nanowires of up to 10 {mu}m length could be separated from the template. In several cases, the template pores are not completely filled by the superconducting material, which implies that the observed length is similar to what could be expected from regular grain growth. Resistance measurements using cut pieces of the filled templates were carried out as a function of temperature. These pieces were covered with Au films on top and bottom in order to provide the electric contacts. The measurements confirmed the magnetically determined critical temperatures.

  3. Thermodynamic photoinduced disorder in AlGaN nanowires

    KAUST Repository

    Alfaraj, Nasir

    2017-12-13

    In this study, we examine thermodynamic photoinduced disorder in AlGaN nanowires through their steady-state and transient photoluminescence properties. We correlate the energy exchange during the photoexcitation and photoemission processes of the light–solid reaction and the generation of photoinduced entropy of the nanowires using temperature-dependent (6 K to 290 K) photoluminescence. We observed an oscillatory trend in the generated entropy of the system below 200 K, with an oscillation frequency that was significantly lower than what we have previously observed in InGaN/GaN nanowires. In contrast to the sharp increase in generated entropy at temperatures close to room temperature in InGaN/GaN nanowires, an insignificant increase was observed in AlGaN nanowires, indicating lower degrees of disorder-induced uncertainty in the wider bandgap semiconductor. We conjecture that the enhanced atomic ordering in AlGaN caused lower degrees of disorder-induced uncertainty related to the energy of states involved in thermionic transitions; in keeping with this conjecture, we observed lower oscillation frequency below 200 K and a stable behavior in the generated entropy at temperatures close to room temperature.

  4. Formation of star nanowires of sulfur-doped zinc oxide: Ab initio calculations

    Directory of Open Access Journals (Sweden)

    Qiu-Bao Lin

    2016-09-01

    Full Text Available ZnO nanowires are hexagonally shaped under normal growth conditions, but are transformed from a hexagon to hexagram ones when sulfur dopants are added into the growth solution. The formation mechanism of the hexagram-shaped ZnO nanowires is further studied by the ab initio calculations in this paper. The present calculations support the fact that the hexagonally shaped ZnO nanowires are transformed to hexagram shaped ones when the O atoms on the side surfaces of the nanowires are replaced by S atoms in certain quantities. It indicates that the ratio of sulfur content plays an important role in the hexagram formation. The results of the electronic charge densities indicate that the charge transfer makes the S-Zn bond longer than that of O-Zn. The new charge distribution on the side planes due to the S atoms replacement leads to the formation of the hexagram-shaped nanowires. The calculation on the electronic properties shows that a sulfur-doped hexagram ZnO nanowire is an indirect band gap semiconductor with a narrow gap. When dopant is increased, the gap will decrease.

  5. Insights into the Controllable Chemical Composition of Metal Oxide Nanowires and Graphene Aerogels

    Science.gov (United States)

    Goldstein, Anna Patrice

    The design and synthesis of materials that absorb visible light and create fuel to store solar energy is a pursuit that has captivated chemists for decades. In order to take part in solar water splitting, i.e. the production of hydrogen and oxygen gas from water and sunlight, electrode materials must fit specific requirements in terms of their electronic structure. Zinc oxide (ZnO) and titanium dioxide (TiO2) are both of interest for their ability to produce oxygen from photogenerated holes, but their band gaps are too large to capture a significant portion of the solar spectrum. We address this challenge by modifying the crystal structures of ZnO and TiO 2 to make lower band gap materials. Furthermore, we use nanowires as the synthetic template for these materials because they provide a large semiconductor-liquid interfacial area. ZnO nanowires can be alloyed with In3+, Fe3+ and other trivalent metal ions to form a unique structure with the formula M2O3(ZnO)n, also known as MZO. We synthesize indium zinc oxide (IZO) and indium iron zinc oxide (IFZO) nanowires and study their crystal structure using atomically-resolved transmission electron microscopy (TEM), among other methods. We elucidate a structural model for MZO that resolves inconsistencies in the existing literature, based on the identification of the zigzag layer as an inversion domain boundary. These nanowires are shown to have a lower band gap than ZnO and produce photocurrent under visible light illumination. The solid-state diffusion reaction to form ternary titanates is also studied by TEM. TiO2 nanowires are coated with metal oxides by a variety of deposition methods, and then converted to MTiO3 at high temperatures, where M is a divalent transition metal ion such as Mn 2+, CO2+, or Ni2+. When Co3O 4 particles attached to TiO2 nanowires are annealed for a short time, we observe the formation of a CoO(111)/TiO2 (010) interface. If the nanowires are instead coated with Co(NO3)2 salt and then annealed

  6. Influence of the nanowire interdistance on growth conditions and crystal structure of self-catalyzed GaAs nanowires grown via MBE

    Energy Technology Data Exchange (ETDEWEB)

    Hubmann, Joachim; Bauer, Benedikt; Rudolph, Andreas; Schuh, Dieter; Bougeard, Dominique; Zweck, Josef; Reiger, Elisabeth [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg (Germany); Fontcuberta i Morral, Anna [Laboratoire des Materiaux Semiconducteurs, EPFL Lausanne (Switzerland)

    2011-07-01

    Nanowires grown in bottom-up processes are considered as possible building blocks for future electronic devices. For this use it is necessary to gain control over the growth position of single nanowires. By nanopatterning the SiO{sub 2}/GaAs substrate with e-beam lithography we could restrict nanowire growth to predefined sites using the self-catalyzed, Ga-assisted growth technique. We found that there is a correlation between the interdistance of the predefined growth sites and the probability of nanowire growth. This indicates that the effective growth conditions that are seen by a single nanowire are influenced by its local surrounding, in particular by the distance to its neighbours. We attribute the difference of the effective growth conditions to be caused by different diffusion lengths for Ga and As atoms on the SiO{sub 2} surface. As the nanowire crystal structure can be tuned via the growth parameters we further examine how the change of the effective growth conditions affects the crystal structure of the grown nanowires.

  7. Proposal for Testing and Validation of Vacuum Ultra-Violet Atomic Laser-Induced Fluorescence as a Method to Analyze Carbon Grid Erosion in Ion Thrusters

    Science.gov (United States)

    Stevens, Richard

    2003-01-01

    Previous investigation under award NAG3-25 10 sought to determine the best method of LIF to determine the carbon density in a thruster plume. Initial reports from other groups were ambiguous as to the number of carbon clusters that might be present in the plume of a thruster. Carbon clusters would certainly affect the ability to LIF; if they were the dominant species, then perhaps the LIF method should target clusters. The results of quadrupole mass spectroscopy on sputtered carbon determined that minimal numbers of clusters were sputtered from graphite under impact from keV Krypton. There were some investigations in the keV range by other groups that hinted at clusters, but at the time the proposal was presented to NASA, there was no data from low-energy sputtering available. Thus, the proposal sought to develop a method to characterize the population only of atoms sputtered from a graphite target in a test cell. Most of the ground work had been established by the previous two years of investigation. The proposal covering 2003 sought to develop an anti-Stokes Raman shifting cell to generate VUW light and test this cell on two different laser systems, ArF and YAG- pumped dye. The second goal was to measure the lowest detectable amounts of carbon atoms by 156.1 nm and 165.7 nm LIF. If equipment was functioning properly, it was expected that these goals would be met easily during the timeframe of the proposal, and that is the reason only modest funding was requested. The PI was only funded at half- time by Glenn during the summer months. All other work time was paid for by Whitworth College. The college also funded a student, Charles Shawley, who worked on the project during the spring.

  8. Mechanism of DNA cleavage by cationic manganese porphyrins: hydroxylations at the 1'-carbon and 5'-carbon atoms of deoxyriboses as initial damages

    National Research Council Canada - National Science Library

    Pratviel, G; Pitié, M; Bernadou, J; Meunier, B

    1991-01-01

    Cationic manganese-porphyrin complexes, free or targetted with an intercalating agent, are able to cleave DNA using oxygen atom donors like potassium monopersulfate or magnesium monoperphthalate as coreactants...

  9. Performance evaluation of different diamond-like carbon samples as charge state conversion surfaces for neutral atom imaging detectors in space applications

    Science.gov (United States)

    Brigitte Neuland, Maike; Allenbach, Marc; Föhn, Martina; Wurz, Peter

    2017-04-01

    The detection of energetic neutral atoms is a substantial requirement on every space mission mapping particle populations of a planetary magnetosphere or plasma of the interstellar medium. For imaging neutrals, these first have to be ionised. Regarding the constraints of weight, volume and power consumption, the technique of surface ionisation complies with all specifications of a space mission. Particularly low energy neutral atoms, which cannot be ionised by passing through a foil, are ionised by scattering on a charge state conversion surface [1]. Since more than 30 years intense research work is done to find and optimise suitable materials for use as charge state conversion surfaces for space application. Crucial parameters are the ionisation efficiency of the surface material and the scattering properties. Regarding these parameters, diamond-like carbon was proven advantageously: While efficiently ionising incoming neutral atoms, diamond stands out by its durability and chemical inertness [2]. In the IBEX-Lo sensor, a diamond-like carbon surface is used for ionisation of neutral atoms. Building on the successes of the IBEX mission [3], the follow up mission IMAP (InterstellarMApping Probe) will take up to further explore the boundaries of the heliosphere. The IMAP mission is planned to map neutral atoms in a larger energy range and with a distinct better angular resolution and sensitivity than IBEX [4]. The aspired performance of the IMAP sensors implies also for charge state conversion surfaces with improved characteristics. We investigated samples of diamond-like carbon, manufactured by the chemical vapour deposition (CVD) method, regarding their ionisation efficiency, scattering and reflexion properties. Experiments were carried out at the ILENA facility at the University of Bern [5] with hydrogen and oxygen atoms, which are the species of main interest in magnetospheric research [1]. We compare the results of earlier investigations of a metallised CVD

  10. Aging of Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, Frank; Schiek, Manuela; Osadnik, Andreas

    2012-01-01

    conditions already expose substantial changes in sample morphology within hours. Clusters show Ostwald ripening, whereas nanowires reveal strong faceting and even fragmentation. All these aging effects are ascribed to the influence of water vapor. Decay curves (cluster number vs. time) for clusters...

  11. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    This article is focused on the use of electrodeposition and of various nanoporous templates for the fabrication of metallic nanowires made from single metals (Ni, Co, Pb, Sn), alloys (NiFe, CoFe, CoPt), and multilayers (Co/Cu, NiFe/Cu). An overview is given of our recent studies performed on both...... discussed....

  12. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy.

    Science.gov (United States)

    Li, Yuzhang; Li, Yanbin; Pei, Allen; Yan, Kai; Sun, Yongming; Wu, Chun-Lan; Joubert, Lydia-Marie; Chin, Richard; Koh, Ai Leen; Yu, Yi; Perrino, John; Butz, Benjamin; Chu, Steven; Cui, Yi

    2017-10-27

    Whereas standard transmission electron microscopy studies are unable to preserve the native state of chemically reactive and beam-sensitive battery materials after operation, such materials remain pristine at cryogenic conditions. It is then possible to atomically resolve individual lithium metal atoms and their interface with the solid electrolyte interphase (SEI). We observe that dendrites in carbonate-based electrolytes grow along the (preferred), , or directions as faceted, single-crystalline nanowires. These growth directions can change at kinks with no observable crystallographic defect. Furthermore, we reveal distinct SEI nanostructures formed in different electrolytes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth.

    Science.gov (United States)

    Munshi, A Mazid; Dheeraj, Dasa L; Fauske, Vidar T; Kim, Dong-Chul; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge

    2012-09-12

    By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells.

  14. Endface reflectivities of optical nanowires.

    Science.gov (United States)

    Wang, Shanshan; Hu, Zhifang; Yu, Huakang; Fang, Wei; Qiu, Min; Tong, Limin

    2009-06-22

    Endface reflectivities (ERs) of optical nanowires are investigated using three-dimensional finite-difference time-domain simulations. Typical ERs of both free-standing and substrate-supported silica, tellurite, PMMA and semiconductor nanowires or nanofibers are obtained. Unlike in conventional waveguides such as optical fibers, ERs of nanowires are usually considerably lower when operated in single mode. Dependences of ER on the diameter and the refractive index of the nanowire, and the wavelength of the guided light are also investigated. These results are helpful for estimating and understanding ERs in optical nanowires with diameters close to or smaller than the wavelengths of the light, and may offer valuable references for practical applications such as nanowire or nanofiber-based resonators and lasers.

  15. Ru-decorated Pt nanoparticles on N-doped multi-walled carbon nanotubes by atomic layer deposition for direct methanol fuel cells

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta; Yang, R.B.; Haugshøj, K.B.

    2013-01-01

    We present atomic layer deposition (ALD) as a new method for the preparation of highly dispersed Ru-decorated Pt nanoparticles for use as catalyst in direct methanol fuel cells (DMFCs). The nanoparticles were deposited onto N-doped multi-walled carbon nanotubes (MWCNTs) at 250 °C using trimethyl......(methylcyclopentadienyl)platinum MeCpPtMe3, bis(ethylcyclopentadienyl)ruthenium Ru(EtCp)2 and O2 as the precursors. Catalysts with 5, 10 and 20 ALD Ru cycles grown onto the CNT-supported ALD Pt nanoparticles (150 cycles) were prepared and tested towards the electro-oxidation of CO and methanol, using cyclic voltammetry...

  16. Synthesis of surface roughed Pt nanowires and their application as electrochemical sensors for hydrogen peroxide detection.

    Science.gov (United States)

    Gao, Fan; Li, Zhiyang; Ruan, Dajiang; Gu, Zhiyong

    2014-09-01

    In this paper, platinum nanowires with roughed surface textures were fabricated by a galvanostatic electrodeposition method for electrochemical sensors toward hydrogen peroxide detection. The electrochemical behavior of the glassy carbon electrode modified with these nanowires has been studied for oxidation of hydrogen peroxide by using cyclic voltammetry and amperometry in phosphate buffer solution. Surface roughness was found to enhance the sensitivity of the Pt nanowire based electrochemical sensor towards H2O2. The Pt nanowires with rough surfaces displayed higher electrocatalytic response compared to nanowires with smooth surfaces, with a sensitivity of 171 μA mM(-1) cm(-2), and linear dynamic range up to 35 mM. The nanowire concentration effect on the sensing behavior was investigated with the best sensitivity output found at a nanowire concentration of roughly 8.6 x 10(7) number of nanowires/cm2. The new sensor also showed good anti-interference property and exhibited high accuracy when a real water sample containing H2O2 was measured.

  17. Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT–ZnO Heterostructures

    Directory of Open Access Journals (Sweden)

    Li C

    2010-01-01

    Full Text Available Abstract In this article, direct coating of ZnO on PECVD-grown multi-walled carbon nanotubes (MWCNTs is achieved using atomic layer deposition (ALD. Transmission electron microscopy investigation shows that the deposited ZnO shell is continuous and uniform, in contrast to the previously reported particle morphology. The ZnO layer has a good crystalline quality as indicated by Raman and photoluminescence (PL measurements. We also show that such ZnO layer can be used as seed layer for subsequent hydrothermal growth of ZnO nanorods, resulting in branched CNT–inorganic hybrid nanostructures. Potentially, this method can also apply to the fabrication of ZnO-based hybrid nanostructures on other carbon nanomaterials.

  18. Controlled manipulation of giant hybrid inorganic nanowire assemblies.

    Science.gov (United States)

    Ou, Fung Suong; Shaijumon, Manikoth M; Ajayan, Pulickel M

    2008-07-01

    The ultimate goal of nanotechnology is the design and fabrication of nanosize building blocks with multiple functionalities and their assembly into large-scale functional structures that can be controllably manipulated. Here we show that hybrid inorganic multisegmented nanowires, with hydrophobic carbon nanotube tails and hydrophilic metal nanowire heads, allow the assembly and manipulation of massive ordered structures in solution, reminiscent of the organic molecular micellar assembly. Further, properly designed assemblies can be manipulated using external stimuli such as magnetic field and light. The hybrid nanowires can have multiple segments including magnetic components, allowing the assembly to be manipulated by external magnetic field. The assembled structures can also be manipulated by modifying the hydrophobicity of the respective components via chemical functionalization and optical irradiation. This approach brings the concept of environment sensitive self-assembling nanomaterials closer to reality.

  19. Optical Spectroscopy of Single Nanowires

    OpenAIRE

    Trägårdh, Johanna

    2008-01-01

    This thesis describes optical spectroscopy on III-V semiconductor nanowires. The nanowires were grown by metal-organic vapor phase epitaxy (MOVPE) and chemical beam epitaxy (CBE). Photoluminescence and photocurrent spectroscopy are used as tools to investigate issues such as the size of the band gap, the effects of surface states, and the charge carrier transport in core-shell nanowires. The band gap of InAs1-xPx nanowires with wurtzite crystal structure is measured as a function of ...

  20. Strain analysis of nanowire interfaces in multiscale composites

    Science.gov (United States)

    Malakooti, Mohammad H.; Zhou, Zhi; Spears, John H.; Shankwitz, Timothy J.; Sodano, Henry A.

    2016-04-01

    Recently, the reinforcement-matrix interface of fiber reinforced polymers has been modified through grafting nanostructures - particularly carbon nanotubes and ZnO nanowires - on to the fiber surface. This type of interface engineering has made a great impact on the development of multiscale composites that have high stiffness, interfacial strength, toughness, and vibrational damping - qualities that are mutually exclusive to a degree in most raw materials. Although the efficacy of such nanostructured interfaces has been established, the reinforcement mechanisms of these multiscale composites have not been explored. Here, strain transfer across a nanowire interphase is studied in order to gain a heightened understanding of the working principles of physical interface modification and the formation of a functional gradient. This problem is studied using a functionally graded piezoelectric interface composed of vertically aligned lead zirconate titanate nanowires, as their piezoelectric properties can be utilized to precisely control the strain on one side of the interface. The displacement and strain across the nanowire interface is captured using digital image correlation. It is demonstrated that the material gradient created through nanowires cause a smooth strain transfer from reinforcement phase into matrix phase that eliminates the stress concentration between these phases, which have highly mismatched elasticity.

  1. Catalytic Synthesis of Substrate-Free, Aligned and Tailored High Aspect Ratio Multiwall Carbon Nanotubes in an Ultrasonic Atomization Head CVD Reactor

    Directory of Open Access Journals (Sweden)

    Fahad Ali Rabbani

    2016-01-01

    Full Text Available Chemical vapor deposition (CVD method has proven its benchmark, over other methods, for the production of different types of carbon nanotubes (CNT on commercial and lab scale. In this study, an injection vertical CVD reactor fitted with an ultrasonic atomization head was used in a pilot-plant scale (height 274 cm, radius 25 cm for semicontinuous production of multiwall carbon nanotubes (MWCNTs. p-Xylene was used as a hydrocarbon precursor in which ferrocene was dissolved and provided the cracking catalyst. Atomization of the feed solution resulted in full and even dispersion of the catalytic solution. This dispersion led to the production of high aspect ratio MWCNTs (ranging from 8,000 to 12,000 at 850°C. Different experimental parameters affecting the quality and quantity of the produced CNTs were investigated. These included temperature, reaction time, and flow rate of the reaction and carrier gases. Different properties of the produced CNTs were characterized using SEM and TEM, while TGA was used to evaluate their purity. Specific surface area of selected samples was calculated by BET.

  2. Ordering of p-n-alkylbenzoic acids (nBAC) having four, five, and six alkyl chain carbon atoms - a computational analysis

    Science.gov (United States)

    Ojha, D. P.

    2004-06-01

    A computational analysis of ordering in p-n-alkylbenzoic acids, having 4 (4BAC), 5 (5BAC), and 6 (6BAC) alkyl chain carbon atoms, has been carried out based on quantum mechanics and intermolecular forces. The evaluation of atomic charge and dipole moment at each atomic centre has been carried out through an all-valance electron (CNDO/2) method. The modified Rayleigh-Schrodinger perturbation theory along with multicentered-multipole expansion method has been employed to evaluate long-range intermolecular interactions while a 6-exp potential function has been assumed for short-range interactions. The total interaction energy values obtained through these computations were used to calculate the probability of each configuration at room temperature, nematic-isotropic transition temperature and above transition temperature using the Maxwell-Boltzmann formula. A comparative picture of molecular parameters like total energy, binding energy and total dipole moment has been given. A model has been developed to describe the nematogenicity of these acids in terms of their relative order with molecular parameter introduced in this article.

  3. Nanowire Field-Effect Transistors : Sensing Simplicity?

    NARCIS (Netherlands)

    Mescher, M.

    2014-01-01

    Silicon nanowires are structures made from silicon with at least one spatial dimension in the nanometer regime (1-100 nm). From these nanowires, silicon nanowire field-effect transistors can be constructed. Since their introduction in 2001 silicon nanowire field-effect transistors have been studied

  4. Ga-assisted MBE grown GaAs nanowires and related quantum heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fontcuberta i Morral, Anna [Ecole Polytechnique Federale de Lausanne (Switzerland); Walter Schottky Institut, Technische Universitaet Muenchen (Germany)

    2010-07-01

    Nanowires represent model systems for studying a variety of low dimensional phenomena as well as building blocks for the future generation of nanoscale devices. The most exploited nanowire growth technique is the vapor-liquid-solid (VLS) method, which employs gold as a seed for the growth. Synthesis of nanowires by molecular beam epitaxy (MBE) and without using gold as a catalyst gives the opportunity to study nanowires produced in extremely clean conditions and correlate it with optical and electronic properties. We present the method for growing GaAs nanowires by MBE without using gold as a catalyst. By changing the growth conditions we have managed to obtain high quality radial and axial heterostructures. For the latter, nanowires with atomically sharp zinc-blende/wurtzite heterostructures have been obtained. These structures exhibit novel optical properties for a pure GaAs material. In particular, we show how the emission of the nanowire can be tuned from 1.51 eV down to 1.43 eV. Theoretical calculations of the band alignment between wurtzite and zinc-blende GaAs are presented to explain the results. Finally, novel applications enabled by these types of quantum heterostructures are also briefly discussed.

  5. Anodic Aluminum Oxide Membrane-Assisted Fabrication of β-In2S3Nanowires

    Directory of Open Access Journals (Sweden)

    Chen Chih-Jung

    2009-01-01

    Full Text Available Abstract In this study, β-In2S3nanowires were first synthesized by sulfurizing the pure Indium (In nanowires in an AAO membrane. As FE-SEM results, β-In2S3nanowires are highly ordered, arranged tightly corresponding to the high porosity of the AAO membrane used. The diameter of the β-In2S3nanowires is about 60 nm with the length of about 6–8 μm. Moreover, the aspect ratio of β-In2S3nanowires is up to 117. An EDS analysis revealed the β-In2S3nanowires with an atomic ratio of nearly S/In = 1.5. X-ray diffraction and corresponding selected area electron diffraction patterns demonstrated that the β-In2S3nanowire is tetragonal polycrystalline. The direct band gap energy (Eg is 2.40 eV from the optical measurement, and it is reasonable with literature.

  6. Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte

    Directory of Open Access Journals (Sweden)

    Yüzer Hayrettin

    2010-01-01

    Full Text Available Abstract A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM, energy-dispersive X-ray (EDX methods and X-Ray diffraction (XRD. It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially.

  7. Structural, optical and ethanol sensing properties of Cu-doped SnO{sub 2} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Johari, Anima, E-mail: animajohari@gmail.com; Sharma, Manish [Center for Applied Research in Electronics (CARE), IIT Delhi, Hauz khas, New Delhi-110016 (India); Johari, Anoopshi [THDC Institute of Hydropower Institute of Engineering and Technology, Tehri-249124 (India); Bhatnagar, M. C. [Physics Department, IIT Delhi, Hauz khas, New Delhi-110016 (India)

    2014-04-24

    In present work, one-dimensional nanostructure of Cu-doped Tin oxide (SnO{sub 2}) was synthesized by using thermal evaporation method in a tubular furnace under Nitrogen (N{sub 2}) ambience. The growth was carried out at atmospheric pressure. SEM and TEM images reveal the growth of wire-like nanostructures of Cu-doped SnO{sub 2} on Si substrate. The XRD analysis confirms that the synthesized SnO{sub 2} nanowires have tetragonal rutile structure with polycrystalline nature and X-ray diffraction pattern also showed that Cu gets incorporated into the SnO{sub 2} lattice. EDX spectra confirm the doping of Cu into SnO{sub 2} nanowires and atomic fraction of Cu in nanowires is ∼ 0.5 at%. The Vapor Liquid Solid (VLS) growth mechanism for Cu-doped SnO{sub 2} nanowires was also confirmed by EDX spectra. The optical properties of as grown Cu-doped SnO{sub 2} nanowires were studied by using UV-vis spectra which concludes the band gap of about 3.7 eV. As synthesized single Cu-doped SnO{sub 2} nanowire based gas sensor exhibit relatively good performance to ethanol gas. This sensing behaviour offers a suitable application of the Cu-doped SnO{sub 2} nanowire sensor for detection of ethanol gas.

  8. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  9. Reactions of atomic hydrogen with formic acid and carbon monoxide in solid parahydrogen I: Anomalous effect of temperature.

    Science.gov (United States)

    Paulson, Leif O; Mutunga, Fredrick M; Follett, Shelby E; Anderson, David T

    2014-09-11

    Low-temperature condensed phase reactions of atomic hydrogen with closed-shell molecules have been studied in rare gas matrices as a way to generate unstable chemical intermediates and to study tunneling-driven chemistry. Although parahydrogen (pH2) matrix isolation spectroscopy allows these reactions to be studied equally well, little is known about the analogous reactions conducted in a pH2 matrix host. In this study, we present Fourier transform infrared (FTIR) spectroscopic studies of the 193 nm photoinduced chemistry of formic acid (HCOOH) isolated in a pH2 matrix over the 1.7 to 4.3 K temperature range. Upon short-term irradiation the HCOOH readily undergoes photolysis to yield CO, CO2, HOCO, HCO and H atoms. Furthermore, after photolysis at 1.9 K tunneling reactions between migrating H atoms and trapped HCOOH and CO continue to produce HOCO and HCO, respectively. A series of postphotolysis kinetic experiments at 1.9 K with varying photolysis conditions and initial HCOOH concentrations show the growth of HOCO consistently follows single exponential (k = 4.9(7)x10(-3) min(-1)) growth kinetics. The HCO growth kinetics is more complex displaying single exponential growth under certain conditions, but also biexponential growth at elevated CO concentrations and longer photolysis exposures. By varying the temperature after photolysis, we show the H atom reaction kinetics qualitatively change at ∼2.7 K; the reaction that produces HOCO stops at higher temperatures and is only observed at low temperature. We rationalize these results using a kinetic mechanism that involves formation of an H···HCOOH prereactive complex. This study clearly identifies anomalous temperature effects in the reaction kinetics of H atoms with HCOOH and CO in solid pH2 that deserve further study and await full quantitative theoretical modeling.

  10. Oxidation of copper nanowire based transparent electrodes in ambient conditions and their stabilization by encapsulation: application to transparent film heaters

    Science.gov (United States)

    Celle, Caroline; Cabos, Anthony; Fontecave, Thomas; Laguitton, Bruno; Benayad, Anass; Guettaz, Laure; Pélissier, Nathalie; Huong Nguyen, Viet; Bellet, Daniel; Muñoz-Rojas, David; Simonato, Jean-Pierre

    2018-02-01

    Whereas the integration of silver nanowires in functional devices has reached a fair level of maturity, the integration of copper nanowires still remains difficult, mainly due to the intrinsic instability of copper nanowires in ambient conditions. In this paper, copper nanowire based transparent electrodes with good performances (33 Ω sq‑1 associated with 88% transparency) were obtained, and their degradation in different conditions was monitored, in particular by electrical measurements, transmission electron microscopy, x-ray photoelectron spectrometry and Auger electron spectroscopy. Several routes to stabilize the random networks of copper nanowires were evaluated. Encapsulation through laminated barrier film with optical clear adhesive and atmospheric pressure spatial atomic layer deposition were found to be efficient and were used for the fabrication of transparent film heaters.

  11. Resistive Switching Memory of TiO2 Nanowire Networks Grown on Ti Foil by a Single Hydrothermal Method

    Science.gov (United States)

    Xiao, Ming; Musselman, Kevin P.; Duley, Walter W.; Zhou, Norman Y.

    2017-04-01

    The resistive switching characteristics of TiO2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth of the TiO2 nanowires, making the preparation straightforward. It also acts as a bottom electrode for the device. A top Al electrode was fabricated by e-beam evaporation process. The Al/TiO2 nanowire networks/Ti device fabricated in this way displayed a highly repeatable and electroforming-free bipolar resistive behavior with retention for more than 104 s and an OFF/ON ratio of approximately 70. The switching mechanism of this Al/TiO2 nanowire networks/Ti device is suggested to arise from the migration of oxygen vacancies under applied electric field. This provides a facile way to obtain metal oxide nanowire-based ReRAM device in the future.

  12. SnO 2 nanowires decorated with forsythia-like TiO 2 for photoenergy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik Jae; Park, Sangbaek; Kim, Dong Hoe; Jeong, Heesu; Lee, Sangwook

    2017-09-01

    We report forsythia-like TiO2-decorated SnO2 nanowires on fluorine-doped SnO2 electrode as a photoelectrode of dye-sensitized solar cells. When SnO2 nanowires grown via vapor-liquid-solid reaction were soaked in TiCl4 solution, leaf-shaped rutile TiO2 was grown onto the surface of the nanowires. The TiO2 decoration increases the short circuit current (Jsc), open circuit voltage (Voc) and fill factor (FF) of dye-sensitized solar cells. Further, electron lifetime increased by employing an atomic-layer-deposited TiO2 nanoshell between the TiO2 leaves and the SnO2 nanowire, due to preventing charge recombination at the nanowire/electrolyte interface.

  13. Magnetic behavior of as-deposited and annealed CoFe and CoFeCu nanowire arrays by ac-pulse electrodeposition

    Science.gov (United States)

    Ramazani, A.; Almasi-Kashi, M.; Golafshan, E.; Arefpour, M.

    2014-09-01

    CoFe and CoFeCu self-organized alloy nanowires were grown into anodic aluminum oxide template by potentiostatic mode of ac-pulse electrodeposition technique and subsequently annealed at 580 °C. The influence of bath composition, off-time between pulses and annealing treatment on the Cu content, microstructure and magnetic properties of CoFeCu nanowire arrays have been discussed. Increasing the off-time between pulses decreased the coercivity and saturation magnetization of the CoFeCu nanowires due to substitution of Co and Fe with Cu atoms which resulted in electroless process. Coercivity and squareness of the annealed samples increased due to improvement of samples crystallinity. Magnetic measurements showed high perpendicular magnetic anisotropy of the nanowires with easy axis parallel to nanowires axis. X-ray diffraction results indicated that annealed CoFeCu nanowires were polycrystalline with two distinct CoFe and Cu phases.

  14. Effect of Intrinsic Point Defect on the Magnetic Properties of ZnO Nanowire

    Directory of Open Access Journals (Sweden)

    Jiangni Yun

    2013-01-01

    Full Text Available The effect of intrinsic point defect on the magnetic properties of ZnO nanowire is investigated by the first-principles calculation based on the density functional theory (DFT. The calculated results reveal that the pure ZnO nanowire without intrinsic point defect is nonmagnetic and ZnO nanowire with VO, Zni, Oi, OZn, or ZnO point defect also is nonmagnetic. However, a strong spin splitting phenomenon is observed in ZnO nanowire with VZn defect sitting on the surface site. The Mulliken population analysis reveals that the oxygen atoms which are close to the VZn defect do major contribution to the magnetic moment. Partial density states calculation further suggests that the appearance of the half-metallic ferromagnetism in ZnO nanorod with VZn originates from the hybridization of the O2p states with Zn 3d states.

  15. Impact of silicon doping on InAs nanowires grown by selective area MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Sladek, Kamil; Penz, Andreas; Wirths, Stephan; Weis, Karl; Lenk, Steffi; Hardtdegen, Hilde; Schaepers, Thomas; Gruetzmacher, Detlev [Institute of Bio- and Nanosystems (IBN-1), Juelich Aachen Research Alliance (JARA), Forschungszentrum Juelich, 52425 Juelich (Germany); Luysberg, Martina [Institute of Solid State Research and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Juelich (Germany)

    2010-07-01

    InAs nanowires are an attractive candidate for the realization of high-speed and low-power electronic devices due to the material's very high room temperature mobility. However, as recently reported by Dayeh et al. their conductivity could be influenced negatively by often observed stacking faults. In this contribution, we have investigated the influence of Si-doping during growth with the aim to tune nanowire conductivity and crystalline structure. The nanowires were deposited by selective area MOVPE on (111)B GaAs masked substrates. The samples were characterized structurally by transmission and scanning electron microscopy. We observed that above a certain partial pressure ratio, doping has an influence on morphology. The nanowires exhibit higher uniformity and specific conductance, but decreasing height vs. diameter aspect ratio as the partial pressure ratio increases. This leads to the question, whether the incorporation of doping atoms or a structural change has the main influence on conductivity.

  16. Ultrathin Epitaxial Cu@Au Core-Shell Nanowires for Stable Transparent Conductors.

    Science.gov (United States)

    Niu, Zhiqiang; Cui, Fan; Yu, Yi; Becknell, Nigel; Sun, Yuchun; Khanarian, Garo; Kim, Dohyung; Dou, Letian; Dehestani, Ahmad; Schierle-Arndt, Kerstin; Yang, Peidong

    2017-05-31

    Copper nanowire networks are considered a promising alternative to indium tin oxide as transparent conductors. The fast degradation of copper in ambient conditions, however, largely overshadows their practical applications. Here, we develop the synthesis of ultrathin Cu@Au core-shell nanowires using trioctylphosphine as a strong binding ligand to prevent galvanic replacement reactions. The epitaxial overgrowth of a gold shell with a few atomic layers on the surface of copper nanowires can greatly enhance their resistance to heat (80 °C), humidity (80%) and air for at least 700 h, while their optical and electrical performance remained similar to the original high-performance copper (e.g., sheet resistance 35 Ω sq-1 at transmittance of ∼89% with a haze factor <3%). The precise engineering of core-shell nanostructures demonstrated in this study offers huge potential to further explore the applications of copper nanowires in flexible and stretchable electronic and optoelectronic devices.

  17. Bimetal Ga-Sn catalyzed growth for the novel morphologies of silicon oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jun [Research Center of Advanced Functional Materials and Optical Engineering, Department of Physics, Yantai University, Yantai 264005 (China)], E-mail: jzhang@ytu.edu.cn; Yang Yongdong; Ding Shuanghong; Li Jianping; Wang Xichang [Research Center of Advanced Functional Materials and Optical Engineering, Department of Physics, Yantai University, Yantai 264005 (China)

    2008-05-25

    The large size, low melting point bimetal Ga-Sn can be used as an effective catalyst for the large-scale growth of highly aligned, closely packed silicon oxide nanowires bunches. The experimental results show that the silicon oxide nanowires tend to grow bunch by bunch. For each bunch, numerous nanowires simultaneously nucleate, grow at nearly the same rate and direction, and simultaneously stop growing. The prickly spheres, whisk-like, echinus-like, hedgehog-like, and dandelions-like silicon oxide nanowires were formed under different atomic ratio of Ga and Sn in the alloy ball. A growth model was proposed. The experimental results further expand the growth mechanism of the quasi-one-dimensional nanostructures to a broader range.

  18. Structural and electronic properties of Ti-nanowires/C-single wall nanotubes composites by density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gialampouki, M.A.; Balerba, A.V. [Department of Materials Science and Engineering, University of Ioannina, Ioannina, 45110 (Greece); Lekka, Ch.E., E-mail: chlekka@cc.uoi.gr [Department of Materials Science and Engineering, University of Ioannina, Ioannina, 45110 (Greece)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer The nanowires (NWs) transform the cylindrical SWNTs' shape to ellipsoid. Black-Right-Pointing-Pointer Ti NWs contribute in the SWNTs' EDOSs with new states at the Fermi level. Black-Right-Pointing-Pointer The deposited bcc NW on the SWNT induce magnetization and electric dipole moment. Black-Right-Pointing-Pointer These composites appear promising for applications in electronic devices. - Abstract: Structural and electronic properties of composite Ti-nanowires/single wall carbon nanotubes ((6,0) and (10,0)) (SWNT) were evaluated by means of density functional theory computations. We considered the cases of monoatomic (MNW), BCC ({beta}-NW) and HCP ({alpha}-NW) nanowires that were either inserted or deposited in/on the SWNTs. In all cases the NWs turn the cylindrical SWNTs' shape to ellipsoid, an effect that is closely related to charge transfer from Ti toward C neighboring atoms. We found that the wires inside the SWNT appear to be more stable compared to the outside cases, while all NWs contribute with new energy states at the Fermi level, transforming the semiconducting (10,0) to a conducting composite. In addition, we found spin up-down differences in the {beta}-NW{sub on} case and electronic charge redistributions e.g. in {alpha}-NW{sub in} (charge accumulation internally along the tube's axis) or in {alpha}-NW{sub on} (superficial charge accumulation in the vicinity of the NW), accompanied by manifestation of electric dipole moment that reaches the value of 10 Debye in a-NW{sub on}. These results may be of use in the design of new C-based nanocomposite systems suitable for applications in microelectronics, sensors and catalysis.

  19. Energy distribution of the particles obtained after irradiation of carbon nanotubes with carbon projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Cristian D. [Departament de Física Aplicada, Universitat d’Alacant, Apartat 99, E-03690 Alacant (Spain); Moreno-Marín, Juan Carlos; Heredia-Avalos, Santiago [Departament de Física, Enginyeria de Sistemes i Teoria de la Senyal, Universitat d’Alacant, Apartat 99, E-03690 Alacant (Spain)

    2015-06-01

    The idea of using carbon nanotubes (CNTs) as masks against irradiation has recently emerged, because of the region of a given material covered by a CNT can be protected from the effects of irradiation, creating nanowires. In this case, it is interesting to know in detail the number of generated recoils and their energy. In order to obtain these data, we simulate the irradiation of CNTs with carbon ions using a molecular dynamics code. To describe the interaction between carbon ions we use the Brenner potential joined smoothly to the Universal ZBL potential at short distances. We have analyzed the energy distributions of the carbon atoms emerging from the CNT for single projectile irradiation with incident energies from 30 eV to 5 keV. Our results show that the number and the energy of the recoil carbon atoms emerging from the CNT increases with the projectile incident energy. In average, each projectile with incident energy of 1 keV produces ∼3.6 recoils, which have a mean energy of 150 eV, while projectiles with 5 keV produce ∼7 recoils with a mean energy of 400 eV.

  20. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng

    2009-09-09

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of ∼2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO2 cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of ∼4 mAh/cm2, which is comparable to commercial battery values. © 2009 American Chemical Society.

  1. Chiral gold nanowires with boerdijk-coxeter-bernal structure

    KAUST Repository

    Zhu, Yihan

    2014-09-10

    A Boerdijk-Coxeter-Bernal (BCB) helix is made of linearly stacked regular tetrahedra (tetrahelix). As such, it is chiral without nontrivial translational or rotational symmetries. We demonstrate here an example of the chiral BCB structure made of totally symmetrical gold atoms, created in nanowires by direct chemical synthesis. Detailed study by high-resolution electron microscopy illustrates their elegant chiral structure and the unique one-dimensional "pseudo-periodicity". The BCB-type atomic packing mode is proposed to be a result of the competition and compromise between the lattice and surface energy.

  2. Thermodynamics and kinetics on nanowires grown by the vapor-liquid-solid process

    Science.gov (United States)

    Li, Na

    Semiconductor nanowires have attracted dramatic attention due to their potential applications in electronics and optics. However, rational control of nanowire properties requires the understanding of nanowire growth mechanisms, the knowledge of which remains limited and largely phenomenological. In this work, thermodynamics and kinetics methods are employed to study the growth features of semiconductor nanowires prepared by the vapor-liquid-solid (VLS) method. A thermodynamic model is first established to examine the semiconductor nanowire size limit. From the derived formulas, it is found that ever smaller wire can be grown via the VLS method without a limit imposed by thermodynamics until reaching some kinetic growth restrictions. A kinetic model is then proposed based on two-dimensional island nucleation-growth process to obtain the nanowire steady state growth rate, with which formulation is performed from basic physical principles. This model seems to be the only one that can fit a set of extensive growth rate data on Si whiskers/nanowires. Next, a general model is developed to describe the instant nanowire morphology from the beginning of growth to either reaching the steady state with a constant diameter or ending up with a hillock with the growth process terminating. The equilibrium of the interface (three-phase contact) configuration is arrived at via the balance of the static physical tensions and the dynamic chemical tension. Finally with the understanding of fundamental characteristics of the VLS method, a model is proposed to describe the concentration profiles of nanowire heterojunctions and pn-junctions. It also yields the reason why these junctions have a graded transition region instead of one with atomic sharpness.

  3. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-05-09

    A scheme of current collector dependent self-organization of mesoporous cobalt oxide nanowires has been used to create unique supercapacitor electrodes, with each nanowire making direct contact with the current collector. The fabricated electrodes offer the desired properties of macroporosity to allow facile electrolyte flow, thereby reducing device resistance and nanoporosity with large surface area to allow faster reaction kinetics. Co 3O 4 nanowires grown on carbon fiber paper collectors self-organize into a brush-like morphology with the nanowires completely surrounding the carbon microfiber cores. In comparison, Co 3O 4 nanowires grown on planar graphitized carbon paper collectors self-organize into a flower-like morphology. In three electrode configuration, brush-like and flower-like morphologies exhibited specific capacitance values of 1525 and 1199 F/g, respectively, at a constant current density of 1 A/g. In two electrode configuration, the brush-like nanowire morphology resulted in a superior supercapacitor performance with high specific capacitances of 911 F/g at 0.25 A/g and 784 F/g at 40 A/g. In comparison, the flower-like morphology exhibited lower specific capacitance values of 620 F/g at 0.25 A/g and 423 F/g at 40 A/g. The Co 3O 4 nanowires with brush-like morphology exhibited high values of specific power (71 kW/kg) and specific energy (81 Wh/kg). Maximum energy and power densities calculated for Co 3O 4 nanowires with flower-like morphology were 55 Wh/kg and 37 kW/kg respectively. Both electrode designs exhibited excellent cycling stability by retaining ∼91-94% of their maximum capacitance after 5000 cycles of continuous charge-discharge. © 2012 American Chemical Society.

  4. Hydrothermal growth of titania nanowires for SAW device sensing area

    Science.gov (United States)

    Rosydi Zakaria, Mohd; Ayub, Sh. Nadzirah S.; Hafiz Ismail, Mohd; Johari, Shazlina; Hashim, Uda

    2017-11-01

    Synthesis of titania or titanium dioxide (TiO2) is attracted to energy and environmental applications. Here, the growth of nanostructure TiO2 nanowires on Si (100) substrates by using the two-step method. Different seed layers of TiO2 were deposited by spin coating and annealing, followed by the growth of TiO2 nanowires by using the hydrothermal method. The sol-gel technique was used in preparing the TiO2 solution for the thin film deposition purpose. Acetic acid, hydrochloric acid and tris (2-aminoethyl) amine were used as a stabilizer to synthesize three different TiO2 seed layers. The aim of this study was to understand the role of polycrystalline size on thin film towards the diameter of nanowires grown as a sensing area in Surface Acoustic Wave (SAW) Biosensor. The morphology and structure of the thin film and TiO2 nanowires were characterized using X-Ray diffraction (XRD), scanning electron microscope (SEM), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM).

  5. Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source

    NARCIS (Netherlands)

    Dolgov, A.; Dolgov, A.; Lopaev, D.; Lee, Christopher James; Zoethout, E.; Zoethout, E.; Medvedev, Viacheslav; Yakushev, O.; Bijkerk, Frederik

    2015-01-01

    Molecular contamination of a grazing incidence collector for extreme ultraviolet (EUV) lithography was experimentally studied. A carbon film was found to have grown under irradiation from a pulsed tin plasma discharge. Our studies show that the film is chemically inert and has characteristics that

  6. Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ageev, O. A., E-mail: ageev@sfedu.ru [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation); Bykov, Al. V. [NT-MDT (Russian Federation); Kolomiitsev, A. S.; Konoplev, B. G.; Rubashkina, M. V.; Smirnov, V. A.; Tsukanova, O. G. [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation)

    2015-12-15

    The results of an experimental study of the modification of probes for critical-dimension atomicforce microscopy (CD-AFM) by the deposition of carbon nanotubes (CNTs) to improve the accuracy with which the surface roughness of vertical walls is determined in submicrometer structures are presented. Methods of the deposition of an individual CNT onto the tip of an AFM probe via mechanical and electrostatic interaction between the probe and an array of vertically aligned carbon nanotubes (VACNTs) are studied. It is shown that, when the distance between the AFM tip and a VACNT array is 1 nm and the applied voltage is within the range 20–30 V, an individual carbon nanotube is deposited onto the tip. On the basis of the results obtained in the study, a probe with a carbon nanotube on its tip (CNT probe) with a radius of 7 nm and an aspect ratio of 1:15 is formed. Analysis of the CNT probe demonstrates that its use improves the resolution and accuracy of AFM measurements, compared with the commercial probe, and also makes it possible to determine the roughness of the vertical walls of high-aspect structures by CD-AFM. The results obtained can be used to develop technological processes for the fabrication and reconditioning of special AFM probes, including those for CD-AFM, and procedures for the interoperational express monitoring of technological process parameters in the manufacturing of elements for micro- and nanoelectronics and micro- and nanosystem engineering.

  7. Step-flow growth of a nanowire in the vapor-liquid-solid and vapor-solid-solid processes

    Science.gov (United States)

    Golovin, A. A.; Davis, S. H.; Voorhees, P. W.

    2008-10-01

    Consider the growth of a nanowire by a step-flow mechanism in the course of vapor-liquid-solid and vapor-solid-solid processes. The growth is initiated by the nucleation of a circular step at the nanowire-catalyst interface near the edge of the nanowire (the triple junction) and proceeds by the propagation toward the center by the Burton-Cabrera-Frank mechanism. Two cases are considered: (i) bulk transport, where the interfacial diffusion of adatoms and the step motion are coupled to the diffusion flux of atoms from the bulk of the catalyst particle, and (ii) surface transport, where atoms from the vapor phase are adsorbed at the surface of the catalyst particle and diffuse along the surface toward the triple line, whence they diffuse to the nanowire-catalyst interface. The attachment kinetics of adatoms at the step, the adsorption kinetics of atoms from the bulk phase, the exchange kinetics at the triple contact line, and the capillarity of the step are taken into account. In case (i) the problem is reduced to an integral equation for the diffusion flux of atoms from the bulk phase to the nanowire-catalyst interface. This equation is solved numerically, and the flux, interfacial concentration of adatoms, and the bulk concentration near the interface are determined. The step velocity is calculated as a function of the step radius and the kinetic parameters. As a result, the growth rate of a nanowire is computed as a function of its radius. In case (ii) analytical solutions for the surface and interfacial concentrations are obtained. In the absence of step capillarity, an analytical formula for the dependence of the nanowire growth rate on the nanowire radius is derived. It is shown in both cases (i) and (ii) that the nanowire growth rate decreases with increasing nanowire radius due to the decrease in the magnitude of the concentration gradients. However, in case (ii), in the limit of negligible desorption of adatoms into the gas phase, the nanowire growth rate is

  8. Selective growth and piezoelectric properties of highly ordered arrays of vertical ZnO nanowires on ultrathin alumina membranes

    Science.gov (United States)

    Wen, Liaoyong; Shao, Zhengzheng; Fang, Yaoguo; Wong, Kin Mun; Lei, Yong; Bian, Lifeng; Wilde, Gerhard

    2010-08-01

    A well controlled and cost effective method of fabricating highly ordered arrays of vertical zinc oxide (ZnO) nanowires or nanopores is demonstrated where an ultrathin alumina membrane (UTAM) itself is utilized as a substrate for the selective growth of the ordered arrays. A thin film of gold was thermally evaporated on the UTAM followed by the growth of highly regular ZnO nanowires using chemical vapor deposition (CVD). Alternatively, highly ordered ZnO nanopores arrays were also grown by CVD on the bare UTAM. Additionally, piezoelectric currents were generated from the ZnO nanowires during the conductive atomic force microscopy probe tip scan across the array.

  9. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function.

    Science.gov (United States)

    Adolfsson, Karl; Schneider, Martina; Hammarin, Greger; Häcker, Udo; Prinz, Christelle N

    2013-07-19

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.

  10. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function

    Science.gov (United States)

    Adolfsson, Karl; Schneider, Martina; Hammarin, Greger; Häcker, Udo; Prinz, Christelle N.

    2013-07-01

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.

  11. Nanowires for solar energy and hydrogen production

    Science.gov (United States)

    Qu, Yongquan; Sutherland, Alexander M.; Guo, Ting

    2007-09-01

    We report here two approaches that we have developed recently to help solve the problem of energy crisis and global warming facing us today. One approach is to use nanoparticles attached to the end of single-walled carbon nanotubes to catalytically convert CO II and CH 4 into hydrogen and carbon fibers, which can then be used in hydrogen fuel cells and as the building material in transportation vehicles and many other structures. The second approach is to use silica nanowires as templates to make nanoscale electrodes to be used in solar cells. The main advantage of this type of solar cells is that it would be easy to incorporate them directly into glass windows on all the buildings.

  12. Hard template synthesis of metal nanowires

    Directory of Open Access Journals (Sweden)

    Go eKawamura

    2014-11-01

    Full Text Available Metal nanowires (NWs have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  13. Changes of the electronic structure of the atoms of nitrogen in nitrogen-doped multiwalled carbon nanotubes under the influence of pulsed ion radiation

    Energy Technology Data Exchange (ETDEWEB)

    Korusenko, P.M., E-mail: korusenko@obisp.oscsbras.ru [Omsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, Karl Marx Avenue, 15, Omsk 644024 (Russian Federation); Bolotov, V.V.; Nesov, S.N.; Povoroznyuk, S.N. [Omsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, Karl Marx Avenue, 15, Omsk 644024 (Russian Federation); Khailov, I.P. [Tomsk Polytechnic University, Lenin Ave. 2a, Tomsk 634028 (Russian Federation)

    2015-09-01

    With the use of X-ray photoelectron spectroscopy (XPS) there have been investigated the changes of the chemical state of nitrogen atoms in the structure of nitrogen-doped multiwalled carbon nanotubes (CN{sub x}-MWCNTs) resulting from the impact of pulsed ion beam at various parameters of the beam (energy density, number of pulses). It has been established that irradiation with the pulsed ion beam leads to a reduction of the total amount of nitrogen in CN{sub x} nanotubes. It has been shown that a single pulse irradiation of ion beam at the energy densities of 0.5, 1, 1.5 J/cm{sup 2} leads to restructuring of the nitrogen from pyridinic and pyrrolic configuration to graphitic state. Complete removal of nitrogen (pyridinic, pyrrolic, graphitic) embedded in the structure of the walls of CN{sub x} nanotubes occurs at ten pulses and 1.5 J/cm{sup 2}.

  14. On-line preconcentration of cobalt in drinking water using a minicolumn packed with activated carbon coupled to electrothermal atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Cerutti, Soledad; Moyano, Susana; Gasquez, Jose A.; Stripeikis, Jorge; Olsina, Roberto A.; Martinez, Luis D. E-mail: ldm@unsl.edu.ar

    2003-11-21

    An on-line flow injection preconcentration-electrothermal atomic absorption spectrometry method is developed for trace determination of cobalt in drinking water samples by sorption on a conical minicolumn packed with activated carbon at pH 9.5. The cobalt was eluted from the minicolumn with 10% (v/v) nitric acid. An enrichment factor of 190-fold for a sample volume of 10 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 5 ng l{sup -1}. The precision for 10 replicate determinations at the 50 ng l{sup -1} Co level was 4.7% relative standard deviation. The calibration graph using the preconcentration system for cobalt was linear with a correlation coefficient of 0.9993 at levels near the DLs up to at least 0.35 {mu}g l{sup -1}. The method was successfully applied to the determination of cobalt in drinking water samples.

  15. Preconcentration, Separation and Determination of lead(II) with Methyl Thymol Blue Adsorbed on Activated Carbon Using Flame Atomic Absorption Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A.; Ghaderi, Ali R. [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2008-02-15

    An on-line system for preconcentration and separation of lead(II) is presented. The method is based on the complex formation of Pb(II) with adsorbed Methyl thymol blue on activated carbon. The conditions of preparing the solid phase reagent and of quantitative recovery of Pb(II) from diluted solutions, such as acidity of aqueous phase, solid phase capacity, and flow variables were studied as well as effect of potential interfering ions. After preconcentration step, the metal ions are eluted automatically by 5 ml of 0.5 M HNO{sub 3} solution and the lead ions content was determined by flame atomic absorption spectrometry. Under the optimum conditions, the lead ions in aqueous samples were separated and preconcentrated about 1000-fold by the column. The detection limit was 0.001 μg mL{sup -1}. Lead has been determined in river and tap water samples, with recovery of 98 to 102%.

  16. SnO2Nanowire Arrays and Electrical Properties Synthesized by Fast Heating a Mixture of SnO2and CNTs Waste Soot

    Directory of Open Access Journals (Sweden)

    Zhou Zhi-Hua

    2009-01-01

    Full Text Available Abstract SnO2nanowire arrays were synthesized by fast heating a mixture of SnO2and the carbon nanotubes waste soot by high-frequency induction heating. The resultant SnO2nanowires possess diameters from 50 to 100 nm and lengths up to tens of mircrometers. The field-effect transistors based on single SnO2nanowire exhibit that as-synthesized nanowires have better transistor performance in terms of transconductance and on/off ratio. This work demonstrates a simple technique to the growth of nanomaterials for application in future nanoelectronic devices.

  17. Superconductivity in nanowires

    CERN Document Server

    Bezryadin, Alexey

    2012-01-01

    The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine.One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so i

  18. Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light.

    Science.gov (United States)

    Yan, Zhiping; Sun, Zijun; Liu, Xiang; Jia, Hongxing; Du, Pingwu

    2016-02-28

    Photocatalytic hydrogen production from water in a noble-metal-free system has attracted much attention in recent years. Herein we report on the use of core/shell cadmium sulfide/graphitic carbon nitride (CdS/g-C3N4) heterojunction nanorods modified by nickel hydroxide (Ni(OH)2) as a highly efficient photocatalyst for visible light-driven hydrogen production from water. Due to efficient separation of the photoexcited charge carriers in the CdS/g-C3N4 core/shell nanorods and the synergistic effect of Ni(OH)2, the optimal hydrogen evolution rate over Ni(OH)2-CdS/g-C3N4 is 115.18 μmol h(-1) mg(-1) under visible light irradiation (λ > 420 nm), which is ∼26 times higher than the CdS/g-C3N4 nanorod composite without Ni(OH)2 and ∼7 times better than the 0.5 wt% Pt-CdS/g-C3N4 nanorod composite. The apparent quantum efficiency is ∼16.7% at an excitation of 450 nm. During photocatalysis, no degradation of Ni(OH)2 was observed based on the XPS data, indicating that it is a robust cocatalyst. Moreover, the present photocatalyst showed excellent photocatalytic stability for hydrogen production and the turnover number (TON) reached ∼24,600 over 90 hours.

  19. Ensembles of indium phosphide nanowires: physical properties and functional devices integrated on non-single crystal platforms

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Nobuhiko P.; Lohn, Andrew; Onishi, Takehiro [University of California, Santa Cruz (United States). Baskin School of Engineering; NASA Ames Research Center, Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz, Moffett Field, CA (United States); Mathai, Sagi; Li, Xuema; Straznicky, Joseph; Wang, Shih-Yuan; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Logeeswaran, V.J.; Islam, M.S. [University of California Davis, Electrical and Computer Engineering, Davis, CA (United States)

    2009-06-15

    A new route to grow an ensemble of indium phosphide single-crystal semiconductor nanowires is described. Unlike conventional epitaxial growth of single-crystal semiconductor films, the proposed route for growing semiconductor nanowires does not require a single-crystal semiconductor substrate. In the proposed route, instead of using single-crystal semiconductor substrates that are characterized by their long-range atomic ordering, a template layer that possesses short-range atomic ordering prepared on a non-single-crystal substrate is employed. On the template layer, epitaxial information associated with its short-range atomic ordering is available within an area that is comparable to that of a nanowire root. Thus the template layer locally provides epitaxial information required for the growth of semiconductor nanowires. In the particular demonstration described in this paper, hydrogenated silicon was used as a template layer for epitaxial growth of indium phosphide nanowires. The indium phosphide nanowires grown on the hydrogenerated silicon template layer were found to be single crystal and optically active. Simple photoconductors and pin-diodes were fabricated and tested with the view towards various optoelectronic device applications where group III-V compound semiconductors are functionally integrated onto non-single-crystal platforms. (orig.)

  20. Selenium analysis by an integrated microwave digestion-needle trap device with hydride sorption on carbon nanotubes and electrothermal atomic absorption spectrometry determination

    Science.gov (United States)

    Maratta Martínez, Ariel; Vázquez, Sandra; Lara, Rodolfo; Martínez, Luis Dante; Pacheco, Pablo

    2018-02-01

    An integrated microwave assisted digestion (MW-AD) - needle trap device (NTD) for selenium determination in grape pomace samples is presented. The NTD was filled with oxidized multiwall carbon nanotubes (oxMWCNTS) where Se hydrides were preconcentrated. Determination was carried out by flow injection-electrothermal atomic absorption spectrometry (FI-ETAAS). The variables affecting the system were established by a multivariate design (Plackett Burman), indicating that the following variables significantly affect the system: sample amount, HNO3 digestion solution concentration, NaBH4 volume and elution volume. A Box-Behnken design was implemented to determine the optimized values of these variables. The system improved Se atomization in the graphite furnace, since only trapped hydrides reached the graphite furnace, and the pyrolysis stage was eliminated according to the aqueous matrix of the eluate. Under optimized conditions the system reached a limit of quantification of 0.11 μg kg- 1, a detection limit of 0.032 μg kg- 1, a relative standard deviation of 4% and a preconcentration factor (PF) of 100, reaching a throughput sample of 5 samples per hour. Sample analysis show Se concentrations between 0.34 ± 0.03 μg kg- 1 to 0.48 ± 0.03 μg kg- 1 in grape pomace. This system provides minimal reagents and sample consumption, eliminates discontinuous stages between samples processing reaching a simpler and faster Se analysis.

  1. Realization of solution-processed semiconducting single-walled carbon nanotubes thin film transistors with atomic layer deposited ZrAlOx gate insulator

    Science.gov (United States)

    Huang, Chuan-Xin; Li, Jun; Zhong, De-Yao; Zhao, Cheng-Yu; Zhang, Jian-Hua; Jiang, Xue-Yin; Zhang, Zhi-Lin

    2017-06-01

    In this study, the semiconducting single-walled carbon nanotube (semi-SWCNT) thin film transistors (TFTs) with high dielectric constant (κ) atomic layer deposited ZrAlOx gate insulator are fabricated by the drop-casted method. The hysteresis characteristic, negative gate voltage stress stability, and thermal stability are studied, and the semi-SWCNT TFTs with ZrAlOx gate insulators show a small hysteresis of 0.2 V, a little threshold voltage shift of 2.5 V under the negative gate voltage stress, and a threshold voltage shift of 2 V under the thermal stress. Such advantages are due to the amorphous structure and smooth surface of the atomic layer deposited ZrAlOx gate insulator, which induces less trap states. In addition, the thermal stress stability of semi-SWCNT TFTs is investigated. It is found that the behavior of semi-SWCNT TFTs under thermal stress obeys the thermally activated hopping model obviously. This model explains the threshold voltage shift of the device under thermal stress, which is very reasonable.

  2. RF/microwave properties of nanotubes and nanowires : LDRD Project 105876 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Scrymgeour, David; Lee, Mark; Hsu, Julia W. P.; Highstrete, Clark

    2009-09-01

    LDRD Project 105876 was a research project whose primary goal was to discover the currently unknown science underlying the basic linear and nonlinear electrodynamic response of nanotubes and nanowires in a manner that will support future efforts aimed at converting forefront nanoscience into innovative new high-frequency nanodevices. The project involved experimental and theoretical efforts to discover and understand high frequency (MHz through tens of GHz) electrodynamic response properties of nanomaterials, emphasizing nanowires of silicon, zinc oxide, and carbon nanotubes. While there is much research on DC electrical properties of nanowires, electrodynamic characteristics still represent a major new frontier in nanotechnology. We generated world-leading insight into how the low dimensionality of these nanomaterials yields sometimes desirable and sometimes problematic high-frequency properties that are outside standard model electron dynamics. In the cases of silicon nanowires and carbon nanotubes, evidence of strong disorder or glass-like charge dynamics was measured, indicating that these materials still suffer from serious inhomogeneities that limit there high frequency performance. Zinc oxide nanowires were found to obey conventional Drude dynamics. In all cases, a significant practical problem involving large impedance mismatch between the high intrinsic impedance of all nanowires and nanotubes and high-frequency test equipment had to be overcome.

  3. Influence of growth conditions on the performance of InP nanowire solar cells

    Science.gov (United States)

    Cavalli, Alessandro; Cui, Yingchao; Kölling, Sebastian; Verheijen, Marcel A.; Plissard, Sebastien R.; Wang, Jia; Koenraad, Paul M.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2016-11-01

    Nanowire based solar cells have attracted great attention due to their potential for high efficiency and low device cost. Photovoltaic devices based on InP nanowires now have characteristics comparable to InP bulk solar cells. A detailed and direct correlation of the influence of growth conditions on performance is necessary to improve efficiency further. We explored the effects of the growth temperature, and of the addition of HCl during growth, on the efficiency of nanowire array based solar cell devices. By increasing HCl, the saturation dark current was reduced, and thereby the nanowire solar cell efficiency was enhanced from less than 1% to 7.6% under AM 1.5 illumination at 1 sun. At the same time, we observed that the solar cell efficiency decreased by increasing the tri-methyl-indium content, strongly suggesting that these effects are carbon related.

  4. Origin of yellow-band emission in epitaxially grown GaN nanowire arrays.

    Science.gov (United States)

    Liu, Baodan; Yuan, Fang; Dierre, Benjamin; Sekiguchi, Takashi; Zhang, Song; Xu, Yongkuan; Jiang, Xin

    2014-08-27

    Here, we report the origin of the yellow-band emission in epitaxial GaN nanowire arrays grown under carbon-free conditions. GaN nanowires directly grown on [0001]-oriented sapphire substrate exhibit an obvious and broad yellow-band in the visible range 400-800 nm, whereas the insertion of Al/Au layers in GaN-sapphire interface significantly depresses the visible emission, and only a sharp peak in the UV range (369 nm) can be observed. The persuasive differences in cathodoluminescence provide direct evidence for demonstrating that the origin of the yellow-band emission in GaN nanowire arrays arises from dislocation threading. The idea using buffering/barrier layers to isolate the dislocation threading in epitaxially grown GaN nanowires can be extended to the rational synthesis and structural defect controlling of a wide range of semiconductor films and nanostructures with superior crystal quality and excellent luminescence property.

  5. Semiconductor nanowires and nanowire heterostructures: Nanoscience from the bottom up

    Science.gov (United States)

    Zhong, Zhaohui

    2005-07-01

    Nanoscale science and technology involves interdisciplinary research at the interface of chemistry, physics, biology, and engineering sciences. By developing and following a unique intellectual path---the bottom-up paradigm of nanoscale science and technology---it is possible to assemble integrated nanoscale systems with novel functionalities beyond the conventional lithography limit. In this thesis, I present research efforts focused on fundamental aspects of this bottom-up paradigm using semiconductor nanowires (NWs) and nanowire heterostructures as nanoscale building blocks. We first present studies conducted on one of the most important semiconductor materials, silicon nanowires (SiNWs). SiNWs are rationally synthesized via a metal cluster-catalyzed vapor-liquid-solid (VLS) growth mechanism. Room temperature electrical transport studies carried out on SiNW field effect transistors (FETs) show exceptional device performance; estimated hole mobilities in p-SiNWs are significantly higher than bulk silicon at similar doping levels. Furthermore, low temperature transport studies on molecular scale SiNWs reveal phase coherent single charge transport through discrete single particle quantum levels with length scales up to several hundred nanometers. Finally, we show that SiNWs can be assembled into functional nanoelectronic devices. We then discuss two types of nanowire heterostructures: modulation doped silicon nanowires, and branched and hyper-branched nanowire structures. All key properties of modulation doped nanowires can be controlled during the synthesis, including the number, size and periodicity of the differentially doped regions. Their potential applications are also discussed. Moreover, branched and hyper-branched nanowire structures are synthesized via a multi-step nanocluster-catalyzed VLS approach, with branch density controlled by the nanocluster catalyst concentration. Lastly, we describe the realization of complementary doping in gallium nitride

  6. Interactions between semiconductor nanowires and living cells.

    Science.gov (United States)

    Prinz, Christelle N

    2015-06-17

    Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.

  7. High temperature shock tube and theoretical studies on the thermal decomposition of dimethyl carbonate and its bimolecular reactions with H and D-atoms.

    Science.gov (United States)

    Peukert, S L; Sivaramakrishnan, R; Michael, J V

    2013-05-09

    The shock tube technique was used to study the high temperature thermal decomposition of dimethyl carbonate, CH3OC(O)OCH3 (DMC). The formation of H-atoms was measured behind reflected shock waves by using atomic resonance absorption spectrometry (ARAS). The experiments span a T-range of 1053-1157 K at pressures ∼0.5 atm. The H-atom profiles were simulated using a detailed chemical kinetic mechanism for DMC thermal decomposition. Simulations indicate that the formation of H-atoms is sensitive to the rate constants for the energetically lowest-lying bond fission channel, CH3OC(O)OCH3 → CH3 + CH3OC(O)O [A], where H-atoms form instantaneously at high temperatures from the sequence of radical β-scissions, CH3OC(O)O → CH3O + CO2 → H + CH2O + CO2. A master equation analysis was performed using CCSD(T)/cc-pv∞z//M06-2X/cc-pvtz energetics and molecular properties for all thermal decomposition processes in DMC. The theoretical predictions were found to be in good agreement with the present experimentally derived rate constants for the bond fission channel (A). The theoretically derived rate constants for this important bond-fission process in DMC can be represented by a modified Arrhenius expression at 0.5 atm over the T-range 1000-2000 K as, kA(T) = 6.85 × 10(98)T (-24.239) exp(-65250 K/T) s(-1). The H-atom temporal profiles at long times show only minor sensitivity to the abstraction reaction, H + CH3OC(O)OCH3 → H2 + CH3OC(O)OCH2 [B]. However, H + DMC is an important fuel destruction reaction at high temperatures. Consequently, measurements of D-atom profiles using D-ARAS allowed unambiguous rate constant measurements for the deuterated analog of reaction B, D + CH3OC(O)OCH3 → HD + CH3OC(O)OCH2 [C]. Reaction C is a surrogate for H + DMC since the theoretically predicted kinetic isotope effect at high temperatures (1000 - 2000K) is close to unity, kC ≈ 1.2 kB. TST calculations employing CCSD(T)/cc-pv∞z//M06-2X/cc-pvtz energetics and molecular properties

  8. Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates

    Science.gov (United States)

    Xiao, J.; Ryu, S. Y.; Huang, Y.; Hwang, K.-C.; Paik, U.; Rogers, J. A.

    2010-02-01

    A continuum mechanics theory is established for the in-surface buckling of one-dimensional nanomaterials on compliant substrates, such as silicon nanowires on elastomeric substrates observed in experiments. Simple analytical expressions are obtained for the buckling wavelength, amplitude and critical buckling strain in terms of the bending and tension stiffness of the nanomaterial and the substrate elastic properties. The analysis is applied to silicon nanowires, single-walled carbon nanotubes, multi-walled carbon nanotubes, and carbon nanotube bundles. For silicon nanowires, the measured buckling wavelength gives Young's modulus to be 140 GPa, which agrees well with the prior experimental studies. It is shown that the energy for in-surface buckling is lower than that for normal (out-of-surface) buckling, and is therefore energetically favorable.

  9. Non-destructive functionalisation for atomic layer deposition of metal oxides on carbon nanotubes: effect of linking agents and defects

    Science.gov (United States)

    Kemnade, N.; Shearer, C. J.; Dieterle, D. J.; Cherevan, A. S.; Gebhardt, P.; Wilde, G.; Eder, D.

    2015-02-01

    The hybridisation of metal oxides and nanocarbons has created a promising new class of functional materials for environmental and sustainable energy applications. The performance of such hybrids can be further improved by rationally designing interfaces and morphologies. Atomic layer deposition (ALD) is among the most powerful techniques for the controlled deposition of inorganic compounds, due to its ability to form conformal coatings on porous substrates at low temperatures with high surface sensitivity and atomic control of film thickness. The hydrophobic nature of the nanocarbon surface has so far limited the applicability of ALD on CNTs. Herein we investigate the role of structural defects in CNTs, both intrinsic and induced by acid treatment, on coverage, uniformity and crystallinity of ZnO coatings. Furthermore, we demonstrate the potential of small aromatic molecules, including benzyl alcohol (BA), naphthalene carboxylic acid (NA) and pyrene carboxylic acid (PCA), as active nucleation sites and linking agents. Importantly, only PCA exhibits sufficiently strong interactions with the pristine CNT surface to withstand desorption under reaction conditions. Thus, PCA enables a versatile and non-destructive alternative route for the deposition of highly uniform metal oxide coatings onto pristine CNTs via ALD over a wide temperature range and without the typical surface corrosion induced by covalent functionalisation. Importantly, preliminary tests demonstrated that the improved morphology obtained with PCA has indeed considerably increased the hybrid's photocatalytic activity towards hydrogen evolution via sacrificial water splitting. The concept demonstrated in this work is transferable to a wide range of other inorganic compounds including metal oxides, metal (oxy)nitrides and metal chalcogenides on a variety of nanocarbons.The hybridisation of metal oxides and nanocarbons has created a promising new class of functional materials for environmental and

  10. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Directory of Open Access Journals (Sweden)

    Jia-Jia Zheng

    2016-01-01

    Full Text Available Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn. Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  11. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Zhao, Xiang, E-mail: xzhao@mail.xjtu.edu.cn [Institute for Chemical Physics & Department of Chemistry, MOE Key Laboratory for Non-equilibrium Condensed Matter and Quantum Engineering, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Wei-Wei [Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan)

    2016-01-15

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  12. Surface Patterning and Nanowire Biosensor Construction

    DEFF Research Database (Denmark)

    Iversen, Lars

    2008-01-01

    assembled monolayer on gold, a technique useful for creating diverse monolayer patterns in a direct-write fashion. Addition of a second alkanethiol forms a topologically ultra flat but chemically patterned surface, which by inspection with scanning electron microscopy and atomic force microscopy revealed...... submicron feature sizes, varying linearly in size with laser power and irradiation time. In Part II - “Nanoscale Biosensors” - Indium Arsenide (InAs) nanowires (NW) incorporated in field effect transistor (FET) devices provide a sensitive platform for detection of charged analyte species binding to the NW...... surface. A central limitation to this biosensor principle is the screening of analyte charge by mobile ions in electrolytes with physiological ionic strength. To overcome this problem, we propose to use as capture agents proteins which undergo large conformational changes. Using structure based protein...

  13. Fe magnetic impurity effect in Au atomic sized conductor

    Energy Technology Data Exchange (ETDEWEB)

    Ienaga, Koichiro; Inagaki, Yuji; Kawae, Tatsuya [Department of Applied Quantum Physics, Kyushu University, Moto-oka, Fukuoka 819-0395 (Japan); Tsujii, Hiroyuki, E-mail: te208276@s.kyushu-u.ac.j [Department of Education, Kanazawa University, Kanazawa, 920-1192 (Japan)

    2010-01-01

    We have studied the electrical conductance in Au nanowire containing 0.07 at.%Fe ions (AuFe nanowire) with mechanically controllable break junction technique to investigate the magnetic impurity effects in the atomic-sized conductance. At room temperature, we observe not only conductance steps at the integer multiples of G{sub 0} = 2e{sup 2}/h, but also steps deviating from them in AuFe nanowire. Moreover, these features persist down to T = 4.2 K. The scattering between the conduction electrons and Fe magnetic ions may lift the spin degeneracy of the transmission probability, which is responsible for the deviation. Zero bias anomaly is observed in the AuFe nanowire with the contact diameter larger than {approx}3 nm in the current-voltage (I-V) measurements at T = 4.2 K, which may be caused by Kondo effect.

  14. Direct extraction of lead (II) from untreated human blood serum using restricted access carbon nanotubes and its determination by atomic absorption spectrometry.

    Science.gov (United States)

    Barbosa, Valéria Maria Pereira; Barbosa, Adriano Francisco; Bettini, Jefferson; Luccas, Pedro Orival; Figueiredo, Eduardo Costa

    2016-01-15

    Oxidized carbon nanotubes were covered with layers of bovine serum albumin to result in so-called restricted-access carbon nanotubes (RACNTs). This material can extract Pb(2+) ions directly from untreated human blood serum while excluding all the serum proteins. The RACNTs have a protein exclusion capacity of almost 100% and a maximum Pb(2+) adsorption capacity of 34.5mg g(-1). High resolution transmission electron microscopy, scanning transmission electron microscopy and energy dispersive spectroscopy were used to confirm the BSA layer and Pb(2+) adsorption sites. A mini-column filled with RACNTs was used in an on-line solid phase extraction system coupled to a thermospray flame furnace atomic absorption spectrometry. At optimized experimental conditions, the method has a detection limit as low as 2.1µg L(-1), an enrichment factor of 5.5, and inter- and intra-day precisions (expressed as relative standard deviation) of <8.1%. Recoveries of the Pb(2+) spiked samples ranged from 89.4% to 107.3% for the extraction from untreated human blood serum. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for gold determination in geological samples after preconcentration onto carbon nanotubes

    Science.gov (United States)

    Dobrowolski, Ryszard; Mróz, Agnieszka; Dąbrowska, Marzena; Olszański, Piotr

    2017-06-01

    A novelty method for the determination of gold in geological samples by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GF AAS) after solid-phase extraction onto modified carbon nanotubes (CNT) was described. The methodology developed is based on solid phase extraction of Au(III) ions from digested samples to eliminate strong interference caused by iron compounds and problems related to inhomogeneities of the samples. The use of aqueous or solid standard for calibration was studied and the slope of calibration curve was the same for both of these modes. This statement indicates the possibility to perform the calibration of the method using aqueous standard solutions. Under optimum conditions the absolute detection limit for gold was equal to 2.24 · 10- 6 μg g- 1 while the adsorption capacity of modified carbon nanotubes was 264 mg g- 1. The proposed procedure was validated by the application of certified reference materials (CRMs) with different content of gold and different matrix, the results were in good agreement with certified values. The method was successfully applied for separation and determination of gold ions in complex geological samples, with precision generally better than 8%.

  16. Polysulfide Anchoring Mechanism Revealed by Atomic Layer Deposition of V2O5 and Sulfur-Filled Carbon Nanotubes for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Carter, Rachel; Oakes, Landon; Muralidharan, Nitin; Cohn, Adam P; Douglas, Anna; Pint, Cary L

    2017-03-01

    Despite the promise of surface engineering to address the challenge of polysulfide shuttling in sulfur-carbon composite cathodes, melt infiltration techniques limit mechanistic studies correlating engineered surfaces and polysulfide anchoring. Here, we present a controlled experimental demonstration of polysulfide anchoring using vapor phase isothermal processing to fill the interior of carbon nanotubes (CNTs) after assembly into binder-free electrodes and atomic layer deposition (ALD) coating of polar V2O5 anchoring layers on the CNT surfaces. The ultrathin submonolayer V2O5 coating on the CNT exterior surface balances the adverse effect of polysulfide shuttling with the necessity for high sulfur utilization due to binding sites near the conductive CNT surface. The sulfur loaded into the CNT interior provides a spatially separated control volume enabling high sulfur loading with direct sulfur-CNT electrical contact for efficient sulfur conversion. By controlling ALD coating thickness, high initial discharge capacity of 1209 mAh/gS at 0.1 C and exceptional cycling at 0.2 C with 87% capacity retention after 100 cycles and 73% at 450 cycles is achieved and correlated to an optimal V2O5 anchoring layer thickness. This provides experimental evidence that surface engineering approaches can be effective to overcome polysulfide shuttling by controlled design of molecular-scale building blocks for efficient binder free lithium sulfur battery cathodes.

  17. Charge fraction of 6.0 MeV/n heavy ions with a carbon foil: Dependence on the foil thickness and projectile atomic number

    CERN Document Server

    Sato, Y; Muramatsu, M; Murakami, T; Yamada, S; Kobayashi, C; Kageyama, Y; Miyoshi, T; Ogawa, H; Nakabushi, H; Fujimoto, T; Miyata, T; Sano, Y

    2003-01-01

    We measured the charge fraction of 6.0 MeV/n heavy ions (C, Ne, Si, Ar, Fe and Cu) with a carbon foil at the NIRS-HIMAC injector. At this energy they are stripped with a carbon foil before being injected into two synchrotron rings with a maximum energy of 800 MeV/n. In order to find the foil thickness (D sub E) at which an equilibrium charge state distribution occurs, and to study the dependence of the D sub E -values on the projectile atomic number, we measured the exit charge fractions for foil thicknesses of between 10 and 350 mu g/cm sup 2. The results showed that the D sub E -values are 21.5, 62.0, 162, 346, 121, 143 mu g/cm sup 2 for C, Ne, Si, Ar, Fe, Cu, respectively. The fraction of Ar sup 1 sup 8 sup + ions was actually improved to 33% at 320 mu g/cm sup 2 from approx 15% at 100 mu g/cm sup 2. For Fe and Cu ions, the D sub E -values were found to be only 121 and 143 mu g/cm sup 2; there is a large gap between Ar and Fe, which is related to the differences in the ratio of the binding energy of the K-...

  18. Re-establishment of the atomic composition and the oxide structure of contaminated titanium surfaces by means of carbon dioxide laser and hydrogen peroxide: an in vitro study.

    Science.gov (United States)

    Mouhyi, J; Sennerby, L; Wennerberg, A; Louette, P; Dourov, N; van Reck, J

    2000-01-01

    In clinical situations with peri-implant bone resorption, re-integration of the exposed implant surface is sometimes preferable, which requires a clean surface. Previous investigations have shown that cleaning of contaminated titanium surfaces using chemical and abrasive methods is difficult. The aim of this investigation was to evaluate the efficacy of different combinations of chemical and physical methods (citric acid, hydrogen peroxide, and carbon dioxide [CO2] laser irradiation) for removal of contaminants and subsequent reconstruction of the surface oxide of intraorally contaminated titanium foils. Commercially pure titanium foils (99.6%, 5 x 5 mm in size) were contaminated by placement on dentures in volunteering patients, simulating a peri-implantitis situation. The contaminated foils and clean control foils were treated by seven and six combinations of citric acid, hydrogen peroxide, and CO2 laser irradiation, respectively. The effect of the cleaning procedures was evaluated by x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The initial elemental composition of the contaminated foils was 70% carbon (C), 20% oxygen (O), 10% nitrogen (N), and only traces of titanium (Ti) (titanium. A combination of citric acid, hydrogen peroxide, and CO2 laser irradiation seems to be effective for cleaning and reestablishment of the atomic composition and oxide structure of contaminated titanium surfaces.

  19. Direct observation of doping incorporation pathways in self-catalytic GaMnAs nanowires

    DEFF Research Database (Denmark)

    Kasama, Takeshi; Thuvander, M.; Siusys, A.

    2015-01-01

    Doping mechanisms of Mn in GaAs nanowires (NWs) that have been grown self-catalytically at 600 degrees C by molecular beam epitaxy (MBE) are investigated using advanced electron microscopy techniques and atom probe tomography, Mn is found to be incorporated primarily in the form of non-magnetic t...

  20. Adsorption of carbon monoxide on small aluminum oxide clusters: Role of the local atomic environment and charge state on the oxidation of the CO molecule

    Energy Technology Data Exchange (ETDEWEB)

    Ornelas-Lizcano, J. C.; Guirado-López, R. A., E-mail: guirado@ifisica.uaslp.mx [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, México (Mexico)

    2015-03-28

    We present extensive density functional theory (DFT) calculations dedicated to analyze the adsorption behavior of CO molecules on small Al{sub x}O{sub y}{sup ±} clusters. Following the experimental results of Johnson et al. [J. Phys. Chem. A 112, 4732 (2008)], we consider structures having the bulk composition Al{sub 2}O{sub 3}, as well as smaller Al{sub 2}O{sub 2} and Al{sub 2}O units. Our electron affinity and total energy calculations are consistent with aluminum oxide clusters having two-dimensional rhombus-like structures. In addition, interconversion energy barriers between two- and one-dimensional atomic arrays are of the order of 1 eV, thus clearly defining the preferred isomers. Single CO adsorption on our charged Al{sub x}O{sub y}{sup ±} clusters exhibits, in general, spontaneous oxygen transfer events leading to the production of CO{sub 2} in line with the experimental data. However, CO can also bind to both Al and O atoms of the clusters forming aluminum oxide complexes with a CO{sub 2} subunit. The vibrational spectra of Al{sub x}O{sub y} + CO{sub 2} provides well defined finger prints that may allow the identification of specific isomers. The Al{sub x}O{sub y}{sup +} clusters are more reactive than the anionic species and the final Al{sub 2}O{sup +} + CO reaction can result in the production of atomic Al and carbon dioxide as observed from experiments. We underline the crucial role played by the local atomic environment, charge density distribution, and spin-multiplicity on the oxidation behavior of CO molecules. Finally, we analyze the importance of coadsorption and finite temperature effects by performing DFT Born-Oppenheimer molecular dynamics. Our calculations show that CO oxidation on Al{sub x}O{sub y}{sup +} clusters can be also promoted by the binding of additional CO species at 300 K, revealing the existence of fragmentation processes in line with the ones experimentally inferred.