WorldWideScience

Sample records for atomic beam source

  1. Cold atomic beam ion source for focused ion beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Knuffman, B.; Steele, A. V. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States); zeroK NanoTech, Montgomery Village, Maryland 20886 (United States); McClelland, J. J. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2013-07-28

    We report measurements and modeling of an ion source that is based on ionization of a laser-cooled atomic beam. We show a high brightness and a low energy spread, suitable for use in next-generation, high-resolution focused ion beam systems. Our measurements of total ion current as a function of ionization conditions support an analytical model that also predicts the cross-sectional current density and spatial distribution of ions created in the source. The model predicts a peak brightness of 2 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1} and an energy spread less than 0.34 eV. The model is also combined with Monte-Carlo simulations of the inter-ion Coulomb forces to show that the source can be operated at several picoamperes with a brightness above 1 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1}. We estimate that when combined with a conventional ion focusing column, an ion source with these properties could focus a 1 pA beam into a spot smaller than 1 nm. A total current greater than 5 nA was measured in a lower-brightness configuration of the ion source, demonstrating the possibility of a high current mode of operation.

  2. A Compact, High-Flux Cold Atom Beam Source

    Science.gov (United States)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  3. Internal polarized deuterium target with cryogenic atomic beam source

    CERN Document Server

    Dyug, M V; Lazarenko, B A; Mishnev, S I; Nikolenko, D M; Rachek, Igor A; Shestakov, Yu V; Sadykov, R S; Toporkov, D K; Zevakov, S A; Osipov, A V; Stibunov, V N

    2002-01-01

    Description of the polarized deuterium gas target used at the VEPP-3 electron storage ring for experiments on elastic and inelastic ed scattering is given. Superconducting sextupole magnets with the pole tip magnetic field up to 4.8 T are used in atomic beam source (ABS) to focus atoms. The flux of polarized atoms injected into the storage cell was measured to be 8.2x10 sup 1 sup 6 at/s for deuterium and 7.9x10 sup 1 sup 6 at/s for hydrogen. The measured target thickness 8x10 sup 1 sup 3 at/cm sup 2 is consistent with the thickness calculated from the measured beam intensity. The effective tensor polarization of the deuterium target during the experiment was found to be P sub z sub z =0.397. Further improvements of the target and possible limitation of the beam intensity from ABS are discussed.

  4. Development of a Supersonic Atomic Oxygen Nozzle Beam Source for Crossed Beam Scattering Experiments

    Science.gov (United States)

    Sibener, S. J.; Buss, R. J.; Lee, Y. T.

    1978-05-01

    A high pressure, supersonic, radio frequency discharge nozzle beam source was developed for the production of intense beams of ground state oxygen atoms. An efficient impedance matching scheme was devised for coupling the radio frequency power to the plasma as a function of both gas pressure and composition. Techniques for localizing the discharge directly behind the orifice of a water-cooled quartz nozzle were also developed. The above combine to yield an atomic oxygen beam source which produces high molecular dissociation in oxygen seeded rare gas mixtures at total pressures up to 200 torr: 80 to 90% dissociation for oxygen/argon mixtures and 60 to 70% for oxygen/helium mixtures. Atomic oxygen intensities are found to be greater than 10{sup 17} atom sr{sup -1} sec{sup -1}. A brief discussion of the reaction dynamics of 0 + IC1 ..-->.. I0 + C1 is also presented.

  5. Characterization of a cryogenic beam source for atoms and molecules

    CERN Document Server

    Bulleid, N E; Hendricks, R J; Sauer, B E; Hinds, E A; Tarbutt, M R

    2013-01-01

    We present a combined experimental and theoretical study of beam formation from a cryogenic buffer gas cell. Atoms and molecules are loaded into the cell by laser ablation of a target, and are cooled and swept out of the cell by a flow of cold helium. We study the thermalization and flow dynamics inside the cell and measure how the speed, temperature, divergence and extraction efficiency of the beam are influenced by the helium flow. We use a finite element model to simulate the flow dynamics and use the predictions of this model to interpret our experimental results.

  6. Fast-ion-beam laser probing of ion-source energy distributions and atomic structure

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Richard A., E-mail: rholt@uwo.ca; Rosner, S. David [University of Western Ontario, Physics and Astronomy Department (Canada)

    2013-04-15

    Collinear fast-ion-beam laser spectroscopy is a very high resolution probe for measuring ion-beam energy distributions and atomic structure parameters of interest in nuclear physics, atomic physics, and astrophysics. We have used offline 10-keV beams of atomic ions and a CW laser system to study the behavior of a Penning ion source and to measure hyperfine structure, isotope shifts, atomic lifetimes, spontaneous-emission branching fractions, oscillator strengths, and absolute wavelengths of a variety of atomic species from the lanthanide and transition-metal groups.

  7. Bright focused ion beam sources based on laser-cooled atoms

    Science.gov (United States)

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. PMID:27239245

  8. Bright focused ion beam sources based on laser-cooled atoms

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J. J.; Wilson, T. M. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Steele, A. V.; Knuffman, B.; Schwarzkopf, A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); zeroK NanoTech, Gaithersburg, Maryland 20878 (United States); Twedt, K. A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States)

    2016-03-15

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga{sup +} liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.

  9. An atomic beam source for fast loading of a magneto-optical trap under high vacuum

    DEFF Research Database (Denmark)

    McDowall, P.D.; Hilliard, Andrew; Grünzweig, T.

    2012-01-01

    We report on a directional atomic beam created using an alkali metal dispenser and a nozzle. By applying a high current (15 A) pulse to the dispenser at room temperature we can rapidly heat it to a temperature at which it starts dispensing, avoiding the need for preheating. The atomic beam produced...

  10. Development of a compact thermal lithium atom beam source for measurements of electron velocity distribution function anisotropy in electron cyclotron resonance plasmas.

    Science.gov (United States)

    Nishioka, T; Shikama, T; Nagamizo, S; Fujii, K; Zushi, H; Uchida, M; Iwamae, A; Tanaka, H; Maekawa, T; Hasuo, M

    2013-07-01

    The anisotropy of the electron velocity distribution function (EVDF) in plasmas can be deduced from the polarization of emissions induced by anisotropic electron-impact excitation. In this paper, we develop a compact thermal lithium atom beam source for spatially resolved measurements of the EVDF anisotropy in electron cyclotron resonance (ECR) plasmas. The beam system is designed such that the ejected beam has a slab shape, and the beam direction is variable. The divergence and flux of the beam are evaluated by experiments and calculations. The developed beam system is installed in an ECR plasma device with a cusp magnetic field, and the LiI 2s-2p emission (670.8 nm) is observed in low-pressure helium plasma. The two-dimensional distributions of the degree and direction of the polarization in the LiI emission are measured by a polarization imaging system. The evaluated polarization distribution suggests the spatial variation of the EVDF anisotropy.

  11. A continuous cold atomic beam interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Hongbo [State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084 (China); Joint Institute for Measurement Science, Tsinghua University, Beijing 100084 (China); Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Feng, Yanying, E-mail: yyfeng@tsinghua.edu.cn; Yan, Xueshu; Jiang, Zhikun [State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084 (China); Joint Institute for Measurement Science, Tsinghua University, Beijing 100084 (China); Chen, Shu [Joint Institute for Measurement Science, Tsinghua University, Beijing 100084 (China); Key Laboratory of Instrumentation Science, North University of China, Taiyuan 030051 (China); Wang, Xiaojia [College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, Zhaoying [State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084 (China)

    2015-03-07

    We demonstrate an atom interferometer that uses a laser-cooled continuous beam of {sup 87}Rb atoms having velocities of 10–20 m/s. With spatially separated Raman beams to coherently manipulate the atomic wave packets, Mach–Zehnder interference fringes are observed at an interference distance of 2L = 19 mm. The apparatus operates within a small enclosed area of 0.07 mm{sup 2} at a bandwidth of 190 Hz with a deduced sensitivity of 7.8×10{sup −5} rad/s/√(Hz) for rotations. Using a low-velocity continuous atomic source in an atom interferometer enables high sampling rates and bandwidths without sacrificing sensitivity and compactness, which are important for applications in real dynamic environments.

  12. Carbon beam extraction with 14.5 GHz electron cyclotron resonance ion source at Korea Atomic Energy Research Institute.

    Science.gov (United States)

    Lee, Cheol Ho; Oh, Byung-Hoon; Chang, Dae-Sik; Jeong, Sun-Chan

    2014-02-01

    A 14.5 GHz Electron Cyclotron Resonance ion source (ECRIS) has been made to produce C(4+) beam for using a carbon therapy facility and recently tested at KAERI. Highly charged carbon ions have been successfully extracted. When using only CO2 gas, the beam current of C(4+) was almost 14 μA at 15 kV extraction voltage. To get higher current of the C(4+) beam, while optimizing confinement magnetic field configuration (e.g., axial strengths at minimum and extraction side), gas-mixing (CO2/He), and biased disk were introduced. When the gas mixing ratio of the CO2/He gas is 1:8 at an operational pressure of 5 × 10(-7) mbar and the disk was biased to -150 V relative to the ion source body, the highest current of the C(4+) beam was achieved to be 50 μA, more than three times higher than previously observed only with CO2 gas. Some details on the operating conditions of the ECRIS were discussed.

  13. Atomic and molecular beams production and collimation

    CERN Document Server

    Lucas, Cyril Bernard

    2013-01-01

    Atomic and molecular beams are employed in physics and chemistry experiments and, to a lesser extent, in the biological sciences. These beams enable atoms to be studied under collision-free conditions and allow the study of their interaction with other atoms, charged particles, radiation, and surfaces. Atomic and Molecular Beams: Production and Collimation explores the latest techniques for producing a beam from any substance as well as from the dissociation of hydrogen, oxygen, nitrogen, and the halogens.The book not only provides the basic expressions essential to beam design but also offers

  14. Two-Photon Coherent Atomic Absorption of Multiple Laser Beams

    Science.gov (United States)

    Li, Ming-Chiang

    2006-05-01

    Physical processes on two-photon coherent atomic absorption of multiple laser beams were discussed about thirty years ago [M. C. Li, Bull. Am. Phys. Soc. 20, 654 (1975)]. These processes can be divided into two distinct groups. In the first group, laser beams are from a single source, and in the second group laser beams are from two different sources [M. C. Li, Phys. Rev. A 22 (1980) 1323]. Several experiments in the first group were carried out and have led to the 2005 Nobel Prize in physics. The second group is more interesting. Beside atoms are in random motion, two photons are from different sources. Classically, it is impossible for atoms to transit coherently in the absorption process, but quantum mechanically, such a transition is possible and that is one of the spooky phenomena in quantum mechanic. To assure the coherent transition, each photon as absorbed by the atom must have two possible paths of choices. If one photon has the choice and other one is not, then the atomic transitions cannot be coherent. Around1990, there were very active experimental pursuits on such a spooky phenomenon of two photons emitted from crystal parametric down conversion. The present talk will review various spooky phenomena associated with two-photon coherent atomic absorption. Hope that the talk will stimulate the interest on the long neglected experimental front on two-photon coherent atomic absorption from two different laser sources.

  15. Relativistic atomic beam spectroscopy II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  16. Relativistic atomic beam spectroscopy II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    We are requesting support for a postdoctoral person to participate in H{sup -} studies at Los Alamos. In addition, we are requesting funding for a state-of-the-art YAG laser system that would allow us to obtain data at three times our present rate with improved beam quality.

  17. The identification of autoionizing states of atomic chromium for the resonance ionization laser ion source of the ISOLDE radioactive ion beam facility

    CERN Document Server

    Goodacre, T Day; Fedorovc, D; Fedosseev, V N; Marsh, B A; Molkanov, P; Rossel, R E; Rothe, S; Seiffert, C

    2015-01-01

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source resonance ionization spectroscopy, an optimal three-step, three-resonance photo-ionization scheme has been developed for chromium. The scheme uses an ionizing transition to one of the 14 newly observed autoionizing states. This work increases the range of ISOLDE-RILIS ionized beams to 32 chemical elements. Details of the spectroscopic studies are described and the new ionization scheme is summarized. A link to the complete version of this document will be added here following publication:

  18. Development of francium atomic beam for the search of the electron electric dipole moment

    Science.gov (United States)

    Sato, Tomoya; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kato, T.; Kawamura, H.; Nataraj, H. S.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2014-03-01

    For the measurement of the electron electric dipole moment using Fr atoms, a Fr ion-atom conversion is one of the most critical process. An ion-atom converter based on the "orthotropic" type of Fr source has been developed. This converter is able to convert a few keV Fr ion beam to a thermal atomic beam using a cycle of the surface ionization and neutralization. In this article, the development of the converter is reported.

  19. Compact magneto-optical sources of slow atoms

    OpenAIRE

    Ovchinnikov, Yuri B.

    2004-01-01

    Three different configurations of compact magneto-optical sources of slow Rb atoms(LVIS, 2D(+)-MOT and 2D-MOT) were compared with each other at fixed geometry of cooling laser beams. A precise control of the intensity balances between the four separate transverse cooling laser beams provided a total continuous flux of cold atoms from the LVIS and 2D(+)-MOT sources about 8x10^9 atoms/s at total laser power of 60 mW. The flux was measured directly from the loading rate of a 3D-MOT, placed 34 cm...

  20. Characterization of an atomic hydrogen source for charge exchange experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leutenegger, M. A. [NASA Goddard Space Flight Center, Code 662, Greenbelt, Maryland 20771 (United States); CRESST/University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 (United States); Beiersdorfer, P.; Brown, G. V.; Magee, E. W. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Betancourt-Martinez, G. L. [NASA Goddard Space Flight Center, Code 662, Greenbelt, Maryland 20771 (United States); University of Maryland College Park, College Park, Maryland 20742 (United States); Hell, N. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Dr. Karl-Remeis-Sternwarte and ECAP, FAU Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg (Germany); Kelley, R. L.; Kilbourne, C. A.; Porter, F. S. [NASA Goddard Space Flight Center, Code 662, Greenbelt, Maryland 20771 (United States)

    2016-11-15

    We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  1. Atomic Beam Merging and Suppression of Alkali Contaminants in Multi Body High Power Targets: Design and Test of Target and Ion Source Prototypes at ISOLDE

    CERN Document Server

    Bouquerel, Elian J A; Lettry, J; Stora, T

    2009-01-01

    The next generation of high power ISOL-facilities will deliver intense and pure radioactive ion beams. Two key issues of developments mandatory for the forthcoming generation of ISOL target-ion source units are assessed and demonstrated in this thesis. The design and production of target and ion-source prototypes is described and dedicated measurements at ISOLDE-CERN of their radioisotope yields are analyzed. The purity of short lived or rare radioisotopes suffer from isobaric contaminants, notably alkalis which are highly volatile and easily ionized elements. Therefore, relying on their chemical nature, temperature controlled transfer lines were equipped with a tube of quartz that aimed at trapping these unwanted elements before they reached the ion source. The successful application yields high alkali-suppression factors for several elements (ie: 80, 82mRb, 126, 142Cs, 8Li, 46K, 25Na, 114In, 77Ga, 95, 96Sr) for quartz temperatures between 300ºC and 1100ºC. The enthalpies of adsorption on quartz were measu...

  2. PHARAO space atomic clock: new developments on the laser source

    Science.gov (United States)

    Saccoccio, Muriel; Loesel, Jacques; Coatantiec, Claude; Simon, Eric; Laurent, Philippe; Lemonde, Pierre; Maksimovic, I.; Abgrall, M.

    2017-11-01

    The PHARAO project purpose is to open the way for a new atomic clock generation in space, where laser cooling techniques and microgravity allow high frequency stability and accuracy. The French space agency, CNES is funding and managing the clock construction. The French SYRTE and LKB laboratories are scientific and technical advisers for the clock requirements and the follow-up of subsystem development in industrial companies. EADS SODERN is developing two main subsystems of the PHARAO clock: the Laser Source and the Cesium Tube where atoms are cooled, launched, selected and detected by laser beams. The Laser Source includes an optical bench and electronic devices to generate the laser beams required. This paper describes PHARAO and the role laser beams play in its principle of operation. Then we present the Laser Source design, the technologies involved, and the status of development. Lastly, we focus of a key equipment to reach the performances expected, which is the Extended Cavity Laser Diode.

  3. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    Science.gov (United States)

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-01-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516

  4. Development of francium atomic beam for the search of the electron electric dipole moment

    Directory of Open Access Journals (Sweden)

    Sato Tomoya

    2014-03-01

    Full Text Available For the measurement of the electron electric dipole moment using Fr atoms, a Fr ion-atom conversion is one of the most critical process. An ion-atom converter based on the “orthotropic” type of Fr source has been developed. This converter is able to convert a few keV Fr ion beam to a thermal atomic beam using a cycle of the surface ionization and neutralization. In this article, the development of the converter is reported.

  5. Relative-velocity distributions for two effusive atomic beams in counterpropagating and crossed-beam geometries

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke

    2012-01-01

    Formulas are presented for calculating the relative velocity distributions in effusive, orthogonal crossed beams and in effusive, counterpropagating beams experiments, which are two important geometries for the study of collision processes between atoms. In addition formulas for the distributions...

  6. Programmable solid state atom sources for nanofabrication

    Science.gov (United States)

    Han, Han; Imboden, Matthias; Stark, Thomas; Del Corro, Pablo G.; Pardo, Flavio; Bolle, Cristian A.; Lally, Richard W.; Bishop, David J.

    2015-06-01

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques. Electronic supplementary information (ESI) available: A document containing further information about device characterization

  7. Neutron production by neutral beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, K.H.; Massoletti, D.J.; McCaslin, J.B.; Pyle, R.V.; Ruby, L.

    1979-11-01

    Neutron yields, from interactions of multiampere 40- to 120-keV deuterium beams with deuterium atoms implanted in copper targets, have been measured in order to provide input data for shielding of neutral-deuterium beam facilities for magnetic fusion experiments.

  8. Use of atomic hydrogen source in collision: technological challenges

    Science.gov (United States)

    Hovey, R. T.; Vargas, E. L.; Panchenko, D. I.; Rivas, D. A.; Andrianarijaona, V. M.

    2015-03-01

    Atomic hydrogen was extensively studied in the past due to its obvious fundamental aspect. Also, quite few investigations were dedicated to atomic hydrogen sources because the results of experimental investigations on systems involving H would provide very rigorous tests for theoretical models. But even if atomic hydrogen sources are currently widespread in experimental physics, their uses in experiments on collisions are still very challenging mainly due to threefold problem. First, there is the difficulty to create H in the laboratory in sufficiently large number densities. Second, there is the strain to adjust the velocities of the produced atomic hydrogens. And third, there is the toil to control the internal energies of these atomic hydrogens. We will present an outline of different techniques using atomic hydrogen sources in collisions, which could be found in the literatures, such as merged-beam technique, gas cell technique, and trap, and propose an experiment scheme using a turn-key atomic hydrogen source that experiments such as charge transfer could benefit from. This work is supported by the National Science Foundation under Grant No. PHY-1068877.

  9. Diffraction of an atomic beam by standing-wave radiation

    Science.gov (United States)

    Moskowitz, P. E.; Gould, P. L.; Atlas, S. R.; Pritchard, D. E.

    1983-08-01

    Preliminary experimental results are reported for the deflection of Na atoms in an atomic beam by a transverse standing-wave laser field whose frequency is tuned between the two ground-state hyperfine components of the D2 line. In contrast to the two experiments done previously, a splitting of the beam into two symmetric peaks whose separation increases with the electric-field is seen here. In addition, the data show evidence for atomic diffraction: a tendency for scattered atoms to acquire momentum in multiples of 2h(bar)k.

  10. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  11. Particle beam technology for control of atomic-bonding state in materials

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Junzo [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    The atomic-bonding state in materials can be controlled through `kinetic bonding` process by energetic particle beams which have a sufficient atomic kinetic energy. In order to clarify the `kinetic bonding` process the negative-ion beam deposition is considered as an ideal method because the negative ion has no additional active energies. Sputter type heavy negative-ion sources can be used for this purpose. Carbon films prepared by carbon negative-ion beam deposition have a strong dependency of the film properties on ion beam kinetic energy and have a quite high thermal conductivity which is comparable to that of the IIb diamond at a kinetic energy of 50-100 eV/atom. It suggests that new or metastable materials could be formed through the `kinetic bonding` process. Negative-ion beams can also be used for ion implantation, in which charging problems are perfectly reduced. (author)

  12. NOx reduction by electron beam-produced nitrogen atom injection

    Science.gov (United States)

    Penetrante, Bernardino M.

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  13. Optimization of a constrained linear monochromator design for neutral atom beams.

    Science.gov (United States)

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Laser controlled atom source for optical clocks

    Science.gov (United States)

    Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal

    2016-11-01

    Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy.

  15. Atomic-Beam Magnetic Resonance Experiments at ISOLDE

    CERN Multimedia

    2002-01-01

    The aim of the atomic-beam magnetic resonance (ABMR) experiments at ISOLDE is to map the nuclear behaviour in wide regions of the nuclear chart by measuring nuclear spins and moments of ground and isomeric states. This is made through an investigation of the atomic hyperfine structure of free, neutral atoms in a thermal atomic-beam using radio-frequency techniques. On-line operation allows the study of short-lived nuclei far from the region of beta-stability.\\\\ \\\\ The ABMR experiments on the |2S^1 ^2 elements Rb, Cs, Au and Fr have been completed, and present efforts are directed towards the elements with an open p-shell and on the rare-earth elements.\\\\ \\\\ The experimental data obtained are compared with results from model calculations, giving information on the single-particle structure and on the nuclear shape parameters.

  16. Ultra thin coherent atom beam by Stern-Gerlach interferometry

    Science.gov (United States)

    Perales, F.; Robert, J.; Baudon, J.; Ducloy, M.

    2007-06-01

    It is demonstrated that a Stern-Gerlach interferometer including a special transverse phase shifter can generate an atomic beam of a small diameter (few tens of nm). Calculations carried out in a coherent regime confirm this point. They also show that the device is almost insensitive to velocity dispersion and that the required mechanical accuracy is quite accessible. Due to the peculiar transverse amplitude distribution (of the Lorentz type), the spreading of the generated beam profile is very small compared to that given by a circular diaphragm or a Gaussian profile of comparable initial diameter. This is a key property as regards applications, e.g. in atom lithography and surface probing.

  17. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    Science.gov (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  18. Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Continetti, R.E.; Balko, B.A.; Lee, Y.T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H/sub 2/ /minus/> DH + H and the substitution reaction D + C/sub 2/H/sub 2/ /minus/> C/sub 2/HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs.

  19. Metamaterial light sources driven by electron beams

    OpenAIRE

    ADAMO, G.; MacDonald, K. F.; De Angelis, F.; Di Fabrizio, E.; Zheludev, N. I.

    2011-01-01

    We demonstrate a new generation of free-space and fibre-coupled tuneable light sources based on nanostructured photonic metamaterials driven by free-electrons beams. Emission wavelengths are determined by metamaterial resonant modes and electron energies

  20. Advanced Light Source beam diagnostics systems

    Energy Technology Data Exchange (ETDEWEB)

    Hinkson, J.

    1993-10-01

    The Advanced Light Source (ALS), a third-generation synchrotron light source, has been recently commissioned. Beam diagnostics were very important to the success of the operation. Each diagnostic system is described in this paper along with detailed discussion of its performance. Some of the systems have been in operation for two years. Others, in the storage ring, have not yet been fully commissioned. These systems were, however, working well enough to provide the essential information needed to store beam. The devices described in this paper include wall current monitors, a beam charge monitor, a 50 ohm Faraday cup, DC current transformers, broad-hand striplines, fluorescence screens, beam collimators and scrapers, and beam position monitors. Also, the means by which waveforms are digitized and displayed in the control room is discussed.

  1. Direct detection of momentum flux in atomic and molecular beams

    Science.gov (United States)

    Choi, J. G.; Hayden, J. S.; O'Connor, M. T.; Diebold, G. J.

    1981-10-01

    We describe the use of a microphone for detection of atomic and molecular beams in a high-vacuum environment. Two experiments were carried out to demonstrate this detection method. Pulsed beams of argon were detected using a conventional electret microphone where the output of the microphone was displayed directly on an oscilloscope or processed with a boxcar averager to remove the transient oscillations of the microphone diaphragm. Amplitude modulated, continuous beams of atomic argon were also detected using a lock-in amplifier. The microphone possesses a response to the pressure or momentum flux in the beam that appears to be unique among beam detectors. We use the classical equipartition theorem to calculate the magnitude of the random fluctuations in the output voltage of the microphone that is used to give an expression for the minimum detectable momentum flux in the beam. For a typical microphone we find this to be 3×10-8 Pa, (in a 1-Hz bandwidth), which corresponds to a minimum number density of 1×106 cm-3 for an effusive argon beam at 300 K.

  2. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  3. Sensitivity of MSE measurements on the beam atomic level population.

    Science.gov (United States)

    Ruiz, C; Kumar, S T A; Anderson, F S B; Anderson, D T

    2016-11-01

    The effect of variation in atomic level population of a neutral beam on the Motional Stark Effect (MSE) measurements is investigated in the low density plasmas of HSX stellarator. A 30 KeV, 4 A, 3 ms hydrogen diagnostic neutral beam is injected into HSX plasmas of line averaged electron density ranging from 2 to 4 ⋅ 1018 m-3 at a magnetic field of 1 T. For this density range, the excited level population of the hydrogen neutral beam is expected to undergo variations. Doppler shifted and Stark split Hα and Hβ emissions from the beam are simultaneously measured using two cross-calibrated spectrometers. The emission spectrum is simulated and fit to the experimental measurements and the deviation from a statistically populated beam is investigated.

  4. Sensitivity of MSE measurements on the beam atomic level population

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C., E-mail: carlos.ruiz@wisc.edu; Kumar, S. T. A.; Anderson, F. S. B.; Anderson, D. T. [University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)

    2016-11-15

    The effect of variation in atomic level population of a neutral beam on the Motional Stark Effect (MSE) measurements is investigated in the low density plasmas of HSX stellarator. A 30 KeV, 4 A, 3 ms hydrogen diagnostic neutral beam is injected into HSX plasmas of line averaged electron density ranging from 2 to 4 ⋅ 10{sup 18} m{sup −3} at a magnetic field of 1 T. For this density range, the excited level population of the hydrogen neutral beam is expected to undergo variations. Doppler shifted and Stark split H{sub α} and H{sub β} emissions from the beam are simultaneously measured using two cross-calibrated spectrometers. The emission spectrum is simulated and fit to the experimental measurements and the deviation from a statistically populated beam is investigated.

  5. Atomic Beam Laser Spectrometer for In-field Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group

    2016-06-22

    This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft3, < 1000W.

  6. Entrainment of lithium atoms into a supersonic beam and magnetic deceleration

    Science.gov (United States)

    Lu, Yu; Gradl, Lukas; Ha, Lichung; Hillberry, Logan; Melin, Kevin; Nagornykh, Pavel; Zesch, Jordan; Raizen, Mark

    2017-04-01

    We report our progress on the development of an alternative to laser cooling of neutral atoms, using alkali atoms as the benchmark for a direct comparison. The first step is optimization of entrainment of lithium into a supersonic beam followed by magnetic deceleration. We create a supersonic beam of cold helium gas by pulsing on an Even-Lavie valve, which then crosses lithium vapor generated by a directional oven. The resulting entrainment number and temperature of the lithium atoms are measured downstream with a hot-wire detector. In order to further optimize entrainment, we developed a pulsed atomic source that is synchronized with the supersonic valve with an appropriate delay time. Lithium atoms from the directional oven accumulate on a thin metallic ribbon and are quickly evaporated as a short current pulse is applied, creating a dense plume of lithium vapor. The entrained lithium beam will be slowed by a magnetic decelerator as demonstrated in earlier work, combining all the components to deliver lithium atoms near rest in the laboratory frame. Atomic phase space density will be further increased by a new method that we recently proposed, which utilizes optical pumping and magnetic kicks, and does not rely on the momentum of the photon. W.M. Keck Foundation.

  7. Application of an atomic oxygen beam facility to the investigation of shuttle glow chemistry

    Science.gov (United States)

    Arnold, G. S.; Peplinski, D. R.

    1985-09-01

    A facility for the investigation of the interactions of energetic atomic oxygen with solids is described. The facility is comprised of a four chambered, differentially pumped molecular beam apparatus which can be equipped with one of a variety of sources of atomic oxygen. The primary source is a dc arc heated supersonic nozzle source which produces a flux of atomic oxygen in excess of 10 to the 15th power sq cm/sec at the target, at a velocity of 3.5 km/sec. Results of applications of this facility to the study of the reactions of atomic oxygen with carbon and polyimide films are briefly reviewed and compared to data obtained on various flights of the space shuttle. A brief discussion of possible application of this facility to investigation of chemical reactions which might contribute to atmosphere induced vehicle glow is presented.

  8. Development of atomic beam probe for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Berta, M., E-mail: bertam@sze.hu [Széchenyi István University, EURATOM Association, Győr (Hungary); Institute of Plasma Physics AS CR, v.v.i., Prague (Czech Republic); Anda, G.; Aradi, M.; Bencze, A.; Buday, Cs.; Kiss, I.G.; Tulipán, Sz.; Veres, G.; Zoletnik, S. [Wigner – RCP, HAS, EURATOM Association, Budapest (Hungary); Havlícek, J.; Háček, P. [Institute of Plasma Physics AS CR, v.v.i., Prague (Czech Republic); Charles University in Prague, Faculty of Mathematics and Physics (Czech Republic)

    2013-11-15

    Highlights: • ABP is newly developed diagnostic. • Unique measurement method for the determination of plasma edge current variations caused by different transient events such as ELMs. • The design process has been fruitfully supported by the physically motivated computer simulations. • Li-BES system has been modified accordingly to the needs of the ABP. -- Abstract: The concept and development of a new detection method for light alkali ions stemming from diagnostic beams installed on medium size tokamak is described. The method allows us the simultaneous measurement of plasma density fluctuations and fast variations in poloidal magnetic field, therefore one can infer the fast changes in edge plasma current. The concept has been worked out and the whole design process has been done at Wigner RCP. The test detector with appropriate mechanics and electronics is already installed on COMPASS tokamak. General ion trajectory calculation code (ABPIons) has also been developed. Detailed calculations show the possibility of reconstruction of edge plasma current density profile changes with high temporal resolution, and the possibility of density profile reconstruction with better spatial resolution compared to standard Li-BES measurement, this is important for pedestal studies.

  9. Characterization of a metastable neon beam extracted from a commercial RF ion source

    CERN Document Server

    Ohayon, B; Ron, G

    2015-01-01

    We have used a commercial RF ion-source to extract a beam of metastable neon atoms. The source was easily incorporated into our existing system and was operative within a day of installation. The metastable velocity distribution, flux, flow, and efficiency were investigated for different RF powers and pressures, and an optimum was found at a flux density of $2\\times10^{12}\\,$atoms/s/sr. To obtain an accurate measurement of the amount of metastable atoms leaving the source, we insert a Faraday cup in the beam line and quench some of them using a weak $633\\,$nm laser beam. In order to determine how much of the beam was quenched before reaching our detector, we devised a simple model for the quenching transition and investigated it for different laser powers. This detection method can be easily adapted to other noble gas atoms.

  10. Laser source of neutral atoms for collective field particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskiy, Yu.A.; Mironov, V.E.; Sarantsev, V.P.; Sil' nov, S.M.; Sotnichenko, E.A.; Ter-Martirosyan, Z.A.; Shestakov, B.A.

    1984-03-01

    Laser sources for collective-field particle accelerators, of ions of almost all chemical elements, operate in deep vacuum (10/sup -8/ -10/sup -9/ torr) and in a strong alternating magnetic field (up to 20 kOe, 50 Hz). Under such conditions a laser source is required to deliver an atom flux of 10/sup 11/ -10/sup 12/ in pulses of 10-100 ms duration from a target to electron rings. Such a laser source has been designed for the collective-field heavy-ion accelerator at the Joint Institute of Nuclear Research. It consists of a laser, focusing lens, and conical target of the material whose atoms are to be extracted. The equipment is laid out with the compressor tube mounted on a support inside the vacuum chamber and the laser source in front of the window on the extension of the compressor tube axis. This construction can be modified for large electron rings, with axicon optics that reshape the incoming laser beam into an annular beam for electron rings with radii longer than 8 cm or by moving the laser source from the axial location to a peripheral location relative to the compressor tube for electron rings with radii of 30-35 cm. These three variants of such a laser source were evaluated in an experimental test stand, with a Q-switched YAG:Nd/sup 3 +/ laser (wavelength lambda = 1.06 ..mu..m) emitting radiation pulses of 0.06 J energy and 10 ns duration, and with lead, aluminum, iron, or copper used as target material. The results of measurements, accurate within 20%, indicate that the laser source is most effective with lead targets and least effective with copper targets. 9 references, 9 figures.

  11. Electron Beam Source for Technological Applications

    Science.gov (United States)

    Polyakov, V. A.; Shchedrin, I. S.

    1997-05-01

    Electron beam source with thermionic cathode and its application for technological purposes are described.Three electrode electron gun has a lanthanum hexaboride disc emitter with indirect heating. Accelerating voltage can be varied from 20 to 100 kV.Maximum d.c. current is 1-2 A for emitter diameter 4-5 mm.Magnetic focusing lens of solenoidal type ensures high beam power density on the object processed - up to 10 MW per sq.sm.This electron source was used for welding and thermoprocessing - surface hardening of ball-bearings. To ensure required complex power distribution on their surface special electronic unit for electron beam position control was designed.At the surface of ball-bearings the layer with hardness of 62-64 HRC and thickness about 1-1.5 mm was formed after electron processing that considerably increased their working period.

  12. Toward single mode, atomic size electron vortex beams.

    Science.gov (United States)

    Krivanek, Ondrej L; Rusz, Jan; Idrobo, Juan-Carlos; Lovejoy, Tracy J; Dellby, Niklas

    2014-06-01

    We propose a practical method of producing a single mode electron vortex beam suitable for use in a scanning transmission electron microscope (STEM). The method involves using a holographic "fork" aperture to produce a row of beams of different orbital angular momenta, as is now well established, magnifying the row so that neighboring beams are separated by about 1 µm, selecting the desired beam with a narrow slit, and demagnifying the selected beam down to 1-2 Å in size. We show that the method can be implemented by adding two condenser lenses plus a selection slit to a straight-column cold-field emission STEM. It can also be carried out in an existing instrument, the monochromated Nion high-energy-resolution monochromated electron energy-loss spectroscopy-STEM, by using its monochromator in a novel way. We estimate that atom-sized vortex beams with ≥ 20 pA of current should be attainable at 100-200 keV in either instrument.

  13. On-line laser spectroscopy with thermal atomic beams

    CERN Document Server

    Thibault, C; De Saint-Simon, M; Duong, H T; Guimbal, P; Huber, G; Jacquinot, P; Juncar, P; Klapisch, Robert; Liberman, S; Pesnelle, A; Pillet, P; Pinard, J; Serre, J M; Touchard, F; Vialle, J L

    1981-01-01

    On-line high resolution laser spectroscopy experiments have been performed in which the light from a CW tunable dye laser interacts at right angles with a thermal atomic beam. /sup 76-98/Rb, /sup 118-145 /Cs and /sup 208-213/Fr have been studied using the ionic beam delivered by the ISOLDE on-line mass separator at CERN while /sup 30-31/Na and /sup 38-47/K have been studied by setting the apparatus directly on-line with the PS 20 GeV proton beam. The principle of the method is briefly explained and some results concerning nuclear structure are given. The hyperfine structure, spins and isotope shifts of the alkali isotopes and isomers are measured. (8 refs).

  14. Substrate Dependent Ad-Atom Migration on Graphene and the Impact on Electron-Beam Sculpting Functional Nanopores.

    Science.gov (United States)

    Freedman, Kevin J; Goyal, Gaurav; Ahn, Chi Won; Kim, Min Jun

    2017-05-10

    The use of atomically thin graphene for molecular sensing has attracted tremendous attention over the years and, in some instances, could displace the use of classical thin films. For nanopore sensing, graphene must be suspended over an aperture so that a single pore can be formed in the free-standing region. Nanopores are typically drilled using an electron beam (e-beam) which is tightly focused until a desired pore size is obtained. E-beam sculpting of graphene however is not just dependent on the ability to displace atoms but also the ability to hinder the migration of ad-atoms on the surface of graphene. Using relatively lower e-beam fluxes from a thermionic electron source, the C-atom knockout rate seems to be comparable to the rate of carbon ad-atom attraction and accumulation at the e-beam/graphene interface (i.e., R knockout ≈ R accumulation ). Working at this unique regime has allowed the study of carbon ad-atom migration as well as the influence of various substrate materials on e-beam sculpting of graphene. We also show that this information was pivotal to fabricating functional graphene nanopores for studying DNA with increased spatial resolution which is attributed to atomically thin membranes.

  15. Electron beam ion sources for student education at universities

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Erik [DREEBIT GmbH, Dresden (Germany); Zschornack, Guenter [TU Dresden, Dresden (Germany)

    2014-07-01

    Ion beams have become essential tools used in many fields of fundamental research as well as industrial applications. Thus, it is important for todays physics students to understand the basics of ion beam creation, transportation as well as ion-surface interactions. We present results from laboratory training courses using table-top sized electron beam ion sources of the Dresden EBIT type which is able to produce a large spectrum of ions with low or high charge states. The initial ion beam is guided through several ion optical elements like Einzel lenses and deflectors, is separated by the charge-to-mass ratio of its components with a Wien-Filter or dipole analyzing magnet and is detected in a Faraday Cup. A specific assembly for laboratory training as used at the Technische Universitaet Dresden and the Jagiellonian University in Krakow, Poland, is introduced. In typical experiments, students analyze the charge-to-mass ratio spectrum from a Dresden EBIT measured using a Wien Filter. The composition of the extracted ion beam can be manipulated by the gas pressure or the ionisation time. In a wider context, the atomic physics processes occurring especially during the production of highly charged ions also appear in nuclear fusion facilities as well as in many astrophysical phenomena, for example supernovas. Such aspects can be discussed in order to help students connect to modern research carried out at large international facilities.

  16. Pulsed metastable atom source for low vapour-pressure metals

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Urena, A.; Verdasco Costales, E. (Universidad Complutense de Madrid (Spain). Facultad de Quimica); Saez Rabanos, V. (Universidad Politecnica de Madrid (Spain). Escuela Tecnica Superior de Ingenieros Industriales)

    1990-03-01

    The basic design and most relevant experimental conditions of a pulsed metastable atomic-beam oven are described. The stainless steel oven is suitable for vaporising metals and salts up to around 1400 K producing intense beams of metastable alkaline-earth atoms when pulsed or continuous wave low voltage discharges are used. Several applications using atomic calcium in its {sup 3}P and {sup 1}D electronic state are reported. The beam characterisation and discharge efficiency have been measured by time-of-flight or laser-induced fluorescence techniques. In addition, a method of changing the metastable n{sup 3}P/n{sup 1}D ratio, by raising the oven temperature, is described which looks very promising for the study of electronic selectivity in reactive collision processes. Finally several spectroscopic applications for atomic and molecular beam determinations are reported. (author).

  17. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  18. The quantum measurement effect of interaction without interaction for an atomic beam

    Science.gov (United States)

    Huang, Yong-Yi

    When an atomic beam collectively and harmonically vibrates perpendicular to the wave vector of the beam, the number of atoms reaching the atomic detector will have a vibrant factor Δt / T if the measurement time interval Δt is shorter than the period T. This new quantum mechanical measurement effect for an atomic beam is called interaction without interaction: though the translational motion of the atomic beam does not interact with its collective and transverse harmonic vibration, the latter will have an effect on the measured number of atoms associated with the former. From the new measurement effect the classical harmonic vibration's period is evaluated. We give a clear physical picture and a satisfactory physical interpretation for the measurement effect based on the Copenhagen interpretation of quantum mechanics. We present an experimental proposal to verify this measurement effect for an ion beam instead of an atomic beam.

  19. Cold beam of isotopically pure Yb atoms by deflection using 1D ...

    Indian Academy of Sciences (India)

    Both clock and EDM measurements gain from having a cold continuous beam of atoms that is separated from the cooling laser beams. For atomic clocks, a continuous beam avoids intermodulation or the Dick effect [10], seen in pulsed fountain clocks. For. EDM experiments, the electric-field plates can be brought very close ...

  20. Geometric optics with atomic beams scattered by a detuned standing laser wave

    CERN Document Server

    Prants, S V; Konkov, L E

    2012-01-01

    We report on theoretical and numerical study of propagation of atomic beams crossing a detuned standing-wave laser beam in the geometric oprics limit. The interplay between external and internal atomic degrees of freedom is used to manipulate the atomic motion along the optical axis by light. By adjusting the atom-laser detuning, we demonstrate how to focus, split and scatter atomic beams in a real experiment. The novel effect of chaotic scattering of atoms at a regular near-resonant standing wave is found numerically and explained qualitatively. Some applications of the effects found are discussed.

  1. Discrete Energies of a Weakly Outcoupled Atom Laser Beam Outside the Bose–Einstein Condensate Region

    Directory of Open Access Journals (Sweden)

    Teguh Budi Prayitno

    2014-12-01

    Full Text Available We consider the possibility of a discrete set of energies of a weakly outcoupled atom laser beam to the homogeneous Schrödinger equation with anisotropic harmonic trap in Cartesian coordinates outside the Bose–Einstein condensate region. This treatment is used because working in the cylindrical coordinates is not really possible, even though we implement the cigar-shaped trap case. The Schrödinger equation appears to replace a set of two-coupled Gross– Pitaevskii equations by enabling the weak-coupling assumption. This atom laser can be produced in a simple way that only involves extracting the atoms in a condensate from by using the radio frequency field. We initially present the relation between condensates as sources and atom laser as an output by exploring the previous work of Riou et al. in the case of theoretical work for the propagation of atom laser beams. We also show that even though the discrete energies are obtained by means of an approaching harmonic oscillator, degeneracy is only available in two states because of the anisotropic external potential

  2. Thermal beam of metastable krypton atoms produced by optical excitation.

    Science.gov (United States)

    Ding, Y; Hu, S M; Bailey, K; Davis, A M; Dunford, R W; Lu, Z T; O'Connor, T P; Young, L

    2007-02-01

    A room-temperature beam of krypton atoms in the metastable 5s[3/2]2 level is demonstrated via an optical excitation method. A Kr-discharge lamp is used to produce vacuum ultraviolet photons at 124 nm for the first-step excitation from the ground level 4p6 1S0 to the 5s[3/2]1 level. An 819 nm Ti:sapphire laser is used for the second-step excitation from 5s[3/2]1 to 5s[3/2]2 followed by a spontaneous decay to the 5s[3/2]2 metastable level. A metastable atomic beam with an angular flux density of 3 x 10(14) s(-1) sr(-1) is achieved at the total gas flow rate of 0.01 cm3/s at STP (or 3 x 10(17) at./s). The dependences of the flux on the gas flow rate, laser power, and lamp parameters are investigated.

  3. Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid.

    Science.gov (United States)

    Miyazawa, K; Izumi, H; Watanabe-Nakayama, T; Asakawa, H; Fukuma, T

    2015-03-13

    Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 μm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena.

  4. Acoustic source for generating an acoustic beam

    Science.gov (United States)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  5. Beam dynamics in Compton ring gamma sources

    Directory of Open Access Journals (Sweden)

    Eugene Bulyak

    2006-09-01

    Full Text Available Electron storage rings of GeV energy with laser pulse stacking cavities are promising intense sources of polarized hard photons which, via pair production, can be used to generate polarized positron beams. In this paper, the dynamics of electron bunches circulating in a storage ring and interacting with high-power laser pulses is studied both analytically and by simulation. Both the common features and the differences in the behavior of bunches interacting with an extremely high power laser pulse and with a moderate pulse are discussed. Also considerations on particular lattice designs for Compton gamma rings are presented.

  6. Towards Demonstration of a MOT-Based Continuous Cold CS-Beam Atomic Clock

    National Research Council Canada - National Science Library

    Wang, H; Camparo, J. C; Iyanu, G

    2007-01-01

    ... (MOT). This technique has the unique advantage of generating a useful cold atomic beam just outside the volume of a MOT and, hence, can greatly reduce the size of the atomic clock physics package...

  7. Atom trap for 221Fr from 225Ac ion beam implantation

    Science.gov (United States)

    Tandecki, M.; Behr, J. A.; Pearson, M. R.; Zhang, J.; Orozco, L.; Collister, R.; Gwinner, G.; Gomez, E.; Aubin, S.

    2012-10-01

    A neutral atom trap for francium parity violation experiments is being set up at TRIUMF. The half-lives of the longest isotopes are minutes, which mostly will be produced by the online mass separator of the ISAC facility. For systematic error studies for precision measurements, it can help to have a longer-lived source. ^221Fr is produced by t1/2=10 day ^225Ac α decay, and has been trapped at JILA [Z.-T. Lu PRL 79 994 (1997)]. Our approach would implant the mass-separated ^225Ac beam produced by ISAC at 1x10^7/s for a day after the production proton beam is turned off. The scheme to be tested: 30 keV ^225Ac beam is implanted in tantalum for a day; the sample is held in front of an yttrium foil (normally used to stop a mass-separated Fr beam) for 1 minute; 100 keV ^221Fr recoils escape and implant in the yttrium; tantalum is withdrawn, yttrium is moved to trap and heated; cycle repeats. First tests are planned for September, and one goal is precise measurements of atomic hyperfine splittings sensitive to the spatial distribution of nuclear magnetism.

  8. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Claude

    2009-10-28

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  9. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms; Experiences d'optique atomique coherente ou non avec un jet superfin d'atomes metastables de gaz rares

    Energy Technology Data Exchange (ETDEWEB)

    Grucker, J

    2007-12-15

    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable {sup 3}P{sub 2} state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam ({sup 3}P{sub 2}). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms.

  10. Numerical Simulation of Multicomponent Ion Beam from Ion Sources

    CERN Document Server

    Alexandrov, V S; Kazarinov, Yu M; Shevtsov, V P; Shirkov, G D

    1999-01-01

    A program library for numerical simulation of a multicomponent charged particle beam from ion sources is presented. The library is aimed for simulation of high current, low energy multicomponent ion beam from ion source through beamline and realized under the Windows user interface for the IBM PC. It is used for simulation and optimization of beam dynamics and based on successive and consistent application of two methods: the momentum method of distribution function (RMS technique) and particle in cell method. The library has been used to simulate and optimize the transportation of tantalum ion beam from the laser ion source (CERN) and calcium ion beam from the ECR ion source (JINR, Dubna).

  11. Beam current feedback regulation of the RF neutral beam sources of ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Franzen, P. E-mail: peter.franzen@ipp.mpg.de; Obermayer, S.; Schaeffler, J.; Staebler, A.; Speth, E.; Vollmer, O

    2001-10-01

    This paper reports on the technical implementation and the successful commissioning of the beam current feedback regulation system of the RF neutral beam sources for ASDEX Upgrade. The beam current is regulated by adjusting the RF input power. This is possible due to the fast response of the beam current to changes of the RF input power within a few milliseconds. With beam current feedback regulation, perveanced-matched operation of the sources can be maintained throughout the pulse, thereby increasing the beam quality and the source reliability.

  12. Manipulation and analysis of atomic and molecular beams using transmission gratings and Fresnel zone plates

    Energy Technology Data Exchange (ETDEWEB)

    Grisenti, R.E.

    2000-06-01

    In this thesis experimental results on the diffraction of rare gas atoms (He, Ne, Ar, Kr) and molecular (D{sub 2}) beams by a 100 nm period transmission grating and on the focusing of a helium atom beam through a Fresnel zone plate have been reported. (orig.)

  13. The effect of atoms excited by electron beam on metal evaporation

    CERN Document Server

    Xie Guo Feng; Ying Chun Tong

    2002-01-01

    In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases

  14. Control of RILIS lasers at IGISOL facilities using a compact atomic beam reference cell

    Energy Technology Data Exchange (ETDEWEB)

    Kron, T., E-mail: kron@uni-mainz.de [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany); Ferrer-Garcia, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica (Belgium); Lecesne, N. [GANIL, CEA/DSM-CNRS/IN2P3 (France); Sonnenschein, V. [University of Jyvaeskylae, Department of Physics (Finland); Raeder, S. [TRIUMF - Canada' s National Laboratory for Nuclear and Particle Physics (Canada); Rossnagel, J.; Wendt, K. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany)

    2013-04-15

    The choice and proper operation of the laser systems for laser ion sources at on-line facilities using multi-step resonance ionization processes is the basis for production of intense and pure radioactive ion beams. These pave the way for numerous fundamental studies in nuclear and astrophysics. A comparison between systems of medium or high repetition rate pulsed tunable lasers based on dyes or crystals as active medium has been carried out at the IGISOL facility at Louvain-la-Neuve. The importance of properly controlling the operation conditions of the individual lasers via a reference atomic beam chamber is highlighted and design and implementation of such a compact device for permanent monitoring as well as possible regulation of the various laser parameters of relevance is discussed.

  15. Emission of muonic tritium into vacuum: An atomic beam for muon experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.C. [University of British Columbia (Canada); Bailey, J.M. [Chester Technology (United Kingdom); Beer, G.A. [University of Victoria (Canada); Beveridge, J.L. [TRIUMF (Canada); Douglas, J.L. [University of Victoria (Canada); Huber, T.M. [Gustavus Adolphus College (United States); Jacot-Guillarmod, R. [Universite de Fribourg, CH-1700 (Switzerland); Kammel, P. [University of California (United States); Kim, S.K. [Jeonbuk National University (Korea, Republic of); Knowles, P.E. [University of Victoria (Canada); Kunselman, A.R. [University of Wyoming (United States); Maier, M. [University of Victoria (Canada); Markushin, V.E. [Paul Scherrer Institute (Switzerland); Marshall, G.M. [TRIUMF (Canada); Martoff, C.J. [Temple University (United States); Mason, G.R. [University of Victoria (Canada); Mulhauser, F. [Universite de Fribourg, CH-1700 (Switzerland); Olin, A. [University of Victoria (Canada); Petitjean, C. [Paul Scherrer Institute (Switzerland); Porcelli, T.A. [University of Victoria (Canada)] (and others)

    1997-04-15

    The emission of muonic tritium atoms from a thin film of hydrogen isotopes into vacuum was observed. The time and position of the muon decays were measured by tracking the decay electron trajectory. The observations are useful both for testing the theoretical cross sections for muonic atomic interactions, and producing an atomic beam of slow {mu}{sup -}t with a controllable energy.

  16. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    Science.gov (United States)

    Cross, Jon B.; Cremers, David A.

    1988-01-01

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  17. Electron transfer processes of atomic and molecular doubly charged ions: information from beam experiments

    Science.gov (United States)

    Herman, Zdenek

    2013-07-01

    Single-electron transfer reactions in collisions of atomic and molecular doubly charged ions, with atoms and molecules, were investigated in a series of crossed-beam scattering, translational spectroscopy and product luminescence experiments. Investigation of a series of atomic dication-atom electron transfer at collision energies of 0.1-10 eV provided data on differential and relative total cross sections of state-to-state processes. Populations of electronic and vibrational states and rotational temperatures of molecular product ions were obtained from studies of non-dissociative electron transfer in systems containing simple molecular dications and/or molecular targets. The product electronic states populated with highest probability were those for which the translational energy release was 3-5 eV, indicating that the 'reaction window' concept, based on the Landau-Zener formalism, is applicable also to molecular systems. Population of the vibrational states of the molecular products could be described by Franck-Condon factors of the vertical transitions between the reactant and product states, especially at higher (keV) collision energies. Rotational temperature of the product molecular cations was found to be surprisingly low, mostly 400-500 K, practically the temperature of the ion source.

  18. Beam optics optimization of a negative-ion sputter source

    Indian Academy of Sciences (India)

    A negative-ion sputter source has been studied in order to increase the beam intensity delivered by the Vivitron tandem injector. The aim was to characterize the influence on the beam intensity of some factors related to the configuration of the source such as the shape of the target holder, the target surface topography and ...

  19. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Borodi, Gheorghe

    2008-12-09

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO{sub 2}{sup +} with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H{sub 2} densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH{sup +}, CH{sub 2}{sup +}, and CH{sub 4}{sup +} have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  20. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE

    Science.gov (United States)

    Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus

    2017-08-01

    At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on

  1. Operating characteristics of a new ion source for KSTAR neutral beam injection system.

    Science.gov (United States)

    Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-01

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  2. Structure formation in atom lithography using geometric collimation

    NARCIS (Netherlands)

    Meijer, T.; Beardmore, J.P.; Fabrie, C.G.C.H.M.; van Lieshout, J.P.; Notermans, R.P.M.J.W.; Sang, R.T.; Vredenbregt, E.J.D.; Van Leeuwen, K.A.H.

    2011-01-01

    Atom lithography uses standing wave light fields as arrays of lenses to focus neutral atom beams into line patterns on a substrate. Laser cooled atom beams are commonly used, but an atom beam source with a small opening placed at a large distance from a substrate creates atom beams which are locally

  3. BEAM INSTRUMENTATION FOR THE SPALLATION NEUTRON SOURCE RING.

    Energy Technology Data Exchange (ETDEWEB)

    WITKOVER,R.L.; CAMERON,P.R.; SHEA,T.J.; CONNOLLY,R.C.; KESSELMAN,M.

    1999-03-29

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. [1] The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10{sup -4}. A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring.

  4. Performance of Advanced Light Source particle beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Hinkson, J.

    1993-05-01

    The Advanced Light Source (ALS), a third-generation synchrotron radiation facility, is complete. The particle beam diagnostics have been installed and tested. The beam injection systems have been running for two years. We have performance data on beam position monitors, beam intensity monitors, scintillators, beam collimators, a 50 {Omega} Faraday cup, and broad-band striplines and kickers used in the linac, transport lines, and the booster synchrotron. The single-turn monitoring capability of the booster beam position monitoring system has been particularly useful for studying beam dynamics. Beam diagnostics for the storage ring are being commissioned. In this paper we describe each instrument, show its performance, and outline how the instruments are controlled and their output data displayed.

  5. The quantum measurement effect of interaction without interaction for an atomic beam

    Directory of Open Access Journals (Sweden)

    Yong-Yi Huang

    Full Text Available When an atomic beam collectively and harmonically vibrates perpendicular to the wave vector of the beam, the number of atoms reaching the atomic detector will have a vibrant factor Δt/T if the measurement time interval Δt is shorter than the period T. This new quantum mechanical measurement effect for an atomic beam is called interaction without interaction: though the translational motion of the atomic beam does not interact with its collective and transverse harmonic vibration, the latter will have an effect on the measured number of atoms associated with the former. From the new measurement effect the classical harmonic vibration’s period is evaluated. We give a clear physical picture and a satisfactory physical interpretation for the measurement effect based on the Copenhagen interpretation of quantum mechanics. We present an experimental proposal to verify this measurement effect for an ion beam instead of an atomic beam. Keywords: The quantum measurement effect of interaction without interaction, The Copenhagen interpretation of quantum mechanics

  6. Summary of informal workshop on state of ion beam facilities for atomic physics research

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.W.; Cocke, C.L.; Datz, S.; Kostroun, V.

    1984-11-13

    The present state of ion beam facilities for atomic physics research in the United States is assessed by means of a questionnaire and informal workshop. Recommendations for future facilities are given. 3 refs.

  7. Characteristics of The Narrow Spectrum Beams Used in the Secondary Standard Dosimetry Laboratory at the Lebanese Atomic Energy Commission.

    Science.gov (United States)

    Melhem, N; El Balaa, H; Younes, G; Al Kattar, Z

    2017-06-15

    The Secondary Standard Dosimetry Laboratory at the Lebanese Atomic Energy Commission has different calibration methods for various types of dosimeters used in industrial, military and medical fields. The calibration is performed using different beams of X-rays (low and medium energy) and Gamma radiation delivered by a Cesium 137 source. The Secondary Standard Dosimetry laboratory in charge of calibration services uses different protocols for the determination of high and low air kerma rate and for narrow and wide series. In order to perform this calibration work, it is very important to identify all the beam characteristics for the different types of sources and qualities of radiation. The following work describes the methods used for the determination of different beam characteristics and calibration coefficients with their uncertainties in order to enhance the radiation protection of workers and patient applications in the fields of medical diagnosis and industrial X-ray. All the characteristics of the X-ray beams are determined for the narrow spectrum series in the 40 and 200 keV range where the inherent filtration, the current intensity, the high voltage, the beam profile and the total uncertainty are the specific characteristics of these X-ray beams. An X-ray software was developed in order to visualize the reference values according to the characteristics of each beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Production of transversely cooled, spin-polarized pulse beam from a low-velocity intense source of rubidium

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eu Seok; Kim, Ji Yeon; Park, Chang Yong; Cho, D. [Korea University, Seoul (Korea, Republic of)

    1998-11-01

    In this experiment we studied the possibility of producing a pulsed beam for greater instantaneous beam flux, cooling the beam transversely to increase the effective beam flux and finally optical pumping to produce spin polarized atomic beam. We successfully and reliably produced a pulsed beam, and observed definite transverse cooling of the beam. We developed rather elaborate control program and interface hardware to produce the pulsed beam, and transversely cool, optically pump, and detect the atoms. We have produced the low-velocity intense source(LVIS) beam and operated it in a pulsed mode. Using an electronically controlled shutter we could load a Magneto Optical Trap(MOT) for 1 sec and launched a pulse of rubidium atoms. We performed the transverse cooling experiment using the pulses. In order to detect how the cooling is working, we used a slit to narrow down the probe beam. The probe beam had a width of 1 mm and we scanned it using a micrometer-controlled translational stage. (Cho, G.S.). 7 refs., 2 figs.

  9. Coherent and dynamic beam splitting based on light storage in cold atoms

    OpenAIRE

    Kwang-Kyoon Park; Tian-Ming Zhao; Jong-Chan Lee; Young-Tak Chough; Yoon-Ho Kim

    2016-01-01

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the...

  10. Hyperthermal neutral beam sources for material processing.

    Science.gov (United States)

    Yoo, S J; Kim, D C; Joung, M; Kim, J S; Lee, B J; Oh, K S; Kim, K U; Kim, Y H; Kim, Y W; Choi, S W; Son, H J; Park, Y C; Jang, J-N; Hong, M P

    2008-02-01

    Hyperthermal neutral beams have a great potential for material processes, especially for etching and thin film deposition for semiconductor and display fabrication as well as deposition for various thin film applications. Plasma-induced damage during plasma etching is a serious problem for manufacturing deep submicron semiconductor devices and is expected to be a problem for future nanoscale devices. Thermal and plasma-induced damage is also problematic for thin film depositions such as transparent conductive oxide films on organic light emitting diodes or flexible displays due to high temperature processes in plasma environments. These problems can be overcome by damage-free and low-temperature processes with hyperthermal neutral beams. We will present the status of the hyperthermal neutral beam development and the applications, especially, in semiconductor and display fabrication and introduce potential applications of thin film growing for optoelectronic devices such as light emitting diodes.

  11. Ion beams in SEM : An experiment towards a high brightness low energy spread electron impact gas ion source

    NARCIS (Netherlands)

    Jun, D.S.; Kutchoukov, V.G.; Kruit, P.

    2011-01-01

    A next generation ion source suitable for both high resolution focused ion beam milling and imaging applications is currently being developed. The new ion source relies on a method of which positively charged ions are extracted from a miniaturized gas chamber where neutral gas atoms become ionized

  12. Electrodynamics of relativistic electron beam x-ray sources

    Science.gov (United States)

    Niknejadi, Pardis

    Probing matter at atomic scales provides invaluable information about its structure; as a result interest in sources of x-rays and gamma-rays with high spectral resolution, low angular divergence and small source size has been on the rise. Explorations in this domain require x-ray or gamma-ray sources with high brightness. In the past decade, relativistic electron sources such as synchrotron rings and free electron lasers have proven to be the best technology available for the production of such beams. We1 start with an introduction to the physics of radiation and provide a summary of the theoretical grounds this work is based on. This dissertation is dedicated to different aspects of both fundamental processes of radiation in relativistic electron sources, and critical control and diagnostics that are required for the operation of these sources. Therefore this work is broken into two main parts. In the first part, the electron source that is currently set up at University of Hawai`i at Manoa will be introduced in detail. This source has unique capabilities as it is an inverse-Compton scattering (ICS) source that uses a free electron laser (FEL) with pulses of picosecond duration at ˜ 3 GHz rate for production of a coherent/semi-coherent x-ray beam by means of an optical cavity. After introducing the essential elements of the system and what was achieved prior to this work, we will focus on the requirements for achieving an optimum electron beam matched for the operation of the system which is the main focus of part I of this dissertation. The transport beam line of our system is unique and complex. For this reason, a simulation module has been developed for the study and delivery of an optimal beam. We will discuss the capabilities of this system and its compatibility with other elements that were already installed on the beam line. Finally, we will present results and experimental data as well as guidelines for future operation of the system when the microwave

  13. Scalar and vector vortex beams from the source

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2016-10-01

    Full Text Available . Advanced Solid State Lasers 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), 30 October–3 November 2016, Boston, Massachusetts United States Scalar and vector vortex beams from the source Naidoo, Darryl Roux...

  14. Nanoscale metamaterial light source driven by electron beam

    OpenAIRE

    ADAMO, G.; MacDonald, K. F.; De Angelis, F.; Di Fabrizio, E.; Zheludev, N. I.

    2011-01-01

    We demonstrate a new generation of free-space and fibre-coupled tuneable light sources based on nanostructured photonic metamaterials driven by free-electrons beams. Emission wavelengths are determined by metamaterial resonant modes and electron energies.

  15. Extraction simulations and emittance measurements of a Holifield Radioactive Ion Beam Facility electron beam plasma source for radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A. J. II; Liu, Y. [Holifield Radioactive Ion Beam Facility, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2010-02-15

    The Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory has a variety of ion sources used to produce radioactive ion beams (RIBs). Of these, the workhorse is an electron beam plasma (EBP) ion source. The recent addition of a second RIB injector, the Injector for Radioactive Ion Species 2 (IRIS2), for the HRIBF tandem accelerator prompted new studies of the optics of the beam extraction from the EBP source. The source was modeled using SIMION V8.0, and results will be presented, including comparison of the emittances as predicted by simulation and as measured at the HRIBF offline ion source test facilities. Also presented will be the impact on phase space shape resulting from extraction optics modifications implemented at IRIS2.

  16. Atomic scattering from an adsorbed monolayer solid with a helium beam that penetrates to the substrate

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, L.W.; Dammann, Bernd

    2013-01-01

    Diffraction and one-phonon inelastic scattering of a thermal energy helium atomic beam are evaluated in the situation that the target monolayer lattice is so dilated that the atomic beam penetrates to the interlayer region between the monolayer and the substrate. The scattering is simulated......(1 × 1) commensurate monolayer solid of H2/KCl(001). For the latter, there are cases where part of the incident beam is trapped in the interlayer region for times exceeding 50 ps, depending on the spacing between the monolayer and the substrate and on the angle of incidence. The feedback effect...

  17. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  18. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  19. Development Of Beam Position And Profile Monitor Based On Light Radiation Of Atoms Excited By The Beam Particles

    CERN Document Server

    Balalykin, N I; Brovko, O I; Bykovsky, V F; Dietrich, J; Kamerdzhiev, V; Meshkov, I N; Mohos, I; Parfenov, A N

    2004-01-01

    Particle beam position and profile monitor based on registration of the light radiated by residual gas atoms is being developed by collaboration JINR-Forschungszentrum Jülich. Proposed device and first experiments have been performed at Nuclotron (JINR) and COSY (FZJ) accelerators are presented in this report.

  20. Beam optics study of a negative ion source for neutral beam injection application at ASIPP

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiang-Long; Liang, Li-Zhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jiang, Cai-Chao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Xie, Ya-Hong, E-mail: xieyh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chun-Dong; Li, Jun; Gu, Yu-Ming; Chen, Yu-Qian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Jing-Yong; Wu, Ming-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China)

    2017-04-15

    In order to study the generation and extraction of negative ions for neutral beam injection application, a negative ion source is being designed and constructed at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Through a four electrode grids system inside the accelerator, a negative ion beam will be extracted and accelerated up to −60 kV on a reduced scale extraction area of 12 × 50 cm{sup 2} (the area of PG apertures is 185 cm{sup 2}). The beam optics is a key issue for the accelerator design, and greatly determine the source experimental performance in term of beam current, heat load on the grid, beam divergence, and so on. In this paper, the trajectories of electrons and negative ions were simulated in the electrode grids of the negative ion source. The filter capability of electron deflection magnet on the co-extracted electrons is evaluated and confirmed. The negative ion beam optics was designed according to the calculated results of beam divergence and beam radius along the beamlet in different acceleration voltages. The deflection effect of the electron deflection magnet on the negative ion beam was investigated in the single beamlet case and multi-beamlets case.

  1. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  2. Simulations of Beam Injection and Extraction into Ion Sources

    CERN Document Server

    Cavenago, Marco

    2005-01-01

    Charge breeding, consistiting of injecting singly charged ion into ECRIS(Electron Cyclotron Resonance Ion Sources) to extract an highly charged ion beam, is a promising technique for rare or radioactive ion beam. Efficiency and extracted beam temperature are dominated by the strong collisional diffusion of charged ion inside source. A computer code, named BEAM2ECR, written to simulate details of the injection, ionization, collision and extraction processes is described.* A model of injection plasma sheath and of source fringe field were recently added. Neutral injection is also supported, for comparison with other techniques, like gas feeding or metal vapor injection. Results, clearly favouring near axis injection for most cases are described. Code is written in C-language and possibility of concurrent execution over a Linux cluster was recently added.

  3. Transverse coupling property of beam from ECR ion sources.

    Science.gov (United States)

    Yang, Y; Yuan, Y J; Sun, L T; Feng, Y C; Fang, X; Cao, Y; Lu, W; Zhang, X Z; Zhao, H W

    2014-11-01

    Experimental evidence of the property of transverse coupling of beam from Electron Cyclotron Resonance (ECR) ion source is presented. It is especially of interest for an ECR ion source, where the cross section of extracted beam is not round along transport path due to the magnetic confinement configuration. When the ions are extracted and accelerated through the descending axial magnetic field at the extraction region, the horizontal and vertical phase space strongly coupled. In this study, the coupling configuration between the transverse phase spaces of the beam from ECR ion source is achieved by beam back-tracking simulation based on the measurements. The reasonability of this coupling configuration has been proven by a series of subsequent simulations.

  4. Continuum Source Atomic Absorption Spectrometry with a Photodiode Array Detector

    Science.gov (United States)

    Fernando, Reshan Armedious

    The designed continuum source atomic absorption spectrometer consists of a 300W xenon arc lamp (ILC Technology), a flame (Perkin-Elmer) or graphite furnace (Perkin-Elmer, Model HGA 2200) atomizer, a 1.33M focal length high resolution monochromator with 3600 gr/mm grating (McPherson, Model 209), and a 2048-element self scanning linear photodiode array detector (Princeton Instruments, Model PDA-2048). Detector operation, data acquisition and processing was done by using a 66MHz 486 DX/2 personal computer (Gateway 2000). In stage one, the system was optimized for flame atomization. The optimum lamp current, entrance slit width and height were found to be 10A, 20 mum, and 4 mm respectively. The resulted spectral band-pass of the monochromator/PDA combination is on the order of the average atomic absorption profile half-width (0.003 -0.004 nm). The flame parameters such as observation height, air/fuel ratio, and solution uptake rate were optimized along with the detector parameters such as exposure and accumulation for the lowest possible detection limit. The system has clearly demonstrated its multi-element detection capabilities. The calculated detection limits for the present system with an air-acetylene flame is approximately one order of magnitude lower than previously reported CSAAS detection limits, and are on the same order of magnitude as those commonly observed with single element hollow cathode lamp systems. In stage two, flame atomizer was replaced by a graphite furnace atomizer. When compared to the static signal given out by flame atomizer, the graphite furnace produces transient signals. Fast response time of the PDA is well within the time scale of the transient signals produce in graphite furnace and the multi-wavelength detection allows the background correction to be performed by visual inspection. The detection limits calculated for the present system are significantly lower than those previously reported for multi-element CSAAS systems, and are on

  5. Laser sources for precision spectroscopy on atomic strontium.

    Science.gov (United States)

    Poli, N; Ferrari, G; Prevedelli, M; Sorrentino, F; Drullinger, R E; Tino, G M

    2006-04-01

    We present a new laser setup designed for high-precision spectroscopy on laser cooled atomic strontium. The system, which is entirely based on semiconductor laser sources, delivers 200 mW at 461 nm for cooling and trapping atomic strontium from a thermal source, 4 mW at 497 nm for optical pumping from the metastable P23 state, 12 mW at 689 nm on linewidth less than 1 kHz for second-stage cooling of the atomic sample down to the recoil limit, 1.2 W at 922 nm for optical trapping close to the "magic wavelength" for the 0-1 intercombination line at 689 nm. The 689 nm laser was already employed to perform a frequency measurement of the 0-1 intercombination line with a relative accuracy of 2.3 x 10(-11), and the ensemble of laser sources allowed the loading in a conservative dipole trap of multi-isotopes strontium mixtures. The simple and compact setup developed represents one of the first steps towards the realization of a transportable optical standards referenced to atomic strontium.

  6. Beam position monitor data acquisition for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lenkszus, F.R.; Kahana, E.; Votaw, A.J.; Decker, G.A.; Chung, Y.; Ciarlette, D.J.; Laird, R.J.

    1993-01-01

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems.

  7. Beam position monitor data acquisition for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lenkszus, F.R.; Kahana, E.; Votaw, A.J.; Decker, G.A.; Chung, Y.; Ciarlette, D.J.; Laird, R.J.

    1993-06-01

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems.

  8. A Compact Beam Source for Free Electron Lasers

    Science.gov (United States)

    Wang, Mingchang; Xu, Zhizhan; Yu, Jinhui; Lee, Byung Cheol; Lee, Jongmin

    2000-10-01

    A compact beam source produced by pseudospark discharge for free electron lasers is developed. An impedance match between a Marx generator and a pseudospark discharge chamber is analyzed, the impedance characteristic curve for the pseudospark discharge chamber is measured for the first time. The configuration of the new device is described, it has a length of one meter; the original pulse line accelerator has total length of 6 meters. A voltage of 300 kV, a current of 4 kA for the compact device is measured. The electron beam has a diameter of 1.5 mm and has self-pinch effect. The beam has a brightness of 10^12 A/(m rad)^2, as same as a brightness from photo-cathode. The compact beam source can be used for free electron lasers and high power switch.

  9. Imaging many-body Coulomb interactions and ultrafast photoionization and diffraction with cold atom electron and ion sources

    Science.gov (United States)

    Scholten, Robert; Speirs, Rory; Murphy, Dene; Torrance, Joshua; Thompson, Daniel; Sparkes, Benjamin; McCulloch, Andrew

    2017-04-01

    The CAEIS cold-atom electron/ion source, based on photoionisation of laser cooled atoms, provides a powerful tool for investigating fundamental physical processes. The very low temperature of the ions has allowed us to image intra-beam Coulomb effects with unprecedented detail. With ultrafast laser excitation and streak detection we can probe competing ionization processes, particularly via Rydberg states, including sequential excitation, multiphoton excitation, resonance-enhanced multiphoton excitation and two-color multiphoton excitation. Knowledge from these studies has enabled ultrafast single-shot diffractive electron imaging with atomic resolution using a CAEIS.

  10. ATOMIC AND MOLECULAR PHYSICS: Radiation forces on a three-level atom in the high-order Bessel beams

    Science.gov (United States)

    Wang, Zheng-Ling; Yin, Jian-Ping

    2008-07-01

    The general expressions of the average dissipative and dipole forces acting on a Λ-configuration three-level atom in an arbitrary light field are derived by means of the optical Bloch equations based on the atomic density matrix elements, and the general properties of the average dissipative and dipole forces on a three-level atom in the linearly-polarized high-order Bessel beams (HBBs) are analysed. We find a resonant property (with two resonant peaks) of the dissipative force and a non-resonant property (with two pairs of non-resonant peaks) of the dipole force on the three-level atom, which are completely different from those on the two-level atom. Meanwhile we find a saturation effect of the average dissipative force in the HBB, which comes from the saturation of the upper-level population. Our study shows that the general expressions of the average dissipative and dipole forces on the three-level atom will be simplified to those of the two-level atom under the approximation of large detuning. Finally, we study the axial and azimuthal Doppler cooling of atoms in 1D optical molasses composed of two counter-propagating HBBs and discuss the azimuthal influence of the HBB on the Doppler cooling limit. We also find that the Doppler limit of atoms in the molasses HBB is slightly below the conventional Doppler limit of ħΓ(2κB) due to the orbital angular momentum lħ of the HBB.

  11. Electron Beam Collimation for the Next Generation Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  12. Plasma ion sources and ion beam technology inmicrofabrications

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lili [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  13. Radioactive ion beam transportation for the fundamental symmetry study with laser-trapped atoms

    Science.gov (United States)

    Arikawa, Hiroshi; Ando, S.; Aoki, T.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kawamura, H.; Kato, K.; Kato, T.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2014-02-01

    The search for the violation of the fundamental symmetry in a radioactive atom is the promising candidate for precision tests of the standard model and its possible extensions. The subtle signal arising from the symmetry violation is enhanced in heavy atoms, such as a francium (Fr). To realize high precision measurements, a large amount of radioactive isotopes is required. The Fr is produced via a nuclear fusion reaction using a melted gold target with a 18O primary beam at Cyclotron and Radioisotope Center, Tohoku University. The maximum extraction efficiency of the Fr ion was achieved at approximately 35%. The beam line consists of an electrostatic deflector, three electrostatic quadrupole triplets to the measurement area at 10 m away from the reaction point, and several beam diagnosis systems. We optimized parameters of the beam line.

  14. Radioactive ion beam transportation for the fundamental symmetry study with laser-trapped atoms

    Energy Technology Data Exchange (ETDEWEB)

    Arikawa, Hiroshi, E-mail: arikawa@cyric.tohoku.ac.jp; Ando, S.; Aoki, T.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kawamura, H.; Kato, K.; Kato, T.; Uchiyama, A.; Sakemi, Y. [Cyclotron and Radioisotope Center, Tohoku University, Miyagi 980-8578 (Japan); Aoki, T. [Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902 (Japan); Furukawa, T. [Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397 (Japan); Hatakeyama, A. [Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo 184-8588 (Japan); Hatanaka, K.; Yoshida, H. P. [Research Center for Nuclear Physics, Osaka University, Osaka 606-8502 (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1184 (Japan); and others

    2014-02-15

    The search for the violation of the fundamental symmetry in a radioactive atom is the promising candidate for precision tests of the standard model and its possible extensions. The subtle signal arising from the symmetry violation is enhanced in heavy atoms, such as a francium (Fr). To realize high precision measurements, a large amount of radioactive isotopes is required. The Fr is produced via a nuclear fusion reaction using a melted gold target with a {sup 18}O primary beam at Cyclotron and Radioisotope Center, Tohoku University. The maximum extraction efficiency of the Fr ion was achieved at approximately 35%. The beam line consists of an electrostatic deflector, three electrostatic quadrupole triplets to the measurement area at 10 m away from the reaction point, and several beam diagnosis systems. We optimized parameters of the beam line.

  15. Velocity selective optical pumping effects on 85 Rb atoms from various coupling beam polarization configurations

    Science.gov (United States)

    Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2017-11-01

    We have investigated velocity selective spectral profile variations of probe beam transmittance at Fg = 3 →Fe = 2 , 3, and 4 hyperfine manifolds of 85 Rb atoms along with coherence effects at the Fg = 3 →Fe = 4 transition with various coupling laser polarization configurations and a fixed probe polarization (σ+). Laser linewidth, atomic velocity distributions, frequency mixing of the coupling and probe laser beams between degenerate magnetic sublevels, and polarization variations of the coupling beam with the probe beam fixed at the Fg = 3 →Fe = 4 transition were used to simulate the line profiles. The calculated transmittance signals are in good agreement with observed signals for each coupling laser polarization configuration.

  16. An all-solid-state laser source at 671 nm for cold atom experiments with lithium

    CERN Document Server

    Eismann, Ulrich; Canalias, Carlota; Zukauskas, Andrius; Trénec, Gérard; Vigué, Jacques; Chevy, Frédéric; Salomon, Christophe

    2011-01-01

    We present an all solid-state narrow line-width laser source emitting $670\\,\\mathrm{mW}$ output power at $671\\,\\mathrm{nm}$ delivered in a diffraction-limited beam. The source is based on a frequency-doubled diode-end-pumped ring laser operating on the ${^4F}_{3/2} \\rightarrow {^4I}_{13/2}$ transition in Nd:YVO$_4$. By using periodically-poled potassium titanyl phosphate (ppKTP) in an external build-up cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over $100\\,\\rm GHz$ is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally a simplified design based on intra-cavity doubling is described and first results are presented.

  17. Propagating of partially coherent laser beam in the near-resonant atomic gas

    Science.gov (United States)

    Kong, Delong; Wang, Zhaoying; Fang, Feiyun; Shi, Congquan; Lin, Qiang

    2017-09-01

    The characteristics of the light with various degrees of spatial coherence traveling in near-resonant atomic gas are investigated both experimentally and theoretically. The experimental results show that the coherence of partially coherent beams can get better after interaction with atoms under some certain conditions compared with that before interaction. The experimental results are explained theoretically by the method of spectroscopy absorption. Furthermore, partially coherent light has a better environmental adaptability than fully coherent light.

  18. Crossed Molecular Beam Study of the Reactions of Oxygen and Fluorine Atoms.

    Science.gov (United States)

    1980-03-01

    products (i.e., benzaldehyde , cresol, anisole, and benzyl alcohol). Supersonic beams of O(3 P) atoms produced in a radiofrequency dis- charge I0 and toluene ...used to clarify the reaction mechanism. The reaction of O(3p) with another aromatic hydrocarbon toluene , results in competition between two...substitution channels, loss of H atom and loss of CH5. In contrast to the 0 + C6H6 reaction, no stabilized oxygen- toluene adduct was observed., The development

  19. Development of a plasma generator for a long pulse ion source for neutral beam injectors.

    Science.gov (United States)

    Watanabe, K; Dairaku, M; Tobari, H; Kashiwagi, M; Inoue, T; Hanada, M; Jeong, S H; Chang, D H; Kim, T S; Kim, B R; Seo, C S; Jin, J T; Lee, K W; In, S R; Oh, B H; Kim, J; Bae, Y S

    2011-06-01

    A plasma generator for a long pulse H(+)/D(+) ion source has been developed. The plasma generator was designed to produce 65 A H(+)/D(+) beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and ±7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm(2). © 2011 American Institute of Physics

  20. Atomic Beam Correlations and the Quantum State of the Micromaser

    CERN Document Server

    Elmfors, P; Skagerstam, B S; Elmfors, Per; Lautrup, Benny; Skagerstam, Bo Sture

    1997-01-01

    Correlation measurements on atoms having passed through a micromaser can be used to infer properties of the quantum state of the radiation field in the cavity. Long- (or short)-range correlations in time are associated with super- (or sub)-Poissonian photon statistics. In some realistic experimental situations the long-range correlations may reach a magnitude of many times the decay time of the cavity. Our assertions are verified by comparing theoretical calculations with a high-precision Monte Carlo simulation of the micromaser system.

  1. Characterizing and optimizing a laser-desorption molecular beam source

    Science.gov (United States)

    Teschmit, Nicole; Długołecki, Karol; Gusa, Daniel; Rubinsky, Igor; Horke, Daniel A.; Küpper, Jochen

    2017-10-01

    The design and characterization of a new laser-desorption molecular beam source, tailored for use in x-ray free-electron laser and ultrashort-pulse laser imaging experiments, is presented. It consists of a single mechanical unit containing all source components, including the molecular-beam valve, the sample, and the fiber-coupled desorption laser, which is movable in five axes, as required for experiments at central facilities. Utilizing strong-field ionization, we characterize the produced molecular beam and evaluate the influence of desorption laser pulse energy, relative timing of valve opening and desorption laser, sample bar height, and which part of the molecular packet is probed on the sample properties. Strong-field ionization acts as a universal probe and allows detecting all species present in the molecular beam, and hence enables us to analyze the purity of the produced molecular beam, including molecular fragments. We present optimized experimental parameters for the production of the purest molecular beam, containing the highest yield of intact parent ions, which we find to be very sensitive to the placement of the desorbed-molecule plumes within the supersonic expansion.

  2. Optimization of Compton Source Performance through Electron Beam Shaping

    Energy Technology Data Exchange (ETDEWEB)

    Malyzhenkov, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yampolsky, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-26

    We investigate a novel scheme for significantly increasing the brightness of x-ray light sources based on inverse Compton scattering (ICS) - scattering laser pulses off relativistic electron beams. The brightness of ICS sources is limited by the electron beam quality since electrons traveling at different angles, and/or having different energies, produce photons with different energies. Therefore, the spectral brightness of the source is defined by the 6d electron phase space shape and size, as well as laser beam parameters. The peak brightness of the ICS source can be maximized then if the electron phase space is transformed in a way so that all electrons scatter off the x-ray photons of same frequency in the same direction, arriving to the observer at the same time. We describe the x-ray photon beam quality through the Wigner function (6d photon phase space distribution) and derive it for the ICS source when the electron and laser rms matrices are arbitrary.

  3. Electron beam welding of iridium heat source capsules

    Science.gov (United States)

    Mustaleski, Thomas M.; Yearwood, J. Cecil; Burgan, Clyde E.; Green, L. A.

    1991-01-01

    The development of the welding procedures for the production of DOP-26 iridium alloy cups for heat source encapsulation is described. All the final assembly welds were made using the electron beam welding process. The welding of the 0.13-mm weld shield required the use of computer controlled X-Y table and a run-off tab. Welding of the frit vent to the cup required that a laser weld be made to hold the frit assembly edges together for the final electron beam weld. Great care is required in tooling design and beam placement to achieve acceptable results. Unsuccessful attempts to use laser beam welding for heat shield butt weld are discussed.

  4. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Science.gov (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  5. Rubidium atomic beam clock based on lamp-pumping and fluorescence-detection scheme

    Science.gov (United States)

    Wang, Y. H.; Huang, J. Q.; Gu, Y.; Liu, S. Q.; Dong, T. Q.; Lu, Z. H.

    2011-02-01

    A compact, portable rubidium atomic beam clock based on lamp-pumping and fluorescence-detection scheme is proposed. The expected short-term frequency stability can be at least two orders of magnitude better than previous experimental results. The usages of lamp pumping, fluorescence detection and microwave slow-wave resonance structures make this design robust and compact.

  6. Energy resolution methods efficiency depending on beam source ...

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia. Home; Journals; Pramana – Journal of Physics; Volume 69; Issue 3. Energy resolution methods efficiency depending on beam source position of potassium clusters in time-of-flight mass spectrometer. Ş Şentürk F Demiray O Özsoy. Research Articles Volume 69 Issue 3 ...

  7. Coherent and dynamic beam splitting based on light storage in cold atoms.

    Science.gov (United States)

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho

    2016-09-28

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing.

  8. Nonlinear effects in optical pumping of a cold and slow atomic beam

    KAUST Repository

    Porfido, N.

    2015-10-12

    By photoionizing hyperfine (HF) levels of the Cs state 62P3/2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180μs) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of “dark” and “bright” resonances leading to power-dependent branching coefficients.

  9. High-speed, two-dimensional synchrotron white-beam x-ray radiography of spray breakup and atomization

    Energy Technology Data Exchange (ETDEWEB)

    Halls, Benjamin R.; Radke, Christopher D.; Reuter, Benjamin J.; Kastengren, Alan L.; Gord, James R.; Meyer, Terrence R.

    2017-01-01

    High-speed, two-dimensional synchrotron x-ray radiography and phase-contrast imaging are demonstrated in propulsion sprays. Measurements are performed at the 7-BM beamline at the Advanced Photon Source user facility at Argonne National Laboratory using a recently developed broadband x-ray white beam. This novel enhancement allows for high speed, high fidelity x-ray imaging for the community at large. Quantitative path-integrated liquid distributions and spatio-temporal dynamics of the sprays were imaged with a LuAG:Ce scintillator optically coupled to a high-speed CMOS camera. Images are collected with a microscope objective at frame rates of 20 kHz and with a macro lens at 120 kHz, achieving spatial resolutions of 12 μm and 65 μm, respectively. Imaging with and without potassium iodide (KI) as a contrast-enhancing agent is compared, and the effects of broadband attenuation and spatial beam characteristics are determined through modeling and experimental calibration. In addition, phase contrast is used to differentiate liquid streams with varying concentrations of KI. The experimental approach is applied to different spray conditions, including quantitative measurements of mass distribution during primary atomization and qualitative visualization of turbulent binary fluid mixing. High-speed, two-dimensional synchrotron white-beam x-ray radiography of spray breakup and atomization. Available from: https://www.researchgate.net/publication/312567827_High-speed_two-dimensional_synchrotron_white-beam_x-ray_radiography_of_spray_breakup_and_atomization [accessed Aug 31, 2017].

  10. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  11. Ion optics of RHIC electron beam ion source.

    Science.gov (United States)

    Pikin, A; Alessi, J; Beebe, E; Kponou, A; Okamura, M; Raparia, D; Ritter, J; Tan, Y; Kuznetsov, G

    2012-02-01

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  12. UCN Source at an External Beam of Thermal Neutrons

    Directory of Open Access Journals (Sweden)

    E. V. Lychagin

    2015-01-01

    Full Text Available We propose a new method for production of ultracold neutrons (UCNs in superfluid helium. The principal idea consists in installing a helium UCN source into an external beam of thermal or cold neutrons and in surrounding this source with a solid methane moderator/reflector cooled down to ~4 K. The moderator plays the role of an external source of cold neutrons needed to produce UCNs. The flux of accumulated neutrons could exceed the flux of incident neutrons due to their numerous reflections from methane; also the source size could be significantly larger than the incident beam diameter. We provide preliminary calculations of cooling of neutrons. These calculations show that such a source being installed at an intense source of thermal or cold neutrons like the ILL or PIK reactor or the ESS spallation source could provide the UCN density 105 cm−3, the production rate 107 UCN/s−1. Main advantages of such an UCN source include its low radiative and thermal load, relatively low cost, and convenient accessibility for any maintenance. We have carried out an experiment on cooling of thermal neutrons in a methane cavity. The data confirm the results of our calculations of the spectrum and flux of neutrons in the methane cavity.

  13. Laser-accelerated proton beams as a new particle source

    Energy Technology Data Exchange (ETDEWEB)

    Nuernberg, Frank

    2010-11-15

    plasma physics group of the Technische Universitat Darmstadt initiated the development of a test stand to transport, focus and bunch rotate these beams by conventional ion optics and RF technology. The field strength of 7.5 T enabled collimation of protons with an energy of >10 MeV for the first time. In addition, the focusing capability of the solenoid provided a flux increase in the focal spot of about a factor of 174 at a distance of 40 cm from the source, compared to a beam without using the magnetic field. For a quantitative analysis of the experiment numerical simulations with the WarpRZ code were performed. The code, which was originally developed to study high current ion beams and aid in the pursuit of heavy-ion driven inertial confinement fusion, was modified to enable the use of laser-accelerated proton beams as particle source. The calculated energy-resolved beam parameters of RIS could be included, and the plasma simulation criteria were studied in detail. The geometrical boundaries of the experimental setup were used in the simulations. 2.99 x 10{sup 9} collimated protons in the energy range of 13.5{+-}1 MeV could be transported over a distance of 40 cm. In addition, 8.42 x 10{sup 9} protons in the energy range of 6.7{+-}0.2 MeV were focused into a spot of <2 mm in diameter. The transmission through the solenoid for both cases was about 18%. (orig.)

  14. Guiding ultraslow weak-light bullets with Airy beams in a coherent atomic system

    Science.gov (United States)

    Hang, Chao; Huang, Guoxiang

    2014-01-01

    We investigate the possibility of guiding stable ultraslow weak-light bullets by using Airy beams in a cold, lifetime-broadened four-level atomic system via electromagnetically induced transparency (EIT). We show that under EIT condition the light bullet with ultraslow propagating velocity and extremely low generation power formed by the balance between diffraction and nonlinearity in the probe field can be not only stabilized but also steered by the assisted field. In particular, when the assisted field is taken to be an Airy beam, the light bullet can be trapped into the main lobe of the Airy beam, propagate ultraslowly in longitudinal direction, accelerate in transverse directions, and move along a parabolic trajectory. We further show that the light bullet can bypass an obstacle when guided by two sequential Airy beams. A technique for generating ultraslow helical weak-light bullets is also proposed.

  15. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.

    2012-04-01

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  16. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  17. The Spallation Neutron Source Beam Commissioning and Initial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Stuart [Argonne National Lab. (ANL), Argonne, IL (United States); Aleksandrov, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Assadi, Saeed [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bartoski, Dirk [University of Texas, Houston, TX (United States). Anderson Cancer Center; Blokland, Willem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Casagrande, F. [Michigan State Univ., East Lansing, MI (United States); Campisi, I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chu, C. [Michigan State Univ., East Lansing, MI (United States); Cousineau, Sarah M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crofford, Mark T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Danilov, Viatcheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deibele, Craig E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dodson, George W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feshenko, A. [Inst. for Nuclear Research (INR), Moscow (Russian Federation); Galambos, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Han, Baoxi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hardek, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holmes, Jeffrey A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Howell, Matthew P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jeon, D. [Inst. for Basic Science, Daejeon (Korea); Kang, Yoon W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kasemir, Kay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kravchuk, L. [Institute for Nuclear Research (INR), Moscow (Russian Federation); Long, Cary D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamy, T. [McManamy Consulting, Inc., Middlesex, MA (United States); Pelaia, II, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Piller, Chip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Plum, Michael A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pogge, James R. [Tennessee Technological Univ., Cookeville, TN (United States); Purcell, John David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shea, T. [European Spallation Source, Lund (Sweden); Shishlo, Andrei P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sibley, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stockli, Martin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stout, D. [Michigan State Univ., East Lansing, MI (United States); Tanke, E. [European Spallation Source, Lund (Sweden); Welton, Robert F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Y. [Michigan State Univ., East Lansing, MI (United States); Zhukov, Alexander P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  18. A=225 implantation for $^{221}$Fr source for TRIUMF atom trap

    CERN Multimedia

    The FrPNC Collaboration is mounting an atom trap for parity violation experiments and precision spectroscopy on francium atoms at TRIUMF's ISAC facility. We would like to use ISOLDE's capability of simultaneously implanting A=225 (while another experiment runs online) to make a long-lived source feeding $^{221}$Fr for tests of the trap. $^{225}$Ra $\\beta$-decays to $^{225}$Ac, which then $\\alpha$-decays, producing 100 keV $^{221}$Fr t$_{1/2}$= 4.8 minute recoils. The implanted A=225 source would be shipped to TRIUMF, where it would be held for several minutes at a time a few mm from the same yttrium foil that normally receives the ISAC beam. SRIM calculations imply that 20% of the $^{221}$Fr will be implanted in a 1 cm diameter spot on the yttrium. Then the yttrium foil is moved to the trap and heated to release the Fr atoms, just as in normal ISAC online operation. A test implantation will be done at 10$^{7}$/sec production for 1 day, testing whether carbon cracking on the implantation foil in the mass separ...

  19. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)

    2012-08-15

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  20. The development of the radio frequency driven negative ion source for neutral beam injectors (invited).

    Science.gov (United States)

    Kraus, W; Fantz, U; Franzen, P; Fröschle, M; Heinemann, B; Riedl, R; Wünderlich, D

    2012-02-01

    Large and powerful negative hydrogen ion sources are required for the neutral beam injection (NBI) systems of future fusion devices. Simplicity and maintenance-free operation favors RF sources, which are developed intensively at the Max-Planck-Institut für Plasmaphysik (IPP) since many years. The negative hydrogen ions are generated by caesium-enhanced surface conversion of atoms and positive ions on the plasma grid surface. With a small scale prototype the required high ion current density and the low fraction of co-extracted electrons at low pressure as well as stable pulses up to 1 h could be demonstrated. The modular design allows extension to large source dimensions. This has led to the decision to choose RF sources for the NBI of the international fusion reactor, ITER. As an intermediate step towards the full size ITER source at IPP, the development will be continued with a half-size source on the new ELISE testbed. This will enable to gain experience for the first time with negative hydrogen ion beams from RF sources of these dimensions.

  1. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  2. Pulsed rotating supersonic source used with merged molecular beams

    CERN Document Server

    Sheffield, L; Krasovitskiy, V; Rathnayaka, K D D; Lyuksyutov, I F; Herschbach, D R

    2012-01-01

    We describe a pulsed rotating supersonic beam source, evolved from an ancestral device [M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001)]. The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward or upward over a wide range. Here we consider mostly the slowing mode. Introducing a pulsed gas inlet system, cryocooling, and a shutter gate eliminated the main handicap of the original device, in which continuous gas flow imposed high background pressure. The new version provides intense pulses, of duration 0.1-0.6 ms (depending on rotor speed) and containing ~10^12 molecules at lab speeds as low as 35 m/s and ~ 10^15 molecules at 400 m/s. Beams of any molecule available as a gas can be slowed (or speeded); e.g., we have produced slow and fast beams of rare gases, O2, Cl2, NO2, NH3, and SF6. For collision experiments, the ability to scan the beam speed by merely adjusting the rotor is especially advantageous when...

  3. Xenon gas field ion source from a single-atom tip

    Science.gov (United States)

    Lai, Wei-Chiao; Lin, Chun-Yueh; Chang, Wei-Tse; Li, Po-Chang; Fu, Tsu-Yi; Chang, Chia-Seng; Tsong, T. T.; Hwang, Ing-Shouh

    2017-06-01

    Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ˜150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.

  4. Pancakes, Waterbags, and Cold Atoms New Recipes for High-Brightness Electron Beams

    CERN Document Server

    Luiten, O J

    2005-01-01

    Ideal "waterbag" electron bunches - uniformly filled, hard-edged ellipsoids of charge - can be realized in practice by photoemission with properly shaped fs laser pulses [1]. The linear self-fields of such objects enable thermal-emittance-limited beams and bunch compression to the kA level. The thermal emittance may be lowered to below 0.1 micron by extracting the electrons from an ultra-cold plasma, created by photo-ionization of a cloud of laser-cooled atoms. We will present GPT simulations of the application of waterbags and cold atoms in realistic settings, based on established technology. The status of experiments will be reported.

  5. Verification of high efficient broad beam cold cathode ion source

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Reheem, A. M., E-mail: amreheem2009@yahoo.com [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.N.13759, Cairo (Egypt); Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo (Egypt); Ahmed, M. M. [Physics Department, Faculty of Science, Helwan University, Cairo (Egypt); Abdelhamid, M. M.; Ashour, A. H. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo (Egypt)

    2016-08-15

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.

  6. Conceptual design of the beam source for the DEMO Neutral Beam Injectors

    Science.gov (United States)

    Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M. Q.

    2016-12-01

    DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is intended to follow the ITER experimental reactor. The main goal of DEMO will be to demonstrate the possibility to produce electric energy from the fusion reaction. The injection of high energy neutral beams is one of the main tools to heat the plasma up to fusion conditions. A conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor, is currently being developed by Consorzio RFX in collaboration with other European research institutes. High efficiency and low recirculating power, which are fundamental requirements for the success of DEMO, have been taken into special consideration for the DEMO NBI. Moreover, particular attention has been paid to the issues related to reliability, availability, maintainability and inspectability. A conceptual design of the beam source for the DEMO NBI is here presented featuring 20 sub-sources (two adjacent columns of 10 sub-sources each), following a modular design concept, with each sub-source featuring its radio frequency driver, capable of increasing the reliability and availability of the DEMO NBI. Copper grids with increasing size of the apertures have been adopted in the accelerator, with three main layouts of the apertures (circular apertures, slotted apertures and frame-like apertures for each sub-source). This design, permitting to significantly decrease the stripping losses in the accelerator without spoiling the beam optics, has been investigated with a self-consistent model able to study at the same time the magnetic field, the electrostatic field and the trajectory of the negative ions. Moreover, the status on the R&D carried out in Europe on the ion sources is presented.

  7. Predicting ultraluminous X-ray source demographics from geometrical beaming

    Science.gov (United States)

    Middleton, Matthew J.; King, Andrew

    2017-09-01

    The ultraluminous X-ray source (ULX) population is known to contain neutron stars (NS), but the relative number of these compared to black hole (BH) primaries is unknown. Assuming classical supercritical accretion and resultant geometrical beaming, we show that the observed population ratio can be predicted from the mean masses of each family of compact objects and the relative spatial density of NSs to BHs. Conversely - and perhaps more importantly - given even a crude estimate for the spatial densities, an estimate of the fraction of the population containing NSs will begin to constrain the mean mass of BHs in ultraluminous X-ray sources.

  8. Creation and recovery of a W(111) single atom gas field ion source.

    Science.gov (United States)

    Pitters, Jason L; Urban, Radovan; Wolkow, Robert A

    2012-04-21

    Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.

  9. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  10. Applications of beam-foil spectroscopy to atomic collisions in solids

    Science.gov (United States)

    Sellin, I. A.

    1976-01-01

    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  11. Background gas density and beam losses in NIO1 beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Veltri, P.; Serianni, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Cavenago, M. [INFN-LNL, v.le dell’Università 2, I-35020 Legnaro (PD) (Italy)

    2016-02-15

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  12. OPTIMIZATION AND CHARACTERIZATION OF ELECTRON BEAM RESIST USING ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    - Sutikno

    2012-01-01

    Full Text Available Resis negatif ma-N 2403 dan 495 K PMMA memiliki resolusi yang baik untuk aplikasi litografi berkas elektron (EBL. Ketebalanresist optimal memainkan peran penting dalam paparan berkas elektron. Oleh karena itu, dalam penelitian ini, ketebalan darikedua resist yang dioptimalkan menggunakan spincoater dalam jangkauan laju spin 1000-6000 rpm. Semakin laju spin meningkat,ketebalan resist menurun juga. Morfologi permukaan resist dikarakterisasi dengan mikroskop gaya atom. Butir butir resist nampakpanjang. Dalam analisis AFM, permukaan profil resist negatif ma-N 2403 dan 495 K PMMA nampak seperti kerucut. Negative resist ma-N 2403 and 495 K PMMA have good resolution for electron beam lithography (EBL application. The optimumresist thickness plays significant role in e-beam exposure. Therefore, in this research, thicknesses of both resists were optimizedusing spincoater within spin speeds of 1000-6000 rpm. As spin speed increased, resist thickness decreased as well. Morphology ofresist surfaces were characterized using atomic force microscopy (AFM. Grains of resist show long grains. In AFM analyses,surface profiles of negative resist ma-N 2403 and 495 K PMMA show cone peaks.Keywords: e-beam resist; spincoater; e-beam lithography

  13. Improved design of proton source and low energy beam transport line for European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  14. Improved design of proton source and low energy beam transport line for European Spallation Source.

    Science.gov (United States)

    Neri, L; Celona, L; Gammino, S; Mascali, D; Castro, G; Torrisi, G; Cheymol, B; Ponton, A; Galatà, A; Patti, G; Gozzo, A; Lega, L; Ciavola, G

    2014-02-01

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  15. Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography.

    Science.gov (United States)

    Prosa, Ty J; Larson, David J

    2017-04-01

    Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.

  16. An atomic hydrogen beam to test ASACUSA's apparatus for antihydrogen spectroscopy

    CERN Document Server

    Diermaier, Martin; Kolbinger, Bernadette; Malbrunot, Chloé; Massiczek, Oswald; Sauerzopf, Clemens; Simon, Martin C.; Wolf, Michael; Zmeskal, Johann; Widmann, Eberhard

    2015-01-01

    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter pendant to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth's magnetic field.

  17. Dynamics of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    Science.gov (United States)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.; Ji, Qing; Persaud, Arun; Seidl, Peter A.; Schenkel, Thomas

    2016-10-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams. Here we present experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a FEPS plasma. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Near-complete charge neutralization is established 5 μs after the driving pulse is applied to the FEPS, and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub- μs surface discharge. Measurements of current flow in the driving circuit of the FEPS suggest that plasma can be generated for tens of μs after the high voltage pulse is applied. This is confirmed by fast photography of the plasma in the 1-meter long FEPS on NDCX-II, where effective charge neutralization of the beam was achieved with the optimized FEPS timing. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0209CH11466 (PPPL) and DE-AC0205CH11231 (LBNL).

  18. Report of the Snowmass T4 working group on particle sources: Positron sources, anti-proton sources and secondary beams

    Energy Technology Data Exchange (ETDEWEB)

    N. Mokhov et al.

    2002-12-05

    This report documents the activities of the Snowmass 2001 T4 Particle Sources Working Group. T4 was charged with examining the most challenging aspects of positron sources for linear colliders and antiproton sources for proton-antiproton colliders, and the secondary beams of interest to the physics community that will be available from the next generation of high-energy particle accelerators. The leading issues, limiting technologies, and most important R and D efforts of positron production, antiproton production, and secondary beams are discussed in this paper. A listing of T4 Presentations is included.

  19. First test of BNL electron beam ion source with high current density electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard [CERN, CH-1211 Geneva 23 (Switzerland)

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  20. The Brookhaven National Laboratory electron beam ion source for RHIC.

    Science.gov (United States)

    Alessi, J G; Barton, D; Beebe, E; Bellavia, S; Gould, O; Kponou, A; Lambiase, R; Lockey, R; McNerney, A; Mapes, M; Marneris, Y; Okamura, M; Phillips, D; Pikin, A I; Raparia, D; Ritter, J; Snydstrup, L; Theisen, C; Wilinski, M

    2010-02-01

    As part of a new heavy ion preinjector that will supply beams for the Relativistic Heavy Ion Collider and the National Aeronautics and Space Administration Space Radiation Laboratory, construction of a new electron beam ion source (EBIS) is now being completed. This source, based on the successful prototype Brookhaven National Laboratory Test EBIS, is designed to produce milliampere level currents of all ion species, with q/m=(1/6)-(1/2). Among the major components of this source are a 5 T, 2-m-long, 204 mm diameter warm bore superconducting solenoid, an electron gun designed to operate at a nominal current of 10 A, and an electron collector designed to dissipate approximately 300 kW of peak power. Careful attention has been paid to the design of the vacuum system, since a pressure of 10(-10) Torr is required in the trap region. The source includes several differential pumping stages, the trap can be baked to 400 C, and there are non-evaporable getter strips in the trap region. Power supplies include a 15 A, 15 kV electron collector power supply, and fast switchable power supplies for most of the 16 electrodes used for varying the trap potential distribution for ion injection, confinement, and extraction. The EBIS source and all EBIS power supplies sit on an isolated platform, which is pulsed up to a maximum of 100 kV during ion extraction. The EBIS is now fully assembled, and operation will be beginning following final vacuum and power supply tests. Details of the EBIS components are presented.

  1. Theory of longitudinal atomic beam spin echo and parity violating Berry-phases in atoms; Theorie des longitudinalen Atomstrahl-Spinechos und paritaetsverletzende Berry-Phasen in Atomen

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, T.F.

    2006-07-19

    We present a nonrelativistic theory for the quantum mechanical description of longitudinal atomic beam spin echo experiments, where a beam of neutral atoms is subjected to static electric and magnetic fields. The atomic wave function is the solution of a matrix-valued Schroedinger equation and can be written as superposition of local (atomic) eigenstates of the potential matrix. The position- and time-dependent amplitude function of each eigenstate represents an atomic wave packet and can be calculated in a series expansion with a master formula that we derive. The zeroth order of this series expansion describes the adiabatic limit, whereas the higher order contributions contain the mixing of the eigenstates and the corresponding amplitude functions. We give a tutorial for the theoretical description of longitudinal atomic beam spin echo experiments and for the so-called Fahrplan model, which is a visualisation tool for the propagation of wave packets of different atomic eigenstates. As an example for the application of our theory, we study parity violating geometric (Berry-)phases. In this context, we define geometric flux densities, which for certain field configurations can be used to illustrate geometric phases in a vector diagram. Considering an example with a specific field configuration, we prove the existence of a parity violating geometric phase. (orig.)

  2. Initial evaluation and comparison of plasma damage to atomic layer carbon materials using conventional and low T{sub e} plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine; Farmer, Damon B.; Engel, Michael; Neumayer, Deborah; Han, Shu-Jen; Engelmann, Sebastian U., E-mail: suengelm@us.ibm.com; Joseph, Eric A. [IBM, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Boris, David R.; Hernández, Sandra C.; Walton, Scott G. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Lock, Evgeniya H. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-01-15

    The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare these results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.

  3. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Sonato, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University, Via Gradenigo 6/a, 35131 Padova (Italy)

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  4. Broadband source localization using horizontal-beam acoustic intensity striations.

    Science.gov (United States)

    Turgut, Altan; Orr, Marshall; Rouseff, Daniel

    2010-01-01

    Waveguide invariant theory is applied to horizontal line array (HLA) beamformer output to localize moving broadband noise sources from measured acoustic intensity striation patterns. Acoustic signals emitted by ships of opportunity (merchant ships) were simultaneously recorded on a HLA and three hydrophones separated by 10 km during the RAGS03 (relationship between array gain and shelf-break fluid processes) experiment. Hough transforms are used to estimate both the waveguide invariant parameter "beta" and the ratio of source range at the closest point of approach to source speed from the observed striation patterns. Broadband (50-150-Hz) acoustic data-sets are used to demonstrate source localization capability as well as inversion capability of waveguide invariant parameter beta. Special attention is paid to bathymetric variability since the acoustic intensity striation patterns seem to be influenced by range-dependent bathymetry of the experimental area. The Hough transform method is also applied to the HLA beam-time record data and to the acoustic intensity data from three distant receivers to validate the estimation results from HLA beamformer output. Good agreement of the results from all three approaches suggests the feasibility of locating broadband noise sources and estimating waveguide invariant parameter beta in shallow waters.

  5. Tunable dual-frequency laser source for coherent population trapping cesium atomic clocks

    Science.gov (United States)

    Camargo, F. A.; Georges, P.; Lucas-Leclin, G.; Baili, G.; Morvan, L.; Dolfi, D.; Holleville, D.; Guerandel, S.; Sagnes, I.

    2017-11-01

    Coherent population trapping (CPT) has been demonstrated as an interesting technique for miniature atomic frequency references [1,2] and quantum information. It is based on the coupling of the two hyperfine ground states of an alkali atom - namely cesium (133Cs) for atomic clocks - through excitation to a common atomic level by two phase-coherent laser fields nearly resonant with the atomic transitions. The frequency difference between the two laser fields is tuned at the atomic frequency splitting in the microwave range, equal to 9.192 GHz for 133Cs atoms. Outputs powers in the mW range and narrow-linewidth emission (<500 kHz) are required for the two laser beams.

  6. ARTICLE Crossed Beams Study on the Dynamics of F Atom Reaction with 1,2-Butadiene

    Science.gov (United States)

    Xiao, Chong-fa; Shen, Guan-lin; Wang, Xiu-yan; Yang, Xue-ming

    2010-12-01

    We have investigated the dynamics of the F+C4H6 reaction using the universal crossed molecular beam method. The C4H5F+H reaction channel was observed in this experiment. Angular resolved time-of-flight spectra have been measured for the C4H5F product. Product angular distributions as well as kinetic energy distributions were determined for this product channel. Experimental results show that the C4H5F product is largely backward scattered with considerable forward scattering signal, relative to the F atom beam direction. This suggests that the reaction channel mainly proceeds via a long-lived complex formation mechanism, with possible contribution from a direct SN2 type mechanism.

  7. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    Science.gov (United States)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  8. Use of an Atmospheric Atomic Oxygen Beam for Restoration of Defaced Paintings

    Science.gov (United States)

    Banks, Bruce A.; Rutledge, Sharon K.; Karla, Margaret; Norris, Mary Jo; Real, William A.; Haytas, Christy A.

    1999-01-01

    An atmospheric atomic oxygen beam has been found to be effective in removing organic materials through oxidation that are typical of graffiti or other contaminant defacements which may occur to the surfaces of paintings. The technique, developed by the National Aeronautics and Space Administration, is portable and was successfully used at the Carnegie Museum of Art to remove a lipstick smudge from the surface of porous paint on the Andy Warhol painting "Bathtub." This process was also evaluated for suitability to remove felt tip and ball point ink graffiti from paper, gesso on canvas and cotton canvas.

  9. Atomic Clocks Research - An Overview.

    Science.gov (United States)

    1987-08-15

    magnet. Since atomic deflection in an inhomogeneous magnetic field is inversely proportional to the square of the atomic speed, the atomic velocity...purifier and controlled leak; an atomic source (i.e., the dissociator under 39 study); a dipole electromagnetic with pole pieces shaped to produce an...34Relaxation Magnetique d’Atomes de Rubidium sur des Parois Paraffines," J. Phys. (Paris) 24, 379 (1963). 21. S. Wexler, "Deposition of Atomic Beams

  10. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  11. Point source atom interferometry with a cloud of finite size

    Energy Technology Data Exchange (ETDEWEB)

    Hoth, Gregory W., E-mail: gregory.hoth@nist.gov; Pelle, Bruno; Riedl, Stefan; Kitching, John; Donley, Elizabeth A. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2016-08-15

    We demonstrate a two axis gyroscope by the use of light pulse atom interferometry with an expanding cloud of atoms in the regime where the cloud has expanded by 1.1–5 times its initial size during the interrogation. Rotations are measured by analyzing spatial fringe patterns in the atom population obtained by imaging the final cloud. The fringes arise from a correlation between an atom's initial velocity and its final position. This correlation is naturally created by the expansion of the cloud, but it also depends on the initial atomic distribution. We show that the frequency and contrast of these spatial fringes depend on the details of the initial distribution and develop an analytical model to explain this dependence. We also discuss several challenges that must be overcome to realize a high-performance gyroscope with this technique.

  12. Reflection of plasma ions from metals (and its use as a hyperthermal neutral beam source)

    Science.gov (United States)

    Cuthbertson, John William

    Reflection of ions as neutral atoms at energies below 100 eV has important implications for fusion and other technologies, and can form the basis of a useful hyperthermal neutral beam. Experimental measurements of properties of such reflected atoms are presented. The apparatus developed for this work uses the acceleration of plasma ions across the sheath to a metal reflecting plate biased relative to the plasma potential. Ions are created by a coaxial RF (lower hybrid) plasma source with a 4 kG confining field. The plasma physics determining the characteristics of the ion current to the plate is discussed, and measurements of plasma parameters are presented. Measurements of the energy distribution of reflected atoms were made with a mass spectrometer/cylindrical mirror analyzer in experiments with several gases (Ar, Kr, NE, N, O) and metals (Ta, Mo, steel, Al), at several reflection angles. Peaked distributions were observed where the target atomic mass m(2) exceeded the projectile mass m(1), while only monotonic decreasing 'tails' were seen where m(2) was greater than m(1). The spectrum's peak energy increases with incident energy E(inc), while E(pk)/E(inc) decreases for increasing E(inc) and increases with m(2)/m(1) (but more slowly than for binary collisions). Measurements were also made of the absolute atomic flux for oxygen beams, and the angular distribution, which is forward-peaked. Energy distribution measurements are compared to predictions of the Monte Carlo code TRIM, which uses the sequential binary collision mode. The results differ from TRIM predictions that E(pk)/E(inc) is nearly constant with E(inc) in the observed range and increases faster than observed with m(2)/m(1). The observed behavior of E(pk)/E(inc) implies the projectile is reflected from a collective mass greater than m(2) which increases as E(inc) decreases. An n-body simulation was written to examine the effects of simultaneous interaction with multiple target atoms. The results

  13. Complex source point theory of paraxial and nonparaxial cosine-Gauss and Bessel-Gauss beams.

    Science.gov (United States)

    Sheppard, Colin J R

    2013-02-15

    It shown how cosine-Gauss and Bessel-Gauss beams can be generated using the complex source point theory. Paraxial beams are treated first. An analytic expression is derived for the nonparaxial cosine-Gaussian beam, based on the complex source point approach, and numerical results are presented to illustrate its behavior. A way to generate nonparaxial Bessel-Gauss beams is also indicated.

  14. Study of Effect of Ion Source Energy Spread on RFQ Beam Dynamics at REX-ISOLDE

    CERN Document Server

    Fraser, M A

    2013-01-01

    With an upgrade to the Electron Beam Ion Source (EBIS) at REX under consideration a study was launched in order to understand the effect of an increased energy spread from the ion source on the beam dynamics of the RFQ. Due to the increased electron beam potential needed to achieve the upgrade’s charge breeding specification it is expected that the energy spread of the beam will increase from today’s estimated value of approximately +-0.1%. It is shown through beam dynamics simulations that the energy spread can be increased to +-1% without significant degradation of the beam quality output by the RFQ.

  15. Plasma sources for high-current electron beam generation

    Science.gov (United States)

    Krasik, Ya. E.; Dunaevsky, A.; Felsteiner, J.

    2001-05-01

    A review of experimental studies of the operation of cathodes made of metal-ceramic, velvet, corduroy, carbon fibers, carbon fabric, and different types of ferroelectrics is presented. These cathodes operated at electric fields in the range of 5-60 kV/cm that allowed the generation of electron beams with duration of several hundreds of nanoseconds while keeping a quasi-constant diode impedance. All cathodes had the same diameter and were tested in a diode powered by a high-voltage generator (300 kV, 85 Ω, 250 ns, ⩽5 Hz). It was shown that the source of electrons for all the studied cathodes is a plasma which is formed as a result of surface discharges. Different types of electrical and optical diagnostics were used to study the formation and parameters of the plasma, the potential distribution inside the anode-cathode gap, and the uniformity and divergence of the extracted electron beam as a function of the amplitude and rise time of the accelerating pulse. Results of the lifetime of the tested cathodes and their compatibility with vacuum requirements are presented as well.

  16. Local enhancement of radiation dose by using high atomic number materials with high energy photon beam

    Science.gov (United States)

    Alkhatib, Ahmad Khaled

    The goal of treatment planning in radiation therapy is to maximize the absorbed dose in abnormal cells and minimize the dose in normal cells. It is long established that the probability of pair production interactions (converting photon to electron and positron see chapter II) increases with the increase of the photon energy above a 1.02 MV threshold and with the square of the atomic number of the medium. In this work I tried to locally enhance the absorbed dose by using both a high energy photon beam and high Z material (Gold foils), to observe the effect of the secondary electrons that are produced in the high z material (gold) with high energy photons (end point energy 25MV). To observe the range of these secondary electrons, I changed the gap between two gold foils. I studied also the effect of varying the thickness of both gold foils. To verify the dependence of the atomic number (Z) I repeated the measurements with two Aluminum foils, and to observe the effect of The Higher photon energy I used a range of photon beams with end point energies 6, 10, 15, 18 and 25 MV. I used Monte Carlo code to confirm the result. The calculated dose enhancements from the simulation were in general 5% higher the measured values.

  17. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    CERN Document Server

    Panteleev, V N; Barzakh, A E; Fedorov, D V; Ivanov, V S; Moroz, F V; Orlov, S Y; Seliverstov, D M; Stroe, L; Tecchio, L B; Volkov, Y M

    2003-01-01

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed.

  18. Multi-channel tunable source for atomic sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR will establish the feasibility of developing compact, robust, integrated components suitable for atomic interferometry. AdvR's design is enabled by...

  19. Laser Source for Atomic Gravity Wave Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an Atom Interferometry-based gravity wave detector (vs Optical Interferometry). Characterize a high power laser. Use Goddard Space Flight Center Mission...

  20. Electron-beam-induced carbon contamination on silicon: characterization using Raman spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Lau, Deborah; Hughes, Anthony E; Muster, Tim H; Davis, Timothy J; Glenn, A Matthew

    2010-02-01

    Electron-beam-induced carbon film deposition has long been recognized as a side effect of scanning electron microscopy. To characterize the nature of this type of contamination, silicon wafers were subjected to prolonged exposure to 15 kV electron beam energy with a probe current of 300 pA. Using Raman spectroscopy, the deposited coating was identified as an amorphous carbon film with an estimated crystallite size of 125 A. Using atomic force microscopy, the cross-sectional profile of the coating was found to be raised and textured, indicative of the beam raster pattern. A map of the Raman intensity across the coating showed increased intensity along the edges and at the corner of the film. The intensity profile was in excess of that which could be explained by thickness alone. The enhancement was found to correspond with a modeled local field enhancement induced by the coating boundary and showed that the deposited carbon coating generated a localized disturbance in the opto-electrical properties of the substrate, which is compared and contrasted with Raman edge enhancement that is produced by surface structure in silicon.

  1. Environmental sensing with optical fiber sensors processed with focused ion beam and atomic layer deposition

    Science.gov (United States)

    Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime

    2015-03-01

    We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.

  2. Setup and proof of principle of SAPIS (Stored Atoms Polarized Ion Source), a novel source of polarized H{sup -}/D{sup -} ions; Aufbau und Funktionsnachweis von SAPIS (Stored Atoms Polarized Ion Source), einer neuartigen Quelle polarisierter H{sup -}/D{sup -}-Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Emmerich, R.

    2007-02-14

    The objective of this work was the setup and the proof-of-principle of a new type of negative polarized hydrogen or deuterium ion source, which is based on the charge-exchange reaction (vector)H{sup 0}+Cs{sup 0}{yields}(vector)H{sup -}+Cs{sup +}, as for instance the Colliding-Beams-Source (CBS) at the Cooler Synchrotron COSY in Juelich. In contrast to the CBS, the use of a storage cell for the charge-exchange region promises an increase in H{sup -} current by at least an order of magnitude without considerable polarization losses. For these purposes, a new laboratory was equipped and both a polarized hydrogen/deuterium atomic beam source and an intense neutral cesium-beam source have been build-on. A Lambshift polarimeter, which allows the measurement of the nuclear polarization of the atomic as well as ionic beams, was completed with the construction of a new spin-filter. After commissioning and optimizing each of these sources, a storage cell was developed and installed in the charge-exchange region with a magnetic field. Additionally, components for the extraction, detection and analysis of the negative ion beam were installed. Following the decisive proof of principle, investigation of the properties of the storage cell, especially as to H recombination and depolarisation, was begun. Furthermore, a number of software programs was developed for the control and monitoring of different components of the sources as well as a universal measuring software for the complete installation, including the measurement and calculation of the beam polarization. At the same time, the remote control system of the Cologne source of polarized ions LASCO at the FN tandem accelerator was completely modernized. (orig.)

  3. Detailed beam and plasma measurements on the vessel for extraction and source plasma analyses (VESPA) Penning H- ion source

    Science.gov (United States)

    Lawrie, S. R.; Faircloth, D. C.; Letchford, A. P.; Whitehead, M. O.; Wood, T.

    2016-02-01

    A vessel for extraction and source plasma analyses (VESPA) is operational at the Rutherford Appleton Laboratory (RAL). This project supports and guides the overall ion source R&D effort for the ISIS spallation neutron and muon facility at RAL. The VESPA produces 100 mA of pulsed H- beam, but perveance scans indicate that the source is production-limited at extraction voltages above 12 kV unless the arc current is increased. A high resolution optical monochromator is used to measure plasma properties using argon as a diagnostic gas. The atomic hydrogen temperature increases linearly with arc current, up to 2.8 eV for 50 A; whereas the electron temperature has a slight linear decrease toward 2.2 eV. The gas density is 1021 m-3, whilst the electron density is two orders of magnitude lower. Densities follow square root relationships with arc current, with gas density decreasing whilst electron (and hence ion) density increases. Stopping and range of ions in matter calculations prove that operating a high current arc with an argon admixture is extremely difficult because cathode-coated cesium is heavily sputtered by argon.

  4. Characteristics of a high-power RF source of negative hydrogen ions for neutral beam injection into controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Abdrashitov, G. F.; Belchenko, Yu. I.; Gusev, I. A.; Ivanov, A. A.; Kondakov, A. A.; Sanin, A. L.; Sotnikov, O. Z., E-mail: O.Z.Sotnikov@inp.nsk.su; Shikhovtsev, I. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2017-01-15

    An injector of hydrogen atoms with an energy of 0.5–1 MeV and equivalent current of up to 1.5 A for purposes of controlled fusion research is currently under design at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. Within this project, a multiple-aperture RF surface-plasma source of negative hydrogen ions is designed. The source design and results of experiments on the generation of a negative ion beam with a current of >1 A in the long-pulse mode are presented.

  5. Observation of spontaneously generated coherence on absorption in rubidium atomic beam

    Science.gov (United States)

    Tian, Si-Cong; Kang, Zhi-Hui; Wang, Chun-Liang; Wan, Ren-Gang; Kou, Jun; Zhang, Hang; Jiang, Yun; Cui, Hai-Ning; Gao, Jin-Yue

    2012-02-01

    We report the experimental observation of the effect of spontaneously generated coherence on absorption without the rigorous requirement of close-lying levels. The experiments are studied in both a four-level N-type and a four-level inverted-Y-type atomic system in a rubidium atomic beam. With the coupling and controlling field, the N-type system is equivalent to a system with three closely upper levels coupled to one lower level by the same vacuum modes. The quantum interference can induce two prominent and nearly transparent holes where the slope of the refractive index is very steep. This special situation could allow the simultaneous propagation of two weak pulses with different frequencies. When we tune the wavelength of the controlling field, the N-type system turns to be the inverted-Y atomic system. Under the two-photon resonance condition, the system is equivalent to a V-type system with two closely upper levels, and the interference can reduce one broad transparency window in the middle of the absorption spectrum. Besides we can control the number of the spontaneously decay channels by the detuning of the controlling field, thus the effect of spontaneously generated coherence can exist in three or two closely space levels.

  6. Production of a 'natural' metastable nozzle beam: Van der Waals-Zeeman atomic levels near a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Karam, J-C [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Grucker, J [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Boustimi, M [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Bocvarski, V [Institute of Physics, Pregrevica, Zemun, Belgrade (Serbia and Montenegro); Vassilev, G [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Reinhardt, J [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Mainos, C [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Perales, F [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Baudon, J [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Robert, J [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Ducloy, Martial [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France)

    2005-01-01

    A method for obtaining a metastable atom beam with properties near to those of a ground state supersonic beam is demonstrated. Calculations on m sublevels of metastable argon near a metal surface are then presented.

  7. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    Science.gov (United States)

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909

  8. Manufacturing of the full size prototype of the ion source for the ITER neutral beam injector – The SPIDER beam source

    Energy Technology Data Exchange (ETDEWEB)

    Pavei, Mauro, E-mail: mauro.pavei@igi.cnr.it [Consorzio RFX, C.so Stati Uniti 4, I-35127, Padova (Italy); Boilson, Deirdre [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Bonicelli, Tullio [Fusion for Energy, C/Joseph Pla 2, 08019 Barcelona (Spain); Boury, Jacques [Thales Electron Devices, Velizy Villacoublay (France); Bush, Michael [Galvano-T GmbH, T, Raiffeisenstraße 8, 51570 Windeck (Germany); Ceracchi, Andrea; Faso, Diego [CECOM S.r.l., Via Tiburtina – Guidonia Montecelio, Roma (Italy); Graceffa, Joseph [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Heinemann, Bernd [Max-Planck-Institut für Plasmaphysik, D-85740 Garching (Germany); Hemsworth, Ronald [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Lievin, Christophe [Thales Electron Devices, Velizy Villacoublay (France); Marcuzzi, Diego [Consorzio RFX, C.so Stati Uniti 4, I-35127, Padova (Italy); Masiello, Antonio [Fusion for Energy, C/Joseph Pla 2, 08019 Barcelona (Spain); Sczepaniak, Bernd [Galvano-T GmbH, T, Raiffeisenstraße 8, 51570 Windeck (Germany); Singh, Mahendrajit [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Toigo, Vanni; Zaccaria, Pierluigi [Consorzio RFX, C.so Stati Uniti 4, I-35127, Padova (Italy)

    2015-10-15

    Highlights: • Negative ion sources are key components of neutral beam injectors for nuclear fusion. • The SPIDER experiment aims to optimize the negative ion source of MITICA and HNB. • The SPIDER Beam Source manufacturing is currently on-going. • Manufacturing and assembling technological issues encountered are presented. - Abstract: In ITER, each heating neutral beam injector (HNB) will deliver about 16.5 MW heating power by accelerating a 40 A deuterium negative ion beam up to the energy of 1 MeV. The ions are generated inside a caesiated negative ion source, where the injected H{sub 2}/D{sub 2} is ionized by a radio frequency electromagnetic field. The SPIDER test bed, currently being manufactured, is going to be the ion source test facility for the full size ion source of the HNBs and of the diagnostic neutral beam injector of ITER. The SPIDER beam source comprises an ion source with 8 radio-frequency drivers and a three-grid system, providing an overall acceleration up to energies of about 100 keV [1]. SPIDER represents a substantial step forward between the half ITER size ion source, which is currently being tested at the ELISE test bed in IPP-Garching, and the negative ion sources to be used on ITER, in terms of layout, dimensions and operating parameters. The SPIDER beam source will be housed inside a vacuum vessel which will be equipped with a beam dump and a graphite diagnostic calorimeter. The manufacturing design of the main parts of the SPIDER beam source has been completed and many of the tests on the prototypes have been successfully passed. The most complex parts, from the manufacturing point of view, of the ion source and the accelerator, developed by galvanic deposition of copper are being manufactured. The manufacturing phase will be completed within 2015, when the assembly of the device will start at the PRIMA site, in Padova (I). The paper describes the status of the procurement, the adaptations operated on the design of the beam

  9. Simulation study of LEBT for transversely coupled beam from an ECR ion source.

    Science.gov (United States)

    Yang, Y; Dou, W P; Sun, L T; Yao, Q G; Zhang, Z M; Yuan, Y J; He, Y; Zh, X Z; Zhao, H W

    2016-02-01

    A Low-Energy intense-highly charged ion Accelerator Facility (LEAF) program has been launched at Institute of Modern Physics. This accelerator facility consists of a superconducting Electron Cyclotron Resonance (ECR) ion source, a Low Energy Beam Transport (LEBT) system, and a Radio Frequency Quadrupole (RFQ). It is especially of interest for the extracted ion beam from the ECR ion source, which is transversely coupled, and this property will significantly affect the beam transmission in the LEBT line and the matching with the downstream RFQ. In the beam transport design of LEAF, beam decoupling in the LEBT is considered to lower down the projection emittances and the feasibility of the design has been verified by beam simulation with a transversely coupled beam from the ECR ion source.

  10. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Proksch, Roger [Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  11. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    Science.gov (United States)

    Labuda, Aleksander; Proksch, Roger

    2015-06-01

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  12. Tunable atomic force microscopy bias lithography on electron beam induced carbonaceous platforms

    Directory of Open Access Journals (Sweden)

    Narendra Kurra

    2013-09-01

    Full Text Available Tunable local electrochemical and physical modifications on the carbonaceous platforms are achieved using Atomic force microscope (AFM bias lithography. These carbonaceous platforms are produced on Si substrate by the technique called electron beam induced carbonaceous deposition (EBICD. EBICD is composed of functionalized carbon species, confirmed through X-ray photoelectron spectroscopy (XPS analysis. AFM bias lithography in tapping mode with a positive tip bias resulted in the nucleation of attoliter water on the EBICD surface under moderate humidity conditions (45%. While the lithography in the contact mode with a negative tip bias caused the electrochemical modifications such as anodic oxidation and etching of the EBICD under moderate (45% and higher (60% humidity conditions respectively. Finally, reversible charge patterns are created on these EBICD surfaces under low (30% humidity conditions and investigated by means of electrostatic force microscopy (EFM.

  13. Atom beam sputtered Ag-TiO{sub 2} plasmonic nanocomposite thin films for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jaspal; Sahu, Kavita [School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, NewDelhi 110078 (India); Pandey, A. [Solid State Physics Laboratory, Defence Research and Development Organization, Timarpur, Delhi 110054 (India); Kumar, Mohit [Institute of Physics, Sachivalaya Marg, Bhubaneswar, Odisha 751005 (India); Ghosh, Tapas; Satpati, B. [Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata 700064 (India); Som, T.; Varma, S. [Institute of Physics, Sachivalaya Marg, Bhubaneswar, Odisha 751005 (India); Avasthi, D.K. [Amity Institute of Nanotechnology, Noida 201313, Uttar Pradesh (India); Mohapatra, Satyabrata, E-mail: smiuac@gmail.com [School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, NewDelhi 110078 (India)

    2017-07-31

    The development of nanocomposite coatings with highly enhanced photocatalytic activity is important for photocatalytic purification of water and air. We report on the synthesis of Ag-TiO{sub 2} nanocomposite thin films with highly enhanced photocatalytic activity by atom beam co-sputtering technique. The effects of Ag concentration on the structural, morphological, optical, plasmonic and photocatalytic properties of the nanocomposite thin films were investigated. UV–visible DRS studies revealed the presence of surface plasmon resonance (SPR) peak characteristic of Ag nanoparticles together with the excitonic absorption peak originating from TiO{sub 2} nanoparticles in the nanocomposites. XRD studies showed that the nanocomposite thin films consist of Ag nanoparticles and rutile TiO{sub 2} nanoparticles. The synthesized Ag-TiO{sub 2} nanocomposite thin films with 5 at% Ag were found to exhibit highly enhanced photocatalytic activity for sun light driven photocatalytic degradation of methylene blue in water, indicating their potential application in water purification.

  14. Alternate Funding Sources for the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Toomey, Christopher; Wyse, Evan T.; Kurzrok, Andrew J.; Swarthout, Jordan M.

    2012-09-04

    Since 1957, the International Atomic Energy Agency (IAEA) has worked to ensure the safe and responsible promotion of nuclear technology throughout the world. The IAEA operates at the intersection of the Nuclear Nonproliferation Treaty’s (NPT) fourth and third articles, which guarantee Parties to the Treaty the right to peaceful uses of nuclear technology, provided those activities are placed under safeguards verified by the IAEA. However, while the IAEA has enjoyed substantial success and prestige in the international community, there is a concern that its resources are being stretched to a point where it may no longer be possible to execute its multifaceted mission in its entirety. As noted by the Director General (DG) in 2008, demographics suggest that every aspect of the IAEA’s operations will be in higher demand due to increasing reliance on non-carbon-based energy and the concomitant nonproliferation, safety, and security risks that growth entails. In addition to these nuclear energy concerns, the demand for technical developmental assistance in the fields of food security, resource conservation, and human health is also predicted to increase as the rest of the world develops. Even with a 100% value-for-money rating by the U.S. Office of Management and Budget (OMB) and being described as an “extraordinary bargain” by the United Nations Secretary-General’s High-level Panel on Threats, Challenges and Change, real budget growth at the Agency has been limited to zero-real growth for a better part of the last two decades. Although the 2012 regular budget (RB) received a small increase for most programs, the 2013 RB has been set at zero-real growth. As a result, the IAEA has had to defer infrastructure investments, which has hindered its ability to provide the public goods its Members seek, decreased global security and development opportunities, and functionally transformed the IAEA into a charity, dependent on extrabudgetary (EB) contributions to sustain

  15. Chip-Scale Magnetic Source of Cold Atoms

    Science.gov (United States)

    2013-06-01

    miniaturization . Prior experiments have shown the creation of a Bose-Einstein Condensate on the surface of a microchip [3]. Using small etched wires on the chip to... miniaturization of the device implies that the slowing magnetic field move at comparable speeds to the beam. To do that, precision control of the high currents...together two CONFLAT, knife -edge seals with a copper gasket in between. However, when the final connection was to be made, from the glass transition

  16. Chemical states of localized Fe atoms in ethylene matrices using in-beam Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y., E-mail: kyoshio@pc.uec.ac.jp [University of Electro-Communications, Graduate School of Engineering Science (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan); Tanigawa, S. [University of Electro-Communications, Graduate School of Engineering Science (Japan); Mihara, M. [Osaka University, Graduate School of Science (Japan); Kubo, M. K. [International Christian University, Division of Arts and Sciences (Japan); Sato, W. [Kanazawa University, Institute of Science and Engineering (Japan); Miyazaki, J. [Tokyo University of Agriculture and Technology, Department of Chemical Engineering (Japan); Nagatomo, T. [RIKEN, Nishina Center for Accelerator-Based Science (Japan); Sato, Y.; Natori, D.; Suzuki, M. [University of Electro-Communications, Graduate School of Engineering Science (Japan); Kobayashi, J. [International Christian University, Division of Arts and Sciences (Japan); Sato, S.; Kitagawa, A. [National Institute of Radiological Science (Japan)

    2016-12-15

    The reaction products of isolated single iron atoms in a low concentration matrix of ethylene were studied using in-beam Mössbauer spectroscopy with a short-lived {sup 57}Mn (T{sub 1/2}=1.45 m) beam. The in-beam Mössbauer spectrum of {sup 57}Fe arising from {sup 57}Mn in a matrix of ethylene and argon measured at 16 K was analyzed with four components. Density functional theory calculations were carried out to confirm the assignments. It was suggested that the reaction produced monoiron species of Fe(C {sub 2}H{sub 4}) with a spin state of S = 2.

  17. Simulation and beam line experiments for the superconducting ECRion source VENUS

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Damon S.; Leitner, Daniela; Grote, David P.; Lyneis, ClaudeM.

    2007-09-10

    The particle-in-cell code Warp has been enhanced toincorporate both two- and three-dimensional sheath extraction modelsgiving Warp the capability of simulating entire ion beam transportsystems including the extraction of beams from plasma sources. In thisarticle we describe a method of producing initial ion distributions forplasma extraction simulations in electron cyclotron resonance (ECR) ionsources based on experimentally measured sputtering on the source biaseddisc. Using this initialization method, we present preliminary resultsfor extraction and transport simulations of an oxygen beam and comparethem with experimental beam imaging on a quartz viewing plate for thesuperconducting ECR ion source VENUS.

  18. Light and/or atomic beams to detect ultraweak gravitational effects

    Directory of Open Access Journals (Sweden)

    Tartaglia Angelo

    2014-06-01

    Full Text Available We shall review the opportunities lent by ring lasers and atomic beams interferometry in order to reveal gravitomagnetic effects on Earth. Both techniques are based on the asymmetric propagation of waves in the gravitational field of a rotating mass; actually the times of flight for co- or counter-rotating closed paths turn out to be different. After discussing properties and limitations of the two approaches we shall describe the proposed GINGER experiment which is being developed for the Gran Sasso National Laboratories in Italy. The experimental apparatus will consist of a three-dimensional array of square rings, 6m × 6m, that is planned to reach a sensitivity in the order of 1prad/√Hertz or better. This sensitivity would be one order of magnitude better than the best existing ring, which is the G-ring in Wettzell, Bavaria, and would allow for the terrestrial detection of the Lense-Thirring effect and possibly of deviations from General Relativity. The possibility of using either the ring laser approach or atomic interferometry in a space mission will also be considered. The technology problems are under experimental study using both the German G-ring and the smaller G-Pisa ring, located at the Gran Sasso.

  19. Development of a monoenergetic ultraslow antiproton beam source for high-precision investigation

    Directory of Open Access Journals (Sweden)

    N. Kuroda

    2012-02-01

    Full Text Available The ASACUSA collaboration developed an ultraslow antiproton beam source, monoenergetic ultraslow antiproton source for high-precision investigation (MUSASHI, consisting of an electromagnetic trap with a liquid He free superconducting solenoid and a low energy antiproton beam transport line. The MUSASHI was capable of trapping and cooling more than 1×10^{7} antiprotons and extracting them as an ultraslow antiproton beam with energy of 150–250 eV.

  20. Test bench to commission a third ion source beam line and a newly designed extraction system

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, T.; Cee, R.; Haberer, T.; Naas, B.; Peters, A. [Heidelberger Ionenstrahl-Therapie Centrum (HIT), D-69120 Heidelberg (Germany)

    2012-02-15

    The HIT (Heidelberg Ion Beam Therapy Center) is the first hospital-based treatment facility in Europe where patients can be irradiated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. In the future a helium beam for regular patient treatment is requested, therefore a third ion source (Supernanogan source from PANTECHNIK S.A.) will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line is installed at a test bench at HIT to commission and validate this section. Measurements with different extraction system setups will be presented to show the improvement of beam quality for helium, proton, and carbon beams. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed.

  1. Test bench to commission a third ion source beam line and a newly designed extraction system.

    Science.gov (United States)

    Winkelmann, T; Cee, R; Haberer, T; Naas, B; Peters, A

    2012-02-01

    The HIT (Heidelberg Ion Beam Therapy Center) is the first hospital-based treatment facility in Europe where patients can be irradiated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. In the future a helium beam for regular patient treatment is requested, therefore a third ion source (Supernanogan source from PANTECHNIK S.A.) will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line is installed at a test bench at HIT to commission and validate this section. Measurements with different extraction system setups will be presented to show the improvement of beam quality for helium, proton, and carbon beams. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed.

  2. Two-stage crossed beam cooling with ⁶Li and ¹³³Cs atoms in microgravity.

    Science.gov (United States)

    Luan, Tian; Yao, Hepeng; Wang, Lu; Li, Chen; Yang, Shifeng; Chen, Xuzong; Ma, Zhaoyuan

    2015-05-04

    Applying the direct simulation Monte Carlo (DSMC) method developed for ultracold Bose-Fermi mixture gases research, we study the sympathetic cooling process of 6Li and 133Cs atoms in a crossed optical dipole trap. The obstacles to producing 6Li Fermi degenerate gas via direct sympathetic cooling with 133Cs are also analyzed, by which we find that the side-effect of the gravity is one of the main obstacles. Based on the dynamic nature of 6Li and 133Cs atoms, we suggest a two-stage cooling process with two pairs of crossed beams in microgravity environment. According to our simulations, the temperature of 6Li atoms can be cooled to T = 29.5 pK and T/TF = 0.59 with several thousand atoms, which propose a novel way to get ultracold fermion atoms with quantum degeneracy near pico-Kelvin.

  3. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2

    Science.gov (United States)

    Dubreuil, B.; Harnafi, M.

    1989-07-01

    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5-13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 AṦ are measured; they increase with n as opposed to the plateau observed for Li* colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n-->n' changing processes with large cross sections (10-100 AṦ) are also observed even in the case of large electronic energy change (ΔEnn'>103 cm-1). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes.

  4. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion ...

  5. The development of the radio frequency driven negative ion source for neutral beam injectors (invited)a)

    Science.gov (United States)

    Kraus, W.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Riedl, R.; Wünderlich, D.

    2012-02-01

    Large and powerful negative hydrogen ion sources are required for the neutral beam injection (NBI) systems of future fusion devices. Simplicity and maintenance-free operation favors RF sources, which are developed intensively at the Max-Planck-Institut für Plasmaphysik (IPP) since many years. The negative hydrogen ions are generated by caesium-enhanced surface conversion of atoms and positive ions on the plasma grid surface. With a small scale prototype the required high ion current density and the low fraction of co-extracted electrons at low pressure as well as stable pulses up to 1 h could be demonstrated. The modular design allows extension to large source dimensions. This has led to the decision to choose RF sources for the NBI of the international fusion reactor, ITER. As an intermediate step towards the full size ITER source at IPP, the development will be continued with a half-size source on the new ELISE testbed. This will enable to gain experience for the first time with negative hydrogen ion beams from RF sources of these dimensions.

  6. Development of Laser Light Sources for Trapping Radioactive Francium Atoms Toward Tests of Fundamental Symmetries

    Science.gov (United States)

    Harada, Ken-ichi; Ezure, Saki; Hayamizu, Tomohiro; Kato, Ko; Kawamura, Hirokazu; Inoue, Takeshi; Arikawa, Hiroshi; Ishikawa, Taisuke; Aoki, Takahiro; Uchiyama, Aiko; Itoh, Masatoshi; Ando, Shun; Aoki, Takatoshi; Hatakeyama, Atsushi; Hatanaka, Kichiji; Imai, Kenichi; Murakami, Tetsuya; Shimizu, Yasuhiro; Sato, Tomoya; Wakasa, Tomotsugu; Yoshida, Hidetomo P.; Sakemi, Yasuhiro

    We have developed laser light sources and a magneto-optical trap system for cooling and trapping radioactive francium (Fr) atoms. Because Fr is the heaviest alkali element, a Fr atom exhibits high sensitivity to symmetry violation effects such as atomic parity nonconservation (APNC) and the electron electric dipole moment (eEDM). A laser cooling and trapping technique reduces the systematic errors due to the Doppler effect and the motion-induced magnetic field effect caused by the velocity of atoms. Thus, optically cooled and trapped Fr atoms are among a few promising candidates considered for APNC and eEDM measurements. Frequency stabilization of laser light is required for any stable measurement involving trapped radioactive atoms, including Fr. Since the hyperfine splitting in iodine molecules (127I2) is close to the resonance frequency of the Fr D2 line, we performed frequency modulation spectroscopy of hyperfine structures of I2.

  7. Benchmarking of Touschek Beam Lifetime Calculations for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, A.; Yang, B.

    2017-06-25

    Particle loss from Touschek scattering is one of the most significant issues faced by present and future synchrotron light source storage rings. For example, the predicted, Touschek-dominated beam lifetime for the Advanced Photon Source (APS) Upgrade lattice in 48-bunch, 200-mA timing mode is only ~ 2 h. In order to understand the reliability of the predicted lifetime, a series of measurements with various beam parameters was performed on the present APS storage ring. This paper first describes the entire process of beam lifetime measurement, then compares measured lifetime with the calculated one by applying the measured beam parameters. The results show very good agreement.

  8. Optical Beam Timing Monitor Experiments at the Advanced Light Source

    OpenAIRE

    Byrd, John; De Santis, Stefano; Wilcox, Rusell; Yan, Yin

    2008-01-01

    We present the initial results of an experimental study of a beam timing monitor based on an optoelectronic technique. This technique uses the electrical signal from a beam position monitor to modulate the amplitude of a train of laser pulses, converting timing jitter into an amplitude jitter. This modulation is then measured with a photodetector and sampled by a fast ADC. This approach has already demonstrated sub-100 fs resolution and promises even better results. Additionally, we are ...

  9. Design of a neutrino source based on beta beams

    Directory of Open Access Journals (Sweden)

    E. Wildner

    2014-07-01

    Full Text Available “Beta beams” produce collimated pure electron (antineutrino beams by accelerating beta active ions to high energies and having them decay in a racetrack shaped storage ring of 7 km circumference, the decay ring. EUROnu beta beams are based on CERN infrastructures and existing machines. Using existing machines may be an advantage for the cost evaluation, but will also constrain the physics performance. The isotope pair of choice for the beta beam is ^{6}He and ^{18}Ne. However, before the EUROnu studies one of the required isotopes, ^{18}Ne, could not be produced in rates that satisfy the needs for physics of the beta beam. Therefore, studies of alternative beta emitters, ^{8}Li and ^{8}B, with properties interesting for a beta beam have been proposed and have been studied within EUROnu. These alternative isotopes could be produced by using a small storage ring, in which the beam traverses a target, creating the ^{8}Li and ^{8}B isotopes. This production ring, the injection linac and the target system have been evaluated. Measurements of the cross section of the reactions to produce the beta beam isotopes show interesting results. A device to collect the produced isotopes from the target has been developed and tested. However, the yields of ^{8}Li and ^{8}B, using the production ring for production of ^{8}Li and ^{8}B, is not yet, according to simulations, giving the rates of isotopes that would be needed. Therefore, a new method of producing the ^{18}Ne isotope has been developed and tested giving good production rates. A 60 GHz ECRIS prototype, the first in the world, was developed and tested for ion production with contributions from EUROnu. The decay ring lattices for the ^{8}Li and ^{8}B have been developed and the lattice for ^{6}He and ^{18}Ne has been optimized to ensure the high intensity ion beam stability.

  10. Glow discharge sources for atomic and molecular analyses

    Science.gov (United States)

    Storey, Andrew Patrick

    Two types of glow discharges were used and characterized for chemical analysis. The flowing atmospheric pressure afterglow (FAPA) source, based on a helium glow discharge (GD), was utilized to analyze samples with molecular mass spectrometry. A second GD, operated at reduced pressure in argon, was employed to map the elemental composition of a solid surface with novel optical detection systems, enabling new applications and perspectives for GD emission spectrometry. Like many plasma-based ambient desorption-ionization sources being used around the world, the FAPA requires a supply of helium to operate effectively. With increased pressures on global helium supply and pricing, the use of an interrupted stream of helium for analysis was explored for vapor and solid samples. In addition to the mass spectra generated by the FAPA source, schlieren imaging and infrared thermography were employed to map the behavior of the source and its surroundings under the altered conditions. Additionally, a new annular microplasma variation of the FAPA source was developed and characterized. A spectroscopic imaging system that utilized an adjustable-tilt interference filter was used to map the elemental composition of a sample surface by glow discharge emission spectroscopy. This apparatus was compared to other GD imaging techniques for mapping elemental surface composition. The wide bandpass filter resulted in significant spectral interferences that could be partially overcome with chemometric data processing. Because time-resolved GD emission spectroscopy can provide fine depth-profiling measurements, a natural extension of GD imaging would be its application to three-dimensional characterization of samples. However, the simultaneous cathodic sputtering that occur across the sample results in a sampling process that is not completely predictable. These issues are frequently encountered when laterally varied samples are explored with glow discharge imaging techniques. These insights

  11. A simple velocity-tunable pulsed atomic source of slow metastable argon

    Science.gov (United States)

    Taillandier-Loize, T.; Aljunid, S. A.; Correia, F.; Fabre, N.; Perales, F.; Tualle, J. M.; Baudon, J.; Ducloy, M.; Dutier, G.

    2016-04-01

    A pulsed beam of metastable argon atoms having a low tunable velocity (10 to 150 m s-1) is produced with a very substantial brightness (9  ×  108Ar* s-1 sr-1). The present original experimental configuration leads to a variable velocity dispersion that can be smaller than the standard Brownian one. This behaviour, analysed using Monte Carlo simulations, exhibits momentum stretching (heating) or narrowing (cooling) entirely due to a subtle combination of Doppler and Zeeman effects.

  12. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    CERN Document Server

    Shornikov, A.

    2016-01-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  13. Beam heat load investigations with a cold vacuum chamber for diagnostics in a synchrotron light source

    Energy Technology Data Exchange (ETDEWEB)

    Voutta, Robert

    2016-04-22

    The beam heat load is a crucial input parameter for the cryogenic design of superconducting insertion devices. To understand the discrepancies between the predicted heat load of an electron beam to a cold bore and the heat load observed in superconducting devices, a cold vacuum chamber for diagnostics has been built. Extensive beam heat load measurements were performed at the Diamond light source. They are analysed systematically and combined with complementary impedance bench measurements.

  14. Augmenting the bioactivity of polyetheretherketone using a novel accelerated neutral atom beam technique.

    Science.gov (United States)

    Ajami, S; Coathup, M J; Khoury, J; Blunn, G W

    2017-08-01

    Polyetheretherketone (PEEK) is an alternative to metallic implants in orthopedic applications; however, PEEK is bioinert and does not osteointegrate. In this study, an accelerated neutral atom beam technique (ANAB) was employed to improve the bioactivity of PEEK. The aim was to investigate the growth of human mesenchymal stem cells (hMSCs), human osteoblasts (hOB), and skin fibroblasts (BR3G) on PEEK and ANAB PEEK. The surface roughness and contact angle of PEEK and ANAB PEEK was measured. Cell metabolic activity, proliferation and alkaline phosphatase (ALP) was measured and cell attachment was determined by quantifying adhesion plaques with cells. ANAB treatment increased the surface hydrophilicity [91.74 ± 4.80° (PEEK) vs. 74.82 ± 2.70° (ANAB PEEK), p PEEK compared to PEEK (p PEEK surfaces. MSCs seeded on ANAB PEEK in the presence of osteogenic media, expressed increased levels of ALP compared to untreated PEEK (p PEEK. ANAB treatment may improve the osteointegration of PEEK implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1438-1446, 2017. © 2016 Wiley Periodicals, Inc.

  15. Enhanced bioactivity and osseointegration of PEEK with accelerated neutral atom beam technology.

    Science.gov (United States)

    Khoury, Joseph; Maxwell, Melissa; Cherian, Raymond E; Bachand, James; Kurz, Arthur C; Walsh, Michael; Assad, Michel; Svrluga, Richard C

    2017-04-01

    Polyetheretherketone (PEEK) is growing in popularity for orthopedic, spinal, and trauma applications but has potential significant limitations in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent, but is inert and therefore does not integrate well with bone. Current efforts are focusing on increasing the bioactivity of PEEK with surface modifications to improve the bone-implant interface. We used a novel Accelerated Neutral Atom Beam (ANAB) technology to enhance the bioactivity of PEEK. Human osteoblast-like cells seeded on ANAB-treated PEEK result in significantly enhanced proliferation compared with control PEEK. Cells grown on ANAB-treated PEEK increase osteogenic expression of ALPL (1.98-fold, p PEEK implants resulted in enhanced bone-in-contact by 3.09-fold (p PEEK has the potential to enhance its bioactivity, leading to bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants. ANAB treatment, therefore, may significantly enhance the performance of PEEK medical implants and lead to improved clinical outcomes. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 531-543, 2017. © 2015 Wiley Periodicals, Inc.

  16. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu [Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University, Stanford, California 94305 (United States)

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  17. High-intensity pulsed beam source with tunable operation mode

    Science.gov (United States)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  18. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.

    Science.gov (United States)

    Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  19. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    Energy Technology Data Exchange (ETDEWEB)

    Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Kuechler, D.; Toivanen, V. [CERN, BE/ABP/HSL, 1211 Geneva 23 (Switzerland)

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  20. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hirscht, Julian

    2015-08-15

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  1. Beam shaping to improve the free-electron laser performance at the Linac Coherent Light Source

    Directory of Open Access Journals (Sweden)

    Y. Ding

    2016-10-01

    Full Text Available A new operating mode has been developed for the Linac Coherent Light Source (LCLS in which we shape the longitudinal phase space of the electron beam. This mode of operation is realized using a horizontal collimator located in the middle of the first bunch compressor to truncate the head and tail of the beam. With this method, the electron beam longitudinal phase space and current profile are reshaped, and improvement in lasing performance can be realized. We present experimental studies at the LCLS of the beam shaping effects on the free-electron laser performance.

  2. Beam optics optimization of a negative-ion sputter source

    Indian Academy of Sciences (India)

    Finally, we propose some fundamental modifications of the source to prepare future needs. 2. Description of the negative-ion sputter source. Figure 1 shows the configuration of our 860 ST model negative-ion source. The ion- izer has an elliptical surface made of molybdenum mounted in axial alignment with a. 795 ...

  3. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  4. Low-Energy Plasma Focus Device as an Electron Beam Source

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Khan

    2014-01-01

    Full Text Available A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5×1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.

  5. Low-Energy Plasma Focus Device as an Electron Beam Source

    Science.gov (United States)

    Seong Ling, Yap; Naresh Kumar, Nitturi; Lian Kuang, Lim; Chiow San, Wong

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences. PMID:25544952

  6. Beam Current Increase and Cathode Lifetime Improvement of KOTRON-13 Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W. K.; Chae, S. K.; Song, J. Y.; Im, G. S.; Cho, B. O. [Samyoung Unitech Co., Seoul (Korea, Republic of)

    2010-05-15

    Technology of cyclotron has been actively developed to meet the increasing requirement output of medical radioactive isotopes for PET. KOTRON-13 is produced with low negative hydrogen ion beam current owing to the low efficiency of proton beam current compared with foreign cyclotron. In the defect there from, the lifetime of cathode is around 5,000min, which requires frequent maintenance period, and the target beam current is maximum 50uA at a poor efficiency compared with the inflow quantity of hydrogen gas and that of inflicting arc current. Considering above affairs, we have to improve the PIG ion source extraction efficiency of KOTRON-13 in order to lift beam current. Mostly the ion source of cyclotron less than 30Mev comes from the use of PIG ion source mainly with the method of cold cathode or hot cathode. However, the cyclotron of 30Mev grade of EBCO or IBA uses the external ion source and uses ion source with cusp type of good withdrawal efficiency. This type requires high voltage, and transports ion from ion source to cyclotron, which requires precise transportation equipment. And entering cyclotron requires a high quality of inflictor with a high defect rate, but high current cyclotron has no choice but to use ion source of such a method. But the cyclotron using PET with the beam current less than 100uA uses PIG ion source of KOTRON-13 with a reasonable maintenance cost

  7. Generation of oxygen, carbon and metallic ion beams by a compact microwave source

    Energy Technology Data Exchange (ETDEWEB)

    Walther, S.R.; Leung, K.N.; Ehlers, K.W.; Kunkel, W.B.

    1986-07-01

    A small microwave ion source fabricated from a quartz tube and enclosed externally by a cavity has been operated with different geometries and for various gases in a cw mode. This source has been used to generate oxygen ion beams with energy as low as 5.5 eV. Beam energy spread has been measured to be less than 1 eV. By installing different metal plates on the front extraction electrode, metallic ion beams such as (Be, Cu, Al, etc.) can be produced.

  8. Prize for Industrial Applications of Physics Talk: Low energy spread Ion source for focused ion beam systems-Search for the holy grail

    Science.gov (United States)

    Ward, Bill

    2011-03-01

    In this talk I will cover my personal experiences as a serial entrepreneur and founder of a succession of focused ion beam companies (1). Ion Beam Technology, which developed a 200kv (FIB) direct ion implanter (2). Micrion, where the FIB found a market in circuit edit and mask repair, which eventually merged with FEI corporation. and (3). ALIS Corporation which develop the Orion system, the first commercially successful sub-nanometer helium ion microscope, that was ultimately acquired by Carl Zeiss corporation. I will share this adventure beginning with my experiences in the early days of ion beam implantation and e-beam lithography which lead up to the final breakthrough understanding of the mechanisms that govern the successful creation and operation of a single atom ion source.

  9. Beam electrons as a source of Hα flare ribbons.

    Science.gov (United States)

    Druett, Malcolm; Scullion, Eamon; Zharkova, Valentina; Matthews, Sarah; Zharkov, Sergei; Rouppe Van der Voort, Luc

    2017-06-27

    The observations of solar flare onsets show rapid increase of hard and soft X-rays, ultra-violet emission with large Doppler blue shifts associated with plasma upflows, and Hα hydrogen emission with red shifts up to 1-4 Å. Modern radiative hydrodynamic models account well for blue-shifted emission, but struggle to reproduce closely the red-shifted Hα lines. Here we present a joint hydrodynamic and radiative model showing that during the first seconds of beam injection the effects caused by beam electrons can reproduce Hα line profiles with large red-shifts closely matching those observed in a C1.5 flare by the Swedish Solar Telescope. The model also accounts closely for timing and magnitude of upward motion to the corona observed 29 s after the event onset in 171 Å by the Atmospheric Imaging Assembly/Solar Dynamics Observatory.

  10. Beam electrons as a source of Hα flare ribbons

    Science.gov (United States)

    Druett, Malcolm; Scullion, Eamon; Zharkova, Valentina; Matthews, Sarah; Zharkov, Sergei; Rouppe Van der Voort, Luc

    2017-01-01

    The observations of solar flare onsets show rapid increase of hard and soft X-rays, ultra-violet emission with large Doppler blue shifts associated with plasma upflows, and Hα hydrogen emission with red shifts up to 1–4 Å. Modern radiative hydrodynamic models account well for blue-shifted emission, but struggle to reproduce closely the red-shifted Hα lines. Here we present a joint hydrodynamic and radiative model showing that during the first seconds of beam injection the effects caused by beam electrons can reproduce Hα line profiles with large red-shifts closely matching those observed in a C1.5 flare by the Swedish Solar Telescope. The model also accounts closely for timing and magnitude of upward motion to the corona observed 29 s after the event onset in 171 Å by the Atmospheric Imaging Assembly/Solar Dynamics Observatory. PMID:28653670

  11. Two-color above threshold ionization of atoms and ions in XUV Bessel beams and combined with intense laser light

    CERN Document Server

    Seipt, D; Surzhykov, A; Fritzsche, S

    2016-01-01

    The two-color above-threshold ionization (ATI) of atoms and ions is investigated for a vortex Bessel beam in the presence of a strong near-infrared (NIR) light field. While the photoionization is caused by the photons from the weak but extreme ultra-violet (XUV) vortex Bessel beam, the energy and angular distribution of the photoelectrons and their sideband structure are affected by the plane-wave NIR field. We here explore the energy spectra and angular emission of the photoelectrons in such two-color fields as a function of the size and location of the target (atoms) with regard to the beam axis. In addition, analogue to the circular dichroism in typical two-color ATI experiments with circularly polarized light, we define and discuss seven different dichroism signals for such vortex Bessel beams that arise from the various combinations of the orbital and spin angular momenta of the two light fields. For localized targets, it is found that these dichroism signals strongly depend on the size and position of t...

  12. Influence of the electrode gap separation on the pseudospark-sourced electron beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J., E-mail: junping.zhao@qq.com [High Voltage Division, School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi' an 710049 (China); Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland (United Kingdom); Yin, H.; Zhang, L.; Shu, G.; He, W.; Phelps, A. D. R.; Cross, A. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland (United Kingdom); Zhang, J.; Zhang, Q. [High Voltage Division, School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi' an 710049 (China)

    2016-07-15

    Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gap separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.

  13. Testing sub-gravitational forces on atoms from a miniature, in-vacuum source mass

    Science.gov (United States)

    Jaffe, Matthew; Haslinger, Philipp; Xu, Victoria; Hamilton, Paul; Upadhye, Amol; Elder, Benjamin; Khoury, Justin; Mueller, Holger

    2017-04-01

    In this talk, I will discuss our recent measurement of the gravitational attraction between cesium atoms in free fall and a centimeter-sized source mass using atom interferometry. Placing the source mass in vacuum provides sensitivity to a wide class of ``fifth force'' type interactions whose effects would otherwise be suppressed beyond detectability in regions of high matter density. Examples include so-called chameleon and symmetron fields, proposed as dark energy candidates. Our measurement tightens constraints on such theories by over two orders of magnitude.

  14. Beam commission of the high intensity proton source developed at INFN-LNS for the European Spallation Source

    Science.gov (United States)

    Neri, L.; Celona, L.; Gammino, S.; Miraglia, A.; Leonardi, O.; Castro, G.; Torrisi, G.; Mascali, D.; Mazzaglia, M.; Allegra, L.; Amato, A.; Calabrese, G.; Caruso, A.; Chines, F.; Gallo, G.; Longhitano, A.; Manno, G.; Marletta, S.; Maugeri, A.; Passarello, S.; Pastore, G.; Seminara, A.; Spartà, A.; Vinciguerra, S.

    2017-07-01

    At the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS) the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started in November 2016. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Promising results were obtained since the first source start with a 6 mm diameter extraction hole. The increase of the extraction hole to 8 mm allowed improving PS-ESS performances and obtaining the values required by the ESS accelerator. In this work, extracted beam current characteristics together with Doppler shift and emittance measurements are presented, as well as the description of the next phases before the installation at ESS in Lund.

  15. Field ionization of helium in a supersonic beam: Kinetic energy of neutral atoms and probability of their field ionization

    Energy Technology Data Exchange (ETDEWEB)

    Holst, B.; Piskur, J. [Department of Physics and Technology, University of Bergen, Allegaten 55, 5007 Bergen (Norway); Kostrobiy, P.P.; Markovych, B.M. [Department of Applied Mathematics, Lviv National University of Technology, Stefan Bandera Str. 12, UA-79013 Lviv (Ukraine); Suchorski, Y., E-mail: yuri.suchorski@imc.tuwien.ac.at [Vienna University of Technology, Veterinaerplatz 1, A-1210 Vienna (Austria)

    2009-04-15

    High detection efficiency combined with spatial resolution on a nm-scale makes the field ionization process a promising candidate for spatially resolved neutral particles detection. The effective cross-sectional area {sigma}{sub eff} can serve as a measure for the effectiveness of such a field ion detector. In the present contribution, we combine quantum-mechanical calculations of the field-modified electron density distribution near the tungsten tip surface and of the resulting local field distributions, performed using the functional integration method, with a classical treatment of the atom trajectories approaching the tip in order to calculate the {sigma}{sub eff} values for ionization of free He atoms over an apex of a tungsten field emitter tip. The calculated values are compared with experimental data for supersonic He atomic beams at two different temperatures 95 and 298 K.

  16. A free jet (supersonic), molecular beam source with automatized, 50 nm precision nozzle-skimmer positioning

    Science.gov (United States)

    Eder, S. D.; Samelin, B.; Bracco, G.; Ansperger, K.; Holst, B.

    2013-09-01

    Low energy (thermal) free jet (supersonic) molecular beams are used in a range of applications from surface science and surface deposition to quantum coherence and gas kinetics experiments. A free jet molecular beam is created by a gas expansion from a high pressure reservoir through a small aperture (nozzle). The nozzle typically has a diameter of 2-20 μm. The central part of the beam is selected using a skimmer, typically up to 500 μm in diameter. Recent years have seen the introduction of highly spatially confined beam sources based on micrometer skimmers and micrometer or even sub-micrometer nozzles. Such sources have been applied, for example, in the investigation of superfluidity and in neutral helium microscopy. However, up till now no source design allowing the precise positioning of the micro-skimmer relative to the nozzle has been available. This is an important issue because the relative position of skimmer and nozzle can influence the beam properties considerably. Here we present the design and implementation of a new molecular beam source, which allows an automatized, 50 nm precision positioning of the skimmer relative to the nozzle. The source is liquid nitrogen cooled and the temperature can be controlled between 110 K and 350 K with a temperature fluctuation of less than ±0.1 K over several hours. Beam intensity measurements using a 5 μm nozzle and a skimmer 5 μm in diameter are presented for stagnation pressures po in the range 3-180 bars. A 2D beam profile scan, using a 9.5 μm skimmer and a 5 μm nozzle is presented as a further documentation of the versatility of the new design and as an illustration of the influence of the relative skimmer-nozzle position on the beam properties.

  17. Free radical hydrogen atom abstraction from saturated hydrocarbons: A crossed-molecular-beams study of the reaction Cl + C{sub 3}H{sub 8} {yields} HCl + C{sub 3}H{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; Hemmi, N.; Suits, A.G.; Lee, Y.T. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    The abstraction of hydrogen atoms from saturated hydrocarbons are reactions of fundamental importance in combustion as well as often being the rate limiting step in free radical substitution reactions. The authors have begun studying these reactions under single collision conditions using the crossed molecular beam technique on beamline 9.0.2.1, utilizing VUV undulator radiation to selectively ionize the scattered hydrocarbon free radical products (C{sub x}H{sub 2x+1}). The crossed molecular beam technique involves two reactant molecular beams fixed at 90{degrees}. The molecular beam sources are rotatable in the plane defined by the two beams. The scattered neutral products travel 12.0 cm where they are photoionized using the VUV undulator radiation, mass selected, and counted as a function of time. In the authors initial investigations they are using halogen atoms as protypical free radicals to abstract hydrogen atoms from small alkanes. Their first study has been looking at the reaction of Cl + propane {r_arrow} HCl + propyl radical. In their preliminary efforts the authors have measured the laboratory scattering angular distribution and time of flight spectra for the propyl radical products at collision energies of 9.6 kcal/mol and 14.9 kcal/mol.

  18. Microsecond Electron Beam Source with Electron Energy Up to 400 Kev and Plasma Anode

    Science.gov (United States)

    Abdullin, É. N.; Basov, G. F.; Shershnev, S.

    2017-12-01

    A new high-power source of electrons with plasma anode for producing high-current microsecond electron beams with electron energy up to 400 keV has been developed, manufactured, and put in operation. To increase the cross section and pulse current duration of the beam, a multipoint explosive emission cathode is used in the electron beam source, and the beam is formed in an applied external guiding magnetic field. The Marx generator with vacuum insulation is used as a high-voltage source. Electron beams with electron energy up to 300-400 keV, current of 5-15 kA, duration of 1.5-3 μs, energy up to 4 kJ, and cross section up to 150 cm2 have been produced. The operating modes of the electron beam source are realized in which the applied voltage is influenced weakly on the current. The possibility of source application for melting of metal surfaces is demonstrated.

  19. Laser-Accelerated Proton Beams as a New Particle Source

    OpenAIRE

    Nürnberg, Frank

    2010-01-01

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. Today's high power, ultrashort pulse laser systems are capable of achieving laser intensities up to 10^21 W/cm^2. When focused onto thin foil targets, extremely high field gradients of the order of TV/m are produced on the rear side of the target resulting in the acceleration of protons to multi-MeV energies with an exponential spectrum including up to 10^13 particles. This a...

  20. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    A nanogan type of ECR source based on a fully permanent magnet design was chosen for this purpose [3]. The ECR ion source along with all its peripheral electron- ics and vacuum components placed on a 200 kV high voltage platform provides multiply charged positive ions in a widely varying energy range from a few ...

  1. Neutron beam line design of a white neutron source at CSNS

    Science.gov (United States)

    Jing, Hantao; Zhang, Liying; Tang, Jingyu; Ruan, Xichao; Ning, Changjun; Yu, Yongji; Wang, Pengcheng; Li, Qiang; Ren, Jie; Tang, Hongqing; Wang, Xiangqi

    2017-09-01

    China Spallation Neutron Source (CSNS), which is under construction, is a large scientific facility dedicated mainly for multi-disciplinary research on material characterization using neutron scattering techniques. The CSNS Phase-I accelerator will deliver a proton beam with an energy of 1.6 GeV and a pulse repetition rate of 25 Hz to a tungsten target, and the beam power is 100 kW. A white neutron source using the back-streaming neutrons through the incoming proton beam channel was proposed and is under construction. The back-streaming neutrons which are very intense and have good time structure are very suitable for nuclear data measurements. The white neutron source includes an 80-m neutron beam line, two experimental halls, and also six different types of spectrometers. The physics design of the beam line is presented in this paper, which includes beam optics and beam characterization simulations, with the emphasis on obtaining extremely low background. The first-batch experiments on nuclear data measurements are expected to be conducted in late 2017.

  2. Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source

    DEFF Research Database (Denmark)

    Schunk, Gerhard; Vogl, Ulrich; Strekalov, Dmitry V.

    2015-01-01

    wavelength-tuning mechanisms that allow a coarse tuning to either the cesium or rubidium wavelength, with subsequent continuous fine-tuning to the desired transition. As a demonstration of the functionality of the source, we performed a heralded single-photon measurement of the atomic decay. We present......Quantum information technology strongly relies on the coupling of optical photons with narrowband quantum systems, such as quantum dots, color centers, and atomic systems. This coupling requires matching the optical wavelength and bandwidth to the desired system, which presents a considerable...... problem for most available sources of quantum light. Here we demonstrate the coupling of alkali dipole transitions with a tunable source of photon pairs. Our source is based on spontaneous parametric downconversion in a triply resonant whispering gallery mode resonator. For this, we have developed novel...

  3. Error sources in atomic force microscopy for dimensional measurements: Taxonomy and modeling

    DEFF Research Database (Denmark)

    Marinello, F.; Voltan, A.; Savio, E.

    2010-01-01

    This paper aimed at identifying the error sources that occur in dimensional measurements performed using atomic force microscopy. In particular, a set of characterization techniques for errors quantification is presented. The discussion on error sources is organized in four main categories......: scanning system, tip-surface interaction, environment, and data processing. The discussed errors include scaling effects, squareness errors, hysteresis, creep, tip convolution, and thermal drift. A mathematical model of the measurement system is eventually described, as a reference basis for errors...

  4. Precision spectroscopy of the 2S-4P{sub 1/2} transition in atomic hydrogen on a cold thermal beam of optically excited 2S atoms

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Axel; Kolachevsky, Nikolai; Alnis, Janis; Yost, Dylan C.; Matveev, Arthur; Parthey, Christian G.; Pohl, Randolf; Udem, Thomas [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Khabarova, Ksenia [FSUE ' VNIIFTRI' , 141570 Moscow (Russian Federation); Haensch, Theodor W. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Ludwig-Maximilians-Universitaet, 80799 Muenchen (Germany)

    2013-07-01

    The 'proton size puzzle', i.e. the discrepancy between the values for the proton r.m.s. charge radius deduced from precision spectroscopy of atomic hydrogen and electron-proton-scattering on one side and the value deduced from muonic hydrogen spectroscopy on the other side, has been persisting for more than two years now. Although huge efforts have been put into trying to resolve this discrepancy from experimental and theoretical side, no convincing argument could be found so far. In this talk, we report on a unique precision spectroscopy experiment on atomic hydrogen, which is aiming to bring some light to the hydrogen part of the puzzle: In contrast to any previous high resolution experiment probing a transition frequency between the meta-stable 2S state and a higher lying nL state (n=3,4,6,8,12, L=S,P,D), our measurement of the 2S-4P{sub 1/2} transition frequency is the first experiment being performed on a cold thermal beam of hydrogen atoms optically excited to the 2S state. We will discuss how this helps to efficiently suppresses leading systematic effects of previous measurements and present the preliminary results we obtained so far.

  5. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun

    2018-01-12

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation directivity in far fields. The strong directivity formed in the presence of the enclosure is attributed to interference of sources under degenerate Mie resonances in the enclosure of anisotropic property. Our numerical simulations of sound emission from the sources demonstrate the radiation of a highly directed sound beam of unidirectional or bidirectional patterns, depending on how the sources are configured inside the enclosure. Our scheme, if achieved, can solve the challenging problem of poor directivity of a subwavelength sound system, and can guide beam forming and collimation by miniaturized devices.

  6. Meniscus and beam halo formation in a tandem-type negative ion source with surface production

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2012-06-04

    A meniscus of plasma-beam boundary in H{sup -} ion sources largely affects the extracted H{sup -} ion beam optics. Although it is hypothesized that the shape of the meniscus is one of the main reasons for the beam halo observed in experiments, a physical mechanism of the beam halo formation is not yet fully understood. In this letter, it is first shown by the 2D particle in cell simulation that the H{sup -} ions extracted from the periphery of the meniscus cause a beam halo since the surface produced H{sup -} ions penetrate into the bulk plasma, and, thus, the resultant meniscus has a relatively large curvature.

  7. A Wire Scanner Design for Electron Beam Profile Measurement in the Linac Coherent Light Source Undulator

    CERN Document Server

    Bailey, James L; Yang Bing Xin

    2005-01-01

    The Linac Coherent Light Source (LCLS), currently under design, requires beam diagnostic instruments between the magnets in the beam undulator section. Ten wire scanners are planned as one of the primary instruments to characterize electron beam properties. The development of these wire scanners presents several design challenges due to the need for high accuracy and resolution of the wire motion (3 microns tolerance, typical) and the high intensity of the beam (3400 A over an area of 30 micron rms radius). In this paper, we present the technical specification and design criteria for the scanners. We will also present the mechanical design of the UHV-compatible drive and its engineering analysis. Lastly, we present the wire card design and discuss associated thermal and mechanical issues originating from the highly intense x-ray and electron beams.

  8. Performance of the Lancelot Beam Position Monitor at the Diamond Light Source

    Science.gov (United States)

    Chagani, H.; Garcia-Nathan, T. B.; Jiang, C.; Kachatkou, A.; Marchal, J.; Omar, D.; Tartoni, N.; van Silfhout, R. G.; Williams, S.

    2017-12-01

    The Lancelot beam position and profile monitor records the scattered radiation off a thin, low-density foil, which passes through a pinhole perpendicular to the path of the beam and is detected by a Medipix3RX sensor. This arrangement does not expose the detector to the direct beam at synchrotrons and results in a negligible drop in flux downstream of the module. It allows for magnified images of the beam to be acquired in real time with high signal-to-noise ratios, enabling measurements of tiny displacements in the position of the centroid of approximately 1 μm. It also provides a means for independently measuring the photon energy of the incident monoenergetic photon beam. A constant frame rate of up to 245 Hz is achieved. The results of measurements with two Lancelot detectors installed in different environments at the Diamond Light Source are presented and their performance is discussed.

  9. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    DEFF Research Database (Denmark)

    Zhu, Diling; Feng, Yiping; Stoupin, Stanislav

    2014-01-01

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High...... the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance. © 2014 AIP Publishing LLC....

  10. Structural design study of a proton beam window for a 1-MW spallation neutron source

    CERN Document Server

    Teraoku, T; Ishikura, S; Kaminaga, M; Maekawa, F; Meigo, S I; Terada, A

    2003-01-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to m...

  11. Simple emittance measurement of H{sup -} beams from a large plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Guharay, S.K.; Tsumori, K.; Hamabe, M.; Takeiri, Y.; Kaneko, O.; Kuroda, T.

    1996-03-01

    An emittance meter is developed using pepper-pot method. Kapton foils are used to detect intensity distributions of small beamlets at the `image` plane of the pepper-pot. Emittance of H{sup -} beams from a large plasma source for the neutral beam injector of the Large Helical Device (LHD) has been measured. The normalized emittance (95%) of a 6 mA H{sup -} beam with emission current density of about 10 mA/cm{sup 2} is {approx}0.59 mm mrad. The present system is very simple, and it eliminates many complexities of the existing schemes. (author).

  12. Extracted beam and electrode currents in the inductively driven surface-plasma negative hydrogen ion source

    Science.gov (United States)

    Belchenko, Yu.; Ivanov, A.; Sanin, A.; Sotnikov, O.

    2017-08-01

    The data on long-pulsed operation of RF surface-plasma source is presented. The source regularly produces the H- ion beam with current >1A, energy ≥90 keV and pulse duration ≥2 s. The total H- beam curent, transported to the distant Faraday cup and the currents in the circuits of ion-optical system elements were measured. The composition of accelerated and extracted grid currents was clarified. The relatively high level of acceleration grid current 0.4 A was observed. It consists mainly of secondary electrons, emitted from extraction grid apertures and stripped from H- ions and could be decreased by optimization of positive PG bias applied. The test stand experiments on beam transport through the LEBT were carried out. About 90% of the H- ion beam was transported from the source to the distant calorimeter plane. The full size of 93 keV beam, transported to the calorimeter plane, was larger, than the size of the calorimeter inlet window. As a result, ˜ 60% of the initial beam power was registered by the calorimeter with window 24×24 cm2.

  13. Comparison of extraction and beam transport simulations with emittance measurements from the ECR ion source venus

    Energy Technology Data Exchange (ETDEWEB)

    Winklehner, D; Todd, D; Benitez, J; Strohmeier, M; Leitner, D [Nuclear Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley (United States); Grote, D, E-mail: winklehner@frib.msu.ed [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore (United States)

    2010-12-15

    The versatility of ECR (Electron Cyclotron Resonance) ion sources makes them the injector of choice for many heavy ion accelerators. However, the design of the LEBT (Low Energy Beam Transport) systems for these devices is challenging, because it has to be matched for a wide variety of ions. In addition, due to the magnetic confinement fields, the ion density distribution across the extraction aperture is inhomogeneous and charge state dependent. In addition, the ion beam is extracted from a region of high axial magnetic field, which adds a rotational component to the beam. In this paper the development of a simulation model (in particular the initial conditions at the extraction aperture) for ECR ion source beams is described. Extraction from the plasma and transport through the beam line are then simulated with the particle-in-cell code WARP. Simulations of the multispecies beam containing Uranium ions of charge state 18+ to 42+ and oxygen ions extracted from the VENUS ECR ion source are presented and compared to experimentally obtained emittance values.

  14. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.

  15. Recent developments of target and ion sources to produce ISOL beams

    Science.gov (United States)

    Stora, T.

    2013-12-01

    In this review on target and ion sources for ISOL (Isotope Separation OnLine) beams, important developments from the past five years are highlighted. While at precedent EMIS conferences, a particular focus was given to a single topics, for instance specifically on ion sources or on chemical purification techniques, here each of the important elements present in an ISOL production unit is discussed. Fast diffusing nanomaterials, uranium-based targets, high power targets for next generation facilities, purification by selective adsorption, new ion sources are all part of this review. For each of these selected topics, the reported results lead to significant gains in intensity, purity, or quality of the delivered beam, or in the production of new isotope beams. Often the outcome resulted from the combination of original ideas with state-of-the-art investigations; this was carried out using very different scientific disciplines, leading to understanding of the underlying chemical or physical mechanisms at the origin of the improvements.

  16. Recent developments of target and ion sources to produce ISOL beams

    CERN Document Server

    Stora, Thierry

    2013-01-01

    In this review on target and ion sources for ISOL (Isotope Separation OnLine) beams, important develop- ments from the past five years are highlighted. While at precedent EMIS conferences, a particular focus was given to a single topics, for instance specifically on ion sources or on chemical purification tech- niques, here each of the important elements present in an ISOL production unit is discussed. Fast diffus- ing nanomaterials, uranium-based targets, high power targets for next generation facilities, purification by selective adsorption, new ion sources are all part of this review. For each of these selected topics, the reported results lead to significant gains in intensity, purity, or quality of the delivered beam, or in the production of new isotope beams. Often the outcome resulted from the combination of original ideas with state-of-the-art investigations; this was carried out using very different scientific disciplines, lead- ing to understanding of the underlying chemical or physical mechanisms a...

  17. Beam-based model of broad-band impedance of the Diamond Light Source

    Directory of Open Access Journals (Sweden)

    Victor Smaluk

    2015-06-01

    Full Text Available In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  18. Beam-based model of broad-band impedance of the Diamond Light Source

    Science.gov (United States)

    Smaluk, Victor; Martin, Ian; Fielder, Richard; Bartolini, Riccardo

    2015-06-01

    In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS) to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  19. Spectroscopic determination of electron energies in a discharge of atomic H produced by a monoenergetic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, J; Fitzgerald, M; Khachan, J [Applied and Plasma Physics Group, School of Physics A28, University of Sydney, NSW 2006 (Australia)

    2007-09-07

    We construct a collisional-radiative model for atomic H produced in H{sub 2} gas at units and tens of mTorr pressures by a monoenergetic electron beam at units of keV energies. Unlike similar work in regimes of higher pressure and lower electron energies, we calculate the electron energy dependence of the two strongest Balmer lines (H{sub {alpha}} and H{sub {beta}}). A key result is that the intensity ratios do not uniquely specify the electron energy, and so we propose a new method for measurement of the spatial energy profile using the absolute and relative intensities in tandem. The model shows qualitative agreement with semi-empirical distributions of absolute and relative intensities versus electron energy for beams emerging from a biconical hollow cathode.

  20. Depolarization of the 4{sup 1}D{sub 2} state of a helium atom by charged particles in beam plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kazantsev, S.A.; Luchinkina, V.V.; Mezentsev, A.P.; Mustafaev, A.S.; Rebane, V.N.; Rys, A.G.; Stepanov, Yu.L. [St. Petersburg (Russian Federation)

    1994-06-01

    Depolarization of the 4{sup 1}D{sub 2}-2{sup 1}P{sub 1} spectra line of He atoms caused by collisions with charged particles in beam plasma discharge is investigated both experimentally and theoretically. A comparison is made between the values of the rate constant for the collisional breakdown of alignment of helium atoms in the 4{sup 1}D{sub 2} state calculated from the theory of collisional relaxation of atomic polarization moments and determined from the experimentally observed broadening of the Hanle signal contour with the increase of the beam discharge current. 23 refs., 6 figs.

  1. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  2. Formation of GaN quantum dots by molecular beam epitaxy using NH{sub 3} as nitrogen source

    Energy Technology Data Exchange (ETDEWEB)

    Damilano, B., E-mail: bd@crhea.cnrs.fr; Brault, J.; Massies, J. [CRHEA-CNRS, Centre de Recherche sur l' Hétéro-Epitaxie et ses Applications, Centre National de la Recherche Scientifique, Rue B. Grégory, Valbonne 06560 (France)

    2015-07-14

    Self-assembled GaN quantum dots (QDs) in Al{sub x}Ga{sub 1−x}N (0.3 ≤ x ≤ 1) were grown on c-plane sapphire and Si (111) substrates by molecular beam epitaxy using ammonia as nitrogen source. The QD formation temperature was varied from 650 °C to 800 °C. Surprisingly, the density and size of QDs formed in this temperature range are very similar. This has been explained by considering together experimental results obtained from reflection high-energy electron diffraction, atomic force microscopy, and photoluminescence to discuss the interplay between thermodynamics and kinetics in the QD formation mechanisms. Finally, possible ways to better control the QD optical properties are proposed.

  3. Atomic radical abatement of organic impurities from electron beam deposited metallic structures

    NARCIS (Netherlands)

    Wnuk, J.D.; Gorham, J.M.; Rosenberg, S.G.; Madey, T.E.; Hagen, C.W.; Fairbrother, D.H.

    2010-01-01

    Focused electron beam induced processing (FEBIP) of volatile organometallic precursors has become an effective and versatile method of fabricating metal-containing nanostructures. However, the electron stimulated decomposition process responsible for the growth of these nanostructures traps much of

  4. Acoustic source identification in an enclosed space using the inverse phased beam tracing at medium frequencies

    DEFF Research Database (Denmark)

    Ih, Jeong-Guon; Jeong, Cheol-Ho

    2008-01-01

    When the source is enclosed by room surfaces, it is not easy, though not totally impossible, to apply conventional modal methods for source identification. This is because there are too many complicated wave interferences and effects of wall impedance, in particular at medium frequencies....... The phased beam tracing method was suggested as a fast and efficient acoustic simulation tool at the medium frequencies in an enclosure, which overcomes the defects of geometrical acoustics techniques. In this study, the phased beam tracing method, implemented in its inverse form, was applied...

  5. Developing electron beam bunching technology for improving light sources

    Energy Technology Data Exchange (ETDEWEB)

    Carlsten, B.E.; Chan, K.C.D.; Feldman, D.W. [and others

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new electron bunch compression technology, experimentally demonstrate subpicosecond compression of bunches with charges on the order of 1 nC, and to theoretically investigate fundamental limitations to electron bunch compression. All of these goals were achieved, and in addition, the compression system built for this project was used to generate 22 nm light in a plasma-radiator light source.

  6. Ion source developments for the production of radioactive isotope beams at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Ames, F., E-mail: ames@triumf.ca; Bricault, P.; Heggen, H.; Kunz, P.; Lassen, J.; Mjøs, A.; Raeder, S.; Teigelhöfer, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T2A3 (Canada)

    2014-02-15

    At the ISAC facility at TRIUMF radioactive ions are produced by bombarding solid targets with up to 100 μA of 500 MeV protons. The reaction products have to diffuse out of the hot target into an ion source. Normally, singly charged ions are extracted. They can be transported either directly to experiments or via an ECR charge state breeder to a post accelerator. Several different types of ion sources have to be used in order to deliver a large variety of rare isotope beams. At ISAC those are surface ion sources, forced electron beam arc discharge (FEBIAD) ion sources and resonant laser ionization sources. Recent development activities concentrated on increasing the selectivity for the ionization to suppress isobaric contamination in the beam. Therefore, a surface ion rejecting resonant laser ionization source (SIRLIS) has been developed to suppress ions from surface ionization. For the FEBIAD ion source a cold transfer line has been introduced to prevent less volatile components from reaching the ion source.

  7. Development of target ion source systems for radioactive beams at GANIL

    Energy Technology Data Exchange (ETDEWEB)

    Bajeat, O., E-mail: bajeat@ganil.fr [GANIL, BP 55027, 14076 CAEN Cedex 05 (France); Delahaye, P. [GANIL, BP 55027, 14076 CAEN Cedex 05 (France); Couratin, C. [GANIL, BP 55027, 14076 CAEN Cedex 05 (France); LPC Caen, 6 bd Maréchal Juin, 14050 CAEN Cedex (France); Dubois, M.; Franberg-Delahaye, H.; Henares, J.L.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lecomte, P.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M. [GANIL, BP 55027, 14076 CAEN Cedex 05 (France)

    2013-12-15

    Highlights: • For Spiral 1, a febiad ion source has been connected to a graphite target. • For Spiral 2, an oven made with a carbon resistor is under development. • We made some measurement of effusion in the Spiral 2 target. • A laser ion source is under construction. -- Abstract: The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams including radioactive beams produced by the Isotope Separation On-Line (ISOL) method at the SPIRAL1 facility. To extend the range of radioactive ion beams available at GANIL, using the ISOL method two projects are underway: SPIRAL1 upgrade and the construction of SPIRAL2. For SPIRAL1, a new target ion source system (TISS) using the VADIS FEBIAD ion source coupled to the SPIRAL1 carbon target will be tested on-line by the end of 2013 and installed in the cave of SPIRAL1 for operation in 2015. The SPIRAL2 project is under construction and is being design for using different production methods as fission, fusion or spallation reactions to cover a large area of the chart of nuclei. It will produce among others neutron rich beams obtained by the fission of uranium induced by fast neutrons. The production target made from uranium carbide and heated at 2000 °C will be associated with several types of ion sources. Developments currently in progress at GANIL for each of these projects are presented.

  8. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  9. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  10. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    Science.gov (United States)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  11. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    Science.gov (United States)

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  12. General design of the International Fusion Materials Irradiation Facility deuteron injector: Source and beam linea)

    Science.gov (United States)

    Gobin, R.; Blideanu, V.; Bogard, D.; Bourdelle, G.; Chauvin, N.; Delferrière, O.; Girardot, P.; Jannin, J. L.; Langlois, S.; Loiseau, D.; Pottin, B.; Rousse, J.-Y.; Senée, F.

    2010-02-01

    In the framework of the International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities (IFMIF-EVEDA) project, CEA/IRFU is in charge of the design and realization of the 140 mA cw deuteron Injector. The electron cyclotron resonance ion source operates at 2.45 GHz and a 4 electrode extraction system has been chosen. A 2 solenoid beam line, together with a high space charge compensation have been optimized for a proper beam injection in the 175 MHz radio frequency quadrupole. The injector will be tested with proton and deuteron beam production either in pulsed mode or in cw mode on the CEA-Saclay site before to be shipped to Japan. Special attention was paid to neutron emission due to (d,D) reaction. In this paper, the general IFMIF Injector design is reported, pointing out beam dynamics, radioprotection, diagnostics, and mechanical aspects.

  13. An experimental evaluation of monochromatic x-ray beam position monitors at diamond light source

    Energy Technology Data Exchange (ETDEWEB)

    Bloomer, Chris, E-mail: chris.bloomer@diamond.ac.uk; Rehm, Guenther; Dolbnya, Igor P. [Diamond Light Source Ltd, Oxfordshire (United Kingdom)

    2016-07-27

    Maintaining the stability of the X-ray beam relative to the sample point is of paramount importance for beamlines and users wanting to perform cutting-edge experiments. The ability to detect, and subsequently compensate for, variations in X-ray beam position with effective diagnostics has multiple benefits: a reduction in commissioning and start-up time, less ‘down-time’, and an improvement in the quality of acquired data. At Diamond Light Source a methodical evaluation of a selection of monochromatic X-ray Beam Position Monitors (XBPMs), using a range of position detection techniques, and from a range of suppliers, was carried out. The results of these experiments are presented, showing the measured RMS noise on the position measurement of each device for a given flux, energy, beam size, and bandwidth. A discussion of the benefits and drawbacks of each of the various devices and techniques is also included.

  14. A multitask neutron beam line for spallation neutron sources

    Science.gov (United States)

    Pietropaolo, A.; Festa, G.; Grazzi, F.; Barzagli, E.; Scherillo, A.; Schooneveld, E. M.; Civita, F.

    2011-08-01

    Here we present a new concept for a time-of-flight neutron scattering instrument allowing for simultaneous application of three different techniques: time-of-flight neutron diffraction, neutron resonance capture analysis and Bragg edge transmission analysis. The instrument can provide average resolution neutron radiography too. The potential of the proposed concept was explored by implementing the necessary equipment on INES (Italian Neutron Experimental Station) at the ISIS spallation neutron source (UK). The results obtained show the effectiveness of the proposed instrument to acquire relevant quantitative information in a non-invasive way on a historical metallurgical sample, namely a Japanese hand guard (tsuba). The aforementioned neutron techniques simultaneously exploited the extended neutron energy range available from 10 meV to 1 keV. This allowed a fully satisfactory characterization of the sample in terms of metal components and their combination in different phases, and forging and assembling methods.

  15. Beam extraction from a laser-driven multicharged ion source (abstract)

    Science.gov (United States)

    Anderson, O. A.; Logan, B. Grant

    1998-02-01

    A newly proposed type of multicharged ion source has several potential advantages over existing types and a number of useful applications. The basic principle is that multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity (Ref. Reference 1). Thus, charge state separation downstream is simplified or made unnecessary. Another advantage is that large currents (hundreds of amperes) can be extracted. This type of source could be used for heavy-ion fusion drivers (see Ref. Reference 1) or storage rings. There are also industrial application such as materials processing. We describe conceptual design studies for several specific cases. For example, we discuss extraction and focusing of a 4.1 MV, 144 A beam of Xe16+ ions from an expanding plasma created by an intense laser. The maximum duration of the beam pulse is determined by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The initially diverging beam can be refocused to a small radius or made parallel by a combination of electrostatic and solenoid focusing. Our design studies are carried out first with an envelope code to determine the proper focusing parameters and then with a self-consistent particle code to optimize the beam quality. We present results from both codes and discuss several applications of this type of ion source.

  16. Source-to-target simulation of simultaneous longitudinal and transverse focusing of heavy ion beams

    Directory of Open Access Journals (Sweden)

    D. R. Welch

    2008-06-01

    Full Text Available Longitudinal bunching factors in excess of 70 of a 300-keV, 27-mA K^{+} ion beam have been demonstrated in the neutralized drift compression experiment [P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005PRLTAO0031-900710.1103/PhysRevLett.95.234801] in rough agreement with particle-in-cell source-to-target simulations. A key aspect of these experiments is that a preformed plasma provides charge neutralization of the ion beam in the last one meter drift region where the beam perveance becomes large. The simulations utilize the measured ion source temperature, diode voltage, and induction-bunching-module voltage waveforms in order to determine the initial beam longitudinal phase space which is critical to accurate modeling of the longitudinal compression. To enable simultaneous longitudinal and transverse compression, numerical simulations were used in the design of the solenoidal focusing system that compensated for the impact of the applied velocity tilt on the transverse phase space of the beam. Complete source-to-target simulations, that include detailed modeling of the diode, magnetic transport, induction bunching module, and plasma neutralized transport, were critical to understanding the interplay between the various accelerator components in the experiment. Here, we compare simulation results with the experiment and discuss the contributions to longitudinal and transverse emittance that limit the final compression.

  17. RADI-A RF source size-scaling experiment towards the ITER neutral beam negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Franzen, P. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Postfach 1533, D-85740 Garching (Germany)], E-mail: peter.franzen@ipp.mpg.de; Falter, H.; Heinemann, B.; Martens, Ch.; Fantz, U.; Berger, M.; Christ-Koch, S.; Froeschle, M.; Holtum, D.; Kraus, W.; Leyer, S.; McNeely, P.; Riedl, R.; Suess, R.; Obermayer, S.; Speth, E.; Wuenderlich, D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Postfach 1533, D-85740 Garching (Germany)

    2007-06-15

    IPP Garching is currently developing a negative hydrogen ion RF source for the ITER neutral beam system. The source demonstrated already current densities in excess of the ITER requirements (>200 A/m{sup 2} D{sup -}) at the required source pressure and electron/ion ratio, but with only small extraction area and limited pulse length. A new test facility (RADI) went recently into operation for the demonstration of the required (plasma) homogeneity of a large RF source and the modular driver concept. The source with the dimension of 0.8 m x 0.76 m has roughly the width and half the height of the ITER source; its modular driver concept will allow an easy extrapolation in only one direction to the full size ITER source. The RF power supply consists of two 180 kW, 1 MHz RF generators capable of 30 s pulses. A dummy grid matches the conductance of the ITER source. Full size extraction is presently not possible due to the lack of an insulator, a large size extraction system and a beam dump. The main parameters determining the performance of this 'half-size' source are the negative ion and electron density in front of the grid as well as the homogeneity of their profiles across the grid. Those will be measured by optical emission and cavity ring down spectroscopy, by Langmuir probes and laser detachment. These methods have been calibrated to the extracted current densities achieved at the smaller source test facilities at IPP for similar source parameters. However, in order to get some information about the possible ion and electron currents, local single aperture extraction with a Faraday cup system is planned.

  18. Structural design study of a proton beam window for a 1-MW spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Terada, Atsuhiko; Maekawa, Fujio; Meigo, Shin-ichiro; Kaminaga, Masanori; Ishikura, Syuichi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to manufacture, and the other, curved-type that has high stress resistivity. As a part of design study for the windows, evaluation of strength of structure and thermal hydraulic analysis were conducted. As a result, it was found that sufficient heat removal was assured with uniform water flow at the window, and stress caused by internal water pressure and thermal stress could be maintained below allowable stress values. Accordingly, it was confirmed that the proton beam window designs were feasible. (author)

  19. Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass

    Science.gov (United States)

    Jaffe, Matt; Haslinger, Philipp; Xu, Victoria; Hamilton, Paul; Upadhye, Amol; Elder, Benjamin; Khoury, Justin; Müller, Holger

    2017-10-01

    Traditional gravity measurements use bulk masses to both source and probe gravitational fields. Matter-wave interferometers enable the use of probe masses as small as neutrons, atoms and molecular clusters, but still require fields generated by masses ranging from hundreds of kilograms to the entire Earth. Shrinking the sources would enable versatile configurations, improve positioning accuracy, enable tests for beyond-standard-model (`fifth') forces, and allow observation of non-classical effects of gravity. Here we detect the gravitational force between freely falling caesium atoms and an in-vacuum, miniature (centimetre-sized, 0.19 kg) source mass using atom interferometry. Sensitivity down to gravitational strength forces accesses the natural scale for a wide class of cosmologically motivated scalar field models of modified gravity and dark energy. We improve the limits on two such models, chameleons and symmetrons, by over two orders of magnitude. We expect further tests of dark energy theories, and measurements of Newton's gravitational constant and the gravitational Aharonov-Bohm effect.

  20. Stern Gerlach interferometry with metastable argon atoms: an immaterial mask modulating the profile of a supersonic beam

    Energy Technology Data Exchange (ETDEWEB)

    Viaris de Lesegno, B. [Toulouse-3 Univ., LCAR-IRSAMC, 31 (France); Karam, J.C.; Perales, F.; Mainos, C.; Reinhardt, J.; Baudon, J.; Grancharova, D.; Durt, T.; Robert, J. [Paris-13 Univ., Lab. de Physique des Lasers, 93 - Villetaneuse (France); Boustimi, M. [ENSSAT, Lab. d' Optronique, 22 - Lannion (France); Bocvarski, V. [Institute of Physics, Zumun (Yugoslavia); Dos Santos, F.P. [Laboratoire Kastler-Brossel, 75 - Paris (France); Durt, T. [Brussel Vrije Universiteit, Tena-Tona, Brussel (Belgium); Haberland, H. [Freiburg Univ. (Germany)

    2003-04-01

    A new Stern Gerlach interferometer operating with a nozzle beam of metastable argon atoms Ar* (3p{sup 5} 4s, {sup 3}P{sub 2}) is described. The selection of incoming (polarisation) and outgoing (analysis) Zeeman sublevels is achieved by use of laser induced transitions at two wavelengths, 811.5 nm (closed J 2 {yields} J = 3 transition) and 801.5 nm (open J = 2 {yields} J = 2 transition). Linear superpositions of Zeeman sublevels, just beyond the polarizer and just before the analyser, are prepared by means of two zones where Majorana transitions take place. In between, a controlled magnetic field configuration (the phase object) is produced within a triple {mu}-metal shielding. Standard interference patterns are obtained by scanning the field and detecting the atoms by secondary electron emission from a Faraday cup. When a static radial magnetic gradient is used, the beam profile is modulated by interference. The transverse pattern. which can be translated at will by adding a homogeneous field, is observed for the first time using a multi-channel electron multiplier followed by a phosphor screen and a CCD camera. The results satisfactorily agree with all theoretical predictions. (authors)

  1. Stern Gerlach interferometry with metastable argon atoms: an immaterial mask modulating the profile of a supersonic beam

    CERN Document Server

    Viaris De Lesegno, B; Perales, F; Mainos, C; Reinhardt, J; Baudon, J; Grancharova, D; Durt, T; Robert, J; Boustimi, M; Bocvarski, V; Dos Santos, F P; Durt, T; Haberland, H

    2003-01-01

    A new Stern Gerlach interferometer operating with a nozzle beam of metastable argon atoms Ar* (3p sup 5 4s, sup 3 P sub 2) is described. The selection of incoming (polarisation) and outgoing (analysis) Zeeman sublevels is achieved by use of laser induced transitions at two wavelengths, 811.5 nm (closed J 2 -> J = 3 transition) and 801.5 nm (open J = 2 -> J = 2 transition). Linear superpositions of Zeeman sublevels, just beyond the polarizer and just before the analyser, are prepared by means of two zones where Majorana transitions take place. In between, a controlled magnetic field configuration (the phase object) is produced within a triple mu-metal shielding. Standard interference patterns are obtained by scanning the field and detecting the atoms by secondary electron emission from a Faraday cup. When a static radial magnetic gradient is used, the beam profile is modulated by interference. The transverse pattern. which can be translated at will by adding a homogeneous field, is observed for the first time ...

  2. An ion guide laser ion source for isobar-suppressed rare isotope beams

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Sebastian, E-mail: sebastian.raeder@fys.kuleuven.be; Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjøs, Anders [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Heggen, Henning, E-mail: heggen@triumf.ca [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Institute of Applied Physics, TU Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt (Germany); Lassen, Jens, E-mail: lassen@triumf.ca; Teigelhöfer, Andrea [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2014-03-15

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated.

  3. Beam Loss Simulation and Collimator System Configurations for the Advanced Photon Source Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, A.; Borland, M.

    2017-06-25

    The proposed multi-bend achromat lattice for the Advanced Photon Source upgrade (APS-U) has a design emittance of less than 70 pm. The Touschek loss rate is high: compared with the current APS ring, which has an average beam lifetime ~ 10 h, the simulated beam lifetime for APS-U is only ~2 h when operated in the high flux mode (I=200 mA in 48 bunches). An additional consequence of the short lifetime is that injection must be more frequent, which provides another potential source of particle loss. In order to provide information for the radiation shielding system evaluation and to avoid particle loss in sensitive locations around the ring (for example, insertion device straight sections), simulations of the detailed beam loss distribution have been performed. Several possible collimation configurations have been simulated and compared.

  4. Development of a long-pulse (30-s), high-energy (120-keV) ion source for neutral-beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C.; Barber, G.C.; Blue, C.W.

    1983-01-01

    Multimegawatt neutral beams of hydrogen or deuterium atoms are needed for fusion machine applications such as MFTB-B, TFTR-U, DIII-U, and FED (INTOR or ETR). For these applications, a duoPIGatron ion source is being developed to produce high-brightness deuterium beams at a beam energy of approx. 120 keV for pulse lengths up to 30 s. A long-pulse plasma generator with active water cooling has been operated at an arc level of 1200 A with 30-s pulse durations. The plasma density and uniformity are sufficient for supplying a 60-A beam of hydrogen ions to a 13- by 43-cm accelerator. A 10- by 25-cm tetrode accelerator has been operated to form 120-keV hydrogen ion beams. Using the two-dimensional (2-D) ion extraction code developed at Oak Ridge National Laboratory (ORNL), a 13- by 43-cm tetrode accelerator has been designed and is being fabricated. The aperture shapes of accelerator grids are optimized for 120-keV beam energy.

  5. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  6. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    CERN Document Server

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  7. Reconstruction of Sound Source Pressures in an Enclosure Using the Phased Beam Tracing Method

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Ih, Jeong-Guon

    2009-01-01

    Source identification in an enclosure is not an easy task due to complicated wave interference and wall reflections, in particular, at mid-high frequencies. In this study, a phased beam tracing method was applied to the reconstruction of source pressures inside an enclosure at medium frequencies......-directional sphere and a cubic source in a rectangular enclosure were taken as examples in the simulation tests. A reconstruction error was investigated by Monte Carlo simulation in terms of field point locations. When the source information was reconstructed by the present method, it was shown that the sound power...

  8. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    Science.gov (United States)

    Katskov, Dmitri

    2015-03-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D2 and Xe lamps within 200-400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3-5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground water

  9. A monolithic relativistic electron beam source based on a dielectric laser accelerator structure

    Energy Technology Data Exchange (ETDEWEB)

    McNeur, Josh; Carranza, Nestor; Travish, Gil; Yin Hairong; Yoder, Rodney [UCLA Dept. of Physics and Astronomy, Los Angeles, CA 90095 (United States); College of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054 (China); Manhattanville College, Physics Dept., 2900 Purchase St., Purchase, NY 10577 (United States)

    2012-12-21

    Work towards a monolithic device capable of producing relativistic particle beams within a cubic-centimeter is detailed. We will discuss the Micro-Accelerator Platform (MAP), an optical laser powered dielectric accelerator as the main building block of this chip-scale source along with a field enhanced emitter and a region for sub-relativistic acceleration.

  10. Improvements of the magnetic field design for SPIDER and MITICA negative ion beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Chitarin, G., E-mail: chitarin@igi.cnr.it [Consorzio RFX, C.so Stati Uniti 4, 35129 Padova (Italy); University of Padova, Dept. of Management and Engineering, Strad. S. Nicola 3, 36100 Vicenza (Italy); Agostinetti, P.; Aprile, D.; Marconato, N.; Veltri, P. [Consorzio RFX, C.so Stati Uniti 4, 35129 Padova (Italy)

    2015-04-08

    The design of the magnetic field configuration in the SPIDER and MITICA negative ion beam sources has evolved considerably during the past four years. This evolution was driven by three factors: 1) the experimental results of the large RF-driven ion sources at IPP, which have provided valuable indications on the optimal magnetic configurations for reliable RF plasma source operation and for large negative ion current extraction, 2) the comprehensive beam optics and heat load simulations, which showed that the magnetic field configuration in the accelerator is crucial for keeping the heat load due to electrons on the accelerator grids within tolerable limits, without compromising the optics of the negative ion beam in the foreseen operating scenarios, 3) the progress of the detailed mechanical design of the accelerator, which stimulated the evaluation of different solutions for the correction of beamlet deflections of various origin and for beamlet aiming. On this basis, new requirements and solution concepts for the magnetic field configuration in the SPIDER and MITICA beam sources have been progressively introduced and updated until the design converged. The paper presents how these concepts have been integrated into a final design solution based on a horizontal “long-range” field (few mT) in combination with a “local” vertical field of some tens of mT on the acceleration grids.

  11. Production of low axial energy spread ion beams with multicusp sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yung -Hee Y. [Univ. of California, Berkeley, CA (United States)

    1998-05-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as: ion projection lithography (IPL) and focused ion beams for the next generation lithographic tools and nuclear science experiments such as radioactive ion beam production. The axial ion energy spread for multicusp source is approximately 6 eV which is too large for IPL and radioactive ion beam applications. The addition of a magnetic filter which consists of a pair of permanent magnets to the multicusp source reduces the energy spread considerably. The reduction is due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. Axial ion energy spread of the filament driven ion source has been measured using three different techniques. In all cases, it was found to be less than 2 eV. Energy spread of the radio frequency (RF) driven source has also been explored, and it was found to be less than 3 eV with the proper RF-shielding. A new multicusp source configuration has been designed and constructed to further reduce the energy spread. To achieve a more uniform axial plasma potential distribution, a cylindrical magnetic filter has been designed and constructed for a 2-cm-diameter source. This new source configuration, the co-axial source, is new in its kind. The energy spread in this source has been measured to be a record low of 0.6 eV. Because of the novelty of this device, some plasma parameters inside the source have been studied. Langmuir probe has been used to measure the plasma potential, the electron temperature and the density distribution.

  12. Effects of co-implanted oxygen or aluminum atoms on hydrogen migration and damage structure in multiple-beam irradiated Al sub 2 O sub 3

    CERN Document Server

    Katano, Y; Yamamoto, S; Nakazawa, T; Yamaki, D; Noda, K

    2000-01-01

    Depth profiles of implanted H atoms were measured for single crystalline Al sub 2 O sub 3 samples irradiated at 923 K with dual or triple beams of 0.25 MeV H-, 0.6 MeV He-, 2.4 MeV O-ions or 2.6 MeV Al-ions. The peaks occur at 1.55 and 1.45 mu m in the depth profiles measured for the H + Al dual beam irradiation and H + O dual beam case, respectively. The ratio of the peak areas is over 4, which is much larger than the implanted H atom ratio of 1.1, indicating that implanted Al atoms suppress the mobility of H atoms. However, the ratio becomes almost 1 between the triple beam samples with H + He + O-ions and with H + He + Al-ions at comparable doses. The fact demonstrates that implanted He atoms overwhelm the effects of the implanted self-cation/anion excess atoms on the migration behaviors of implanted hydrogen and radiation produced point defects, with the resulting sluggish cavity growth observed.

  13. Spatial Multiplexing of Atom-Photon Entanglement Sources using Feedforward Control and Switching Networks

    Science.gov (United States)

    Tian, Long; Xu, Zhongxiao; Chen, Lirong; Ge, Wei; Yuan, Haoxiang; Wen, Yafei; Wang, Shengzhi; Li, Shujing; Wang, Hai

    2017-09-01

    The light-matter quantum interface that can create quantum correlations or entanglement between a photon and one atomic collective excitation is a fundamental building block for a quantum repeater. The intrinsic limit is that the probability of preparing such nonclassical atom-photon correlations has to be kept low in order to suppress multiexcitation. To enhance this probability without introducing multiexcitation errors, a promising scheme is to apply multimode memories to the interface. Significant progress has been made in temporal, spectral, and spatial multiplexing memories, but the enhanced probability for generating the entangled atom-photon pair has not been experimentally realized. Here, by using six spin-wave-photon entanglement sources, a switching network, and feedforward control, we build a multiplexed light-matter interface and then demonstrate a ˜sixfold (˜fourfold ) probability increase in generating entangled atom-photon (photon-photon) pairs. The measured compositive Bell parameter for the multiplexed interface is 2.49 ±0.03 combined with a memory lifetime of up to ˜51 μ s .

  14. Industrial ion source technology. [for ion beam etching, surface texturing, and deposition

    Science.gov (United States)

    Kaufman, H. R.

    1977-01-01

    Plasma probe surveys were conducted in a 30-cm source to verify that the uniformity in the ion beam is the result of a corresponding uniformity in the discharge-chamber plasma. A 15 cm permanent magnet multipole ion source was designed, fabricated, and demonstrated. Procedures were investigated for texturing a variety of seed and surface materials for controlling secondary electron emission, increasing electron absorption of light, and improved attachment of biological tissue for medical implants using argon and tetrafluoromethane as the working gases. The cross section for argon-argon elastic collisions in the ion-beam energy range was calculated from interaction potentials and permits calculation of beam interaction effects that can determine system pumping requirements. The data also indicate that different optimizations of ion-beam machines will be advantageous for long and short runs, with 1 mA-hr/cm being the rough dividing line for run length. The capacity to simultaneously optimize components in an ion-beam machine for a single application, a capacity that is not evident in competitive approaches such as diode sputtering is emphasized.

  15. A gas-jet transport and catcher technique for on-line production of radioactive ion beams using an electron cyclotron resonance ion-source

    Energy Technology Data Exchange (ETDEWEB)

    Naik, V.; Chakrabarti, A.; Bhattacharjee, M.; Karmakar, P.; Bandyopadhyay, A.; Dechoudhury, S.; Mondal, M.; Pandey, H. K.; Lavanyakumar, D.; Mandi, T. K.; Dutta, D. P.; Kundu Roy, T.; Bhowmick, D.; Sanyal, D.; Srivastava, S. C. L.; Ray, A.; Ali, Md. S. [Variable Energy Cyclotron Centre (VECC), Sector-1, Block-AF, Bidhan Nagar, Kolkata 700064 (India); Bhattacharjee, S. [UGC-DAE CSR, Kolkata Centre, III/LB-8, Bidhan Nagar, Kolkata 700098 (India)

    2013-03-15

    Radioactive ion beams (RIB) have been produced on-line, using a gas-jet recoil transport coupled Electron Cyclotron Resonance (ECR) ion-source at the VECC-RIB facility. Radioactive atoms/molecules carried through the gas-jet were stopped in a catcher placed inside the ECR plasma chamber. A skimmer has been used to remove bulk of the carrier gas at the ECR entrance. The diffusion of atoms/molecules through the catcher has been verified off-line using stable isotopes and on-line through transmission of radioactive reaction products. Beams of {sup 14}O (71 s), {sup 42}K (12.4 h), {sup 43}K (22.2 h), and {sup 41}Ar (1.8 h) have been produced by bombarding nitrogen and argon gas targets with proton and alpha particle beams from the K130 cyclotron at VECC. Typical measured intensity of RIB at the separator focal plane is found to be a few times 10{sup 3} particles per second (pps). About 3.2 Multiplication-Sign 10{sup 3} pps of 1.4 MeV {sup 14}O RIB has been measured after acceleration through a radiofrequency quadrupole linac. The details of the gas-jet coupled ECR ion-source and RIB production experiments are presented along with the plans for the future.

  16. Construction of the spin-polarized slow positron beam with the RI source

    Energy Technology Data Exchange (ETDEWEB)

    Nakajyo, Terunobu; Tashiro, Mutsumi; Kanazawa, Ikuzo [Tokyo Gakugei Univ., Koganei (Japan); Komori, Fumio; Murata, Yoshimasa; Ito, Yasuo

    1997-03-01

    The electrostatic slow-positron beam is constructed by using {sup 22}Na source. We design the electrostatic lens, the system of the detector, and the Wien filter for the experiment`s system of the spin-polarized slow positron beam. The reemitted spin-polarized slow-positron spectroscopy is proposed for studying magnetic thin films and magnetic multilayers. We calculated the depolarized positron fractions in the Fe thin film Fe(10nm)/Cu(substrate) and the multilayers Cu(1nm)/Fe(10nm)/Cu(substrate). (author)

  17. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Kalvas, T.; Tarvainen, O.; Komppula, J.; Koivisto, H.; Tuunanen, J. [University of Jyväskylä, Department of Physics (Finland); Potkins, D.; Stewart, T.; Dehnel, M. P. [D-Pace, Inc., Nelson, B.C. Canada (Canada)

    2015-04-08

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H{sup −} and D{sup −} beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H{sup −} (2.6 mA/cm{sup 2}), which is the intensity needed at injection for production of 200 µA H{sup +} with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed.

  18. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source.

    Science.gov (United States)

    Waldmann, Ole; Ludewigt, Bernhard

    2011-11-01

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm(2) have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material. © 2011 American Institute of Physics

  19. Informal proposal for an Atomic Physics Facility at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.W.; Johnson, B.M.; Meron, M.

    1986-01-01

    An Atomic Physics Facility (APF) for experiments that will use radiation from a superconducting wiggler on the NSLS X-13 port is described. The scientific justification for the APF is given and the elements of the facility are discussed. It is shown that it will be possible to conduct a uniquely varied set of experiments that can probe most aspects of atomic physics. A major component of the proposal is a heavy-ion storage ring capable of containing ions with energies of about 10 MeV/nucleon. The ring can be filled with heavy ions produced at the BNL MP Tandem Laboratory or from independent ion-source systems. A preliminary cost estimate for the facility is presented.

  20. Interacting sources for high-precision atom interferometry - a theoretical study

    Science.gov (United States)

    Posso Trujillo, Katerine; Ahlers, Holger; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst; Gaaloul, Naceur

    2014-05-01

    We theoretically study the possibilities to use binary quantum mixtures as sources for high-precision atom interferometers with interferometry times ranging over several seconds. Such schemes are of timely interest in the context of inertial navigation or fundamental physics laws tests. The mixture expansion dynamics are solved by integrating a set of two coupled Gross-Pitaevskii equations. In order to satisfy the severe requirements of a precise differential interferometer, a common delta-kick cooling stage is applied to the two ensembles simultaneously to induce ultra-slow expansion (~ 50 pk regime). Other systematic effects are analysed and mitigation strategies identified. To illustrate this study, we consider the case of three mixtures of 87Rb/85Rb, 87Rb/39Kand87Rb/41K widely used in atom interferometry measurements. The advantages and drawbacks of every pair are highlighted and discussed. K. Posso-Trujillo. thanks the German Academic Exchange Service - DAAD (research grant No. A/10/74250).

  1. UCN sources at external beams of thermal neutrons. An example of PIK reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lychagin, E.V., E-mail: lychag@nf.jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Mityukhlyaev, V.A., E-mail: victim@pnpi.spb.ru [Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina 188300 (Russian Federation); Muzychka, A.Yu., E-mail: muz@nf.jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Nekhaev, G.V., E-mail: grigorijnekhaev@yandex.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Nesvizhevsky, V.V., E-mail: nesvizhevsky@ill.eu [Institut Max von Laue – Paul Langevin, 71 Avenue des Martyrs, Grenoble 38042 (France); Onegin, M.S., E-mail: oneginm@gmail.com [Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina 188300 (Russian Federation); Sharapov, E.I., E-mail: sharapov@nf.jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Strelkov, A.V., E-mail: str@jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation)

    2016-07-01

    We consider ultracold neutron (UCN) sources based on a new method of UCN production in superfluid helium ({sup 4}He). The PIK reactor is chosen as a perspective example of application of this idea, which consists of installing {sup 4}He UCN source in the beam of thermal or cold neutrons and surrounding the source with moderator-reflector, which plays the role of cold neutron (CN) source feeding the UCN source. CN flux in the source can be several times larger than the incident flux, due to multiple neutron reflections from the moderator–reflector. We show that such a source at the PIK reactor would provide an order of magnitude larger density and production rate than an analogous source at the ILL reactor. We estimate parameters of {sup 4}He source with solid methane (CH{sub 4}) or/and liquid deuterium (D{sub 2}) moderator–reflector. We show that such a source with CH{sub 4} moderator–reflector at the PIK reactor would provide the UCN density of ~1·10{sup 5} cm{sup −3}, and the UCN production rate of ~2·10{sup 7} s{sup −1}. These values are respectively 1000 and 20 times larger than those for the most intense UCN user source. The UCN density in a source with D{sub 2} moderator-reflector would reach the value of ~2·10{sup 5} cm{sup −3}, and the UCN production rate would be equal ~8·10{sup 7} s{sup −1}. Installation of such a source in a beam of CNs would slightly increase the density and production rate.

  2. In-source laser spectroscopy of polonium isotopes: From atomic physics to nuclear structure

    CERN Multimedia

    Rothe, S

    2014-01-01

    The Resonance Ionization Laser Ion Source RILIS [1] at the CERN-ISOLDE on-line radioactive ion beam facility is essential for ion beam production for the majority of experiments, but it is also powerful tool for laser spectroscopy of rare isotopes. A series of experiments on in-source laser spectroscopy of polonium isotopes [2, 3] revealed the nuclear ground state properties of 191;211;216;218Po. However, limitations caused by the isobaric background of surface-ionized francium isotopes hindered the study of several neutron rich polonium isotopes. The development of the Laser Ion Source and Trap (LIST) [4] and finally its integration at ISOLDE has led to a dramatic suppression of surface ions. Meanwhile, the RILIS laser spectroscopy capabilities have advanced tremendously. Widely tunable titanium:sapphire (Ti:Sa) lasers were installed to complement the established dye laser system. Along with a new data acquisition system [5], this more versatile laser setup enabled rst ever laser spectroscopy of the radioact...

  3. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W.; Fantz, U.; Heinemann, B.; Franzen, P.

    2015-02-15

    Radio frequency ion sources used in neutral beam injection systems (NBI) of fusion machines are currently supplied by self-excited RF generators. These generators have both a low power efficiency and a limited frequency stability, therefore transistorized amplifiers are being considered for the power supply of the next generation of RF sources. A 75 kW generator, originally designed for broadcasting, has been tested with a negative ion source. High operational reliability and a very good matching to the plasma load has been demonstrated. These results make this generator type a very promising candidate for future NBI systems.

  4. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector.

    Science.gov (United States)

    Jeong, S H; Kim, T S; Lee, K W; Chang, D H; In, S R; Bae, Y S

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source.

  5. Transverse beam resonance in the superconducting linac of the Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2010-04-01

    Full Text Available A weak transverse resonance in the Spallation Neutron Source (SNS superconducting linac is identified in computer simulations, and is believed to be one of the mechanisms behind measured beam losses. This weak resonance is induced by the nonlinear dodecapole component of the linac quadrupole magnets. It occurs when the linac focusing lattice has a transverse phase advance close to 60°. By reducing the phase advance to approximately 50° to avoid the resonance, we observe significant reduction in beam loss in the SNS superconducting linac. We present theory and computer simulation results supporting the notion that a suppression of the 60° resonance may contribute to reduction in the beam loss.

  6. Diagnosing the accretion flow in ultraluminous X-ray sources using soft X-ray atomic features

    NARCIS (Netherlands)

    Middleton, M.J.; Walton, D.J.; Fabian, A.; Roberts, T.P.; Heil, L.; Pinto, C.; Anderson, G.; Sutton, A.

    2015-01-01

    The lack of unambiguous detections of atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) has proven a hindrance in diagnosing the nature of the accretion flow. The possible association of spectral residuals at soft energies with atomic features seen in absorption and/or

  7. Influence of the multipole order of the source on the decay of an inertial wave beam in a rotating fluid

    Science.gov (United States)

    Machicoane, Nathanael; Cortet, Pierre-Philippe; Voisin, Bruno; Moisy, Frederic

    2015-11-01

    Inertial wave beams emitted from localized sources are relevant to a broad range of geo and astrophysical flows. These beams are excited at critical lines, where the local slope of solid boundaries equals the propagation angle of the wave, in rotating fluid domains affected by a global harmonic forcing (e.g. precession, libration, tidal motion). We show here theoretically and experimentally that the decay of the amplitude of such wave beams depends on the multipole order of the source. We analyze the far-field viscous decay of a two-dimensional inertial wave beam emitted by a harmonic line source in a rotating fluid. By identifying the relevant conserved quantities along the wave beam, we show how the beam structure and decay exponent are governed by the multipole order of the source. Two wavemakers are considered experimentally, a pulsating and an oscillating cylinder, aiming to produce a monopole and a dipole source, respectively. The relevant conserved quantity which discriminates between these two sources is the instantaneous flow rate along the wave beam, which is non-zero for the monopole and zero for the dipole. For each source, the beam structure and decay exponent, measured using particle image velocimetry, are found in good agreement with the predictions.

  8. Interfacial characteristics of Y2O3/GaSb(001) grown by molecular beam epitaxy and atomic layer deposition

    Science.gov (United States)

    Lin, Y. H.; Lin, K. Y.; Hsueh, W. J.; Young, L. B.; Chang, T. W.; Chyi, J. I.; Pi, T. W.; Kwo, J.; Hong, M.

    2017-11-01

    High quality Y2O3 on GaSb was achieved using both molecular beam epitaxy (MBE) and atomic layer deposition (ALD) with interfacial characteristics studied by in-situ X-ray photoelectron spectroscopy (XPS) and metal-oxide-semiconductor (MOS) electrical measurements. Ga-oxide and stoichiometric Sb-oxides were obtained in the MBE-Y2O3/GaSb and non-stoichiometric Sb2Ox (x<4) was found in the ALD-Y2O3/GaSb according to the XPS spectra. From the capacitance-voltage (CV) measurements, MBE-Y2O3 provides lower interfacial trap density (Dit) grown at elevated temperature of 200°C, while ALD-grown Y2O3 shows smaller hysteresis and higher dielectric constant.

  9. Resonant Formation of d{mu}t Molecules in Deuterium: An Atomic Beam Measurement of Muon Catalyzed dt Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M. C. [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 2A6 (Canada); TRIUMF, Vancouver, Canada V6T 2A3 (Canada); Adamczak, A. [Institute of Nuclear Physics, 31-342 Krakow, (Poland); Bailey, J. M. [Chester Technology, Chester CH4 7QH (United Kingdom); Beer, G. A. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2 (Canada); Beveridge, J. L. [TRIUMF, Vancouver, Canada V6T 2A3 (Canada); Faifman, M. P. [Russian Research Center, Kurchatov Institute, Moscow 123182, Russia (Russian Federation); Huber, T. M. [Department of Physics, Gustavus Adolphus College, St. Peter, Minnesota 56082 (United States); Kammel, P. [Department of Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Kim, S. K. [Department of Physics, Jeonbuk National University, Jeonju City 560-756, Korea (Korea, Republic of); Knowles, P. E. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2 (Canada)] (and others)

    2000-08-21

    Resonant formation of d{mu}t molecules in collisions of muonic tritium ({mu}t ) on D{sub 2} was investigated using a beam of {mu}t atoms, demonstrating a new direct approach in muon catalyzed fusion studies. Strong epithermal resonances in d{mu}t formation were directly revealed for the first time. >From the time-of-flight analysis of 2036{+-}116 dt fusion events, a formation rate consistent with 0.73{+-}(0.16){sub meas}{+-} (0.09){sub model} times the theoretical prediction was obtained. For the largest peak at a resonance energy of 0.423{+-}0.037 eV , this corresponds to a rate of (7.1{+-}1.8)x10{sup 9} s{sup -1} , more than an order of magnitude larger than those at low energies. (c) 2000 The American Physical Society.

  10. SU-E-T-363: Experimentally Validated Pencil Beam Scanning Source Model in TOPAS

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L; Kang, M; Solberg, T; Ainsley, C; McDonough, J [UniversityPennsylvania, Philadelphia, PA (United States)

    2014-06-01

    Purpose: Monte Carlo method can provide the most accurate dose calculation for pencil beam scanning (PBS) proton therapy if the proton sources and particle interaction mechanisms are correct. Methods: TOPAS 1.8, a simulation tool based on Geant4.9.6, was utilized to simulate proton spot profiles. Proton sources, placed at the phantom surface, were modelled with three two-dimensional Gaussian functions to fit measured in-air spot profiles up to 100 mm radius. Simulations were compared with profiles measured using EBT3 film in Solidwater phantoms at various depths from the surface to the end of range for 100, 115, 150, 180, 210 and 225 MeV proton beams with phantom surface locations at 270 mm upstream and at isocentre. Results: Simulation can reproduce one-dimensional integral dose versus radius within 1 mm/1% and two-dimensional profiles within 1 mm out to 0.1% of the central spot dose for all the studied depths of all energies. For two-dimensional 0.01% isodose, simulation can reproduce all 210 MeV proton beam measurements, but cannot predict the diamond-shaped isodose distributions of the 115 MeV beam. When the proton spots are scanned 100 mm off axis, no profile difference can be found between the central axis and the off axis locations for the 210 MeV beam. For the 115 MeV beam, differences of up to 2 mm are observed at the ends of the diamond-shaped 0.01% isodose contour, implying there are lower energy components in the energy spectrum which are less than 4% of the primary energy. Subsequent simulation demonstrates that adopting such an energy spectrum within the source model can improve the distance agreement by 5–6 mm for isodoses below 0.1% near the end of range of the 115 MeV proton beam. Conclusion: Excellent agreement between simulation and measurement validates our PBS source model and the particle interaction mechanism embedded in TOPAS.

  11. Analytical description of photon beam phase spaces in inverse Compton scattering sources

    Science.gov (United States)

    Curatolo, C.; Drebot, I.; Petrillo, V.; Serafini, L.

    2017-08-01

    We revisit the description of inverse Compton scattering sources and the photon beams generated therein, emphasizing the behavior of their phase space density distributions and how they depend upon those of the two colliding beams of electrons and photons. The main objective is to provide practical formulas for bandwidth, spectral density, brilliance, which are valid in general for any value of the recoil factor, i.e. both in the Thomson regime of negligible electron recoil, and in the deep Compton recoil dominated region, which is of interest for gamma-gamma colliders and Compton sources for the production of multi-GeV photon beams. We adopt a description based on the center of mass reference system of the electron-photon collision, in order to underline the role of the electron recoil and how it controls the relativistic Doppler/boost effect in various regimes. Using the center of mass reference frame greatly simplifies the treatment, allowing us to derive simple formulas expressed in terms of rms momenta of the two colliding beams (emittance, energy spread, etc.) and the collimation angle in the laboratory system. Comparisons with Monte Carlo simulations of inverse Compton scattering in various scenarios are presented, showing very good agreement with the analytical formulas: in particular we find that the bandwidth dependence on the electron beam emittance, of paramount importance in Thomson regime, as it limits the amount of focusing imparted to the electron beam, becomes much less sensitive in deep Compton regime, allowing a stronger focusing of the electron beam to enhance luminosity without loss of mono-chromaticity. A similar effect occurs concerning the bandwidth dependence on the frequency spread of the incident photons: in deep recoil regime the bandwidth comes out to be much less dependent on the frequency spread. The set of formulas here derived are very helpful in designing inverse Compton sources in diverse regimes, giving a quite accurate first

  12. Analytical description of photon beam phase spaces in inverse Compton scattering sources

    Directory of Open Access Journals (Sweden)

    C. Curatolo

    2017-08-01

    Full Text Available We revisit the description of inverse Compton scattering sources and the photon beams generated therein, emphasizing the behavior of their phase space density distributions and how they depend upon those of the two colliding beams of electrons and photons. The main objective is to provide practical formulas for bandwidth, spectral density, brilliance, which are valid in general for any value of the recoil factor, i.e. both in the Thomson regime of negligible electron recoil, and in the deep Compton recoil dominated region, which is of interest for gamma-gamma colliders and Compton sources for the production of multi-GeV photon beams. We adopt a description based on the center of mass reference system of the electron-photon collision, in order to underline the role of the electron recoil and how it controls the relativistic Doppler/boost effect in various regimes. Using the center of mass reference frame greatly simplifies the treatment, allowing us to derive simple formulas expressed in terms of rms momenta of the two colliding beams (emittance, energy spread, etc. and the collimation angle in the laboratory system. Comparisons with Monte Carlo simulations of inverse Compton scattering in various scenarios are presented, showing very good agreement with the analytical formulas: in particular we find that the bandwidth dependence on the electron beam emittance, of paramount importance in Thomson regime, as it limits the amount of focusing imparted to the electron beam, becomes much less sensitive in deep Compton regime, allowing a stronger focusing of the electron beam to enhance luminosity without loss of mono-chromaticity. A similar effect occurs concerning the bandwidth dependence on the frequency spread of the incident photons: in deep recoil regime the bandwidth comes out to be much less dependent on the frequency spread. The set of formulas here derived are very helpful in designing inverse Compton sources in diverse regimes, giving a

  13. REXEBIS the Electron Beam Ion Source for the REX-ISOLDE project

    CERN Document Server

    Wenander, F; Liljeby, L; Nyman, G H

    1998-01-01

    The REXEBIS is an Electron Beam Ion Source (EBIS) developed especially to trap and further ionise the sometimes rare and short-lived isotopes that are produced in the ISOLDE separator for the Radioactive beam EXperiment at ISOLDE (REX-ISOLDE). By promoting the single-charged ions to a high charge-state the ions are more efficiently accelerated in the following linear accelerator. The EBIS uses an electron gun capable of producing a 0.5 A electron beam. The electron gun is immersed in a magnetic field of 0.2 T, and the electron beam is compressed to a current density of >200 A/cm2 inside a 2 T superconducting solenoid. The EBIS is situated on a high voltage (HV) platform with an initial electric potential of 60 kV allowing cooled and bunched 60 keV ions extracted from a Penning trap to be captured. After a period of confinement in the electron beam (<20 ms), the single-charged ions have been ionised to a charge-to-mass ratio of approximately ¼. During this confinement period, the platform potential is decr...

  14. Optimal beam sources for Stark decelerators in collision experiments: a tutorial review

    Energy Technology Data Exchange (ETDEWEB)

    Vogels, Sjoerd N.; Gao, Zhi; Meerakker, Sebastiaan Y.T. van de [Radboud University, Institute for Molecules and Materials, Nijmegen (Netherlands)

    2015-12-15

    With the Stark deceleration technique, packets of molecules with a tunable velocity, a narrow velocity spread, and a high state purity can be produced. These tamed molecular beams find applications in high resolution spectroscopy, cold molecule trapping, and controlled scattering experiments. The quality and purity of the packets of molecules emerging from the decelerator critically depend on the specifications of the decelerator, but also on the characteristics of the molecular beam pulse with which the decelerator is loaded. We consider three frequently used molecular beam sources, and discuss their suitability for molecular beam deceleration experiments, in particular with the application in crossed beam scattering in mind. The performance of two valves in particular, the Nijmegen Pulsed Valve and the Jordan Valve, is illustrated by decelerating ND{sub 3} molecules in a 2.6 meter-long Stark decelerator. We describe a protocol to characterize the valve, and to optimally load the pulse of molecules into the decelerator. We characterize the valves regarding opening time duration, optimal valve-to-skimmer distance, mean velocity, velocity spread, state purity, and relative intensity. (orig.)

  15. Cumulative beam break-up study of the spallation neutron source superconducting linac

    CERN Document Server

    Jeon, D; Krafft, G A; Yunn, B; Sundelin, R; Delayen, J; Kim, S; Doleans, M

    2002-01-01

    Beam instabilities due to High Order Modes (HOMs) are a concern to superconducting (SC) linacs such as the Spallation Neutron Source (SNS) linac. The effects of pulsed mode operation on transverse and longitudinal beam breakup instability are studied for H sup - beam in a consistent manner for the first time. Numerical simulation indicates that cumulative transverse beam breakup instabilities are not a concern in the SNS SC linac, primarily due to the heavy mass of H sup - beam and the HOM frequency spread resulting from manufacturing tolerances. As little as +-0.1 MHz HOM frequency spread stabilizes all the instabilities from both transverse HOMs, and also acts to stabilize the longitudinal HOMs. Such an assumed frequency spread of +-0.1 MHz HOM is small, and hence conservative compared with measured values of sigma=0.00109(f sub H sub O sub M -f sub 0)/f sub 0 obtained from Cornell and the Jefferson Lab Free Electron Laser cavities. However, a few cavities may hit resonance lines and generate a high heat lo...

  16. Repetitively pulsed SPER laser using transitions in Cd atoms. [Segmented plasma source of metal vapor

    Energy Technology Data Exchange (ETDEWEB)

    Apollonov, V.V.; Sirotkin, A.A. (Institut Obshchei Fiziki, Moscow (USSR))

    1989-08-01

    The repetitively pulsed operation of a laser with a segmented plasma source of metal vapor using transitions in Cd I atoms (at wavelengths of 1.43 and 3.955 microns) is reported. The mean power of laser radiation at the pump pulse repetition rate of 2 kHz amounted to 36 and 20 mW for 1.43 and 3.955 microns, respectively. Mechanisms which limit the maximum pulse repetition rate are considered, and ways to enhance the laser output energy characteristics are proposed. 7 refs.

  17. Dense Plasma Focus With High Energy Helium Beams for Radiological Source Replacement

    Science.gov (United States)

    Schmidt, Andrea; Ellsworth, Jennifer; Falabella, Steve; Link, Anthony; Rusnak, Brian; Sears, Jason; Tang, Vincent

    2014-10-01

    A dense plasma focus (DPF) is a compact accelerator that can produce intense high energy ion beams (multiple MeV). It could be used in place of americium-beryllium (AmBe) neutron sources in applications such as oil well logging if optimized to produce high energy helium beams. AmBe sources produce neutrons when 5.5 MeV alphas emitted from the Am interact with the Be. However, due to the very small alpha-Be cross section for alphas AmBe source replacement would have to accelerate ~0.15 μC of He to 2 + MeV in order to produce 107 neutrons per pulse. We are using our particle in cell (PIC) model in LSP of a 4 kJ dense plasma focus discharge to guide the optimization of a compact DPF for the production of high-energy helium beam. This model is fluid for the run-down phase, and then transitions to fully kinetic prior to the pinch in order to include kinetic effects such as ion beam formation and anomalous resistivity. An external pulsed-power driver circuit is used at the anode-cathode boundary. Simulations will be benchmarked to He beam measurements using filtered and time-of-flight Faraday cup diagnostics. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work supported by US DOE/NA-22 Office of Non-proliferation Research and Development. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.

  18. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  19. Modeling and design of a beam emission spectroscopy diagnostic for the negative ion source NIO1.

    Science.gov (United States)

    Barbisan, M; Zaniol, B; Cavenago, M; Pasqualotto, R

    2014-02-01

    Consorzio RFX and INFN-LNL are building a flexible small ion source (Negative Ion Optimization 1, NIO1) capable of producing about 130 mA of H(-) ions accelerated at 60 KeV. Aim of the experiment is to test and develop the instrumentation for SPIDER and MITICA, the prototypes, respectively, of the negative ion sources and of the whole neutral beam injectors which will operate in the ITER experiment. As SPIDER and MITICA, NIO1 will be monitored with beam emission spectroscopy (BES), a non-invasive diagnostic based on the analysis of the spectrum of the Hα emission produced by the interaction of the energetic ions with the background gas. Aim of BES is to monitor direction, divergence, and uniformity of the ion beam. The precision of these measurements depends on a number of factors related to the physics of production and acceleration of the negative ions, to the geometry of the beam, and to the collection optics. These elements were considered in a set of codes developed to identify the configuration of the diagnostic which minimizes the measurement errors. The model was already used to design the BES diagnostic for SPIDER and MITICA. The paper presents the model and describes its application to design the BES diagnostic in NIO1.

  20. Investigation of beam deflection reduction and multi-beamlet focus at a large-area negative ion source for a neutral beam injector with 3-D beam trajectory simulation

    CERN Document Server

    Tanaka, M; Asano, E; Oka, Y; Osakabe, M; Tsumori, K; Kaneko, O; Yamashita, Y

    2000-01-01

    We investigated the reduction of ion beam deflection caused by electron deflection magnets, and focus of multi-beamlets at a large-area negative ion source of a neutral beam injector (NBI) in order to reduce beam loss during long-distance beam transport (>10 m) and beam injection into a nuclear fusion device. The electrostatic lens effect by displacement of the beam extraction aperture of a grounded grid (GG) was utilized for the beam deflection reduction and the multi-beamlet focus. We proposed an analysis process to adjust the aperture displacement which avoids beam collision with the GG by too much displacement. The analysis process includes a 3-D beam trajectory simulation used for analyzing the beam deflection angle and beam radius as well as theoretical calculations, which are used to calculate the aperture displacement based on the 3-D simulation results. Applicability of the analysis process was examined for a large-area high-current H sup - ion source of an NBI (0.25 mx1.25 m, 40 A, 180 keV). The ana...

  1. Arc plasma generator of atomic driver for steady-state negative ion source.

    Science.gov (United States)

    Ivanov, A A; Belchenko, Yu I; Davydenko, V I; Ivanov, I A; Kolmogorov, V V; Listopad, A A; Mishagin, V V; Putvinsky, S V; Shulzhenko, G I; Smirnov, A

    2014-02-01

    The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB6 cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.

  2. Study of ion beam transport from the SECRAL electron cyclotron resonance ion source at the Institute of Modern Physics.

    Science.gov (United States)

    Cao, Y; Lu, W; Zhang, W H; Sha, S; Yang, Y; Ma, B H; Wang, H; Zhu, Y H; Guo, J W; Fang, X; Lin, S H; Li, X X; Feng, Y C; Li, J Y; Zhao, H Y; Ma, H Y; Zhang, X Z; Guo, X H; Wu, Q; Sun, L T; Zhao, H W; Xie, D Z

    2012-02-01

    Ion beam transport from the Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) electron cyclotron resonance ion source was studied at the Institute of Modern Physics during 2010. Particle-in-cell simulations and experimental results have shown that both space charge and magnetic aberrations lead to a larger beam envelope and emittance growth. In the existing SECRAL extraction beam line, it has been shown that raising the solenoid lens magnetic field reduces aberrations in the subsequent dipole and results in lower emittance. Detailed beam emittance measurements are presented in this paper.

  3. Extraction and low energy beam transport from a surface ion source at the TRIUMF-ISAC facility

    Science.gov (United States)

    Sen, A.; Ames, F.; Bricault, P.; Lassen, J.; Laxdal, A.; Mjos, A.

    2016-06-01

    A large fraction of radioactive beams produced and delivered at TRIUMF's isotope separator and accelerator facility, ISAC, are using either a surface ion source or a resonant ionization laser ion source, which share a common design. To characterize the operation of the ion sources, simulations were performed to determine the ion beam optics and beam envelope properties of the extracted beam. Furthermore ion-optics calculations were performed to determine the transmission parameters through the mass separator magnet. Emittances are measured in the ISAC low energy beam line right after the mass separator. The recent addition of a channeltron to the Allison emittance meter scanner now allows us to measure emittances for ion beams with intensities as low as 105 ions/s. This is particularly useful for establishing high resolution, high throughput mass separator tunes for radioactive isotope beams. This paper discusses emittance measurements of low intensity beams, typical emittance scans for the surface ion source and the resonant laser ionized source for different source parameters. The observed results are compared to the simulations and discussed.

  4. Extraction and low energy beam transport from a surface ion source at the TRIUMF-ISAC facility

    Energy Technology Data Exchange (ETDEWEB)

    Sen, A., E-mail: asen.kvi@gmail.com; Ames, F.; Bricault, P.; Lassen, J.; Laxdal, A.; Mjos, A.

    2016-06-01

    A large fraction of radioactive beams produced and delivered at TRIUMF’s isotope separator and accelerator facility, ISAC, are using either a surface ion source or a resonant ionization laser ion source, which share a common design. To characterize the operation of the ion sources, simulations were performed to determine the ion beam optics and beam envelope properties of the extracted beam. Furthermore ion-optics calculations were performed to determine the transmission parameters through the mass separator magnet. Emittances are measured in the ISAC low energy beam line right after the mass separator. The recent addition of a channeltron to the Allison emittance meter scanner now allows us to measure emittances for ion beams with intensities as low as 10{sup 5} ions/s. This is particularly useful for establishing high resolution, high throughput mass separator tunes for radioactive isotope beams. This paper discusses emittance measurements of low intensity beams, typical emittance scans for the surface ion source and the resonant laser ionized source for different source parameters. The observed results are compared to the simulations and discussed.

  5. High intensity metallic ion beam from an ecr ion source using the Mivoc method

    Energy Technology Data Exchange (ETDEWEB)

    Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Leherissier, P.; Lemagnen, F. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Jaffres, P.A. [Institut des Sciences de la Matiere et du Rayonnement, SIMRa, 14 - Cean (France)

    2000-07-01

    The MIVOC method has been successfully used at GANIL to produce a high intensity nickel beam with the ECR4 ion source: 20 {mu}A {sup 58}Ni{sup 11+} at 24 kV extraction voltage. This beam has been maintained for 8 days and accelerated up to 74.5 MeV/u by our cyclotrons with a mean intensity of 0.13 p{mu}A on target. This high intensity, required for experiment, led to the discovery of the doubly magic {sup 48}Ni isotope. Experimental setup, handling and off-line preparation using a residual gas analyzer are described in this report. The ion source behavior, performances and limitations are presented in the case of nickel and iron. The ionization efficiencies have been measured and compared to the oven method usually used at GANIL. (author)

  6. ExB momentum analyses for broad-beam ion sources

    Science.gov (United States)

    Kuang, Yuan-Zhu; Shen, Guo-Qing; Yang, Song-Tao

    1987-05-01

    This paper describes the characteristics, principles and design of ExB momentum analyzer for analyzing the composition of high energy broad-beam ion sources. It is found that the uniformity of the magnetic field distribution in the separator is effected by the magnetic shield rings.The parameters of the microcurrent amplifier are introduced briefly. Finally, the operation of this analyzer and primary experimental results are described.

  7. Development of a laser ion source for production of high-intensity heavy-ion beams

    Science.gov (United States)

    Kashiwagi, H.; Yamada, K.; Kurashima, S.

    2017-09-01

    A laser ion source has been developed as a high-intensity source for the ion implanter and the single pulsed beam of the azimuthally varying field cyclotron at TIARA. Highly charged beams of C5+ and C6+ ions and low-charged beams of heavy ions such as C, Al, Ti, Cu, Au, and Pt are required for the single-pulse acceleration in the cyclotron and for the ion implanter, respectively. In the vacuum chamber of the ion source, a target holder on a three-dimensional linear-motion stage provides a fresh surface for each laser shot. A large-sized target with a maximum size of 300 mm × 135 mm is mounted on the holder for long-term operation. The ion current (ion charge flux) in the laser-produced plasma is measured by a Faraday cup and time-of-flight spectra of each charge state are measured using a 90° cylindrical electrostatic analyzer just behind the Faraday cup. Carbon-plasma-generation experiments indicate that the source produces intense high- and low-charged pulsed ion beams. At a laser energy of 483 mJ (2.3 × 1013 W/cm2), average C6+ current of 13 mA and average C5+ current of 23 mA were obtained over the required time duration for single-pulse acceleration in the cyclotron (49 ns for C6+ and 80 ns for C5+). Furthermore, at 45 mJ (2.1 × 1012 W/cm2), an average C2+ current of 1.6 mA over 0.88 μs is obtained.

  8. Resonant ionization by laser beams: application to ions sources and to study the nuclear structure of radioactive tellurium isotopes; Ionisation resonante par faisceaux laser: application aux sources d'ions et a l'etude de la structure des noyaux radioactifs de tellure

    Energy Technology Data Exchange (ETDEWEB)

    Sifi, R

    2007-07-15

    The radioactive ion beams that are produced through current isotope separators are well separated according to the A mass but not according to the Z parameter. The resonant ionization through laser beams applied to ion sources allows the production of radioactive ion beam in a very selective and efficient way by eliminating the isobaric contamination. The first chapter is dedicated to the resonant ionization by laser beams, we describe the principle, the experimental setting, the lasers used, the ionization schemes and the domain of application. The second chapter deals with the application of resonant ionization to laser ion sources for the production of radioactive ion beams. We present experimental tests performed for getting copper ion beams. Resonant ionization through laser is also used in the spectroscopy experiments performed at the Isolde (isotope separation on-line device) installation in CERN where more than 20 elements are ionized very efficiently. The technique is based on a frequency scanning around the excitation transition of the atoms in order to probe the hyperfine structure. Laser spectroscopy allows the determination of the hyperfine structure as well as the isotopic shift of atoms. In the third chapter the method is applied to the spectroscopy of tellurium atoms. First, we define the 2 parameters on which the extraction is based: charge radius and nuclear moments, then we present several theoretical models that we have used to assess our experimental results. (A.C.)

  9. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation

    Science.gov (United States)

    Mitri, F. G.

    2016-08-01

    In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser

  10. Target-ion source unit ionization efficiency measurement by method of stable ion beam implantation

    CERN Document Server

    Panteleev, V.N; Fedorov, D.V; Moroz, F.V; Orlov, S.Yu; Volkov, Yu.M

    The ionization efficiency is one of the most important parameters of an on-line used target-ion source system exploited for production of exotic radioactive beams. The ionization efficiency value determination as a characteristic of a target-ion source unit in the stage of its normalizing before on-line use is a very important step in the course of the preparation for an on-line experiment. At the IRIS facility (Petersburg Nuclear Physics Institute, Gatchina) a reliable and rather precise method of the target-ion source unit ionization efficiency measurement by the method of stable beam implantation has been developed. The method worked out exploits an off-line mass-separator for the implantation of the ion beams of selected stable isotopes of different elements into a tantalum foil placed inside the Faraday cup in the focal plane of the mass-separator. The amount of implanted ions has been measured with a high accuracy by the current integrator connected to the Faraday cup. After the implantation of needed a...

  11. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    Science.gov (United States)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  12. Optimization of ECR singly-charged ion sources for the radioactive ion beam production

    CERN Document Server

    Jardin, P; Gaubert, G; Pacquet, J Y; Drobert, T; Cornell, J; Barue, C; Canet, C; Dupuis, M; Flambard, J L; Lecesne, N; Leherissier, P; Lemagnen, F; Leroy, R

    2003-01-01

    Measurements of the transformation time of atoms into ions were carried out with two 2.45 GHz electron cyclotron resonance ion sources (ECRIS) in the case of the simple ionization of He, Ne, Ar and Kr gases. The effect of the plasma volume, of the dead volumes and of the ionization efficiency are presented. Some rules are deduced for the design of the next ECRIS dedicated to radioactive ion production with noble gases.

  13. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    NARCIS (Netherlands)

    Irimia, D.; Dobrikov, D.; Kortekaas, R.; Voet, H.; Ende, D.A. van den; Groen, W.A.; Janssen, M.H.M.

    2009-01-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms

  14. A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic and molecular beams

    NARCIS (Netherlands)

    Irimia, D.; Dobrikov, D.H.; Kortekaas, R.; van der Voet, H.; van den Ende, D.A.; Groen, W.E.; Janssen, M.H.M.

    2009-01-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms

  15. Dispersion in a four level N-scheme atomic system with co- and counter- propagating beams

    Science.gov (United States)

    Davis, J. P.; Narducci, F. A.

    2012-03-01

    We motivate the study of an 'N-scheme' atomic system for the case of a bi-directional probe field. We derive the equations of motion. The equations were expanded in order of the counter-propagating field strength over the co-propagating field strength. We solve the equations numerically in steady state in a perturbative manner. The zeroth order solutions describe the dispersion and absorption of the co-propagating field, while the first order solutions describe the dispersion and absorption of the counter-propagating field. We investigate the solutions in two temperature regimes for a variety of field strengths. Regimes of similar dispersion for the co- and counter-propagating fields were found, as well as regimes of opposite behavior. In most cases, absorption of the fields is still a problem.

  16. [Preliminary study of atomic emission spectrometry of Ti (H) plasma produced by vacuum arc ion source].

    Science.gov (United States)

    Deng, Chun-Feng; Wu, Chun-Lei; Wang, Yi-Fu; Lu, Biao; Wen, Zhong-Wei

    2014-03-01

    In order to study the discharge process of vacuum arc ion source, make a detail description of the discharge plasma, and lay the foundation for further research on ion source, atomic emission spectrometry was used to diagnose the parameters of plasma produced by vaccum arc ion source. In the present paper, two kinds of analysis method for the emission spectra data collected by a spectrometer were developed. Those were based in the stark broadening of spectral lines and Saba-Boltzmann equation. Using those two methods, the electron temperature, electron number density and the ion temperature of the plasma can be determined. The emission spectroscopy data used in this paper was collected from the plasma produced by a vacuum are ion source whose cathode was made by Ti material (which adsorbed hydrogen during storage procedure). Both of the two methods were used to diagnose the plasma parameters and judge the thermal motion state of the plasma. Otherwise, the validity of the diagnostic results by the two methods were analyzed and compared. In addition, the affection from laboratory background radiation during the spectral acquisition process was discussed.

  17. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, James, E-mail: alessi@bnl.gov; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-02-15

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  18. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    2000-07-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

  19. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors

    Science.gov (United States)

    Chang, Doo-Hee; Jeong, Seung Ho; Park, Min; Kim, Tae-Seong; Jung, Bong-Ki; Lee, Kwang Won; In, Sang Ryul

    2016-12-01

    A large-area high-power radio-frequency (RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute (KAERI). The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of high-power RF discharge. Plasma ignition of the ion source is initiated by the injection of argon-gas without a starter-filament heating, and the argon-gas is then slowly exchanged by the injection of hydrogen-gas to produce pure hydrogen plasmas. The uniformities of the plasma parameter, such as a plasma density and an electron temperature, are measured at the lowest area of the driver region using two RF-compensated electrostatic probes along the direction of the short-and long-dimensions of the driver region. The plasma parameters will be compared with those obtained at the lowest area of the expansion bucket to analyze the plasma expansion properties from the driver region to the expansion region. supported by the Ministry of Science, ICT and Future Planning of the Republic of Korea under the ITER Technology R&D Program, and National R&D Program Through the National Research Foundation of Korea (NRF) Funded by the Ministry of Science, ICT & Future Planning (NRF-2014M1A7A1A03045372)

  20. Effect of light source parameters on the polarization properties of the beam

    Science.gov (United States)

    Liu, Dan; Liu, Yan; Jiang, Hui-lin; Liu, Zhi; Zhou, Xin; Fang, Hanhan

    2013-08-01

    Polarized laser has been widely used in free space optical communication, laser radar, and laser ranging system because of its advantages of good performance in recent years. The changes of laser polarization properties in the process of transmission in atmospheric turbulence have a certain impact on the system performance. The paper research on the rule of polarization properties changes of Gauss Schell model beam in turbulent conditions. And analysis the main factors to affect the polarization properties by numerical simulation using MATLAB software tools. The factors mainly including: initial polarization, coherence coefficient, spot size and the intensity of the atmospheric turbulent. The simulation results show that, the degree of polarization will converge to the initial polarization when the beam propagation in turbulent conditions. The degrees of polarization change to different value when initial polarization of beam is different in a short distance. And, the degrees of polarization converge to the initial polarization after long distance. Beam coherence coefficient bigger, the degree of polarization and change range increases bigger. The change of polarization more slowly for spot size is bigger. The change of polarization change is faster for longer wavelength. The conclusion of the study indicated that the light source parameters effect the changes of polarization properties under turbulent conditions. The research provides theory basis for the polarization properties of the laser propagation, and it will plays a significant role in optical communication and target recognition.

  1. Beam Development/Implementation and Futher Development of the ISOLDE Laser Ion Source

    CERN Multimedia

    Kugler, E; Van duppen, P L E; Lettry, J

    2002-01-01

    % IS335 \\\\ \\\\ Already before the move to the PS-Booster (PSB) the proton-beam time-structure of 7 pulses of 2.4~$\\mu$s duration every 1.2~s was identified as the major challenge to the target and ion-source technique. It was also recognized that an intensive target development programme should be undertaken in order to exploit efficiently the properties of the Booster beam. This beam structure can have both beneficial effects and deleterious effects on the performance of the targets. On the one side the power deposition, the shock wave and the cascade of nuclear reactions may enhance the release and make the targets faster. \\\\ \\\\The selectivity with which ISOLDE can separate the products according to the chemical element is another important parameter for the experiments. Online test experiments at the SC ISOLDE-3 successfully demonstrated that resonant multi-photon excitation and final ionization by pulsed lasers is an efficient tool for the production of isobarically pure ion beams. The installation of a pe...

  2. Modernization of high-power (5 kW) broad ion beam source

    Science.gov (United States)

    Emlin, D. R.; Gavrilov, N. V.; Tretnikov, P. V.; Nasyrov, V. F.; Timerbaev, A. Z.

    2017-05-01

    In the course of the long-term performance (during 5 years) of a high-power source of gas ions (25 keV, 0.2 A, 600 cm2) with a plasma emitter based on cold cathode discharge, the character and rate of key constructive elements faults were determined, which allowed to calculate the inter-repair time, complexity and cost of the repair. The peculiarities of the gas-discharge system and the ion beam forming system limiting the effectiveness of ion beam treatment were revealed as well. Conditions favorable for the decrease in the discharge voltage by 50-200 V and igniting voltage up to 1.5-2 times are determined. The possibilities of lowering the minimal flow of working gas are demonstrated. The design of the discharge system with reduced sputtering rate of local areas of the hollow cathode is offered. The changes added to ion source design aimed to enhance the lifetime of the plasma chamber that is exposed to cyclic heating by the back electron beam leading to the development of through cracks, and to enlarge the rupture life of glow discharge hollow cathode by optimizing its configuration and the conditions of discharge ignition and burning, are described. The upgraded design of a multislit ion-optical system with enhanced performance ensures uniform surface distribution of ion fluence.

  3. The first muon beam from a new highly-intense DC muon source, MuSIC

    Science.gov (United States)

    Tran, Nam Hoai; MuSIC Collaboration

    2012-09-01

    A new DC muon source, MuSIC, is now under construction at Research Center for Nuclear Physics (RCNP), Osaka University, Japan. The MuSIC adopts a new pion/muon collection system and a curved transport solenoid. These techniques are important in realization of future muon programs such as the muon to electron conversion experiments (COMET/Mu2e), neutrino factories, and muon colliders. The pion capture magnet and a part of the transport solenoid have been built and beam tests were carried out to assess the MuSIC's performance. Muon lifetime measurements and muonic X-ray measurements have been used for estimation of muon yield of the MuSIC. The result indicates that the MuSIC would be one of the most intense DC muon beams in the world.

  4. Numerical analysis of the beam position monitor pickup for the Iranian light source facility

    Science.gov (United States)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2017-03-01

    In this paper, we describe the design of a button type Beam Position Monitor (BPM) for the low emittance storage ring of the Iranian Light Source Facility (ILSF). First, we calculate sensitivities, induced power and intrinsic resolution based on solving Laplace equation numerically by finite element method (FEM), in order to find the potential at each point of BPM's electrode surface. After the optimization of the designed BPM, trapped high order modes (HOM), wakefield and thermal loss effects are calculated. Finally, after fabrication of BPM, it is experimentally tested by using a test-stand. The results depict that the designed BPM has a linear response in the area of 2×4 mm2 inside the beam pipe and the sensitivity of 0.080 and 0.087 mm-1 in horizontal and vertical directions. Experimental results also depict that they are in a good agreement with numerical analysis.

  5. Gas Source Techniques for Molecular Beam Epitaxy of Highly Mismatched Ge Alloys

    Directory of Open Access Journals (Sweden)

    Chad A. Stephenson

    2016-12-01

    Full Text Available Ge and its alloys are attractive candidates for a laser compatible with silicon integrated circuits. Dilute germanium carbide (Ge1−xCx offers a particularly interesting prospect. By using a precursor gas with a Ge4C core, C can be preferentially incorporated in substitutional sites, suppressing interstitial and C cluster defects. We present a method of reproducible and upscalable gas synthesis of tetrakis(germylmethane, or (H3Ge4C, followed by the design of a hybrid gas/solid-source molecular beam epitaxy system and subsequent growth of defect-free Ge1−xCx by molecular beam epitaxy (MBE. Secondary ion mass spectroscopy, transmission electron microscopy and contactless electroreflectance confirm the presence of carbon with very high crystal quality resulting in a decrease in the direct bandgap energy. This technique has broad applicability to growth of highly mismatched alloys by MBE.

  6. Numerical analysis of the beam position monitor pickup for the Iranian light source facility

    Energy Technology Data Exchange (ETDEWEB)

    Shafiee, M., E-mail: mehdish@ipm.ir [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Feghhi, S.A.H. [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Rahighi, J. [Iranian Light Source Facility (ILSF), Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of)

    2017-03-01

    In this paper, we describe the design of a button type Beam Position Monitor (BPM) for the low emittance storage ring of the Iranian Light Source Facility (ILSF). First, we calculate sensitivities, induced power and intrinsic resolution based on solving Laplace equation numerically by finite element method (FEM), in order to find the potential at each point of BPM's electrode surface. After the optimization of the designed BPM, trapped high order modes (HOM), wakefield and thermal loss effects are calculated. Finally, after fabrication of BPM, it is experimentally tested by using a test-stand. The results depict that the designed BPM has a linear response in the area of 2×4 mm{sup 2} inside the beam pipe and the sensitivity of 0.080 and 0.087 mm{sup −1} in horizontal and vertical directions. Experimental results also depict that they are in a good agreement with numerical analysis.

  7. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL.

    Science.gov (United States)

    Delahaye, P; Galata, A; Angot, J; Ban, G; Celona, L; Choinski, J; Gmaj, P; Jakubowski, A; Jardin, P; Kalvas, T; Koivisto, H; Kolhinen, V; Lamy, T; Lunney, D; Maunoury, L; Porcellato, A M; Prete, G F; Steckiewicz, O; Sortais, P; Thuillier, T; Tarvainen, O; Traykov, E; Varenne, F; Wenander, F

    2012-02-01

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R&D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R&D.

  8. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    Science.gov (United States)

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  9. submitter Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    CERN Document Server

    Thomae, R; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-01-01

    ABSTRACT At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  10. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reininger, Charlotte; Woodfield, Kellie [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States); Keelor, Joel D.; Kaylor, Adam; Fernández, Facundo M. [Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332 (United States); Farnsworth, Paul B., E-mail: paul_farnsworth@byu.edu [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States)

    2014-10-01

    The absolute number densities of helium atoms in the 2s {sup 3}S{sub 1} metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 10{sup 12} cm{sup −3} and 0.011 × 10{sup 12} cm{sup −3}, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 10{sup 12} cm{sup −3} and 0.97 × 10{sup 12} cm{sup −3} were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges. - Highlights: • We determine He metastable number densities for four plasma types • The highest number densities were observed in a dielectric barrier discharge • No helium metastable atoms were observed downstream from the exits of glow discharges.

  11. An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments.

    Science.gov (United States)

    Materassi, Donatello; Baschieri, Paolo; Tiribilli, Bruno; Zuccheri, Giampaolo; Samorì, Bruno

    2009-08-01

    We describe the realization of an atomic force microscope architecture designed to perform customizable experiments in a flexible and automatic way. Novel technological contributions are given by the software implementation platform (RTAI-LINUX), which is free and open source, and from a functional point of view, by the implementation of hard real-time control algorithms. Some other technical solutions such as a new way to estimate the optical lever constant are described as well. The adoption of this architecture provides many degrees of freedom in the device behavior and, furthermore, allows one to obtain a flexible experimental instrument at a relatively low cost. In particular, we show how such a system has been employed to obtain measures in sophisticated single-molecule force spectroscopy experiments [Fernandez and Li, Science 303, 1674 (2004)]. Experimental results on proteins already studied using the same methodologies are provided in order to show the reliability of the measure system.

  12. L 1 generalized inverse beam-forming algorithm resolving coherent/incoherent, distributed and multipole sources

    Science.gov (United States)

    Suzuki, Takao

    2011-11-01

    To resolve coherent/incoherent, distributed/compact, and multipole aerodynamic-sound sources with phased-array pressure data, a new source-detection algorithm is developed based on L1 generalized inverse techniques. To extract each coherent signal, a cross spectral matrix is decomposed into eigenmodes. Subsequently, the complex source-amplitude distribution that recovers each eigenmode is solved using generalized inverse techniques with reference solutions which include multipoles as well as a monopole. Namely, the source distribution consisting of pre-defined source types is solved as an L1 norm problem using iteratively re-weighted least squares (IRLS). The capabilities of the proposed algorithm are demonstrated using various benchmark problems to compare the results with several existing beam-forming algorithms, and it is found that distributed sources as well as dipoles with arbitrary orientation can be identified regardless of coherency with another source. The resolution is comparable to existing deconvolution techniques, such as DAMAS or CLEAN, and the computational cost is only several times more than that of DAMAS2. The proposed algorithm is also examined using previous model-scale test data taken in an open-jet wind-tunnel for a study on jet-flap interaction, and some indication of dipole radiation is discerned near the flap edge.

  13. Review of ion-source developments for radioactive ion-beam facilities

    CERN Document Server

    Lettry, Jacques

    1999-01-01

    The ion-sources dedicated to the production of radioactive ion beams (RIB) shall be highly efficient, selective and fast. This efficiency is mandatory since only limited amounts of radionuclides are produced. Chemical selectivity is needed to confine other elements near to the production site and to suppress isobaric contaminants. Eventually, the ion-source shall only decay the radioisotopes by a fraction of their half-life to reduce decay losses. The world wide spread RIB facilities came up with a large variety of solutions to meet part or all of these requirements such as: ion traps, surface, plasma, sputtering, electron cyclotron resonance and laser ion- sources. In this review, the latest developments are presented and their applications to charge states breeder systems proposed for post-acceleration are discussed. (59 refs).

  14. Flashback and perspectives for the production of intense ion beams with ECR ion sources

    Science.gov (United States)

    Gammino, S.; Ciavola, G.; Consoli, F.; Barbarino, S.; Celona, L.; Mascali, D.

    2005-10-01

    There is a clear evidence that the combination of ability to produce intense beams of highly charged heavy ions and of reliability, stability and low emittance can be guaranteed only by an adequate design of electron cyclotron resonance ion sources (ECRIS). Following the roadmap defined by Geller's scaling laws (1987) and the high B-mode concept (1990), the evolution of ECRIS has been steady and it amounted to about one order of magnitude per decade, as for high charge state currents. A further increase is possible according to the standard model of ECR sources unless technological problems may limit it in the future. Some sources are in the commissioning or construction phase to get the milliampere level for highly charged heavy ions, and some limitations have been already found but the possibility to get a further step forward remains unchanged. This paper presents the flashbacks of previous relevant experiences, along with the perspectives for higher current production in the years after 2010.

  15. Commercialization of a high energy neutral beam ion source. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-21

    This final report summarizes the effort and presents the results of a Phase II fabrication effort to build an industrial prototype of the LBL developed high energy neutral beam source. The effort was primarily concentrated on incorporating hard vacuum dielectric seals and a ceramic high voltage accelerator insulator. Several other design changes were incorporated for cost, reliability or life improvements to include: (1) accelerator grid locating dowel pins to aid final alignment, (2) plasma source to accelerator captive fasteners to aid filament replacement during source maintenance, (3) molybdenum cooling tubes on all accelerator grids, (4) additional fasteners in the plasma generator to facilitate hard seals, (5) modified suppressor grid rails and holders to simplify final grid alignment, (6) adjusting screws on exit grid rail holders to simplify final grid alignment, (7) addition of adjusting screws to the grid end pieces to simplify alignment, and (8) addition of accelerator hat shims to allow two different grid positioning locations.

  16. Recent Beam Measurements and New Instrumentation at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Sannibale, F.; Baptiste, K.; Barry, W.; Chin, M.; /LBL, Berkeley; Filippetto, D.; /Frascati; Jaegerhofer, L.; /Vienna, Tech. U.; Julian, J.; Kwiatkowski, S.; Low, R.; Plate, D.; Portmann, G.; Robin, D.; Scarvie, T.; /LBL, Berkeley; Stupakov, G.; /SLAC; Weber, J.; Zolotorev, M.; /LBL, Berkeley

    2012-04-11

    The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and used in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.

  17. Progress toward a hard x-ray insertion device beam position monitor at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Decker, G.; Den Hartog, P.; Singh, O.; Rosenbaum, G.; Univ. of Georgia

    2008-01-01

    Long-term pointing stability at synchrotron light sources using conventional rf-based particle beam position monitoring is limited by the mechanical stability of the pickup electrode assembly. Photoemission-based photon beam position monitors for insertion device beams suffer from stray radiation backgrounds and other gap- dependent systematic errors. To achieve the goal of 500-nanoradian peak-to-peak pointing stability over a one-week period, the development of a photon beam position detector sensitive only to hard X-rays (> several keV) using copper X-ray fluorescence has been initiated. Initial results and future plans are presented.

  18. Optically pumped polarized ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski, A.N.

    1995-12-31

    Polarization transfer collisions between protons, atomic hydrogen, or deuterium and optically pumped alkali-metal vapour are implemented in the high current optically pumped polarized ion source (OPPIS) and the laser driven source (LDS) of nuclear polarized atoms for target applications. The OPPIS technique overcomes the limitations on intensity of the conventional atomic beam source technique and meets the requirements of the new generation of polarization experiments at multi-GeV accelerators and colliders. 17 refs., 3 figs.

  19. Effects of source and receiver locations in predicting room transfer functions by a phased beam tracing method

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Ih, Jeong-Guon

    2012-01-01

    The accuracy of a phased beam tracing method in predicting transfer functions is investigated with a special focus on the positions of the source and receiver. Simulated transfer functions for various source-receiver pairs using the phased beam tracing method were compared with analytical Green’s...... increases the error, which might be ascribed to wave phenomena evoked by the impedance-discontinuous boundary....

  20. Growth and characterization of InP ringlike quantum-dot molecules grown by solid-source molecular beam epitaxy.

    Science.gov (United States)

    Jevasuwan, Wipakorn; Boonpeng, Poonyasiri; Panyakeow, Somsak; Ratanathammaphan, Somchai

    2010-11-01

    In this paper, we have studied the fabrication of InP ringlike quantum-dot molecules on GaAs(001) substrate grown by solid-source molecular beam epitaxy using droplet epitaxy technique and the effect of In deposition rate on the physical and optical properties of InP ringlike quantum-dot molecules. The In deposition rate is varied from 0.2 ML/s to 0.4, 0.8 and 1.6 ML/s. The surface morphology and cross-section were examined by ex-situ atomic force microscope and transmission electron microscope, respectively. The increasing of In deposition rate results in the decreasing of outer and inner diameters of InP ringlike quantum-dot molecules and height of InP quantum dots but increases the InP quantum dot and ringlike quantum-dot molecule densities. The photoluminescence peaks of InP ringlike quantum-dot molecules are blue-shifted and FWHM is narrower when In deposition rate is bigger.

  1. Fragmentation and plasmid strand breaks in pure and gold-doped DNA irradiated by beams of fast hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Wyer, J A; Latimer, C J; Shah, M B; Currell, F J [Centre for Plasma Physics, IRCEP, Queen' s University Belfast, BT7 1NN (United Kingdom); Butterworth, K T; Hirst, D G [Experimental Therapeutics Research Group, School of Pharmacy, Queen' s University Belfast, BT9 7BL (United Kingdom); Montenegro, E C [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cx. Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil)], E-mail: jeanwyer@phys.au.dk

    2009-08-07

    The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.

  2. Reduction of Beam Current Noise in the FNAL Magnetron Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, D. S. [Fermilab; Karns, P. R. [Fermilab; Tan, C. Y.

    2014-01-01

    The new FNAL Injector Line with a circular dimple magnetron ion source has been operational since December of 2013. Since the new injector came on line there have been variations in the H- beam current flattop observed near the downstream end of the linac. Several different cathode geometries including a hollow cathode suggested by Dudnikov [1] were tried. We expanded on those studies by trying mixtures ranging from 0.25%N, 99.75%H to 3%N, 97%H. The results of these studies in our test stand will be presented in this paper.

  3. H- beam extraction from a cesium seeded field effect transistor based radio frequency negative hydrogen ion source.

    Science.gov (United States)

    Ando, A; Matsuno, T; Funaoi, T; Tanaka, N; Tsumori, K; Takeiri, Y

    2012-02-01

    H(-) beam was successfully extracted from a cesium seeded ion source operated using a field effect transistor inverter power supply as a radio frequency (RF) wave source. High density hydrogen plasma more than 10(19) m(-3) was obtained using an external type antenna with RF frequency of lower than 0.5 MHz. The source was isolated by an isolation transformer and H(-) ion beam was extracted from a single aperture. Acceleration current and extraction current increased with the increase of extraction voltage. Addition of a small amount of cesium vapor into the source enhanced the currents.

  4. Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams.

    Science.gov (United States)

    Nabavizadeh, Alireza; Song, Pengfei; Chen, Shigao; Greenleaf, James F; Urban, Matthew W

    2015-04-01

    Elasticity imaging is becoming established as a means of assisting in diagnosis of certain diseases. Shear wave-based methods have been developed to perform elasticity measurements in soft tissue. Comb-push ultrasound shear elastography (CUSE) is one of these methods that apply acoustic radiation force to induce the shear wave in soft tissues. CUSE uses multiple ultrasound beams that are transmitted simultaneously to induce multiple shear wave sources into the tissue, with improved shear wave SNR and increased shear wave imaging frame rate. We propose a novel method that uses steered push beams (SPB) that can be applied for beam formation for shear wave generation. In CUSE beamforming, either unfocused or focused beams are used to create the propagating shear waves. In SPB methods we use unfocused beams that are steered at specific angles. The interaction of these steered beams causes shear waves to be generated in more of a random nature than in CUSE. The beams are typically steered over a range of 3 to 7° and can either be steered to the left (-θ) or right (+θ).We performed simulations of 100 configurations using Field II and found the best configurations based on spatial distribution of peaks in the resulting intensity field. The best candidates were ones with a higher number of the intensity peaks distributed over all depths in the simulated beamformed results. Then these optimal configurations were applied on a homogeneous phantom and two different phantoms with inclusions. In one of the inhomogeneous phantoms we studied two spherical inclusions with 10 and 20 mm diameters, and in the other phantom we studied cylindrical inclusions with diameters ranging from 2.53 to 16.67 mm. We compared these results with those obtained using conventional CUSE with unfocused and focused beams. The mean and standard deviation of the resulting shear wave speeds were used to evaluate the accuracy of the reconstructions by examining bias with nominal values for the phantoms

  5. Pyrolysis of novel and safe phosphorous sources for chemical-beam epitaxy applications

    Science.gov (United States)

    Hill, C. W.; Sadwick, Laurence P.; Kim, C. W.; Ryu, H. H.; Stringfellow, Gerald B.

    1994-05-01

    It is well known that PH3 is highly toxic and safer alternatives need to be found. TBP has a favorable vapor pressure at room temperature and decomposes at a lower temperature than PH3. Results of a systematic investigation of the pyrolysis of novel phosphorous (P) precursors for chemical beam epitaxy (CBE) that are safer than phosphine are presented. In particular, three topics pertinent to CBE are presented: (1) technical details on the pyrolysis conditions and growth using several novel condensed-phase P-precursors, including tertiarybutylphosphine (TBP); (2) a custom-designed gas-source group V cracker cell; and (3) methods to reduce the cracking temperature of P-containing sources.

  6. Morphology of the nonspherically decaying radiation beam generated by a rotating superluminal source.

    Science.gov (United States)

    Ardavan, Houshang; Ardavan, Arzhang; Singleton, John; Fasel, Joseph; Schmidt, Andrea

    2007-08-01

    We consider the nonspherically decaying radiation field that is generated by a polarization current with a superluminally rotating distribution pattern in vacuum, a field that decays with the distance R(P) from its source as R(P)(-1/2), instead of R(P)(-1). It is shown (i) that the nonspherical decay of this emission remains in force at all distances from its source independently of the frequency of the radiation, (ii) that the part of the source that makes the main contribution toward the value of the nonspherically decaying field has a filamentary structure whose radial and azimuthal widths become narrower (as R(P)(-2) and R(P)(-3), respectively) the farther the observer is from the source, (iii) that the loci on which the waves emanating from this filament interfere constructively delineate a radiation subbeam that is nondiffracting in the polar direction, (iv) that the cross-sectional area of each nondiffracting subbeam increases as R(P), instead of R(P)(2), so that the requirements of conservation of energy are met by the nonspherically decaying radiation automatically, and (v) that the overall radiation beam within which the field decays nonspherically consists, in general, of the incoherent superposition of such coherent nondiffracting subbeams. These findings are related to the recent construction and use of superluminal sources in the laboratory and numerical models of the emission from them. We also briefly discuss the relevance of these results to the giant pulses received from pulsars.

  7. Determining the Effective Source-Surface Distance for Therapeutic Electron Beams

    Directory of Open Access Journals (Sweden)

    Tahmasebi Birgani

    2016-05-01

    Full Text Available Background The source point of the irradiated electron beam must be considered to estimate the output factor and dose distribution during electron therapy. Objectives The aim of this study was to determine the effective source-surface distance (SSDeff of an electron linear accelerator (Linac, and its dependence on energy and depth. Materials and Methods A Varian Linac 2100CD with electron energies of 4, 6, 9, 12, and 15 MeV, electron applicator size of 20 × 20 cm2, nominal SSDs of 97 to 113 cm, and air gaps of 2 to 18 cm were studied. Using a Farmer (0.13 cc ionizing chamber, the percentage depth doses were measured in the water phantom (50 cm3 and then the SSDeff was calculated by applying the inverse square law. Results For the 100% PDD, the SSDeff values were calculated as 79, 91, 92, 93, and 92 cm for 4, 6, 9, 12, and 15 MeV, respectively. At a depth with a certain PDD, increasing energy also increases SSDeff, and a similar increase is observed at a distinctive energy by increasing the PDD. Conclusions Using the maximum dose depth from PDD curves and the inverse square law, the required SSDeff to calculate the dose distribution of the electron beam can be calculated.

  8. Electromagnetic fields produced by moving sources in a curved beam pipe

    Science.gov (United States)

    Goto, Shin-itiro; Tucker, Robin W.

    2009-06-01

    A new geometrical perturbation scheme is developed in order to calculate the electromagnetic fields produced by charged sources in prescribed motion moving in a nonstraight perfectly conducting beam pipe. The pipe is regarded as a perturbed infinitely long hollow right-circular cylinder. The perturbation maintains the pipe's circular cross section while deforming its axis into a planar space curve with, in general, nonconstant curvature. Various charged source models are considered including a charged bunch and an off-axis point particle. In the ultrarelativistic limit this permits a calculation of the longitudinal wake potential in terms of powers of the product of the pipe radius and the arbitrarily varying curvature of the axial space curve. Analytic expressions to leading order are presented for beam pipes with piecewise defined constant curvature modeling pipes with straight segments linked by circular arcs of finite length. The language of differential forms is used throughout, and to illustrate the power of this formalism, a pedagogical introduction is developed by deriving the theory ab initio from Maxwell's equations expressed intrinsically as a differential system on (Minkowski) space-time.

  9. The ISOLDE Laser Ion Source and Trap (LIST): Towards pure ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Daniel [CERN, Geneva (Switzerland); University of Heidelberg (Germany); Blaum, Klaus [University of Heidelberg (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Catheral, Richard; Fedosseev, Valentin; Gottberg, Alexander; Marsh, Bruce; Rossel, Ralf Erik; Rothe, Sebastian; Stora, Thierry [CERN, Geneva (Switzerland); Kron, Tobias; Richter, Sven; Wendt, Klaus [University of Mainz (Germany)

    2013-07-01

    The on-line isotope mass separator ISOLDE at CERN is a facility dedicated to the production of a large variety of radioactive ion beams. A high ionization efficiency combined with ultimate isotope selectivity is of utmost importance for all on-line experiments on exotic, short-lived radionuclides with the lowest production rates. The ionization technique that most closely meets this requirement is the element selective Resonance Ionization Laser Ion Source (RILIS). Unfortunately, even when the RILIS is used, many rare isotope beams produced at ISOLDE remain contaminated with surface ionized isobars. In order to suppress the surface ions, a radio-frequency quadrupole device known as the Laser Ion Source and Trap (LIST) has been developed at the University of Mainz and at CERN. After the first successful on-line test in 2011, the LIST was further improved in terms of efficiency, selectivity, and reliability through several off-line tests at Mainz University and at ISOLDE/CERN. In September 2012, the first on-line physics experiments to use the LIST took place at ISOLDE. A summary of the LIST technology and the results of the on-line characterization and experiments are given.

  10. The effects of magnetic fringe fields on beam dynamics in a beam transport line of a terahertz FEL source

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Han [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiong, Yongqian, E-mail: yqxiong@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Pei, Yuanji [National Synchrotron Radiation laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China)

    2014-11-11

    The transport line used in a terahertz FEL device has to transport electron beam through the entire system efficiently and meet the requirements of the beam parameters at the undulator entrance. Due to space limitations, the size of the magnets (five quadrupoles and two bending magnets) employed in the transport line was limited, and some devices were densely packed. In this paper, analyses of the effect of fringe fields and magnetic interference of magnets are presented. 3D models of these magnets are built and their linear optical properties are compared with those obtained by hard edge models. The results indicated that the effects of these factors are significant and they would cause a mismatch of the beam at the exit of the transport line under the preliminary lattice design. To solve this problem, the beam was re-matched using the particle swarm optimization algorithm.

  11. Improved beam extraction for a negative hydrogen ion source for the LHC injector chain upgrade, Linac4

    CERN Document Server

    Midttun, Øystein; Scrivens, Richard

    In the scope of an upgrade of the injector chain of CERN’s accelerator complex, a new linear accelerator, Linac4, is under construction. This accelerator will replace the existing 50 MeV proton linac, Linac2. By increasing the beam energy to 160 MeV, Linac4 makes it possible to double the brightness in the PSB, and ultimately increase the luminosity in the LHC. Linac4 will accelerate beams of negative hydrogen (H-) to be injected into the PSB by multi-turn, charge exchange injection. The ion source was initially based on the non-caesiated RF-volume source from DESY. However, the beam extraction from this source could not handle the 45 keV beam energy required by the RFQ. A new beam extraction system has therefore been designed, via IBSimu simulations [1], to extract and transport the H- ion beam respecting the Linac4 requirements. Key features of the extraction system is a tuneable puller voltage to adapt the extraction field to the ion and electron beam currents, and a magnetized Einzel lens to dump the co...

  12. A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications

    Science.gov (United States)

    Walker, Brandon J.; Radtke, Jeff; Chen, Guang-Hong; Eliceiri, Kevin W.; Mackie, Thomas R.

    2017-10-01

    A modular implementation of a scanning multi-source X-ray tube is designed for the increasing number of multi-source imaging applications in computed tomography (CT). An electron beam array coupled with an oscillating magnetic deflector is proposed as a means for producing an X-ray focal spot at any position along a line. The preliminary multi-source model includes three thermionic electron guns that are deflected in tandem by a slowly varying magnetic field and pulsed according to a scanning sequence that is dependent on the intended imaging application. Particle tracking simulations with particle dynamics analysis software demonstrate that three 100 keV electron beams are laterally swept a combined distance of 15 cm over a stationary target with an oscillating magnetic field of 102 G perpendicular to the beam axis. Beam modulation is accomplished using 25 μs pulse widths to a grid electrode with a reverse gate bias of -500 V and an extraction voltage of +1000 V. Projected focal spot diameters are approximately 1 mm for 138 mA electron beams and the stationary target stays within thermal limits for the 14 kW module. This concept could be used as a research platform for investigating high-speed stationary CT scanners, for lowering dose with virtual fan beam formation, for reducing scatter radiation in cone-beam CT, or for other industrial applications.

  13. Navigation with Atom Interferometers

    Science.gov (United States)

    2017-03-20

    stability of the design and will be measured at a future time. Angle random walk can be calculated from first principles from the shot-noise limited...interferometer cannot distinguish between the two sources of phase shifts. We describe a design for a dual atom interferometer to simultaneously...stability. This paper is organized as follows: we first describe the basic building blocks of the interferometer: beam splitters and mirrors. We then

  14. Determination of effective atomic numbers, effective electrons numbers, total atomic cross-sections and buildup factor of some compounds for different radiation sources

    Science.gov (United States)

    Levet, A.; Özdemir, Y.

    2017-01-01

    The photon interaction parameters such as mass attenuation coefficient, effective atomic number, effective electron density, buildup factor have been measured for Fe(NO3)3, V4O2, NaCO3·H2O, C6H5FeO7·H2O and CuCI compounds using 137Ba, 157Gd and 241Am γ-rays sources in stable geometry. The mass attenuation coefficients have been determined experimentally via Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) system and theoretically by using WinXCom computer program. Then, effective atomic numbers, Zeff, and electron densities, Neff, have been calculated by using the mass attenuation coefficients. The obtained values of effective atomic numbers have been compared with the ones calculated according to a different approach proposed by Hine and the calculated ones from theory. Also, photon buildup factors were obtained by changing collimator diameters in the different photon energies. We observed that the buildup factor increased as the collimator diameter increased for all sources used.

  15. Measurement of the scalar polarizability of the indium $6p_{1/2}$ state using two-step atomic-beam spectroscopy

    CERN Document Server

    Augenbraun, Benjamin L; Rupasinghe, P M; Majumder, P K

    2016-01-01

    We have completed a measurement of the Stark shift within the $^{115}$In $6s_{1/2} \\rightarrow 6p_{1/2}$ excited-state transition using two-step laser spectroscopy in an indium atomic beam. Combining this measurement with recent experimental results we determine the scalar polarizability, $\\alpha_{0}$, of the $6p_{1/2}$ state to be $7683 \\pm43 \\,a_{0}^{3}$ in atomic units, a result which agrees very well with recent theoretical calculations. In this experiment, one laser, stabilized to the $5p_{1/2} \\rightarrow 6s_{1/2}$ 410~nm transition, was directed transversely to the atomic beam, while a second, overlapping laser was scanned across the 1343~nm $6s_{1/2} \\rightarrow 6p_{1/2}$ transition. We utilized two-tone frequency-modulation spectroscopy of the infrared laser beam to measure the second-step absorption in the interaction region, where the optical depth is less than 10$^{-3}$. In the course of our experimental work we also determined the hyperfine splitting within the $6p_{1/2}$ state, improving upon th...

  16. Upgrade and experimental results of radio frequency ion source for neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yahong, E-mail: xieyh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chundong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jiang, Caichao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Gu, Yuming; Xu, Yongjian; Chen, Shiyong; Liang, Lizhen; Liu, Zhimin; Xie, Yuanlai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-01-15

    Highlights: • The RF ion source was developed in ASIPP for the first time. • The gas control was employed for the initial plasma production successfully. • The RF power was controlled for the stable plasma generation with high power. • Long pulse operation was tested and analyzed with 400 s. - Abstract: A radio frequency (RF) ion source was designed and developed for neutral beam injector in Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Recently, the RF ion source was upgraded with new RF power generator (50 kW with frequency of 1 MHz), a new matching unit and the faraday shield with water cooling. Two new methods were used for the ion source tests on the test bed. The high pressure was used for the ignition of plasma and change to low pressure of 0.3 Pa to maintain the plasma. The RF plasma can be generated without the start filament successfully. In order to avoid the plasma oscillation with high power, the RF power was set to increase with two stages without change the matching unit. High power of 46 kW with pulse length of 22 s was achieved on the test bed and the plasma duration can be extended too.

  17. Multidimensional characterisation of biomechanical structures by combining Atomic Force Microscopy and Focused Ion Beam: A study of the rat whisker.

    Science.gov (United States)

    Adineh, Vahid Reza; Liu, Boyin; Rajan, Ramesh; Yan, Wenyi; Fu, Jing

    2015-07-01

    Understanding the heterogeneity of biological structures, particularly at the micro/nano scale can offer insights valuable for multidisciplinary research in tissue engineering and biomimicry designs. Here we propose to combine nanocharacterisation tools, particularly Focused Ion Beam (FIB) and Atomic Force Microscopy (AFM) for three dimensional mapping of mechanical modulus and chemical signatures. The prototype platform is applied to image and investigate the fundamental mechanics of the rat face whiskers, a high-acuity sensor used to gain detailed information about the world. Grazing angle FIB milling was first applied to expose the interior cross section of the rat whisker sample, followed by a "lift-out" method to retrieve and position the target sample for further analyses. AFM force spectroscopy measurements revealed a non-uniform pattern of elastic modulus across the cross section, with a range from 0.8GPa to 13.5GPa. The highest elastic modulus was found at the outer cuticle region of the whisker, and values gradually decreased towards the interior cortex and medulla regions. Elemental mapping with EDS confirmed that the interior of the rat whisker is dominated by C, O, N, S, Cl and K, with a significant change of elemental distribution close to the exterior cuticle region. Based on these data, a novel comprehensive three dimensional (3D) elastic modulus model was constructed, and stress distributions under realistic conditions were investigated with Finite Element Analysis (FEA). The simulations could well account for the passive whisker deflections, with calculated resonant frequency as well as force-deflection for the whiskers being in good agreement with reported experimental data. Limitations and further applications are discussed for the proposed FIB/AFM approach, which holds good promise as a unique platform to gain insights on various heterogeneous biomaterials and biomechanical systems. Copyright © 2015 Acta Materialia Inc. Published by Elsevier

  18. Electron beam-based sources of ultrashort x-ray pulses.

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.; Accelerator Systems Division (APS)

    2010-09-30

    A review of various methods for generation of ultrashort x-ray pulses using relativistic electron beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons is considered. The importance of the time-resolved studies of matter at picosecond (ps), femtosecond (fs), and atttosecond (as) time scales using x-rays has been widely recognized including by award of a Nobel Prize in 1999 [Zewa]. Extensive reviews of scientific drivers can be found in [BES1, BES2, BES3, Lawr, Whit]. Several laser-based techniques have been used to generate ultrashort x-ray pulses including laser-driven plasmas [Murn, Alte, Risc, Rose, Zamp], high-order harmonic generation [Schn, Rund, Wang, Arpi], and laser-driven anode sources [Ande]. In addition, ultrafast streak-camera detectors have been applied at synchrotron sources to achieve temporal resolution on the picosecond time scale [Wulf, Lind1]. In this paper, we focus on a different group of techniques that are based on the use of the relativistic electron beam produced in conventional accelerators. In the first part we review several techniques that utilize spontaneous emission of electrons and show how solitary sub-ps x-ray pulses can be obtained at existing storage ring based synchrotron light sources and linacs. In the second part we consider coherent emission of electrons in the free-electron lasers (FELs) and review several techniques for a generation of solitary sub-fs x-ray pulses. Remarkably, the x-ray pulses that can be obtained with the FELs are not only significantly shorter than the ones considered in Part 1, but also carry more photons per pulse by many orders of magnitude.

  19. Source-to-detector distance and beam center do not affect radiographic measurements of acetabular morphology

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Ashton H. [Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA (United States); Hoover, Kevin B. [Virginia Commonwealth University, Department of Radiology, 1250 E Marshall St. 3rd Floor, PO Box 980615, Richmond, VA (United States)

    2017-04-15

    Multiple radiographic acquisition techniques have been evaluated for their effect on measurements of acetabular morphology. This cadaveric study examined the effect of two acquisition parameters not previously evaluated: beam center position and source-to-detector distance. This study also evaluated the effect of reader differences on measurements. Following calibration of measurements between two readers using five clinical radiographs (training), radiographs were obtained from two cadavers using four different source-to-detector distances and three different radiographic centers for a total of 12 radiographic techniques (experimental). Two physician readers acquired four types of measurements from each cadaver radiograph: lateral center edge angle, peak-to-edge distance, Sharp's angle, and the Tonnis angle. All measurements were evaluated for intra-class correlation coefficient (ICC), kappa statistics for hip dysplasia, and factors that resulted in measurement differences using a mixed statistical model. After training of the two physician readers, there was strong agreement in their hip morphology measurements (ICC 0.84-0.93), agreement in the presence of hip dysplasia (κ = 0.58-1.0), and no measurement difference between physician readers (p = 0.12-1.0). Experimental cadaver measurements showed moderate-to-strong agreement of the readers (ICC 0.74-0.93) and complete agreement on dysplasia (κ = 1). After accounting for reader and radiographic technique, there was no difference in hip morphology measurements (p = 0.83-0.99). In this cadaveric study, measurements of hip morphology were not affected by varying source-to-detector distance or beam center. We conclude that these acquisition parameters are not likely to affect the diagnosis of hip dysplasia in a clinical setting. (orig.)

  20. Compact Source of Electron Beam with Energy of 200 kEv and Average Power of 2 kW

    CERN Document Server

    Kazarezov, Ivan; Balakin, Vladimir E; Bryazgin, Alex; Bulatov, Alexandre; Glazkov, Ivan; Kokin, Evgeny; Krainov, Gennady; Kuznetsov, Gennady I; Molokoedov, Andrey; Tuvik, Alfred

    2005-01-01

    The paper describes a compact electron beam source with average electron energy of 200 keV. The source operates with pulse power up to 2 MW under average power not higher than 2 kW, pulsed beam current up to 10 A, pulse duration up to 2 mks, and repetition rate up to 5 kHz. The electron beam is extracted through aluminium-beryllium alloy foil. The pulse duration and repetition rate can be changed from control desk. High-voltage generator for the source with output voltage up to 220 kV is realized using the voltage-doubling circuit which consists of 30 sections. The insulation type - gas, SF6 under pressure of 8 atm. The cooling of the foil supporting tubes is provided by a water-alcohol mixture from an independent source. The beam output window dimensions are 180?75 mm, the energy spread in the beam +10/-30%, the source weight is 80 kg.

  1. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  2. Pulsed Supersonic Beams from High Pressure Source: Simulation Results and Experimental Measurements

    Directory of Open Access Journals (Sweden)

    U. Even

    2014-01-01

    Full Text Available Pulsed beams, originating from a high pressure, fast acting valve equipped with a shaped nozzle, can now be generated at high repetition rates and with moderate vacuum pumping speeds. The high intensity beams are discussed, together with the skimmer requirements that must be met in order to propagate the skimmed beams in a high-vacuum environment without significant disruption of the beam or substantial increases in beam temperature.

  3. Radical-source molecular beam epitaxy of ZnO-based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sadofiev, Sergey

    2009-10-27

    This work focuses on the development of the novel growth approaches for the fabrication of Group II-oxide materials in the form of epitaxial films and heterostructures. It is shown that molecular-beam epitaxial growth far from thermal equilibrium allows one to overcome the standard solubility limit and to alloy ZnO with MgO or CdO in strict wurtzite phase up to mole fractions of several 10 %. In this way, a band-gap range from 2.2 to 4.4 eV can be covered. A clear layer-by-layer growth mode controlled by oscillations in reflection high-energy electron diffraction makes it possible to fabricate atomically smooth heterointerfaces and well-defined quantum well structures exhibiting prominent band-gap related light emission in the whole composition range. On appropriately designed structures, laser action from the ultraviolet down to green wavelengths and up to room temperature is achieved. The properties and potential of the ''state-of-the-art'' materials are discussed in relation to the advantages for their applications in various optoelectronic devices. (orig.)

  4. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  5. Instrumental development of a quasi-relativistic ultrashort electron beam source for electron diffractions and spectroscopies

    Science.gov (United States)

    Shin, Young-Min; Figora, Michael

    2017-10-01

    A stable femtosecond electron beam system has been configured for time-resolved pump-probe experiments. The ultrafast electron diffraction (UED) system is designed with a sub-MeV photoelectron beam source pulsed by a femtosecond UV laser and nondispersive beamline components, including a bunch compressor—a pulsed S-band klystron is installed and fully commissioned with 5.5 MW peak power in a 2.5 μs pulse length. A single-cell RF photo-gun is designed to produce 1.6-16 pC electron bunches in a photoemission mode with 150 fs pulse duration at 0.5-1 MeV. The measured RF system jitters are within 1% in magnitude and 0.2° in phase, which would induce 3.4 keV and 0.25 keV of ΔE, corresponding to 80 fs and 5 fs of Δt, respectively. Our particle-in-cell simulations indicate that the designed bunch compressor reduces the time-of-arrival jitter by about an order of magnitude. The transport and focusing optics of the designed beamline with the bunch compressor enables an energy spread within 10-4 and a bunch length (electron probe) within instrumental test results are presented along with the development of the quasi-relativistic UED system.

  6. A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic and molecular beams.

    Science.gov (United States)

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A; Groen, Wilhelm A; Janssen, Maurice H M

    2009-11-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 micros have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 microm nozzle releases about 10(16) particles/pulse and the beam brightness was estimated to be 4x10(22) particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10(-6) Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Delta v/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the

  7. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    Science.gov (United States)

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A.; Groen, Wilhelm A.; Janssen, Maurice H. M.

    2009-11-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 μs have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 μm nozzle releases about 1016 particles/pulse and the beam brightness was estimated to be 4×1022 particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5×10-6 Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Δv /v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the cantilever

  8. Development of large RF driven negative ion sources for neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W. E-mail: kraus@ipp.mpg.de; McNeely, P.; Franzen, P.; Entscheva, A.; Bandyopadhyay, M.; Heinemann, B.; Riedl, R.; Speth, E.; Wilhelm, R

    2003-09-01

    The development of a large-area RF source for the negative ion beam production has been continued concentrating on investigations of volume-mode Cs-free operation. In contrast to most arc discharge sources the extracted H{sup -} current density can be significantly improved in the RF source by the addition of argon. Probe measurements close to the plasma grid show that this enhancement is due to a dramatically increased plasma density with the addition of argon. Variation of the number of extraction holes and of the effective transparency showed no dependence of the current density on the extraction area or on the transparency, however, still at a rather low level. The H{sup -} current density that has been reached at present amounts to about 5 mA/cm{sup 2} at 100 kW and 0.6 Pa without cesium as published previously. In order to investigate the role of the magnetic filter, a large electromagnet has undergone first tests. Preliminary results show no strong dependence on the magnetic field.

  9. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  10. Effective atomic number estimation using kV-MV dual-energy source in LINAC.

    Science.gov (United States)

    Sakata, Dousatsu; Haga, Akihiro; Kida, Satoshi; Imae, Toshikazu; Takenaka, Shigeharu; Nakagawa, Keiichi

    2017-07-01

    Dual-energy computed tomography (DECT) imaging can measure the effective atomic number (EAN) as well as the electron density, and thus its adoption may improve dose calculations in brachytherapy and external photon/particle therapy. An expanded energy gap in dual-energy sources is expected to yield more accurate EAN estimations than conventional DECT systems, which typically span less than 100kV. The aim of this paper is to assess a larger energy gap DECT by using a linear accelerator (LINAC) radiotherapy system with a kV X-ray imaging device, which are combined to provide X-rays in both the kV- and MV-energy ranges. Traditionally, the EAN is determined by parameterising the Hounsfield Unit; however, this is difficult in a kV-MV DECT due to different uncertainties in the reconstructed attenuation coefficient at each end of the energy spectrum. To overcome this problem, we included a new calibration step to produce the most likely linear attenuation coefficients, based upon the X-ray spectrum. To determine the X-ray spectrum, Monte Carlo calculations using GEANT4 were performed. Then the images were calibrated using information from eight inserts of known materials in a CIRS phantom (CIRS Inc., Norfolk, VA). Agreement between the estimated and empirical EANs in these inserts was within 11%. Validation was subsequently performed with the CatPhan500 phantom (The Phantom Laboratory, Salem). The estimated EAN for seven inserts agreed with the empirical values to within 3%. Accordingly, it can be concluded that, given properly reconstructed images based upon a well-determined X-ray spectrum, kV-MV DECT provides an excellent prediction for the EAN. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Beebe, E. N.; Raparia, D. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2013-03-15

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 Division-Sign 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 Division-Sign 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

  12. X-Ray and electron beam source characterization from Self-Modulated Laser Wakefield Acceleration experiments at Titan

    Science.gov (United States)

    King, Paul; Lemos, Nuno; Albert, Felicie; Shaw, Jessica; Milder, Avi; Marsh, Ken; Pak, Art; Hegelich, Bjorn; Joshi, Chan

    2017-10-01

    The development of a directional, low-divergence, and short-duration (ps and sub-ps) x-ray probes with energies of tens of keV is desirable for the fields of astrophysics, High Energy Density Science and Inertial Confinement Fusion. In this work we focused the Titan laser beam (1 ps and 150 Joules) into a 4mm helium gas jet to produce an electron beam that in turn generates an x-ray beam. The measured Raman Forward Scattering satellites present in the laser spectrum after the interaction, indicate the generation of a Self-modulated laser wakefield accelerator. This accelerator produced an electron beam with energies up to 250 MeV, a divergence of 16 x 40 mrad and a total charge of 6 nC. Using this high-charge relativistic electron beam we explored the combination of three mechanisms to produce an x-ray beam: Betatron, Compton scattering and Bremsstrahlung. We show the generation of a low divergence (mrad), small source size (um) broadband (keV to MeV) x-ray beam that can be used as a backlighter for time-resolved spectroscopy, imaging, and Compton radiography. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. [LLNL-ABS-734746].

  13. Source of slow polarized positrons using the brilliant gamma beam at ELI-NP. Converter design and simulations

    Science.gov (United States)

    Djourelov, Nikolay; Oprisa, Andreea; Leca, Victor

    2016-01-01

    Simulations of slow positron (es+) source based on interaction of a circularly polarized gamma beam with a W converter were performed. The aim of the study was to propose a converter geometry and to determine the expected slow positron beam intensity and its spot size, and the degree of positron spin polarization, as well. The Monte Carlo simulations by means of GEANT4 were used to estimate the fast positron production and the moderation efficiency of the converter working as a self-moderator, as well. Finite element analysis by means of COMSOL Multiphysics was applied to calculate the fraction of extracted moderated positrons from the converter cells and the quality of the beam formation by focusing. Using the low energy (converter geometry and in case of 100% circular polarization of the gammas the degree of spin polarization of the slow positron beam is expected to be 33%.

  14. Simulation and design of an electron beam ion source charge breeder for the californium rare isotope breeder upgrade

    Directory of Open Access Journals (Sweden)

    Clayton Dickerson

    2013-02-01

    Full Text Available An electron beam ion source (EBIS will be constructed and used to charge breed ions from the californium rare isotope breeder upgrade (CARIBU for postacceleration into the Argonne tandem linear accelerator system (ATLAS. Simulations of the EBIS charge breeder performance and the related ion transport systems are reported. Propagation of the electron beam through the EBIS was verified, and the anticipated incident power density within the electron collector was identified. The full normalized acceptance of the charge breeder with a 2 A electron beam, 0.024π  mm mrad for nominal operating parameters, was determined by simulating ion injection into the EBIS. The optics of the ion transport lines were carefully optimized to achieve well-matched ion injection, to minimize emittance growth of the injected and extracted ion beams, and to enable adequate testing of the charge bred ions prior to installation in ATLAS.

  15. Improving surface smoothness and photoluminescence of CdTe(1 1 1)A on Si(1 1 1) substrates grown by molecular beam epitaxy using Mn atoms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jyh-Shyang, E-mail: jswang@cycu.edu.tw [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Tsai, Yu-Hsuan; Chen, Chang-Wei; Dai, Zi-Yuan; Tong, Shih-Chang [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Chu-Shou [Graduate Institute of Electro-Optical Engineering, Tatung University, Taipei 10452, Taiwan (China); Wu, Chih-Hung [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Yuan, Chi-Tsu; Shen, Ji-Lin [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China)

    2014-04-01

    Highlights: • CdTe(1 1 1)A epilayers were grown on Si(1 1 1) substrates by molecular beam epitaxy. • We report an enhanced growth using Mn atoms. • The significant improvements in surface quality and optical properties were found. - Abstract: This work demonstrates an improvement of the molecular beam epitaxial growth of CdTe(1 1 1)A epilayer on Si(1 1 1) substrates using Mn atoms. The reflection high-energy electron diffraction patterns show that the involvement of some Mn atoms in the growth of CdTe(1 1 1)A is even more effective than the use of a buffer layer with a smooth surface for forming good CdTe(1 1 1)A epilayers. 10 K Photoluminescence spectra show that the incorporation of only 2% Mn significantly reduced the intensity of defect-related emissions and considerably increased the integral intensity of exciton-related emissions by a large factor of about 400.

  16. Two dimensional imaging of the virtual source of a supersonic beam: helium at 125 K.

    Science.gov (United States)

    Eder, S D; Bracco, G; Kaltenbacher, T; Holst, B

    2014-01-09

    Here we present the first two-dimensional images of the virtual source of a supersonic helium expansion. The images were obtained using a free-standing Fresnel zone plate with an outermost zone width of 50 nm as imaging lens and a beam cooled to around 125 K. The nozzle diameter was 10 μm. The virtual source diameter was found to increase with stagnation pressure from 140 ± 30 μm at po = 21 bar up to 270 ± 25 μm at po = 101 bar. The experimental results are compared to a theoretical model based on the solution of the Boltzmann equation by the method of moments. The quantum mechanical cross sections used in the model have been calculated for the Lennard-Jones (LJ) and the Hurly-Moldover (HM) potentials. By using a scaling of the perpendicular temperature that parametrizes the perpendicular velocity distribution based on a continuum expansion approach, the LJ potential shows a good overall agreement with the experiment. However, at higher pressures the data points lie in between the two theoretical curves and the slope of the trend is more similar to the HM curve. Real gas corrections to enthalpy are considered but they affect the results less than the experimental errors.

  17. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions.

    Science.gov (United States)

    Schmidt, M; Zschornack, G; Kentsch, U; Ritter, E

    2014-02-01

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  18. Surface Plasmonic Lens Driven Photoelectron Source for Multi-beam Applications

    Science.gov (United States)

    Choi, Heon J.

    Surface plasmon polariton (SPP) assisted photoelectron source array is proposed for use in distributed multiple electron beam lithography applications. Individual source is composed of a metal/dielectric surface structure with concentric circular grooves of subwavelength width surrounding a sub-wavelength aperture. Such optical power concentrators, called "plasmonic lenses", collect light incident over a broad area by converting it to surface electromagnetic waves, specifically SPP's, through diffraction by the sub-wavelength grooves surrounding the aperture. Through constructive interference of the generated SPPs between neighboring grooves, controlled by the periodicity of the grooves, high optical power densities can be achieved at the center of the lens near the aperture. This facilitates high transmission of optical power through the aperture which results in more light being transmitted than is incident on the aperture itself. Such an approach results in a focal spot at the exit side of the aperture with highly enhanced optical power density compared to the incident light. Optimization of the circular groove-aperture plasmonic lens is demonstrated through finite-difference-in-time-domain simulations that focus on the overall performance of the optical power density enhancement at the operating wavelength of 266 nm. The basic method for the fabrication of plasmonic lenses based on electron beam lithography and reactive ion etching techniques is demonstrated. Additionally, the fabricated structures are tested by the measurement of plasmonic lens facilitated photoemission current driven by a 266 nm laser. Experimental results of the performance of the fabricated structures, composed of Al and a-SiO2, is measured and analyzed. The plasmonic lens fabricated with the optimized design exhibit ˜15 enhancement of the incident optical power density. The plasmonic lens arrays are designed to drive photoelectron emission from nanodots with diamters in the sub-100 nm

  19. Influence of grid control on beam quality in laser ion source generating high-current low-charged copper ions

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, J.; Yoshida, M.; Ogawa, M.; Oguri, Y.; Nakajima, M.; Horioka, K.; Kwan, J.

    2003-08-01

    We examined grid-controlled extraction for a laser ion source using a KrF laser. By using grid-controlled extraction in the over-dense regime, we found that the ion beam current waveforms were stabilized more significantly as the grid bias raised from -90 V to -280 V. The normalized emittance of 0.08 {pi}mm-mrad measured without the grid control was improved to 0.06 {pi}mm-mrad with the grid control. In contrast to this observation, the grid bias disturbed the pattern of the beam extracted in the source-limited regime. Fast extraction was carried out using a high-voltage pulse with a rise time of {approx} 100 ns. The grid control suppressed successfully the beam pedestal originating from the plasma pre-filled in the extraction gap.

  20. ARC: An open-source library for calculating properties of alkali Rydberg atoms

    Science.gov (United States)

    Šibalić, N.; Pritchard, J. D.; Adams, C. S.; Weatherill, K. J.

    2017-11-01

    We present an object-oriented Python library for the computation of properties of highly-excited Rydberg states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both long and short range for arbitrary placement of the atomic dipoles. The package is cross-referenced to precise measurements of atomic energy levels and features extensive documentation to facilitate rapid upgrade or expansion by users. This library has direct application in the field of quantum information and quantum optics which exploit the strong Rydberg dipolar interactions for two-qubit gates, robust atom-light interfaces and simulating quantum many-body physics, as well as the field of metrology using Rydberg atoms as precise microwave electrometers. Program Files doi:http://dx.doi.org/10.17632/hm5n8w628c.1 Licensing provisions: BSD-3-Clause Programming language: Python 2.7 or 3.5, with C extension External Routines: NumPy [1], SciPy [1], Matplotlib [2] Nature of problem: Calculating atomic properties of alkali atoms including lifetimes, energies, Stark shifts and dipole-dipole interaction strengths using matrix elements evaluated from radial wavefunctions. Solution method: Numerical integration of radial Schrödinger equation to obtain atomic wavefunctions, which are then used to evaluate dipole matrix elements. Properties are calculated using second order perturbation theory or exact diagonalisation of the interaction Hamiltonian, yielding results valid even at large external fields or small interatomic separation. Restrictions: External electric field fixed to be parallel to quantisation axis. Supplementary material: Detailed documentation (.html), and Jupyter notebook with examples and benchmarking runs (.html and .ipynb). [1] T.E. Oliphant

  1. Stable wavelength-swept light source designed for industrial applications using KTN beam-scanning technology

    Science.gov (United States)

    Fujimoto, Masatoshi; Yamada, Mahiro; Yamamoto, Koei; Sasaki, Yuzo; Toyoda, Seiji; Sakamoto, Takashi; Yamaguchi, Joji; Sakamoto, Tadashi; Ueno, Masahiro; Imai, Tadayuki; Sugai, Eiichi; Yagi, Shogo

    2017-02-01

    Using light-beam scanning technology based on a potassium tantalate niobate (KTa1-xNbxO3, KTN) single crystal, we constructed a wavelength-swept light source for industrial applications. The KTN crystal is placed in an external cavity as an electro-optic deflector for wavelength scanning without any mechanical operation. Cavity arrangement and mechanism elements are specially designed for long-term stability and environmental robustness. In addition, we updated the handling of the KTN crystal. We used a pair of thermistors for accurate temperature monitoring, and weakly irradiated the crystal with a 405-nm light during operation to achieve drift suppression. We selected a moderate repetition rate of 20 kHz to suit the practical application. The output of the light source was 6.2 mW in average power, 1314.5 nm in central wavelength, and 83.3 nm in bandwidth. The interference fringes of the light enable us to specify the thickness of a wafer sample by the peak positions of the point spread functions. We measured the thickness of a silicon wafer as 3651 μm in the optical path length using a reference quartz plate. The distribution of the obtained values is about 0.1 μm (standard deviation). We experimentally confirmed that this property persists continuously at least over 153 days. Our light source has a remarkable feature: extremely low timing jitter of the sweep. Thus, we can easily reduce the noise level by averaging several fringes, if necessary.

  2. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. E-mail: stefano.agosteo@polimi.it; Curzio, G.; D' Errico, F.; Nath, R.; Tinti, R

    2002-01-01

    Neutron capture in {sup 10}B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  3. A new 2.5 MeV injector and beam test facility for the spallation neutron source

    Science.gov (United States)

    Welton, R. F.; Aleksandrov, A.; Han, B. X.; Kang, Y. W.; Middendorf, M. M.; Murray, S. N.; Piller, M.; Pennisi, T. R.; Peplov, V.; Saethre, R.; Santana, M.; Stinson, C.; Stockli, M. P.

    2017-08-01

    The U.S. Spallation Neutron Source (SNS) now operates with 1.2 MW of beam power on target with the near-term goal of delivering 1.4 MW and a longer-term goal of delivering >2 MW to support a planned second target station. Presently, H- beam pulses (50-60 mA, 1 ms, 60 Hz) from an RF-driven, Cs-enhanced, multi-cusp ion source are first accelerated to 2.5 MeV by a Radio Frequency Quadrupole (RFQ) accelerator, injected into a ˜1 GeV linac, compressed to transmission, the initial applications of the BTF will be to conduct 6D beam dynamic studies, develop & demonstrate ion sources capable of meeting the current and future requirements of the SNS, and contribute to neutron moderator development. This report provides a facility update, description of the BTF ion source systems as well as a discussion of the first LEBT and RFQ beam current measurements performed at the BTF.

  4. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Investigation of the properties of resonance holograms in a beam of sodium atoms

    Science.gov (United States)

    Grigoriev, Igor'S.; Likhanskiĭ, V. V.; Semerok, A. F.; Firsov, Valerii A.; Chankin, A. V.

    1987-10-01

    Experimental and theoretical (using a two-level approximation) investigations were made of the properties of resonance holograms (excited-state gratings) created by monochromatic linearly polarized radiation from a cw dye laser in a beam of sodium atoms as a result of the 32P3/2- 32S1/2(F=2) transition. A good qualitative agreement was observed between the theory and experimental results. It was established that the maximum diffraction efficiency was attained when the intensity of the radiation used to form the hologram was of the order of the intensity needed to saturate the transition and the optical thickness of the beam was ~1.1. The sensitivity of the medium was ~1 nJ/cm2 for 1% diffraction efficiency.

  5. Beam Diagnostics

    CERN Document Server

    Raich, U

    2013-01-01

    As soon as the first particles emerge from an ion source, the source characteristics need to be determined. The total beam intensity, the transverse particle distributions, the beam divergence and emittance as well as the longitudinal parameters of the beam must be measured. This chapter provides an overview of typical measurement methods and the instruments used, and shows the results obtained.

  6. Study of X-Ray and $\\gamma$-Ray Spectra from Antiprotonic Atoms at the Slowly Extracted Antiproton Beam of LEAR

    CERN Multimedia

    2002-01-01

    This experiment will study the X-ray spectra of antiprotonic atoms and the $\\gamma$ spectra of residual nuclei after the antiproton absorption. We intend to begin with measurements on selected isotopically pure targets. Strong interaction effects, the antiproton absorption and the atomic cascade are analysed through the measurement of energies, lineshapes, relative and absolute intensities of all observable lines. The experiments are continued to determine st in resolved fine structure levels and in different isotopes of the same element. Coincidence techniques may be applied. All components of the experimental set-up are already existing from previous experiments and we could begin the measurements with any slowly extracted beam of low energy at LEAR.

  7. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Nishioka, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  8. Measurements of wake-induced electron beam deflection in a dechirper at the Linac Coherent Light Source

    Science.gov (United States)

    Zemella, Johann; Bane, Karl; Fisher, Alan; Guetg, Marc; Huang, Zhirong; Iverson, Richard; Krejcik, Patrick; Lutman, Alberto; Maxwell, Timothy; Novokhatski, Alexander; Stupakov, Gennady; Zhang, Zhen; Harrison, Mark; Ruelas, Marcos

    2017-10-01

    The RadiaBeam/SLAC dechirper, a structure consisting of pairs of flat, metallic, corrugated plates, has been installed just upstream of the undulators in the Linac Coherent Light Source (LCLS). As a dechirper, with the beam passing between the plates on axis, longitudinal wakefields are induced that can remove unwanted energy chirp in the beam. However, with the beam passing off axis, strong transverse wakes are also induced. This mode of operation has already been used for the production of intense, multicolor photon beams using the fresh-slice technique, and is being used to develop a diagnostic for attosecond bunch length measurements. Here we measure, as a function of offset, the strength of the transverse wakefields that are excited between the two plates, and also for the case of the beam passing near to a single plate. We compare with analytical formulas from the literature, and find good agreement. This report presents the first systematic measurements of the transverse wake strength in a dechirper, one that has been excited by a bunch with the short pulse duration and high energy found in an x-ray free electron laser.

  9. Atomic fluorescence method for determination of concentration of alkali metal vapor using a laser source

    Energy Technology Data Exchange (ETDEWEB)

    Budkin, L.A.; Okhotnikov, O.G.; Pak, G.T.; Pikhtelev, A.I.; Puzanov, S.L.

    1984-04-01

    An experimental investigation into the temperature dependence of the cesium vapor concentration has been carried out within the 20-80 deg C temperature range on the base of the atomic fluorescence method with the use of a semiconductor laser. The relation allowing one to study the alkali metal atomic concentration as a function of the vapor temperature and also the method sensitivity as a function of the laser intensity has been derived using the balance equations. A good agreement of the experimental results with estimated ones has been obtained. The method sensitivity has been found to grow with the laser intensity.

  10. Optical Spectroscopy of Europium doped Gallium Nitride prepared by Solid Source Molecular Beam Epitaxy

    Science.gov (United States)

    Nyein, Ei Ei; Seo, J. T.; Bluiett, A.; Anderson, J.; Hommerich, U. H.; Heikenfeld, J.; Garter, M.; Lee, D. S.; Steckl, A. J.

    2001-04-01

    Thin Film Electroluminescence Displays (TEFL’s) are all solid-state devices and offer several advantages over well known LCD’s including increased brightness and viewing angle. We are currently investigating Eu doped GaN as a potential red phosphor for TEFL display applications. Eu doped GaN films were grown by solid source molecular beam epitaxy on Si (111) substates. The material was optically characterized through temperature dependent emission spectroscopy using a He-Cd laser at 325 nm for above band gap excitation. A strong red emission was obtained at 622 nm, which corresponds to an Eu^3+ inner 4f-shell transition from the ^5D 0 to ^7F2 state. A temperature dependent study of the red Eu^3+ line showed that the integrated emission intensity decreased by roughly a factor of 20 between 77K and room temperature. On the contrary, the emission lifetime changed only slightly ( 10-20non-radiative decay processes are small. Therefore, the observed thermal quenching of red Eu emission is assigned to a strongly temperature dependent pumping process.

  11. Maximum current density and beam brightness achievable by laser-driven electron sources

    Directory of Open Access Journals (Sweden)

    D. Filippetto

    2014-02-01

    Full Text Available This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.

  12. Maximum current density and beam brightness achievable by laser-driven electron sources

    Science.gov (United States)

    Filippetto, D.; Musumeci, P.; Zolotorev, M.; Stupakov, G.

    2014-02-01

    This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.

  13. Growth of Atomic Hexagonal Boron Nitride Layers and Graphene/Hexagonal Boron Nitride Heterostructures by Molecular Beam Epitaxy

    Science.gov (United States)

    Xu, Zhongguang

    Graphene, as a famous Van der Waals material, has attracted intensive attention from research group and industry all over the world after 2004, while hexagonal boron nitride (h-BN), as an excellent two-dimensional (2D) dielectric layer, has been studied intensively mainly for its compatibility with graphene and other 2D materials. To realize the technological potential of 2D system, it is essential to synthesize large-area, high-quality 2D thin films through a scalable and controllable method in order to investigate novel phenomenon in fundamental physics and promising device applications. In this thesis, the growth of graphene, h-BN and their vertical and lateral heterostructures by molecular beam epitaxy (MBE) is mainly discussed. In addition, the growth mechanism, fundamental physics and possible applications are also studied. In-situ epitaxial growth of graphene/h-BN heterostructures on cobalt (Co) film substrate was achieved by using plasma-assisted MBE in Chapter 2. We demonstrated a solution for direct fabricating graphene/h-BN vertical stacking structures. Various characterizations, such as Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM), were carried out to confirm and evaluate the heterostructures. Wafer-scale heterostructures consisting of single-layer/bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1°. Chapter 3 studied the growth of graphene/h-BN heterostructures on Co foil substrate by plasma-assisted MBE. It is found that the coverage of h-BN layers on the epitaxial thin graphite layer is growth-time dependent. Large-area, uniform-quality h-BN film was successfully deposited on thin graphite layer. Based on the as-grown h-BN (5-6 nm)/G (26-27 nm) heterostructure, without using any transferring process, we fabricated capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration to evaluate the

  14. Scintillator-based transverse proton beam profiler for laser-plasma ion sources.

    Science.gov (United States)

    Dover, N P; Nishiuchi, M; Sakaki, H; Alkhimova, M A; Faenov, A Ya; Fukuda, Y; Kiriyama, H; Kon, A; Kondo, K; Nishitani, K; Ogura, K; Pikuz, T A; Pirozhkov, A S; Sagisaka, A; Kando, M; Kondo, K

    2017-07-01

    A high repetition rate scintillator-based transverse beam profile diagnostic for laser-plasma accelerated proton beams has been designed and commissioned. The proton beam profiler uses differential filtering to provide coarse energy resolution and a flexible design to allow optimisation for expected beam energy range and trade-off between spatial and energy resolution depending on the application. A plastic scintillator detector, imaged with a standard 12-bit scientific camera, allows data to be taken at a high repetition rate. An algorithm encompassing the scintillator non-linearity is described to estimate the proton spectrum at different spatial locations.

  15. Sub microsecond notching of a negative hydrogen beam at low energy utilizing a magnetron ion source with a split extractor

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, Douglas; /Fermilab

    2004-12-01

    A technique for sub-microsecond beam notching is being developed at 20 keV utilizing a Magnetron ion source with a slit extraction system and a split extractor. Each half of the extractor is treated as part of a 50 ohm transmission line which can be pulsed at {+-}700 volts creating a 1400 volt gradient. This system along with the associated electronics is electrically floated on top of a pulsed extraction voltage. A beam reduction of 95% has been observed at the end of the Fermilab 400 MeV Linac and 35% notching has recently been achieved in the Booster.

  16. Automatic sup sup 1 sup sup 8 F positron source supply system for a monoenergetic positron beam

    CERN Document Server

    Saito, F; Itoh, Y; Goto, A; Fujiwara, I; Kurihara, T; Iwata, R; Nagashima, Y; Hyodo, T

    2000-01-01

    A system which supplies an intense sup sup 1 sup sup 8 F (half life 110 min) positron source produced by an AVF cyclotron through sup sup 1 sup sup 8 O(p,n) sup sup 1 sup sup 8 F reaction has been constructed. Produced sup sup 1 sup sup 8 F is transferred to a low background experiment hall through a capillary. It is electro-deposited on a graphite rod and used for a source of a slow positron beam. In the meantime the next batch of target sup sup 1 sup sup 8 O water is loaded and proton irradiation proceeds. This system makes it possible to perform continuous positron beam experiments using the 18 F positron source.

  17. High-resolution continuum source electrothermal atomic absorption spectrometry - An analytical and diagnostic tool for trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Welz, Bernhard [Instituto de Quimica, Departamento de Quimica Analitica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40170-290 Salvador - BA (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis - SC (Brazil)], E-mail: w.bernardo@terra.com.br; Borges, Daniel L.G.; Lepri, Fabio G. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis - SC (Brazil); Vale, Maria Goreti R. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre - RS (Brazil); Heitmann, Uwe [ISAS - Institute for Analytical Sciences, Department of Interface Spectroscopy, Albert-Einstein-Str. 9, 12489 Berlin (Germany)

    2007-09-15

    The literature about applications of high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) with electrothermal atomization is reviewed. The historic development of HR-CS AAS is briefly summarized and the main advantages of this technique, mainly the 'visibility' of the spectral environment around the analytical line at high resolution and the unequaled simultaneous background correction are discussed. Simultaneous multielement CS AAS has been realized only in a very limited number of cases. The direct analysis of solid samples appears to have gained a lot from the special features of HR-CS AAS, and the examples from the literature suggest that calibration can be carried out against aqueous standards. Low-temperature losses of nickel and vanadyl porphyrins could be detected and avoided in the analysis of crude oil due to the superior background correction system. The visibility of the spectral environment around the analytical line revealed that the absorbance signal measured for phosphorus at the 213.6 nm non-resonance line without a modifier is mostly due to the PO molecule, and not to atomic phosphorus. The future possibility to apply high-resolution continuum source molecular absorption for the determination of non-metals is discussed.

  18. Design of high heat load white-beam slits for wiggler/undulator beamlines at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Tcheskidov, V.; Nian, T.; Haeffner, D.R.; Alp, E.E.; Ryding, D.; Collins, J.; Li, Y.; Kuzay, T.M.

    1994-12-01

    A set of horizontal and vertical white-beam slits has been designed for the Advanced Photon Source wiggler/undulator beamlines at Argonne National Laboratory. While this slit set can handle the high heat flux from on e APS undulator source, it has large enough aperture to be compatible with a wiggler source also. A grazing-incidence, knife-edge configuration has been used in the design to eliminate downstream X-ray scattering. Enhanced heat transfer technology has been used in the water-cooling system. A unique stepping parallelogram driving structure provides precise vertical slit motion with large optical aperture. The full design detail is presented in this paper.

  19. Atomic interferometry; Interferometrie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Baudon, J.; Robert, J. [Paris-13 Univ., 93 - Saint-Denis (France)

    2004-07-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation {lambda} = h/(mv), where {lambda} is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  20. The drive beam pulse compression system for the CLIC RF power source

    CERN Document Server

    Corsini, R

    1999-01-01

    The Compact LInear Collider (CLIC) is a high energy (0.5 to 5 TeV) e ± linear collider that uses a high- current electron beam (the drive beam) for 30 GHz RF power production by the Two-Beam Acceleration (TBA) method. Recently, a new cost­effective and efficient generation scheme for the drive beam has been developed. A fully­loaded normal­conducting linac operating at lower frequency (937 MHz) generates and accelerates the drive beam bunches, and a compression system composed of a delay­line and two combiner rings produces the proper drive beam time structure for RF power generation in the drive beam decelerator. In this paper, a preliminary design of the whole compression system is presented. In particular, the fundamental issue of preserving the bunch quality along the complex is studied and its impact on the beam parameters and on the various system components is assessed. A first design of the rings and delay­line lattice, including path length tuning chicanes, injection and extraction regions is a...

  1. Design of the 'half-size' ITER neutral beam source for the test facility ELISE

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, B. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Postfach 1533, D-85740 Garching (Germany)], E-mail: bernd.heinemann@ipp.mpg.de; Falter, H.; Fantz, U.; Franzen, P.; Froeschle, M.; Gutser, R.; Kraus, W.; Nocentini, R.; Riedl, R.; Speth, E.; Staebler, A.; Wuenderlich, D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Postfach 1533, D-85740 Garching (Germany); Agostinetti, P. [Consorzio RFX, EURATOM Association, Corso Stati Uniti 4, I-35127 Padova (Italy); Jiang, T. [Southwestern Institute of Physics, ChengDu (China)

    2009-06-15

    In 2007 the radio frequency driven negative hydrogen ion source developed at IPP in Garching was chosen by the ITER board as the new reference source for the ITER neutral beam system. In order to support the design and the commissioning and operating phases of the ITER test facilities ISTF and NBTF in Padua, IPP is presently constructing a new test facility ELISE (Extraction from a Large Ion Source Experiment). ELISE will be operated with the so-called 'half-size ITER source' which is an intermediate step between the present small IPP RF sources (1/8 ITER size) and the full size ITER source. The source will have approximately the width but only half the height of the ITER source. The modular concept with 4 drivers will allow an easy extrapolation to the full ITER size with 8 drivers. Pulsed beam extraction and acceleration up to 60 kV (corresponding to pre-acceleration voltage of SINGAP) is foreseen. The aim of the design of the ELISE source and extraction system was to be as close as possible to the ITER design; it has however some modifications allowing a better diagnostic access as well as more flexibility for exploring open questions. Therefore one major difference compared to the source of ITER, NBTF or ISTF is the possible operation in air. Specific requirements for RF sources as found on IPP test facilities BATMAN and MANITU are implemented [A. Staebler, et al., Development of a RF-driven ion source for the ITER NBI system, SOFT Conference 2008, Fusion Engineering and Design, 84 (2009) 265-268].

  2. Crack Mapping on Shear-critical Reinforced Concrete Beams using an Open Source Digital Image Correlation Software

    Directory of Open Access Journals (Sweden)

    Benny Suryanto

    2017-09-01

    Full Text Available Three reinforced concrete beams, one with no shear reinforcement and two others with shear reinforcement ratios of 0.4% and 1.1%, were tested to investigate the influence of stirrup spacing on the mode of failure, overall strength and ductility. The results show that the beam reinforced with closely-spaced shear reinforcement failed in a ductile manner, whereas the other two beams with large stirrup spacing and no stirrup exhibited only a small measure of ductility and failed in a brittle manner. The importance of the provisions of maximum spacing is highlighted to ensure adequate anchorage for the stirrups and prevent a premature shear failure to occur. The application of a non-contact monitoring system employing the open source digital image correlation software Ncorr, an ordinary digital camera and a smartphone is demonstrated to provide a visualization of the cracking process throughout the load history.

  3. Laser Technology in Commercial Atomic Clocks

    Science.gov (United States)

    Lutwak, R.

    2006-05-01

    Commercial atomic frequency standards (AFS) are deployed in diverse civilian, military, and aerospace applications, ranging from high-precision measurement and calibration to navigation, communications and, of course, timekeeping. Currently, commercially available AFS include magnetically-selected cesium beam frequency standards and hydrogen masers and lamp-pumped rubidium oscillators. Despite the revolution in atomic physics and laboratory-scale AFS brought about by the advent of the tunable laser in the early 1970s, commercial AFS invariably rely on more conventional atomic physics technology developed in the 1950s. The reason for this lack of advancement of commercial AFS technology is the relatively poor reliability and environmental sensitivity of narrow-linewidth single-mode laser sources at atomic resonance wavelengths. Over the past 8 years, Symmetricom, in collaboration with laser manufacturers, has developed specialized laser sources for commercial AFS applications. These laser devices, optimized for high spectral purity and long-term reliability, will enable a new generation of commercial AFS. This talk will briefly describe two laser-based atomic frequency standard development programs at Symmetricom. The Chip-Scale Atomic Clock, two orders of magnitude smaller and lower power than any commercial AFS, will enable atomic timing accuracy in portable battery-powered applications. The Optically-Pumped Cesium Beam Frequency Standard, under development for deployment onboard the GPS-III satellite constellation, will provide enhanced short-term stability and longer lifetime compared to magnetically-selected cesium beam AFS.

  4. Thermodynamics of various F420 coenzyme models as sources of electrons, hydride ions, hydrogen atoms and protons in acetonitrile.

    Science.gov (United States)

    Xia, Ke; Shen, Guang-Bin; Zhu, Xiao-Qing

    2015-06-14

    32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme.

  5. Beam Dynamics

    CERN Document Server

    Wilson, E

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '2 Beam Dynamics' with the content: 2 Beam Dynamics 2.1 Linear Transverse Beam Dynamics 2.2 Coupling 2.3 Liouville's Theorem 2.4 Momentum Dependent Transverse Motion 2.5 Longitudinal Motion

  6. Atomic Hydrogen Properties of AGN Host Galaxies: HI in 16 NUclei of GAlaxies (NUGA) Sources

    OpenAIRE

    S. de Haan; Schinnerer, E.; Mundell, C. G.; Garcia-Burillo, S.; Combes, F.

    2007-01-01

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (HI) in 16 nearby spiral galaxies hosting low luminosity AGN, observed with high spectral and spatial resolution (resolution: ~20 arcsec, 5 km/s) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types, ranging from Seyfert to star-forming nuclei and was originally selected for the NUclei of GAlaxies project (NUGA) - a spectrally and spatially resolved inte...

  7. Photolysis of metal oxides as a source of atoms in planetary exospheres

    Science.gov (United States)

    Valiev, R. R.; Berezhnoy, A. A.; Sidorenko, A. D.; Merzlikin, B. S.; Cherepanov, V. N.

    2017-10-01

    The cross sections of photolysis of LiO, NaO, KO, MgO, and CaO molecules have been calculated by the use of quantum chemistry methods. The maximal values for photolysis cross sections of alkali metal monoxides have the order of 10-17 cm2, and for alkaline earth metal monoxides these values are less on 1-2 orders of the magnitude. The lifetimes of photolysis at 1 astronomical unit are estimated as 5, 3, 60, 70, and 3,000 s for LiO, NaO, KO, MgO, and CaO, respectively. Typical kinetic energies of main peaks of photolysis-generated metal atoms are determined. Impact-produced LiO, NaO, KO, and MgO molecules are destroyed in the lunar and Hermean exospheres almost completely during the first ballistic flight while CaO molecule is more stable against destruction by photolysis. Photolysis-generated metal atoms in planetary exospheres can be detected by performing high-resolution spectral observations of velocity distribution of exospheric metal atoms.

  8. Order within disorder: The atomic structure of ion-beam sputtered amorphous tantala (a-Ta2O5)

    Science.gov (United States)

    Bassiri, Riccardo; Liou, Franklin; Abernathy, Matthew R.; Lin, Angie C.; Kim, Namjun; Mehta, Apurva; Shyam, Badri; Byer, Robert L.; Gustafson, Eric K.; Hart, Martin; MacLaren, Ian; Martin, Iain W.; Route, Roger K.; Rowan, Sheila; Stebbins, Jonathan F.; Fejer, Martin M.

    2015-03-01

    Amorphous tantala (a-Ta2O5) is a technologically important material often used in high-performance coatings. Understanding this material at the atomic level provides a way to further improve performance. This work details extended X-ray absorption fine structure measurements of a-Ta2O5 coatings, where high-quality experimental data and theoretical fits have allowed a detailed interpretation of the nearest-neighbor distributions. It was found that the tantalum atom is surrounded by four shells of atoms in sequence; oxygen, tantalum, oxygen, and tantalum. A discussion is also included on how these models can be interpreted within the context of published crystalline Ta2O5 and other a-T2O5 studies.

  9. Order within disorder: The atomic structure of ion-beam sputtered amorphous tantala (a-Ta2O5

    Directory of Open Access Journals (Sweden)

    Riccardo Bassiri

    2015-03-01

    Full Text Available Amorphous tantala (a-Ta2O5 is a technologically important material often used in high-performance coatings. Understanding this material at the atomic level provides a way to further improve performance. This work details extended X-ray absorption fine structure measurements of a-Ta2O5 coatings, where high-quality experimental data and theoretical fits have allowed a detailed interpretation of the nearest-neighbor distributions. It was found that the tantalum atom is surrounded by four shells of atoms in sequence; oxygen, tantalum, oxygen, and tantalum. A discussion is also included on how these models can be interpreted within the context of published crystalline Ta2O5 and other a-T2O5 studies.

  10. Electron-atom collision studies using optically state selected beams. Progress report, May 15, 1987--May 14, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Celotta, R.J.; Kelley, M.H.

    1988-11-15

    This report discusses progress made during the current contract period on the authors research program to study collisions between spin-polarized electrons and optically prepared atoms. The objective of this work is to stimulate a deeper theoretical understanding of the electron-atom interaction by providing more complete experimental measurements on colliding systems. By preparing the internal states of the collision partners before scattering, they are able to extract substantially more information about the scattering process than is available from more conventional measurements of differential cross sections. The authors are principally interested in observing the role played by spin in low energy electron-atom collisions. The additional information provided by these spin-dependent measurements can greatly enhance understanding of both exchange and the spin-orbit interaction in the scattering process. They have made substantial progress in the past three years in their measurements both of elastic and superelastic scattering of spin-polarized electrons from optically pumped sodium.

  11. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Science.gov (United States)

    Zhao, H. Y.; Zhang, J. J.; Jin, Q. Y.; Liu, W.; Wang, G. C.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 1013 W cm-2 in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  12. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    Science.gov (United States)

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  13. OPERATIONAL EXPERIENCE WITH FAST FIBER-OPTIC BEAM LOSS MONITORS FOR THE ADVANCED PHOTON SOURCE STORAGE RING SUPERCONDUCTING UNDULATORS

    Energy Technology Data Exchange (ETDEWEB)

    Dooling, J.; Harkay, K.; Sajaev, V.; Shang, H.

    2017-06-25

    Fast fiber-optic (FFO) beam loss monitors (BLMs) installed with the first two superconducting undulators (SCUs) in the Advanced Photon Source storage ring have proven to be a useful diagnostic for measuring deposited charge (energy) during rapid beam loss events. The first set of FFOBLMs were installed outside the cryostat of the short SCU, a 0.33-m long device, above and below the beam centerline. The second set are mounted with the first 1.1-mlong SCU within the cryostat, on the outboard and inboard sides of the vacuum chamber. The next 1.1-m-long SCU is scheduled to replace the short SCU later in 2016 and will be fitted with FFOBLMs in a manner similar to original 1.1-m device. The FFOBLMs were employed to set timing and voltage for the abort kicker (AK) system. The AK helps to prevent quenching of the SCUs during beam dumps [1] by directing the beam away from the SC magnet windings. The AK is triggered by the Machine Protection System (MPS). In cases when the AK fails to prevent quenching, the FFOBLMs show that losses often begin before detection by the MPS.

  14. Order within disorder: The atomic structure of ion-beam sputtered amorphous tantala (a-Ta_2O_5)

    OpenAIRE

    Bassiri, Riccardo; Liou, Franklin; Abernathy, Matthew R.; Lin, Angie C.; Kim, Namjun; Mehta, Apurva; Shyam, Badri; Byer, Robert L.; Gustafson, Eric K.; Hart, Martin; MacLaren, Ian; Martin, Iain W.; Roger K. Route; Rowan, Sheila; Stebbins, Jonathan F.

    2015-01-01

    Amorphous tantala (a-Ta2O5) is a technologically important material often used in high-performance coatings. Understanding this material at the atomic level provides a way to further improve performance. This work details extended X-ray absorption fine structure measurements of a-Ta2O5 coatings, where high-quality experimental data and theoretical fits have allowed a detailed interpretation of the nearest-neighbor distributions. It was found that the tantalum atom is surrounded by four shells...

  15. Note: Determination of torsional spring constant of atomic force microscopy cantilevers: Combining normal spring constant and classical beam theory

    DEFF Research Database (Denmark)

    Álvarez-Asencio, R.; Thormann, Esben; Rutland, M.W.

    2013-01-01

    A technique has been developed for the calculation of torsional spring constants for AFM cantilevers based on the combination of the normal spring constant and plate/beam theory. It is easy to apply and allow the determination of torsional constants for stiff cantilevers where the thermal power...

  16. Atom beam triangulation of organic layers at 100 meV normal energy: self-assembled perylene on Ag(1 1 0) at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kalashnyk, Nataliya; Khemliche, Hocine; Roncin, Philippe, E-mail: philippe.roncin@u-psud.fr

    2016-02-28

    Highlights: • A new technique to monitor on-line, the growth and organization of organic molecules. • Atom beam triangulation points directions where the molecules align to each other. • The contrast is given by the variation of the width of the scattering pattern. • It is non-destructive and detects early stages of the organization. • The system investigated is self-assembly of perylene on Ag(1 1 0) at room temperature. - Abstract: The controlled growth of organic layers on surfaces is still waiting for an in-situ reliable technique that would allow their quality to be monitored and improved. Here we show that the growth of a perylene monolayer deposited on Ag(1 1 0) at room temperature can be tracked with low energy atoms in a regime where the energy perpendicular to the layer is less than 0.1 eV and below the organic film damage threshold. The image processing required for this atom triangulation technique is described in detail.

  17. Experiments of synchrotron injection using the direct fast chopped H{sup -} beam extracted from surface-plasma-type negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shinto, Katsuhiro; Takagi, Akira; Machida, Shinji; Mori, Yoshiharu; Yoshii, Masahito; Shirakata, Masashi; Koba, Kiyomi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-12-31

    An experiment of synchrotron injection using the direct fast chopped H{sup -} beam extracted from a surface-plasma-type H{sup -} ion source has been successfully achieved. The injection phase of the fast chopped beam from linac into the booster synchrotron is adjustable against the center of rf bucket by using this beam. It was obtained that the longitudinal emittance was controlled at the extraction of the booster synchrotron, and that the beam loss during the injection into main ring of the KEK-PS was reduced by this fast chopped beam. (author)

  18. Ion beam generated plasmas described from the view of atomic physics. Atomphysikalische Beschreibung ionenstrahl-erzeugter Plasmen

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.

    1991-06-01

    The aim of this thesis is the description of ion-beam-driven plasmas by means of rate equations. Emphasis is put on the numerical and analytical study of the state and radiation emission of these non-equilibrium systems and on their stopping power for swift projectile ions. Important features of the quasi-stationary non-equilibrium states of ion-beam-generated plasmas are discussed by describing the degree of ionization as well as the distribution of ionization stages and the excited level populations of the plasma ions. The investigation of the energy balance of ion-beam-driven plasmas illustrates that the specific deposition power is only a weak function of the plasma temperature and density. On the contrary, the radiation emission shows significant structure, leading to the possibility of several equilibrium points which may be reached by the beam-plasma-system depending on its initial state. The time needed to build up an equilibrium temperature is long compared to both the time after which a temperature for the free electrons can be defined and the typical time scale of relaxation of the level populations. Furthermore this work presents an analytical discussion of the conversion of ion beam energy into radiation emission from the K-band of the plasma target for all elements. Finally, the energy loss of fast projectile ions in partially ionized, dense plasmas is investigated with emphasis on the changes of the average ionization potentials compared to cold matter. It is shown that the influence of excited state populations in the plasma ions may enhance the energy loss up to 13% in the case of a hydrogen plasma. As far as weakly ionized high-Z matter is concerned, a known reduction of the energy loss of about 10% is confirmed and systematically studied for the elements of the periodic table. (orig./AH).

  19. Scattering of thermal He beams by crossed atomic and molecular beams. III. Anisotropic intermolecular potentials for He + N/sub 2/, O/sub 2/, CO, and NO

    Energy Technology Data Exchange (ETDEWEB)

    Keil, M.; Slankas, J.T.; Kuppermann, A.

    1979-01-01

    Differential scattering cross sections are measured for He + N/sub 2/, O/sub 2/, CO, and NO, using the crossed molecular beams technique. These data, which are sensitive to the van der Waals attractive minima and adjacent regions of the intermolecular potentials, are analyzed in terms of both central-field and anisotropic models. Little evidence is found for quenching of the observed diffraction oscillations, and anisotropic contributions are determined to be small:The spherical averages of these anisotropic potentials are indistinguishable, within experimental error, from the potentials obtained by a central-field analysis. This study thus provides a quantitative, empirical validation of the central-field assumption for molecular scattering in weakly anisotropic systems.

  20. Bessel beam transformation in c-cuts of uniaxial crystals by varying the source wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Paranin, V. D. [Samara State Aerospace University, 34, Moskovskoe shosse, Samara, 443086 (Russian Federation)

    2016-04-13

    Transformation of Bessel beam of a zero order to Bessel beam of the second order in c-cut of CaCO{sub 3} crystal is experimentally investigated. Possibility of output beam control at changing of wavelength and using of a diffraction axicon is shown. Full transformation of beams at changing of wavelength Δλ=1.5 nanometers is received at initial wavelength λ=637.5 nanometers for a crystal of CaCO{sub 3} with 15 mm long and a diffraction axicon with period of 2 microns. The theoretical value of necessary wavelength changing is Δλ=1.7 nanometers that is according with experimental results.

  1. High-field neutral beam injection for improving the Q of a gas dynamic trap-based fusion neutron source

    Science.gov (United States)

    Zeng, Qiusun; Chen, Dehong; Wang, Minghuang

    2017-12-01

    In order to improve the fusion energy gain (Q) of a gas dynamic trap (GDT)-based fusion neutron source, a method in which the neutral beam is obliquely injected at a higher magnetic field position rather than at the mid-plane of the GDT is proposed. This method is beneficial for confining a higher density of fast ions at the turning point in the zone with a higher magnetic field, as well as obtaining a higher mirror ratio by reducing the mid-plane field rather than increasing the mirror field. In this situation, collision scattering loss of fast ions with higher density will occur and change the confinement time, power balance and particle balance. Using an updated calculation model with high-field neutral beam injection for a GDT-based fusion neutron source conceptual design, we got four optimal design schemes for a GDT-based fusion neutron source in which Q was improved to two- to three-fold compared with a conventional design scheme and considering the limitation for avoiding plasma instabilities, especially the fire-hose instability. The distribution of fast ions could be optimized by building a proper magnetic field configuration with enough space for neutron shielding and by multi-beam neutral particle injection at different axial points.

  2. The RHIC polarized H⁻ ion source.

    Science.gov (United States)

    Zelenski, A; Atoian, G; Raparia, D; Ritter, J; Steski, D

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H(-) ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H(-) ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  3. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Spatial dynamics of laser-induced fluorescence in an intense laser beam: experiment and theory in alkali metal atoms

    CERN Document Server

    Auzinsh, Marcis; Ferber, Ruvin; Gahbauer, Florian; Kalnins, Uldis

    2015-01-01

    We have shown that it is possible to model accurately optical phenomena in intense laser fields by taking into account the intensity distribution over the laser beam. We developed a theoretical model that divided an intense laser beam into concentric regions, each with a Rabi frequency that corresponds to the intensity in that region, and solved a set of coupled optical Bloch equations for the density matrix in each region. Experimentally obtained magneto-optical resonance curves for the $F_g=2\\longrightarrow F_e=1$ transition of the $D_1$ line of $^{87}$Rb agreed very well with the theoretical model up to a laser intensity of around 200 mW/cm$^2$ for a transition whose saturation intensity is around 4.5 mW/cm$^2$. We have studied the spatial dependence of the fluorescence intensity in an intense laser beam experimentally and theoretically. An experiment was conducted whereby a broad, intense pump laser excited the $F_g=4\\longrightarrow F_e=3$ transition of the $D_2$ line of cesium while a weak, narrow probe ...

  5. Analyzing Capabilities of Commercial and Open-Source Routers to Implement Atomic BGP

    Directory of Open Access Journals (Sweden)

    A. Cvjetić

    2010-06-01

    Full Text Available The paper analyzes implementations of BGP protocol on commercial and open-source routers and presents how some existing BGP extensions and routing table isolation mechanisms may be used to solve issues found in standard BGP implementation.

  6. A Space Experiment to Measure the Atomic Oxygen Erosion of Polymers and Demonstrate a Technique to Identify Sources of Silicone Contamination

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Baney-Barton, Elyse; Sechkar, Edward A.; Hunt, Patricia K.; Willoughby, Alan; Bemer, Meagan; Hope, Stephanie; Koo, Julie; Kaminski, Carolyn; hide

    1999-01-01

    A low Earth orbital space experiment entitled, "Polymers Erosion And Contamination Experiment", (PEACE) has been designed as a Get-Away Special (GAS Can) experiment to be accommodated as a Shuttle in-bay environmental exposure experiment. The first objective is to measure the atomic oxygen erosion yields of approximately 40 different polymeric materials by mass loss and erosion measurements using atomic force microscopy. The second objective is to evaluate the capability of identifying sources of silicone contamination through the use of a pin-hole contamination camera which utilizes environmental atomic oxygen to produce a contaminant source image on an optical substrate.

  7. Orientation dependence in the four-atom reaction of OH + HBr using the single-state oriented OH radical beam.

    Science.gov (United States)

    Tsai, Po-Yu; Che, Dock-Chil; Nakamura, Masaaki; Lin, King-Chuen; Kasai, Toshio

    2010-03-20

    The orientation dependence for the Br atom formation in the reaction of the oriented OH radicals with HBr molecules at 0.26 eV collision energy has been observed for the first time using the hexapole electric field, and we found that the reaction cross-section for O-end attack is more favorable than that for H-end attack by a factor of 3.4 +/- 2.3.

  8. Placing single atoms in graphene with a scanning transmission electron microscope

    Science.gov (United States)

    Dyck, Ondrej; Kim, Songkil; Kalinin, Sergei V.; Jesse, Stephen

    2017-09-01

    We employ the sub-atomically focused beam of a scanning transmission electron microscope (STEM) to introduce and controllably manipulate individual dopant atoms in a 2D graphene lattice. The electron beam is used to create defects and subsequently sputter adsorbed source materials into the graphene lattice such that individual vacancy defects are controllably passivated by Si substitutional atoms. We further document that Si point defects may be directed through the lattice via e-beam control or modified (as yet, uncontrollably) to form new defects which can incorporate new atoms into the graphene lattice. These studies demonstrate the potential of STEM for atom-by-atom nanofabrication and fundamental studies of chemical reactions in 2D materials on the atomic level.

  9. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    Science.gov (United States)

    Lee, S. H.; Yang, B. X.; Collins, J. T.; Ramanathan, M.

    2017-02-01

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.

  10. Comparison of the optical properties of Er{sup 3+} doped gallium nitride prepared by metalorganic molecular beam epitaxy (MOMBE) and solid source molecular beam epitaxy (SSMBE)

    Energy Technology Data Exchange (ETDEWEB)

    Hoemmerich, U.; Seo, J.T.; MacKenzie, J.D.; Abernathy, C.R.; Birkhahn, R.; Steckl, A.J.; Zavada, J.M.

    2000-07-01

    The authors report on the luminescence properties of Er doped GaN grown prepared by metalorganic molecular beam epitaxy (MOMBE) and solid-source molecular beam epitaxy (SSMBE) on Si substrates. Both types of samples emitted characteristic 1.54 {micro}m PL resulting from the intra-4f Er{sup 3+} transition {sup 4}I{sub 13/2} {yields} {sup 4}I{sub 15/2}. Under below-gap excitation the samples exhibited very similar 1.54 {micro}m PL intensities. On the contrary, under above-gap excitation GaN:Er (SSMBE) showed {approximately}80 times more intense 1.54 {micro}m PL than GaN:Er (MOMBE). In addition, GaN:Er (SSMBE) also emitted intense green luminescence at 537 nm and 558 nm, which was not observed from GaN:Er (MOMBE). The average lifetime of the green PL was determined to be 10.8 {micro}s at 15 K and 5.5 {micro}s at room temperature. A preliminary lifetime analysis suggests that the decrease in lifetime is mainly due to the strong thermalization between the {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} excited states. Nonradiative decay processes are expected to only weakly affect the green luminescence.

  11. Atomic Oxygen (ATOX) simulation of Teflon FEP and Kapton H surfaces using a high intensity, low energy, mass selected, ion beam facility

    Science.gov (United States)

    Vered, R.; Grossman, E.; Lempert, G. D.; Lifshitz, Y.

    1994-01-01

    A high intensity (greater than 10(exp 15) ions/sq cm) low energy (down to 5 eV) mass selected ion beam (MSIB) facility was used to study the effects of ATOX on two polymers commonly used for space applications (Kapton H and Teflon FEP). The polymers were exposed to O(+) and Ne(+) fluences on 10(exp 15) - 10(exp 19) ions/sq cm, using 30eV ions. A variety of analytical methods were used to analyze the eroded surfaces including: (1) atomic force microscopy (AFM) for morphology measurements; (2) total mass loss measurements using a microbalance; (3) surface chemical composition using x-ray photoelectron spectroscopy (XPS), and (4) residual gas analysis (RGA) of the released gases during bombardment. The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of Ne(+) and O(+) bombardment. For 30 eV ions it was found that the Kapton is eroded via chemical mechanisms while Teflon FEP is eroded via collisional mechanisms. AFM analysis was found very powerful in revealing the evolution of the damage from its initial atomic scale (roughness of approx. 1 nm) to its final microscopic scale (roughness greater than 1 micron). Both the surface morphology and the average roughness of the bombarded surfaces (averaged over 1 micron x 1 micron images by the system's computer) were determined for each sample. For 30 eV a non linear increase of the Kapton roughness with the O(+) fluence was discovered (a slow increase rate for fluences phi less than 5 x 10(exp 17) O(+)/sq cm, and a rapid increase rate for phi greater than 5 x 10(exp 17) O(+)/sq cm). Comparative studies on the same materials exposed to RF and DC oxygen plasmas indicate that the specific details of the erosion depend on the simulation facility emphasizing the advantages of the ion beam facility.

  12. Atmospheric-pressure solution-cathode glow discharge: A versatile ion source for atomic and molecular mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Andrew J. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Williams, Kelsey L. [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Hieftje, Gary M. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Shelley, Jacob T., E-mail: shellj@rpi.edu [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States)

    2017-01-15

    An atmospheric-pressure solution-cathode glow discharge (SCGD) has been evaluated as an ion source for atomic, molecular, and ambient desorption/ionization mass spectrometry. The SCGD consists of a direct-current plasma, supported in the ambient air in the absence of gas flows, and sustained upon the surface of a flowing liquid cathode. Analytes introduced in the flowing liquid, as an ambient gas, or as a solid held near the plasma are vaporized and ionized by interactions within or near the discharge. Introduction of acidic solutions containing metal salts produced bare elemental ions as well as H{sub 2}O, OH{sup −} and NO{sub 3}{sup −} adducts. Detection limits for these elemental species ranged from 0.1 to 4 ppb, working curves spanned more than 4 orders of linear dynamic range, and precision varied between 5 and 16% relative standard deviation. Small organic molecules were also efficiently ionized from solution, and both the intact molecular ion and fragments were observed in the resulting SCGD mass spectra. Fragmentation of molecular species was found to be tunable; high discharge currents led to harder ionization, while low discharge currents produced stronger molecular-ion signals. Ambient gases and solids, desorbed by the plasma from a glass probe, were also readily ionized by the SCGD. Indeed, strong analyte signals were obtained from solid samples placed at least 2 cm from the plasma. These findings indicate that the SCGD might be useful also for ambient desorption/ionization mass spectrometry. Combined with earlier results that showed the SCGD is useful for ionization of labile biomolecules, the results here indicate that the SCGD is a highly versatile ion source capable of providing both elemental and molecular mass-spectral information. - Highlights: • Solution-cathode glow discharge used as an ionization source for mass spectrometry. • SCGD-MS can provide atomic as well as intact molecular mass spectra. • Atomic limits of detection range

  13. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    with high current densities that can treat surfaces placed adjacent to the extraction region. This work introduces a new phenomenology for ion beam extraction using the discrete ion-focusing effect associated with three-dimensional plasma-sheath-lenses [1, 2]. Experiments are performed in a matrix......Torr and plasma densities around 1016 m-3. A rectangular plasma-sheath-lens is created by an electrode-insulator interface designed by finite element simulations. The discrete ion-focusing effect deflects the ions to and extraction aperture on the electrode. A linearly distributed positive ion beam is extracted......Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure...

  14. Plasma density transition trapping as a possible high-brightness electron beam source

    Directory of Open Access Journals (Sweden)

    M. C. Thompson

    2004-01-01

    Full Text Available Plasma density transition trapping is a recently proposed self-injection scheme for plasma wakefield accelerators. This technique uses a sharp downward plasma density transition to trap and accelerate background plasma electrons in a plasma wakefield. This paper examines the quality of electron beams captured using this scheme in terms of emittance, energy spread, and brightness. Two-dimensional particle-in-cell simulations show that these parameters can be optimized by manipulating the plasma density profile. We also develop, and support with simulations, a set of scaling laws that predicts how the brightness of transition trapping beams scales with the plasma density of the system. These scaling laws indicate that transition trapping can produce beams with brightness ≥5×10^{14}   A/(mrad^{2}. A proof-of-principle transition trapping experiment is planned for the near future. The proposed experiment is described in detail.

  15. Microplasma source based on a dielectric barrier discharge for the determination of mercury by atomic emission spectrometry.

    Science.gov (United States)

    Zhu, Zhenli; Chan, George C-Y; Ray, Steven J; Zhang, Xinrong; Hieftje, Gary M

    2008-11-15

    A low-power, atmospheric-pressure microplasma source based on a dielectric barrier discharge (DBD) has been developed for use in atomic emission spectrometry. The small plasma (0.6 mm x 1 mm x 10 mm) is generated within a glass cell by using electrodes that do not contact the plasma. Powered by an inexpensive ozone generator, the discharge ignites spontaneously, can be easily sustained in Ar or He at gas flow rates ranging from 5 to 200 mL min(-1), and requires less than 1 W of power. The effect of operating parameters such as plasma gas identity, plasma gas flow rate, and residual water vapor on the DBD source performance has been investigated. The plasma can be operated without removal of residual water vapor, permitting it to be directly coupled with cold vapor generation sample introduction. The spectral background of the source is quite clean in the range from 200 to 260 nm with low continuum and structured components. The DBD source has been applied to the determination of Hg by continuous-flow, cold vapor generation and offers detection limits from 14 (He-DBD) to 43 pg mL(-1) (Ar-DBD) without removal of the residual moisture. The use of flow injection with the He-DBD permits measurement of Hg with a 7.2 pg limit of detection, and with repetitive injections having an RSD of <2% for a 10 ng mL(-1) standard.

  16. Organic semiconductor distributed feedback laser as excitation source in Raman spectroscopy using free-beam and fibre coupling

    Science.gov (United States)

    Liu, Xin; Lebedkin, Sergei; Mappes, Timo; Köber, Sebastian; Koos, Christian; Kappes, Manfred; Lemmer, Uli

    2014-05-01

    Enabled by the broad spectral gain and the efficient energy conversion in the active material, organic semiconductor lasers are promising for spectroscopic applications and have been recently applied for high resolution absorption and transmission spectroscopy. Here, we present the application of organic semiconductor DFB laser (DFB-OSL) as excitation source in Raman spectroscopy. Utilizing an efficient small molecule blend of tris (8-hydroxyquinoline) aluminum (Alq3) doped with the laser dye 4-(dicyano-methylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM), our encapsulated DFB-OSL achieved a high slope efficiency of 7.6%. The organic lasers were tested in the inverted and upright Raman microscope setups, using free-beam and fibre coupling, respectively. In the free-beam configuration, the emission beam was guided directly into an inverted microscope. Employing a spectrally tunable DFBOSL as the excitation source, we measured the Raman spectra of sulfur and improved the Raman signals for a given optical filter configuration. In the fibre coupling configuration, the organic laser was coupled into a 50 μm multi-mode optical fibre with an efficiency of 70 %. We utilized a round-to-line fibre-bundle for an efficient collection and transfer of Raman light to a spectrograph, by keeping a sufficient spectral resolution. Raman tests were performed on cadmium sulfide and cyclohexane. Our novel fibre-coupled organic laser provides a modular laboratory Raman system.

  17. Ion-beam modification of 2-D materials - single implant atom analysis via annular dark-field electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bangert, U., E-mail: Ursel.Bangert@ul.ie [Department of Physics, School of Sciences & Bernal Institute, University of Limerick, Limerick (Ireland); Stewart, A.; O’Connell, E.; Courtney, E. [Department of Physics, School of Sciences & Bernal Institute, University of Limerick, Limerick (Ireland); Ramasse, Q.; Kepaptsoglou, D. [SuperSTEM Laboratory, STFC Daresbury Campus, Daresbury WA4 4AD (United Kingdom); Hofsäss, H.; Amani, J. [II. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-PLatz 1, 37077 Göttingen (Germany); Tu, J.-S.; Kardynal, B. [Peter Grünberg Institut 9, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2017-05-15

    Functionalisation of two-dimensional (2-D) materials via low energy ion implantation could open possibilities for fabrication of devices based on such materials. Nanoscale patterning and/or electronically doping can thus be achieved, compatible with large scale integrated semiconductor technologies. Using atomic resolution High Angle Annular Dark Field (HAADF) scanning transmission electron microscopy supported by image simulation, we show that sites and chemical nature of individual implants/ dopants in graphene, as well as impurities in hBN, can uniquely and directly be identified on grounds of their position and their image intensity in accordance with predictions from Z-contrast theories. Dopants in graphene (e.g., N) are predominantly substitutional. In other 2-Ds, e.g. dichalcogenides, the situation is more complicated since implants can be embedded in different layers and substitute for different elements. Possible configurations of Se-implants in MoS{sub 2} are discussed and image contrast calculations performed. Implants substituting for S in the top or bottom layer can undoubtedly be identified. We show, for the first time, using HAADF contrast measurement that successful Se-integration into MoS{sub 2} can be achieved via ion implantation, and we demonstrate the possibility of HAADF image contrast measurements for identifying impurities and dopants introduced into in 2-Ds. - Highlights: • Ion implantation of 2-dimensional materials. • Targeted and controlled functionalisation of graphene and 2-D dichalcocenides. • Atomic resolution High Angle Dark Field scanning transmission electron microscopy. • Determination of atomic site and elemental nature of dopants in 2-D materials. • Quantitative information from Z-contrast images.

  18. Coherent Atom Optics With Fast Metastable Beams: Metastable Helium Diffraction By 1D and 2D Magnetized Reflection Gratings

    Science.gov (United States)

    Grucker, J.; Baudon, J.; Karam, J.-C.; Perales, F.; Bocvarski, V.; Ducloy, M.

    2007-04-01

    1D and 2D reflection gratings (Permalloy stripes or dots deposited on silicon), immersed in an external homogeneous static magnetic field, are used to study 1D and 2D diffraction of fast metastable helium atoms He* (23S1). Both the grazing incidence used here and the repulsive potential (for sub-level m = -1) generated by the magnetisation reduce the quenching effect. This periodically structured potential is responsible for the diffraction in the incidence plane as well as for the diffraction in the perpendicular plane.

  19. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  20. Detailed characterization of electron sources yielding first demonstration of European X-ray Free-Electron Laser beam quality

    Directory of Open Access Journals (Sweden)

    F. Stephan

    2010-02-01

    Full Text Available The photoinjector test facility at DESY, Zeuthen site (PITZ, was built to develop and optimize photoelectron sources for superconducting linacs for high-brilliance, short-wavelength free-electron laser (FEL applications like the free-electron laser in Hamburg (FLASH and the European x-ray free-electron laser (XFEL. In this paper, the detailed characterization of two laser-driven rf guns with different operating conditions is described. One experimental optimization of the beam parameters was performed at an accelerating gradient of about 43  MV/m at the photocathode and the other at about 60  MV/m. In both cases, electron beams with very high phase-space density have been demonstrated at a bunch charge of 1 nC and are compared with corresponding simulations. The rf gun optimized for the lower gradient has surpassed all the FLASH requirements on beam quality and rf parameters (gradient, rf pulse length, repetition rate and serves as a spare gun for this facility. The rf gun studied with increased accelerating gradient at the cathode produced beams with even higher brightness, yielding the first demonstration of the beam quality required for driving the European XFEL: The geometric mean of the normalized projected rms emittance in the two transverse directions was measured to be 1.26±0.13  mm mrad for a 1-nC electron bunch. When a 10% charge cut is applied excluding electrons from those phase-space regions where the measured phase-space density is below a certain level and which are not expected to contribute to the lasing process, the normalized projected rms emittance is about 0.9 mm mrad.

  1. Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition.

    Science.gov (United States)

    Kinoshita, Yukinori; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2011-11-01

    Tungsten (W) is significantly suitable as a tip material for atomic force microscopy (AFM) because its high mechanical stiffness enables the stable detection of tip-sample interaction forces. We have developed W sputter-coating equipment to compensate the drawbacks of conventional Si cantilever tips used in AFM measurements. By employing an ion gun commonly used for sputter cleaning of a cantilever tip, the equipment is capable of depositing conductive W films in the preparation chamber of a general ultrahigh vacuum (UHV)-AFM system without the need for an additional chamber or transfer system. This enables W coating of a cantilever tip immediately after sputter cleaning of the tip apex and just before the use in AFM observations. The W film consists of grain structures, which prevent tip dulling and provide sharpness (coated Si tip can clearly resolve the atomic structures of a Ge(001) surface without any artifacts, indicating that, as a force sensor, the fabricated W-coated Si tip is superior to a bare Si tip. © 2011 American Institute of Physics

  2. Ion Source Development for a Compact Proton Beam Writing System III

    Science.gov (United States)

    2013-06-28

    generation lithographies (NGLs) will utilize any one or more of EUV (extreme ultraviolet ), X-ray, electron or ion beam technologies for producing sub...and provide a reliable sealed gas feed system. A piece of glass was pre-cleaned by piranha etching (H2SO4 : H2O2 = 9 : 1) and prebaked at 200 °C for

  3. Source and Extraction for Simultaneous Four-hall Beam Delivery System at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Kazimi, Reza; Wang, Haipeng; Spata, Mike F.; Hansknecht, John C.

    2013-06-01

    A new design for simultaneous delivery of the electron beam to all four 12 GeV CEBAF experimental halls* requires a new 750 MHz RF separator system in the 5th pass extraction region, a 250 MHz repetition rate for its beams, and addition of a fourth laser at the photo-cathode gun. The proposed system works in tandem with the existing 500 MHz RF separators and beam repetition rate on the lower passes. The new 5th pass RF separators will have the same basic design but modified to run at 750 MHz. The change to the beam repetition rate will be at the photo-cathode gun through an innovative upgrade of the seed laser driver system using electro-optic modulators. The new laser system also allows addition of the fourth laser. The new RF separators, the new laser system and other hardware changes required to implement the Four-Hall operation delivery system will be discussed in this paper.

  4. Voluminous D2 source for intense cold neutron beam production at the ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Batkov, K.; Mezei, F.

    2014-01-01

    the target for the complementary needs of certain fundamental physics experiments. To facilitate experiments depending on the total number of neutrons in a sizable beam, the option of a voluminous D2 moderator, in a large cross-section extraction guide is discussed and its neutronic performance is assessed....

  5. Ion trajectories in atom probe field ion microscopy and gas field ion sources

    CERN Document Server

    Castilho, C M C

    1999-01-01

    Trajectories of positive ions produced in a region close to a structured surface, modelled by spherical or spheroidal protrusions and kept at a positive electric potential with respect to a distant screen or detector are calculated. The results are discussed in comparison with similar practical situations produced by field ionization and field evaporation or desorption, such as those occurring in gas field ion sources, field ion microscopy and field desorption spectroscopy. (author)

  6. DEFINITION OF DIRECTION ON SOURCE OF ACOUSTIC RADIATION WITH USE OF ARRANGEMENTS OF REGISTRAITION OF RESILIENT WAVES ON OPTICS, VICROWAVE AND ULTRASONIC BEAMS

    Directory of Open Access Journals (Sweden)

    S. A. Dubyanskiy

    2014-01-01

    Full Text Available The article considers the principles of defining the direction to the acoustic radiation source. The results of the research in the field of directing properties of the registrating devices when operating these beams are cited.

  7. Simultaneous determination of rhodium and ruthenium by high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Zambrzycka-Szelewa, Elżbieta; Lulewicz, Marta; Godlewska-Żyłkiewicz, Beata

    2017-07-01

    In the present paper a fast, simple and sensitive analytical method for simultaneous determination of rhodium and ruthenium by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) was developed. Among six pairs of absorption atomic lines of Rh and Ru, which are close enough to enable their simultaneous detection, two pairs were selected for further studies. Best results were obtained for measurements of the resonance line of rhodium at 343.489 nm and the adjacent secondary line of ruthenium at 343.674 nm (23% intensity of this line). For evaluated lines, the absorbance values were obtained using three pixels. The pyrolysis and atomization temperatures were 1200 °C and 2600 °C, respectively. Under these conditions the limits of detection achieved for Rh and Ru were found to be 1.0 μg L- 1 and 1.9 μg L- 1, respectively. The characteristic mass was 12.9 pg for Rh and 71.7 pg for Ru. Repeatability of the results expressed as a relative standard deviation was typically below 6%. The trueness of the method was confirmed by analysis of the certified reference material - platinum ore (SARM 76). The recovery of Rh and Ru from the platinum ore was 93.0 ± 4.6% and 90.1 ± 2.5%, respectively. The method was successfully applied to the direct simultaneous determination of trace amounts of rhodium and ruthenium in spiked river water, road runoff, and municipal sewage. Separation of interfering matrix on cation exchange resin was required before analysis of road dust and tunnel dust (CW-7) by HR-CS GFAAS.

  8. Trapping cold molecules and atoms: Simultaneous magnetic deceleration and trapping of cold molecular Oxygen with Lithium atoms

    Science.gov (United States)

    Akerman, Nitzan; Karpov, Michael; Segev, Yair; Bibelink, Natan; Narevicius, Julia; Narevicius, Edvardas

    2016-05-01

    Cooling molecules to the ultra-cold regime remains a major challenge in the growing field of cold molecules. The molecular internal degrees of freedom complicate the effort of direct application of laser cooling. An alternative and general path towards ultra-cold molecules relies on sympathetic cooling via collisions with laser-cooled atoms. Here, we demonstrate the first step towards application of sympathetic cooling by co-trapping of molecular Oxygen with Lithium atoms in a magnetic trap at a temperature of 300 mK. Our experiment begins with a pulsed supersonic beam which is a general source for cold high-flux atomic and molecular beams. Although the supersonic expansion efficiently cools the beam to temperatures below 1K, it also accelerates the beam to high mean velocities. We decelerate a beam of O2 in a moving magnetic trap decelerator from 375 m/s to a stop. We entrained the molecular beam with Li atoms by laser ablation prior to deceleration. The deceleration ends with loading the molecules and atoms into a static quadrupole trap, which is generated by two permanent magnets. We estimate 109 trapped molecules with background limited lifetime of 0.6 Sec. Our achievement enables application of laser cooling on the Li atoms in order to sympathetically cool the O2.

  9. Initial Beam Dynamics Simulations of a High-Average-Current Field-Emission Electron Source in a Superconducting RadioFrequency Gun

    Energy Technology Data Exchange (ETDEWEB)

    Mohsen, O. [Northern Illinois U.; Gonin, I. [Fermilab; Kephart, R. [Fermilab; Khabiboulline, T. [Fermilab; Piot, P. [Northern Illinois U.; Solyak, N. [Fermilab; Thangaraj, J. C. [Fermilab; Yakovlev, V. [Fermilab

    2018-01-05

    High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to form $\\sim$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.

  10. Contactless friction and the {sup 3}He-{sup 4}He dimer. Studies with the atomic-beam spin-echo spectrometer; Kontaktlose Reibung und das {sup 3}He-{sup 4}He-Dimer. Untersuchungen mit dem Atomstrahlspinechospektrometer

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Matthias

    2016-04-20

    In this thesis the time of flight resolved atomic beam spin echo method (SEToF) is applied to a {sup 3}He-beam for the first time and studied systematically. This method is shown to be superior to the usual atomic beam spin echo technique. With SEToF it is possible to almost completely remove unpolarized background and to reach a beam polarisation close to 100%. The SEToF technique is shown to be crucial for the first experimental proof of the existence of the {sup 3}He-{sup 4}He dimer. This dimer is the weakest bound van-der-Waals-molecule known to date. Furthermore, a drag force between an atom and a dielectric surface is detected originating from the fluctuating dipole moment of the atom. Not only the measured friction coefficients match their theoretical predictions perfectly, but our data also shows the correct temperature dependence. A great many technological renewals and improvements were installed in the apparatus during this thesis work. They have become necessary or sensible due to the relocation of the physics institute. A few of them are documented and motivated in this thesis.

  11. Effect of double frequency heating on the lead afterglow beam currents of an electron cyclotron resonance ion source

    Science.gov (United States)

    Toivanen, V.; Bellodi, G.; Küchler, D.; Wenander, F.; Tarvainen, O.

    2017-10-01

    The effect of double frequency heating on the performance of the CERN GTS-LHC 14.5 GHz Electron Cyclotron Resonance (ECR) ion source in afterglow mode is reported. The source of the secondary microwave frequency was operated both in pulsed and continuous wave (CW) modes within the range of 12-18 GHz. The results demonstrate that the addition of the secondary frequency can significantly impact the extracted beam currents and the temporal stability of the beam during the afterglow discharge. For example, up to a factor of 2.6 increase was achieved for 208Pb 35 and a factor of 3.1 for 208Pb 37+ compared to single frequency afterglow currents. It is shown that these effects are dependent on the choice of the secondary frequency with respect to the primary one and on the temporal synchronization between the two microwave sources. Overall, the results provide new insight into the afterglow discharge supporting the prevailing understanding of the physical processes behind the phenomenon.

  12. Summary report of working group 5: Beam sources, monitoring and control

    Science.gov (United States)

    Conde, Manoel; Zgadzaj, Rafal

    2017-03-01

    This paper summarizes the topics presented in Working Group 5 at the 17th Advanced Accelerator Concepts Workshop, which was held from 31 July to 5 August 2016 at the Gaylord Hotel and Conference Center, National Harbor, MD, USA. The presentations included a variety of topics covering cathode and RF gun design, new user facilities, beam phase space manipulation, and a range of novel diagnostic techniques.

  13. Processing digital images and calculation of beam emittance (pepper-pot method for the Krion source)

    Science.gov (United States)

    Alexandrov, V. S.; Donets, E. E.; Nyukhalova, E. V.; Kaminsky, A. K.; Sedykh, S. N.; Tuzikov, A. V.; Philippov, A. V.

    2016-12-01

    Programs for the pre-processing of photographs of beam images on the mask based on Wolfram Mathematica and Origin software are described. Angles of rotation around the axis and in the vertical plane are taken into account in the generation of the file with image coordinates. Results of the emittance calculation by the Pep_emit program written in Visual Basic using the generated file in the test mode are presented.

  14. Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kronberger, M., E-mail: matthias.kronberger@gmx.at [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland); Department of Physics, University of Jyväskylä, Survontie 9, FI-40014 (Finland); Gottberg, A. [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland); Instituto de Estructura de la Materia CSIC, E28006 Madrid (Spain); Mendonca, T.M. [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland); IFIMUP and IN – Institute of Nanosciences and Nanotechnologies, University of Porto, Rua do Campo Alegre 687, PT-4169-007 (Portugal); Ramos, J.P. [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 (Switzerland); Seiffert, C.; Suominen, P.; Stora, T. [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland)

    2013-12-15

    Highlights: • We present a novel radioactive ion source concept for nuclear physics experiments. • Molecular sideband beams are produced by an RF discharge in a magnetized plasma. • Ionization efficiencies of 2.5% and 4% were measured for CO{sup +} and Ar, respectively. • Using a HfO{sub 2} fibre target, 17-CO{sup +} was produced for the first time at ISOLDE. • Up to 50 × gain was achieved by using a nanostructured CaO target and He as buffer gas. -- Abstract: In order to account for the increasing demand for strong molecular beams for nuclear physics experiments at ISOLDE, a new radioactive ion source concept based on an RF discharge in a magnetized plasma was developed at CERN. Experimental studies at the ISOLDE offline separator show that the optimum conditions for CO{sup +} and CO{sub 2}{sup +} ion production are given when the ion source is operated with He plasma, in line with expectations based on their electron impact ionization cross-sections. At optimum tuning, ionization efficiencies of 2.5% and 4% were measured for CO{sup +} and Ar{sup +}, respectively. The capability of the Helicon ion source prototype for ISOL operation was evaluated during two online runs at the General Purpose Separator of CERN-ISOLDE, yielding the first observation of {sup 17}CO{sup +} with a HfO{sub 2} fibre target, and a more than 50-fold enhancement of the {sup 10}CO{sup +} and {sup 11}CO{sup +} yields with a nanostructured CaO target and an upgraded ion source prototype.

  15. Imaging characterization of the rapid adiabatic passage in a source-rotatable, crossed-beam scattering experiment

    Science.gov (United States)

    Pan, Huilin; Mondal, Sohidul; Yang, Chung-Hsin; Liu, Kopin

    2017-07-01

    In order to achieve a more efficient preparation of a specific ro-vibrationally excited reactant state for reactive scattering experiments, we implemented the rapid adiabatic passage (RAP) scheme to our pulsed crossed-beam machine, using a single-mode, continuous-wave mid-infrared laser. The challenge for this source-rotatable apparatus lies in the non-orthogonal geometry between the molecular beam and the laser propagation directions. As such, the velocity spread of the supersonic beam results in a significantly broader Doppler distribution that needs to be activated for RAP to occur than the conventional orthogonal configuration. In this report, we detail our approach to shifting, locking, and stabilizing the absolute mid-infrared frequency. We exploited the imaging detection technique to characterize the RAP process and to quantify the excitation efficiency. We showed that with appropriate focusing of the IR laser, a nearly complete population transfer can still be achieved in favorable cases. Compared to our previous setup—a pulsed optical parametric oscillator/amplifier in combination with a multipass ring reflector for saturated absorption, the present RAP scheme with a single-pass, continuous-wave laser yields noticeably higher population-transfer efficiency.

  16. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    Science.gov (United States)

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-02

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  17. Study of gamma-ray emission by proton beam interaction with injected Boron atoms for future medical imaging applications

    Science.gov (United States)

    Petringa, G.; Cirrone, G. A. P.; Caliri, C.; Cuttone, G.; Giuffrida, L.; Larosa, G.; Manna, R.; Manti, L.; Marchese, V.; Marchetta, C.; Margarone, D.; Milluzzo, G.; Picciotto, A.; Romano, F.; Romano, F. P.; Russo, A. D.; Russo, G.; Santonocito, D.; Scuderi, V.

    2017-03-01

    In this work an experimental and theoretical study of gamma-prompt emission has been carried out with the main aim being to understand to what extent this approach can be used during a treatment based on proton-boron fusion therapy. An experimental campaign, carried out with a high purity Germanium detector, has been performed to evaluate the gamma emission from two pure 11B and 10B targets. Furthermore, a set of analytical simulations, using the Talys nuclear reaction code has been performed and the calculated spectra compared with the experimental results. These comparisons allowed us to successfully validate Talys which was then used to estimate the gamma emission when a realistic Boron concentration was considered. Both simulations and experimental results suggest that the gamma emission is low at certain proton energies, thus in order to improve the imaging capabilities, while still maintaining the Boron therapeutic role, we propose the addition of natural Copper bound by a dipyrromethene, BodiPy, to boron atoms. Analytical simulations with Talys suggest that the characteristic spectrum of the copper prompt gamma-rays has several peaks in the energetic regions where the background is negligible.

  18. A buffer gas beam source for short, intense and slow molecular pulses

    Science.gov (United States)

    Truppe, S.; Hambach, M.; Skoff, S. M.; Bulleid, N. E.; Bumby, J. S.; Hendricks, R. J.; Hinds, E. A.; Sauer, B. E.; Tarbutt, M. R.

    2018-02-01

    Experiments with cold molecules usually begin with a molecular source. We describe the construction and characteristics of a cryogenic buffer gas source of CaF molecules. The source emits pulses with a typical duration of 240 $\\mu$s, a mean speed of about 150 m/s, and a flux of $5\\times 10^{10}$ molecules per steradian per pulse in a single rotational state.

  19. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, S.; Goto, I.; Hatayama, A. [Graduate school of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Fukano, A. [Tokyo Metropolitan Collage of Industrial Technology, Higashioi, Shinagawa, Tokyo 140-0011 (Japan)

    2015-04-08

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short.

  20. Laser sources for polarized electron beams in cw and pulsed accelerators

    CERN Document Server

    Hatziefremidis, A; Fraser, D; Avramopoulos, H

    1999-01-01

    We report the characterization of a high power, high repetition rate, mode-locked laser system to be used in continuous wave and pulsed electron accelerators for the generation of polarized electron beams. The system comprises of an external cavity diode laser and a harmonically mode-locked Ti:Sapphire oscillator and it can provide up to 3.4 W average power, with a corresponding pulse energy exceeding 1 nJ at 2856 MHz repetition rate. The system is tunable between 770-785 and 815-835 nm with two sets of diodes for the external cavity diode laser. (author)

  1. Optical Beam Timing Monitor Experiments at the Advanced LightSource

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, John; De Santis, Stefano; Wilcox, Rusell; Yan, Yin

    2007-06-17

    We present the initial results of an experimental study of abeam timing monitor based on an optoelectronic technique. This techniqueuses the electrical signal from a beam position monitor to modulate theamplitude of a train of laser pulses, converting timing jitter into anamplitude jitter. This modulation is then measured with a photodetectorand sampled by a fast ADC. This approach has already demonstrated sub-100fs resolution and promises even better results. Additionally, we areplanning to use the technique as a way to extract the maximum possiblebandwidth from a BPM, avoiding the dispersion typical of long RF cables.We show our initial results using signals from the Advanced Light Sourcestorage ring.

  2. Molecular beam simulation of planetary atmospheric entry - Some recent results.

    Science.gov (United States)

    French, J. B.; Reid, N. M.; Nier, A. O.; Hayden, J. L.

    1972-01-01

    Progress is reported in the development of molecular beam techniques to simulate entry into planetary atmospheres. Molecular beam sources for producing fast beams containing CO2 and atomic oxygen are discussed. Results pertinent to the design and calibration of a mass spectrometer ion source for measurement of the Martian atmosphere during the free molecule portion of the entry trajectory are also presented. The shortcomings and advantages of this simulation technique are discussed, and it is demonstrated that even with certain inadequacies much information useful to the ion source design was obtained. Particularly, it is shown that an open-cavity configuration retains sensitivity to atomic oxygen, provides reasonable signal enhancement from the stagnation effect, is not highly sensitive to pitch and yaw effects, and presents no unforeseen problems in measuring CO2 or atomic oxygen.

  3. Area-selective atomic layer deposition of Ru on electron-beam-written Pt(C) patterns versus SiO2 substratum

    Science.gov (United States)

    Junige, Marcel; Löffler, Markus; Geidel, Marion; Albert, Matthias; Bartha, Johann W.; Zschech, Ehrenfried; Rellinghaus, Bernd; van Dorp, Willem F.

    2017-09-01

    Area selectivity is an emerging sub-topic in the field of atomic layer deposition (ALD), which employs opposite nucleation phenomena to distinct heterogeneous starting materials on a surface. In this paper, we intend to grow Ru exclusively on locally pre-defined Pt patterns, while keeping a SiO2 substratum free from any deposition. In a first step, we study in detail the Ru ALD nucleation on SiO2 and clarify the impact of the set-point temperature. An initial incubation period with actually no growth was revealed before a formation of minor, isolated RuO x islands; clearly no continuous Ru layer formed on SiO2. A lower temperature was beneficial in facilitating a longer incubation and consequently a wider window for (inherent) selectivity. In a second step, we write C-rich Pt micro-patterns on SiO2 by focused electron-beam-induced deposition (FEBID), varying the number of FEBID scans at two electron beam acceleration voltages. Subsequently, the localized Pt(C) deposits are pre-cleaned in O2 and overgrown by Ru ALD. Already sub-nanometer-thin Pt(C) patterns, which were supposedly purified into some form of Pt(O x ), acted as very effective activation for the locally restricted, thus area-selective ALD growth of a pure, continuous Ru covering, whereas the SiO2 substratum sufficiently inhibited towards no growth. FEBID at lower electron energy reduced unwanted stray deposition and achieved well-resolved pattern features. We access the nucleation phenomena by utilizing a hybrid metrology approach, which uniquely combines in-situ real-time spectroscopic ellipsometry, in-vacuo x-ray photoelectron spectroscopy, ex-situ high-resolution scanning electron microscopy, and mapping energy-dispersive x-ray spectroscopy.

  4. Using an electron beam to produce a bright isotropic subsurface x-ray source for back illumination in landmine detection

    Science.gov (United States)

    Retsky, Michael W.

    2005-06-01

    Why is it so difficult to detect concealed shallow buried landmines while it is relatively easy to image and detect cancers within the human body? One reason is that in medical x-ray imaging, the source is on one side of the body and the detectors are on the other. This is back-illumination, the optimal orientation for x-ray imaging. Can back-illumination be used in landmine detection? That is, is it possible to generate sufficient xrays 10 or more cm below the soil surface so that suitable detectors above ground could be used to image shallow buried objects including landmines? In an x-ray tube, high voltage electron beams produce x-rays by electron deceleration (bremsstrahlung) and induced orbital transitions. It may be possible to produce 1000 amp short pulses of electrons at 30 MeV using an electron gun with multiple field emitters. (This is a section of an antiballistic missile device proposed at SPIE Defense and Security 2004.) Electron beams of such energy have range of approximately 100 m in air and 10-15 cm in soil. This 5-10 m tall device could be carried by balloon, helicopter or land vehicle. X-ray production efficiency at 30 MeV is over 50 fold higher compared to medical x-ray tube efficiency. Such a device would produce a bright isotropic source of x-rays in a subsurface plume that might be usable in landmine detection.

  5. X-ray photoelectron spectroscopy and conducting atomic force microscopy investigations on dual ion beam sputtered MgO ultrathin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Braj Bhusan [Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016 (India); Agrawal, Vikash; Joshi, Amish G. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110 012 (India); Chaudhary, Sujeet, E-mail: sujeetc@physics.iitd.ac.in [Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016 (India)

    2012-09-01

    Ultrathin films of MgO ({approx} 6 nm) were deposited on Si(100) using dual ion beam sputtering in different partial pressures of oxygen. These thin films were characterized by X-ray photoelectron spectroscopy (XPS) for chemical state analysis and conducting atomic force microscopy for topography and local conductivity map. No trace of metal Mg was evidenced in these MgO films. The XPS analysis clearly brought out the formation of oxygen interstitials and Mg(OH){sub 2} primarily due to the presence of residual water vapors in the chamber. An optimum value of oxygen partial pressure of {approx} 4.4 Multiplication-Sign 10{sup -2} Pa is identified with regard to homogeneity of film and stoichiometry across the film thickness (O:Mg::0.93-0.97). The local conductivity mapping investigations also established the film homogeneity in respect of electrical resistivity. Non-linear local current-voltage curves revealed typical tunneling characteristics with barrier width of {approx} 5.6 nm and barrier height of {approx} 0.92 eV. - Highlights: Black-Right-Pointing-Pointer Ultra-thin films ({approx} 6 nm) of MgO were deposited at different oxygen partial pressures. Black-Right-Pointing-Pointer Chemical state of MgO thin films is investigated by X-ray photoelectron spectroscopy. Black-Right-Pointing-Pointer Local conductivity map was investigated using conducting atomic force microscopy. Black-Right-Pointing-Pointer Current-voltage characteristics at local points showed tunneling like behavior.

  6. Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Nakadi, Flávio V; Prodanov, Caroline; Boschetti, Wiliam; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2018-03-01

    Thermochemical processes can convert the biomass into fuels, such as bio-oil. The biomass submitted to pyrolysis process, such as fibers, are generally rich in silicon, an element that can lead to damages in an engine when there is high concentration in a fuel. High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is an interesting alternative for Si determination in the products and byproducts of the pyrolysis process because, besides the flame (F) and graphite furnace (GF) atomizers, it has enhanced the application of direct analysis of solid samples (SS) within GF. This study aimed the development of methods to determine Si in biomass samples, their products and byproducts using HR-CS AAS. A high-resolution continuum source atomic absorption spectrometer contrAA 700 equipped with F and GF atomizers was used throughout the study. HR-CS F AAS (λ = 251.611nm, 1 detection pixel, N2O/C2H2 flame) was used to evaluate Si content in biomass and ash, after a microwave-assisted acid digestion with HNO3 and HF. HR-CS GF AAS (Tpyr = 1400°C, Tatom = 2650°C) has evaluated Si in pyrolysis water and bio-oil at 251.611nm, and in peach pit biomass and ash at 221.174nm using SS, both wavelengths with 1 detection pixel. Rhodium (300μg) was applied as permanent modifier and 10μgPd + 6μg Mg were pipetted onto the standards/samples at each analysis. Three different biomass samples were studied: palm tree fiber, coconut fiber and peach pit, and three certified reference materials (CRM) were used to verify the accuracy of the methods. The figures of merit were LOD 0.09-20mgkg-1, and LOQ 0.3-20mgkg-1, considering all the methods. There were no significant differences between the CRM certified values and the determined ones, using a Student t-test with a confidence interval of 95% (n = 5). Si concentration ranged from 0.11-0.92% mm-1, 1.1-1.7mgkg-1, 3.3-13mgkg-1, and 0.41-1.4%mm-1, in biomass, bio-oil, pyrolysis water and ash, respectively. Si remained mostly

  7. Beam-based model of broad-band impedance of the Diamond Light Source

    National Research Council Canada - National Science Library

    Victor Smaluk; Ian Martin; Richard Fielder; Riccardo Bartolini

    2015-01-01

    .... At the Diamond Light Source (DLS) to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening...

  8. RF Design of a High Average Beam-Power SRF Electron Source

    Energy Technology Data Exchange (ETDEWEB)

    Sipahi, Nihan [Colorado State U., Fort Collins; Biedron, Sandra [Colorado State U., Fort Collins; Gonin, Ivan [Fermilab; Kephart, Robert [Fermilab; Khabiboulline, Timergali [Fermilab; Milton, Stephen [Colorado State U., Fort Collins; Yakovlev, Vyacheslav [Fermilab

    2016-06-01

    There is a significant interest in developing high-average power electron sources, particularly in the area of electron sources integrated with Superconducting Radio Frequency (SRF) systems. For these systems, the electron gun and cathode parts are critical components for stable intensity and high-average powers. In this initial design study, we will present the design of a 9-cell accelerator cavity having a frequency of 1.3 GHz and the corresponding field optimization studies.

  9. VISIONS: Remote Observations of a Spatially-Structured Filamentary Source of Energetic Neutral Atoms near the Polar Cap Boundary During an Auroral Substorm

    Science.gov (United States)

    Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.

    2015-01-01

    We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.

  10. Engineering the Losses and Beam Divergence in Arrays of Patch Antenna Microcavities for Terahertz Sources

    Science.gov (United States)

    Madéo, Julien; Pérez-Urquizo, Joel; Todorov, Yanko; Sirtori, Carlo; Dani, Keshav M.

    2017-11-01

    We perform a comprehensive study on the emission from finite arrays of patch antenna microcavities designed for the terahertz range by using a finite element method. The emission properties including quality factors, far-field pattern, and photon extraction efficiency are investigated for etched and non-etched structures as a function of the number of resonators, the dielectric layer thickness, and period of the array. In addition, the simulations are achieved for lossy and perfect metals and dielectric layers, allowing to extract the radiative and non-radiative contributions to the total quality factors of the arrays. Our study shows that this structure can be optimized to obtain low beam divergence (FWHM 50% while keeping a strongly localized mode. These results show that the use of these microcavities would lead to efficient terahertz emitters with a low divergence vertical emission and engineered losses.

  11. Scattering of thermal He beams by crossed atomic and molecular beams. IV. Spherically symmetric intermolecular potentials for He+CH/sub 4/, NH/sub 3/, H/sub 2/O, SF/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Slankas, J.T.; Keil, M.; Kuppermann, A.

    1979-02-01

    Differential scattering cross sections are measured for He+CH/sub 4/, NH/sub 3/, H/sub 2/O, and SF/sub 6/, using the crossed molecular beams technique. These data, which are sensitive to the van der Waals attractive minima and adjacent regions of the intermolecular potential, are interpreted in terms of central-field models. No evidence is found for quenching of the observed diffraction oscillations. The interactions of the isoelectronic hydrides CH/sub 4/, NH/sub 3/, H/sub 2/O with He are found to have decreasing van der Waals radii in this sequence, and their attractive wells all have similar depths. However, the He+SF/sub 6/ attractive well is found to be anomalously deep, and provides a counter example to the supposition that only the polarizability of the least polarizable of the interacting partners (atoms or molecules) correlates with the van der Waals well depth. Simple combination rules for predicting unlike-pair potential parameters from the corresponding like-pair ones are tested and found inadequate.

  12. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    Science.gov (United States)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  13. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    CERN Document Server

    Agosteo, S; D'Errico, F; Nath, R; Tinti, R

    2002-01-01

    Neutron capture in sup 1 sup 0 B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast ...

  14. X-Band Linac Beam-Line for Medical Compton Scattering X-Ray Source

    CERN Document Server

    Dobashi, Katsuhiro; Ebina, Futaro; Fukasawa, Atsushi; Hayano, Hitoshi; Higo, Toshiyasu; Kaneyasu, Tatsuo; Ogino, Haruyuki; Sakamoto, Fumito; Uesaka, Mitsuru; Urakawa, Junji; Yamamoto, Tomohiko

    2005-01-01

    Compton scattering hard X-ray source for 10~80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U. Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard ( 10-80

  15. Fast sequential determination of antimony and lead in pewter alloys using high-resolution continuum source flame atomic absorption spectrometry.

    Science.gov (United States)

    Dessuy, Morgana B; de Jesus, Robson M; Brandao, Geovani C; Ferreira, Sergio L C; Vale, Maria Goreti R; Welz, Bernhard

    2013-01-01

    A simple method has been developed to determine antimony and lead in pewter alloy cups produced in Brazil, using fast sequential determination by high-resolution continuum source flame atomic absorption spectrometry. The samples were dissolved in HCl and H(2)O(2), employing a cold finger system in order to avoid analyte losses. The main resonance line of lead at 217.001 nm and a secondary line of antimony at 212.739 nm were used. The limits of detection for lead and antimony were 0.02 and 5.7 mg L(-1), respectively. The trueness of the method was established by recovery tests and comparing the results obtained by the proposed method with those obtained by inductively coupled plasma optical emission spectrometry. The results were compared using a student's t-test and there was no significant difference at a 95% confidence interval. With the developed methods, it was possible to determine accurately antimony and lead in pewter samples. The lead concentration found in the analysed samples was around 1 mg g(-1), which means that they are not lead free; however, the content was below the maximum allowed level of 5 mg g(-1). The antimony content, which was found to be between 40 and 46 mg g(-1), is actually of greater concern, as antimony is known to be potentially toxic already at very low concentrations, although there is no legislation yet for this element.

  16. Conceptual Design of an Insertion Device for Non-Destructive Beam Diagnostics of a Low-Emittance Synchrotron Light Source

    CERN Document Server

    Masaki, Mitsuhiro

    2005-01-01

    An insertion device is proposed to measure small vertical angular divergence and energy spread (dE/E) of electron beam in a low-emittance synchrotron light source. In accelerators such as the SPring-8 storage ring operated on the small emittance-coupling ratio, vertical divergence of spectral photon flux produced by electron beam in a conventional undulator of several meters long will be dominated by natural divergence of the undulator radiation. Therefore, the divergence of spectral flux is not useful for vertical emittance diagnostics. The proposed insertion device consists of N short undulator sections as x-ray radiators cascaded through vertical deflective sections to make a half-period cosine-like electron trajectory. Two radiation parts of the upper and lower sides are formed due to up-and-down electron orbit by the deflective sections. X-rays emitted from the two radiation parts interfere at observation point far from the insertion device. It was numerically studied that the vertical angular divergence...

  17. Source brightness and useful beam current of carbon nanotubes and other very small emitters

    NARCIS (Netherlands)

    Kruit, P.; Bezuijen, M.; Barth, J.E.

    2006-01-01

    The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky

  18. Spooky Phenomena in Two-Photon Coherent Atomic Absorption

    Science.gov (United States)

    Li, Ming-Chiang

    2006-03-01

    Physical processes on two-photon coherent atomic absorption of multiple laser beams were discussed more than twenty five years ago. These processes can be divided into two distinct groups. In the first group, laser beams are from a single source^1,2, and in the second group laser beams are from two different sources^3. Several experiments in the first group were carried out and have led to the 2005 Nobel Prize in physics. The second group is more interesting. Atoms are in random motion and two photons are from different sources. Classically, it is impossible for atoms to transit coherently in the absorption process, but quantum mechanically, such a transition is possible and that is one of the spooky phenomena in quantum mechanic. To assure the coherent transition, each photon as absorbed by the atom must have two possible paths of choices. If one photon has the choice and other one is not, then the atomic transitions cannot be coherent. The present talk will review various spooky phenomena associated with two-photon coherent atomic absorption, and will clarify some theoretical misunderstandings regarding these interesting transitions. Reference: *M. C. Li, Nuovo Cimento 39B (1977) 165. *M. C. Li, Phys. Rev. A 16 (1977) 2480. *M. C. Li, Phys. Rev. A 22 (1980) 1323.

  19. Four channel high power rf source with beam steering based on gyromagnetic nonlinear transmission lines

    Science.gov (United States)

    Romanchenko, I. V.; Ulmaskulov, M. R.; Sharypov, K. A.; Shunailov, S. A.; Shpak, V. G.; Yalandin, M. I.; Pedos, M. S.; Rukin, S. N.; Konev, V. Yu.; Rostov, V. V.

    2017-05-01

    The synchronized operation of four gyromagnetic nonlinear transmission lines (NLTLs) was tested with a pulse repetition frequency up to 1 kHz during 1 s bursts. High voltage pulses with a duration of ˜5 ns from the solid state driver S-500 were split into four 48 Ω channels reaching about -200 kV in each channel with ˜10% variation in the amplitude. The maximum peak voltage at the NLTL output was within 220-235 kV with the maximum modulation depth of decaying oscillations up to 90% at the center frequency near 2.1 GHz. The relative delay between channels reached the half-period of the center frequency of oscillations. The associated beam steering by four element array of conical helical antennas was demonstrated in a horizontal plane at 17°. The effective potential of radiation reached 360 kV at the radiation axis. The effect of ferrite temperature on the shock wave velocity in gyromagnetic NLTL is observed.

  20. Four channel high power rf source with beam steering based on gyromagnetic nonlinear transmission lines.

    Science.gov (United States)

    Romanchenko, I V; Ulmaskulov, M R; Sharypov, K A; Shunailov, S A; Shpak, V G; Yalandin, M I; Pedos, M S; Rukin, S N; Konev, V Yu; Rostov, V V

    2017-05-01

    The synchronized operation of four gyromagnetic nonlinear transmission lines (NLTLs) was tested with a pulse repetition frequency up to 1 kHz during 1 s bursts. High voltage pulses with a duration of ∼5 ns from the solid state driver S-500 were split into four 48 Ω channels reaching about -200 kV in each channel with ∼10% variation in the amplitude. The maximum peak voltage at the NLTL output was within 220-235 kV with the maximum modulation depth of decaying oscillations up to 90% at the center frequency near 2.1 GHz. The relative delay between channels reached the half-period of the center frequency of oscillations. The associated beam steering by four element array of conical helical antennas was demonstrated in a horizontal plane at 17°. The effective potential of radiation reached 360 kV at the radiation axis. The effect of ferrite temperature on the shock wave velocity in gyromagnetic NLTL is observed.