WorldWideScience

Sample records for atomic beam diffraction

  1. Atom trapping in a bottle beam created by a diffractive optical element

    CERN Document Server

    Ivanov, V V; Saffman, M; Kemme, S A; Ellis, A R; Brady, G R; Wendt, J R; Biedermann, G W; Samora, S

    2013-01-01

    A diffractive optical element (DOE) has been fabricated for creating blue detuned atomic bottle beam traps. The DOE integrates several diffractive lenses for trap creation and imaging of atomic fluorescence. We characterize the performance of the DOE and demonstrate trapping of cold Cesium atoms inside a bottle beam.

  2. Diffracted field distribution from a knife-edge truncated semi- Gaussian beam as an atomic (molecular) mirror

    Institute of Scientific and Technical Information of China (English)

    Zheng Ping; Gao Wei-Jian; Yin Jian-Ping

    2006-01-01

    We investigate the diffraction characteristics of an incident Gaussian beam cut by a straight edge bounding a semi-infinite opaque plane using Kirchhoff scalar wave theory in the Fresnel limit, and propose a new and simple mirror scheme to reflect atoms by using the intensity gradient induced by a blue-detuned semi-Gaussian laser beam. The optical potential of the diffracted light of the knife-cut semi-Gaussian beam for 85Rb atom and its spontaneous emission probability are calculated and compared with the performance of the evanescent-wave mirror. Our study shows that the optical potential of the diffracted light of the semi-Gaussian beam is far higher than that of the evanescent light wave, and the maximum normal velocity of the incident atoms can be far greater than that of the evanescent light wave under the same parameters, so the blue-detuned semi-Gaussian beam, as a novel atomic mirror, can be used to efficiently reflect cold atoms with a normal velocity of greater than 1 m/s. However, the intensity gradient (force) of the diffracted light of the semi-Gaussian-beam is much smaller than that of the evanescent light wave, so its spontaneous emission probability is greater than that from the evanescent-wave when the normal velocity of incident atoms is greater.

  3. Confinement of ultracold atoms in a Laguerre-Gaussian laser beam created with diffractive optics

    CERN Document Server

    Kennedy, Sharon A; Farrar, J Tom; Akin, T G; Krzyzewski, S; Abraham, E R I

    2013-01-01

    We report 2D confinement of Rb 87 atoms in a Laguerre-Gaussian laser beam. Changing of the sign of the detuning from the atomic resonance dramatically alters the geometry of the confinement. With the laser detuned to the blue, the atoms are confined to the dark, central node of the Laguerre-Gaussian laser mode. This trapping method leads to low ac Stark shifts to the atomic levels. Alternatively, by detuning the laser to the red of the resonance, we confine atoms to the high intensity outer ring in a multiply-connected, toroidal configuration. We model the confined atoms to determine azimuthal intensity variations of the trapping laser, caused by slight misalignments of the Laguerre-Gaussian mode generating optics.

  4. Diffraction of a Laser Beam.

    Science.gov (United States)

    Jodoin, Ronald E.

    1979-01-01

    Investigates the effect of the nonuniform irradiance across a laser beam on diffraction of the beam, specifically the Fraunhofer diffraction of a laser beam with a Gaussian irradiance profile as it passes through a circular aperture. (GA)

  5. A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction

    International Nuclear Information System (INIS)

    Atom probe tomography (APT) is a suitable technique for chemical analyses with almost atomic resolution. However, the time-consuming site-specific specimen preparation can be improved. Recently, transmission electron backscatter diffraction (t-EBSD) has been established for high resolution crystallographic analyses of thin foils. In this paper we present the first successful application of a combined focused ion beam (FIB)/t-EBSD preparation of site-specific APT specimens using the example of grain boundary segregation in technically pure molybdenum. It will be shown that the preparation of a grain boundary can be substantially accelerated by t-EBSD analyses in-between the annular milling FIB procedure in the same microscope. With this combined method, a grain boundary can easily be recognized and positioned in the first 220 nm of an APT sample much faster than e.g. with complementary investigations in a transmission electron microscope. Even more, the high resolution technique of t-EBSD gives the opportunity to get crystallographic information of the mapped area and, therefore, an analysis of the grain boundary character to support the interpretation of the APT data files. To optimize this newly developed technique for the application on needle-shaped APT specimens, a parameter study on enhanced background correction, acceleration voltage, and tilt angle was carried out. An acceleration voltage of 30 kV at specimen surface tilt angles between −45° and −35° from horizontal plane leads to the best results. Even for molybdenum the observation of crystal orientation data up to about 200 nm specimen thickness is possible. - Highlights: • We developed a new site-specific APT specimen preparation method by FIB and t-EBSD. • A grain boundary was positioned in the first 220 nm of the APT tip by the FIB/t-EBSD method. • Crystallographic information of the mapped area can be quickly obtained. • An acceleration voltage of 30 kV at specimen surface tilt angles

  6. Polarized atomic hydrogen beam

    Energy Technology Data Exchange (ETDEWEB)

    Chan, N.; Crowe, D.M.; Lubell, M.S.; Tang, F.C.; Vasilakis, A.; Mulligan, F.J.; Slevin, J.

    1988-12-01

    We describe the design and operating characteristics of a simple polarized atomic hydrogen beam particularly suitable for applications to crossed beams experiments. In addition to experimental measurements, we present the results of detailed computer models, using Monte-Carlo ray tracing techniques, optical analogs, and phase-space methods, that not only provide us with a confirmation of our measurement, but also allow us to characterize the density, polarization, and atomic fraction of the beam at all points along its path. As a subsidiary result, we also present measurements of the relative and absolute efficiencies of the V/G Supavac mass analyzer for masses 1 and 2.

  7. Nonlinear diffraction from a virtual beam

    DEFF Research Database (Denmark)

    Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw;

    2010-01-01

    We observe experimentally a novel type of nonlinear diffraction in the process of two-wave mixing on a nonlinear quadratic grating.We demonstrate that when the nonlinear grating is illuminated simultaneously by two noncollinear beams, a second-harmonic diffraction pattern is generated by a virtual...... beam propagating along the bisector of the two pump beams. The observed iffraction phenomena is a purely nonlinear effect that has no analogue in linear diffraction...

  8. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  9. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.;

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  10. Fresnel diffraction patterns as accelerating beams

    CERN Document Server

    Zhang, Yiqi; Zheng, Huaibin; Wu, Zhenkun; Li, Yuanyuan; Lu, Keqing; Zhang, Yanpeng

    2013-01-01

    We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelerating beams. We find that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams. Decelerating and accelerating regions are separated by a critical propagation distance, at which no acceleration is present. During deceleration, the Fresnel diffraction beams undergo self-smoothing, in which oscillations of the diffracted waves gradually focus and smooth out at the critical distance.

  11. Atoms in static fields Chaos or Diffraction?

    CERN Document Server

    Dando, P A

    1998-01-01

    A brief review of the manifestations of classical chaos observed in atomic systems is presented. Particular attention is paid to the analysis of atomic spectra by periodic orbit-type theories. For diamagnetic non-hydrogenic Rydberg atoms, the dynamical explanation for observed spectral features has been disputed. By building on our previous work on the photoabsorption spectrum, we show how, by the addition of diffractive terms, the spectral fluctuations in the energy level spectrum of general Rydberg atoms can be obtained with remarkable precision from the Gutzwiller trace formula. This provides further evidence that non-hydrogenic systems are most naturally described in terms of diffraction rather than classical chaos.

  12. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  13. Studies on coherence and decoherence in Fast Atom Diffraction

    International Nuclear Information System (INIS)

    A few years ago, quantum effects were observed for the scattering of fast atoms from surfaces under a grazing angle of incidence. We discuss basic features of Fast Atom Diffraction (FAD) which adds a further powerful method to the established tools in ion beam analysis and surface science. Attractive features of FAD in studies on the structure of surfaces comprise negligible radiation damage, cost effective operation of the complete setup, no charging effects in studies with insulators, and an extreme sensitivity to the topmost layer of surface atoms. The observation of diffraction patterns is based on the quantum coherence which is preserved during the scattering process with the target surface. We will discuss basic features of the coherence phenomena and its role for the observation of quantum effects in the angular distributions for grazingly scattered atoms. In a comparison of data obtained for H and He atoms we demonstrate that two different mechanisms for decoherence are important

  14. Atomic laser-beam finder.

    Science.gov (United States)

    Viering, Kirsten; Medellin, David; Mo, Jianyong; Raizen, Mark G

    2012-11-01

    We report on an experimental method to align a laser beam to a cloud of atoms trapped in a magneto-optical trap (MOT). We show how balanced lock-in detection leads to a very sensitive method to align the laser beam to the atoms in the plane perpendicular to the propagation direction. This provides a very reliable and fast way of aligning laser beams to atoms trapped in a MOT.

  15. Single beam atom sorting machine

    International Nuclear Information System (INIS)

    We create two overlapping one-dimensional optical lattices using a single laser beam, a spatial light modulator and a high numerical aperture lens. These lattices have the potential to trap single atoms, and using the dynamic capabilities of the spatial light modulator may shift and sort atoms to a minimum atom-atom separation of 1.52 μm. We show how a simple feedback circuit can compensate for the spatial light modulator's intensity modulation

  16. A polarized atomic hydrogen beam

    OpenAIRE

    Chan, N; Crowe, D.M.; Lubell, M. S.; Tang, F.C.; Vasilakis, A.; Mulligan, F. J.; Slevin, J.

    1988-01-01

    We describe the design and operating characteristics of a simple polarized atomic hydrogen beam particularly suitable for applications to crossed beams experiments. In addition to experimental measurements, we present the results of detailed computer models, using Monte-Carlo ray tracing techniques, optical analogs, and phase-space methods, that not only provide us with a confirmation of our measurement, but also allow us to characterize the density, polarization, and atomic fraction of the b...

  17. Diffraction analysis of beams for barcode scanning

    Science.gov (United States)

    Eastman, Jay M.; Quinn, Anna M.

    1991-02-01

    Laser based bar code scanners utilize large f/# beams to attain a large depth of focus. The intensity cross-section of the laser beam is generally not uniform but is frequently approximated by a Gaussian intensity profile. In the case of laser diodes the beam cross-section is a two dimensional distribution. It is well known that the focusing properties of large f/# Gaussian beams differ from the predictions of ray tracing techniques. Consequently analytic modeling of laser based bar code scanning systems requires techniques based on diffraction rather than on ray tracing in order to obtain agreement between theory and practice. The line spread function of the focused laser beam is generally the parameter of interest due to the one-dimensional nature of the bar code symbol. Some bar code scanners utilize an anamorphic optical system to produce a beam that that maintains an elliptical cross-section over an extended depth of focus. This elliptical beam shape is used to average over voids and other printing defects that occur in real world symbols. Since the scanner must operate over the maximum possible depth of field the beam emergent from the scanner must be analyzed in both its near field and far field regions in order to properly model the performance of the scanner.

  18. Image processing for grazing incidence fast atom diffraction

    Science.gov (United States)

    Debiossac, Maxime; Roncin, Philippe

    2016-09-01

    Grazing incidence fast atom diffraction (GIFAD, or FAD) has developed as a surface sensitive technique. Compared with thermal energies helium diffraction (TEAS or HAS), GIFAD is less sensitive to thermal decoherence but also more demanding in terms of surface coherence, the mean distance between defects. Such high quality surfaces can be obtained from freshly cleaved crystals or in a molecular beam epitaxy (MBE) chamber where a GIFAD setup has been installed allowing in situ operation. Based on recent publications by Atkinson et al. (2014) and Debiossac et al. (2014), the paper describes in detail the basic steps needed to measure the relative intensities of the diffraction spots. Care is taken to outline the underlying physical assumptions.

  19. A polarized atomic hydrogen beam

    International Nuclear Information System (INIS)

    We describe the design and operating characteristics of a simple polarized atomic hydrogen beam particularly suitable for applications to crossed beams experiments. In addition to experimental measurements, we present the results of detailed computer models, using Monte-Carlo ray tracing techniques, optical analogs, and phase-space methods, that not only provide us with a confirmation of our measurement, but also allow us to characterize the density, polarization, and atomic fraction of the beam at all points along its path. As a subsidiary result, we also present measurements of the relative and absolute efficiencies of the V/G Supavac mass analyzer for masses 1 and 2. (orig.)

  20. Design and fabrication of diffractive atom chips for laser cooling and trapping

    CERN Document Server

    Cotter, J P; Griffin, P F; Rabey, I M; Docherty, K; Riis, E; Arnold, A S; Hinds, E A

    2016-01-01

    It has recently been shown that optical reflection gratings fabricated directly into an atom chip provide a simple and effective way to trap and cool substantial clouds of atoms [1,2]. In this article we describe how the gratings are designed and micro-fabricated and we characterise their optical properties, which determine their effectiveness as a cold atom source. We use simple scalar diffraction theory to understand how the morphology of the gratings determines the power in the diffracted beams.

  1. Optical generation of non-diffracting beams via photorefractive holography

    CERN Document Server

    Vieira, Tarcio A; Gesualdi, Marcos R R; Zamboni-Rached, Michel

    2015-01-01

    This work presents, for the first time the optical generation of non-diffracting beams via photorefractive holography. Optical generation of non-diffracting beams using conventional optics components is difficult and, in some instances, unfeasible, as it is wave fields given by superposition of non-diffracting beams. It is known that computer generated holograms and spatial light modulators (SLMs) successfully generate such beams. With photorefractive holography technique, the hologram of a non-diffracting beam is constructed (recorded) and reconstructed (reading) optically in a nonlinear photorefractive medium. The experimental realization of a non-diffracting beam was made in a photorefractive holography setup using a photorefractive Bi12SiO20 (BSO) crystal as the holographic recording medium, where the non-diffracting beams, the Bessel beam arrays and superposition of co-propagating Bessel beams (Frozen Waves) were obtained experimentally. The experimental results are in agreement with the theoretically pr...

  2. Improved accuracy in nano beam electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Beche, A; Rouviere, J-L [CEA, INAC, SP2M, LEMMA, 17 rue des Martyrs, F-38054 Grenoble Cedex 9 (France); Clement, L, E-mail: armand.beche@cea.f, E-mail: jean-luc.rouviere@cea.f [ST Microelectronics, 850 rue Jean Monnet, F-38920 Crolles (France)

    2010-02-01

    Nano beam electron diffraction (NBD or NBED) is applied on a well controlled sample in order to evaluate the limit of the technique to measure strain. Measurements are realised on a 27nm thick Si{sub 0.7}Ge{sub 0.3} layer embedded in a silicon matrix, with a TITAN microscope working at 300kV. Using a standard condenser aperture of 50{mu}m, a probe size diameter of 2.7 nm is obtained and a strain accuracy of 6x10{sup -4} (mean root square, rms) is achieved. NBED patterns are acquired along a [110] direction and the bidimensionnal strain in the (110) plane is measured. Finite element simulations are carried out to check experimental results and reveal that strain relaxation and probe averaging in a 170nm thick TEM lamella reduces strain by 15%.

  3. Imaging an atomic beam using fluorescence

    Institute of Scientific and Technical Information of China (English)

    Ming He(何明); Jin Wang(王谨); Mingsheng Zhan(詹明生)

    2003-01-01

    A fluorescence detection scheme is applied to image an atomic beam. Using two laser diodes as the sources of detection light and pumping light respectively, the fluorescence image of the atomic beam is then observed by a commercial CCD-camera, which is corresponding to the atomic state and velocity distribution. The detection scheme has a great utilization in the experiments of cold atoms and atomic optics.

  4. Atoms in parallel fields: Analysis with diffractive periodic orbits

    Science.gov (United States)

    Owen, S. M.; Monteiro, T. S.; Dando, P. A.

    2000-11-01

    We show that fluctuations in the density of states of nonhydrogenic atoms in parallel fields are strongly influenced by diffractive periodic orbits. Unlike typical systems with a diffractive point scatterer, the atomic core of small atoms like lithium and helium is best understood as a combined geometric and diffractive scatterer. Each Gutzwiller (geometric) periodic orbit is paired with a diffractive orbit of the same action. We investigate, particularly, amplitudes for contributions from repetitions, and multiple scattering orbits. We find that periodic orbit repetitions are described by ``hybrid'' orbits, combining both diffractive and geometric core scatters, and that by including all possible permutations we can obtain excellent agreement between the semiclassical model and accurate fully quantal calculations. For high repetitions, we find even one-scatter diffractive contributions become of the same order as those of the geometric periodic orbit for repetition numbers n~ħ-1/2. Although the contribution of individual diffractive orbits is suppressed by O(ħ1/2) relative to the geometric periodic orbits, the proliferation of diffractive orbits with increasing period means that the diffractive effect for the atom can persist in the ħ-->0 limit.

  5. Extension of Friedel's law to Vortex Beam Diffraction

    CERN Document Server

    Juchtmans, Roeland; Verbeeck, Jo

    2016-01-01

    Friedel's law states that the modulus of the Fourier transform of real functions is centrosymmetric, while the phase is antisymmetric. As a consequence of this, elastic scattering of plane wave photons or electrons within the first-order Born-approximation as well as Fraunhofer diffraction on any aperture, is bound to result in centrosymmetric diffraction patterns. Friedel's law, however, does not apply for vortex beams, and centrosymmetry in general is not present in their diffraction patterns. In this work we extend Friedel's law for vortex beams by showing that the diffraction patterns of vortex beams with opposite topological charge, scattered on the same two dimensional potential, always are centrosymmetric to one another, regardless of the symmetry of the scattering object. We verify our statement by means of numerical simulations and experimental data. Our research provides deeper understanding in vortex beam diffraction and can be used to design new experiments to measure the topological charge of vor...

  6. Diffraction polychromatic focusing of synchrotron radiation beams

    International Nuclear Information System (INIS)

    The theory of dynamic X-ray diffraction in deformed crystals is constructed. This theory is developed on the basis of Maxwell and Neumann equations. The cases of dynamic X-ray diffraction for ideal and elastic-deformed crystals are considered. The set of equations for two-wave dynamic X-ray diffraction is obtained, which connects the tensor of the crystal polarizability with the tensor of the crystal deformation

  7. A cold 87Rb atomic beam

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Jia; Feng Yan-Ying; Xue Hong-Bo; Zhou Zhao-Ying; Zhang Wen-Dong

    2011-01-01

    We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms.The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap.Via a radiation pressure difference generated by a specially designed leak tunnel along one trapping laser beam,the atoms are pushed out continuously with low velocities and a high flux.The most-probable velocity in the beam is varied from 9 m/s to 19 m/s by varying the detuning of the trapping laser beams in the magneto-optical trap and the flux can be tuned up to 4× 109 s-1 by increasing the intensity of the trapping beams.We also present a simple model for describing the dependence of the beam performance on the magneto-optical trap trapping laser intensity and the detuning.

  8. Novel Atomic Mirror with a Blue-Detuned Semi-Gaussian Beam

    Institute of Scientific and Technical Information of China (English)

    郑萍; 高伟建; 印建平

    2003-01-01

    A novel and simple atomic mirror composed of a blue-detuned semi-Gaussian beam is proposed. From the Fresnel diffraction theory, the intensity distributions of a collimated GaUssian laser beam diffracted by the straight edge of a semi-infinite opaque plate are studied. The optical potential of the semi-Gaussian beam for 85 Rb atoms and its spontaneous emission probability are calculated and compared with the performance of the evanescent-wave mirror. Our study shows that the blue-detuned semi-Gaussian beam, as a novel atomic mirror, can be used to reflect atomic beam efliciently, and under the same beam parameters and lower normal atomic velocity, the performance of the semi-Gaussian-beam mirror is better than that of the evanescent-wave mirror.

  9. Tailoring non-diffractive beams from amorphous light speckles

    Science.gov (United States)

    Di Battista, D.; Ancora, D.; Leonetti, M.; Zacharakis, G.

    2016-09-01

    Bessel beams are non-diffracting light structures, which maintain their spatial features after meters of propagation and are realized with simple optical elements such as axicon lenses, spatial filters, and lasers. In this paper, we demonstrate a method for generating non diffractive Bessel-like beams through a heavily scattering system, exploiting wavefronts shaped by a spatial light modulator. With the proposed method starting from amorphous speckle patterns, it is possible to produce at user defined positions configurable and non-diffracting light distributions which can improve depth-of-field in speckled illumination microscopy.

  10. Suppressing Ghost Diffraction in E-Beam-Written Gratings

    Science.gov (United States)

    Wilson, Daniel; Backlund, Johan

    2009-01-01

    A modified scheme for electron-beam (E-beam) writing used in the fabrication of convex or concave diffraction gratings makes it possible to suppress the ghost diffraction heretofore exhibited by such gratings. Ghost diffraction is a spurious component of diffraction caused by a spurious component of grating periodicity as described below. The ghost diffraction orders appear between the main diffraction orders and are typically more intense than is the diffuse scattering from the grating. At such high intensity, ghost diffraction is the dominant source of degradation of grating performance. The pattern of a convex or concave grating is established by electron-beam writing in a resist material coating a substrate that has the desired convex or concave shape. Unfortunately, as a result of the characteristics of electrostatic deflectors used to control the electron beam, it is possible to expose only a small field - typically between 0.5 and 1.0 mm wide - at a given fixed position of the electron gun relative to the substrate. To make a grating larger than the field size, it is necessary to move the substrate to make it possible to write fields centered at different positions, so that the larger area is synthesized by "stitching" the exposed fields.

  11. Manipulation and analysis of atomic and molecular beams using transmission gratings and Fresnel zone plates

    Energy Technology Data Exchange (ETDEWEB)

    Grisenti, R.E.

    2000-06-01

    In this thesis experimental results on the diffraction of rare gas atoms (He, Ne, Ar, Kr) and molecular (D{sub 2}) beams by a 100 nm period transmission grating and on the focusing of a helium atom beam through a Fresnel zone plate have been reported. (orig.)

  12. Atomic scattering from an adsorbed monolayer solid with a helium beam that penetrates to the substrate

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, L.W.; Dammann, Bernd

    2013-01-01

    Diffraction and one-phonon inelastic scattering of a thermal energy helium atomic beam are evaluated in the situation that the target monolayer lattice is so dilated that the atomic beam penetrates to the interlayer region between the monolayer and the substrate. The scattering is simulated...

  13. Atomic scattering from an adsorbed monolayer solid with a helium beam that penetrates to the substrate

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, L.W.; Dammann, Bernd

    2013-01-01

    Diffraction and one-phonon inelastic scattering of a thermal energy helium atomic beam are evaluated in the situation that the target monolayer lattice is so dilated that the atomic beam penetrates to the interlayer region between the monolayer and the substrate. The scattering is simulated by...

  14. Gaussian beam diffraction in inhomogeneous and logarithmically saturable nonlinear media

    Science.gov (United States)

    Berczynski, Pawel

    2012-08-01

    The method of paraxial complex geometrical optics (PCGO) is presented, which describes Gaussian beam (GB) diffraction and self-focusing in smoothly inhomogeneous and nonlinear saturable media of cylindrical symmetry. PCGO reduces the problem of Gaussian beam diffraction in nonlinear and inhomogeneous media to the system of the first order ordinary differential equations for the complex curvature of the wave front and for GB amplitude, which can be readily solved both analytically and numerically. As a result, PCGO radically simplifies the description of Gaussian beam diffraction in inhomogeneous and nonlinear media as compared to the numerical and analytical methods of nonlinear optics. The power of PCGO method is presented on the example of Gaussian beam evolution in logarithmically saturable medium with either focusing and defocusing refractive profile. Besides, the influence of initial curvature of the wave front on GB evolution in nonlinear saturable medium is discussed in this paper.

  15. Diffraction grating characterisation for cold-atom experiments

    CERN Document Server

    McGilligan, James P; Riis, Erling; Arnold, Aidan S

    2016-01-01

    We have studied the optical properties of gratings micro-fabricated into semiconductor wafers, which can be used for simplifying cold-atom experiments. The study entailed characterisation of diffraction efficiency as a function of coating, periodicity, duty cycle and geometry using over 100 distinct gratings. The critical parameters of experimental use, such as diffraction angle and wavelength are also discussed, with an outlook to achieving optimal ultracold experimental conditions.

  16. Proposal for a magneto-optical beam splitter for atoms

    OpenAIRE

    Pfau, Tilman; Adams, Charles S.; Mlynek, Jürgen

    1993-01-01

    In this letter we present a theoretical study of the coherent diffraction of three-level atoms from a light field with a polarization gradient (counterpropagating crossed linearly polarized beams) and a static magnetic field applied parallel to the laser propagation direction. We show that for a particular ratio of the laser field intensity and the magnetic-field strength, there occurs a resonance between the Larmor precession of the magnetic alignment and the Rabi oscillations. On resonance ...

  17. Polar POLICRYPS Diffractive Structures Generate Cylindrical Vector Beams

    CERN Document Server

    Alj, Domenico; Volpe, Giovanni; Caputo, Roberto; Umeton, Cesare

    2015-01-01

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such device that permits one to convert a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.

  18. Polar POLICRYPS diffractive structures generate cylindrical vector beams

    Energy Technology Data Exchange (ETDEWEB)

    Alj, Domenico; Caputo, Roberto, E-mail: roberto.caputo@fis.unical.it; Umeton, Cesare [Department of Physics and CNR-NANOTEC University of Calabria, I-87036 Rende (CS) (Italy); Paladugu, Sathyanarayana [Soft Matter Lab, Department of Physics, Bilkent University, Ankara 06800 (Turkey); Volpe, Giovanni [Soft Matter Lab, Department of Physics, Bilkent University, Ankara 06800 (Turkey); UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey)

    2015-11-16

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.

  19. Radio frequency atomic hydrogen beam source

    International Nuclear Information System (INIS)

    A simple, convenient rf discharge source for the production of an intense beam of hydrogen atoms is described. The design and operation is such that the discharge tube can be operated over a period of several thousand hours, producing an intense beam with dissociation approx.95%

  20. Beam characteristics of polychromatic diffracted neutrons used for prompt gamma activation analysis

    International Nuclear Information System (INIS)

    The neutron beam is fully characterized for the prompt gamma activation analysis facility at Hanaro in the Korea Atomic Energy Research Institute(KAERI). The facility uses thermal neutrons which are diffracted vertically from a horizontal beam port by a set of pyrolytic graphite(PG) crystals positioned at the Bragg angle of 45 .deg.. Neutron spectra, neutron flux and Cd-ratio are determined for the three extraction modes of diffracted beam by means of the theoretical and experimental efforts. To obtain theoretical result, the reflectivity of pyrolytic graphite is calculated in the diffraction model for mosaic crystal and the angular divergence after diffraction by mosaic crystal is estimated from Monte Carlo simulation. The time-of-flight spectrometer and gold activation wire are used for measuring the neutron spectra. Both the calculated and measured spectra have proven that the unique feature of polychromatic beam obtained by PG crystals are useful for PGAA. The thermal neutron flux of 7.9 x 107 n/cm2s and the Cd-ratio of 266 for gold have been achieved at the sample position while the reactor operates at 24MW. The uniformity of beam flux is 12% in the central 1 x 1 cm2 area. Finally, the beam is briefly characterized by the effective velocity and temperature which are determined by measuring the prompt γ-ray spectra for thin and thick boron samples

  1. Gaussian beam diffraction in weakly anisotropic inhomogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Yu.A., E-mail: kravtsov@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland); Space Research Institute, Russian Academy of Science, Moscow 117 997 (Russian Federation); Berczynski, P., E-mail: pawel.berczynski@ps.p [Institute of Physics, West Pomeranian University of Technology, Szczecin 70-310 (Poland); Bieg, B., E-mail: b.bieg@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland)

    2009-08-10

    Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.

  2. Gaussian beam diffraction in weakly anisotropic inhomogeneous media

    International Nuclear Information System (INIS)

    Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.

  3. Gaussian beam diffraction in weakly anisotropic inhomogeneous media

    Science.gov (United States)

    Kravtsov, Yu. A.; Berczynski, P.; Bieg, B.

    2009-08-01

    Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.

  4. Non-diffracting speckles of a perfect vortex beam

    Science.gov (United States)

    Gangi Reddy, Salla; P, Chithrabhanu; Vaity, Pravin; Aadhi, A.; Prabhakar, Shashi; Singh, R. P.

    2016-05-01

    We generate perfect optical vortex (POV) beams, whose intensity distribution is independent of the order, and scatter them through a rough surface. We show that the size of produced speckles is independent of the order of the POV and their Fourier transform gives the random non-diffracting fields. The invariant size of speckles over the free space propagation verifies their non-diffracting or non-diverging nature. The size of speckles can be easily controlled by changing the axicon parameter, used to generate the Bessel-Gauss beams whose Fourier transform provides the POV. These results may be useful in applications of POV for authentication in cryptography.

  5. Diffractive beam parameters of LP01 mode of fiber

    Institute of Scientific and Technical Information of China (English)

    Lianhuang Li; Fuyuan Guo

    2009-01-01

    The diffractive beam parameters of LP01 mode of fiber are analyzed in detail. Based on solving linear equations, two formulas for two kinds of mode-field radii as functions of normalized frequency are presented, and relations between angular radius of far-field divergence, beam propagation factor, and normalized frequency are given. Numerical calculation indicates that the maximal relative error is smaller than 1% within a reasonable parameter range.

  6. Laser beam characteristic for laser resonators with diffraction optical elements

    Institute of Scientific and Technical Information of China (English)

    Xuanhui Lu(陆璇辉); Kaikai Huang(黄凯凯); Dajian Xue(薛大建); Lei Zhang(张蕾); Sailing He(何赛灵)

    2003-01-01

    The matrix eigenvalue method is used to analyze a laser resonator composed of diffraction optical ele-ments. The results show that this type of resonator can separate fundamental mode and high order modeseffectively. The output beams can be designed for different requests.

  7. Controlling the Multiport Nature of Bragg Diffraction in Atom Interferometry

    CERN Document Server

    Parker, Richard H; Estey, Brian; Zhong, Weicheng; Huang, Eric; Müller, Holger

    2016-01-01

    Bragg diffraction has been used in atom interferometers because it allows signal enhancement through multiphoton momentum transfer and suppression of systematics by not changing the internal state of atoms. Its multi-port nature, however, can lead to parasitic interferometers, allows for intensity-dependent phase shifts in the primary interferometers, and distorts the ellipses used for phase extraction. We study and suppress these unwanted effects. Specifically, phase extraction by ellipse fitting and the resulting systematic phase shifts are calculated by Monte Carlo simulations. Phase shifts arising from the thermal motion of the atoms are controlled by spatial selection of atoms and an appropriate choice of Bragg intensity. In these simulations, we found that Gaussian Bragg pulse shapes yield the smallest systematic shifts. Parasitic interferometers are suppressed by a "magic" Bragg pulse duration. The sensitivity of the apparatus was improved by the addition of AC Stark shift compensation, which permits d...

  8. Relativistic atomic beam spectroscopy II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    We are requesting support for a postdoctoral person to participate in H{sup -} studies at Los Alamos. In addition, we are requesting funding for a state-of-the-art YAG laser system that would allow us to obtain data at three times our present rate with improved beam quality.

  9. 4D nanoscale diffraction observed by convergent-beam ultrafast electron microscopy.

    Science.gov (United States)

    Yurtsever, Aycan; Zewail, Ahmed H

    2009-10-30

    Diffraction with focused electron probes is among the most powerful tools for the study of time-averaged nanoscale structures in condensed matter. Here, we report four-dimensional (4D) nanoscale diffraction, probing specific site dynamics with 10 orders of magnitude improvement in time resolution, in convergent-beam ultrafast electron microscopy (CB-UEM). As an application, we measured the change of diffraction intensities in laser-heated crystalline silicon as a function of time and fluence. The structural dynamics (change in 7.3 +/- 3.5 picoseconds), the temperatures (up to 366 kelvin), and the amplitudes of atomic vibrations (up to 0.084 angstroms) are determined for atoms strictly localized within the confined probe area (10 to 300 nanometers in diameter). We anticipate a broad range of applications for CB-UEM and its variants, especially in the studies of single particles and heterogeneous structures. PMID:19900928

  10. Ultrafast Electron Diffraction with Spatiotemporal Resolution of Atomic Motion

    Institute of Scientific and Technical Information of China (English)

    LIANG Wen-Xi; ZHU Peng-Fei; WANG Xuan; NIE Shou-Hua; ZHANG Zhong-Chao; Clinite Rick; CAO Jian-Ming; SHENG Zheng-Ming; ZHANG Jie

    2009-01-01

    Ultrafast electron diffraction (UED) is a rapidly advancing technique capable of recording the atomic-detail structural dynamics in real time. We report the establishment of the first UED system in China. Employing this UED apparatus, both the coherent and the concurrent thermal lattice motions in an aluminium thin-film, trigged by ultrafast laser heating, have been observed. These results demonstrate its ability to directly measure a sub-milli-angstrom lattice spacing change on a sub-picosecond time scale.

  11. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.

  12. Amplitude and phase characterization by diffracted beam interferometry: blind dbi

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Lago, E; Gonzalez Nunez, H; De la Fuente, R, E-mail: elena.lopez.lago@usc.es [Departamento de Fisica Aplicada, Escuela Universitaria de Optica y Optometria, Campus Vida, Universidade of Santiago de Compostela, E-15782 Santiago de Compostela, Galicia (Spain)

    2011-01-01

    Diffracted beam interferometry is a self referenced method characterization technique whose operation principle is based on the reconstruction of the phase of a beam starting from the interference data between the beam and its diffracted copy. The phase is recovered indirectly by means of an iterative algorithm that relates the irradiances of the interfering beams and its phase difference. The first experimental demonstration of DBI was implemented on a Mach-Zehnder interferometer which incorporated an afocal imaging system in each arm, in order to form an image of a common object in different planes at the output of the interferometer. The irradiance data as well as the phase difference data were picked up from one of the image planes and they were introduced in the iterative algorithm. In this work we discuss a modification of the algorithm that allows to reconstruct simultaneously the amplitude and phase of the wavefront starting from, exclusively, the phase difference between the two waves that interfere in one of the image planes. This new algorithm improves the reconstruction process because the data acquisition process is faster and consequently the method is less influenced by environment disturbances. The method has been applied successfully to the characterization of phase plates and laser beams as well as to the local characterization of ophthalmic lenses.

  13. Diffractive beam shaping for enhanced laser polymer welding

    Science.gov (United States)

    Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.

    2015-03-01

    Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.

  14. Quasi-crystals Studied with Convergent Beam Electron Diffraction

    NARCIS (Netherlands)

    Last, S.; Bronsveld, P.M.; Boom, G.; Hosson, J.Th.M. De

    1988-01-01

    Chill-cast Al6CuLi3 was studied together with roller-quenched Al4Mn and melt-spun Al7Mn2. With convergent beam electron diffraction it was established that Al6CuLi3 and Al4Mn exhibited a pentagon as the dominant Kikuchi band pattern while Al7Mn2 showed a decagon. The quasi-crystalline m3¯5¯ and the

  15. Many-beam dynamical simulation of electron backscatter diffraction patterns

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, Aimo [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany)], E-mail: winkelm@mpi-halle.mpg.de; Trager-Cowan, Carol; Sweeney, Francis [Department of Physics, University of Strathclyde, Glasgow G4 ONG, Scotland (United Kingdom); Day, Austin P. [Aunt Daisy Scientific Ltd., Dixton Rd., Monmouth, Gwent, NP25 3PP (United Kingdom); Parbrook, Peter [EPSRC National Centre for III-V Technologies, University of Sheffield (United Kingdom)

    2007-04-15

    We present an approach for the simulation of complete electron backscatter diffraction (EBSD) patterns where the relative intensity distributions in the patterns are accurately reproduced. The Bloch wave theory is applied to describe the electron diffraction process. For the simulation of experimental patterns with a large field of view, a large number of reflecting planes has to be taken into account. This is made possible by the Bethe perturbation of weak reflections. Very good agreement is obtained for simulated and experimental patterns of gallium nitride GaN{l_brace}0001{r_brace} at 20 kV electron energy. Experimental features like zone-axis fine structure and higher-order Laue zone rings are accurately reproduced. We discuss the influence of the diffraction of the incident beam in our experiment.

  16. On the Angular Width of Diffractive Beam in Anisotropic Media

    CERN Document Server

    Lock, Edwin H

    2011-01-01

    2-D diffraction patterns arising in the far-field region were investigated theoretically for the case, when the plane wave with non collinear group and phase velocities is incident on the wide slit in opaque screen with arbitrary orientation. This investigation was carried out by consideration as an example of magnetostatic surface wave diffraction in tangentially magnetized ferrite slab. It was deduced the universal analytical formula, which one can use to calculate the angular width of diffractive beam in any 2-D anisotropic geometries for the waves of various nature. It was shown, that in 2-D anisotropic geometries this width may be not only more or less then the value L/D (L - wavelength of incident wave, D - length of slit), but it also may be equal to zero in certain conditions.

  17. Many-beam dynamical simulation of electron backscatter diffraction patterns.

    Science.gov (United States)

    Winkelmann, Aimo; Trager-Cowan, Carol; Sweeney, Francis; Day, Austin P; Parbrook, Peter

    2007-01-01

    We present an approach for the simulation of complete electron backscatter diffraction (EBSD) patterns where the relative intensity distributions in the patterns are accurately reproduced. The Bloch wave theory is applied to describe the electron diffraction process. For the simulation of experimental patterns with a large field of view, a large number of reflecting planes has to be taken into account. This is made possible by the Bethe perturbation of weak reflections. Very good agreement is obtained for simulated and experimental patterns of gallium nitride GaN{0001} at 20kV electron energy. Experimental features like zone-axis fine structure and higher-order Laue zone rings are accurately reproduced. We discuss the influence of the diffraction of the incident beam in our experiment. PMID:17126489

  18. Beam transit effects in single molecule coherent diffraction.

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J. M.; Treacy, M. M. J.; Office of The Director - Scientific User Facilitites; Arizona State Univ.

    2008-01-01

    We explore how phase and amplitude gradients, which are almost inevitable in a coherent illumination probe, affect the atomic reconstruction of an isolated molecule based on diffraction intensities. By modeling the probe as a defocused Gaussian source, we show that structural distortion can be introduced in the reconstructed object if plane-wave illumination is assumed in the diffraction phase-retrieval algorithm. For the plane-wave approximation, we conclude that the standard deviation {delta}{sub d} describing the source width should be such that {delta}{sub d} {approx} 10R{sub c}, where R{sub c} is the nominal radius of the molecule. In a pulsed source, where diffraction data are obtained when the moving molecule is at an instantaneous location within the illumination window, the effects of wave front curvature can be reduced by defocusing the illumination. This improvement comes at the expense of a weaker diffraction signal. For the three-dimensional reconstruction of a molecule, diffraction patterns from many different orientations of identical molecules are required. Since phase-retrieval methods are inherently solving for the probe plus the molecule, irreproducibility of wave front curvature or molecule location within the probe will introduce additional degrees of freedom to the structure solution problem.

  19. A new atomic beam source: The ''candlestick''

    Science.gov (United States)

    Hau, Lene Vestergaard; Golovchenko, J. A.; Burns, Michael M.

    1994-12-01

    The design of a novel-type of atomic beam source which provides for long term, stable operation at high emission rates is reported. The heart of the design is the ``candlestick'' where liquid source material is transported by capillary action to a localized hot emission region. A surrounding cavity kept at the melting point for the source material shields the vacuum chamber walls from this region. The atomic beam escaping from the source is collimated, and uncollimated atoms are transported back to the liquid reservoir at the bottom of the ``candlestick'' by capillary action. This design has advantages over traditional oven designs: localized heating provides for large emission rates under high vacuum conditions, collimation is combined with recycling and conservation of source material, and the use of capillarity allows any orientation of the beam source. The source has been tested with sodium, and we believe that the design is useful for a broad range of applications including thin-film evaporation, molecular beam epitaxy, and semiconductor surface doping. With the low thermal mass of the emission section, the source could be optimized for pulsed mode operation. Furthermore, it is anticipated that the design ideas presented here could form the basis for a supersonic source with very high Mach numbers.

  20. Ion beam polishing for three-dimensional electron backscattered diffraction

    DEFF Research Database (Denmark)

    Saowadee, Nath; Agersted, Karsten; Ubhi, H.S.;

    2013-01-01

    Serial sectioning by focused ion beam milling for three-dimensional electron backscatter diffraction (3D-EBSD) can create surface damage and amorphization in certain materials and consequently reduce the EBSD signal quality. Poor EBSD signal causes longer data acquisition time due to signal...... averaging and/or poor 3D-EBSD data quality. In this work a low kV focused ion beam was successfully implemented to automatically polish surfaces during 3D-EBSD of La- and Nb-doped strontium titanate of volume 12.6 × 12.6 × 3.0 μm. The key to achieving this technique is the combination of a defocused low k......V high current ion beam and line scan milling. The line scan was used to restrict polishing to the sample surface and the ion beam was defocused to ensure the beam contacted the complete sample surface. In this study 1 min polishing time per slice increases total acquisition time by approximately 3...

  1. High sensitivity, low-systematics atom interferometers using Bragg diffraction and Bloch oscillations

    CERN Document Server

    Estey, Brian; Müller, Holger; Kuan, Pei-Chen; Lan, Shau-Yu

    2014-01-01

    We describe a new scheme for atom interferometry based on both large-momentum transfer Bragg beam splitters and Bloch oscillations. Combining the advantages of previous approaches to recoil-sensitive interferometers, we increase the signal and suppress a systematic phase shift caused by Bragg diffraction at least 60-fold, matching experiment to theory; the systematic shift can be eliminated from Mach-Zehnder interferometers. We demonstrate high contrast, interference with up to 4.4 million radians of phase difference between freely evolving matter waves, and a resolution of $\\delta \\alpha/\\alpha=0.33\\,$ppb$\\sqrt{\\rm 6h}$ available to measurements of the fine structure constant.

  2. Universal diffraction of atoms and molecules from a quantum reflection grating.

    Science.gov (United States)

    Zhao, Bum Suk; Zhang, Weiqing; Schöllkopf, Wieland

    2016-03-01

    Since de Broglie's work on the wave nature of particles, various optical phenomena have been observed with matter waves of atoms and molecules. However, the analogy between classical and atom/molecule optics is not exact because of different dispersion relations. In addition, according to de Broglie's formula, different combinations of particle mass and velocity can give the same de Broglie wavelength. As a result, even for identical wavelengths, different molecular properties such as electric polarizabilities, Casimir-Polder forces, and dissociation energies modify (and potentially suppress) the resulting matter-wave optical phenomena such as diffraction intensities or interference effects. We report on the universal behavior observed in matter-wave diffraction of He atoms and He2 and D2 molecules from a ruled grating. Clear evidence for emerging beam resonances is observed in the diffraction patterns, which are quantitatively the same for all three particles and only depend on the de Broglie wavelength. A model, combining secondary scattering and quantum reflection, permits us to trace the observed universal behavior back to the peculiar principles of quantum reflection. PMID:27034979

  3. Optimization of a constrained linear monochromator design for neutral atom beams.

    Science.gov (United States)

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam.

  4. Effect of Electron Beam Orientation on Exit Wave Function via Simulation of Electron Dynamic Diffraction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the electron dynamic diffraction, phase shift of the exit wave function vs misorientation of the incident electron beam from the exact zone axis has been calculated for the [001] oriented copper. The result shows that the peak of phase shift is the maximum at the atom position as the electron beam along the exact [001] zone axis, and the peak value of phase shift decreases as increases of the misorientation. At small misorientation, i.e. less than 5 degree, change of the phase shift is minimal. The peak value of phase shift decreases significantly when the incident beam deviates form the zone axis over 10 degree and the exit wave has a planar configuration as the misoriention angle arrives ~17 degree. The effect of this phase shift characteristics on the information extracted from the hologram has also been considered.

  5. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms

    International Nuclear Information System (INIS)

    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable 3P2 state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam (3P2). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms

  6. Implementation of ordinary and extraordinary beams interference by application of diffractive optical elements

    Science.gov (United States)

    Khonina, S. N.; Karpeev, S. V.; Morozov, A. A.; Paranin, V. D.

    2016-07-01

    We apply diffractive optical elements in problems of transformation of Bessel beams in a birefringent crystal. Using plane waves expansion we show a significant interference between the ordinary and extraordinary beams due to the energy transfer in the orthogonal transverse components in the nonparaxial mode. A comparative analysis of the merits and lack of diffractive and refractive axicons in problems of formation non-paraxial Bessel beams has shown the preferability of diffractive optics application in crystal optics. The transformation of uniformly polarised Bessel beams in the crystal of Iceland spar in the nonparaxial mode by application of a diffractive axicon is investigated numerically and experimentally.

  7. Measuring the quantum statistics of an atom laser beam

    OpenAIRE

    Bradley, A. S.; Olsen, M. K.; Haine, S. A.; Hope, J. J.

    2006-01-01

    We propose and analyse a scheme for measuring the quadrature statistics of an atom laser beam using extant optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling scheme is used to map the quantum statistics of an incoupled beam to an optical probe beam. A multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, ...

  8. Wave mechanics of a two-wire atomic beam splitter

    International Nuclear Information System (INIS)

    We consider the problem of an atomic beam propagating quantum mechanically through an atom beam splitter. Casting the problem in an adiabatic representation (in the spirit of the Born-Oppenheimer approximation in molecular physics) sheds light on explicit effects due to nonadiabatic passage of the atoms through the splitter region. We are thus able to probe the fully three-dimensional structure of the beam splitter, gathering quantitative information about mode mixing, splitting ratios, and reflection and transmission probabilities

  9. ATOMIC BEAM STUDIES IN THE RHIC H-JET POLARIMETER.

    Energy Technology Data Exchange (ETDEWEB)

    MAKDISI,Y.; ZELENSKI,A.; GRAHAM,D.; KOKHANOVSKI,S.; MAHLER,G.; NASS,A.; RITTER,J.; ZUBETS,V.; ET AL.

    2005-01-28

    The results of atomic beam production studies are presented. Improved cooling of the atoms before jet formation in the dissociator cold nozzle apparently reduces the atomic beam velocity spread and improves beam focusing conditions. A carefully designed sextupole separating (and focusing) magnet system takes advantage of the high brightness source. As a result a record beam intensity of a 12.4 {center_dot} 10{sup 16} atoms/s was obtained within 10 mm acceptance at the collision point. The results of the polarization dilution factor measurements (by the hydrogen molecules at the collision point) are also presented.

  10. Acoustic (Ultrasonic) Non-Diffracting Beams: Some theory, and Proposals of Acoustic Antennas for several purposes

    CERN Document Server

    Zamboni-Rached, Michel

    2014-01-01

    On the basis of suitable theoretical grounds, we study and propose Antennas for the generation, in Acoustics, of Non-Diffracting Beams of ultrasound. We start considering for instance a frequency of about 40 kHz, and foresee fair results even for finite apertures endowed with reasonable diameters (e.g., of 1 m), having in mind various possible applications, including remote sensing. Then, we discuss the production in lossy media of ultrasonic beams resisting both diffraction and attenuation. Everything is afterward investigated for the cases in which high-power acoustic transducers are needed (for instance, for detection at a distance -or even explosion- of buried objects, like mines). Keywords: Acoustic Non-Diffracting Beams; Truncated Beams of Ultrasound; Remote sensing; Diffraction, Attenuation, Annular transducers, Bessel beam superposition, High-power ultrasound emitters, Beams resisting diffraction and attenuation, Acoustic Frozen Waves, Detection of buried objects, Explosion of Mines at a distance

  11. Theoretical analysis of a collimated hollow-laser-beam generated by a single axicon using diffraction integral

    Institute of Scientific and Technical Information of China (English)

    Yong Qian(钱勇); Yuzhu Wang(王育竹)

    2004-01-01

    A novel method to generate a collimated hollow-laser-beam (HLB) by only a single axicon is proposed. With some reasonable assumptions, the radial light intensity distribution is calculated in detail by diffraction integral theory. The result of numerical simulation shows that this method is valid. Compared with other methods of generating HLB, this scheme is extraordinarily simple in principle and can be utilized experimentally to construct a light trap in atomic fountain for convenience.

  12. Dual-Beam Atom Laser Driven by Spinor Dynamics

    Science.gov (United States)

    Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Aveline, David

    2007-01-01

    An atom laser now undergoing development simultaneously generates two pulsed beams of correlated Rb-87 atoms. (An atom laser is a source of atoms in beams characterized by coherent matter waves, analogous to a conventional laser, which is a source of coherent light waves.) The pumping mechanism of this atom laser is based on spinor dynamics in a Bose-Einstein condensate. By virtue of the angular-momentum conserving collisions that generate the two beams, the number of atoms in one beam is correlated with the number of atoms in the other beam. Such correlations are intimately linked to entanglement and squeezing in atomic ensembles, and atom lasers like this one could be used in exploring related aspects of Bose-Einstein condensates, and as components of future sensors relying on atom interferometry. In this atom-laser apparatus, a Bose-Einstein condensate of about 2 x 10(exp 6) Rb-87 atoms at a temperature of about 120 micro-K is first formed through all-optical means in a relatively weak singlebeam running-wave dipole trap that has been formed by focusing of a CO2-laser beam. By a technique that is established in the art, the trap is loaded from an ultrahigh-vacuum magnetooptical trap that is, itself, loaded via a cold atomic beam from an upstream two-dimensional magneto-optical trap that resides in a rubidium-vapor cell that is differentially pumped from an adjoining vacuum chamber, wherein are performed scientific observations of the beams ultimately generated by the atom laser.

  13. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    Science.gov (United States)

    Tsusaka, Y.; Takeda, S.; Takano, H.; Yokoyama, K.; Kagoshima, Y.; Matsui, J.

    2016-02-01

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector of each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 105 cm-2.

  14. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H. [Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Hyogo 678-1297 (Japan); Takeda, S. [SPring-8 Service Co., Ltd., 1-20-5, Kouto, Shingu, Tatsuno, Hyogo 679-5165 (Japan); Yokoyama, K.; Matsui, J. [Synchrotron Radiation Nanotechnology Center, University of Hyogo, 1-490-2, Kouto, Shingu, Tatsuno, Hyogo 679-5165 (Japan); Kagoshima, Y. [Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Hyogo 678-1297 (Japan); Synchrotron Radiation Nanotechnology Center, University of Hyogo, 1-490-2, Kouto, Shingu, Tatsuno, Hyogo 679-5165 (Japan)

    2016-02-15

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector of each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.

  15. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    International Nuclear Information System (INIS)

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector of each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 105 cm−2

  16. Feshbach-resonance-induced atomic filamentation and quantum pair correlation in atom-laser-beam propagation

    OpenAIRE

    Zhang, Weiping; Search, Chris P.; Pu, Han; Meystre, Pierre; Wright, Ewan M.

    2002-01-01

    We study the propagation of an atom laser beam through a spatial region with a magnetic field tuned to a Feshbach resonance. Tuning the magnetic field below the resonance produces an effective focusing Kerr medium that causes a modulational instability of the atomic beam. Under appropriate circumstances, this results in beam breakup and filamentation seeded by quasi-particle fluctuations, and in the generation of correlated atomic pairs.

  17. Atomic structure of the SbCu surface alloy: A surface X-ray diffraction study

    DEFF Research Database (Denmark)

    Meunier, I.; Gay, J.M.; Lapena, L.;

    1999-01-01

    -ray diffraction (SXRD). The best agreement is obtained for a Cu,Sb surface layer with Sb atoms substituting 1/3 of the Cu atoms, over an essentially unperturbed Cu(111) plane. The largest relaxation is undergone by the Sb atoms which rise by 0.32+0.02 Angstrom over the mean plane of its Cu neighbours...

  18. Coherent convergent-beam time-resolved X-ray diffraction

    OpenAIRE

    Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng

    2014-01-01

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic ...

  19. Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles

    DEFF Research Database (Denmark)

    García Ortíz, César Eduardo; Coello, Victor; Han, Zhanghua;

    2013-01-01

    We demonstrate experimentally generation of diffraction-free plasmonic beams with zeroth- and first-order Bessel intensity profiles using axicon-like structures fabricated on gold film surfaces and designed to operate at a wavelength of 700nm. The central beam features a very low divergence (∼8π...... mrad) for a narrow waist of the order of one wavelength and the ability to self reconstruct, which are the main signatures of diffraction-free beams...

  20. Prompt gamma activation analysis of boron in reference materials using diffracted polychromatic neutron beam

    International Nuclear Information System (INIS)

    Boron concentrations were analyzed for standard reference materials by prompt gamma activation analysis (PGAA). The measurements were performed at the SNU-KAERI PGAA facility installed at Hanaro, the research reactor of Korea Atomic Energy Research Institute (KAERI). The facility uses a diffracted polychromatic beam with a neutron flux of 7.9 x 107 n/cm2 s. Elemental sensitivity for boron was calibrated from the prompt gamma-ray spectra of boric acid samples containing 2-45 μg boron. The sensitivity of 2131 cps/mg-B was obtained from the linearity of the boron peak count rate versus the boron mass. The detection limit for boron was estimated to be 67 ng from an empty sample bag spectrum for a counting time of 10,000 s. The measured boron concentrations for standard reference materials showed good consistency with the certified or information values

  1. Prompt gamma activation analysis of boron in reference materials using diffracted polychromatic neutron beam

    Science.gov (United States)

    Byun, S. H.; Sun, G. M.; Choi, H. D.

    2004-01-01

    Boron concentrations were analyzed for standard reference materials by prompt gamma activation analysis (PGAA). The measurements were performed at the SNU-KAERI PGAA facility installed at Hanaro, the research reactor of Korea Atomic Energy Research Institute (KAERI). The facility uses a diffracted polychromatic beam with a neutron flux of 7.9 × 10 7 n/cm 2 s. Elemental sensitivity for boron was calibrated from the prompt gamma-ray spectra of boric acid samples containing 2-45 μg boron. The sensitivity of 2131 cps/mg-B was obtained from the linearity of the boron peak count rate versus the boron mass. The detection limit for boron was estimated to be 67 ng from an empty sample bag spectrum for a counting time of 10,000 s. The measured boron concentrations for standard reference materials showed good consistency with the certified or information values.

  2. Strain mapping at nanometer resolution using advanced nano-beam electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ozdol, V. B.; Ercius, P.; Ophus, C.; Ciston, J. [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Gammer, C., E-mail: christoph.gammer@univie.ac.at, E-mail: aminor@lbl.gov [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, 1090 Vienna (Austria); Jin, X. G. [Institute for Advanced Research, Nagoya University, Nagoya 464-8603 (Japan); Minor, A. M., E-mail: christoph.gammer@univie.ac.at, E-mail: aminor@lbl.gov [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States)

    2015-06-22

    We report on the development of a nanometer scale strain mapping technique by means of scanning nano-beam electron diffraction. Only recently possible due to fast acquisition with a direct electron detector, this technique allows for strain mapping with a high precision of 0.1% at a lateral resolution of 1 nm for a large field of view reaching up to 1 μm. We demonstrate its application to a technologically relevant strain-engineered GaAs/GaAsP hetero-structure and show that the method can even be applied to highly defected regions with substantial changes in local crystal orientation. Strain maps derived from atomically resolved scanning transmission electron microscopy images were used to validate the accuracy, precision and resolution of this versatile technique.

  3. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter.

    Science.gov (United States)

    Khonina, Svetlana N; Karpeev, Sergey V; Alferov, Sergey V

    2012-06-15

    We propose a new approach to generating a pair of initial beams for a polarization converter that operates by summing up two opposite-sign circularly polarized beams. The conjugated pairs of vortex beams matched with laser modes are generated using binary diffractive optical elements (DOEs). The same binary element simultaneously serves two functions: a beam shaper and a beam splitter. Two proposed optical arrangements are compared in terms of alignment complexity and energy efficiency. The DOEs in question have been designed and fabricated. Natural experiments that demonstrate the generation of vector higher-order cylindrical beams have been conducted. PMID:22739916

  4. Production of Dynamic Frozen Waves: Controlling shape, location (and speed) of diffraction-resistant beams

    CERN Document Server

    Vieira, Tárcio A; Zamboni-Rached, Michel; Recami, Erasmo

    2015-01-01

    In recent times, we experimentally realized a quite efficient modeling of the shape of diffraction-resistant optical beams; thus generating for the first time the so-called Frozen Waves (FW), whose longitudinal intensity pattern can be arbitrarily chosen, within a prefixed space interval of the propagation axis. Such waves possess a host of potential applications: in medicine, biomedical optics, optical tweezers, atom guiding, remote sensing, tractor beams, optical communications or metrology, and other topics in photonic areas. In this work, we extend our theory of FWs -- which led to beams endowed with a static envelope -- through a dynamic modeling of the FWs, whose shape is now allowed to evolve in time in a predetermined way. And we experimentally create such dynamic FWs in Optics, via a computational holographic technique and a spatial light modulator. Experimental results are here presented for two cases of dynamic FWs, one of the zeroth and the other of higher order, the last one being the most intere...

  5. PYRAMIDAL-HOLLOW-BEAM DIPOLE TRAP FOR ALKALI ATOMS

    Institute of Scientific and Technical Information of China (English)

    YIN JIAN-PING; GAO WEI-JIAN; WANG YU-ZHU; ZHU YI-FU; WANG YI-QIU

    2000-01-01

    We propose a dark gravito-optical dipole trap, for alkali atoms, consisting of a blue-detuned, pyramidal-hollow laser beam propagating upward and the gravity field. When cold atoms from a magneto-optical trap are loaded into the pyramidal-hollow beam and bounce inside the pyramidal-hollow beam, they experience efficient Sisyphus cooling and geometric cooling induced by the pyramidal-hollow beam and the weak repumping beam propagating downward. Our study shows that an ultracold and dense atomic sample with an equilibrium 3D momentum of ~ 3hk and an atomic density above the point of Bose-Einstein condensation may be obtained in this pure optical trap.

  6. Direct observation of ultrafast atomic motion using time-resolved X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shymanovich, U.

    2007-11-13

    This thesis is dedicated to the study of the atomic motion in laser irradiated solids on a picosecond to subpicosecond time-scale using the time-resolved X-ray diffraction technique. In the second chapter, the laser system, the laser-plasma based X-ray source and the experimental setup for optical pump / X-ray probe measurements were presented. Chapter 3 is devoted to the characterization and comparison of different types of X-ray optics. Chapter 4 presented the time-resolved X-ray diffraction experiments performed for this thesis. The first two sections of this chapter discuss the measurements of initially unexpected strain-induced transient changes of the integrated reflectivity of the X-ray probe beam. The elimination of the strain-induced transient changes of the integrated reflectivity represented an important prerequisite to perform the study of lattice heating in Germanium after femtosecond optical excitation by measuring the transient Debye-Waller effect. The third section describes the investigations of acoustic waves upon ultrafast optical excitation and discusses the two different pressure contributions driving them: the thermal and the electronic ones. (orig.)

  7. Laser cooling of a magnetically guided ultra cold atom beam

    Energy Technology Data Exchange (ETDEWEB)

    Aghajani-Talesh, Anoush

    2014-07-01

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  8. Laser cooling of a magnetically guided ultra cold atom beam

    International Nuclear Information System (INIS)

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  9. A Compact, High-Flux Cold Atom Beam Source

    Science.gov (United States)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  10. Measuring the quantum statistics of an atom laser beam

    CERN Document Server

    Bradley, A S; Hope, J J; Olsen, M K

    2006-01-01

    We propose and analyse a scheme for measuring the quadrature statistics of an atom laser beam using extant optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling scheme is used to map the quantum statistics of an incoupled beam to an optical probe beam. A multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, we show that experimental realisations of the scheme may be tested with existing methods via measurements of Glauber's intensity correlation function.

  11. Single- and double-slit collimating effects on fast-atom diffraction spectra

    Science.gov (United States)

    Gravielle, M. S.; Miraglia, J. E.

    2016-09-01

    Diffraction patterns produced by fast He atoms grazingly impinging on a LiF(0 0 1) surface are investigated focusing on the influence of the beam collimation. Single- and double-slit collimating devices situated in front of the beam source are considered. To describe the scattering process we use the Surface Initial Value Representation (SIVR) approximation, which is a semi-quantum approach that incorporates a realistic description of the initial wave packet in terms of the collimating parameters. Our initial wave-packet model is based on the Van Cittert-Zernike theorem. For a single-slit collimation the width of the collimating aperture controls the shape of the azimuthal angle distribution, making different interference mechanisms visible, while the length of the slit affects the polar angle distribution. Additionally, we found that by means of a double-slit collimation it might be possible to obtain a wide polar angle distribution, which is associated with a large spread of the initial momentum perpendicular to the surface, derived from the uncertainty principle. It might be used as a simple way to probe the surface potential for different normal energies.

  12. An Atomic Lens Using a Focusing Hollow Beam

    Institute of Scientific and Technical Information of China (English)

    夏勇; 印建平; 王育竹

    2003-01-01

    We propose a new method to generate a focused hollow laser beam by using an azimuthally distributed 2π-phase plate and a convergent thin lens, and calculate the intensity distribution of the focused hollow beam in free propagation space. The relationship between the waist w0 of the incident collimated Gaussian beam and the dark spot size of the focused hollow beam at the focal point, and the relationship between the focal length f of the thin lens and the dark spot size are studied respectively. The optical potential of the blue-detuned focused hollow beam for 85Rb atoms is calculated. Our study shows that when the larger waist w of the incident Gaussian beam and the shorter focal length f of the lens are chosen, we can obtain an extremely small dark spot size of the focused hollow beam, which can be used to form an atomic lens with a resolution of several angstroms.

  13. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    International Nuclear Information System (INIS)

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  14. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hirscht, Julian

    2015-08-15

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  15. A new non intercepting beam size diagnostics using diffraction radiation from a Slit

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, M. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1996-09-01

    A new non interpreting beam size diagnostic for high charge electron beams is presented. This diagnostics is based on the analysis of the angular distribution of the `diffracted` transition radiation emitted by the beam when crossing a slit cut in metallic foil. It allows a resolution better then the radiation transverse formation zone. Numerical results based on the parameters of the TTF FEL beam are given as example.

  16. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  17. Diffractive beam splitter characterization via a power-recycled interferometer

    OpenAIRE

    Friedrich, D; Burmeister, O.; Bunkowski, A.; Clausnitzer, T; Fahr, S.; Kley, E.; Tünnermann, A.; Danzmann, K.; Schnabel, R.

    2008-01-01

    We used the high-precision laser interferometer technique of power recycling to characterize the optical loss of an all-reflective grating beam splitter. This beam splitter was used to set up a Michelson interferometer with a power-recycling resonator with a finesse of 883. Analyzing the results obtained, we determined the beam splitter's total optical loss to be (0.193+/-0.019)%. Low loss all-reflective beam splitters might find application in future high-power laser interferometers for the ...

  18. Intense Atomic and Molecular Beams via Neon Buffer Gas Cooling

    CERN Document Server

    Patterson, David; Doyle, John M

    2008-01-01

    We realize a continuous guided beam of cold deuterated ammonia with a flux of 3e11 ND3 molecules/s and a continuous free-space beam of cold potassium with a flux of 1e16 K atoms/s. A novel feature of the buffer gas source used to produce these beams is cold neon, which, due to intermediate Knudsen number beam dynamics, produces a forward velocity and low-energy tail that is comparable to much colder helium-based sources. We expect this source to be trivially generalizable to a very wide range of atomic and molecular species with significant vapor pressure below 1000 K. This source has properties that make it a good starting point for laser cooling of molecules or atoms, cold collision studies, trapping, or nonlinear optics in buffer-gas-cooled atomic or molecular gases.

  19. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams

    CERN Document Server

    Singh, Brijesh Kumar; Roichman, Yael; Arie, Ady

    2016-01-01

    The diffraction limited resolution of light focused by a lens was derived in 1873 by Ernst Abbe. Later in 1952, a method to reach sub-diffraction light spots was proposed by modulating the wavefront of the focused beam. In a related development, super-oscillating functions, i.e. band limited functions that locally oscillate faster than their highest Fourier component, were introduced and experimentally applied for super-resolution microscopy. Up till now, only simple Gaussian-like sub-diffraction spots were used. Here we show that the amplitude and phase profile of these sub-diffraction spots can be arbitrarily controlled. In particular we utilize Hermite-Gauss, Laguerre-Gauss and Airy functions to structure super-oscillating beams with sub-diffraction lobes. These structured beams are then used for high resolution trapping and manipulation of nanometer-sized particles. The trapping potential provides unprecedented localization accuracy and stiffness, significantly exceeding those provided by standard diffrac...

  20. Demonstration of a cold atom beam splitter on atom chip

    Science.gov (United States)

    Jiang, Xiaojun; Li, Xiaolin; Zhang, Haichao; Wang, Yuzhu

    2016-08-01

    We report an experimental demonstration of a new scheme to split cold atoms on an atom chip. The atom chip consists of a U-wire and a Z-wire. The cold atom cloud is initially loaded and prepared in the Z-trap, which is split into two separate parts by switching on the current of the U-wire. The two separate atom clouds have a distance more than one millimeter apart from each other and show almost symmetrical profiles, corresponding to about a 50/50 splitting ratio. Project supported by the State Key Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).

  1. Investigation of accelerated neutral atom beams created from gas cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, A., E-mail: akirkpatrick@exogenesis.us [Exogenesis Corporation, 20 Fortune Drive, Billerica, MA 01821 (United States); Kirkpatrick, S.; Walsh, M.; Chau, S.; Mack, M.; Harrison, S.; Svrluga, R.; Khoury, J. [Exogenesis Corporation, 20 Fortune Drive, Billerica, MA 01821 (United States)

    2013-07-15

    A new concept for ultra-shallow processing of surfaces known as accelerated neutral atom beam (ANAB) technique employs conversion of energetic gas cluster ions produced by the gas cluster ion beam (GCIB) method into intense collimated beams of coincident neutral gas atoms having controllable average energies from less than 10 eV per atom to beyond 100 eV per atom. A beam of accelerated gas cluster ions is first produced as is usual in GCIB, but conditions within the source ionizer and extraction regions are adjusted such that immediately after ionization and acceleration the clusters undergo collisions with non-ionized gas atoms. Energy transfer during these collisions causes the energetic cluster ions to release many of their constituent atoms. An electrostatic deflector is then used to eliminate charged species, leaving the released neutral atoms to still travel collectively at the same velocities they had as bonded components of their parent clusters. Upon target impact, the accelerated neutral atom beams produce effects similar to those normally associated with GCIB, but to shallower depths, with less surface damage and with superior subsurface interfaces. The paper discusses generation and characterization of the accelerated neutral atom beams, describes interactions of the beams with target surfaces, and presents examples of ongoing work on applications for biomedical devices.

  2. Atomic Funnel Composed of an HE11-Mode Output Hollow Beam

    Institute of Scientific and Technical Information of China (English)

    倪赟; 刘南春; 印建平

    2003-01-01

    Using exact solutions of Maxwell equations based on the vector model, we calculate the diffracted near- and far-field distributions of the HEi1-mode output beam from a micron-sized hollow optical fibre under the Fresnel approximation, and compare the differences between the HE11- and LP01-mode output beams. Our study shows that it is unsuitable to calculate the diffracted near-field distribution of the hollow fibre by using weakly waveguiding approximation, and the near- and far-field intensity distributions of the HE11-mode output beam are doughnut-like, which can be used to form a simple atomic funnel as it is blue-detuned.

  3. Theoretical tools for atom-laser-beam propagation

    OpenAIRE

    Riou, Jean-Félix; Le Coq, Yann; Impens, François; Guerin, William; Bordé, Christian,; Aspect, Alain; Bouyer, Philippe

    2008-01-01

    We present a theoretical model for the propagation of non self-interacting atom laser beams. We start from a general propagation integral equation, and we use the same approximations as in photon optics to derive tools to calculate the atom laser beam propagation. We discuss the approximations that allow to reduce the general equation whether to a Fresnel-Kirchhoff integral calculated by using the stationary phase method, or to the eikonal. Within the paraxial approximation, we also introduce...

  4. Single-Shot Electron Diffraction using a Cold Atom Electron Source

    CERN Document Server

    Speirs, Rory W; Nugent, Keith A; Sparkes, Benjamin M; Scholten, Robert E

    2015-01-01

    Cold atom electron sources are a promising alternative to traditional photocathode sources for use in ultrafast electron diffraction due to greatly reduced electron temperature at creation, and the potential for a corresponding increase in brightness. Here we demonstrate single-shot, nanosecond electron diffraction from monocrystalline gold using cold electron bunches generated in a cold atom electron source. The diffraction patterns have sufficient signal to allow registration of multiple single-shot images, generating an averaged image with significantly higher signal-to-noise ratio than obtained with unregistered averaging. Reflection high-energy electron diffraction (RHEED) was also demonstrated, showing that cold atom electron sources may be useful in resolving nanosecond dynamics of nanometre scale near-surface structures.

  5. 4D Nanoscale Diffraction Observed by Convergent-Beam Ultrafast Electron Microscopy

    OpenAIRE

    Yurtsever, Aycan; Zewail, Ahmed H.

    2009-01-01

    Diffraction with focused electron probes is among the most powerful tools for the study of time-averaged nanoscale structures in condensed matter. Here, we report four-dimensional (4D) nanoscale diffraction, probing specific site dynamics with 10 orders of magnitude improvement in time resolution, in convergent-beam ultrafast electron microscopy (CB-UEM). As an application, we measured the change of diffraction intensities in laser-heated crystalline silicon as a function of time and fluence....

  6. Atom gratings produced by large angle atom beam splitters

    OpenAIRE

    Dubetsky, B.; Berman, P. R.

    2001-01-01

    An asymptotic theory of atom scattering by large amplitude periodic potentials is developed in the Raman-Nath approximation. The atom grating profile arising after scattering is evaluated in the Fresnel zone for triangular, sinusoidal, magneto-optical, and bichromatic field potentials. It is shown that, owing to the scattering in these potentials, two \\QTR{em}{groups} of momentum states are produced rather than two distinct momentum components. The corresponding spatial density profile is cal...

  7. Cold atom dynamics in crossed laser beam waveguides

    CERN Document Server

    Torrontegui, E; Ruschhaupt, A; Guéry-Odelin, D; Muga, J G

    2010-01-01

    We study the dynamics of neutral cold atoms in an $L$-shaped crossed-beam optical waveguide formed by two perpendicular red-detuned lasers of different intensities and a blue-detuned laser at the corner. Complemented with a vibrational cooling process this setting works as a one-way device or "atom diode".

  8. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Yoon, Tai Hyun [Department of Physics, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-02-15

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s{sup 2} {sup 1}S{sub 0}{r_reversible} 6s7s {sup 1}S{sub 0}) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm{sup 3} and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s{sup 1}S{sub 0} state via the intercombination 6s6p{sup 3}P{sub 1} state with a high signal-to-noise ratio even at the temperature of 340 Degree-Sign C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  9. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus.

    Science.gov (United States)

    Song, Minsoo; Yoon, Tai Hyun

    2013-02-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s(2)(1)S0↔ 6s7s (1)S0) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm(3) and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s(1)S0 state via the intercombination 6s6p(3)P1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle. PMID:23464193

  10. Optical beam shaping and diffraction free waves: a variational approach

    CERN Document Server

    Gemmer, John A; Durfee, Charles G; Moloney, Jerome V

    2013-01-01

    We investigate the problem of shaping radially symmetric annular beams into desired intensity patterns along the optical axis. Within the Fresnel approximation, we show that this problem can be expressed in a variational form equivalent to the one arising in phase retrieval. Using the uncertainty principle we prove rigorous lower bounds on the functional that capture how the various physical parameters in the problem determine the accuracy of the beam shaping. We also use the method of stationary phase to construct a natural ansatz for a minimizer in the short wavelength limit. We illustrate the implications of our results by applying the method of stationary phase coupled with the Gerchberg-Saxton algorithm to beam shaping problems arising in remote delivery of beams and pulses.

  11. Optical beam shaping and diffraction free waves: A variational approach

    Science.gov (United States)

    Gemmer, John A.; Venkataramani, Shankar C.; Durfee, Charles G.; Moloney, Jerome V.

    2014-08-01

    We investigate the problem of shaping radially symmetric annular beams into desired intensity patterns along the optical axis. Within the Fresnel approximation, we show that this problem can be expressed in a variational form equivalent to the one arising in phase retrieval. Using the uncertainty principle we prove various rigorous lower bounds on the functional; these lower bounds estimate the L2 error for the beam shaping problem in terms of the design parameters. We also use the method of stationary phase to construct a natural ansatz for a minimizer in the short wavelength limit. We illustrate the implications of our results by applying the method of stationary phase coupled with the Gerchberg-Saxton algorithm to beam shaping problems arising in the remote delivery of beams and pulses.

  12. Diffraction-resistant scalar beams generated by a parabolic reflector and a source of spherical waves.

    Science.gov (United States)

    Zamboni-Rached, Michel; de Assis, Mariana Carolina; Ambrosio, Leonardo A

    2015-07-01

    In this work, we propose the generation of diffraction-resistant beams by using a parabolic reflector and a source of spherical waves positioned at a point slightly displaced from its focus (away from the reflector). In our analysis, considering the reflector dimensions much greater than the wavelength, we describe the main characteristics of the resulting beams, showing their properties of resistance to the diffraction effects. Due to its simplicity, this method may be an interesting alternative for the generation of long-range diffraction-resistant waves.

  13. Diffraction Resistant Scalar Beams Generated by a Parabolic Reflector and a Source of Spherical Waves

    CERN Document Server

    Zamboni-Rached, Michel; Ambrosio, Leonardo A

    2015-01-01

    In this work, we propose the generation of diffraction resistant beams by using a parabolic reflector and a source of spherical waves positioned at a point slightly displaced from its focus (away from the reflector). In our analysis, considering the reflector dimensions much greater than the wavelength, we describe the main characteristics of the resulting beams, showing their properties of resistance to the diffraction effects. Due to its simplicity, this method may be an interesting alternative for the generation of long range diffraction resistant waves.

  14. Simulation of high energy photoelectron diffraction using many-beam dynamical Kikuchi-band theory

    Science.gov (United States)

    Winkelmann, Aimo; Schröter, Bernd; Richter, Wolfgang

    2004-06-01

    We use the many-beam dynamical theory of electron diffraction for the calculation of x-ray photoelectron diffraction (XPD) patterns of the substrate emission. The reciprocity principle is used to apply a Bloch wave model for the diffraction of an incoming plane wave by a three-dimensional crystal. In this way, many-beam dynamical simulations of XPD in the context of Kikuchi-band theory can be carried out. This extends the results of the two-beam theory used so far and leads to quantitative descriptions of XPD patterns in the picture of photoelectrons reflected by lattice planes. The effects of forward scattering directions, substrate polarity, circular structures due to onedimensional diffraction, and emitter specific extinction of Kikuchi lines can be reproduced by Kikuchi-band theory. The results are compared with single scattering cluster calculations. In this way, the equivalence of the cluster approach and the Kikuchi-band picture can be demonstrated completely in both directions

  15. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer.

    Science.gov (United States)

    Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2016-06-13

    We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations. PMID:27410274

  16. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer.

    Science.gov (United States)

    Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2016-06-13

    We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations.

  17. Generation of a family of Pearcey beams based on Fresnel diffraction catastrophes

    International Nuclear Information System (INIS)

    Based on the theory of differential geometry and Fresnel diffraction catastrophes, we theoretically prove that the cusped caustic of Pearcey beams are the evolute of a parabola and thus identify the key factor determining the optical structure of Pearcey beams. We numerically simulate and experimentally generate a family of Pearcey beams with various optical topological structures using different parabolas. We then investigate their optical structures and propagation properties. (paper)

  18. Characterization of the constituent wave of a diffracting and a nondiffracting axisymmetric laser beam.

    OpenAIRE

    Rousseau, Guy; Gay, David; Piché, Michel

    2005-01-01

    We show experimentally how diffracting and nondiffracting laser beams can be characterized through their one-dimensional constituent wave. Such a wave stems from an angular decomposition applicable to any cylindrically symmetric laser beam. In our experiment, spatial filtering in a 4-f system is used to generate the constituent wave of each beam under study. Standard one-dimensional root-mean-square (rms) parameters, such as the propagation factor and the generalized Rayleigh range, are then ...

  19. Spectral anomalies of diffracted pulsed Hermite-Gaussian beams in dispersive media

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhi-Guo; Pan Liu-Zhan; Lü Bai-Da

    2008-01-01

    This paper derives and uses the recurrence expressions for the power spectra of diffracted pulsed Hermite-Gaussian (HG) beams in dispersive media to study the spectral anomalies of pulsed HG beams in the far field. Numerical results are given to illustrate the dependence of spectral switches on the pulse parameters, truncation parameter and dispersive property of the medium. The potential application of spectral anomalies of ultrashort pulsed beams in information encoding and transmission is discussed.

  20. Characterization of a polychromatic neutron beam diffracted by pyrolytic graphite crystals

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    The beam spectrum for polychromatic neutrons diffracted by pyrolytic graphite crystals was characterized. The theoretical beam spectrum was obtained using the diffraction model for a mosaic crystal. The lattice vibration effects were included in the calculation using the reported vibration amplitude of the crystal and the measured time-of-flight spectra in the thermal region. The calculated beam spectrum was compared with the results obtained in the absence of thermal motion. The lattice vibration effects became more important for the higher diffraction orders and a large decrease in the neutron flux induced by the vibrations was identified in the epithermal region. The validity of the beam spectrum was estimated by comparing with the effective quantities determined from prompt gamma-ray measurements and Cd-ratios measured both for 1/nu and non-1/nu nuclides.

  1. Femtosecond cellular transfection using a non-diffracting beam

    Science.gov (United States)

    Tsampoula, X.; Garcés-Chávez, V.; Comrie, M.; Stevenson, D. J.; Agate, B.; Brown, C. T. A.; Gunn-Moore, F.; Dholakia, K.

    2008-02-01

    Efficient DNA delivery into single living cells would be a very powerful capability for cell biologists for elucidating basic cellular functions but also in other fields such as applied drug discovery and gene therapy. The ability to gently permeate the cell membrane and introduce foreign DNA with the assistance of lasers is a powerful methodology but requires exact focusing due to the required two-photon power density. Here, we demonstrate a laser-mediated delivery method of the red fluorescent protein DS-RED into Chinese hamster Ovary (CHO) cells. We used an elongated beam of light created by a Bessel beam (BB) which obviates the need to locate precisely the cell membrane, permitting two-photon excitation along a line leading to cell transfection. Assuming a threshold for transfection of 20%, the BB gives us transfection over twenty times the axial distance compared to the Gaussian beam of equivalent core diameter. In addition, by exploiting the BB property of reconstruction, we demonstrate successful transfection of CHO cells which involves the BB passing through an obstructive layer and re forming itself prior to reaching the cell membrane. In the light of this exciting result, one can envisage the possibility of achieving transfection through multiple cell monolayer planes and tissues using this novel light field, eliminating this way the stringent requirements for tight focusing.

  2. Internal polarized deuterium target with cryogenic atomic beam source

    CERN Document Server

    Dyug, M V; Lazarenko, B A; Mishnev, S I; Nikolenko, D M; Rachek, Igor A; Shestakov, Yu V; Sadykov, R S; Toporkov, D K; Zevakov, S A; Osipov, A V; Stibunov, V N

    2002-01-01

    Description of the polarized deuterium gas target used at the VEPP-3 electron storage ring for experiments on elastic and inelastic ed scattering is given. Superconducting sextupole magnets with the pole tip magnetic field up to 4.8 T are used in atomic beam source (ABS) to focus atoms. The flux of polarized atoms injected into the storage cell was measured to be 8.2x10 sup 1 sup 6 at/s for deuterium and 7.9x10 sup 1 sup 6 at/s for hydrogen. The measured target thickness 8x10 sup 1 sup 3 at/cm sup 2 is consistent with the thickness calculated from the measured beam intensity. The effective tensor polarization of the deuterium target during the experiment was found to be P sub z sub z =0.397. Further improvements of the target and possible limitation of the beam intensity from ABS are discussed.

  3. Fabrication of atomically smooth SrRuO3 thin films by laser molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High-quality SrRuO3 (SRO) thin films and SrTiO3/SRO bilayer were grown epitaxially on SrTiO3 (STO)(001) substrates by laser molecular beam epitaxy. The results of in situ observation of reflection high-energy electron diffraction and ex situ X-ray diffraction θ -2θ scan indicate that the SRO thin films have good crystallinity. The measurements of atomic force microscopy and scan tunneling microscopy reveal that the surface of the SRO thin film is atomically smooth. The resistivity of the SRO thin film is 300 μΩ·cm at room temperature. Furthermore, the transmission electron microscopy study shows that the interfaces of STO/SRO and SRO/STO are very clear and no interfacial reaction layer was observed. The experimental results show that the SRO thin film is an excellent electrode material for devices based on perovskite oxide materials.

  4. Atomic-Beam Magnetic Resonance Experiments at ISOLDE

    CERN Multimedia

    2002-01-01

    The aim of the atomic-beam magnetic resonance (ABMR) experiments at ISOLDE is to map the nuclear behaviour in wide regions of the nuclear chart by measuring nuclear spins and moments of ground and isomeric states. This is made through an investigation of the atomic hyperfine structure of free, neutral atoms in a thermal atomic-beam using radio-frequency techniques. On-line operation allows the study of short-lived nuclei far from the region of beta-stability.\\\\ \\\\ The ABMR experiments on the |2S^1 ^2 elements Rb, Cs, Au and Fr have been completed, and present efforts are directed towards the elements with an open p-shell and on the rare-earth elements.\\\\ \\\\ The experimental data obtained are compared with results from model calculations, giving information on the single-particle structure and on the nuclear shape parameters.

  5. Parabolic antennas, and circular slot arrays, for the generation of Non-Diffracting Beams of Microwaves

    CERN Document Server

    Zamboni-Rached, Michel

    2014-01-01

    We propose in detail Antennas for generating Non-Diffracting Beams of Microwaves, for instance with frequencies of the order of 10 GHz, obtaining fair results even when having recourse to realistic apertures endowed with reasonable diameters. Our first proposal refers mainly to sets of suitable annular slits, having in mind various possible applications, including remote sensing. Our second proposal --which constitutes one of the main aims of this paper-- refers to the alternative, rather simple, use of a Parabolic Reflector, illuminated by a spherical wave source located on the paraboloid axis but slightly displaced with respect to the Focus of the Paraboloid. Such a parabolic reflector yields "extended focus" (non-diffracting) beams. [OCIS codes: 999.9999; 070.7545; 050.1120; 280.0280; 050.1755; 070.0070; 200.0200. Keywords: Non-Diffracting Waves; Microwaves; Remote sensing; Annular Arrays; Bessel beams; Extended focus; Reflecting paraboloids; Parabolic reflectors; Parabolic antennas].

  6. An efficient and accurate method for calculating nonlinear diffraction beam fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    This study develops an efficient and accurate method for calculating nonlinear diffraction beam fields propagating in fluids or solids. The Westervelt equation and quasilinear theory, from which the integral solutions for the fundamental and second harmonics can be obtained, are first considered. A computationally efficient method is then developed using a multi-Gaussian beam (MGB) model that easily separates the diffraction effects from the plane wave solution. The MGB models provide accurate beam fields when compared with the integral solutions for a number of transmitter-receiver geometries. These models can also serve as fast, powerful modeling tools for many nonlinear acoustics applications, especially in making diffraction corrections for the nonlinearity parameter determination, because of their computational efficiency and accuracy.

  7. A STUDY OF HIGH FRAME RATE ULTRASONIC IMAGING WITH LIMITED DIFFRACTION BEAMS

    Institute of Scientific and Technical Information of China (English)

    刘立庄; 卞正中; 姚斌

    2003-01-01

    Objective To investigate a new class of solutions to the isotropic/homogeneous scalar wave equation, which termed limited diffraction beams and realize ultrasonic 3D imaging. Methods Limited diffraction beams were derived. We performed the study of 3D pulse-echo imaging with limited diffraction array beam. To obtain high frame rate images, a single plane wave pulse (broadband) was transmitted with the arrays. Echoes received with the same arrays were processed with Fourier method to construct 3D images. Results Compared with traditional pulse-echo imaging, this method has a larger depth of field, high frame rate, and high signal-to-noise ratio. Conclusion The new method has prospect of high frame rate 3D imaging. In addition, the imaging system based this method is easily implemented and has high quality image.

  8. Diffraction corrections for second harmonic beam fields and effects on the nonlinearity parameter evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    The nonlinearity parameter is frequently measured as a sensitive indicator in damaged material characterization or tissue harmonic imaging. Several previous studies have employed the plane wave solution, and ignored the effects of beam diffraction when measuring the non-linearity parameter β. This paper presents a multi-Gaussian beam approach to explicitly derive diffraction corrections for fundamental and second harmonics under quasilinear and paraxial approximation. Their effects on the nonlinearity parameter estimation demonstrate complicated dependence of β on the transmitter-receiver geometries, frequency, and propagation distance. The diffraction effects on the non-linearity parameter estimation are important even in the nearfield region. Experiments are performed to show that improved β values can be obtained by considering the diffraction effects.

  9. Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities

    International Nuclear Information System (INIS)

    Taking magnetostatic surface wave diffraction as an example, this paper theoretically investigates the 2D diffraction pattern arising in the far-field region of a ferrite slab in the case of a plane wave with noncollinear group and phase velocities incident on a wide, arbitrarily oriented slit in an opaque screen. A universal analytical formula for the angular width of a diffracted beam is derived, which is valid for magnetostatic and other types of waves in anisotropic media and structures (including metamaterials) in 2D geometries. It is shown that the angular width of a diffracted beam in an anisotropic medium can not only take values greater or less than λ0/D (where λ0 is the incident wavelength, and D is the slit width), but can also be zero under certain conditions. (methodological notes)

  10. Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities

    Science.gov (United States)

    Lock, Edwin H.

    2012-12-01

    Taking magnetostatic surface wave diffraction as an example, this paper theoretically investigates the 2D diffraction pattern arising in the far-field region of a ferrite slab in the case of a plane wave with noncollinear group and phase velocities incident on a wide, arbitrarily oriented slit in an opaque screen. A universal analytical formula for the angular width of a diffracted beam is derived, which is valid for magnetostatic and other types of waves in anisotropic media and structures (including metamaterials) in 2D geometries. It is shown that the angular width of a diffracted beam in an anisotropic medium can not only take values greater or less than \\lambda _0/D (where \\lambda _0 is the incident wavelength, and D is the slit width), but can also be zero under certain conditions.

  11. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    Science.gov (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  12. Three-port beam splitter for slow neutrons using holographic nanoparticle-polymer composite diffraction gratings

    OpenAIRE

    Klepp, J.; Tomita, Y; Pruner, C.; Kohlbrecher, J.; Fally, M.

    2012-01-01

    Diffraction of slow neutrons by nanoparticle-polymer composite gratings has been observed. By carefully choosing grating parameters such as grating thickness and spacing, a three-port beam splitter operation for cold neutrons - splitting the incident neutron intensity equally into the plus-minus first and zeroth diffraction orders - was realized. As a possible application, a Zernike three-path interferometer is briefly discussed.

  13. Composite multi-vortex diffraction-free beams and van Hove singularities in honeycomb lattices

    CERN Document Server

    Paltoglou, Vassilis; Efremidis, Nikolaos K

    2015-01-01

    We find diffraction-free beams for graphene and MoS$_2$-type honeycomb optical lattices. The resulting composite solutions have the form of multi-vortices, with spinor topological charges ($n$, $n\\pm1$). Exact solutions for the spinor components are obtained in the Dirac limit. The effects of the valley degree of freedom and the mass are analyzed. Passing through the van-Hove singularity the topological structure of the solutions is modified. Exactly at the singularity the diffraction-free beams take the form of strongly localized one-dimensional stripes.

  14. Formation of high-order acoustic Bessel beams by spiral diffraction gratings

    CERN Document Server

    Jiménez, Noé; Sánchez-Morcillo, Víctor; Romero-García, Vicent; García-Raffi, Lluis M; Staliunas, Kestutis

    2016-01-01

    The formation of high-order Bessel beams by a passive acoustic device consisting of an Archimedes' spiral diffraction grating is theoretically, numerically and experimentally reported in this work. These beams are propagation-invariant solutions of the Helmholtz equation and are characterized by an azimuthal variation of the phase along its annular spectrum producing an acoustic vortex in the near field. In our system, the scattering of plane acoustic waves by the spiral grating leads to the formation of the acoustic vortex with zero pressure on-axis and the angular phase dislocations characterized by the spiral geometry. The order of the generated Bessel beam and, as a consequence, the size of the generated vortex can be fixed by the number of arms in the spiral diffraction grating. The obtained results allow to obtain Bessel beams with controllable vorticity by a passive device, which has potential applications in low-cost acoustic tweezers and acoustic radiation force devices.

  15. Feasibility of optical diffraction radiation for a non-invasive low-emittance beam diagnostics

    CERN Document Server

    Urakawa, J; Kubo, K; Kuroda, S; Terunuma, N; Kuriki, M; Okugi, T; Naito, T; Araki, S; Potylitsin, A P; Naumenko, G A; Karataev, P; Potylitsyna, N A; Vnukov, I; Hirose, T; Hamatsu, R; Muto, T; Ikezawa, M; Shibata, Y

    2001-01-01

    A 'proof-of-principle' experiment on the optical diffraction radiation (ODR) as a single-pulse beam profile monitor is planned using an electron beam extracted from the KEK-ATF damping ring. The main goals of this experiment are the following: (i) To measure the yield and the angular distributions of the optical diffraction radiation from a large-size target at different wavelengths, impact parameters and beam characteristics for a comparison with analogous characteristics of optical transition radiation from a foil with identical optical parameters and for a verification of the model assumption (perfectly conducting semi-infinite target). (ii) To investigate the ODR angular distributions from a tilted target with a slit for observing the interference effects. (iii) To compare the results obtained by simulations based on classical approaches, taking into account the optical characteristics of the equipment and the beam parameters. (iv) To estimate the prospects of using ODR as a new non-invasive tool for ultr...

  16. Theoretical study of a cold atom beam splitter

    CERN Document Server

    Gaaloul, Naceur; Pruvost, L; Telmini, M; Charron, E; Gaaloul, Naceur; Suzor-Weiner, Annick; Pruvost, Laurence; Telmini, Mourad; Charron, Eric

    2006-01-01

    A theoretical model is presented for the study of the dynamics of a cold atomic cloud falling in the gravity field in the presence of two crossing dipole guides. The cloud is splitted between the two branches of the guide, and we compare experimental measurements of the splitting efficiency with semi-classical simulations. We then explore the possibilities of optimization of this beam splitter. Our numerical study also gives access to detailed informations, such as the atom temperature after the splitting. It finally sets the foundation for a study of the coherence properties of the guided atoms.

  17. Atomic beam study of a superconductor's magnetic vortex lattice

    International Nuclear Information System (INIS)

    We have developed an atomic beam technique for studying magnetic vortices and vortex lattices of superconductors. Atoms moving near a superconductor's surface see a fluctuating magnetic field as they pass vortices. This field may drive magnetic resonance transitions between hyperfine states. Measuring the magnetic resonance transition probability as a function of atom velocity probes the vortex lattice autocorrelation function. We demonstrate this technique by studying the vortex lattice of a niobium film sample and measuring the sample's penetration depth. We also identify a systematic problem that we think thwarted an earlier attempt to experimentally realize this technique. copyright 1997 The American Physical Society

  18. Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate.

    Science.gov (United States)

    Chen, Haiwei; Weng, Yishi; Xu, Daming; Tabiryan, Nelson V; Wu, Shin-Tson

    2016-04-01

    We proposed a switchable beam steering device with cycloidal diffractive waveplate (CDW) for eye tracking in a virtual reality (VR) or augmented reality (AR) display system. Such a CDW diffracts the incident circularly polarized light to the first order with over 95% efficiency. To convert the input linearly polarized light to right-handed or left-handed circular polarization, we developed a broadband polarization switch consisting of a twisted nematic liquid crystal cell and an achromatic quarter-wave retardation film. By cascading 2-3 CDWs together, multiple diffraction angles can be achieved. To suppress the color dispersion, we proposed two approaches to obtain the same diffraction angle for red, green, and blue LEDs-based full color displays. Our device exhibits several advantages, such as high diffraction efficiency, fast response time, low power consumption, and low cost. It holds promise for the emerging VR/AR displays. PMID:27137019

  19. Noninvasive measurement of micron electron beam size of high energy using diffraction radiation

    CERN Document Server

    Naumenko, G A

    2003-01-01

    Treatments of the usage of diffraction radiation from the relativistic electrons moving though a conductive slit for the transverse beam size measurement encounter hard limitation of the method sensitivity for the electron energy larger than 1 GeV. We consider in this article a possibility of application of the artificial phase shift, which can take place when transverse electron position varies. This allows us to realize the measurements of transverse size of supper-relativistic electron beams with the small emittance.

  20. Optimization of atomic beam sources for polarization experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Martin; Nass, Alexander; Stroeher, Hans [IKP, Forschungszentrum Juelich (Germany)

    2013-07-01

    For experiments with spin-polarized protons and neutrons a dense target is required. In current atomic beam sources an atomic hydrogen or deuterium beam is expanded through a cold nozzle and a system of sextupole magnets and RF-transition units selects a certain hyperfine state. The achievable flux seems to be limited to about 10{sup 17} particles per second with a high nuclear polarization. A lot of experimental and theoretical effort has been undertaken to understand all effects and to increase the flux. However, improvements have remained marginal. Now, a Monte Carlo simulation based on the DSMC part of the open source C++ library OpenFOAM is set up in order to get a better understanding of the flow and to optimize the various elements. It is intended to include important effects like deflection from magnetic fields, recombination on the walls and spin exchange collisions in the simulation and make quantitative predictions of changes in the experimental setup. The goal is to get a tool that helps to further increase the output of an atomic beam source. So far, a new binary collision model, magnetic fields, RF-transition units and a tool to measure the collision age are included. The next step will be to couple the whole simulation with an optimization algorithm implementing Adaptive Simulated Annealing (ASA) in order to automatically optimize the atomic beam source.

  1. Atomic Beam Laser Spectrometer for In-field Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group

    2016-06-22

    This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft3, < 1000W.

  2. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuyu [Peking Univ., Beijing (China)

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the

  3. Development of a Supersonic Atomic Oxygen Nozzle Beam Source for Crossed Beam Scattering Experiments

    Science.gov (United States)

    Sibener, S. J.; Buss, R. J.; Lee, Y. T.

    1978-05-01

    A high pressure, supersonic, radio frequency discharge nozzle beam source was developed for the production of intense beams of ground state oxygen atoms. An efficient impedance matching scheme was devised for coupling the radio frequency power to the plasma as a function of both gas pressure and composition. Techniques for localizing the discharge directly behind the orifice of a water-cooled quartz nozzle were also developed. The above combine to yield an atomic oxygen beam source which produces high molecular dissociation in oxygen seeded rare gas mixtures at total pressures up to 200 torr: 80 to 90% dissociation for oxygen/argon mixtures and 60 to 70% for oxygen/helium mixtures. Atomic oxygen intensities are found to be greater than 10{sup 17} atom sr{sup -1} sec{sup -1}. A brief discussion of the reaction dynamics of 0 + IC1 ..-->.. I0 + C1 is also presented.

  4. Enabling Nanotechnology with Focused Ion Beams from Laser Cooled Atoms

    Science.gov (United States)

    Steele, A. V.; Knuffman, B.; Orloff, J.; Maazouz, M.; McClelland, J. J.

    2011-05-01

    The Magneto-Optical Trap Ion Source (MOTIS) being developed at NIST has the potential to enable numerous advances in nanoscale science. In a MOTIS, atoms are captured into a MOT, photoionized, and accelerated to an energy of a few hundred eV to a few tens of kV. A beam formed in this way can be brought to a tight focus, competitive with the commercial focused ion beam machines deployed widely today. Additionally, the unique characteristics of this source, coupled with the user's choice of ion from the long and growing list of laser-coolable atomic species suggest that the MOTIS has the potential to advance the state of the art in applications such as imaging, nanofabrication, secondary ion mass spectrometry, and others. I will present high-resolution images from our lithium and chromium MOTIS-based focused ion beams and discuss applications which we will pursue with these new tools.

  5. An atomic beam source for actinide elements: concept and realization

    International Nuclear Information System (INIS)

    For ultratrace analysis of actinide elements and studies of their atomic properties with resonance ionization mass spectroscopy (RIMS), efficient and stable sources of actinide atomic beams are required. The thermodynamics and kinetics of the evaporation of actinide elements and oxides from a variety of metals were considered, including diffusion, desorption, and associative desorption. On this basis various sandwich-type filaments were studied. The most promising system was found to consist of tantalum as the backing material, an electrolytically deposited actinide hydroxide as the source of the element, and a titanium covering layer for its reduction to the metal. Such sandwich sources were experimentally proven to be well suited for the production of atomic beams of plutonium, curium, berkelium and californium at relatively low operating temperatures and with high and reproducible yields. (orig.)

  6. Ramsey fringes in a thermal beam of Yb atoms

    CERN Document Server

    Rathod, K D

    2014-01-01

    We use the Ramsey separated oscillatory fields (SOF) technique in a $400^\\circ$C thermal beam of Yb atoms to measure the Larmor precession frequency with high precision. For the experiment, we use the strongly-allowed ${^1S_0} \\rightarrow {^1P_1}$ transition at $399$ nm, and choose the odd isotope $^{171}$Yb with nuclear spin $I=1/2$, so that the ground state has only two magnetic sublevels $m_F = \\pm 1/2$. With a magnetic field of $22.2$ G and a separation of about $400$ mm between the oscillatory fields, the central Ramsey fringe is at $16.64$ kHz and has a width of $350$ Hz. The technique can be readily adapted to a cold atomic beam, and should be useful in experiments searching for a permanent electric dipole moment (EDM) in atoms.

  7. Image processing for grazing incidence fast atom diffraction: the $\\beta_2$(2x4) reconstruction of the GaAs(001) surface

    CERN Document Server

    Debiossac, Maxime

    2015-01-01

    Grazing incidence fast atom diffraction (GIFAD, or FAD) has developed as a very sensitive technique most suited for well ordered crystalline surfaces. Such high quality surfaces are routinely fabricated in molecular beam epitaxy (MBE) chamber and a GIFAD setup has been installed allowing in situ operation. Focusing here on static condition, i.e. before or after the growth process, the paper describes in details the few steps needed to measure the relative intensities of the diffraction spots. Care is taken to outline the underlying physical assumptions.

  8. Overview of nonintercepting beam-size monitoring with optical diffraction radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, Alex H.; /Fermilab

    2010-08-01

    The initial demonstrations over the last several years of the use of optical diffraction radiation (ODR) as nonintercepting electron-beam-parameter monitors are reviewed. Developments in both far-field imaging and near-field imaging are addressed for ODR generated by a metal plane with a slit aperture, a single metal plane, and two-plane interferences. Polarization effects and sensitivities to beam size, divergence, and position will be discussed as well as a proposed path towards monitoring 10-micron beam sizes at 25 GeV.

  9. Quantitative strain analysis for advanced CMOS technology by Nano Beam Diffraction

    KAUST Repository

    Wang, Qingxiao

    2010-07-01

    Nano Beam Diffraction has been used to analyze the local strain distribution in MOS transistors. The influence of wafer process on the channel strain has been systematically analyzed in this paper. The source/drain implantation can cause a little strain loss but the silicidation step is the key process in which dramatic strain loss has been found. © 2010 IEEE.

  10. Beam delivery system with a non-digitized diffractive beam splitter for laser-drilling of silicon

    Science.gov (United States)

    Amako, J.; Fujii, E.

    2016-02-01

    We report a beam-delivery system consisting of a non-digitized diffractive beam splitter and a Fourier transform lens. The system is applied to the deep-drilling of silicon using a nanosecond pulse laser in the manufacture of inkjet printer heads. In this process, a circularly polarized pulse beam is divided into an array of uniform beams, which are then delivered precisely to the process points. To meet these requirements, the splitter was designed to be polarization-independent with an efficiency>95%. The optical elements were assembled so as to allow the fine tuning of the effective overall focal length by adjusting the wavefront curvature of the beam. Using the system, a beam alignment accuracy of<5 μm was achieved for a 12-mm-wide beam array and the throughput was substantially improved (10,000 points on a silicon wafer drilled in ~1 min). This beam-delivery scheme works for a variety of laser applications that require parallel processing.

  11. Half-plane diffraction of Gaussian beams carrying two vortices of equal charges

    Institute of Scientific and Technical Information of China (English)

    He De; Gao Zeng-Hui; Lü Bai-Da

    2011-01-01

    This paper derives explicit expressions for the propagation of Ganssian beams carrying two vortices of equal charges m =±1 diffracted at a half-plane screen,which enables the study of the dynamic evolution of vortices in the diffraction field.It shows that there may be no vortices,a pair or several pairs of vortices of opposite charges m =+l,-1 in the diffraction field.Pair creation,annihilation and motion of vortices may appear upon propagation.The off-axis distance additionally affects the evolutionary behaviour.In the process the total topological charge is equal to zero,which is unequal to that of the vortex beam at the source plane.A comparison with the free-space propagation of two vortices of equal charges and a further extension are made.

  12. Uniformity of reshaped beam by diffractive optical elements with light-emitted diode illumination

    Science.gov (United States)

    Chen, Mengzhu; Gu, Huarong; Wang, Qixia; Tan, Qiaofeng

    2015-10-01

    Due to its low energy consumption, high efficiency and fast switching speed, light-emitted diode (LED) has been used as a new light source in optical wireless communication. To ensure uniform lighting and signal-to-noise ratio (SNR) during the data transmission, diffractive optical elements (DOEs) can be employed as optical antennas. Different from laser, LED has a low temporal and spatial coherence. And its impacts upon the far-field diffraction patterns of DOEs remain unclear. Thus the mathematical models of far-field diffraction intensity for LED with a spectral bandwidth and source size are first derived in this paper. Then the relation between source size and uniformity of top-hat beam profile for LEDs either considering the spectral bandwidth or not are simulated. The results indicate that when the size of LED is much smaller than that of reshaped beam, the uniformity of reshaped beam obtained by light source with a spectral bandwidth is significantly better than that by a monochromatic light. However, once the size is larger than a certain threshold value, the uniformity of reshaped beam of two LED models are almost the same, and the influence introduced by spectral bandwidth can be ignored. Finally the reshaped beam profiles are measured by CCD camera when the areas of LED are 0.5×0.5mm2 and 1×1mm2. And the experimental results agree with the simulations.

  13. Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers.

    Science.gov (United States)

    Stern, S; Holmegaard, L; Filsinger, F; Rouzée, A; Rudenko, A; Johnsson, P; Martin, A V; Barty, A; Bostedt, C; Bozek, J; Coffee, R; Epp, S; Erk, B; Foucar, L; Hartmann, R; Kimmel, N; Kühnel, K-U; Maurer, J; Messerschmidt, M; Rudek, B; Starodub, D; Thøgersen, J; Weidenspointner, G; White, T A; Stapelfeldt, H; Rolles, D; Chapman, H N; Küpper, J

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an X-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett.112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i.e., picometers and femtoseconds, using X-ray free-electron lasers. PMID:25415561

  14. Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers

    CERN Document Server

    Stern, Stephan; Filsinger, Frank; Rouzée, Arnaud; Rudenko, Artem; Johnsson, Per; Martin, Andrew V; Barty, Anton; Bostedt, Christoph; Bozek, John D; Coffee, Ryan N; Epp, Sascha; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Kimmel, Nils; Kühnel, Kai-Uwe; Maurer, Jochen; Messerschmidt, Marc; Rudek, Benedikt; Starodub, Dmitri G; Thøgersen, Jan; Weidenspointner, Georg; White, Thomas A; Stapelfeldt, Henrik; Rolles, Daniel; Chapman, Henry N; Küpper, Jochen

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett. 112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i. e., picometers and femtoseconds, using x-ray free-electron lasers.

  15. A microwave discharge atom beam source of high intensity

    International Nuclear Information System (INIS)

    A 2.45 GHz microwave discharge atom beam source of compact design has been developed. A standard extended quarter wavelength cavity design has been used in conjunction with a simple discharge tube and cooling arrangement. The source, while primarily designed for the production of atomic hydrogen, has also been tested with oxygen and nitrogen. The characteristics of the microwave source are compared with those of a Slevin type radiofrequency RF source and the influence of different cleaning procedures on performance have been investigated. Unlike the Slevin source the performance of the microwave source is not critically dependent on the cleaning procedure or gas purity. For hydrogen, both sources could provide a dissociation fraction of about 90% but the beam intensity obtainable from the microwave source (>1014 atoms cm-3) at the exit of a 1 mm capillary tube was significantly greater than that from the Slevin source. For oxygen, where the performance of the Slevin source was poor, the microwave source provided a dissociation fraction of up to about 60% and a beam density of about 1013 atoms cm-3. (Author)

  16. A microwave discharge atom beam source of high intensity

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, A.; Hughes, M.P.; Geddes, J.; Gilbody, H.B. (Queen' s Univ., Belfast, Northern Ireland (United Kingdom). Dept. of Pure and Applied Physics)

    1992-05-01

    A 2.45 GHz microwave discharge atom beam source of compact design has been developed. A standard extended quarter wavelength cavity design has been used in conjunction with a simple discharge tube and cooling arrangement. The source, while primarily designed for the production of atomic hydrogen, has also been tested with oxygen and nitrogen. The characteristics of the microwave source are compared with those of a Slevin type radiofrequency RF source and the influence of different cleaning procedures on performance have been investigated. Unlike the Slevin source the performance of the microwave source is not critically dependent on the cleaning procedure or gas purity. For hydrogen, both sources could provide a dissociation fraction of about 90% but the beam intensity obtainable from the microwave source (>10{sup 14} atoms cm{sup -3}) at the exit of a 1 mm capillary tube was significantly greater than that from the Slevin source. For oxygen, where the performance of the Slevin source was poor, the microwave source provided a dissociation fraction of up to about 60% and a beam density of about 10{sup 13} atoms cm{sup -3}. (Author).

  17. Enhancing the Area of a Raman Atom Interferometer Using a Versatile Double-Diffraction Technique

    International Nuclear Information System (INIS)

    In this Letter, we demonstrate a new scheme for Raman transitions which realize a symmetric momentum-space splitting of 4(ℎ/2π)k, deflecting the atomic wave packets into the same internal state. Combining the advantages of Raman and Bragg diffraction, we achieve a three pulse state labeled an interferometer, intrinsically insensitive to the main systematics and applicable to all kinds of atomic sources. This splitting scheme can be extended to 4N(ℎ/2π)k momentum transfer by a multipulse sequence and is implemented on a 8(ℎ/2π)k interferometer. We demonstrate the area enhancement by measuring inertial forces.

  18. Analysis of the deviation of the diffracted beams caused by acousto-optic tunable filter in multispectral imaging

    Institute of Scientific and Technical Information of China (English)

    Yu Yang; Xuejun Sha; Zhonghua Zhang

    2011-01-01

    The deviation caused by acousto-optic tunable filter (AOTF) diffraction in multispectral imaging is analyzed through derivation calculus of the deviation angle. The rotatory polarization of acousto-optic crystal is taken into account in this analysis. The relationships between the polar angle of the incident and the diffracted beams are acquired by using the momentum-matching condition. During the diffraction of the incident beams, far more deviations are induced.%@@ The deviation caused by acousto-optic tunable filter(AOTF) diffraction in multispectral imaging is analyzed through derivation calculus of the deviation angle.The rotatory polarization of acousto-optic crystal is taken into account in this analysis.The relationships between the polar angle of the incident and the diffracted beams are acquired by using the momentum-matching condition.During the diffraction of the incident beams,far more deviations are induced.

  19. The effect of laser beam size in a zig-zag collimator on transverse cooling of a krypton atomic beam

    Indian Academy of Sciences (India)

    Vivek Singh; V B Tiwari; S Singh; S R Mishra; H S Rawat

    2014-07-01

    The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on transverse cooling of a krypton atomic beam is investigated. The simulation results show that discreteness in the interaction between the cooling laser beam and atomic beam, arising due to finite size and incidence angle of the cooling laser beam, significantly reduces the value of transverse velocity capture range of the collimator. The experimental observations show the trend similar to that obtained from simulations. Our study can be particularly useful where a small zig-zag collimator is required.

  20. Gaussian beam diffraction in inhomogeneous media: solution in frame of complex geometrical optics

    Science.gov (United States)

    Kravtsov, Yu. A.; Berczynski, P.

    2005-09-01

    The method of paraxial complex geometrical optics is presented to describe Gaussian beam diffraction in arbitrary smoothly inhomogeneous media, including lens-like media. The method modifies and specifies the results by Babic' (1968), Kirpichnikova (1971), Cerveny, Popov, Psencik (1982), Cerveny (1983, 2001), Timofeev (1995) and Pereverzev (1996) as applied to the optical problems. The method of paraxial complex geometrical optics reduces the problem of Gaussian beam diffraction in inhomogeneous media to the solution of the system of the ordinary differential equations of first order, which can be readily calculated numerically by the Runge-Kutta method. Thereby the paraxial complex geometrical optics radically simplifies description of Gaussian beam diffraction in inhomogeneous media as compared to the numerical methods of wave optics. By the way of example the known analytical solution for Gaussianbeam diffraction both in a free space and in lens-like medium (Bornatici, Maj 2003) are presented. It is pointed out, that the method of paraxial complex geometrical optics turns out to be equivalent to the solutions of the abridged parabolic wave equation.

  1. Neutral atom beam technique enhances bioactivity of PEEK

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Joseph, E-mail: jkhoury@exogenesis.us [Exogenesis Corporation, Billerica, MA 01821 (United States); Kirkpatrick, Sean R.; Maxwell, Melissa; Cherian, Raymond E.; Kirkpatrick, Allen; Svrluga, Richard C. [Exogenesis Corporation, Billerica, MA 01821 (United States)

    2013-07-15

    Polyetheretherketone (PEEK) is currently gaining popularity in orthopedic and spinal applications but has potential drawbacks in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent; however, it has been shown to be inert and does not integrate well with bone. Recent efforts have focused on increasing the bioactivity of PEEK by modifying the surface to improve the bone-implant interface. We have employed a novel Accelerated Neutral Atom Beam technique (ANAB) to enhance the bioactivity of PEEK. ANAB employs an intense beam of cluster-like packets of accelerated unbonded neutral argon (Ar) gas atoms. These beams are created by first producing a highly energetic Gas Cluster Ion Beam (GCIB) comprised of van der Waals bonded Ar atoms, then transferring energy to the clusters so as to cause release of most of the interatomic bonds, and finally deflecting away the remaining electrically charged cluster cores of still bonded atoms. We identified that ANAB treatment of PEEK results in nanometer scale surface modifications as well as increased surface hydrophilicity. Human osteoblasts seeded onto the surface of ANAB-treated PEEK exhibited enhanced growth as compared to control PEEK as evidenced by cell proliferation assays and microscopy. This increase in bioactivity resulted in cell proliferation levels comparable to native titanium. An in vivo study using a rat calvarial critical size defect model revealed enhanced osseointegration where bone tissue formation was evident only on the ANAB treated PEEK. Taken together, these data suggest that ANAB treatment of PEEK has the potential to enhance its bioactivity, resulting in bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants.

  2. Optimization of atomic beam sources for polarization experiments

    International Nuclear Information System (INIS)

    For experiments with spinpolarized protons and neutrons a dense target is required. In current atomic beam sources an atomic hydrogen or deuterium beam is expanded through a cold nozzle and a system of sextupole magnets and RF-transition units selects a certain hyperfine state. The achievable flux seems to be limited to about 1017 particles per second with a high nuclear polarization. A lot of experimental and theoretical effort has been undertaken to understand all effects and to increase the flux. However, improvements have remained marginal. Now, a Monte Carlo simulation based on the DSMC part of the open source C++ library OpenFOAM is set up in order to get a better understanding of the flow and to optimize the various elements. The goal is to include important effects like deflection from a magnetic field, recombination on the walls and spin exchange collisions in the simulation and make quantitative predictions of changes in the experimental setup. The goal is to get a tool that helps to further increase the output of an atomic beam source.

  3. Production of heavy ion beams for atomic physics studies

    International Nuclear Information System (INIS)

    A laboratory for research in atomic physics of ions has been set up around a 2 MV tandem Van de Graaff accelerator designed and built indegenously. Mass analysed negatively charged heavy ion beams from a directly extracted duoplasmatron ion source are injected through various ion-optical elements into the accelerating tube. A gas stripper at the high voltage dome changes the negative ions into positive ions which are subsequently accelerated. The high energy end of the accelerator consists of quadrupole focussing magnets and an analysing magnet. A pair of insulated tantalum slits provide corona feedback and stabilize the energy of the accelerator. A beam resolution of 5 keV at 1 MeV proton energy has been measured. A number of experiments are presently being planned to utilize the accelerator in the field of basic research in atomic physics. These include beam-foil spectroscopic measurements involving detection of decay photon/electrons, ion-induced X-ray emission, analytical applications and radiation damage studies. Electron spectrometers which are in the stage of testing include cylindrical mirror analyser and parallel plate analyser. On the accelerator front, efforts are underway to develop a new sputter ion source and computer automation for improving stability and reliability. The salient features of the accelerator and the instrumentation developed for carrying out experiments in atomic physics are reported. (author). 14 refs., 17 figs

  4. Focusing Light Beams To Improve Atomic-Vapor Optical Buffers

    Science.gov (United States)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy

    2010-01-01

    Specially designed focusing of light beams has been proposed as a means of improving the performances of optical buffers based on cells containing hot atomic vapors (e.g., rubidium vapor). There is also a companion proposal to improve performance by use of incoherent optical pumping under suitable conditions. Regarding the proposal to use focusing: The utility of atomic-vapor optical buffers as optical storage and processing devices has been severely limited by nonuniform spatial distributions of intensity in optical beams, arising from absorption of the beams as they propagate in atomic-vapor cells. Such nonuniformity makes it impossible to optimize the physical conditions throughout a cell, thereby making it impossible to optimize the performance of the cell as an optical buffer. In practical terms simplified for the sake of brevity, "to optimize" as used here means to design the cell so as to maximize the group delay of an optical pulse while keeping the absorption and distortion of the pulse reasonably small. Regarding the proposal to use incoherent optical pumping: For reasons too complex to describe here, residual absorption of light is one of the main impediments to achievement of desirably long group delays in hot atomic vapors. The present proposal is directed toward suppressing residual absorption of light. The idea of improving the performance of slow-light optical buffers by use of incoherent pumping overlaps somewhat with the basic idea of Raman-based slow-light systems. However, prior studies of those systems did not quantitatively answer the question of whether the performance of an atomic vapor or other medium that exhibits electromagnetically induced transparency (EIT) with Raman gain is superior to that of a medium that exhibits EIT without Raman gain.

  5. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms; Experiences d'optique atomique coherente ou non avec un jet superfin d'atomes metastables de gaz rares

    Energy Technology Data Exchange (ETDEWEB)

    Grucker, J

    2007-12-15

    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable {sup 3}P{sub 2} state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam ({sup 3}P{sub 2}). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms.

  6. Coherent convergent-beam time-resolved X-ray diffraction.

    Science.gov (United States)

    Spence, John C H; Zatsepin, Nadia A; Li, Chufeng

    2014-07-17

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. PMID:24914153

  7. Algorithm Study on Reconstruction of Refractive Angles in Fan Beam Diffraction Enhanced Computed Tomography

    Institute of Scientific and Technical Information of China (English)

    WANG Min; CEN Yu-Wan; ZHU Pei-Ping; HU Xiao-Fang; YU Xiao-Liu

    2008-01-01

    @@ Based on the 360°computing method of refractive angle for parallel beam diffraction enhanced imaging computed tomography(DE-CT)technique,a new algorithm used to calculate the refractive angle for fan-beam DE-CT technique is developed.The refractive index gradient can be obtained by using the new algorithm with projection data of an object in the range of 0-360°.and the new algorithm only needs to set the analyser at half slope position of the rocking curve.

  8. Non-digitized diffractive beam splitters for high-throughput laser materials processing

    Science.gov (United States)

    Amako, J.; Fujii, E.

    2014-03-01

    We report a non-digitized diffractive beam splitter with a split count of 45, a 95% splitting efficiency, and a 0.90 splitting uniformity. The splitter was iteratively designed and was created on fused silica by laser writing lithography. Antireflection coatings were added to the splitter to ensure high efficiency. This splitter was applied to the manufacture of inkjet printer heads, in which silicon wafers were drilled with a 532-nm, nanosecond pulse laser with an average output of 10 W and were wet-etched to produce microfluidic channels. We also discuss large beam arrays for process throughput and subwavelength structures formed on the splitter for efficient laser power use.

  9. Scattering of diffracting beams of electron cyclotron waves by random density fluctuations in inhomogeneous plasmas

    Science.gov (United States)

    Weber, Hannes; Maj, Omar; Poli, Emanuele

    2015-03-01

    The physics and first results of the new WKBeam code for electron cyclotron beams in tokamak plasmas are presented. This code is developed on the basis of a kinetic radiative transfer model which is general enough to account for the effects of diffraction and density fluctuations on the beam. Our preliminary numerical results show a significant broadening of the power deposition profile in ITER due to scattering from random density fluctuations at the plasma edge, while such scattering effects are found to be negligible in medium-size tokamaks like ASDEX upgrade.

  10. Diffraction control in PT-symmetric photonic lattices: from beam rectification to dynamic localization

    CERN Document Server

    Kartashov, Yaroslav V; Konotop, Vladimir V; Torner, Lluis

    2016-01-01

    We address the propagation of light beams in longitudinally modulated PT-symmetric lattices, built as arrays of couplers with periodically varying separation between their channels, and show a number of possibilities for efficient diffraction control available in such non-conservative structures. The dynamics of light in such lattices crucially depends on the ratio of the switching length for the straight segments of each coupler and the longitudinal lattice period. Depending on the longitudinal period, one can achieve either beam rectification, when the input light propagates at a fixed angle across the structure without diffractive broadening, or dynamic localization, when the initial intensity distribution is periodically restored after each longitudinal period. Importantly, the transition between these two different propagation regimes can be achieved by tuning only gain and losses acting in the system, provided that the PT-symmetry remains unbroken. The impact of Kerr nonlinearity is also discussed.

  11. FEL gain taking into account diffraction and electron beam emittance; generalized Madey's theorem

    International Nuclear Information System (INIS)

    We derive a formula for the free electron laser gain in the small-signal, low-grain regime which resembles closely the 1-D formula but taking into account the effect of wave diffraction and electron beam divergence and betatron motion. The formula is cast in a form which exhibits clearly the role of the transverse phase space distribution of photons and electrons. 8 refs

  12. Diffraction efficiency of plasmonic gratings fabricated by electron beam lithography using a silver halide film

    Science.gov (United States)

    Sudheer, Porwal, S.; Bhartiya, S.; Rao, B. T.; Tiwari, P.; Srivastava, Himanshu; Sharma, T. K.; Rai, V. N.; Srivastava, A. K.; Naik, P. A.

    2016-07-01

    The silver nanoparticle surface relief gratings of ˜10 μm period are fabricated using electron beam lithography on the silver halide film substrate. Morphological characterization of the gratings shows that the period, the shape, and the relief depth in the gratings are mainly dependent on the number of lines per frame, the spot size, and the accelerating voltage of electron beam raster in the SEM. Optical absorption of the silver nanoparticle gratings provides a broad localized surface plasmon resonance peak in the visible region, whereas the intensity of the peaks depends on the number density of silver nanoparticles in the gratings. The maximum efficiency of ˜7.2% for first order diffraction is observed for the grating fabricated at 15 keV. The efficiency is peaking at 560 nm with ˜380 nm bandwidth. The measured profiles of the diffraction efficiency for the gratings are found in close agreement with the Raman-Nath diffraction theory. This technique provides a simple and efficient method for the fabrication of plasmonic nanoparticle grating structures with high diffraction efficiency having broad wavelength tuning.

  13. Routing of deep-subwavelength optical beams without reflection and diffraction using infinitely anisotropic metamaterials

    Science.gov (United States)

    Catrysse, Peter B.; Fan, Shanhui

    2015-03-01

    Media that are described by extreme electromagnetic parameters, such as very large/small permittivity/permeability, have generated significant fundamental and applied interest in recent years. Notable examples include epsilon-near-zero, ultra-low refractive-index, and ultra-high refractive-index materials. Many photonic structures, such as waveguides, lenses, and photonic band gap materials, benefit greatly from the large index contrast provided by such media. In this paper, I discuss our recent work on media with infinite anisotropy, i.e., infinite permittivity (permeability) in one direction and finite in the other directions. As an illustration of the unusual optical behaviors that result from infinite anisotropy, I describe efficient light transport in deep-subwavelength apertures filled with infinitely anisotropic media. I then point out some of the opportunities that exist for controlling light at the nano-scale using infinitely anisotropic media by themselves. First, I show that a single medium with infinite anisotropy enables diffraction-free propagation of deep-subwavelength beams. Next, I demonstrate interfaces between two infinitely anisotropic media that are impedancematched for complete deep-subwavelength beams and enable reflection-free routing with zero bend radius that is entirely free from diffraction effects even when deep-subwavelength information is encoded on the beams. These behaviors indicate an unprecedented possibility to use media with infinite anisotropy to manipulate beams with deepsubwavelength features, including complete images. To illustrate physical realizability, I demonstrate a metamaterial design using existing materials in a planar geometry, which can be implemented using well-established nanofabrication techniques. This approach provides a path to deep-subwavelength routing of information-carrying beams and far-field imaging unencumbered by diffraction and reflection.

  14. Focused Azimuthally E-Polarized Vector Beam and Spatial Magnetic Resolution below the Diffraction Limit

    CERN Document Server

    Veysi, Mehdi; Capolino, Filippo

    2016-01-01

    An azimuthally E-polarized vector beam (AEVB) has a salient feature that it contains a magnetic-dominant region within which electric field has a null and longitudinal magnetic field is maximum. Fresnel diffraction theory and plane-wave spectral (PWS) calculations are applied to quantify the field features of such a beam upon focusing through a lens. The diffraction-limited full width at half maximum (FWHM) of the beams longitudinal magnetic field intensity profile and complementary FWHM (CFWHM) of the beam's annular-shaped total electric field intensity profile are calculated at the lens's focal plane as a function of the lens's paraxial focal distance. Subsequently, we demonstrate, for the first time, that a very high resolution magnetic field at optical frequency with the total magnetic field FWHM of 0.23{\\lambda}(magnetic field spot size of 0.04{\\lambda}^2) can be achieved by placing a subwavelength dense dielectric Mie scatterer in the minimum-waist plane of a self-standing converging AEVB. The theory sh...

  15. Atomic structure of a single large biomolecule from diffraction patterns of random orientations

    CERN Document Server

    Tegze, Miklós

    2012-01-01

    The short and intense pulses of the new X-ray free electron lasers, now operational or under construction, may make possible diffraction experiments on single molecule-sized objects with high resolution, before radiation damage destroys the sample. In a single molecule imaging (SMI) experiment thousands of diffraction patterns of single molecules with random orientations are recorded. One of the most challenging problems of SMI is how to assemble these noisy patterns of unknown orientations into a consistent single set of diffraction data. Here we present a new method which can solve the orientation problem of SMI efficiently even for large biological molecules and in the presence of noise. We show on simulated diffraction patterns of a large protein molecule, how the orientations of the patterns can be found and the structure to atomic resolution can be solved. The concept of our algorithm could be also applied to experiments where images of an object are recorded in unknown orientations and/or positions lik...

  16. Matter-wave beam splitter on an atom chip for a portable atom-interferometer

    CERN Document Server

    Kim, S J; Gang, S T; Kim, J B

    2016-01-01

    We construct a matter-wave beam splitter using 87Rb Bose-Einstein condensate on an atom chip. Through the use of radio-frequency-induced double-well potentials, we were able to split a BEC into two clouds separated by distances ranging from 2.8 {\\mu}m to 57 {\\mu}m. Interference between these two freely expanding BECs has been observed. By varying the rf-field amplitude, frequency, or polarization, we investigate behaviors of the beam-splitter. From the perspective of practical use, our BEC manipulation system is suitable for application to interferometry since it is compact and the repetition rate is high due to the anodic bonded atom chip on the vacuum cell. The portable system occupies a volume of 0.5 m3 and operates at a repetition rate as high as ~0.2 Hz.

  17. Atomic motion of resonantly vibrating quartz crystal visualized by time-resolved X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi, Shinobu, E-mail: aoyagi@nsc.nagoya-cu.ac.jp [Department of Information and Basic Science, Nagoya City University, Nagoya 467-8501 (Japan); Osawa, Hitoshi; Sugimoto, Kunihisa; Fujiwara, Akihiko [SPring-8/JASRI, Sayo, Hyogo 679-5198 (Japan); Takeda, Shoichi; Moriyoshi, Chikako; Kuroiwa, Yoshihiro [Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8526 (Japan)

    2015-11-16

    Transient atomic displacements during a resonant thickness-shear vibration of AT-cut α-quartz are revealed by time-resolved X-ray diffraction under an alternating electric field. The lattice strain resonantly amplified by the alternating electric field is ∼10{sup 4} times larger than that induced by a static electric field. The resonantly amplified lattice strain is achieved by fast displacements of oxygen anions and collateral resilient deformation of Si−O−Si angles bridging rigid SiO{sub 4} tetrahedra, which efficiently transduce electric energy into elastic energy.

  18. Atomic motion of resonantly vibrating quartz crystal visualized by time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Transient atomic displacements during a resonant thickness-shear vibration of AT-cut α-quartz are revealed by time-resolved X-ray diffraction under an alternating electric field. The lattice strain resonantly amplified by the alternating electric field is ∼104 times larger than that induced by a static electric field. The resonantly amplified lattice strain is achieved by fast displacements of oxygen anions and collateral resilient deformation of Si−O−Si angles bridging rigid SiO4 tetrahedra, which efficiently transduce electric energy into elastic energy

  19. Atomic motion of resonantly vibrating quartz crystal visualized by time-resolved X-ray diffraction

    Science.gov (United States)

    Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Fujiwara, Akihiko; Takeda, Shoichi; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2015-11-01

    Transient atomic displacements during a resonant thickness-shear vibration of AT-cut α-quartz are revealed by time-resolved X-ray diffraction under an alternating electric field. The lattice strain resonantly amplified by the alternating electric field is ˜104 times larger than that induced by a static electric field. The resonantly amplified lattice strain is achieved by fast displacements of oxygen anions and collateral resilient deformation of Si-O-Si angles bridging rigid SiO4 tetrahedra, which efficiently transduce electric energy into elastic energy.

  20. Ramsey fringes in a thermal beam of Yb atoms

    OpenAIRE

    Rathod, K. D.; Natarajan, Vasant

    2014-01-01

    We use the Ramsey separated oscillatory fields (SOF) technique in a $400^\\circ$C thermal beam of Yb atoms to measure the Larmor precession frequency with high precision. For the experiment, we use the strongly-allowed ${^1S_0} \\rightarrow {^1P_1}$ transition at $399$ nm, and choose the odd isotope $^{171}$Yb with nuclear spin $I=1/2$, so that the ground state has only two magnetic sublevels $m_F = \\pm 1/2$. With a magnetic field of $22.2$ G and a separation of about $400$ mm between the oscil...

  1. Nearside-farside analysis of differential cross sections: Diffraction and rainbow scattering in atom-atom and atom-molecule rotationally inelastic sudden collisions

    Science.gov (United States)

    McCabe, P.; Connor, J. N. L.

    1996-02-01

    Nearside-farside (NF) theory, as used to understand nuclear heavy-ion differential cross sections, is applied for the first time to the angular scattering of atom-atom and atom-diatom collisions. A NF decomposition of the partial wave series (PWS) for the scattering amplitude has the following advantages: (a) it is exact, (b) it uses PW scattering matrix elements (quantum or semiclassical) as calculated by standard computer programs, (c) it is easily incorporated into existing computer programs which calculate angular distributions, (d) semiclassical techniques, such as stationary phase or saddle point integration, are not invoked for the PWS, although the semiclassical picture is still evident. A disadvantage of a NF decomposition is that it is not unique. The Fuller and Hatchell NF decompositions are used to analyze the angular scattering of four collision systems whose PWS involve Legendre polynomials: (a) atom-atom He+Ne elastic diffraction scattering, (b) atom-atom H++Ar elastic rainbow scattering, (c) atom rigid-rotator Ne+D2(j=0) →Ne+D2(j) diffraction scattering under sudden conditions so that the infinite-order-sudden (IOS) approximation is valid, (d) atom rigid-rotator He+N2(j=0)→He+N2(j) rotational rainbow IOS scattering. The utility of these two NF decompositions is assessed by comparison with results from the semiclassical complex angular momentum (CAM) representation of the scattering amplitude. This is chosen because it allows an unambiguous separation of the scattering amplitude into nearside and farside subamplitudes under semiclassical conditions. The Fuller NF decomposition, unlike the Hatchell NF decomposition, provides a physically clear explanation of the angular scattering, which always agrees with the semiclassical CAM interpretation (except for scattering angles ≊180°). The Fuller NF decomposition is therefore recommended for applications to atomic and molecular collisions. The NF theory for the decomposition of Legendre polynomials

  2. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    Science.gov (United States)

    Rathod, K. D.; Singh, P. K.; Natarajan, Vasant

    2014-09-01

    We demonstrate generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman Slower. They are then subjected to a pair of molasses beams inclined at $45^\\circ$ with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate selective deflection of the bosonic isotope $^{174}$Yb, and the fermionic isotope $^{171}$Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  3. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    CERN Document Server

    Rathod, K D; Natarajan, Vasant

    2013-01-01

    We demonstrate generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman Slower. They are then subjected to a pair of molasses beams inclined at $45^\\circ$ with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate selective deflection of the bosonic isotope $^{174}$Yb, and the fermionic isotope $^{171}$Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  4. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    Indian Academy of Sciences (India)

    K D Rathod; P K Singh; Vasant Natarajan

    2014-09-01

    We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45° with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope 174Yb and the fermionic isotope 171Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  5. One Atomic Beam as a Detector of Classical Harmonic Vibrations with Micro Amplitudes and Low Frequencies

    CERN Document Server

    Wong, Werner

    2013-01-01

    We propose a simplest detector of harmonic vibrations with micro amplitudes and low frequencies, i.e. the detector consisting of one atomic beam. Here the atomic beam is induced by a plane harmonic wave and has a classical collective harmonic vibrations, which vibrant directions are perpendicular to the wave vectors of atomic beam. Compared with the detector consisting of atomic Mach-Zehnder interferometer, the new detector has two advantages: (1) it is suitable for the detection of the harmonic vibrations induced either by a longitudinal plane harmonic wave or by a transverse plane harmonic wave; (2) the quantum noise fluctuation of the atomic beam is exactly zero.

  6. The wave energy flux of high frequency diffracting beams in complex geometrical optics

    Science.gov (United States)

    Maj, Omar; Mariani, Alberto; Poli, Emanuele; Farina, Daniela

    2013-04-01

    We consider the construction of asymptotic solutions of Maxwell's equations for a diffracting wave beam in the high frequency limit and address the description of the wave energy flux transported by the beam. With this aim, the complex eikonal method is applied. That is a generalization of the standard geometrical optics method in which the phase function is assumed to be complex valued, with the non-negative imaginary part accounting for the finite width of the beam cross section. In this framework, we propose an argument which simplifies significantly the analysis of the transport equation for the wave field amplitude and allows us to derive the wave energy flux. The theoretical analysis is illustrated numerically for the case of electron cyclotron beams in tokamak plasmas by using the GRAY code [D. Farina, Fusion Sci. Technol. 52, 154 (2007)], which is based upon the complex eikonal theory. The results are compared to those of the paraxial beam tracing code TORBEAM [E. Poli et al., Comput. Phys. Commun. 136, 90 (2001)], which provides an independent calculation of the energy flow.

  7. The wave energy flux of high frequency diffracting beams in complex geometrical optics

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Omar; Poli, Emanuele [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Mariani, Alberto [Istituto di Fisica del Plasma ' P. Caldirola,' Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, via R. Cozzi 53, I-20125 Milano (Italy); Universita degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano (Italy); Farina, Daniela [Istituto di Fisica del Plasma ' P. Caldirola,' Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, via R. Cozzi 53, I-20125 Milano (Italy)

    2013-04-15

    We consider the construction of asymptotic solutions of Maxwell's equations for a diffracting wave beam in the high frequency limit and address the description of the wave energy flux transported by the beam. With this aim, the complex eikonal method is applied. That is a generalization of the standard geometrical optics method in which the phase function is assumed to be complex valued, with the non-negative imaginary part accounting for the finite width of the beam cross section. In this framework, we propose an argument which simplifies significantly the analysis of the transport equation for the wave field amplitude and allows us to derive the wave energy flux. The theoretical analysis is illustrated numerically for the case of electron cyclotron beams in tokamak plasmas by using the GRAY code [D. Farina, Fusion Sci. Technol. 52, 154 (2007)], which is based upon the complex eikonal theory. The results are compared to those of the paraxial beam tracing code TORBEAM [E. Poli et al., Comput. Phys. Commun. 136, 90 (2001)], which provides an independent calculation of the energy flow.

  8. Diffraction of Gaussian beam in a 3D smoothly inhomogeneous media: eikonal-based complex geometrical optics approach

    OpenAIRE

    Berczynski, P.; Bliokh, K. Yu.; Kravtsov, Yu. A.; Stateczny, A.

    2005-01-01

    The paper presents an ab initio account of the paraxial complex geometrical optics (CGO) in application to a scalar Gaussian beam propagation and diffraction in a 3D smoothly inhomogeneous medium. The paraxial CGO deals with quadratic expansion of the complex eikonal and reduces the wave problem to the solution of ordinary differential equations of Riccati type. This substantially simplifies description of Gaussian beams diffraction as compared to full wave or parabolic (quasi-optics) equatio...

  9. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Oliveira, A. N. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); INMETRO, Av. Nossa Senhora das Graças, 50 25250-020 Duque de Caxias, RJ (Brazil); Li, M. S. [Instituto de Física de São Carlos, Universidade de São Paulo, Ave. Trabalhador São Carlense, 400, 13565-590 São Carlos, SP (Brazil)

    2015-07-15

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  10. Convergent beam electron diffraction study on ge-based oxide spinels

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, S I; Umeyama, N [Nanoelectronics Research Institute, AIST, Tsukuba (Japan); Matsuhata, H [Energy Semiconductor Electronics Research Laboratory, AIST, Tsukuba (Japan); Tominaga, A; Sato, H [Department of Physics, Chuo University, Tokyo (Japan); Hara, S [Art, Science and Technology Center for Cooperative Research, Kyushu University, Fukuoka (Japan); Watanabe, T [Department of Physics, Nihon University, Tokyo (Japan); Tomiyasu, K [IMR, Tohoku University, Sendai (Japan); Crawford, M K, E-mail: ikeda-shin@aist.go.j [DuPont Co., Wilmington, Delaware (United States)

    2009-03-01

    Transition metal oxides with spinel crystal structure exhibit intriguing and non trivial magnetic phenomena owing to magnetic frustration between spins having antiferromagnetic coupling interaction on triangle or kagome lattice. GeCo{sub 2}O{sub 4}(GCO) and GeNi{sub 2}O{sub 4}(GNO), which belong to above category, are very rare normal spinels containing Ge ion. Both reveal antiferromagnetic-like phase transitions at 20 K and 12 K, respectively. According to previous neutron and x-ray diffraction measurements, GNO keeps its cubic structural symmetry down to 2 K which is not natural because such a magnetic transition tends to associate with symmetry breaking structural transitions. In order to know whether the structural transition or symmetry change occur or not at the magnetic transition in detail, convergent beam electron diffraction measurements is employed for the compounds.

  11. Radiation damage free two-color X-ray ghost diffraction with atomic resolution

    CERN Document Server

    Li, Zheng; Chapman, Henry; Shih, Yanhua

    2015-01-01

    The X-ray free electron lasers (XFEL) can enable diffractive structural determination of protein crystals or single molecules that are too small and radiation-sensitive for conventional X-ray analysis. However the electronic form factor could have been modified during the ultrashort X-ray pulse due to photoionization and electron cascade caused by the intense X-ray pulse. For general X-ray imaging techniques, to minimize radiation damage effect is of major concern to ensure faithful reconstruction of the structure. Here we show that a radiation damage free diffraction can be achieved with an atomic spatial resolution, by using X-ray parametric down-conversion (PDC), and two-color biphoton ghost imaging. We illustrate that formation of the diffractive patterns satisfies a condition analogous to the Bragg equation, with a resolution that could be as fine as the lattice length scale of several Angstrom. Because the samples are illuminated by the optical photons of low energy, they can be free of radiation damage...

  12. Molecular beam studies of oxide reduction by atomic hydrogen

    International Nuclear Information System (INIS)

    The graphite and oxide internals of a CTR are susceptible to chemical corrosion as well as to physical degradation by high-energy particles. Reactions of thermal atomic hydrogen with oxides are being studied. The hydrogen used is at thermal energy (0.22 eV). Typical data are reported for the H/UO2 system. The reaction probability is plotted as a function of solid temperature at fixed beam intensity and moculation frequency. The reaction probability increases from low temperature to a high-temperature plateau at about 13000C. Here the reaction rate is limited solely by the sticking probability of H on the surface; about one in seven of the incident atoms is chemisorbed by the surface and ultimately returns to the gas phase as water vapor. A reaction model comprising sticking, recombination to H2, solution and diffusion of H in the bulk of the UO2, surface reaction of adsorbed H with lattice oxygen atoms to produce the hydroxyl radical, and production of water is constructed. The rate constants for the elementary steps in the mechanism are tabulated. 2 figures, 2 tables

  13. Evolution of the phase singularities in edge-diffracted optical-vortex beams

    CERN Document Server

    Bekshaev, Aleksandr; Chernykh, Aleksey; Khoroshun, Anna

    2016-01-01

    We study, both theoretically and by experiment, migration of the amplitude zeros within a fixed cross section of the edge-diffracted optical-vortex beam, when the screen edge performs permanent translation in the transverse plane from the beam periphery towards the axis. Generally, the amplitude zeros (optical-vortex cores) describe spiral-like trajectories. When the screen edge advances uniformly, the motion of the amplitude zeros is not smooth and sometimes shows anomalously high rates, which make an impression of instantaneous "jumps" from one position to another. We analyze the nature, conditions and mechanism of these jumps and show that they are associated with the "birth - annihilation" topological reactions involving the optical vortex dipoles.

  14. Diffraction Radiation Diagnostics for Moderate to High Energy Charged Particle Beams

    CERN Document Server

    Fiorito, R B

    2001-01-01

    Diffraction radiation (DR) is produced when a charged particle passes throughan aperture or near a discontinuity in the media in which it is traveling. DRis closely related to transition radiation (TR), which is produced when acharged particle traverses the boundary between media with different dielectricconstants. In contrast to TR, which is now extensively used for beam diagnosticpurposes, the potential of DR as a non-interceptive, multi-parameter beamdiagnostic remains largely undeveloped. For diagnostic measurements it isuseful to observe backward reflected DR from an circular aperture or slitinclined with respect to the beam velocity. However, up to now, well foundedequations for the spectral-angular intensities of backward DR from suchapertures have not been available. We present a new derivation of the spectralangular intensity of backward DR produced from an inclined slit for twoorientations of the slit axis, i.e. perpendicular and parallel to the plane ofincidence. Our mathematical approach is genera...

  15. Two-step resonance ionization spectroscopy of Na atomic beam using cw and pulsed lasers

    International Nuclear Information System (INIS)

    Two-step photoionization of sodium atomic beam has been carried out using a cw and a pulsed dye lasers. Sodium ions have been detected by a time of flight method in order to reduce background noise. With a proper power of the pulsed dye laser the sodium atomic beam has been irradiated by a resonant cw dye laser. The density of the sodium atomic beam is estimated to be 103 cm-3 at the ionization area. (author)

  16. Measurement of Velocity Distribution in Atomic Beam by Diode Laser with Narrow Line width

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; WANG Fengzhi; YANG Donghai; WANG YiQiu

    2001-01-01

    In this paper, by using the detecting laser beam interacts with the atomic beam at a sharp angle and the Doppler frequency shift effect, the velocity distribution in cesium atomic beam is measured with a diode laser of narrow linewidth of 1 MHz. The effects of the atomic natural line width and cycling transition detecting factor on the measured results have been analyzed. Finally, the measured results have been compared with the theoretical calculation.

  17. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    OpenAIRE

    Rathod, KD; Singh, PK; Natarajan, Vasant

    2014-01-01

    We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45(a similar to) with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope Yb-174 and the fermionic isotope Yb-171. Using...

  18. Nano-modulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    CERN Document Server

    Nanni, Emilio A; Moncton, David E

    2015-01-01

    A new method for generation of relativistic electron beams with current modulations at nanometer scale and below is presented. The current modulation is produced by diffracting relativistic electrons in perfect crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a device based on inverse Compton scattering with total length of a few meters. Electron beam simulations from cathode emission through diffraction, acceleration and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.

  19. Grazing incidence collisions of ions and atoms with surfaces: from charge exchange to atomic diffraction; Collisions rasantes d'ions ou d'atomes sur les surfaces: de l'echange de charge a la diffraction atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P

    2006-09-15

    This thesis reports two studies about the interaction with insulating surfaces of keV ions or atoms under grazing incidence. The first part presents a study of charge exchange processes occurring during the interaction of singly charged ions with the surface of NaCl. In particular, by measuring the scattered charge fraction and the energy loss in coincidence with electron emission, the neutralization mechanism is determined for S{sup +}, C{sup +}, Xe{sup +}, H{sup +}, O{sup +}, Kr{sup +}, N{sup +}, Ar{sup +}, F{sup +}, Ne{sup +} and He{sup +}. These results show the importance of the double electron capture as neutralization process for ions having too much potential energy for resonant capture and not enough for Auger neutralization. We have also studied the ionisation of the projectile and of the surface, and the different Auger-like neutralization processes resulting in electron emission, population of conduction band or excited state. For oxygen scattering, we have measured an higher electron yield in coincidence with scattered negative ion than with scattered atom suggesting the transient formation above the surface of the oxygen doubly negative ion. The second study deals with the fast atom diffraction, a new phenomenon observed for the first time during this work. Due to the large parallel velocity, the surface appears as a corrugated wall where rows interfere. Similarly to the Thermal Atom Scattering the diffraction pattern corresponds to the surface potential and is sensitive to vibrations. We have study the H-NaCl and He-LiF atom-surface potentials in the 20 meV - 1 eV range. This new method offers interesting perspectives for surface characterisation. (author)

  20. Multiobjective optimizations of a novel cryocooled dc gun based ultrafast electron diffraction beam line

    Science.gov (United States)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan

    2016-09-01

    We present the results of multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for three different sample radii: 50, 100, and 200 μ m , for two final bunch charges: 1 05 electrons (16 fC) and 1 06 electrons (160 fC). Example optimal solutions are analyzed, and the effects of disordered induced heating estimated. In particular, a relative coherence length of Lc ,x/σx=0.27 nm /μ m was obtained for a final bunch charge of 1 05 electrons and final bunch length of σt≈100 fs . For a final charge of 1 06 electrons the cryogun produces Lc ,x/σx≈0.1 nm /μ m for σt≈100 - 200 fs and σx≥50 μ m . These results demonstrate the viability of using genetic algorithms in the design and operation of ultrafast electron diffraction beam lines.

  1. Application of imaging plate to micro-beam X-ray diffraction

    International Nuclear Information System (INIS)

    A new type of integrating area detector system with high sensitivity and high spatial resolution was recently developed for diagnostic radiography. In this detector system, a two dimensional X-ray image is temporarily stored as a distribution of F-centers in a photostimulable phosphor screen called the imaging plate (IP). The image in the IP is then read out by measuring the intensity of fluorescence which is stimulated by a focused He-Ne laser beam scanning the surface of the phosphor screen. The residual X-ray image in the IP can be erased simply by exposing it to a large dose of visible light and the IP can be used repeatedly. The detector has 100% detective quantum efficiency for 0-20 keV X-ray, a spatial resolution better than 0.15mm(fwhm), a dynamic range of 105 and no counting rate limitation. The exposure time can be shorten to 1/20-1/60 in comparison with the use of the X-ray film. In this study, we examined the possibility of the IP for the X-ray studies on the mechanical behaviour of materials by using the back-reflection X-ray technique. An exposure time of more than 30 minutes would be required for a conventional high sensitivity X-ray film in the case of αFe(211) diffraction by Cr-Kα X-rays. When the imaging plates were used in place of the film under the same X-ray condition, we could obtain visually similar patterns by exposing the time of less than 90 seconds. These diffraction patterns can be precisely analyzed with the help of the image processing analyzer. We conclude that this detector system is usable in almost the same way as an X-ray film. Especially, this will be more powerful means in the field of micro-beam X-ray diffraction. (author)

  2. Atomic structure of "multilayer silicene" grown on Ag(111): Dynamical low energy electron diffraction analysis

    Science.gov (United States)

    Kawahara, Kazuaki; Shirasawa, Tetsuroh; Lin, Chun-Liang; Nagao, Ryo; Tsukahara, Noriyuki; Takahashi, Toshio; Arafune, Ryuichi; Kawai, Maki; Takagi, Noriaki

    2016-09-01

    We have investigated the atomic structure of the "multilayer silicene" grown on the Ag(111) single crystal surface by using low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). We measured the intensity of the LEED spot as a function of the incident electron energy (I-V curve) and analyzed the I-V curve using a dynamical LEED theory. We have found that the Si(111)(√{ 3} ×√{ 3})-Ag model well reproduces the I-V curve whereas the models consisting of the honeycomb structure of Si do not. The bias dependence of the STM image of multilayer silicene agrees with that of the Si(111)(√{ 3} ×√{ 3})-Ag reconstructed surface. Consequently, we have concluded that the multilayer silicene grown on Ag(111) is identical to the Si(111)(√{ 3} ×√{ 3})-Ag reconstructed structure.

  3. The degenerating diffraction far-field propagation properties of the conical double half-Gaussian hollow beams

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The far-field propagation properties of conical double half-Gaussian hollow beams in the condition of Collins formula are studied. Because of the cone angle of this kind of hollow beams, the diffraction is compensated and the inner diameter is turning bigger by the rule of geometric optics as the propagation distance is increasing, whereas the degenerating diffraction phenomenon is turned out. The far-field intensity distribution of the conical double half-Gaussian hollow beams in the condition of in-Collins formula is researched, and the results show that the far-field propagation properties can be depicted by this model. In the experiment, this kind of hollow beams are obtained by means of the dual-reflecting splitting optical system, and the inner diameter of the hollow beams is tested. The results show good agreement with the propagation theory in the condition of in-Collins formula.

  4. Effects of Polarization Azimuth of Writing Beams on Diffraction Properties in Vector Holograms Using Radially Polarized Light

    Science.gov (United States)

    Ono, Hiroshi; Matsumoto, Taro; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro

    2012-06-01

    It is very important for realizing the polarization-multiplex holographic memory to clarify the optical properties of vector holograms recorded using the inhomogeneous polarized beams. In the present paper we present a simple yet useful method using the radially polarized writing beams to systematically investigate the optical properties of complicated vector holograms and preliminary data about effects of polarization azimuth of writing beams on diffraction properties. The diffraction properties of the vector holograms written in the azobenzene-containing polymers were strongly dependent on the angle between the grating vector and polarization azimuth of the writing beam. Considering the above-mentioned dependence, the theoretical calculation on the basis of Jones calculus revealed optical properties of the vector holograms written by various types of radially polarized beams.

  5. An atomic beam source for fast loading of a magneto-optical trap under high vacuum

    DEFF Research Database (Denmark)

    McDowall, P.D.; Hilliard, Andrew; Grünzweig, T.;

    2012-01-01

    We report on a directional atomic beam created using an alkali metal dispenser and a nozzle. By applying a high current (15 A) pulse to the dispenser at room temperature we can rapidly heat it to a temperature at which it starts dispensing, avoiding the need for preheating. The atomic beam produced...

  6. Focusing a beam beyond the diffraction limit using a hyperlens-based device

    Institute of Scientific and Technical Information of China (English)

    Zheng Guo-Xing; Zhang Rui-Ying; Li Song; He Ping-An; Zhou Hui

    2011-01-01

    A super-focusing device composed of a focusing objective and a hyperlens is proposed to focus an incident plane wave into the deep subwavelength dimension. In the device,the objective converts the incident plane wave into a convergent one.The half cylindrical hyperlens can support high wave vector k modes propagating towards its core.So the convergent wave can be focused into an ultrasmall spot beyond the diffraction limit.The layout is proposed for the super-focusing device and its characteristics are investigated theoretically.Numerical simulations verify that the focused beams are confined in a spot with a diameter of 16.3 nm in the focal plane of the focusing objective with a numerical aperture of 0.6,which corresponds to a super-resolution spot of λ0/23 (λ0 is the wavelength in vacuum).The simulations confirm the effectiveness of the proposed device.

  7. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    Science.gov (United States)

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-01

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

  8. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    Science.gov (United States)

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-01

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions. PMID:26561090

  9. The effect of atoms excited by electron beam on metal evaporation

    CERN Document Server

    Xie Guo Feng; Ying Chun Tong

    2002-01-01

    In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases

  10. Development of a prompt gamma activation analysis facility using diffracted polychromatic neutron beam

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    A prompt gamma activation analysis facility has recently been developed at Hanaro, the 24 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic thermal neutrons are extracted by setting pyrolytic graphite crystals at a Bragg angle of 45 deg. . The detection system comprises a large single n-type HPGe detector, signal electronics and a fast ADC. Neutron beam characterization was performed both theoretically and experimentally. The neutron flux was measured to be 7.9x10 sup 7 n/cm sup 2 s in a 1x1 cm sup 2 beam area at the sample position with a uniformity of 12%. The corresponding Cd-ratio for gold was found to be 266. The beam quality was compared with other representative thermal neutron prompt gamma activation analysis. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n,gamma) reactions of N and Cl. Finally, the sensitivities and the detection limits were obtained for several elements.

  11. Development of a prompt gamma activation analysis facility using diffracted polychromatic neutron beam

    International Nuclear Information System (INIS)

    A prompt gamma activation analysis facility has recently been developed at Hanaro, the 24 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic thermal neutrons are extracted by setting pyrolytic graphite crystals at a Bragg angle of 45 deg. . The detection system comprises a large single n-type HPGe detector, signal electronics and a fast ADC. Neutron beam characterization was performed both theoretically and experimentally. The neutron flux was measured to be 7.9x107 n/cm2 s in a 1x1 cm2 beam area at the sample position with a uniformity of 12%. The corresponding Cd-ratio for gold was found to be 266. The beam quality was compared with other representative thermal neutron prompt gamma activation analysis. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n,γ) reactions of N and Cl. Finally, the sensitivities and the detection limits were obtained for several elements

  12. Spectral property of ultrashort chirped pulsed Gaussian beams diffracted by Gaussian aperture in dispersive media

    Science.gov (United States)

    Zou, Qihui; Hu, Qianhuan; Guo, Jie; Duan, Xi; Tong, Shihong

    2015-10-01

    Based on the Fresnel-Kirchhoff diffraction integral and Fourier transform, the propagation equation and its Fourier spectrum for ultra-short chirped pulsed Gaussian beams diffracted by Gaussian aperture are derived in dispersive medium, and the frequency-domain analytical electric field are presented. The effects of relative aperture, transmission distance and chirp parameter on the axial spectral properties are illustrated with numerical calculation results, and the variations of off-axis power spectrum with relative aperture, transmission distance and off-axis radius are given. It is found that the axial power spectrum of ultra-short chirped pulsed Gaussian increases with increasing relative aperture, the axial spectral blue-shift increases and approaches an asymptotic value associated with chirp parameter and propagation distance. The axial spectra of ultra-short chirped pulsed Gaussian become broadened with increasing the absolute value of the chirp parameter. With increasing off-axis radius, the off-axis power spectrum reduce rapidly, and the distribution of spectra shifts to the left. The off-axis spectral redshift increases with increasing off-axis radius.

  13. Velocity distribution measurements in atomic beams generated using laser induced back-ablation

    CERN Document Server

    Denning, A; Lee, S; Ammonson, M; Bergeson, S D

    2008-01-01

    We present measurements of the velocity distribution of calcium atoms in an atomic beam generated using a dual-stage laser back-ablation apparatus. Distributions are measured using a velocity selective Doppler time-of-flight technique. They are Boltzmann-like with rms velocities corresponding to temperatures above the melting point for calcium. Contrary to a recent report in the literature, this method does not generate a sub-thermal atomic beam.

  14. Three-dimensional diffractive micro- and nano-optical elements fabricated by electron-beam lithography

    Science.gov (United States)

    Divliansky, Ivan B.; Johnson, Eric G.

    2007-02-01

    The broad development of the micro- and nano-technologies in the past few years increased the need of techniques capable of fabricating sub-micron structures with arbitrary surface profiles. Out of the several fabrication approaches (HEBS lithography, laser writing, etc.) the electron beam writing stands out as the one capable of the highest resolution, superior alignment accuracy and very small surface roughness. These characteristics make the technique greatly applicable in the fields of photonics and micro-opto-electro-mechanical-systems (MOEMS). Here we describe the specificity of fabricating 3D diffractive micro- and nano-optical elements using Leica EBPG 5000+ electron beam system. Parameters like speed of writing, dose accumulation, pattern writing specifics, etc. affect greatly the electronbeam resist properties and the desired 3D profile. We present data that can be used to better understand the different dependencies and therefore achieve better profile and surface roughness management. The results can be useful in future developments in the areas of integrated photonic circuits and MOEMS.

  15. Velocity Distribution of Effective Atoms in a Small Optically Pumped Cesium Beam Frequency Standard

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; WANG Fengzhi; YANG Donghai; WANG YiQiu

    2001-01-01

    In this paper, the velocity distribution of effective atoms in a small optically pumped cesium beam frequency standard has been achieved from the Fourier transforms of the experimentally recorded Ramsey patterns. The result fits well with the theoretical calculation. The second order Doppler shift correction of the small cesium atomic clock is obtained from the velocity distribution of effective atoms.

  16. Metastable states' population of uranium atoms produced by electron-beam heating

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Hironori; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nishimura, Akihiko; Ogura, Koichi [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Kyoto (Japan)

    2000-08-01

    The metastable states' population densities of uranium atoms produced by electron-beam heating were measured by the laser induced fluorescence method. The atomic excitation temperature derived from the metastable state distribution was lower than the evaporation surface temperature. With increasing deposition rate, the atomic excitation temperature decreased to about 2000 K. (author)

  17. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    Science.gov (United States)

    Tanaka, M.; Katsuya, Y.; Matsushita, Y.

    2013-03-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  18. Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations

    International Nuclear Information System (INIS)

    A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topological charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research

  19. Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, 5 Bisbee Ct., Santa Fe, NM 87508 (United States); Li, R.X., E-mail: rxli@mail.xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Guo, L.X. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Ding, C.Y. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China)

    2015-10-15

    A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topological charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.

  20. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    CERN Document Server

    Chanu, Sapam Ranjita; Natarajan, Vasant

    2016-01-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  1. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    Science.gov (United States)

    Chanu, Sapam Ranjita; Rathod, Ketan D.; Natarajan, Vasant

    2016-08-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  2. Neutron diffraction analyses of U-(6-10 wt.%)Mo alloy powders fabricated by centrifugal atomization

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Man [Advanced Fuel Technology Development Division, Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Ryu, Ho Jin, E-mail: hjryu@kaeri.re.k [Advanced Fuel Technology Development Division, Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Kim, Ki Hwan; Lee, Don Bae; Lee, Yoon Sang [Advanced Fuel Technology Development Division, Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, Jeong Soo; Seong, Baek Seok [Neutron Science Division, Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Kim, Chang Kyu [Advanced Fuel Technology Development Division, Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Cornen, Marilyne [INSA de Rennes, UMR CNRS 6226 Sciences Chimiques de Rennes/Chimie-Metallurgie, 20 Avenue des Buttes de Coesmes, 35043 Rennes Cedex (France)

    2010-02-15

    Lattice parameters of U-(6-10 wt.%)Mo alloy powders fabricated by a centrifugal atomization technique were measured by neutron diffraction analyses. A micro-segregation of Mo at cell boundaries was observed in the centrifugally atomized U-Mo alloy powders with varying Mo content. Lattice parameters of gamma phases decrease linearly with the increasing Mo content. By separating the overlapped diffraction peaks from cell boundaries and cell interior, lattice parameters and Mo contents of each region were calculated. The Mo content at cell boundaries is about 2-5 at.% lower than that in the cell interior and the lattice parameters for the cell boundaries are higher than those for the cell interior of the atomized U-Mo powder.

  3. Neutron diffraction analyses of U-(6-10 wt.%)Mo alloy powders fabricated by centrifugal atomization

    Science.gov (United States)

    Park, Jong Man; Ryu, Ho Jin; Kim, Ki Hwan; Lee, Don Bae; Lee, Yoon Sang; Lee, Jeong Soo; Seong, Baek Seok; Kim, Chang Kyu; Cornen, Marilyne

    2010-02-01

    Lattice parameters of U-(6-10 wt.%)Mo alloy powders fabricated by a centrifugal atomization technique were measured by neutron diffraction analyses. A micro-segregation of Mo at cell boundaries was observed in the centrifugally atomized U-Mo alloy powders with varying Mo content. Lattice parameters of gamma phases decrease linearly with the increasing Mo content. By separating the overlapped diffraction peaks from cell boundaries and cell interior, lattice parameters and Mo contents of each region were calculated. The Mo content at cell boundaries is about 2-5 at.% lower than that in the cell interior and the lattice parameters for the cell boundaries are higher than those for the cell interior of the atomized U-Mo powder.

  4. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    Science.gov (United States)

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-07-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry.

  5. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    Science.gov (United States)

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-01-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516

  6. Design and fabrication of a diffractive beam splitter for dual-wavelength and concurrent irradiation of process points.

    Science.gov (United States)

    Amako, Jun; Shinozaki, Yu

    2016-07-11

    We report on a dual-wavelength diffractive beam splitter designed for use in parallel laser processing. This novel optical element generates two beam arrays of different wavelengths and allows their overlap at the process points on a workpiece. To design the deep surface-relief profile of a splitter using a simulated annealing algorithm, we introduce a heuristic but practical scheme to determine the maximum depth and the number of quantization levels. The designed corrugations were fabricated in a photoresist by maskless grayscale exposure using a high-resolution spatial light modulator. We characterized the photoresist splitter, thereby validating the proposed beam-splitting concept. PMID:27410878

  7. Aspherical-atom modeling of coordination compounds by single-crystal X-ray diffraction allows the correct metal atom to be identified.

    Science.gov (United States)

    Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep

    2015-02-01

    Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. PMID:25393218

  8. High-flux beam source for cold, slow atoms or molecules

    OpenAIRE

    Maxwell, S. E.; Brahms, N.; deCarvalho, R.; Helton, J.; Nguyen, S V; Patterson, D; Doyle, J. M.; Glenn, D. R.; Petricka, J.; DeMille, D.

    2005-01-01

    We demonstrate and characterize a high-flux beam source for cold, slow atoms or molecules. The desired species is vaporized using laser ablation, then cooled by thermalization in a cryogenic cell of buffer gas. The beam is formed by particles exiting a hole in the buffer gas cell. We characterize the properties of the beam (flux, forward velocity, temperature) for both an atom (Na) and a molecule (PbO) under varying buffer gas density, and discuss conditions for optimizing these beam paramete...

  9. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Chen, Zilun; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2016-05-15

    We report on the development of a monolithic adaptive fiber optics collimator, with a large deflection angle and preserved near-diffraction-limited beam quality, that has been tested at a maximal output power at the 300 W level. Additionally, a new measurement method of beam quality (M2 factor) is developed. Experimental results show that the deflection angle of the collimated beam is in the range of 0-0.27 mrad in the X direction and 0-0.19 mrad in the Y direction. The effective working frequency of the device is about 710 Hz. By employing the new measurement method of the M2 factor, we calculate that the beam quality is Mx2=1.35 and My2=1.24, which is in agreement with the result from the beam propagation analyzer and is preserved well with the increasing output power. PMID:27176966

  10. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Chen, Zilun; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2016-05-15

    We report on the development of a monolithic adaptive fiber optics collimator, with a large deflection angle and preserved near-diffraction-limited beam quality, that has been tested at a maximal output power at the 300 W level. Additionally, a new measurement method of beam quality (M2 factor) is developed. Experimental results show that the deflection angle of the collimated beam is in the range of 0-0.27 mrad in the X direction and 0-0.19 mrad in the Y direction. The effective working frequency of the device is about 710 Hz. By employing the new measurement method of the M2 factor, we calculate that the beam quality is Mx2=1.35 and My2=1.24, which is in agreement with the result from the beam propagation analyzer and is preserved well with the increasing output power.

  11. Theory for Gaussian beam diffraction in 2D inhomogeneous medium, based on the eikonal form of complex geometrical optics

    International Nuclear Information System (INIS)

    A simple and effective method to describe Gaussian beams propagation and diffraction in arbitrary smoothly inhomogeneous 2D medium has been developed based on the eikonal form of complex geometrical optics. The method assumes the eikonal equation can be solved in paraxial approximation in curvilinear frame of references, connected with the central ray. The Riccati-type ordinary differential equation is derived for complex parameter characterizing the Gaussian beam width and phase front curvature. The same parameter was proved to define both the modulus and the argument of the complex amplitude. As a result, the problem of the Gaussian beam diffraction in inhomogeneous media has been reduced to the solution of the ordinary differential equation of the first order, which can be readily calculated numerically for arbitrary profile of dielectric permittivity

  12. Theory for Gaussian beam diffraction in 2D inhomogeneous medium, based on the eikonal form of complex geometrical optics

    Science.gov (United States)

    Berczynski, P.; Kravtsov, Yu. A.

    2004-10-01

    A simple and effective method to describe Gaussian beams propagation and diffraction in arbitrary smoothly inhomogeneous 2D medium has been developed based on the eikonal form of complex geometrical optics. The method assumes the eikonal equation can be solved in paraxial approximation in curvilinear frame of references, connected with the central ray. The Riccati-type ordinary differential equation is derived for complex parameter characterizing the Gaussian beam width and phase front curvature. The same parameter was proved to define both the modulus and the argument of the complex amplitude. As a result, the problem of the Gaussian beam diffraction in inhomogeneous media has been reduced to the solution of the ordinary differential equation of the first order, which can be readily calculated numerically for arbitrary profile of dielectric permittivity.

  13. Theory for Gaussian beam diffraction in 2D inhomogeneous medium, based on the eikonal form of complex geometrical optics

    Energy Technology Data Exchange (ETDEWEB)

    Berczynski, P. [Institute of Physics, Technical University of Szczecin, Szczecin 70-310 (Poland); Kravtsov, Yu.A. [Space Research Institute, Russian Academy of Science, Moscow 117 997 (Russian Federation) and Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland)]. E-mail: kravtsov@wsm.szczecin.pl

    2004-10-18

    A simple and effective method to describe Gaussian beams propagation and diffraction in arbitrary smoothly inhomogeneous 2D medium has been developed based on the eikonal form of complex geometrical optics. The method assumes the eikonal equation can be solved in paraxial approximation in curvilinear frame of references, connected with the central ray. The Riccati-type ordinary differential equation is derived for complex parameter characterizing the Gaussian beam width and phase front curvature. The same parameter was proved to define both the modulus and the argument of the complex amplitude. As a result, the problem of the Gaussian beam diffraction in inhomogeneous media has been reduced to the solution of the ordinary differential equation of the first order, which can be readily calculated numerically for arbitrary profile of dielectric permittivity.

  14. Development of francium atomic beam for the search of the electron electric dipole moment

    Directory of Open Access Journals (Sweden)

    Sato Tomoya

    2014-03-01

    Full Text Available For the measurement of the electron electric dipole moment using Fr atoms, a Fr ion-atom conversion is one of the most critical process. An ion-atom converter based on the “orthotropic” type of Fr source has been developed. This converter is able to convert a few keV Fr ion beam to a thermal atomic beam using a cycle of the surface ionization and neutralization. In this article, the development of the converter is reported.

  15. Application of cold beam of atoms and molecules for studying luminescence of oxygen atoms stimulated by metastable helium

    International Nuclear Information System (INIS)

    We describe a method for creating a high flux beam of cold atoms and molecules. By using this beam method, spectroscopic studies of the afterglow of oxygen-helium gas mixtures at cryogenic temperatures were performed. The cooling by helium vapor of a helium jet containing trace amounts of oxygen after passing through a radiofrequency discharge zone led to the observation of strong emissions from atomic oxygen. The effect results from the increased efficiency of energy transfer from metastable helium atoms and molecules to the atomic oxygen in the cold dense helium vapor. The effect might find application for the detection of small quantities of impurities in helium gas as well as possible laser action

  16. Beating the classical limit: A diffraction-limited spectrograph for an arbitrary input beam

    CERN Document Server

    Betters, Christopher H; Robertson, J Gordon; Bland-Hawthorn, Joss

    2013-01-01

    We demonstrate a new approach to classical fiber-fed spectroscopy. Our method is to use a photonic lantern that converts an arbitrary (e.g. incoherent) input beam into N diffraction-limited outputs. For the highest throughput, the number of outputs must be matched to the total number of unpolarized spatial modes on input. This approach has many advantages: (i) after the lantern, the instrument is constructed from 'commercial off the shelf' components; (ii) the instrument is the minimum size and mass configuration at a fixed resolving power and spectral order (~shoebox sized in this case); (iii) the throughput is better than 60% (slit to detector, including detector QE of ~80%); (iv) the scattered light at the detector can be less than 0.1% (total power). Our first implementation operates over 1545-1555 nm (limited by the detector, a 640$\\times$512 array with 20$\\mu$m pitch) with a spectral resolution of 0.055nm (R~30,000) using a 1$\\times$7 (1 multi-mode input to 7 single-mode outputs) photonic lantern. This ...

  17. X-ray diffraction from bone employing annular and semi-annular beams

    International Nuclear Information System (INIS)

    There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as ‘bone quality’ need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of ‘bone quality’. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined. (paper)

  18. ATOMIC BEAM POLARIZATION MEASUREMENT OF THE RHIC POLARIZED H-JET TARGET.

    Energy Technology Data Exchange (ETDEWEB)

    MAKDISI,Y.; NASS,A.; GRAHAM,D.; KPONOU,A.; MAHLER,G.; MENG,W.; RITTER,J.; ET AL.

    2005-01-28

    The RHIC polarized H-Jet measures the polarization of the RHIC proton beam via elastic scattering off a nuclear polarized atomic hydrogen beam. The atomic beam is produced by a dissociator, a beam forming system and sextupole magnets. Nuclear polarization is achieved by exchanging occupation numbers of hyperfine states using high frequency transitions. The polarization was measured using a modified form of a Breit-Rabi polarimeter including focusing magnets and another set of high frequency transitions. The sampling of a large part of the beam and low noise electronics made it possible to measure the polarization to a high degree of accuracy in a very short time period (1 min). Using this system, we measured no depolarization of the atomic beam due to the RF fields of the bunched proton beam. Time-of-Flight measurements were done using a fast chopper and a QMA at the position of the RHIC interaction point to determine the areal density of the atomic beam seen by the RHIC beam.

  19. Status of the hydrogen and deuterium atomic beam polarized target for NEPTUN experiment

    Science.gov (United States)

    Balandikov, N. I.; Ershov, V. P.; Fimushkin, V. V.; Kulikov, M. V.; Pilipenko, Yu. K.; Shutov, V. B.

    1995-09-01

    NEPTUN-NEPTUN-A is a polarized experiment at Accelerating and Storage Complex (UNK, IHEP) with two internal targets. Status of the atomic beam polarized target that is being developed at the Joint Institute for Nuclear Research, Dubna is presented.

  20. Particle beam technology for control of atomic-bonding state in materials

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Junzo [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    The atomic-bonding state in materials can be controlled through `kinetic bonding` process by energetic particle beams which have a sufficient atomic kinetic energy. In order to clarify the `kinetic bonding` process the negative-ion beam deposition is considered as an ideal method because the negative ion has no additional active energies. Sputter type heavy negative-ion sources can be used for this purpose. Carbon films prepared by carbon negative-ion beam deposition have a strong dependency of the film properties on ion beam kinetic energy and have a quite high thermal conductivity which is comparable to that of the IIb diamond at a kinetic energy of 50-100 eV/atom. It suggests that new or metastable materials could be formed through the `kinetic bonding` process. Negative-ion beams can also be used for ion implantation, in which charging problems are perfectly reduced. (author)

  1. A Simulator for Producing of High Flux Atomic Oxygen Beam by Using ECR Plasma Source

    Institute of Scientific and Technical Information of China (English)

    Shuwang DUO; Meishuan LI; Yaming ZHANG

    2004-01-01

    In order to study the atomic oxygen corrosion of spacecraft materials in low earth orbit environment, an atomic oxygen simulator was established. In the simulator, a 2.45 GHz microwave source with maximum power of 600 W was launched into the circular cavity to generate ECR (electron cyclotron resonance) plasma. The oxygen ion beam moved onto a negatively biased Mo plate under the condition of symmetry magnetic mirror field confine, then was neutralized and reflected to form oxygen atom beam. The properties of plasma density, electron temperature, plasma space potential and ion incident energy were characterized. The atomic oxygen beam flux was calibrated by measuring the mass loss rate of Kapton during the atomic 5~30 eV and a cross section of φ80 mm could be obtained under the operating pressure of 10-1~10-3 Pa. Such a high flux source can provide accelerated simulation tests of materials and coatings for space applications.

  2. Magnetic focusing of cold atomic beam with a 2D array of current-carrying wires

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Min Yun; Jianping Yin

    2006-01-01

    @@ A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam,formed by an array of square current-carrying wires,is proposed.We calculate the spatial distributions of the magnetic fields from the array of current-carrying wires and the magnetic focusing potential for cold rubidium atoms,and study the dynamic focusing processes of cold atoms passing through the magnetic micro-lens array and its focusing properties by using Monte-Carlo simulations and trajectory tracing method.The result shows that the proposed micro-lens array can be used to focus effectively a cold atomic beam,even to load ultracold atoms or a BEC sample into a 2D optical lattice formed by blue detuned hollow beams.

  3. Estimated H-atom anisotropic displacement parameters: a comparison between different methods and with neutron diffraction results

    DEFF Research Database (Denmark)

    Munshi, Parthapratim; Madsen, Anders Ø; Spackman, Mark A;

    2008-01-01

    Anisotropic displacement parameters (ADPs) are compared for H atoms estimated using three recently described procedures, both among themselves and with neutron diffraction results. The results convincingly demonstrate that all methods are capable of giving excellent results for several benchmark...... in the agreement with neutron results. The SHADE2 library, now incorporated in the SHADE web server, is recommended as a routine procedure for deriving estimates of H-atom ADPs suitable for use in charge-density studies on molecular crystals, and its widespread use should reveal remaining deficiencies and perhaps...

  4. Self-reconstruction of diffraction-free and accelerating laser beams in scattering media

    International Nuclear Information System (INIS)

    We experimentally investigate propagation of laser beams with different intensity profiles in highly scattering media. We generate transverse laser amplitude profiles with Gaussian, Bessel and Airy function envelopes. We then propagate these beams through optical phantoms formed with variable density intralipid solutions. At the sample exit, we compare change in maximum intensities, as well as beam profile reconstruction. We show that self-reconstruction properties of Bessel and Airy beams bring about slower decrease in maximum intensity with increasing scatterer density. On the other hand, the beam profiles deteriorate faster, as compared to reference Gaussian beams. Slower decrease in the intensity can be attributed to the wavevector spectra providing a continuous flow of energy to the beam center, while beam deterioration is linked to total beam volume in the scattering medium. These results show that beam shaping methods can significantly enhance delivery of intense light deeper into turbid media, but this enhancement is compromised by stronger speckling of beam profiles. -- Highlights: ► We experimentally investigate propagation of shaped laser beams in turbid media. ► Peak intensity of Bessel and Airy beams decrease slower with increasing scatterer. ► Shaped beam profiles deteriorate faster, as compared to reference Gaussian beams. ► Shaped beam profiles can enhance applications of lasers inscattering media.

  5. Real-time detection of focal position of workpiece surface during laser processing using diffractive beam samplers

    Science.gov (United States)

    Cao, Binh Xuan; Hoang, PhuongLe; Ahn, Sanghoon; Kim, Jeng-o.; Sohn, Hyonkee; Noh, Jiwhan

    2016-11-01

    The real-time fabrication of microgrooves on a curved surface using a laser beam, without preprogramming their shapes into the machining instructions, is a major challenge in laser processing owing to limitations associated with the real-time detection of the focal position. A new approach using a sampled fraction of the beam from a diffractive beam sampler (DBS) is therefore presented in order to overcome this limitation. By considering the sampled fraction of the beam an analysis of the results allows for precise positioning of the specimen for focal-point identification. This allows for the determination of the focus for a broad variety of laser types and laser powers, thereby providing stringent focusing conditions with high numerical apertures. This approach is easy to implement, inexpensive, independent of the roughness or granularity of the workpieces, and more importantly does not require auxiliary lasers and displacement sensors for real-time measurement during the fabrication process.

  6. Diffraction of Gaussian beam in 3D smoothly inhomogeneous media: eikonal-based complex geometrical optics approach

    CERN Document Server

    Berczynski, P; Kravtsov, Y A; Stateczny, A; Kravtsov, Yu.A.

    2005-01-01

    A simple and effective method based on the eikonal form of complex geometrical optics is presented to describe scalar Gaussian beams propagation and diffraction in arbitrary 3D smoothly inhomogeneous medium. Similarly to paraxial WKB approach the method reduces the wave problem to a set of ordinary differential equations of Riccati type. This substantially simplifies the solution as compared to full wave or quasy-optics equations. The method assumes the complex eikonal equation to be solved in paraxial approximation in curvilinear coordinate frame, which is associated with the central ray of the beam and performs Levi-Civita parallel transport. In this way the system of Riccati-type equations is obtained for complex parameters, which characterize both the beam cross-section and the shape of the phase front. For Gaussian beam propagating in homogeneous medium or along the symmetry axis in lens-like medium, these equations possess analytical solutions, otherwise they can be readily solved numerically. In contra...

  7. Producing acoustic 'Frozen Waves': simulated experiments with diffraction/attenuation resistant beams in lossy media.

    Science.gov (United States)

    Prego-Borges, José L; Zamboni-Rached, Michel; Recami, Erasmo; Costa, Eduardo Tavares

    2014-08-01

    The so-called Localized Waves (LW), and the "Frozen Waves" (FW), have raised significant attention in the areas of Optics and Ultrasound, because of their surprising energy localization properties. The LWs resist the effects of diffraction for large distances, and possess an interesting self-reconstruction -self-healing- property (after obstacles with size smaller than the antenna's); while the FWs, a sub-class of LWs, offer the possibility of arbitrarily modeling the longitudinal field intensity pattern inside a prefixed interval, for instance 0⩽z⩽L, of the wave propagation axis. More specifically, the FWs are localized fields "at rest", that is, with a static envelope (within which only the carrier wave propagates), and can be endowed moreover with a high transverse localization. In this paper we investigate, by simulated experiments, various cases of generation of ultrasonic FW fields, with the frequency of f0=1 MHz in a water-like medium, taking account of the effects of attenuation. We present results of FWs for distances up to L=80 mm, in attenuating media with absorption coefficient α in the range 70⩽α⩽170 dB/m. Such simulated FW fields are constructed by using a procedure developed by us, via appropriate finite superpositions of monochromatic ultrasonic Bessel beams. We pay due attention to the selection of the FW parameters, constrained by the rather tight restrictions imposed by experimental Acoustics, as well as to some practical implications of the transducer design. The energy localization properties of the Frozen Waves can find application even in many medical apparatus, such as bistouries or acoustic tweezers, as well as for treatment of diseased tissues (in particular, for the destruction of tumor cells, without affecting the surrounding tissues; also for kidney stone shuttering, etc.).

  8. Numerical Investigation Of The Bombardment Of A Graphene Sheet By A Beam Of Carbon Atoms

    Directory of Open Access Journals (Sweden)

    O.V. Khomenko

    2009-01-01

    Full Text Available Classical molecular dynamics simulations of the bombardment of a graphene sheet by a beam of carbon atoms are carried out. Covalent bonds in the irradiated sample are described by the Brenner potential. The approximation of elastic balls interacting with graphene via the Lennard-Jones potential is used for particles in a beam. The influence of the energy and density of irradiating carbon atoms and of the presence of a thermostat on physical processes occurring during the collisions with the sample is investigated. Energy values of the particles in a beam, which are enough for the sample destruction, are defined.

  9. A two-dimensional lattice of blue detuned atom traps using a projected Gaussian beam array

    CERN Document Server

    Piotrowicz, M J; Maller, K; Li, G; Zhang, S; Isenhower, L; Saffman, M

    2013-01-01

    We describe a new type of blue detuned optical lattice for atom trapping which is intrinsically two dimensional, while providing three-dimensional atom localization. The lattice is insensitive to optical phase fluctuations since it does not depend on field interference between distinct optical beams. The array is created using a novel arrangement of weakly overlapping Gaussian beams that creates a two-dimensional array of dark traps which are suitable for magic trapping of ground and Rydberg states. We analyze the spatial localization that can be achieved and demonstrate trapping and detection of single Cs atoms in 6 and 49 site two-dimensional arrays.

  10. Proceedings of the workshop on atomic physics with fast heavy-ion beams

    International Nuclear Information System (INIS)

    The Workshop on Atomic Physics with Fast Heavy-Ion Beams was held in the Physics Division, Argonne National Laboratory on January 20 and 21, 1983. The meeting brought together approx. 50 practitioners in the field of accelerator-based atomic physics. The workshop was held to focus attention on possible areas of atomic physics research which would benefit from use of the newest generation of accelerators designed to produce intense high-quality beams of fast heavy ions. Abstracts of individual paper were prepared separately for the data base

  11. A compact design for a magnetic synchrotron to store beams of hydrogen atoms

    CERN Document Server

    van der Poel, Aernout P P; Softley, Timothy P; Bethlem, Hendrick L

    2015-01-01

    We present a design for an atomic synchrotron consisting of 40 hybrid magnetic hexapole lenses arranged in a circle. We show that for realistic parameters, hydrogen atoms with a velocity up to 600 m/s can be stored in a 1-meter diameter ring, which implies that the atoms can be injected in the ring directly from a pulsed supersonic beam source. This ring can be used to study collisions between stored hydrogen atoms and molecular beams of many different atoms and molecules. The advantage of using a synchrotron is two-fold: (i) the collision partners move in the same direction as the stored atoms, resulting in a small relative velocity and thus a low collision energy, and (ii) by storing atoms for many round-trips, the sensitivity to collisions is enhanced by a factor of 100-1000. In the proposed ring, the cross-sections for collisions between hydrogen, the most abundant atom in the universe, with any atom or molecule that can be put in a beam, including He, H$_2$, CO, ammonia and OH can be measured at energies...

  12. X-ray diffraction analysis of LiCu2O2 crystals with additives of silver atoms

    International Nuclear Information System (INIS)

    Silver-containing LiCu2O2 crystals up to 4 × 8 × 8 mm in size were grown by the crystallization of 80(1-x)CuO · 20xAgNO3 · 20Li2CO3 (0 ≤ x ≤ 0.5) mixture melt. According to the X-ray spectral and Rietveld X-ray diffraction data, the maximum amount of silver incorporated in the LiCu2O2 structure is about 4 at % relative to the copper content. It was established that silver atoms occupy statistically crystallographic positions of lithium atoms. The incorporation of silver atoms is accompanied by a noticeable increase in parameter c of the LiCu2O2 rhombic unit cell, a slight increase in parameter a, and a slight decrease in parameter b

  13. Separate determination of the amplitude of thermal vibrations and static atomic displacements in titanium carbide by neutron diffraction

    International Nuclear Information System (INIS)

    The amplitude of thermal (dynamic) atomic vibrations and meansquare static atomic displacements in titanium carbide TiCx (x = 0.97, 0.88, 0.70) have been separately determined by measuring neutron diffraction patterns at two temperatures (T1 = 300 K and T2 = 80 K). The static lattice distortions in stoichiometric titanium carbide are experimentally found to be negligible. In the TiCx homogeneity range, the amplitude √u2dyn of thermal atomic vibrations significantly increases with a decrease in the carbon concentration. The Debye temperature has been determined for the first time in the TiCx homogeneity range at both room and liquid-nitrogen temperatures.

  14. Molecular beam epitaxial regrowth on diffraction gratings for vertical-cavity, surface-emitting laser-based integrated optoelectronics

    International Nuclear Information System (INIS)

    Epitaxial regrowth techniques, using molecular beam epitaxy, were optimized for the inclusion of submicron diffraction gratings within a vertically resonant structure. Various growth conditions including chemical surface preparation, growth rate, and regrown interfacial structure were studied to determine the quality of the regrown materials and structures. Characteristics such as dislocation density and growth planarity (flatness of the regrown layers) were of particular importance due to the vertical geometry and resonance requirements of the structure. Threading dislocation densities of ≅3x106 cm-2 were measured, by means of transmission electron microscopy, in the regrown structures using optimized regrowth processes. Layer thickness variations, due to growth on nonplanar surfaces (diffraction gratings), were characterized using modeling and optical reflectometry. With these results, inclusion of diffraction gratings has been demonstrated with the accurate control over layer thickness needed for use in vertically oriented devices such as vertical-cavity, surface-emitting lasers, and resonant cavity photodetectors

  15. Beam quality of a non-ideal atom laser

    OpenAIRE

    Riou, Jean-Félix; Guerin, William; Le Coq, Yann; Fauquembergue, Marie; Bouyer, Philippe; Josse, Vincent; Aspect, Alain

    2006-01-01

    International audience We study the propagation of a non-interacting atom laser distorted by the strong lensing effect of the Bose-Einstein Condensate (BEC) from which it is outcoupled. We observe a transverse structure containing caustics that vary with the density within the residing BEC. Using WKB approximation, Fresnel-Kirchhoff integral formalism and ABCD matrices, we are able to describe analytically the atom laser propagation. This allows us to characterize the quality of the non-id...

  16. Three-dimensionally modulated anisotropic structure for diffractive optical elements created by one-step three-beam polarization holographic photoalignment

    Science.gov (United States)

    Kawai, Kotaro; Sakamoto, Moritsugu; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-03-01

    A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams. These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.

  17. Development and Testing of Atomic Beam-Based Plasma Edge Diagnostics in the CIEMAT Fusion Devices

    International Nuclear Information System (INIS)

    In this report the development of plasma edge diagnostic based on atomic beam techniques fir their application in the CIEMAT fusion devices is described. The characterisation of the beams in laboratory experiments at the CSIC, together with first results in the Torsatron TJ-II are reported. Two types of beam diagnostics have been developed: a thermal (effusive) Li and a supersonic, pulsed He beams. This work has been carried out in collaboration between the institutions mentioned above under partial financial support by EURATOM. (Author) 17 refs

  18. Generation of slow muon beam by laser resonant ionization of muonium atoms

    International Nuclear Information System (INIS)

    We report first results of re-acceleration of thermal muons, which were generated by laser resonant ionization of muonium atoms. The re-accelerated beam (slow muon beam) has better energy resolution and space distribution compared to initial surface muon beam, and its use will extend the scope of muon spin relaxation technique from bulk material to thin film, multi-layers, surfaces and extremely small samples. The yield of slow muons obtained during the first beam time was 0.03 muons/s

  19. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  20. Integration of a broad beam ion source with a high-temperature x-ray diffraction vacuum chamber

    Science.gov (United States)

    Manova, D.; Bergmann, A.; Mändl, S.; Neumann, H.; Rauschenbach, B.

    2012-11-01

    Here, the integration of a low energy, linearly variable ion beam current density, mechanically in situ adjustable broad beam ion source with a high-temperature x-ray diffraction (XRD) vacuum chamber is reported. This allows in situ XRD investigation of phase formation and evolution processes induced by low energy ion implantation. Special care has been taken to an independent adjustment of the ion beam for geometrical directing towards the substrate, a 15 mm small ion source exit aperture to avoid a secondary sputter process of the chamber walls, linearly variable ion current density by using a pulse length modulation (PLM) for the accelerating voltages without changing the ion beam density profile, nearly homogeneous ion beam distribution over the x-ray footprint, together with easily replaceable Kapton® windows for x-rays entry and exit. By combining a position sensitive x-ray detector with this PLM-modulated ion beam, a fast and efficient time resolved investigation of low energy implantation processes is obtained in a compact experimental setup.

  1. Analysis of laser beam propagation effects in atomic laser isotope separation

    International Nuclear Information System (INIS)

    In the atomic laser isotope separation process, the laser beams propagate through the atomic vapor over a long distance. It has been shown that the laser-atom interactions significantly modify the laser pulse shape and propagation velocity, resulting in degradation of the isotope separation efficiency. These propagation effects have been analyzed quantitatively, and a simple scaling formula has been derived to estimate the necessary laser energy for such optically thick atomic vapor. The optimum conditions of incident laser pulse have also been discussed. (author)

  2. LOW ENERGY BEAM-GAS SPECTROSCOPY OF HIGHLY IONISED ATOMS

    OpenAIRE

    Desesquelles, J.; Denis, A.; Druetta, M.; Martin, S.

    1989-01-01

    Features of low energy beam-gas spectroscopic source are reviewed and compared to those of other light sources. Measurement techniques are surveyed. They include the study of wavelength of heavy multiply charged ions in visible and u.v. ranges from normal excited states, doubly excited states, high n levels and doubly excited Rydberg levels.

  3. CO/sub 2/ laser sustained CW discharge atomic beam source

    International Nuclear Information System (INIS)

    A high pressure, supersonic, laser sustained plasma nozzle beam source has been developed for the production of intense (>1019 particles s1-sr-1) beams of atomic and/or radical species having kinetic energies in the range of 1 to 10 eV. A high plasma temperature (10 to 30,000 K) is produced in the throat of a hydrodynamic expansion nozzle by sustaining a cw optical discharge in a gas using a high power cw CO2 laser. Gas mixtures are expanded through the nozzle/discharge region creating energetic atoms and molecules. An oxygen atom beam has been produced with a kinetic energy of 2 to 3 eV and an intensity of approx. 1018 O-atoms s-1sr-1. O-atom collisions (1 eV) from an uncharacterized nickel surface shows strong specular scattering with approximately 50% energy loss to the surface. Argon beams having kinetic energies between 5 to 10 eV with intensities of >1019 atoms s-1sr-1 have also been produced. 13 refs., 8 figs

  4. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    International Nuclear Information System (INIS)

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at λω = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5±3.8 cm/s yielding a full divergence of only 0.48 ± 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, Λ-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two-color spectroscopy experiment

  5. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  6. Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers

    DEFF Research Database (Denmark)

    Stern, Stephan; Holmegaard, Lotte; Filsinger, Frank;

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Cohere...

  7. Special diffractive elements for optical trapping fabricated on optical fiber tips using the focused ion beam

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Guerreiro, A.; Viegas, J.; Jorge, P. A. S.

    2016-05-01

    In this work, spiral phase lenses and Fresnel zone lenses for beam tailoring, fabricated on the tip of optical fibers, are reported. The spiral phase lenses allow tailoring the fundamental guided mode, a Gaussian beam, into a Laguerre - Gaussian profile without using additional optical elements. Whereas, the Fresnel lenses are used as focusing systems. The lenses are fabricated using Focused Ion Beam milling, enabling high resolution in the manufacturing process. The output optical intensity profiles matching the numerical simulations are presented and analyzed.

  8. High flux cold Rubidium atomic beam for strongly coupled Cavity QED

    CERN Document Server

    Roy, Basudev

    2012-01-01

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity QED experiments in the regime of strong coupling. A 2 $D^+$ MOT, loaded by rubidium getters in a dry film coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate of 1.5 x $10^{10}$ atoms/sec. The MM-MOT provided a continuous beam with tunable velocity. This beam was then directed through the waist of a 280 $\\mu$m cavity resulting in a Rabi splitting of more than +/- 10 MHz. The presence of sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling regime, with parameters (g, $\\kappa$, $\\gamma$)/2$\\pi$ equal to (7, 3, 6)/ 2$\\pi$ MHz.

  9. Dynamics of Finite Energy Airy Beams Carrying Orbital Angular Momentum in Multilevel Atomic Vapors

    Science.gov (United States)

    Wu, Zhenkun; Wang, Shun; Hu, Weifei; Gu, Yuzong

    2016-10-01

    We numerically investigate the dynamics of inward circular finite-energy Airy beams carrying different orbital angular momentum (OAM) numbers in a close-Λ three-level atomic vapor with the electromagnetically induced transparency (EIT) window. We report that due to the EIT induced by the microwave field, the transverse intensity distribution properties of Airy beam can be feasibly manipulated and modulated through adjusting OAM numbers l and the frequency detuning, as well as the propagation distance, in the multi-level atomic systems. What's more, the rotation of the beam also can be observed with different positions in atomic ensembles. The investigation may provide a useful tool for studying particle manipulation, signal processing and propagation in graded-index (GRIN) fibers.

  10. X-ray diffraction study of atomic structure features of amorphous carbon containing materials of nature and synthetic origin

    International Nuclear Information System (INIS)

    The atomic structure of amorphous carbon-containing materials such as carbon glass, spectroscopically pure carbon, schungite and anthracite is investigated using X ray diffraction analysis and computerized simulation. In computerized simulation of model gratings packing into packets an interlayer distance and a number of layer in a packet varied and a gratings turn is predetermined randomly. The quantity of gratings in a packet is shown to vary between four for anthracite and six for spectroscopically pure coal. The interlayer distance for all amorphous carbonaceous materials is above 3.35 A which is typical for graphite

  11. Laser spectroscopy of atomic beams of short-lived nuclei

    International Nuclear Information System (INIS)

    A possibility of performing laser-nuclear-spectroscopic experiments at qualitatively new level aimed to solve the second-glass current problem and to search T-non invariant effects in the beta-decay of atomic nuclei is discussed. The question of the increase in efficiency of the experiments, aimed to study the main characteristics of nuclei, far from the beta-stability, by means of the laser spectroscopy methods is considered. 147 refs.; 5 figs.; 1 tab

  12. An atomic coilgun: using pulsed magnetic fields to slow a supersonic beam

    Energy Technology Data Exchange (ETDEWEB)

    Narevicius, E [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Parthey, C G [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Libson, A [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Narevicius, J [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Chavez, I [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Even, U [Sackler School of Chemistry, Tel-Aviv University, Tel-Aviv (Israel); Raizen, M G [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States)

    2007-10-15

    We report the experimental demonstration of a novel method to slow atoms and molecules with permanent magnetic moments using pulsed magnetic fields. In our experiments, we observe the slowing of a supersonic beam of metastable neon from 461.0 {+-} 7.7 to 403 {+-} 16 m s{sup -1} in 18 stages, where the slowed peak is clearly separated from the initial distribution. This method has broad applications as it may easily be generalized, using seeding and entrainment into supersonic beams, to all paramagnetic atoms and molecules.

  13. In situ x-ray diffraction measurements of the capillary fountain jet produced via ultrasonic atomization

    Science.gov (United States)

    Yano, Yohko F.; Douguchi, Junya; Kumagai, Atsushi; Iijima, Takao; Tomida, Yukinobu; Miyamoto, Toshiaki; Matsuura, Kazuo

    2006-11-01

    In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20mol% ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist.

  14. Precision measurement of transverse velocity distribution of a strontium atomic beam

    OpenAIRE

    F. Gao; Liu, H.; P. Xu; Tian, X.; Y Wang; Ren, J; Haibin Wu; Hong Chang

    2014-01-01

    We measure the transverse velocity distribution in a thermal Sr atomic beam precisely by velocity-selective saturated fluorescence spectroscopy. The use of an ultrastable laser system and the narrow intercombination transition line of Sr atoms mean that the resolution of the measured velocity can reach 0.13 m/s, corresponding to 90$\\mu K$ in energy units. The experimental results are in very good agreement with the results of theoretical calculations. Based on the spectroscopic techniques use...

  15. Localization of atomic excitation beyond the diffraction limit using electromagnetically induced transparency

    Science.gov (United States)

    Miles, J. A.; Das, Diptaranjan; Simmons, Z. J.; Yavuz, D. D.

    2015-09-01

    We experimentally demonstrate the localization of excitation between hyperfine ground states of 87Rb atoms to as small as λ /13 -wide spatial regions. We use ultracold atoms trapped in a dipole trap and utilize electromagnetically induced transparency (EIT) for the atomic excitation. The localization is achieved by combining a spatially varying coupling laser (standing wave) with the intensity dependence of EIT. The excitation is fast (150 ns laser pulses) and the dark-state fidelity can be made higher than 94% throughout the standing wave. Because the width of the localized regions is much smaller than the wavelength of the driving light, traditional optical imaging techniques cannot resolve the localized features. Therefore, to measure the excitation profile, we use an autocorrelation-like method where we perform two EIT sequences separated by a time delay, during which we move the standing wave.

  16. Diffraction of a Gaussian beam in a three-dimensional smoothly inhomogeneous medium: an eikonal-based complex geometrical-optics approach

    Science.gov (United States)

    Berczynski, Pawel; Bliokh, Konstantin Yu.; Kravtsov, Yuri A.; Stateczny, Andrzej

    2006-06-01

    We present an ab initio account of the paraxial complex geometrical optics (CGO) in application to scalar Gaussian beam propagation and diffraction in a 3D smoothly inhomogeneous medium. The paraxial CGO deals with quadratic expansion of the complex eikonal and reduces the wave problem to the solution of ordinary differential equations of the Riccati type. This substantially simplifies the description of Gaussian beam diffraction as compared with full-wave or parabolic (quasi-optics) equations. For a Gaussian beam propagating in a homogeneous medium or along the symmetry axis in a lenslike medium, the CGO equations possess analytical solutions; otherwise, they can be readily solved numerically. As a nontrivial example we consider Gaussian beam propagation and diffraction along a helical ray in an axially symmetric waveguide medium. It is shown that the major axis of the beam's elliptical cross section grows unboundedly; it is oriented predominantly in the azimuthal (binormal) direction and does not obey the parallel-transport law.

  17. Determination of residual stresses in cathodic arc coatings by means of the parallel beam glancing X-ray diffraction technique

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, C.M. [CEIT and TECNUN, Paseo Manuel de Lardizabal 15, 20018, San Sebastian, Gipuzkoa, Basque Country (Spain); Sanchez, J.M., E-mail: jmsanchez@ceit.e [CEIT and TECNUN, Paseo Manuel de Lardizabal 15, 20018, San Sebastian, Gipuzkoa, Basque Country (Spain); Ardila, L.C.; Molina Aldareguia, J.M. [CEIT and TECNUN, Paseo Manuel de Lardizabal 15, 20018, San Sebastian, Gipuzkoa, Basque Country (Spain)

    2009-11-02

    A method based on the parallel beam glancing X-ray diffraction geometry has been applied to the measurement of the residual stresses present in cathodic arc plasma (Al{sub 0.66}Ti{sub 0.34})N coatings deposited on hardmetal substrates. This procedure avoids the problems associated to the strong overlapping between the diffraction peaks of the coating and the substrate. The method has been validated by comparison with the results obtained with sin{sup 2{psi}} technique on other combinations of coatings and substrates in which no important overlapping occurs (i.e. (Al{sub 0.66}Ti{sub 0.34})N on steel and TiN either on steel or on hardmetal substrates). The elastic moduli of the different coatings, required for the calculation of the residual stresses, have been obtained from nanoindentation experiments.

  18. Laser cooling of a magnetically guided ultra cold atom beam

    OpenAIRE

    Aghajani-Talesh, Anoush

    2014-01-01

    In dieser Dissertation werden zwei komplementäre Methoden für die Laserkühlung eines magnetisch geführten, ultrakalten Atomstrahls untersucht. Kombiniert könnten diese Methoden den Ausgangspunkt für eine, möglicherweise sogar kontinuierliche, Hochdurchsatzproduktion von Bose-Einstein-Kondensaten darstellen. Als erstes wird ein Mechanismus vorgestellt, mit dem sich ultrakalte Atome aus einem magnetisch geführten Atomstrahl in eine optische Dipolfalle umladen lassen. Es wird ein kontinuierli...

  19. Laser beam propagation effects in atomic laser isotope separation

    International Nuclear Information System (INIS)

    The propagation of two different-color laser pulses in the resonant three-level medium is studied. The three-level Bloch-Maxwell equations are solved numerically to analyze the change of the pulse shapes and the time-varying atomic populations. The pulse delay and the pulse shape break-up are observed especially for the first excitation laser pulse. Complete separation of the two laser pulses occur from a certain critical distance. It is shown that the rapid decrease of the ionization efficiency is caused by the separation of the two laser pulses. (author)

  20. Atomic ordering and systematics of bonding lengths in the Ti-V omega phase: a neutron diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Benites, G.M.; Guillermet, A.F. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Centro Atomico Bariloche (Argentina); Aurelio, G. [Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquen (Argentina); Cuello, G.J.; Bermejo, F.J. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas y Tecnicas, Serrano 123, Madrid E-28006 (Spain)

    1999-03-04

    A new model describing the structural and bonding properties of the omega ({Omega}) phase in Zr-Nb alloys has recently been presented [12]. This model, which was aimed at explaining the composition dependence of the bonding lengths, predicts that the {Omega} phase is ordered, i.e., that some crystallographic sites are preferentially occupied by Zr atoms. Such feature, which should in principle be observed in other, related {Omega} phases, has not yet been tested against direct measurements. This problem has now been studied in the Ti-V system, which is the analogue of Zr-Nb in the 3d-transition series. Neutron diffraction measurements have been performed in quenched Ti-V alloys with V contents between 14 and 17 at.%. The diffraction spectra have been analysed using the Rietveld method, and a systematic analysis is reported here of the possibility of deviations from the random occupation of the two sublattices which are distinguished in the {Omega} structure. In addition, these new diffraction data are used in an evaluation of the shortest interatomic distances which are relevant for a comparison with the predictions of the model of Grad et al. (orig.) 28 refs.

  1. Investigation of atomic correlations in amorphous substances in the event of x-ray diffraction

    International Nuclear Information System (INIS)

    The aim was to determine a procedure for the experimental investigation of atomic correlations in monatomic amorphous substances (exemplified in amorphic germanium) that occur in relation to X-ray diffractometry, based on the classic theory of spreading. The underlying theory and a description of the experimental procedures are presented. (AB)

  2. Efficient E-Beam Lithography Exposure Strategies for Diffractive X-ray Optics

    Science.gov (United States)

    Guzenko, V. A.; Romijn, J.; Vila-Comamala, J.; Gorelick, S.; David, C.

    2011-09-01

    Exposure of structures with rotational symmetry by means of electron beam lithography is not trivial, because the e-beam writers are usually designed to deal with the data defined in Cartesian coordinates. Fabrication of circular nanostructures like Fresnel zone plates (FZPs) for x-ray microscopy applications requires exposures with resolution well below 1 nm. Therefore, special attention has to be paid to the efficient exposure data preparation, which will guarantee required precision and allow keeping the exposure time low. In this article, we describe in detail an optimized strategy that was applied for exposure of FZPs by the Vistec EBPG5000Plus e-beam lithography tool. Direct programming of exposure files allowed us to use fully the capabilities of this e-beam writer to expose efficiently and reproducibly FZPs with desired characteristics in both positive and negative tone resists.

  3. Generation of energetic He atom beams by a pulsed positive corona discharge

    OpenAIRE

    Lo, Shui-Yin; Lobo, Julio D.; Blumberg, Seth; Dibble, Theodore S.; Zhang, Xu; Tsao, Chun-Cheng; Okumura, Mitchio

    1997-01-01

    Time-of-flight measurements were made of neutral helium atom beams extracted from a repetitive, pulsed, positive-point corona discharge. Two strong neutral peaks, one fast and one slow, were observed, accompanied by a prompt photon peak and a fast ion peak. All peaks were correlated with the pulsing of the discharge. The two types of atoms appear to be formed by different mechanisms at different stages of the corona discharge. The fast atoms had energies of 190 eV and were formed at the onset...

  4. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Science.gov (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  5. New diagnostic technique for Zeeman-compensated atomic beam slowing: technique and results

    OpenAIRE

    Molenaar, P.A.; Van Der Straten, P.; Heideman, H.G.M.; Metcalf, H.

    2001-01-01

    We have developed a new diagnostic tool for the study of Zeeman-compensated slowing of an alkali atomic beam. Our time-of-flight technique measures the longitudinal veloc- ity distribution of the slowed atoms with a resolution below the Doppler limit of 30 cm/s. Furthermore, it can map the position and velocity distribution of atoms in either ground hyperfine level inside the solenoid without any devices inside the solenoid. The technique reveals the optical pumping ef- fects, and shows in de...

  6. Atomic-scale thermocapillary flow in focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Das, K.; Johnson, H. T.; Freund, J. B., E-mail: jbfreund@illinois.edu [Mechanical Science and Engineering and Aerospace Engineering, University of Illinois at Urbana–Champaign, 1206 West Green Street MC-244, Urbana, Illinois 61801 (United States)

    2015-05-15

    Focused ion beams provide a means of nanometer-scale manufacturing and material processing, which is used for applications such as forming nanometer-scale pores in thin films for DNA sequencing. We investigate such a configuration with Ga{sup +} bombardment of a Si thin-film target using molecular dynamics simulation. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A flow model with Marangoni forcing, based upon the temperature gradient and geometry from the atomistic simulation, indeed reproduces the flow and thus could be used to anticipate such flows and their influence in applications.

  7. Communication: Semiclassical perturbation theory for the quantum diffractive scattering of atoms on thermal surfaces

    Science.gov (United States)

    Daon, Shauli; Pollak, Eli; Miret-Artés, S.

    2012-11-01

    Inspired by the semiclassical perturbation theory of Hubbard and Miller [J. Chem. Phys. 80, 5827 (1984), 10.1063/1.446609], we derive explicit expressions for the angular distribution of particles scattered from thermal surfaces. At very low surface temperature, the observed experimental background scattering is proportional to the spectral density of the phonons. The angular distribution is a sum of diffraction peaks and a broad background reflecting the spectral density. The theory is applied to measured angular distributions of Ne, Ar, and Kr scattered from a Cu(111) surface.

  8. On amplitude beam splitting of tender X-rays (2-8 keV photon energy) using conical diffraction from reflection gratings with laminar profile.

    Science.gov (United States)

    Jark, Werner; Eichert, Diane

    2016-01-01

    Conical diffraction is obtained when a radiation beam impinges onto a periodically ruled surface structure parallel or almost parallel to the ruling. In this condition the incident intensity is diffracted through an arc, away from the plane of incidence. The diffracted intensity thus lies on a cone, which leads to the name `conical diffraction'. In this configuration almost no part of the ruled structure will produce any shadowing effect for the incident or the diffracted beam. Then, compared with a grating in the classical orientation, relatively higher diffraction efficiencies will be observed for fewer diffraction orders. When the incident beam is perfectly parallel to the grooves of a rectangular grating profile, the symmetry of the setup causes diffraction of the intensity symmetrically around the plane of incidence. This situation was previously tested experimentally in the VUV spectral range for the amplitude beam splitting of a radiation beam with a photon energy of 25 eV. In this case the ideally expected beam splitting efficiency of about 80% for the diffraction into the two first orders was confirmed for the optimum combination of groove depth and angle of grazing incidence. The feasibility of the amplitude beam splitting for hard X-rays with 12 keV photon energy by use of the same concept was theoretically confirmed. However, no related experimental data are presented yet, not even for lower energy soft X-rays. The present study reports the first experimental data for the conical diffraction from a rectangular grating profile in the tender X-ray range for photon energies of 4 keV and 6 keV. The expected symmetries are observed. The maximum absolute efficiency for beam splitting was measured to be only about 30%. As the reflectivity of the grating coating at the corresponding angle of grazing incidence was found to be only of the order of 50%, the relative beam splitting efficiency was thus 60%. This is to be compared also here with an ideally

  9. Coherent and dynamic beam splitting based on light storage in cold atoms

    Science.gov (United States)

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho

    2016-01-01

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing. PMID:27677457

  10. Radiation forces on a three-level atom in the high-order Bessel beams

    Institute of Scientific and Technical Information of China (English)

    Wang Zheng-Ling; Yin Jian-Ping

    2008-01-01

    The general expressions of the average dissipative and dipole forces acting on a A-configuration three-level atom in an arbitrary light field are derived by means of the optical Bloch equations based on the atomic density matrix elements, and the general properties of the average dissipative and dipole forces on a three-level atom in the linearly-polarized high-order Bessel beams (HBBs) are analysed. We find a resonant property (with two resonant peaks) of the dissipative force and a non-resonant property (with two pairs of non-resonant peaks) of the dipole force on the three-level atom, which are completely different from those on the two-level atom. Meanwhile we find a saturation effect of the average dissipative force in the HBB, which comes from the saturation of the upper-level population. Our study shows that the general expressions of the average dissipative and dipole forces on the three-level atom will be simplified to those of the two-level atom under the approximation of large detuning. Finally, we study the axial and azimuthal Doppler cooling of atoms in 1D optical molasses composed of two counter-propagating HBBs and discuss the azimuthal influence of the HBB on the Doppler cooling limit. We also find that the Doppler limit of atoms in the molasses HBB is slightly below the conventional Doppler limit of hг/(2кB) due to the orbital angular momentum lh of the HBB.

  11. Nonlinear effects in optical pumping of a cold and slow atomic beam

    KAUST Repository

    Porfido, N.

    2015-10-12

    By photoionizing hyperfine (HF) levels of the Cs state 62P3/2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180μs) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of “dark” and “bright” resonances leading to power-dependent branching coefficients.

  12. Preparation and Analysis of Atom Probe Tips by Xenon Focused Ion Beam Milling.

    Science.gov (United States)

    Estivill, Robert; Audoit, Guillaume; Barnes, Jean-Paul; Grenier, Adeline; Blavette, Didier

    2016-06-01

    The damage and ion distribution induced in Si by an inductively coupled plasma Xe focused ion beam was investigated by atom probe tomography. By using predefined patterns it was possible to prepare the atom probe tips with a sub 50 nm end radius in the ion beam microscope. The atom probe reconstruction shows good agreement with simulated implantation profiles and interplanar distances extracted from spatial distribution maps. The elemental profiles of O and C indicate co-implantation during the milling process. The presence of small disc-shaped Xe clusters are also found in the three-dimensional reconstruction. These are attributed to the presence of Xe nanocrystals or bubbles that open during the evaporation process. The expected accumulated dose points to a loss of >95% of the Xe during analysis, which escapes undetected.

  13. Atomic beam magnetic resonance apparatus for systematic measurement of hyperfine structure anomalies (Bohr-Weisskopf effect)

    International Nuclear Information System (INIS)

    An atomic beam magnetic resonance (ABMR) apparatus has been constructed at Orsay, and has been installed at the CERN PS Booster ISOLDE mass separator facility for 'on-line' work with radioactive isotopes in a program to measure hyperfine structure anomalies (the Bohr-Weisskopf effect) over long isotopic chains. The hfs anomalies result from the effect of the spatial distribution of the nuclear magnetization on the atomic hfs interaction. Constructional details of the system are described: Emphasis is placed on the measurement of nuclear g-factors by a triple resonance, laser state selected, ABMR method. A precision better than 10-4 for gI values has been obtained in stable atomic beam tests, leading to hfs anomaly measurements better than 10%. Two types of detection systems are described: Laser fluorescence and surface ionization coupled with mass spectrometry. (orig.)

  14. Influence of ion/atom arrival ratio on structure and optical properties of AlN films by ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jian-ping [Department of Energy Material and Technology, General Research Institute for Nonferrous Metals, Beijing 100088 (China); School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Fu, Zhi-qiang, E-mail: fuzq@cugb.edu.cn [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Liu, Xiao-peng [Department of Energy Material and Technology, General Research Institute for Nonferrous Metals, Beijing 100088 (China); Yue, Wen; Wang, Cheng-biao [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China)

    2014-10-30

    Highlights: • AlN films were fabricated by dual ion beam sputtering. • Chemical bond status and phase composition of the films were studied by XPS and XRD. • Optical constants were measured by spectroscopic ellipsometry. • Influence of ion/atom arrival ratio on the films was studied. - Abstract: In order to improve the optical properties of AlN films, the influence of the ion/atom arrival ratio on the structure and optical characteristics of AlN films deposited by dual ion beam sputtering was studied by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry and UV–vis spectroscopy. The films prepared at the ion/atom arrival ratio of 1.4 are amorphous while the crystalline quality is improved with the increase of the ion/atom arrival ratio. The films deposited at the ion/atom arrival ratio of no less than 1.8 have an approximately stoichiometric ratio and mainly consist of aluminum nitride with little aluminum oxynitride, while metallic aluminum component appears in the films deposited at the ion/atom arrival ratio of 1.4. When the ion/atom arrival ratio is not less than 1.8, films are smooth, high transmitting and dense. The films prepared with high ion/atom arrival ratio (≥1.8) display the characteristic of a dielectric. The films deposited at the ion/atom arrival ratio of 1.4 are coarse, opaque and show characteristic of cermet.

  15. Ion Flux Measurements in Electron Beam Produced Plasmas in Atomic and Molecular Gases

    Science.gov (United States)

    Walton, S. G.; Leonhardt, D.; Blackwell, D. D.; Murphy, D. P.; Fernsler, R. F.; Meger, R. A.

    2001-10-01

    In this presentation, mass- and time-resolved measurements of ion fluxes sampled from pulsed, electron beam-generated plasmas will be discussed. Previous works have shown that energetic electron beams are efficient at producing high-density plasmas (10^10-10^12 cm-3) with low electron temperatures (Te < 1.0 eV) over the volume of the beam. Outside the beam, the plasma density and electron temperature vary due, in part, to ion-neutral and electron-ion interactions. In molecular gases, electron-ion recombination plays a significant role while in atomic gases, ion-neutral interactions are important. These interactions also determine the temporal variations in the electron temperature and plasma density when the electron beam is pulsed. Temporally resolved ion flux and energy distributions at a grounded electrode surface located adjacent to pulsed plasmas in pure Ar, N_2, O_2, and their mixtures are discussed. Measurements are presented as a function of operating pressure, mixture ratio, and electron beam-electrode separation. The differences in the results for atomic and molecular gases will also be discussed and related to their respective gas-phase kinetics.

  16. Diffractive Combiner of Single-Mode Pump Laser-Diode Beams

    Science.gov (United States)

    Liu, Duncan; Wilson, Daniel; Qiu, Yueming; Forouhar, Siamak

    2007-01-01

    An optical beam combiner now under development would make it possible to use the outputs of multiple single-mode laser diodes to pump a neodymium: yttrium aluminum garnet (Nd:YAG) nonplanar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, an Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained below, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. Figure 1 schematically illustrates the principle of operation of a laser-diode-pumped Nd:YAG NPRO. The laser beam path is confined in a Nd:YAG crystal by means of total internal reflections on the three back facets and a partial-reflection coating on the front facet. The wavelength of the pump beam - 808 nm - is the wavelength most strongly absorbed by the Nd:YAG crystal. The crystal can lase at a wavelength of either 1,064 nm or 1,319 nm - which one depending on the optical coating on the front facet. A thermal lens effect induced by the pump beam enables stable lasing in the lowest-order transverse electromagnetic mode (the TEM00 mode). The frequency of this laser is very stable because of the mechanical stability of the laser crystal and the unidirectional nature of the lasing. The unidirectionality is a result of the combined effects of (1) a Faraday rotation induced by an externally applied magnetic field and (2) polarization associated with non-normal incidence and reflection on the front facet.

  17. Reaching (sub-)micrometer resolution of photo-immobilized proteins using diffracted light beams

    DEFF Research Database (Denmark)

    Skovsen, Esben; Neves Petersen, Teresa; Petersen, Steffen B.;

    2008-01-01

      We have developed a photonic technology that allows for precise immobilisation of proteins to sensor surfaces. The technology secures spatially controlled molecular immobilisation since the coupling of each molecule to a support surface can be limited to the focal point of the UV laser beam......, with dimensions as small as a few micrometers. The ultimate size of the immobilized spots is dependent on the focal area of the UV beam. The technology involves light induced formation of free, reactive thiol groups in molecules containing aromatic residues nearby disulphide bridges. It is not only limited......-imprinted molecules, with micrometer resolution, thus being of relevance for present and future applications in nanotechnologies....

  18. Observation of strong virtual scattering under three-beam (220, 371) X-ray diffraction in TeO2 single crystal

    International Nuclear Information System (INIS)

    A strong effect of virtual scattering has been experimentally observed when studying the nearly coplanar three-beam (220, 371) X-ray diffraction in a paratellurite single crystal under high-resolution double-crystal X-ray diffraction using MoKα1 radiation. One characteristic feature of this effect is that the angular dependence of the first (strong) reflection intensity and its shape barely change in the three-beam range of parameters, whereas very strong changes are observed for the second (weak) reflection not only in the three-beam range but also far beyond it, which is related to the variation in the two-beam diffraction parameter due to virtual scattering. The changes observed are asymmetric and make it possible to determine the triplet combination of structure-factor phases.

  19. Observation of strong virtual scattering under three-beam (220, 371) X-ray diffraction in TeO{sub 2} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Blagov, A. E.; Kovalchuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Kohn, V. G. [Kurchatov Institute, Russian Research Centre (Russian Federation); Pisarevskii, Yu. V.; Prosekov, P. A., E-mail: aopt@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-01-15

    A strong effect of virtual scattering has been experimentally observed when studying the nearly coplanar three-beam (220, 371) X-ray diffraction in a paratellurite single crystal under high-resolution double-crystal X-ray diffraction using MoK{sub {alpha}1} radiation. One characteristic feature of this effect is that the angular dependence of the first (strong) reflection intensity and its shape barely change in the three-beam range of parameters, whereas very strong changes are observed for the second (weak) reflection not only in the three-beam range but also far beyond it, which is related to the variation in the two-beam diffraction parameter due to virtual scattering. The changes observed are asymmetric and make it possible to determine the triplet combination of structure-factor phases.

  20. Consistency of atomic data for the interpretation of beam emission spectra

    Energy Technology Data Exchange (ETDEWEB)

    Delabie, E; Von Hellermann, M G [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Brix, M; Giroud, C; Surrey, E; Zastrow, K D [EURATOM/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Jaspers, R J E [Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven (Netherlands); Marchuk, O [Forschungszentrum Juelich, Association EURATOM-FZJ, 52425, Juelich (Germany); O' Mullane, M G [Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Ralchenko, Yu, E-mail: e.delabie@fz-juelich.d [Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2010-12-15

    Several collisional-radiative (CR) models (Anderson et al 2000 Plasma Phys. Control. Fusion 42 781-806, Hutchinson 2002 Plasma Phys. Control. Fusion 44 71-82, Marchuk et al 2008 Rev. Sci. Instrum. 79 10F532) have been developed to calculate the attenuation and the population of excited states of hydrogen or deuterium beams injected into tokamak plasmas. The datasets generated by these CR models are needed for the modelling of beam ion deposition and (excited) beam densities in current experiments, and the reliability of these data will be crucial to obtain helium ash densities on ITER combining charge exchange and beam emission spectroscopy. Good agreement between the different CR models for the neutral beam (NB) is found, if corrections to the fundamental cross sections are taken into account. First the H{sub {alpha}} and H{sub {beta}} beam emission spectra from JET are compared with the expected intensities. Second, the line ratios within the Stark multiplet are compared with the predictions of a sublevel resolved model. The measured intensity of the full multiplet is {approx}30% lower than expected on the basis of beam attenuation codes and the updated beam emission rates, but apart from the atomic data this could also be due to the characterization of the NB path and line of sight integration and the absolute calibration of the optics. The modelled n = 3 to n = 4 population agrees very well with the ratio of the measured H{sub {alpha}} to H{sub {beta}} beam emission intensities. Good agreement is found as well between the NB power fractions measured with beam emission in plasma and on the JET Neutral Beam Test Bed. The Stark line ratios and {sigma}/{pi} intensity ratio deviate from a statistical distribution, in agreement with the CR model in parabolic states from Marchuk et al (2010 J. Phys. B: At. Mol. Opt. Phys. 43 011002).

  1. The fine structure of the vortex-beams in the biaxial and biaxially-induced birefringent media caused by the conical diffraction

    CERN Document Server

    Fadeyeva, Tatyana; Anischenko, Pavel; Volyar, Alexander

    2011-01-01

    We consider the paraxial propagation of nondiffracting singular beams inside natural biaxial and biaxially-induced birefringent media in vicinity of one of the optical axes in terms of eigenmode vortex-beams, whose angular momentum does not change upon propagation. We have predicted a series of new optical effects in the natural biaxial crystals such as the stable propagation of vector singular beams bearing the coupled optical vortices with fractional topological charges, the conversion of the zero-order Bessel beam with a uniformly distributed linear polarization into the radially-, azimuthally- and spirally-polarized beams and the conversion of the space-variant linear polarization in the combined beam with coupled vortices. We have revealed that the field structure of the vortex-beams in the biaxially-induced crystals resembles that in the natural biaxial crystals and form the vector structure inherent in the conical diffraction. However, the mode beams in this case do not change the propagation direction...

  2. Light scattering of a non-diffracting zero-order Bessel beam by uniaxial anisotropic bispheres

    Science.gov (United States)

    Li, Z. J.; Wu, Z. S.; Qu, T.; Li, H. Y.; Bai, L.; Gong, L.

    2015-09-01

    Based on the generalized multi-particle Mie theory and the Fourier transformation approach, light scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes illuminated by a zero-order Bessel beam (ZOBB) is investigated. The size and configuration of the particles are arbitrary. The expansion expressions of the ZOBB are given in terms of the spherical vector wave functions (SVWFs) and the expansion coefficients are derived. Utilizing the vector addition theorem of the SVWFs, the interactive scattering coefficients are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. The effects of the conical angle, beam centre position, sphere separation distance, and anisotropic parameters on the far-region field distributions are numerically analyzed in detail. Some results are compared with those results for a Gaussian beam incidence. Selected results of bispheres consisting of typical medium such as TiO2, SiO2, Silicon, water are exhibited. This investigation could provide an effective test for further research on the scattering characteristic of an aggregate of anisotropic spheres by a high-order Bessel vortex beam and radiation forces, which are important in optical tweezers and particle manipulation applications.

  3. Detection of atomic force microscopy cantilever displacement with a transmitted electron beam

    Science.gov (United States)

    Wagner, R.; Woehl, T. J.; Keller, R. R.; Killgore, J. P.

    2016-07-01

    The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstrate detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.

  4. Test of Equivalence Principle at $10^{-8}$ Level by a Dual-species Double-diffraction Raman Atom Interferometer

    CERN Document Server

    Zhou, Lin; Tang, Biao; Chen, Xi; Gao, Fen; Peng, Wencui; Duan, Weitao; Zhong, Jiaqi; Xiong, Zongyuan; Wang, Jin; Zhang, Yuanzhong; Zhan, Mingsheng

    2015-01-01

    We report an improved test of the weak equivalence principle by using a simultaneous $^{85}$Rb-$^{87}$Rb dual-species atom interferometer. We propose and implement a four-wave double-diffraction Raman transition scheme for the interferometer, and demonstrate its ability in suppressing common-mode phase noise of Raman lasers after their frequencies and intensity ratios are optimized. The statistical uncertainty of the experimental data for E\\"{o}tv\\"{o}s parameter $\\eta$ is $0.8\\times10^{-8}$ at 3200 s. With various systematic errors corrected the final value is $\\eta=(2.8\\pm3.0)\\times10^{-8}$. The major uncertainty is attributed to the Coriolis effect.

  5. Test of Equivalence Principle at 10(-8) Level by a Dual-Species Double-Diffraction Raman Atom Interferometer.

    Science.gov (United States)

    Zhou, Lin; Long, Shitong; Tang, Biao; Chen, Xi; Gao, Fen; Peng, Wencui; Duan, Weitao; Zhong, Jiaqi; Xiong, Zongyuan; Wang, Jin; Zhang, Yuanzhong; Zhan, Mingsheng

    2015-07-01

    We report an improved test of the weak equivalence principle by using a simultaneous 85Rb-87Rb dual-species atom interferometer. We propose and implement a four-wave double-diffraction Raman transition scheme for the interferometer, and demonstrate its ability in suppressing common-mode phase noise of Raman lasers after their frequencies and intensity ratios are optimized. The statistical uncertainty of the experimental data for Eötvös parameter η is 0.8×10(-8) at 3200 s. With various systematic errors corrected, the final value is η=(2.8±3.0)×10(-8). The major uncertainty is attributed to the Coriolis effect.

  6. Self-referenced coherent diffraction x-ray movie of Angstrom- and femtosecond-scale atomic motion

    CERN Document Server

    Glownia, J M; Cryan, J P; Hartsock, R; Kozina, M; Minitti, M P; Nelson, S; Robinson, J; Sato, T; van Driel, T; Welch, G; Weninger, C; Zhi, D; Bucksbaum, P H

    2016-01-01

    Time-resolved femtosecond x-ray diffraction patterns from laser-excited molecular iodine are used to create a movie of intramolecular motion with time and space resolution of $30~$fs and $0.3$ \\AA . The high spatial fidelity is due to interference between the moving excitation and the static initial charge distribution. This x-ray interference has not been employed to image internal motion in molecules before. The initial state is used as the local oscillator for heterodyne amplification of the excited charge distribution to retrieve real-space movies of atomic motion on \\AA ngstrom and femtosecond scales. Coherent vibrational motion and dispersion, dissociation, and rotational dephasing are all clearly visible in the data, thereby demonstrating the stunning sensitivity of heterodyne methods.

  7. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)

    2012-08-15

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  8. New source of MeV negative ion and neutral atom beams

    Energy Technology Data Exchange (ETDEWEB)

    Ter-Avetisyan, S., E-mail: sargis@gist.ac.kr [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 500-712 (Korea, Republic of); Braenzel, J.; Schnürer, M. [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin 12489 (Germany); Prasad, R. [Institute for Laser and Plasma Physics, Heinrich Heine University, Duesseldorf 40225 (Germany); Borghesi, M. [School of Mathematics and Physics, The Queen’s University of Belfast, Belfast BT7-1NN (United Kingdom); Jequier, S.; Tikhonchuk, V. [Centre Lasers Intenses et Applications, CEA, CNRS, University of Bordeaux, 33405 Talence (France)

    2016-02-15

    The scenario of “electron-capture and -loss” was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities.

  9. Measurement of the effective cross section of a 1/v absorber for diffracted polychromatic neutron beam

    International Nuclear Information System (INIS)

    The effective velocity and temperature for the neutron beam of the SNU-KAERI PGAA facility are determined by measuring the prompt γ-ray spectra for thin and thick 10B samples. Both the neutron flux and the γ-ray detection efficiency were set at minimum due to high neutron capture rate for the thick sample. The effective absorption cross section of 10B is obtained from the ratio of 10B peak count rates in both the spectra. The effective velocity and temperature of the neutron beam determined from the effective cross section are 2117 ± 21 m/s and 269 ± 5 K, respectively. These results are consistent with the values calculated from the neutron spectrum in 4%

  10. Beam diffraction effects in sound transmission of a fluid-embedded viscoelastic plate at normal incidence.

    Science.gov (United States)

    Aanes, Magne; Lohne, Kjetil Daae; Lunde, Per; Vestrheim, Magne

    2016-07-01

    The characteristics of a sound beam transmitted through a fluid-embedded viscoelastic plate at normal incidence can deviate significantly from those of a plane-wave. Phenomena such as frequency shift, signal amplification or reduction, and changed beam properties, are observed for resonance peaks associated with specific leaky Lamb modes. When interpreting measurements using plane-wave theory, such deviations will influence the measurement of material parameters and plate thickness. The finite-element-based models used in this study describe the signal chain from the electrical voltage excitation at the piezoelectric transducer terminals to the sound pressure propagated through the plate and fluid to the position at which it is measured by a hydrophone. The measured phenomena are described at a quantitative level. PMID:27475214

  11. Precision measurement of transverse velocity distribution of a Strontium atomic beam

    CERN Document Server

    Gao, F; Xu, P; Tian, X; Wang, Y; Ren, J; Wu, Haibin; Chang, Hong

    2013-01-01

    We measure precisely the transverse velocity distribution in a thermal Sr atomic beam with a velocity selective saturated fluorescence spectroscopy. By using the ultrastable laser system and narrow intercombination transition line of Sr atoms, the resolution of the velocity measured can be reached 0.13m/s, corresponding to 90$\\mu K$ in energy unit. The experimental results are agreement very well with a theoretical calculation. With the spectroscopic techniques, the absolute frequency of the intercombination transition of $^{88}$Sr is measured by an optical-frequency comb generator referenced to the SI second through an H maser, which is given by 434 829 121 318(10)kHz.

  12. Collimation of a thulium atomic beam by two-dimensional optical molasses

    International Nuclear Information System (INIS)

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 °C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  13. Collimation of a thulium atomic beam by two-dimensional optical molasses

    Science.gov (United States)

    Sukachev, D. D.; Kalganova, E. S.; Sokolov, A. V.; Savchenkov, A. V.; Vishnyakova, G. A.; Golovizin, A. A.; Akimov, A. V.; Kolachevsky, Nikolai N.; Sorokin, Vadim N.

    2013-04-01

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 °C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz.

  14. Collimation of a thulium atomic beam by two-dimensional optical molasses

    Energy Technology Data Exchange (ETDEWEB)

    Sukachev, D D; Kalganova, E S; Sokolov, A V; Savchenkov, A V; Vishnyakova, G A; Golovizin, A A; Akimov, A V; Kolachevsky, Nikolai N; Sorokin, Vadim N

    2013-04-30

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 Degree-Sign C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  15. Some properties of atomic beam produced by laser induced ablation of Li target

    International Nuclear Information System (INIS)

    Pulsed atomic beams produced in vacuum by laser induced ablation from a lithium target are analyzed by laser induced fluorescence (LIF). The 1-mixing processes induced in the n = 9, 10 Li Rydberg states by collisions with CO2 molecules illustrate the application of the method. Resolution is limited by the 1 mm diameter of the probe laser beam. Combining LIF and absorption measurements gives nLi as a function of time at various distances from the target surface. The investigation of the Li-C02 1-mixing process in a heat pipe oven proved impossible due to the high reactivity of Li with C02. This problem was solved by renewing the Li atoms at each laser shot. Values obtained for n = 9, n = 10 are k = 17 x 10-8 and 15 x 10-8 cc/sec, respectively

  16. Effects of focused ion beam milling on electron backscatter diffraction patterns in strontium titanate and stabilized zirconia

    DEFF Research Database (Denmark)

    Saowadee, Nath; Agersted, Karsten; Bowen, Jacob R.

    2012-01-01

    This study investigates the effect of focused ion beam (FIB) current and accelerating voltage on electron backscatter diffraction pattern quality of yttria‐stabilized zirconia (YSZ) and Nb‐doped strontium titanate (STN) to optimize data quality and acquisition time for 3D‐EBSD experiments by FIB...... serial sectioning. Band contrast and band slope were used to describe the pattern quality. The FIB probe currents investigated ranged from 100 to 5000 pA and the accelerating voltage was either 30 or 5 kV. The results show that 30 kV FIB milling induced a significant reduction of the pattern quality...... milling. For 3D‐EBSD experiments of a material such as STN, it is recommended to combine a high kV FIB milling and low kV polishing for each slice in order to optimize the data quality and acquisition time....

  17. Crossed beam reactive scattering of oxygen atoms and surface scattering studies of gaseous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Sibener, S.J.

    1979-09-01

    A high pressure, radio frequency discharge nozzle beam source was developed for the production of very intense (greater than or equal to 10/sup 18/ atoms sr/sup -1/ sec/sup -1/) supersonic beams of oxygen atoms. This source is capable of producing seeded beams of ground state O(/sup 3/P/sub J/) atoms when dilute oxygen-argon mixtures are used, with molecular dissociation levels exceeding 80% being realized for operation at pressures up to 350 torr. When dilute oxygen-helium mixtures are employed both ground state O(/sup 3/P/sub J/) and excited state O(/sup 1/D/sub 2/) atoms are present in the terminal beam, with molecular dissociation levels typically exceeding 60% being achieved for operation at pressures up to 200 torr. Atomic oxygen mean translational energies from 0.14 to 0.50 eV were obtained using the seeded beams technique, with Mach numbers as high as 10 (FWHM ..delta.. v/v approx. = 20%) being realized. The IC1, CF/sub 3/I, C/sub 6/H/sub 6/, and C/sub 6/D/sub 6/ reactions are discussed in detail. The IC1 and CF/sub 3/I studies have enabled us to determine an improved value for the bond energy of the IO radical: D/sub o/(IO) = 55 +- 2 kcal/mole. The IO product angular and velocity distributions have been used to generate center-of-mass flux contour maps, which indicate that these two reactions proceed via relatively long-lived collision complexes whose mean lifetimes are slightly shorter than their respective rotational periods. The O(/sup 3/P/sub J/) + C/sub 6/H/sub 6/ and C/sub 6/D/sub 6/ reactions were studied in order to elucidate the reaction mechanism, and, in particular, to identify the primary reaction products produced in these reactions. Finally, a series of beam-surface scattering experiments are described which examined the internal and translational energy dependence of molecular condensation probabilities for collisions involving either CC1/sub 4/ or SF/sub 6/ and their respective condensed phases. 117 references. (JFP)

  18. Crossed beam reactive scattering of oxygen atoms and surface scattering studies of gaseous condensation

    International Nuclear Information System (INIS)

    A high pressure, radio frequency discharge nozzle beam source was developed for the production of very intense (greater than or equal to 1018 atoms sr-1 sec-1) supersonic beams of oxygen atoms. This source is capable of producing seeded beams of ground state O(3P/sub J/) atoms when dilute oxygen-argon mixtures are used, with molecular dissociation levels exceeding 80% being realized for operation at pressures up to 350 torr. When dilute oxygen-helium mixtures are employed both ground state O(3P/sub J/) and excited state O(1D2) atoms are present in the terminal beam, with molecular dissociation levels typically exceeding 60% being achieved for operation at pressures up to 200 torr. Atomic oxygen mean translational energies from 0.14 to 0.50 eV were obtained using the seeded beams technique, with Mach numbers as high as 10 (FWHM Δ v/v approx. = 20%) being realized. The IC1, CF3I, C6H6, and C6D6 reactions are discussed in detail. The IC1 and CF3I studies have enabled us to determine an improved value for the bond energy of the IO radical: D/sub o/(IO) = 55 +- 2 kcal/mole. The IO product angular and velocity distributions have been used to generate center-of-mass flux contour maps, which indicate that these two reactions proceed via relatively long-lived collision complexes whose mean lifetimes are slightly shorter than their respective rotational periods. The O(3P/sub J/) + C6H6 and C6D6 reactions were studied in order to elucidate the reaction mechanism, and, in particular, to identify the primary reaction products produced in these reactions. Finally, a series of beam-surface scattering experiments are described which examined the internal and translational energy dependence of molecular condensation probabilities for collisions involving either CC14 or SF6 and their respective condensed phases. 117 references

  19. Molecular-beam epitaxy growth and structural characterization of semiconductor-ferromagnet heterostructures by grazing incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Satapathy, D.K.

    2005-12-19

    The present work is devoted to the growth of the ferromagnetic metal MnAs on the semiconductor GaAs by molecular-beam epitaxy (MBE). The MnAs thin films are deposited on GaAs by molecular-beam epitaxy (MBE). Grazing incidence diffraction (GID) and reflection high-energy electron diffraction (RHEED) are used in situ to investigate the nucleation, evolution of strain, morphology and interfacial structure during the MBE growth. Four stages of the nucleation process during growth of MnAs on GaAs(001) are revealed by RHEED azimuthal scans. GID shows that further growth of MnAs films proceed via the formation of relaxed islands at a nominal thickness of 2.5 ML which increase in size and finally coalesce to form a continuous film. Early on, an ordered array of misfit dislocations forms at the interface releasing the misfit strain even before complete coalescence occurs. The fascinating complex nucleation process of MnAs on GaAs(0 0 1) contains elements of both Volmer-Weber and Stranski-Krastanov growth. A nonuniform strain amounting to 0.66%, along the [1 -1 0] direction and 0.54%, along the [1 1 0] direction is demonstrated from x-ray line profile analysis. A high correlation between the defects is found along the GaAs[1 1 0] direction. An extremely periodic array of misfit dislocations with a period of 4.95{+-}0.05 nm is formed at the interface along the [1 1 0] direction which releases the 7.5% of misfit. The inhomogeneous strain due to the periodic dislocations is confined at the interface within a layer of 1.6 nm thickness. The misfit along the [1 -1 0] direction is released by the formation of a coincidence site lattice. (orig.)

  20. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device

    International Nuclear Information System (INIS)

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author )

  1. Two experiments with cold atoms: I. Application of Bessel beams for atom optics, and II. Spectroscopic measurements of Rydberg blockade effect

    Science.gov (United States)

    Arakelyan, Ilya

    In this dissertation we report the results of two experimental projects with laser-cooled rubidium atoms: I. Application of Bessel beams for atom optics, and II. Spectroscopic measurements of Rydberg blockade effect. The first part of the thesis is devoted to the development of new elements of atom optics based on blue-detuned high-order Bessel beams. Properties of a 4thorder Bessel beam as an atomic guide were investigated for various parameters of the hollow beam, such as the detuning from an atomic resonance, size and the order of the Bessel beam. We extended its application to create more complicated interferometer-type structures by demonstrating a tunnel lock, a novel device that can split an atomic cloud, transport it, delay, and switch its propagation direction between two guides. We reported a first-time demonstration of an atomic beam switch based on the combination of two crossed Bessel beams. We achieved the 30% efficiency of the switch limited by the geometrical overlap between the cloud and the intersection volume of the two tunnels, and investigate the heating processes induced by the switch. We also showed other applications of crossed Bessel beams, such as a 3-D optical trap for atoms confined in the intersection volume of two hollow beams and a splitter of the atomic density. The second part of this dissertation is devoted to the spectroscopic measurements of the Rydberg blockade effect, a conditional suppression of Rydberg excitations depending on the state of a control atom. We assembled a narrow-linewidth, tunable, frequency stabilized laser system at 480 nm to excite laser-cooled rubidium atoms to Rydberg states with a high principal quantum number n ˜ 50 through a two-photon transition. We applied the laser system to observe the Autler-Townes splitting of the intermediate 5p3/2 state and used the broadening of the resonance features to investigate the enhancement of Rydberg-Rydberg interactions in the presence of an external electric field.

  2. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    Science.gov (United States)

    O'Connor, A. P.; Grussie, F.; Bruhns, H.; de Ruette, N.; Koenning, T. P.; Miller, K. A.; Savin, D. W.; Stützel, J.; Urbain, X.; Kreckel, H.

    2015-11-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of ˜7.4% for H- at a beam energy of 10 keV and ˜3.7% for C- at 28 keV. The diode laser systems used here operate at 975 nm and 808 nm, respectively, and provide high continuous power levels of up to 2 kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table.

  3. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks.

    Science.gov (United States)

    O'Connor, A P; Grussie, F; Bruhns, H; de Ruette, N; Koenning, T P; Miller, K A; Savin, D W; Stützel, J; Urbain, X; Kreckel, H

    2015-11-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of ∼7.4% for H(-) at a beam energy of 10 keV and ∼3.7% for C(-) at 28 keV. The diode laser systems used here operate at 975 nm and 808 nm, respectively, and provide high continuous power levels of up to 2 kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table. PMID:26628128

  4. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    CERN Document Server

    O'Connor, A P; Grussie, F; Koenning, T P; Miller, K A; de Ruette, N; Stützel, J; Savin, D W; Urbain, X; Kreckel, H

    2015-01-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of $\\sim$7.4\\% for H$^-$ at a beam energy of 10\\,keV and $\\sim$3.7\\% for C$^-$ at 28\\,keV. The diode laser systems used here operate at 975\\,nm and 808\\,nm, respectively, and provide high continuous power levels of up to 2\\,kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table.

  5. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Claude

    2009-10-28

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  6. Travel-time sensitivity kernels versus diffraction patterns obtained through double beam-forming in shallow water.

    Science.gov (United States)

    Iturbe, Ion; Roux, Philippe; Virieux, Jean; Nicolas, Barbara

    2009-08-01

    In recent years, the use of sensitivity kernels for tomographic purposes has been frequently discussed in the literature. Sensitivity kernels of different observables (e.g., amplitude, travel-time, and polarization for seismic waves) have been proposed, and relationships between adjoint formulation, time-reversal theory, and sensitivity kernels have been developed. In the present study, travel-time sensitivity kernels (TSKs) are derived for two source-receiver arrays in an acoustic waveguide. More precisely, the TSKs are combined with a double time-delay beam-forming algorithm performed on two source-receiver arrays to isolate and identify each eigenray of the multipath propagation between a source-receiver pair in the acoustic waveguide. A relationship is then obtained between TSKs and diffraction theory. It appears that the spatial shapes of TSKs are equivalent to the gradients of the combined direction patterns of the source and receiver arrays. In the finite-frequency regimes, the combination of TSKs and double beam-forming both simplifies the calculation of TSK and increases the domain of validity for ray theory in shallow-water ocean acoustic tomography. PMID:19640037

  7. Investigation of Stimulated Raman Scattering Using Short-Pulse Diffraction Limited Laser Beam near the Instability Threshold

    Science.gov (United States)

    Kline, J. L.; Montgomery, D. S.; Yin, L.; Flippo, K. A.; Albright, B. J.; Johnson, R. P.; Shimada, T.; Rose, H. A.; Rousseaux, C.; Tassin, V.; Baton, S. D.; Amiranoff, F.; Hardin, R. A.

    2008-11-01

    Short pulse laser plasma interaction experiments using diffraction limited beams provide an excellent platform to investigate the fundamental physics of Stimulated Raman (SRS) and Stimulated Brillouin (SBS) Scattering. Detailed understanding of these laser plasma instabilities impacts the current inertial confinement fusion ignition designs and could potentially impact fast ignition when higher energy lasers are used with longer pulse durations ( > 1 kJ and > 1 ps). Using short laser pulses, experiments can be modeled over the entire interaction time of the laser using PIC codes to validate our understanding. Experiments have been conducted at the Trident laser and the LULI to investigate SRS near the threshold of the instability using 527 and 1064 nm laser light respectively with 1.5 -- 3 ps pulses. In the case of both experiments, the interaction beam was focused into a pre-ionized He gasjet plasma. Measurements of the reflectivity as a function of intensity and k?D were completed at the Trident laser. At LULI, a 300 fs Thomson scattering probe is used to directly measure the density fluctuations of the driven electron plasma and ion acoustic waves. Details of the experimental results will be presented.

  8. Producing acoustic 'Frozen Waves': Simulated experiments with diffraction/attenuation resistant beams, in lossy media

    CERN Document Server

    Prego-Borges, Jose' L; Recami, Erasmo; Tavares-Costa, Eduardo

    2013-01-01

    The so-called Localized Waves (LW), and the "Frozen Waves" (FW), have arisen significant attention in the areas of Optics and Ultrasound, because of their surprising energy localization properties. The LWs resist the effects of diffraction for large distances, and possess an interesting self-reconstruction (self-healing) property, after obstacles with size smaller than the antenna's; while the FWs, a sub-class of theirs, offer the possibility of arbitrarily modeling the field longitudinal intensity pattern inside a prefixed interval, for instance 0 < z < L, of the wave propagation axis. More specifically, the FWs are localized fields "at rest", that is, with a static envelope (within which only the carrier wave propagates), and can be endowed moreover with a high transverse localization. In this paper we investigate by simulated experiments, various cases of generation of ultrasonic FW fields, with frequency f_o = 1 MHz in a water-like medium, taking account of the effects of attenuation. We present res...

  9. High energy-intensity atomic oxygen beam source for low earth orbit materials degradation studies

    International Nuclear Information System (INIS)

    A high intensity (1019O-atoms/s-sr) high energy (5 eV) source of oxygen atoms has been developed that produces a total fluence of 1022 O-atoms/cm2 in less than 100 hours of continuous operation at a distance of 15 cm from the source. The source employs a CW CO2 laser sustained discharge to form a high temperature (15,000 K) plasma in the throat of a 0.3-mm diameter nozzle using 3--8 atmospheres of rare gas/O2 mixtures. Visible and infrared photon flux levels of 1 watt/cm2 have been measured 15 cm downstream of the source while vacuum UV (VUV) fluxes are comparable to that measured in low earth orbit. The reactions of atomic oxygen with kapton, Teflon, silver, and various coatings have been studied. The oxidation of kapton (reaction efficiency = 3 /times/ 10/sup /minus/24/ cm /+-/ 50%) has an activation energy of 0.8 Kcal/mole over the temperature range of 25/degree/C to 100/degree/C at a beam energy of 1.5 eV and produces low molecular weight gas phase reaction products (H2O, NO, CO2). Teflon reacts with ∼0.1--0.2 efficiency to that of kapton at 25/degree/C and both surfaces show a rug-like texture after exposure to the O-atom beam. Angular scattering distribution measurements of O-atoms show a near cosine distribution from reactive surfaces indicating complete accommodation of the translational energy with the surface while a nonreactive surface (nickel oxide) shows specular-like scattering with 50% accommodation of the translational energy with the surface. A technique for simple on orbit chemical experiments using resistance measurements of coated silver strips is described. 9 figs

  10. Nuclear structure of light thallium isotopes as deduced from laser spectroscopy on a fast atom beam

    International Nuclear Information System (INIS)

    After optimizing the system by experiments on /sup 201,203,205/Tl, the neutron-deficient isotopes 189-193Tl have been studied using the collinear fast atom beam laser spectroscopy system at UNISOR on-line to the Holifield Heavy Ion Research Facility. A sensitive system for the measurements was developed since the light isotopes were available in mass-separated beams of only 7 x 104 to 4 x 105 atoms per second. By laser excitation of the 535 nm atomic transitions of atoms in the beam, the 6s27s 2S/sub 1/2/ and 6s26s 2P/sub 3/2/ hyperfine structures were measured, as were the isotope shifts of the 535 nm transitions. From these, the magnetic dipole moments, spectroscopic quadrupole moments and isotopic changes in mean-square charge radius were deduced. The magnetic dipole moments are consistent with previous data. The /sup 190,192/Tl isotopes show a considerable difference in quadrupole deformations as well as an anomalous isotope shift with respect to 194Tl. A large isomer shift in 193Tl is observed implying a larger deformation in the 9/2- isomer than in the 1/2+ ground state. The /sup 189,191,193/Tl isomers show increasing deformation away from stability. A deformed shell model calculation indicates that this increase in deformation can account for the dropping of the 9/2- band in these isotopes while an increase in neutron pairing correlations, having opposite and compensating effects on the rotational moment of inertia, maintains the 9/2- strong-coupled band structure. 105 refs., 27 figs

  11. X-ray diffraction using synchrotron radiation on the G.I.L.D.A. beam line at the E.S.R.F

    Energy Technology Data Exchange (ETDEWEB)

    Balerna, A. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Meneghini, C. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)]|[INFM, Genoa (Italy); Bordoni, S. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica; Mobilio, S. [Rome Univ. III (Italy). Dip. di Fisica `E. Amaldi`

    1996-09-01

    The aim of this lecture is to make a short introduction on Synchrotron radiation, its history and main properties. The main components of a synchrotron radiation beam line will be described. The Italian beam line, General purpose Italian beam line Line for Diffraction and Absorption (G.I.L.D.A.) at the European Synchrotron Radiation Facility (E.S.R.F.) in Grenoble will be used as an example. The G.I.L.D.A. diffractometer will be described in detail reporting also some experimental results.

  12. In situ surface X-ray diffraction studies of the copper-electrolyte interface. Atomic structure and homoepitaxial grwoth

    Energy Technology Data Exchange (ETDEWEB)

    Golks, Frederik

    2011-05-19

    Copper electrodeposition is the predominantly used technique for on-chip wiring in the fabrication of ultra-large scale integrated (ULSI) microchips. In this 'damascene copper electroplating' process, multicomponent electrolytes containing organic additives realize void-free filling of trenches with high aspect ratio ('superconformal deposition'). Despite manifold studies, motivated by the continuous trend to shrink wiring dimensions and thus the demand of optimized plating baths, detailed knowledge on the growth mechanism - in presence and absence of additives - is still lacking. Using a recently developed hanging meniscus X-ray transmission cell, brilliant synchrotron x-rays and a fast, one-dimensional detector system, unique real-time in situ surface X-ray diffraction studies of copper electrodeposition were performed under realistic reaction conditions, approaching rates of technological relevance. Preparatory measurements of the electrochemical dissolution of Au(001) in chloride-containing electrolyte demonstrated the capability of this powerful technique, specifically the possibility to follow atomic-scale deposition or dissolution processes with a time resolution down to five milliseconds. The electrochemical as well as structural characterization of the Cu(001)- and Cu(111)-electrolyte interfaces provided detailed insight into the complex atomic-scale structures in presence of specifically adsorbed chloride on these surfaces. The interface of Cu(001) in chloride-containing electrolyte exhibits a continuous surface phase transition of a disordered Cl adlayer to a c(2 x 2) Cl adlayer with increasing potential. The latter was found to induce a small vertical corrugation of substrate atoms, which can be ascribed to lattice relaxations induced by the presence of coadsorbed water molecules and cations in the outer part of the electrochemical double layer. The study of the specific adsorption of chloride on Cu(111) from acidic aqueous

  13. Diffraction to De-Diffraction

    CERN Document Server

    Tamari, V F

    2003-01-01

    De-diffraction (DD), a new procedure to totally cancel diffraction effects from wave-fields is presented, whereby the full field from an aperture is utilized and a truncated geometrical field is obtained, allowing infinitely sharp focusing and non-diverging beams. This is done by reversing a diffracted wave-fields' direction. The method is derived from the wave equation and demonstrated in the case of Kirchhoff's integral. An elementary bow-wavelet is described and the DD process is related to quantum and relativity theories.

  14. Preparation of state purified beams of He, Ne, C, N, and O atoms

    Science.gov (United States)

    Jankunas, Justin; Reisyan, Kevin S.; Osterwalder, Andreas

    2015-03-01

    The production and guiding of ground state and metastable C, N, and O atoms in a two-meter-long, bent magnetic guide are described. Pure beams of metastable He(3S1) and Ne(3P2), and of ground state N(4S3/2) and O(3P2) are obtained using an Even-Lavie valve paired with a dielectric barrier discharge or electron bombardment source. Under these conditions no electronically excited C, N, or O atoms are observed at the exit of the guide. A general valve with electron impact excitation creates, in addition to ground state atoms, electronically excited C(3P2; 1D2) and N(2D5/2; 2P3/2) species. The two experimental conditions are complimentary, demonstrating the usefulness of a magnetic guide in crossed or merged beam experiments such as those described in Henson et al. [Science 338, 234 (2012)] and Jankunas et al. [J. Chem. Phys. 140, 244302 (2014)].

  15. X-ray diffraction study of LC films: generalization of Moncton-Pindac method for studies of internal diffraction maximum using reflected beam on thin film with only one free surface

    Science.gov (United States)

    Zmija, Jozef; Michalski, E.; Piecek, Wiktor

    1993-10-01

    The chosen results of investigations of internal and external diffraction maximum, using a transmission beam to freely suspended `thick' and `thin' films of smectic LC, are presented. On the basis of these results the way to the generalization of the Moncton-Pindac method was illustrated. Our generalization of the Moncton-Pindac method can be distinguished from the other methods by study of internal diffraction maximum using reflected (instead of transmission) beam. It is important that the film placed on a heated plate has only one free surface. In commonly used methods, the investigated film has two free surfaces. Some results of diffractometer measurements are presented as examples of studies using the generalized Moncton-Pindac method. Possible experiments using this method, advantages, and inconveniences are discussed.

  16. Theory of longitudinal atomic beam spin echo and parity violating Berry-phases in atoms; Theorie des longitudinalen Atomstrahl-Spinechos und paritaetsverletzende Berry-Phasen in Atomen

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, T.F.

    2006-07-19

    We present a nonrelativistic theory for the quantum mechanical description of longitudinal atomic beam spin echo experiments, where a beam of neutral atoms is subjected to static electric and magnetic fields. The atomic wave function is the solution of a matrix-valued Schroedinger equation and can be written as superposition of local (atomic) eigenstates of the potential matrix. The position- and time-dependent amplitude function of each eigenstate represents an atomic wave packet and can be calculated in a series expansion with a master formula that we derive. The zeroth order of this series expansion describes the adiabatic limit, whereas the higher order contributions contain the mixing of the eigenstates and the corresponding amplitude functions. We give a tutorial for the theoretical description of longitudinal atomic beam spin echo experiments and for the so-called Fahrplan model, which is a visualisation tool for the propagation of wave packets of different atomic eigenstates. As an example for the application of our theory, we study parity violating geometric (Berry-)phases. In this context, we define geometric flux densities, which for certain field configurations can be used to illustrate geometric phases in a vector diagram. Considering an example with a specific field configuration, we prove the existence of a parity violating geometric phase. (orig.)

  17. Improving surface smoothness and photoluminescence of CdTe(1 1 1)A on Si(1 1 1) substrates grown by molecular beam epitaxy using Mn atoms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jyh-Shyang, E-mail: jswang@cycu.edu.tw [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Tsai, Yu-Hsuan; Chen, Chang-Wei; Dai, Zi-Yuan; Tong, Shih-Chang [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Chu-Shou [Graduate Institute of Electro-Optical Engineering, Tatung University, Taipei 10452, Taiwan (China); Wu, Chih-Hung [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Yuan, Chi-Tsu; Shen, Ji-Lin [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China)

    2014-04-01

    Highlights: • CdTe(1 1 1)A epilayers were grown on Si(1 1 1) substrates by molecular beam epitaxy. • We report an enhanced growth using Mn atoms. • The significant improvements in surface quality and optical properties were found. - Abstract: This work demonstrates an improvement of the molecular beam epitaxial growth of CdTe(1 1 1)A epilayer on Si(1 1 1) substrates using Mn atoms. The reflection high-energy electron diffraction patterns show that the involvement of some Mn atoms in the growth of CdTe(1 1 1)A is even more effective than the use of a buffer layer with a smooth surface for forming good CdTe(1 1 1)A epilayers. 10 K Photoluminescence spectra show that the incorporation of only 2% Mn significantly reduced the intensity of defect-related emissions and considerably increased the integral intensity of exciton-related emissions by a large factor of about 400.

  18. Atomic layer deposition of HfO2 on graphene through controlled ion beam treatment

    Science.gov (United States)

    Kim, Ki Seok; Oh, Il-Kwon; Jung, Hanearl; Kim, Hyungjun; Yeom, Geun Young; Kim, Kyong Nam

    2016-05-01

    The polymer residue generated during the graphene transfer process to the substrate tends to cause problems (e.g., a decrease in electron mobility, unwanted doping, and non-uniform deposition of the dielectric material). In this study, by using a controllable low-energy Ar+ ion beam, we cleaned the polymer residue without damaging the graphene network. HfO2 grown by atomic layer deposition on graphene cleaned using an Ar+ ion beam showed a dense uniform structure, whereas that grown on the transferred graphene (before Ar+ ion cleaning) showed a non-uniform structure. A graphene-HfO2-metal capacitor fabricated by growing 20-nm thick HfO2 on graphene exhibited a very low leakage current (graphene, whereas a similar capacitor grown using the transferred graphene showed high leakage current.

  19. Bright focused ion beam sources based on laser-cooled atoms

    CERN Document Server

    McClelland, J J; Knuffman, B; Twedt, K A; Schwarzkopf, A; Wilson, T M

    2015-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 uK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Never...

  20. Bright focused ion beam sources based on laser-cooled atoms

    Science.gov (United States)

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-03-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.

  1. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  2. Controllable Asymmetric Matter-wave Beam Splitter and Ring Potential on an Atom Chip

    CERN Document Server

    Kim, S J; Gang, S T; Anderson, D; Kim, J B

    2015-01-01

    We have constructed an asymmetric matter-wave beam splitter and a ring potential on an atom chip with Bose-Einstein condensates using radio-frequency dressing. By applying rf-field parallel to the quantization axis in the vicinity of the static trap minima added to perpendicular rf-fields, versatile controllability on the potentials is realized. Asymmetry of the rf-induced double well is manipulated without discernible displacement of the each well along horizontal and vertical direction. Formation of an isotropic ring potential on an atom chip is achieved by compensating the gradient due to gravity and inhomogeneous coupling strength. In addition, position and rotation velocity of a BEC along the ring geometry are controlled by the relative phase and the frequency difference between the rf-fields, respectively.

  3. Precision measurement of transverse velocity distribution of a strontium atomic beam

    Directory of Open Access Journals (Sweden)

    F. Gao

    2014-02-01

    Full Text Available We measure the transverse velocity distribution in a thermal Sr atomic beam precisely by velocity-selective saturated fluorescence spectroscopy. The use of an ultrastable laser system and the narrow intercombination transition line of Sr atoms mean that the resolution of the measured velocity can reach 0.13 m/s, corresponding to 90 μK in energy units. The experimental results are in very good agreement with the results of theoretical calculations. Based on the spectroscopic techniques used here, the absolute frequency of the intercombination transition of 88Sr is measured using an optical-frequency comb generator referenced to the SI second through an H maser, and is given as 434 829 121 318(10 kHz.

  4. Precision measurement of transverse velocity distribution of a strontium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Gao, F.; Liu, H.; Tian, X. [CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi' an 710600 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, P.; Wang, Y.; Ren, J. [CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi' an 710600 (China); Wu, Haibin, E-mail: hbwu@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062 (China); Chang, Hong, E-mail: changhong@ntsc.ac.cn [CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi' an 710600 (China); State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2014-02-15

    We measure the transverse velocity distribution in a thermal Sr atomic beam precisely by velocity-selective saturated fluorescence spectroscopy. The use of an ultrastable laser system and the narrow intercombination transition line of Sr atoms mean that the resolution of the measured velocity can reach 0.13 m/s, corresponding to 90 μK in energy units. The experimental results are in very good agreement with the results of theoretical calculations. Based on the spectroscopic techniques used here, the absolute frequency of the intercombination transition of {sup 88}Sr is measured using an optical-frequency comb generator referenced to the SI second through an H maser, and is given as 434 829 121 318(10) kHz.

  5. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    ZHANG WenTao; ZHU BaoHua; ZHANG BaoWu; LI TongBao

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size, fourth-order Runge-Kutta type algorithm. The influence of laser power on depo-sition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW, the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW, but with laser power increase, equal to 50 mW, the nonmeter structure forms the multi-crests and exacerbates.

  6. High momentum splitting of matter-waves by an atom chip field gradient beam-splitter

    CERN Document Server

    Machluf, Shimon; Folman, Ron

    2012-01-01

    The splitting of matter-waves into superposition states is a fundamental tool for studying the basic tenets of quantum behavior, as well as a building block for numerous technological applications. We report on the first realization of a beam-splitter by a combination of magnetic field gradients and a radio-frequency technique. It may be used for freely propagating or trapped atoms in a Bose-Einstein condensate or a thermal state. It has the advantageous feature of endowing its superposition state with a large differential momentum in the direction parallel or transverse to the atoms' motion, thereby, for example enabling to open large angles. As large space-time area of an interferometer increases its sensitivity, this may be used for new kinds of interferometry experiments (e.g. large angle Sagnac interferometry). Furthermore, it is also simple to use, fast, and does not require light.

  7. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size,fourth-order Runge-Kutta type algorithm.The influence of laser power on deposition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW,the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW,but with laser power increase,equal to 50 mW,the nonmeter structure forms the multi-crests and exacerbates.

  8. Noise Effects on Entangled Coherent State Generated via Atom-Field Interaction and Beam Splitter

    Science.gov (United States)

    Najarbashi, G.; Mirzaei, S.

    2016-05-01

    In this paper, we introduce a controllable method for producing two and three-mode entangled coherent states (ECS's) using atom-field interaction in cavity QED and beam splitter. The generated states play central roles in linear optics, quantum computation and teleportation. We especially focus on qubit, qutrit and qufit like ECS's and investigate their entanglement by concurrence measure. Moreover, we illustrate decoherence properties of ECS's due to noisy channels, using negativity measure. At the end the effect of noise on monogamy inequality is discussed.

  9. Use of an Atmospheric Atomic Oxygen Beam for Restoration of Defaced Paintings

    Science.gov (United States)

    Banks, Bruce A.; Rutledge, Sharon K.; Karla, Margaret; Norris, Mary Jo; Real, William A.; Haytas, Christy A.

    1999-01-01

    An atmospheric atomic oxygen beam has been found to be effective in removing organic materials through oxidation that are typical of graffiti or other contaminant defacements which may occur to the surfaces of paintings. The technique, developed by the National Aeronautics and Space Administration, is portable and was successfully used at the Carnegie Museum of Art to remove a lipstick smudge from the surface of porous paint on the Andy Warhol painting "Bathtub." This process was also evaluated for suitability to remove felt tip and ball point ink graffiti from paper, gesso on canvas and cotton canvas.

  10. Application of Powder Diffraction Methods to the Analysis of the Atomic Structure of Nanocrystals: The Concept of the Apparent Lattice Parameter (ALP)

    Science.gov (United States)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The applicability of standard methods of elaboration of powder diffraction data for determination of the structure of nano-size crystallites is analysed. Based on our theoretical calculations of powder diffraction data we show, that the assumption of the infinite crystal lattice for nanocrystals smaller than 20 nm in size is not justified. Application of conventional tools developed for elaboration of powder diffraction data, like the Rietveld method, may lead to erroneous interpretation of the experimental results. An alternate evaluation of diffraction data of nanoparticles, based on the so-called 'apparent lattice parameter' (alp) is introduced. We assume a model of nanocrystal having a grain core with well-defined crystal structure, surrounded by a surface shell with the atomic structure similar to that of the core but being under a strain (compressive or tensile). The two structural components, the core and the shell, form essentially a composite crystal with interfering, inseparable diffraction properties. Because the structure of such a nanocrystal is not uniform, it defies the basic definitions of an unambiguous crystallographic phase. Consequently, a set of lattice parameters used for characterization of simple crystal phases is insufficient for a proper description of the complex structure of nanocrystals. We developed a method of evaluation of powder diffraction data of nanocrystals, which refers to a core-shell model and is based on the 'apparent lattice parameter' methodology. For a given diffraction pattem, the alp values are calculated for every individual Bragg reflection. For nanocrystals the alp values depend on the diffraction vector Q. By modeling different a0tomic structures of nanocrystals and calculating theoretically corresponding diffraction patterns using the Debye functions we showed, that alp-Q plots show characteristic shapes which can be used for evaluation of the atomic structure of the core-shell system. We show, that using a simple

  11. Generation of energetic He atom beams by a pulsed positive corona discharge

    International Nuclear Information System (INIS)

    Time-of-flight measurements were made of neutral helium atom beams extracted from a repetitive, pulsed, positive-point corona discharge. Two strong neutral peaks, one fast and one slow, were observed, accompanied by a prompt photon peak and a fast ion peak. All peaks were correlated with the pulsing of the discharge. The two types of atoms appear to be formed by different mechanisms at different stages of the corona discharge. The fast atoms had energies of 190 eV and were formed at the onset of the pulsing, approximately 0.7 μs before the maximum of the photon peak. The slow peak, composed of electronically metastable He atoms, originated 30 50 μs after the photon pulse, and possessed a nearly thermal velocity distribution. The velocity distribution was typical of an undisturbed supersonic expansion with a stagnation temperature of 131 K and a speed ratio of 3.6. Peak intensities and velocities were measured as a function of source voltage, stagnation pressure, and skimmer voltage. copyright 1997 American Institute of Physics

  12. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  13. Ultrafast electron diffraction using an ultracold source

    Directory of Open Access Journals (Sweden)

    M. W. van Mourik

    2014-05-01

    Full Text Available The study of structural dynamics of complex macromolecular crystals using electrons requires bunches of sufficient coherence and charge. We present diffraction patterns from graphite, obtained with bunches from an ultracold electron source, based on femtosecond near-threshold photoionization of a laser-cooled atomic gas. By varying the photoionization wavelength, we change the effective source temperature from 300 K to 10 K, resulting in a concomitant change in the width of the diffraction peaks, which is consistent with independently measured source parameters. This constitutes a direct measurement of the beam coherence of this ultracold source and confirms its suitability for protein crystal diffraction.

  14. Molecular beam epitaxy of GeTe-Sb{sub 2}Te{sub 3} phase change materials studied by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shayduk, Roman

    2010-05-20

    The integration of phase change materials into semiconductor heterostructures may lead to the development of a new generation of high density non-volatile phase change memories. Epitaxial phase change materials allow to study the detailed structural changes during the phase transition and to determine the scaling limits of the memory. This work is dedicated to the epitaxial growth of Ge-Sb-Te phase change alloys on GaSb(001). We deposit Ge-Sb-Te (GST) films on GaSb(001) substrates by means of molecular beam epitaxy (MBE). The film orientation and lattice constant evolution is determined in real time during growth using grazing incidence X-ray diffraction (GID). The nucleation stage of the growth is studied in situ using reflection high energy electron diffraction (RHEED). Four growth regimes of GST on GaSb(001) were observed: amorphous, polycrystalline, incubated epitaxial and direct epitaxial. Amorphous film grows for substrate temperatures below 100 C. For substrate temperatures in the range 100-160 C, the film grows in polycrystalline form. Incubated epitaxial growth is observed at temperatures from 180 to 210 C. This growth regime is characterized by an initial 0.6nm thick amorphous layer formation, which crystallizes epitaxially as the film thickness increases. The determined lattice constant of the films is 6.01 A, very close to that of the metastable GST phase. The films predominantly possess an epitaxial cube-on-cube relationship. At higher temperatures the films grow epitaxially, however the growth rate is rapidly decreasing with temperature. At temperatures above 270 C the growth rate is zero. The composition of the grown films is close to 2:2:5 for Ge, Sb and Te, respectively. The determined crystal structure of the films is face centered cubic (FCC) with a rhombohedral distortion. The analysis of X-ray peak widths gives a value for the rhombohedral angle of 89.56 . We observe two types of reflections in reciprocal space indicating two FCC sublattices in

  15. Atom laser divergence

    OpenAIRE

    Le Coq, Yann; Thywissen, Joseph H.; Rangwala, Sadiq A.; Gerbier, Fabrice; Richard, Simon; Delannoy, Guillaume; Bouyer, Philippe; Aspect, Alain

    2001-01-01

    We measure the angular divergence of a quasi-continuous, rf-outcoupled, free-falling atom laser as a function of the outcoupling frequency. The data is compared to a Gaussian-beam model of laser propagation that generalizes the standard formalism of photonic lasers. Our treatment includes diffraction, magnetic lensing, and interaction between the atom laser and the condensate. We find that the dominant source of divergence is the condensate-laser interaction.

  16. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    International Nuclear Information System (INIS)

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO2+ with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H2 densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH+, CH2+, and CH4+ have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  17. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Borodi, Gheorghe

    2008-12-09

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO{sub 2}{sup +} with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H{sub 2} densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH{sup +}, CH{sub 2}{sup +}, and CH{sub 4}{sup +} have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  18. Average Dissipative and Dipole Forces on a Three-Level Atom in a Laguerre-Gaussian Beam

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng-Ling; YIN Jian-Ping

    2005-01-01

    @@ By means of the optical Bloch equations based on the atomic density matrix elements, the general expressions of the average dissipative force, dipole force and the mechanical torque acting on a A-configuration three-level atom in a linearly-polarized Laguerre-Gaussian beam (LGB) with an angular momentum of lh are derived, and the general properties of the average dissipative and dipole force on the three-level atom in the linearly-polarized LGB are analysed. We find a resonant property (with two resonant peaks) of the dissipative force and a non-resonant property (with two pairs of non-resonant peaks) of the dipole force on the three-level atom, which are completely different from those on the two-level atom. Our study also shows that all of general expressions on the three-level atom will be simplified to those on the two-level atom in the approximation of large detuning.

  19. Atomic structure of amorphous PbFe1/2Nb1/2O3: X-ray and neutron diffraction study

    International Nuclear Information System (INIS)

    Atomic structure of amorphous PbFe1/2Nb1/2O3 was studied by the methods of X-ray and neutron diffraction. The average values of Fe-O (Nb-O) and Pb-O interatomic distances in the amorphous material were determined. The X-ray and neutron radial distribution functions were compared, which permitted revealing a number of regularities in the composition short range

  20. Effects of focused ion beam milling on electron backscatter diffraction patterns in strontium titanate and stabilized zirconia.

    Science.gov (United States)

    Saowadee, N; Agersted, K; Bowen, J R

    2012-06-01

    This study investigates the effect of focused ion beam (FIB) current and accelerating voltage on electron backscatter diffraction pattern quality of yttria-stabilized zirconia (YSZ) and Nb-doped strontium titanate (STN) to optimize data quality and acquisition time for 3D-EBSD experiments by FIB serial sectioning. Band contrast and band slope were used to describe the pattern quality. The FIB probe currents investigated ranged from 100 to 5000 pA and the accelerating voltage was either 30 or 5 kV. The results show that 30 kV FIB milling induced a significant reduction of the pattern quality of STN samples compared to a mechanically polished surface but yielded a high pattern quality on YSZ. The difference between STN and YSZ pattern quality is thought to be caused by difference in the degree of ion damage as their backscatter coefficients and ion penetration depths are virtually identical. Reducing the FIB probe current from 5000 to 100 pA improved the pattern quality by 20% for STN but only showed a marginal improvement for YSZ. On STN, a conductive coating can help to improve the pattern quality and 5 kV polishing can lead to a 100% improvement of the pattern quality relatively to 30 kV FIB milling. For 3D-EBSD experiments of a material such as STN, it is recommended to combine a high kV FIB milling and low kV polishing for each slice in order to optimize the data quality and acquisition time. PMID:22582798

  1. Laser diffraction microscopy

    OpenAIRE

    Schall, P.

    2009-01-01

    Crystals composed of micrometer size colloidal particles diffract light and are both of fundamental interest as well as having important applications as filters, sensors and photonic devices. Laser light is used to diffract from these crystals in close analogy to x-ray or electron diffraction used for atomic crystals. Laser diffraction microscopy explores optical diffraction contrast to image crystals and crystal defects in analogy to the transmission electron microscopy technique used to ima...

  2. Effect of additional elements on compositional modulated atomic layered structure of hexagonal Co80Pt20 alloy films with superlattice diffraction

    Directory of Open Access Journals (Sweden)

    Shintaro Hinata

    2016-05-01

    Full Text Available The effect of additional element on compositionally modulated atomic layered structure of hexagonal Co80Pt20 alloy films with superlattice diffraction was investigated. In this study it is found that the addition of Cr or W element to Co80Pt20 alloy film shows less deterioration of hcp stacking structure and compositionally modulated atomic layer stacking structure as compared to Si or Zr or Ti with Ku of around 1.4 or 1.0 × 107 erg/cm3 at 5 at.% addition. Furthermore, for O2 addition of O2 ≥ 5.0 × 10−3 Pa to CoPt alloy, compositionally modulated atomic layer stacking structure will be deteriorated with enhancement of formation of hcp stacking structure which leads higher Ku of 1.0 × 107 erg/cm3.

  3. X-Ray photoelectron diffraction and photoelectron holography as methods for investigating the local atomic structure of the surface of solids

    International Nuclear Information System (INIS)

    The state-of-the-art theory and experimental applications of X-ray photoelectron diffraction (XPD) and photoelectron holography (PH) are discussed. These methods are rapidly progressing and serve to examine the surface atomic structure of solids, including nanostructures formed on surfaces during adsorption of gases, epitaxial film growth, etc. The depth of analysis by these methods is several nanometres, which makes it possible to characterize the positions of atoms localized both on and beneath the surface. A remarkable feature of the XPD and PH methods is their sensitivity to the type of examined atoms and, in the case of high energy resolution, to the particular chemical form of the element under study. The data on experimental applications of XPD and PH to studies of various surface structures are analyzed and generalized. The bibliography includes 121 references

  4. Investigation of Ge-Si Atomic Interdiffusion in Ge Nano-dots Multilayer Structure by Double Crystal X-ray Diffraction

    Institute of Scientific and Technical Information of China (English)

    Wenhua SHI; Lei ZHAO; Liping LUO; Qiming WANG

    2007-01-01

    The fluctuations of the strained layer in a superlattice or quantum well can broaden the width of satellite peaks in double crystal X-ray diffraction (DCXRD) pattern. It is found that the width of the 0th peak is directly proportional to the fluctuation of the strained layer if the other related facts are ignored. By this method, the Ge-Si atomic interdiffusion in Ge nano-dots and wetting layers has been investigated by DCXRD. It is found that thermal annealing can activate Ge-Si atomic interdiffusion and the interdiffusion in the nano-dots area is much stronger than that in the wetting layer area. Therefore the fluctuation of the Ge layer decreases and the distribution of Ge atoms becomes homogeneous in the horizontal Ge (GeSi actually) layer, which make the width of the 0th peak narrow after annealing.

  5. X-ray diffraction and imaging with a coherent beam: application to X-ray optical elements and to crystals exhibiting phase inhomogeneities

    International Nuclear Information System (INIS)

    The exceptional properties of synchrotron light sources have been exploited in very different disciplines, from archaeology to chemistry, from material science to biology, from medicine to physics. Among these properties it is important to mention the high brilliance, continuum spectrum, high degree of polarization, time structure, small source size and divergence of the beam, the last resulting in a high transversal coherence of the produced radiation. This high transversal coherence of the synchrotron sources has permitted the development of new techniques, e.g. phase contrast imaging, X-ray photon correlation spectroscopy and coherent X-ray diffraction imaging (CXDI). This thesis work will consist essentially of three parts. In the first part it will be presented the work done as a member of the X-ray Optics Group of ESRF in the characterization of high quality diamond crystals foreseen as X-ray optical elements. The characterization has been done using different complementary X-ray techniques, such as high resolution diffraction, topography, grazing incidence diffraction, reflectivity and measurements of the coherence preservation using the Talbot effect. In the second part, I will show the result obtained in the study of the temperature behaviours of the domain in periodically poled ferroelectrics crystals. This type of measurements, based on Bragg-Fresnel diffraction, are possible only thanks to the high degree of coherence of the beam. In the third part, I will present the results obtained in the characterization of diamonds foreseen for applications other than X-ray optical elements. (author)

  6. Optical Guiding of Trapped Atoms by a Blue-Detuned Hollow Laser Beam in the Horizontal Direction

    Institute of Scientific and Technical Information of China (English)

    JIANG Kai-Jun; LI Ke; WANG Jin; ZHAN Ming-Sheng

    2005-01-01

    @@ Optical guiding of 85 Rb atoms in a magneto-optical trap (MOT) by a blue-detuned horizontal hollow laser beam is demonstrated experimentally. The guiding efficiency and the velocity distribution of the guided atoms are found to have strong dependence on the detuning of the guiding laser. In particular, the optimum guiding occurs when the blue detuning of the hollow laser beam is approximately equal to the hyperfine structure splitting of the 85Rb ground states, in good agreement with the theoretical analysis based on a three-level model.

  7. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation

    Institute of Scientific and Technical Information of China (English)

    Jiang Ran; Meng Lingguo; Zhang Xijian; Hyung-Suk Jung; Cheol Seong Hwang

    2012-01-01

    Atomic layer deposition ofan Al2O3 dielectric on ultrathin graphite is studied in order to investigate the integration of a high k dielectric with graphite-based substrates.Electron beam irradiation on the graphite surface is followed by a standard atomic layer deposition of Al2O3.Improvement of the Al2O3 layer deposition morphology was observed when using this radiation exposure on graphite.This result may be attributed to the amorphous change of the graphite layers during electron beam irradiation.

  8. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Proksch, Roger [Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  9. Candlestick oven with a silica wick provides an intense collimated cesium atomic beam

    Science.gov (United States)

    Pailloux, A.; Alpettaz, T.; Lizon, E.

    2007-02-01

    This article shows that readily available glass and silica fibers and braids are suitable capillary structure for recirculating ovens, such as candlestick ovens, becoming then an alternative wick material to conventional metal based capillary structures. In order to study wettability and capillarity of metallic liquid cesium on borosilicate and silica microstructures, samples were selected, prepared, and tested experimentally. The contact angle of cesium on silica glass was roughly measured: θ =35°±10°. A commercially available silica braid was then introduced inside a candlestick oven to transfer the metallic liquid cesium from the cold reservoir to the hot emission point of the candlestick. A collimated cesium atomic beam of intensity of 2×1016at./ssr was obtained, stable and reproducible. Furthermore, this modified oven is easy to handle daily.

  10. Selective population of ground terms in /sup 14/N atoms after ion-beam--surface interaction at grazing incidence

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.; Langheim, M.; Schirmacher, A.; Zimny, R.; Andra, H.J.

    1984-04-02

    The orientation of angular momenta in the ground terms of /sup 14/N atoms after the interaction of 350-keV /sup 14/N/sup +/ ions with a solid surface at grazing incidence is investigated by a Zeeman quantum-beat technique. After the ion-solid interaction, a term-selective and highly polarized fast beam of nitrogen atoms is observed. The phenomenon is interpreted in terms of a Pauli-principle--induced selective population.

  11. Atomic Diffusion in Cu/Si (111) and Cu/SiO2/Si (111) Systems by Neutral Cluster Beam Deposition

    Institute of Scientific and Technical Information of China (English)

    CAO Bo; LI Gong-Ping; CHEN Xi-Meng; CHO Seong-Jin; KIM Hee

    2008-01-01

    @@ The Cu films are deposited on two kinds of p-type Si (111) substrates by ionized cluster beam (ICB) technique.The interface reaction and atomic diffusion of Cu/Si (111) and Cu/SiO2/Si (111) systems are studied at different annealing temperatures by x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Some significant results are obtained: For the Cu/Si (111) samples prepared by neutral clusters, the interdiffusion of Cu and Si atoms occurs when annealed at 230℃. The diffusion coefficients of the samples annealed at 230℃and 500℃ are 8.5 × 10-15 cm2.s-1 and 3.0 × 10-14 cm2.s-1, respectively. The formation of the copper-silicide phase is observed by XRD, and its intensity becomes stronger with the increase of annealing temperature. For the Cu/SiO2/Si (111) samples prepared by neutral clusters, the interdiffusion of Cu and Si atoms occurs and copper silicides are formed when annealed at 450℃. The diffusion coefficients of Cu in Si are calculated to be 6.0 × 10-16 cm2.s-1 at 450℃, due to the fact that the existence of the SiO2 layer suppresses the interdiffusion of Cu and Si.

  12. Nondestructive mapping of chemical composition and structural qualities of group III-nitride nanowires using submicron beam synchrotron-based X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, P.L., E-mail: plb2@njit.edu [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gautier, S. [LMOPS + UMI: Laboratoire Matériaux Optiques, Photonique et micro-nano Systèmes, UMR CNRS 7132, Université de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz, France, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gmili, Y.El.; Moudakir, T. [UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Sirenko, A.A. [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Kazimirov, A. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Cai, Z.-H. [Advanced Photon Source, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Martin, J. [LMOPS + UMI: Laboratoire Matériaux Optiques, Photonique et micro-nano Systèmes, UMR CNRS 7132, Université de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz, France, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Goh, W.H. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Martinez, A.; Ramdane, A.; Le Gratiet, L. [Laboratoire de Photonique et de Nanostructures, UPR CNRS 20, Route de Nozay, 91460 Marcoussis (France); Maloufi, N. [Laboratoire d' Etude des Textures et Application aux Matériaux UMR CNRS 7078 Ile du Saulcy 57045 METZ cedex 1 (France); Assouar, M.B. [Laboratoire de Physique des Milieux Ionisés et Applications, Nancy University, CNRS, BP 239, F-54506 Vandoeuvre-lès-Nancy Cédex (France); Ougazzaden, A. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France)

    2013-08-31

    Submicron beam synchrotron-based X-ray diffraction (XRD) techniques have been developed and used to accurately and nondestructively map chemical composition and material quality of selectively grown group III-nitride nanowires. GaN, AlGaN, and InGaN multi-quantum-well nanowires have been selectively grown on lattice matched and mismatched substrates, and the challenges associated with obtaining and interpreting submicron beam XRD results are addressed and solved. Nanoscale cathodoluminescence is used to examine exciton behavior, and energy-dispersive X-ray spectroscopy is used to verify chemical composition. Scanning transmission electron microscopy is later used to paint a more complete picture. The advantages of submicron beam XRD over other techniques are discussed in the context of this challenging material system. - Highlights: ► We used nano selective area growth to create nanowires of GaN, AlGaN and InGaN/GaN. ► We characterized them by synchrotron-based submicron beam X-ray diffraction (XRD). ► This technique accurately determined chemical and crystallographic properties. ► Challenges of XRD are addressed in the context of this challenging material system. ► Advantages of XRD over other characterization methods are discussed.

  13. Light and/or atomic beams to detect ultraweak gravitational effects

    Directory of Open Access Journals (Sweden)

    Tartaglia Angelo

    2014-06-01

    Full Text Available We shall review the opportunities lent by ring lasers and atomic beams interferometry in order to reveal gravitomagnetic effects on Earth. Both techniques are based on the asymmetric propagation of waves in the gravitational field of a rotating mass; actually the times of flight for co- or counter-rotating closed paths turn out to be different. After discussing properties and limitations of the two approaches we shall describe the proposed GINGER experiment which is being developed for the Gran Sasso National Laboratories in Italy. The experimental apparatus will consist of a three-dimensional array of square rings, 6m × 6m, that is planned to reach a sensitivity in the order of 1prad/√Hertz or better. This sensitivity would be one order of magnitude better than the best existing ring, which is the G-ring in Wettzell, Bavaria, and would allow for the terrestrial detection of the Lense-Thirring effect and possibly of deviations from General Relativity. The possibility of using either the ring laser approach or atomic interferometry in a space mission will also be considered. The technology problems are under experimental study using both the German G-ring and the smaller G-Pisa ring, located at the Gran Sasso.

  14. Gate-Tunable Atomically Thin Lateral MoS2 Schottky Junction Patterned by Electron Beam.

    Science.gov (United States)

    Katagiri, Y; Nakamura, T; Ishii, A; Ohata, C; Hasegawa, M; Katsumoto, S; Cusati, T; Fortunelli, A; Iannaccone, G; Fiori, G; Roche, S; Haruyama, J

    2016-06-01

    Among atomically thin two-dimensional (2D) materials, molybdenum disulfide (MoS2) is attracting considerable attention because of its direct bandgap in the 2H-semiconducting phase. On the other hand, a 1T-metallic phase has been revealed, bringing complementary application. Recently, thanks to top-down fabrication using electron beam (EB) irradiation techniques, in-plane 1T-metal/2H-semiconductor lateral (Schottky) MoS2 junctions were demonstrated, opening a path toward the co-integration of active and passive two-dimensional devices. Here, we report the first transport measurements evidencing the formation of a MoS2 Schottky barrier (SB) junction with barrier height of 0.13-0.18 eV created at the interface between EB-irradiated (1T)/nonirradiated (2H) regions. Our experimental findings, supported by state-of-the-art simulation, reveal unique device fingerprint of SB-based field-effect transistors made from atom-thin 1T layers. PMID:27152475

  15. Stress evaluation in thin films: Micro-focus synchrotron X-ray diffraction combined with focused ion beam patterning for d{sub o} evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Baimpas, Nikolaos, E-mail: nikolaos.baimpas@eng.ox.ac.uk [University of Oxford, Dept. of Engineering Science (United Kingdom); Le Bourhis, Eric [University of Poitiers, Institut P' , Laboratoire de Physique des Matériaux, Poitiers (France); Eve, Sophie [ENSICAEN, CRISMAT, Caen (France); Thiaudière, Dominique [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, Paris (France); Hardie, Christopher [University of Oxford, Materials Department (United Kingdom); Korsunsky, Alexander M. [University of Oxford, Dept. of Engineering Science (United Kingdom)

    2013-12-31

    Nanocrystalline metallic coatings of sub-micron thickness are widely used in modern microelectronic applications. In X-ray diffraction experiments to determine both the residual and applied stresses in nanocrystalline coatings, one difficult challenge that comes up invariably is the determination of the strain-free lattice spacing d{sub o}. The present study addresses this challenge by using the focused ion beam (FIB) to generate a built-in strain-free reference by patterning (milling) a 50 × 50 μm{sup 2} region of the coating to produce an array of small stress-relieved “islands” ∼ 0.8 × 0.8 μm{sup 2} each. Transmission X-ray diffraction setup was used for data collection at DIFFABS beamline (Synchrotron SOLEIL, France). A 150 nm-thick multi-layered W–Cu nano-composite thin film on polyimide (Kapton®) substrate was studied. The samples were loaded incrementally using a compact uniaxial loading device, and micro-beam diffraction data were collected on and away from the reference array. It was shown experimentally that the “island” array remained approximately strain free throughout the experiment, providing an on-board d{sub o} lattice spacing reference. The changing lattice spacing d in the coating was also monitored away from the array, to deduce the elastic strain evolution during deformation. The results and their implications are presented and discussed. - Highlights: • In situ deformation study of laminate polycrystalline W–Cu thin films • Focused ion beam (FIB) patterning of an array of “islands” on thin films surface • X-ray diffraction on island-patterned region • Constant strain on “islands” independently of the deformation of the substrate.

  16. Detailed low-energy electron diffraction analysis of the (4×4) surface structure of C60 on Cu(111): Seven-atom-vacancy reconstruction

    Science.gov (United States)

    Xu, Geng; Shi, Xing-Qiang; Zhang, R. Q.; Pai, Woei Wu; Jeng, H. T.; Van Hove, M. A.

    2012-08-01

    A detailed and exhaustive structural analysis by low-energy electron diffraction (LEED) is reported for the C60-induced reconstruction of Cu(111), in the system Cu(111) + (4 × 4)-C60. A wide LEED energy range allows enhanced sensitivity to the crucial C60-metal interface that is buried below the 7-Å-thick molecular layer. The analysis clearly favors a seven-Cu-atom vacancy model (with Pendry R-factor Rp = 0.376) over a one-Cu-atom vacancy model (Rp = 0.608) and over nonreconstructed models (Rp = 0.671 for atop site and Rp = 0.536 for hcp site). The seven-Cu-atom vacancy forms a (4 × 4) lattice of bowl-like holes. In each hole, a C60 molecule can nestle by forming strong bonds (shorter than 2.30 Å) between 15 C atoms of the molecule and 12 Cu atoms of the outermost and second Cu layers.

  17. Prospects for Forbidden-Transition Spectroscopy and Parity Violation Measurements using a Beam of Cold Stable or Radioactive Atoms

    CERN Document Server

    Sanguinetti, S; Lintz, M; Jacquier, P; Wasan, A; Bouchiat, M A; Jacquier, Ph.

    2003-01-01

    Laser cooling and trapping offers the possibility of confining a sample of radioactive atoms in free space. Here, we address the question of how best to take advantage of cold atom properties to perform the observation of as highly forbidden a line as the 6S-7S Cs transition for achieving, in the longer term, Atomic Parity Violation measurements in radioactive alkali isotopes. Another point at issue is whether one might do better with stable, cold atoms than with thermal atoms. To compensate for the large drawback of the small number of atoms available in a trap, one must take advantage of their low velocity. To lengthen the time of interaction with the excitation laser, we suggest choosing a geometry where the laser beam exciting the transition is colinear to a slow, cold atomic beam, either extracted from a trap or prepared by Zeeman slowing. We also suggest a new observable physical quantity manifesting APV, which presents several advantages:specificity, efficiency of detection, possibility of direct calib...

  18. Near-diffraction-limited segmented broad area diode laser based on off-axis spectral beam combining

    DEFF Research Database (Denmark)

    Jensen, O.B.; Thestrup Nielsen, Birgitte; Andersen, Peter E.;

    2006-01-01

    The beam quality of a 500-mu m-wide broad area diode laser with five active segments has been improved beyond the beam quality of the individual segments. The principle of this new laser system is based on off-axis feedback in combination with spectral beam combining. By using a double......-feedback scheme we are able to improve the beam quality of the laser by a factor of 23 from M-2 = 55 for the free-running diode laser to M-2 = 2.4 for the laser with feedback at a drive current of 2.2 A. The improved M-2 value is a factor of 3.4 below M-2 = 8.2 for a single free-running segment. This is the first...... time that the beam quality of a segmented broad area diode laser has been improved beyond the beam quality of the individual segments....

  19. Electron spin polarization effects in low-energy electron diffraction, ion neutralization, and metastable-atom deexcitation at solid surfaces. Progress report No. 3, January 1-December 31, 1983

    International Nuclear Information System (INIS)

    The importance of electron spin polarization (ESP) effects in the various spectroscopies used to study solid surfaces has become increasingly apparent in recent years. Recent low energy electron diffraction (LEED) investigations in this laboratory and elsewhere have shown that a great deal of new information contributing to the understanding of the geometrical arrangements of atoms at a surface can be obtained if the polarization of the various LEED beams is measured, or if the incident electron beam is polarized. Polarized LEED studies have shown large polarization features that are very sensitive to the presence of adsorbed layers, surface reconstruction, etc. In addition, theory suggests that polarization measurements can provide a more sensitive test of many of the parameters used in a surface model than can conventional LEED intensity measurements alone. Polarized LEED has also been applied to the study of surface magnetism. In the present contract year, polarized LEED has been used, together with Auger analysis and LEED intensity measurements, as a diagnostic to characterize Ni(001) surfaces produced by laser annealing

  20. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  1. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2

    Science.gov (United States)

    Dubreuil, B.; Harnafi, M.

    1989-07-01

    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5-13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 AṦ are measured; they increase with n as opposed to the plateau observed for Li* colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n-->n' changing processes with large cross sections (10-100 AṦ) are also observed even in the case of large electronic energy change (ΔEnn'>103 cm-1). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes.

  2. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2

    International Nuclear Information System (INIS)

    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5--13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 A2 are measured; they increase with n as opposed to the plateau observed for Li/sup */ colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n yields n' changing processes with large cross sections (10--100 A2) are also observed even in the case of large electronic energy change (ΔE/sub nn'/>103 cm/sup -1/). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes

  3. Photoluminescence from GaAs nanodisks fabricated by using combination of neutral beam etching and atomic hydrogen-assisted molecular beam epitaxy regrowth

    Energy Technology Data Exchange (ETDEWEB)

    Kaizu, Toshiyuki; Okada, Yoshitaka [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Tamura, Yosuke; Igarashi, Makoto; Hu, Weiguo; Tsukamoto, Rikako [Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yamashita, Ichiro [Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Samukawa, Seiji [Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2012-09-10

    We have fabricated GaAs nanodisk (ND) structures by using a combination of neutral beam etching process and atomic hydrogen-assisted molecular beam epitaxy regrowth. We have observed clear photoluminescence (PL) emissions from GaAs NDs. The peak energy showed a blueshift due to the quantum confinement in three spatial dimensions, and it agreed with the theoretically estimated transition energy. The PL results also showed that the cap-layer disks act as radiative recombination centers. We have confirmed that the PL emission originates from the GaAs NDs, and our approach is effective for the fabrication of high quality ND structures.

  4. Detection of slow atoms confined in a Cesium vapor cell by spatially separated pump and probe laser beams

    CERN Document Server

    Todorov, Petko; Maurin, Isabelle; Saltiel, Solomon; Bloch, Daniel

    2013-01-01

    The velocity distribution of atoms in a thermal gas is usually described through a Maxwell-Boltzman distribution of energy, and assumes isotropy. As a consequence, the probability for an atom to leave the surface under an azimuth angle {\\theta} should evolve as cos {\\theta}, in spite of the fact that there is no microscopic basis to justify such a law. The contribution of atoms moving at a grazing incidence towards or from the surface, i.e. atoms with a small normal velocity, here called "slow" atoms, reveals essential in the development of spectroscopic methods probing a dilute atomic vapor in the vicinity of a surface, enabling a sub-Doppler resolution under a normal incidence irradiation. The probability for such "slow" atoms may be reduced by surface roughness and atom-surface interaction. Here, we describe a method to observe and to count these slow atoms relying on a mechanical discrimination, through spatially separated pump and probe beams. We also report on our experimental progresses toward such a g...

  5. Distribution and anisotropy of dislocations in cold-drawn pearlitic steel wires analyzed using micro-beam X-ray diffraction

    International Nuclear Information System (INIS)

    To characterize the distribution and anisotropy of dislocations in cold-drawn pearlitic steel wires, X-ray diffraction line-profile analysis was performed using synchrotron radiation micro-beams. An analytical procedure for correcting the instrumental line broadening for highly directional micro-beams was developed using diffraction profiles of standard CeO2 powder. Although the CeO2 powder line profile includes line broadening due to its microstructural imperfections, the instrumental broadening can be obtained by estimating the effect of the microstructural imperfections on the line broadening. The plastic shear strain was generally more severe near the surface than the center of the wire, whereas the dislocation density distribution was almost constant from the center to the surface. On the other hand, the dislocation rearrangement, which evolves the dislocation cell structure, progressed closer to the surface. It was also revealed that a difference between the hardness in axial and transverse wire directions could be explained by anisotropic dislocation density. Line-profile analysis based on diffraction data at elevated temperatures was performed. Whereas the cementite recovery progressed at a constant rate, the ferrite phase recovery rate was temperature-dependent, suggesting that the ferrite phase recovery was less related to that of the cementite phase. (author)

  6. External Heavy-Atom Effect via Orbital Interactions Revealed by Single-Crystal X-ray Diffraction.

    Science.gov (United States)

    Sun, Xingxing; Zhang, Baicheng; Li, Xinyang; Trindle, Carl O; Zhang, Guoqing

    2016-07-28

    Enhanced spin-orbit coupling through external heavy-atom effect (EHE) has been routinely used to induce room-temperature phosphorescence (RTP) for purely organic molecular materials. Therefore, understanding the nature of EHE, i.e., the specific orbital interactions between the external heavy atom and the luminophore, is of essential importance in molecular design. For organic systems, halogens (e.g., Cl, Br, and I) are the most commonly seen heavy atoms serving to realize the EHE-related RTP. In this report, we conduct an investigation on how heavy-atom perturbers and aromatic luminophores interact on the basis of data obtained from crystallography. We synthesized two classes of molecular systems including N-haloalkyl-substituted carbazoles and quinolinium halides, where the luminescent molecules are considered as "base" or "acid" relative to the heavy-atom perturbers, respectively. We propose that electron donation from a π molecular orbital (MO) of the carbazole to the σ* MO of the C-X bond (π/σ*) and n electron donation to a π* MO of the quinolinium moiety (n/π*) are responsible for the EHE (RTP) in the solid state, respectively.

  7. External Heavy-Atom Effect via Orbital Interactions Revealed by Single-Crystal X-ray Diffraction.

    Science.gov (United States)

    Sun, Xingxing; Zhang, Baicheng; Li, Xinyang; Trindle, Carl O; Zhang, Guoqing

    2016-07-28

    Enhanced spin-orbit coupling through external heavy-atom effect (EHE) has been routinely used to induce room-temperature phosphorescence (RTP) for purely organic molecular materials. Therefore, understanding the nature of EHE, i.e., the specific orbital interactions between the external heavy atom and the luminophore, is of essential importance in molecular design. For organic systems, halogens (e.g., Cl, Br, and I) are the most commonly seen heavy atoms serving to realize the EHE-related RTP. In this report, we conduct an investigation on how heavy-atom perturbers and aromatic luminophores interact on the basis of data obtained from crystallography. We synthesized two classes of molecular systems including N-haloalkyl-substituted carbazoles and quinolinium halides, where the luminescent molecules are considered as "base" or "acid" relative to the heavy-atom perturbers, respectively. We propose that electron donation from a π molecular orbital (MO) of the carbazole to the σ* MO of the C-X bond (π/σ*) and n electron donation to a π* MO of the quinolinium moiety (n/π*) are responsible for the EHE (RTP) in the solid state, respectively. PMID:27319778

  8. Consideration of Wall Reflection and Diffraction in the Room Acoustic Prediction Using the Phased Beam Tracing Method

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2007-01-01

    are the use of approximated reflection coefficient and the integration with the theory of diffraction. This study aimed to improve the precision of the present method in mid frequency range and extend the applicability to the low frequency below Schroeder cutoff frequency. Because this method is originated...... and consequently the guidelines were suggested for these parameters. The approximate angle‐dependent/independent reflection coefficients were tested. The angle dependent reflection coefficient can take the angle dependence of the incident wave into account as well as the size effect of the surface. Also, the merit...... into the PBTM based on the uniform theory of diffraction for the low to mid frequency simulation. The diffraction of edge, which is the topmost problem in an enclosed space, was tested. The simulated results by combining the PBTM with UTD agreed well with the previous research. Besides, the measurement...

  9. Performance of an optical encoder based on a nondiffractive beam implemented with a specific photodetection integrated circuit and a diffractive optical element.

    Science.gov (United States)

    Quintián, Fernando Perez; Calarco, Nicolás; Lutenberg, Ariel; Lipovetzky, José

    2015-09-01

    In this paper, we study the incremental signal produced by an optical encoder based on a nondiffractive beam (NDB). The NDB is generated by means of a diffractive optical element (DOE). The detection system is composed by an application specific integrated circuit (ASIC) sensor. The sensor consists of an array of eight concentric annular photodiodes, each one provided with a programmable gain amplifier. In this way, the system is able to synthesize a nonuniform detectivity. The contrast, amplitude, and harmonic content of the sinusoidal output signal are analyzed. The influence of the cross talk among the annular photodiodes is placed in evidence through the dependence of the signal contrast on the wavelength.

  10. Atomic scattering in the diffraction limit: electron transfer in keV Li+-Na(3s, 3p) collisions

    DEFF Research Database (Denmark)

    Poel, Mike van der; Nielsen, C.V.; Rybaltover, M.;

    2002-01-01

    of the de Broglie wavelength lambda(dB) = 150 fm at a velocity v = 0.20 au and the effective atomic diameter for electron capture 2R = 20 au. Parallel AO and MO semiclassical coupled-channel calculations of the Na(3s, 3p) --> Li(2s, 2p) state-to-state collision amplitudes have been performed, and quantum...

  11. Atomic Layer Epitaxy of h-BN(0001) Multilayers on Co(0001) and Molecular Beam Epitaxy Growth of Graphene on h-BN(0001)/Co(0001).

    Science.gov (United States)

    Driver, M Sky; Beatty, John D; Olanipekun, Opeyemi; Reid, Kimberly; Rath, Ashutosh; Voyles, Paul M; Kelber, Jeffry A

    2016-03-22

    The direct growth of hexagonal boron nitride (h-BN) by industrially scalable methods is of broad interest for spintronic and nanoelectronic device applications. Such applications often require atomically precise control of film thickness and azimuthal registry between layers and substrate. We report the formation, by atomic layer epitaxy (ALE), of multilayer h-BN(0001) films (up to 7 monolayers) on Co(0001). The ALE process employs BCl3/NH3 cycles at 600 K substrate temperature. X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) data show that this process yields an increase in h-BN average film thickness linearly proportional to the number of BCl3/NH3 cycles, with BN layers in azimuthal registry with each other and with the Co(0001) substrate. LEED diffraction spot profile data indicate an average BN domain size of at least 1900 Å. Optical microscopy data indicate the presence of some domains as large as ∼20 μm. Transmission electron microscopy (TEM) and ambient exposure studies demonstrate macroscopic and microscopic continuity of the h-BN film, with the h-BN film highly conformal to the Co substrate. Photoemission data show that the h-BN(0001) film is p-type, with band bending near the Co/h-BN interface. Growth of graphene by molecular beam epitaxy (MBE) is observed on the surface of multilayer h-BN(0001) at temperatures of 800 K. LEED data indicate azimuthal graphene alignment with the h-BN and Co(0001) lattices, with domain size similar to BN. The evidence of multilayer BN and graphene azimuthal alignment with the lattice of the Co(0001) substrate demonstrates that this procedure is suitable for scalable production of heterojunctions for spintronic applications. PMID:26940024

  12. A trapped atom interferometer with ultracold Sr atoms

    CERN Document Server

    Zhang, Xian; Mazzoni, Tommaso; Poli, Nicola; Tino, Guglielmo M

    2016-01-01

    We report on a trapped atom interferometer based on Bragg diffraction and Bloch oscillations with alkaline-earth-metal atoms. We use a Ramsey-Bord\\'e Bragg interferometer with $^{88}$Sr atoms combined with Bloch oscillations to extend the interferometer time. Thanks to a long coherence time for Bloch oscillations of $^{88}$Sr atoms, we observed interference up to 1 s evolution time in the lattice. A detailed study of decoherence sources during the Bloch phase is also presented. While still limited in sensitivity by lattice lifetime and beam inhomogeneity this result opens the way to high contrast trapped interferometers with extended interrogation time.

  13. Neutron diffraction study of the atomic structure of cubic sodium-tungsten bronze (Na0.69WO3) single crystal

    International Nuclear Information System (INIS)

    The atomic structure of a single crystal of one of four Na0.69WO3 phases, which exist below 293 K, has been refined from neutron diffraction data (WWR-c reactor at the Karpov Institute of Physical Chemistry, Obninsk Branch; λ = 1.168 Å; λ/2 contribution −1). The Na0.69WO3 atomic structure has been refined (198 independent reflections) taking into account the anisotropy of thermal vibrations (Rw = 4.0%). The stoichiometric coefficient Na(0.69) is also refined. A structural distortion is revealed, which is characterized by the displacement of oxygen atoms (0, 0.2609(2), 0.2391(2)) from the ideal perovskite positions (0, 1/4, 1/4); this displacement doubles the ideal perovskite lattice period. The oxygen displacements can be described as rotations of oxygen octahedra by 3.58° around the [111] direction. The structure remains cubic because the octahedra rotations with respect to all three perovskite cubic axes are identical.

  14. The structures and dynamics of atomic and molecular adsorbates on metal surfaces by scanning tunneling microscopy and low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyungsuk Alexander

    1996-12-01

    Studies of surface structure and dynamics of atoms and molecules on metal surfaces are presented. My research has focused on understanding the nature of adsorbate-adsorbate and adsorbate-substrate interactions through surface studies of coverage dependency and coadsorption using both scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The effect of adsorbate coverage on the surface structures of sulfur on Pt(111) and Rh(111) was examined. On Pt(111), sulfur forms p(2x2) at 0.25 ML of sulfur, which transforms into a more compressed ({radical}3x{radical}3)R30{degrees} at 0.33 ML. On both structures, it was found that sulfur adsorbs only in fcc sites. When the coverage of sulfur exceeds 0.33 ML, it formed more complex c({radical}3x7)rect structure with 3 sulfur atoms per unit cell. In this structure, two different adsorption sites for sulfur atoms were observed - two on fcc sites and one on hcp site within the unit cell.

  15. Generations of dark hollow beams and their applications in laser cooling of atoms and all optical-type Bose-Einstein condensation

    Institute of Scientific and Technical Information of China (English)

    印建平; 高伟建; 王海峰; 龙全; 王育竹

    2002-01-01

    We report on a new experimental result to generate dark hollow beams by using a geometric optical method.We propose two new methods to produce focused and localized hollow laser beams by using π-phase plates. UsingMonte-Carlo simulations, we have studied the Sisyphus cooling of alkali atoms in pyramidal hollow beam gravito-opticaltraps. We discuss some potential applications of the dark hollow beams in atom optics and the preparation of an alloptically-cooled and optically-trapped atomic Bose-Einstein condensation (BEC).Our research shows that an ultracoldatomic sample with a temperature of ~ 2μK can be obtained in the pyramidal hollow beam dipole trap and an alloptical-type BEC may be realized in a far blue-detuned, hollow beam trap.

  16. First steps of ion beam mixing: study by X-ray reflectometry and neutron diffraction; Premieres etapes du melange par faisceau d`ions: etude par reflectometrie de rayons X et diffraction de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Le Boite, M.G.

    1987-12-01

    There are several processes involved in ion beam mixing: ballistic processes, chemical driving forces and radiation enhanced diffusion. Experiments usually performed on bilayers irradiated with heavy elements and characterized by Rutherford backscattering (R.B.S.), have shown that the measured mixing rate is always higher than the calculated one, taking into account ballistic effects only. Besides classical R.B.S. experiments on NiAu and NiPt bilayers irradiated with Xe, we have used another technique of characterization: X-ray reflectometry and neutron diffraction, performed on multilayers irradiated with He. The systems are NiAu, NiPt, NiPd and NiAg, which behave similarly from the ballistic point of view, but have very different heats of mixing. In these experiments, the range of deposited energy density is very low, in contrast to heavy ions irradiation: this has allowed us to reach very low diffusion coefficent, never observed before. The dependence of the diffusion coefficient on the heat of mixing is in agreement with the one theoretically calculated. For the NiAg system, which has a positive heat of mixing, the measured diffusion coefficient is smaller than the ballistic one: a decrease of the ballistic mixing rate is seen for the first time. In this work, we have shown the interest of the reflectometry techniques (X-ray and neutrons); we have used a simple model to analyze the ion beam mixing, when elementary processes are involved.

  17. Diffraction pattern by nanometric thin films under illumination of an orbital angular momentum beam with integer topological charge

    Science.gov (United States)

    Mendoza, J. H.; Díaz, C. F.; Acevedo, C. H.; Torres, Y.

    2016-02-01

    The orbital angular momentum of light has a big contribution in many engineering applications like optical communications, because this physical property allows eigenstates characteristic of the wavefront rotation when the beam is propagated. The nature of these eigenstates allows that information can be encoded and gives immunity to electromagnetic interference, allowing an increase of bandwidth, cadence and capacity of the communication channel. This work shown the methodology using nanometric thin films like Titanium based (TiO2) grown over strontium titanate (SrTiO3) support, to distinguish and discriminate a well- defined integer value of the topological charge of an OAM beam.

  18. Geometry- and diffraction-independent ionization probabilities in intense laser fields: probing atomic ionization mechanisms with effective intensity matching

    CERN Document Server

    Bryan, W A; English, E M L; Goodworth, T R J; Newell, W R; McKenna, J A; Suresh, M; Srigengan, B; Williams, I D; Turcu, I C E; Smith, J M; Divall, E J; Hooker, C J; Langley, A J

    2005-01-01

    We report a novel experimental technique for the comparison of ionization processes in ultrafast laser pulses irrespective of pulse ellipticity. Multiple ionization of xenon by 50 fs 790 nm, linearly and circularly polarized laser pulses is observed over the intensity range 10 TW/cm^2 to 10 PW/cm^2 using Effective Intensity Matching (EIM), which is coupled with Intensity Selective Scanning (ISS) to recover the geometry-independent probability of ionization. Such measurements, made possible by quantifying diffraction effects in the laser focus, are compared directly to theoretical predictions of multiphoton, tunnel and field ionization, and a remarkable agreement demonstrated. EIM-ISS allows the straightforward quantification of the probability of recollision ionization in a linearly polarized laser pulse. Furthermore, probability of ionization is discussed in terms of the Keldysh adiabaticity parameter, gamma, and the influence of the precursor ionic states present in recollision ionization is observed for th...

  19. Gaussian Schell Source as Model for Slit-Collimated Atomic and Molecular Beams

    CERN Document Server

    McMorran, Ben

    2008-01-01

    We show how to make a Gaussian Schell-model (GSM) beam. Then we compare the intensity profile, the transverse coherence width and the divergence angle of a GSM beam with those same properties of a beam that is collimated with two hard-edged slits. This work offers an intuitive way to understand various interferometer designs, and we compare our results with data.

  20. Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon

    NARCIS (Netherlands)

    Xu, M.; Urbach, H.P.; De Boer, D.K.G.; Cornelissen, H.J.

    2005-01-01

    The application of wire grid polarizers as efficient polarizing beam splitters for visible light is studied. The large differences between the transmissivity for different polarizations are explained qualitatively by using the theory of metallic wave guides. The results of rigorous calculations obta

  1. Atom probe tomography characterisation of a laser diode structure grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Samantha E.; Humphreys, Colin J.; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Smeeton, Tim M.; Hooper, Stewart E.; Heffernan, Jonathan [Sharp Laboratories of Europe Limited, Edmund Halley Road, Oxford Science Park, Oxford, OX4 4GB (United Kingdom); Saxey, David W.; Smith, George D. W. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom)

    2012-03-01

    Atom probe tomography (APT) has been used to achieve three-dimensional characterization of a III-nitride laser diode (LD) structure grown by molecular beam epitaxy (MBE). Four APT data sets have been obtained, with fields of view up to 400 nm in depth and 120 nm in diameter. These data sets contain material from the InGaN quantum well (QW) active region, as well as the surrounding p- and n-doped waveguide and cladding layers, enabling comprehensive study of the structure and composition of the LD structure. Two regions of the same sample, with different average indium contents (18% and 16%) in the QW region, were studied. The APT data are shown to provide easy access to the p-type dopant levels, and the composition of a thin AlGaN barrier layer. Next, the distribution of indium within the InGaN QW was analyzed, to assess any possible inhomogeneity of the distribution of indium (''indium clustering''). No evidence for a statistically significant deviation from a random distribution was found, indicating that these MBE-grown InGaN QWs do not require indium clusters for carrier localization. However, the APT data show steps in the QW interfaces, leading to well-width fluctuations, which may act to localize carriers. Additionally, the unexpected presence of a small amount (x = 0.005) of indium in a layer grown intentionally as GaN was revealed. Finally, the same statistical method applied to the QW was used to show that the indium distribution within a thick InGaN waveguide layer in the n-doped region did not show any deviation from randomness.

  2. Creation of matter wave Bessel beams

    OpenAIRE

    Ryu, C.; Henderson, K. C.; Boshier, M. G.

    2013-01-01

    Bessel beams are plane waves with amplitude profiles described by Bessel functions. They are important because of their property of limited diffraction and their capacity to carry orbital angular momentum. Here we report the creation of a Bessel beam of de Broglie matter waves. The Bessel beam is produced by the free evolution of a thin toroidal atomic Bose-Einstein condensate (BEC) which has been set into rotational motion. By attempting to stir it at different rotation rates, we show that t...

  3. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Hanada, M., E-mail: hanada.masaya@jaea.go.jp; Kojima, A.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka-shi, Ibaraki-ken 319-0913 (Japan); Yamano, Y. [Saitama University, Saitama, Saitama-ken 338-8570 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-02-15

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.

  4. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency.

    Science.gov (United States)

    Hanada, M; Kojima, A; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.

  5. Electric field strength measurements in a megavolt vacuum diode using laser induced fluorescence of an atomic beam

    International Nuclear Information System (INIS)

    A combined technique of an atomic beam probing and laser-induced fluorescence spectroscopy (LIFABS) is applied for measuring of local electric field in a 1 MV, 100 kJ, 4 μsec electron diode. Laser-produced lithium beam is stepwise excited by two resonant wide-band laser beams. Stark-splitted spontaneous emission from n=4 level is detected with a polychromator. Time dependence of the electric field was inferred from splitting of the 460.3 nm lithium line. The electric field strength F grows during a pulse from 160 to 260 kV/cm in the center of a 6 cm gap. By comparing calculated and experimental F-values, expansion of the emission boundaries of the cathode and anode plasmas was reconstructed

  6. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency.

    Science.gov (United States)

    Hanada, M; Kojima, A; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications. PMID:26932050

  7. Two-color above threshold ionization of atoms and ions in XUV Bessel beams and combined with intense laser light

    CERN Document Server

    Seipt, D; Surzhykov, A; Fritzsche, S

    2016-01-01

    The two-color above-threshold ionization (ATI) of atoms and ions is investigated for a vortex Bessel beam in the presence of a strong near-infrared (NIR) light field. While the photoionization is caused by the photons from the weak but extreme ultra-violet (XUV) vortex Bessel beam, the energy and angular distribution of the photoelectrons and their sideband structure are affected by the plane-wave NIR field. We here explore the energy spectra and angular emission of the photoelectrons in such two-color fields as a function of the size and location of the target (atoms) with regard to the beam axis. In addition, analogue to the circular dichroism in typical two-color ATI experiments with circularly polarized light, we define and discuss seven different dichroism signals for such vortex Bessel beams that arise from the various combinations of the orbital and spin angular momenta of the two light fields. For localized targets, it is found that these dichroism signals strongly depend on the size and position of t...

  8. Growth temperature dependence of the surface segregation of Er atoms in GaAs during molecular beam epitaxy

    International Nuclear Information System (INIS)

    We have quantitatively studied the temperature dependence of the surface segregation of Er atoms in GaAs during molecular beam epitaxy using secondary ion mass spectroscopy. It was found that a significant number of Er atoms segregate to the growing surface at temperatures of 400°C and above and that the segregation decay length is approximately 0.5 µm at 500°C, indicating that the incorporation ratio of Er atoms into GaAs is less than 10-3. In contrast to the growth at higher temperatures, GaAs overlayer growth at a temperature as low as 300°C is effective in suppressing the surface segregation of Er and obtaining δ-doped structures. (author)

  9. Atomic retention and near infrared photoluminescence from PbSe nanocrystals fabricated by sequential ion implantation and electron beam annealing

    International Nuclear Information System (INIS)

    Nanocrystals of PbSe have been fabricated in a silicon dioxide matrix by sequential low energy ion implantation followed by an electron beam annealing step. Transmission electron microscopy reveals PbSe nanocrystals with typical sizes between 3 and 10 nm in the sub-surface region. Rutherford Backscattering Spectrometry has been used to study the total atomic retention, as a function of implanted atoms, following annealing. Photoluminescence was observed in various samples, at 4 K, as a broad peak between 1.4 and 2.0 μm, with observation of a dependence of the peak wavelength on annealing temperature. Room temperature photoluminescence was observed for samples with a high retention of implanted atoms, demonstrating the importance of nanocrystal density for achieving ambient temperature emission in these systems

  10. Field ionization of helium in a supersonic beam: Kinetic energy of neutral atoms and probability of their field ionization

    International Nuclear Information System (INIS)

    High detection efficiency combined with spatial resolution on a nm-scale makes the field ionization process a promising candidate for spatially resolved neutral particles detection. The effective cross-sectional area σeff can serve as a measure for the effectiveness of such a field ion detector. In the present contribution, we combine quantum-mechanical calculations of the field-modified electron density distribution near the tungsten tip surface and of the resulting local field distributions, performed using the functional integration method, with a classical treatment of the atom trajectories approaching the tip in order to calculate the σeff values for ionization of free He atoms over an apex of a tungsten field emitter tip. The calculated values are compared with experimental data for supersonic He atomic beams at two different temperatures 95 and 298 K.

  11. Atomic substitution effects on the structural and vibrational properties of NixPb1-xTiO3: X-ray diffraction and Raman scattering investigations

    Directory of Open Access Journals (Sweden)

    R. C. da Costa

    2015-07-01

    Full Text Available The effects of the atomic substitution of Pb by Ni in the PbTiO3 ferroelectric perovskite on the vibrational and structural properties was studied using x-ray diffraction and Raman scattering. It was observed that for Ni concentrations between 0.0 and 0.4, there is the formation of a solid solution with reduction of the Raman wavenumber of the E(TO1 soft mode and the tetragonallity factor, which influence directly the temperature of the tetragonal ferroelectric to cubic paraelectric phase transition, the Curie temperature. For concentrations greater than 0.4, it is observed the formation of a PbTiO3 and NiTiO3 composite, denounced by the recovering of the both, tetragonallity factor and the E(TO1 soft mode wavenumber. The values of the Curie temperatures were estimated by the Raman scattering measurements for temperatures ranging from 300 to 950 K.

  12. Test of Equivalence Principle at 1 0-8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer

    Science.gov (United States)

    Zhou, Lin; Long, Shitong; Tang, Biao; Chen, Xi; Gao, Fen; Peng, Wencui; Duan, Weitao; Zhong, Jiaqi; Xiong, Zongyuan; Wang, Jin; Zhang, Yuanzhong; Zhan, Mingsheng

    2015-07-01

    We report an improved test of the weak equivalence principle by using a simultaneous 85Rb-87Rb dual-species atom interferometer. We propose and implement a four-wave double-diffraction Raman transition scheme for the interferometer, and demonstrate its ability in suppressing common-mode phase noise of Raman lasers after their frequencies and intensity ratios are optimized. The statistical uncertainty of the experimental data for Eötvös parameter η is 0.8 ×1 0-8 at 3200 s. With various systematic errors corrected, the final value is η =(2.8 ±3.0 )×1 0-8. The major uncertainty is attributed to the Coriolis effect.

  13. Observation of different reflected high-energy electron diffraction patterns during atomic layer epitaxy growth of CdTe epilayers

    Science.gov (United States)

    Faschinger, W.; Juza, P.; Sitter, H.

    1991-12-01

    We present the first RHEED observations during atomic layer epitaxy growth of CdTe on GaAs substrates. The evolution of the RHEED pattern shows that, despite the large lattice mismatch, growth becomes two-dimensional after the deposition of a few monolayers. We observe intensity variations of two RHEED spots under surface resonance conditions and show that this new approach is superior to the observation of the specular spot for the measurement of surface coverages and adsorption kinetics. From the variation of the spot intensities with substrate temperature, we deduce that the Cd and Te surface coverages drop to 0.5 at substrate temperatures higher than 315°C.

  14. Surface structures from low energy electron diffraction: Atoms, small molecules and an ordered ice film on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Materer, N.F.

    1995-09-01

    We investigated the surface bonding of various adsorbates (0, S, C{sub 2}H{sub 3} and NO) along with the resulting relaxation of the Pt(111) surface using low energy electron diffiraction (LEED). LEED experiments have been performed on these ordered overlayers along with theoretical structural analysis using automated tensor LEED (ATLEED). The resulting surface structures of these ordered overlayers exhibit similar adsorbate-induced relaxations. In all cases the adsorbate occupies the fcc hollow site and induces an approximately 0.1 A buckling of the metal surface. The three metal atoms directly bonded to the adsorbate are ``pulled`` out of the surface and the metal atom that is not bound to the adsorbate is `pushed`` inward. In order to understand the reliability of such details, we have carried out a comprehensive study of various non-structural parameters used in a LEED computation. We also studied the adsorption of water on the Pt(lll) surface. We ordered an ultra thin ice film on this surface. The film`s surface is found to be the (0001) face of hexagonal ice. This surface is apparently terminated by a full-bilayer, in which the uppermost water molecules have large vibrational amplitudes even at temperatures as low as 90 K. We examined two other metal surfaces besides Pt(111): Ni(111) and Fe(lll). On Ni(111), we have studied the surface under a high coverage of NO. On both Ni(111) and Pt(111) NO molecules occupy the hollow sites and the N-0 bond distances are practically identical. The challenging sample preparation of an Fe(111) surface has been investigated and a successful procedure has been obtained. The small interlayer spacing found on Fe(111) required special treatment in the LEED calculations. A new ATLEED program has been developed to handle this surface.

  15. Atomic scale structure of the 5-fold surface of an AlPdMn quasicrystal: A quantitative X-Ray photoelectron diffraction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jin-Cheng; Huan, C.H.A.; Wee, A.T.S.; Van Hove, M.A.; Fadley, C.S.; Shi, F.J.; Rotenberg, E.; Barman, S.R.; Paggel, J.J.; Horn, K.; Ebert, Ph.; Urban, K.

    2004-02-11

    The atomic scale structure of the 5-fold symmetric surface of an AlPdMn quasicrystal is investigated quantitatively by comparing x-ray photoelectron diffraction (XPD) simulations to experiment. The observed 5-fold symmetry of the diffraction patterns indicates that the surface is quasicrystalline with no hint of a reconstruction from the bulk structure. In analyzing the experimental data, many possible bulk terminations have been tested. Those few that fit best to the data have in common that they contain an Al-rich surface layer followed by a dense mixed Al/Pd/Mn layer. These best terminations, while not identical to each other, are suggested to form terraces coexisting on a real surface. Structural relaxations of the quasicrystal surface are also analyzed: mixing several best-fit terminations gives average best-fit interlayer spacing changes of Dd12 = -0.057 Angstrom, Dd24 = +0.159 Angstrom. These results are in good agreement with a prior structure determination by LEED on a sample that was prepared in a different manner.

  16. Interfacial atomic site characterization by photoelectron diffraction for 4H-AlN/4H-SiC(11\\bar{2}0) heterojunction

    Science.gov (United States)

    Maejima, Naoyuki; Horita, Masahiro; Matsui, Hirosuke; Matsushita, Tomohiro; Daimon, Hiroshi; Matsui, Fumihiko

    2016-08-01

    The interfacial atomic structure of an AlN thin film on a nonpolar 4H-SiC(11\\bar{2}0) substrate grown by atomic Al and N plasma deposition was studied by photoelectron diffraction and spectroscopy. The epitaxial growth of the thin film was confirmed by the comparison of element-specific photoelectron intensity angular distributions (PIADs). Depth profiles were analyzed by angle-resolved constant-final-state-mode X-ray photoelectron spectroscopy (AR-XPS). No polar angular dependence was observed in Al 2p spectra, while an additional intermixing component was found in interface-sensitive N 1s spectra. The site-specific N 1s PIADs for the AlN film and an intermixing component were derived from two N 1s PIADs with different binding energies. We attributed the intermixing component to SiN interfacial layer sites. In order to prevent SiN growth at the interface, we deposited Al on the SiC(11\\bar{2}0) substrate prior to the AlN growth. A significant reduction in the amount of intermixing components at the AlN/SiC interface was confirmed by AR-XPS.

  17. A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhou; Tu, Juan; Cheng, Jianchun [Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093 (China); Guo, Xiasheng, E-mail: guoxs@nju.edu.cn, E-mail: dzhang@nju.edu.cn [Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093 (China); Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Wu, Junru [Department of Physics, University of Vermont, Burlington, Vermont 05405 (United States); Huang, Pingtong [Department of Ultrasound, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009 (China); Zhang, Dong, E-mail: guoxs@nju.edu.cn, E-mail: dzhang@nju.edu.cn [Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093 (China); The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080 (China)

    2015-09-14

    An acoustic focusing lens incorporated with periodically aligned subwavelength grooves corrugated on its spherical surface has been developed. It is demonstrated theoretically and experimentally that acoustic focusing achieved by using the lens can suppress the relative side-lobe amplitudes, enhance the focal gain, and minimize the shifting of the focus. Use of the lens coupled with a planar ultrasound transducer can generate an ultrasound beam with enhanced acoustic transmission and collimation effect, which offers the capability of improving the safety, efficiency, and accuracy of targeted surgery implemented by high intensity focused ultrasound.

  18. X-ray diffraction study of crystal growth dynamics during molecular-beam epitaxy of III-V semiconductors

    International Nuclear Information System (INIS)

    An experimental approach to crystal growth dynamics using surface-sensitive X-ray diffraction techniques is discussed. In crystal growth, two essentially different kinds of dynamics are involved. One is the evolution of a statistical structure averaged over the sample area under consideration. The other is the temporal fluctuation of local structures associated with elemental processes of crystal growth, such as the adsorption, desorption, and diffusion of adatoms. Over the past few decades, combination of a synchrotron X-ray beamlines and specially designed crystal growth systems has played a great role in situ studies of the dynamics of average structures during the epitaxial growth of crystalline films. The recent development of coherent X-ray sources has provided an opportunity to elucidate local structure fluctuation, which is also important for solving many technological problems in crystal growth including the control of the uniformity of self-assembled nanostructures and the suppression of defects. (author)

  19. Ion beam modification of the structure and properties of hexagonal boron nitride: An infrared and X-ray diffraction study

    Science.gov (United States)

    Aradi, E.; Naidoo, S. R.; Billing, D. G.; Wamwangi, D.; Motochi, I.; Derry, T. E.

    2014-07-01

    The vibrational mode for the cubic symmetry of boron nitride (BN) has been produced by boron ion implantation of hexagonal boron nitride (h-BN). The optimum fluence at 150 keV was found to be 5 × 1014 ions/cm2. The presence of the c-BN phase was inferred using glancing incidence XRD (GIXRD) and Fourier Transform Infrared Spectroscopy (FTIR). After implantation, Fourier Transform Infrared Spectroscopy indicated a peak at 1092 cm-1 which corresponds to the vibrational mode for nanocrystalline BN (nc-BN). The glancing angle XRD pattern after implantation exhibited c-BN diffraction peaks relative to the implantation depth of 0.4 μm.

  20. Creation evidence of the second non-dispersive Zakharenko wave by helium atomic beams in superfluid helium-II at low temperatures

    Indian Academy of Sciences (India)

    A A Zakharenko

    2007-10-01

    In this work, the experimental results of the creation of the second non-dispersive Zakharenko wave (ph = g ≠ 0) in the negative roton branch (the so-called second sound) of the bulk elementary excitations (BEEs) energy spectra are introduced. Several BEE signals detected by a bolometer situated in the isotopically pure liquid helium-II at low temperatures ∼ 100 mK are shown, which give evidence of negative roton creation in the liquid by helium atomic beams striking the liquid surface. The negative roton signals were clearly distinguished by the following ways: the negative roton signal created by helium atomic beams appeared earlier than the positive roton signal created by the beams, and presence of both positive and negative roton signals together. It is natural that the negative roton creation by the beams requires the 4He-atom energies ∼ 12 K, while the positive roton creation by the atomic beams requires energies ∼ 35 K. Therefore, successive increase in the heater power resulting in an increase in the 4He-atom energies gives solid evidence that the negative rotons are first created in the liquid by the helium atomic beams.

  1. DESIGNING A DIFFRACTIVE OPTICAL ELEMENT FOR CONTROLLING THE BEAM PROFILE IN A THREE-DIMENSIONAL SPACE USING THE SIMULATED ANNEALING ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    LIANG WEN-XI; ZHANG JING-JUAN; L(U) JUN-FENG; LIAO RUI

    2001-01-01

    We have designed a spatially quantized diffractive optical element (DOE) for controlling the beam profile in a three-dimensional space with the help of the simulated annealing (SA) algorithm. In this paper, we investigate the annealing schedule and the neighbourhood which are the deterministic parameters of the process that warrant the quality of the SA algorithm. The algorithm is employed to solve the discrete stochastic optimization problem of the design of a DOE. The objective function which constrains the optimization is also studied. The computed results demonstrate that the procedure of the algorithm converges stably to an optimal solution close to the global optimum with an acceptable computing time. The results meet the design requirement well and are applicable.

  2. Critical comparison of two independent measurements of residual stress in an electron-beam welded uranium cylinder: Neutron diffraction and the contour method

    International Nuclear Information System (INIS)

    Neutron diffraction and contour method measurements were conducted to assess the stresses associated with an electron-beam, circumferential, partial penetration weld of a uranium tube. To obtain reasonable results in the coarse-grained base metal, the specimen was continuously rotated during the neutron experiments to average over the entire circumference. The severe anisotropic character of uranium, which has an orthorhombic crystal structure, forces a number of judicious choices to be made in the neutron analysis. For the contour method, the cylindrical geometry necessitated the development of a two-step process, and discontinuities across the unwelded portion of the joint required special treatment. High tensile hoop stresses (∼300 MPa) were found in the center of the weld close to the outside diameter. Balancing hoop compression was observed in the far-field stress profile. Also, a tensile axial stress (85 ± 25 MPa) was observed near the outer diameter.

  3. A convergent-beam electron diffraction study of strain homogeneity in severely strained aluminum processed by equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Alhajeri, Saleh N. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Department of Manufacturing Engineering, College of Technological Studies, PAAET, PO Box 42325, Shuwaikh 70654 (Kuwait); Fox, Alan G. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Mechanical Engineering Department, Asian University, 89 Moo 12, Highway 331, Banglamung, Chon Buri 20260 (Thailand); Langdon, Terence G., E-mail: langdon@usc.edu [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States)

    2011-11-15

    Aluminum of commercial purity was processed by equal-channel angular pressing (ECAP) through two, four and eight passes at room temperature. A series of [1 1 4] convergent-beam electron diffraction (CBED) zone axis patterns were obtained using an electron probe with a diameter of 20 nm. Observations were recorded both immediately adjacent to the grain boundaries and in the grain interiors. Symmetry breaking of the higher-order Laue zone (HOLZ) lines was observed adjacent to the boundaries after two and four passes but not in the grain interiors. Pattern simulation of the CBED patterns taken from the two- and four-pass samples adjacent to the boundaries revealed a homogeneous strain with compressive and shear components. The presence of these homogeneous strains demonstrates that the internal stresses associated with the deformation of aluminum at room temperature are localized in the close vicinity, to within {approx}20 nm, of the grain boundaries.

  4. Saturation studies of the E-beam sustained discharge atomic xenon laser

    NARCIS (Netherlands)

    Botma, H.; Peters, P.J.M.; Witteman, W.J.

    1993-01-01

    In an electron beam sustained discharge xenon laser the discharge energy deposition has been varied in order to investigate the saturation effect on the xenon laser. The current density of the electron beam is varied separately in the range of 0.1-2.7 A/cm2 to obtain optimized discharge excitation c

  5. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    Science.gov (United States)

    Kolmogorov, A.; Atoian, G.; Davydenko, V.; Ivanov, A.; Ritter, J.; Stupishin, N.; Zelenski, A.

    2014-02-01

    The RHIC polarized H- ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ˜0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  6. Electron-spin-polarization effects in low-energy electron diffraction, ion neutralization and metastable-atom deexcitation at solid surfaces

    International Nuclear Information System (INIS)

    This project is directed towards development of new surface-sensitive spectroscopies based on electron-spin dependences in electron-atom- and ion-surface interactions. Spin polarization effects in LEED (i.e., PLEED) can be exploited to provide structural information at crystalline surfaces. During the current contract year, a comprehensive study of nickel (110) has yielded polarization vs. energy profiles that are rich in structure and with surprisingly large peak polarizations (approx. 20%). Addition of an ordered tellurium adlayer significantly changes both the PLEED polarization and intensity profiles. Study of Te/Ni fractional order beams is expected to provide new insight on the potential of PLEED as a new diagnostic with particular sensitivity to adlayer properties. Work has begun on construction of a GaAs spin-polarized electron source that should provide improved accuracy and data acquisition rates in future PLEED experiments

  7. Diffraction Anomalous Near-Edge Structure

    Science.gov (United States)

    Moltaji, Habib O., Jr.

    1995-11-01

    To determine the atomic structure about atom of an element in a sample of a condensed multicomponent single crystal, contrast radiation is proposed with the use of Diffraction Anomalous Near-Edge Structure (DANES), which combines the long-range order sensitivity of the x-ray diffraction and short-range order of the x-ray absorption near-edge techniques. This is achieved by modulating the photon energy of the x-ray beam incident on the sample over a range of energies near an absorption edge of the selected element. Due to anomalous dispersion, x-ray diffraction, and x-ray absorption, the DANES intensity with respect to the selected element is obtained in a single experiment. I demonstrate that synchrotron DANES measurements for the single crystal of thin film and the powder samples and provide the same local atomic structural information as the x-ray absorption near-edge with diffraction condition and can be used to provide enhanced site selectivity. I demonstrate calculations of DAFS intensity and measurements of polarized DANES and XANES intensity.

  8. Two-dimensional strain mapping in semiconductors by nano-beam electron diffraction employing a delay-line detector

    Science.gov (United States)

    Müller-Caspary, Knut; Oelsner, Andreas; Potapov, Pavel

    2015-08-01

    A delay-line detector is established for electron detection in the field of scanning transmission electron microscopy (STEM) and applied to two-dimensional strain mapping in Si-based field effect transistors. We initially outline the functional principle of position-sensitive delay-line detection, based on highly accurate time measurements for electronic pulses travelling in meandering wires. In particular, the detector is a single-counting device essentially providing an infinite time stream of position-resolved events so that acquisition speed is not hindered by detector read-outs occurring in conventional charge-coupled devices. By scanning the STEM probe over stressor- and gate regions of a field effect transistor on a 100 × 100 raster, 10 000 diffraction patterns have been acquired within 3-6.5 min, depending on the scan speed. Evaluation of the 004 and 220 reflections yields lateral and vertical strain at a spatial resolution of 1.6 nm. Dose-dependent strain precisions of 1.2 -1.8 ×10-3 could be achieved for frame times of 40 and 20 ms, respectively. Finally, the detector is characterised as to quantum efficiency and further scopes of application are outlined.

  9. 绿光LED产生无衍射Bessel光束%Non-diffraction bessel-like beam generated by green LED source

    Institute of Scientific and Technical Information of China (English)

    程治明; 吴逢铁; 范丹丹; 方翔

    2012-01-01

    Ideal Bessel-like beam was generated by monochromatic LED source for the first time. In this paper, the possibility of using monochromatic LED source to generate quite ideal Bessel-like beam was discussed from the angle of spatial and temporal coherence, then we knew it's possible if a diaphragm was involved to increase spatial coherence. Optical system was designed: light wave emitted from LED passed axicon after the optical system, and then Bessel-like beam was obtained, the size of center bright spots and non-diffraction distance was accord well with the results which obtained from theoretical calculations, it demonstrated LED source could used to generate quite ideal Bessel-like beam. At last we discussed how the diaphragm's diameter affected the quality of Bessel beam, and found that the light intensity increased but contrast ratio of section intensity declined as the diaphragm's diameter enlarged.%采用单色LED光源得到较理想的近似无衍射Bessel光束.文中从LED光源的时空相干性出发分析用单色LED灯珠产生Bessel光束的可能性,利用光阑提高光场的空间相干性得于实现.设计实验光学系统,让LED光源发出的光经过一套光学系统后透过轴棱锥,得到了近似Bessel光束,光束中心亮斑大小及最大无衍射距离均与理论计算所得相符,证明用LED光源也能够产生较理想的近似Bessel光束.最后讨论了光阑孔径对所产生Bessel光束质量的影响,发现光阑孔径增大时所得Bessel光束强度变大但截面光强明暗对比度下降.

  10. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    International Nuclear Information System (INIS)

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO2 phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  11. An atomic hydrogen beam to test ASACUSA’s apparatus for antihydrogen spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diermaier, M., E-mail: martin.diermaier@oeaw.ac.at; Caradonna, P.; Kolbinger, B. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria); Malbrunot, C. [CERN (Switzerland); Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Wolf, M.; Zmeskal, J.; Widmann, E. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2015-08-15

    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter counterpart to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth’s magnetic field.

  12. Measurement of Wigner function via atomic beam deflection in Raman- Nath regime

    CERN Document Server

    Khosa, A H; Khosa, Ashfaq Hussain

    2002-01-01

    We propose a method for the reconstruction of photon statistics and hence the Wigner function of a quantized cavity field. The method is based on the measurement of momentum distribution of two level atoms after atom- field interaction in Raman-Nath regime. We reconstruct the photon statistics of the cavity field both the cases of resonant and off- resonant atom field interaction.. For the measurement of Wigner function we propose to displace the photon statistics of the cavity field. We successfully reconstruct the Wigner function of the Schrodinger-cat state in a straightforward manner by employing the proposed method without much mathematical manipulation of the experimental data.

  13. From atomic structure to excess entropy: a neutron diffraction and density functional theory study of CaO-Al2O3-SiO2 melts

    Science.gov (United States)

    Liu, Maoyuan; Jacob, Aurélie; Schmetterer, Clemens; Masset, Patrick J.; Hennet, Louis; Fischer, Henry E.; Kozaily, Jad; Jahn, Sandro; Gray-Weale, Angus

    2016-04-01

    Calcium aluminosilicate \\text{CaO}-\\text{A}{{\\text{l}}2}{{\\text{O}}3}-\\text{Si}{{\\text{O}}2} (CAS) melts with compositions {{≤ft(\\text{CaO}-\\text{Si}{{\\text{O}}2}\\right)}x}{{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}1-x} for x  text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}x}{{≤ft(\\text{Si}{{\\text{O}}2}\\right)}1-x} for x≥slant 0.5 are studied using neutron diffraction with aerodynamic levitation and density functional theory molecular dynamics modelling. Simulated structure factors are found to be in good agreement with experimental structure factors. Local atomic structures from simulations reveal the role of calcium cations as a network modifier, and aluminium cations as a non-tetrahedral network former. Distributions of tetrahedral order show that an increasing concentration of the network former Al increases entropy, while an increasing concentration of the network modifier Ca decreases entropy. This trend is opposite to the conventional understanding that increasing amounts of network former should increase order in the network liquid, and so decrease entropy. The two-body correlation entropy S 2 is found to not correlate with the excess entropy values obtained from thermochemical databases, while entropies including higher-order correlations such as tetrahedral order, O-M-O or M-O-M bond angles and Q N environments show a clear linear correlation between computed entropy and database excess entropy. The possible relationship between atomic structures and excess entropy is discussed.

  14. Bessel Beams

    OpenAIRE

    McDonald, Kirk T

    2000-01-01

    Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.

  15. Beam experiments with state selected Ne (3P0, 3P2) metastable atoms

    International Nuclear Information System (INIS)

    Metastable rare gas atoms play an important role in all types of plasmas and gas discharges, e.g. in fluorescent lamps and in laser discharges (helium-neon laser or excimer lasers). In this thesis, the metastable states of NeI are studied. First, the theory of excited neon atoms and diatomic molecules is introduced, as well as Penning ionisation. Next, some experimental facilities are described (e.g. the dye laser system). With these instruments, natural lifetime measurements of the 2p fine structure states of NeI are carried out. Results are reported. Finally, total Penning ionisation cross sections are calculated using the optical potential model. (Auth.)

  16. Expériences d interférométrie atomique avec l'atome de lithium

    OpenAIRE

    Jacquey, Marion

    2006-01-01

    This study presents the tuning of a Mach Zehnder atom interferometer and its operation for interferometric measurements. A supersonic beam of lithium is coherently manipulated by elastic Bragg diffraction on laser standing waves almost resonant with the first resonance transition of lithium atom at 671 nm. A model of the interferometer, based on simulations of the diffraction process, is used to precisely describe the selectivity with respect to atom velocity and incidence angle. The apparatu...

  17. Effects of co-implanted oxygen or aluminum atoms on hydrogen migration and damage structure in multiple-beam irradiated Al sub 2 O sub 3

    CERN Document Server

    Katano, Y; Yamamoto, S; Nakazawa, T; Yamaki, D; Noda, K

    2000-01-01

    Depth profiles of implanted H atoms were measured for single crystalline Al sub 2 O sub 3 samples irradiated at 923 K with dual or triple beams of 0.25 MeV H-, 0.6 MeV He-, 2.4 MeV O-ions or 2.6 MeV Al-ions. The peaks occur at 1.55 and 1.45 mu m in the depth profiles measured for the H + Al dual beam irradiation and H + O dual beam case, respectively. The ratio of the peak areas is over 4, which is much larger than the implanted H atom ratio of 1.1, indicating that implanted Al atoms suppress the mobility of H atoms. However, the ratio becomes almost 1 between the triple beam samples with H + He + O-ions and with H + He + Al-ions at comparable doses. The fact demonstrates that implanted He atoms overwhelm the effects of the implanted self-cation/anion excess atoms on the migration behaviors of implanted hydrogen and radiation produced point defects, with the resulting sluggish cavity growth observed.

  18. Nuclear moments and isotopic variation of the mean square charge radii of strontium nuclei by atomic beam laser spectroscopy

    International Nuclear Information System (INIS)

    Hyperfine structure and optical isotope shift measurements have been performed on a series of stable and radioactive strontium isotopes (A = 80 to 90), including two isomers 85m and 87m. The spectroscopy applied continuous wave dye laser induced fluorescence of free atoms at λ=293.2 nm in a well collimated atomic beam. The 293.2 nm ultraviolet light was generated by frequency doubling the output of a dye laser in either a temperature tuned Ammonium Dihydrogen Arsenate (ADA) crystal or an angle tuned Lithium Iodate crystal. A special radio frequency (rf) technique was used to tune the dye laser frequency with long term stability. Radioactive Sr isotopes were produced either by neutron capture of stable strontium or by (α,xn) reactions from krypton gas. The samples were purified by an electromagnetic mass separator and their sizes were of order 100 pg, which corresponds to 1011 atoms. The observed results of the hyperfine structure components are evaluated in terms of nuclear magnetic dipole moments and electric quadrupole moments. Changes in mean square charge radii of strontium nuclei which were extracted from the isotope shift measurements, exhibit a distinct shell effect at the neutron magic number N=50. The experimental data are analysed and compared with some theoretical nuclear model predictions. The strong increase of the nuclear charge radii with decreasing neutron number of isotopes below N=50 is in agreement with the variation of the mean square deformation extracted from measured B(E2) values. (orig.)

  19. Crystal Structure of a Lightweight Borohydride from Submicrometer Crystallites by Precession Electron Diffraction

    OpenAIRE

    Hadermann, Joke; Abakumov, Artem; Rompaey, van, R.S.A.R.; Perkisas, Tyche; Filinchuk, Yaroslav; Tendeloo, van, G.

    2012-01-01

    Abstract: We demonstrate that precession electron diffraction at low-dose conditions can be successfully applied for structure analysis of extremely electron-beam-sensitive materials. Using LiBH4 as a test material, complete structural information, including the location of the H atoms, was obtained from submicrometer-sized crystallites. This demonstrates for the first time that, where conventional transmission electron microscopy techniques fail, quantitative precession electron diffraction ...

  20. Propagation of Gaussian Schell-model beam in electromagnetically induced transparency atomic vapor%高斯谢尔模型光束在EIT原子气体中的传输特性研究

    Institute of Scientific and Technical Information of China (English)

    许森东; 徐弼军; 陆璇辉

    2013-01-01

    为了研究高斯-谢尔模型(GSM)光束在电磁感应透明(EIT)材料中的传输特性,利用矩阵光学理论、衍射积分理论、相干偏振统一理论推导了GSM光束通过EIT材料的传输交叉谱密度方程的解析表达式。该表达式可以用于计算和研究GSM光束通过EIT原子气体的谱密度和相干度的变化。分析显示GSM光束的谱密度和相干度都可以通过控制光的拉比频率调控。此研究结果提供了一种新的调控光传输的方法和技术,同时该发现也为控制部分相干光的谱密度和相干度提供了一种新方法。%In order to study the propagation characteristics of Gaussian Schell-model (GSM) beams in electromagnetically induced transparency atomic vapor, the analytical expression was obtained for the cross-spectral density function of a Gaussian Schell-model beam passing through the electromagnetically induced transparency atomic vapor based on the matrix optics theory, diffraction integral theory and unified theory of coherence and polarization. The formula can be used in the study of the changes in the spectral density and spectral degree of coherence of the beam through the EIT atomic vapor. Numerical examples show that both the spectral density and the spectral degree of coherence of the GSM beam can be modulated by the Rabi frequency of the control light. The results have been provided a new method and technique for modulation the beam propagation. The findings indicate a new technique for controlling the spectral density and the spectral degree of coherence of the partially coherent light beam.

  1. Application of Powder Diffraction Methods to the Analysis of Short- and Long-Range Atomic Order in Nanocrystalline Diamond and SiC: The Concept of the Apparent Lattice Parameter (alp)

    Science.gov (United States)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.

    2003-01-01

    Two methods of the analysis of powder diffraction patterns of diamond and SiC nanocrystals are presented: (a) examination of changes of the lattice parameters with diffraction vector Q ('apparent lattice parameter', alp) which refers to Bragg scattering, and (b), examination of changes of inter-atomic distances based on the analysis of the atomic Pair Distribution Function, PDF. Application of these methods was studied based on the theoretical diffraction patterns computed for models of nanocrystals having (i) a perfect crystal lattice, and (ii), a core-shell structure, i.e. constituting a two-phase system. The models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the shell. X-ray and neutron experimental diffraction data of nanocrystalline SiC and diamond powders of the grain diameter from 4 nm up to micrometers were used. The effects of the internal pressure and strain at the grain surface on the structure are discussed based on the experimentally determined dependence of the alp values on the Q-vector, and changes of the interatomic distances with the grain size determined experimentally by the atomic Pair Distribution Function (PDF) analysis. The experimental results lend a strong support to the concept of a two-phase, core and the surface shell structure of nanocrystalline diamond and SiC.

  2. The measurement of stress and phase fraction distributions in pre and post-transition Zircaloy oxides using nano-beam synchrotron X-ray diffraction

    Science.gov (United States)

    Swan, H.; Blackmur, M. S.; Hyde, J. M.; Laferrere, A.; Ortner, S. R.; Styman, P. D.; Staines, C.; Gass, M.; Hulme, H.; Cole-Baker, A.; Frankel, P.

    2016-10-01

    Zircaloy-4 oxide stress profiles and tetragonal:monoclinic oxide phase fraction distributions were studied using nano-beam transmission X-ray diffraction. Continuous stress relief and phase transformation during the first cycle of oxide growth was observed. The in-plane monoclinic stress was shown to relax strongly up to each transition, whereas in-plane tetragonal stress-relief (near the metal-oxide interface) was only observed post transition. The research demonstrates that plasticity in the metal and the development of a band of in-plane cracking both relax the monoclinic in-plane stress. The observations are consistent with a model of transition in which in-plane cracking becomes interlinked prior to transition. These cracks, combined with the development of cracks with a through-thickness component (driven primarily by plasticity in the metal) and/or a porous network of fine cracks (associated with phase transformation), form a percolation path through the oxide layer. The oxidising species can then percolate from the oxide surface to the metal/oxide interface, at which stage transition then ensues.

  3. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru, E-mail: kamiya@toyota-ti.ac.jp [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Suzuki, Hidetoshi [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Sasaki, Takuo; Takahasi, Masamitu [Quantum Beam Science Center, Japan Atomic Energy Agency, Koto 1-1-1, Sayo-cho, Hyogo 679-5148 (Japan)

    2015-11-14

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures.

  4. Powder diffraction from a continuous microjet of submicrometer protein crystals.

    Science.gov (United States)

    Shapiro, D A; Chapman, H N; Deponte, D; Doak, R B; Fromme, P; Hembree, G; Hunter, M; Marchesini, S; Schmidt, K; Spence, J; Starodub, D; Weierstall, U

    2008-11-01

    Atomic-resolution structures from small proteins have recently been determined from high-quality powder diffraction patterns using a combination of stereochemical restraints and Rietveld refinement [Von Dreele (2007), J. Appl. Cryst. 40, 133-143; Margiolaki et al. (2007), J. Am. Chem. Soc. 129, 11865-11871]. While powder diffraction data have been obtained from batch samples of small crystal-suspensions, which are exposed to X-rays for long periods of time and undergo significant radiation damage, the proof-of-concept that protein powder diffraction data from nanocrystals of a membrane protein can be obtained using a continuous microjet is shown. This flow-focusing aerojet has been developed to deliver a solution of hydrated protein nanocrystals to an X-ray beam for diffraction analysis. This method requires neither the crushing of larger polycrystalline samples nor any techniques to avoid radiation damage such as cryocooling. Apparatus to record protein powder diffraction in this manner has been commissioned, and in this paper the first powder diffraction patterns from a membrane protein, photosystem I, with crystallite sizes of less than 500 nm are presented. These preliminary patterns show the lowest-order reflections, which agree quantitatively with theoretical calculations of the powder profile. The results also serve to test our aerojet injector system, with future application to femtosecond diffraction in free-electron X-ray laser schemes, and for serial crystallography using a single-file beam of aligned hydrated molecules. PMID:18955765

  5. Study of the fast neutral atom beam injection on TFR tokamak

    International Nuclear Information System (INIS)

    During neutral beam injection experiments on TFR, the increase of the plasma temperature appears to be weak and is saturating at high power. This observation leads to question the classical scheme of power coupling to the thermal plasma and to check experimentally its successive steps. First of all, the neutral beam transmission and capture in the plasma, measured by calorimetric methods, are in agreement with the classical calculations. Next the confinement and thermalization of the fast ions is reviewed by means of three different measurements: charge exchange analysis of fast neutrals leaving the plasma (an auxiliary modulated neutral beam gives a spatially resolved measurement); neutron flux analysis during injection of deuterium ions into a deuterium plasma; measurement of the fast ions trapped in the toroidal magnetic field ripples. These experiments show that a non-classical mechanism transports the most energetic ions towards the plasma periphery. This phenomenon then limits the overall power that can be effectively absorbed in the plasma centre and contributes to deteriorate the energy confinement. Finally the respective role of thermal and non-thermal populations in the power balance is addressed

  6. Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zolnai, Z., E-mail: zolnai.zsolt@ttk.mta.hu [Research Centre for Natural Sciences, Institute of Technical Physics and Materials Science (MFA), Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary); Toporkov, M. [Department of Electrical and Computer Engineering, Virginia Commonwealth University, 601W Main St, Richmond, VA 23284 (United States); Volk, J. [Research Centre for Natural Sciences, Institute of Technical Physics and Materials Science (MFA), Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary); Department of Electrical and Computer Engineering, Virginia Commonwealth University, 601W Main St, Richmond, VA 23284 (United States); Demchenko, D.O. [Department of Physics, Virginia Commonwealth University, 701W. Grace St., Richmond, VA 23284 (United States); Okur, S. [Department of Electrical and Computer Engineering, Virginia Commonwealth University, 601W Main St, Richmond, VA 23284 (United States); Szabó, Z. [Research Centre for Natural Sciences, Institute of Technical Physics and Materials Science (MFA), Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary); Özgür, Ü.; Morkoç, H.; Avrutin, V. [Department of Electrical and Computer Engineering, Virginia Commonwealth University, 601W Main St, Richmond, VA 23284 (United States); Kótai, E. [Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary)

    2015-02-01

    Highlights: • BeMgZnO thin layers were grown with plasma-assisted molecular beam epitaxy (MBE). • The Be contents were accurately measured with RBS and proton elastic backscattering. • The Tauc bandgap was measured from optical transmittance experiments. • The bandgap has been varied between 3.26 eV and 4.62 eV via the Be and Mg content. • Experimental and density functional theory calculated bandgaps were in good agreement. - Abstract: The atomic composition with less than 1–2 atom% uncertainty was measured in ternary BeZnO and quaternary BeMgZnO alloys using a combination of nondestructive Rutherford backscattering spectrometry with 1 MeV He{sup +} analyzing ion beam and non-Rutherford elastic backscattering experiments with 2.53 MeV energy protons. An enhancement factor of 60 in the cross-section of Be for protons has been achieved to monitor Be atomic concentrations. Usually the quantitative analysis of BeZnO and BeMgZnO systems is challenging due to difficulties with appropriate experimental tools for the detection of the light Be element with satisfactory accuracy. As it is shown, our applied ion beam technique, supported with the detailed simulation of ion stopping, backscattering, and detection processes allows of quantitative depth profiling and compositional analysis of wurtzite BeZnO/ZnO/sapphire and BeMgZnO/ZnO/sapphire layer structures with low uncertainty for both Be and Mg. In addition, the excitonic bandgaps of the layers were deduced from optical transmittance measurements. To augment the measured compositions and bandgaps of BeO and MgO co-alloyed ZnO layers, hybrid density functional bandgap calculations were performed with varying the Be and Mg contents. The theoretical vs. experimental bandgaps show linear correlation in the entire bandgap range studied from 3.26 eV to 4.62 eV. The analytical method employed should help facilitate bandgap engineering for potential applications, such as solar blind UV photodetectors and

  7. Atom laser dynamics in a tight waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Campo, A del; Lizuain, I; Muga, J G [Departamento de Quimica-Fisica, UPV-EHU, Apartado. 644, Bilbao (Spain); Pons, M [Departamento de Fisica Aplicada I, E.U.I.T. de Minas y Obras Publicas, UPV-EHU, 48901 Barakaldo (Spain); Moshinsky, M [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, 01000 Mexico D.F. (Mexico)], E-mail: adolfo.delcampo@ehu.es

    2008-02-15

    We study the transient dynamics that arise during the formation of an atom laser beam in a tight waveguide. The time dependent density profile develops a series of wiggles which are related to the diffraction in time phenomenon. The apodization of matter waves, which relies on the use of smooth aperture functions, allows to suppress such oscillations in a time interval, after which there is a revival of the diffraction in time. The revival time scale is directly related to the inverse of the harmonic trap frequency for the atom reservoir.

  8. Bragg diffraction and the Iron crust of cold Neutron Stars

    OpenAIRE

    Llanes-Estrada, Felipe J.; Navarro, Gaspar Moreno

    2009-01-01

    If cooled-down neutron stars have a thin atomic crystalline-iron crust, they must diffract X-rays of appropriate wavelength. If the diffracted beam is to be visible from Earth, the illuminating source must be very intense and near the reflecting star. An example is a binary system composed of two neutron stars in close orbit, one of them inert, the other an X-ray pulsar (perhaps an "anomalous" X-ray pulsar or magnetar, not powered by gas absorption from the companion or surrounding space, wou...

  9. Generation of One-Dimensional Array of Focused Hollow-Beam Pipes and Its Surface Microscopic Waveguide for Cold Atoms or Molecules

    Institute of Scientific and Technical Information of China (English)

    JI Xian-Ming; XIA Yong; YIN Jian-Ping

    2004-01-01

    We propose a new scheme to guide cold atoms (or molecules) by using a one-dimensional (1D) array of focused hollow-beam pipes generated by the combination of a binary phase grating and a 1D array of micro-cylindrical lenses on the substrate surface. We also calculate the intensity distribution of the focused hollow-beam pipe array and its optical potential for 85Rb atoms. The result shows that when the blue detuning of the incident beam and its intensity are 10 GHz and 7.0 × 103 W/m2 respectively, the horizontal dark spot size of each focused hollow-beam pipe and the efficient optical potential are 4.4μm and ~ 0.23mK, which is high enough to guide cold 85Rb atoms (~ 20 μK) from a standard optical molasses and then to realize the 1D array of surface atomic waveguides on an atom chip.

  10. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling.

    Science.gov (United States)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-05-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV. PMID:23592622

  11. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling.

    Science.gov (United States)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-05-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.

  12. Pseudopotential calculations of photoionization of atoms in the x-ray photon energy range and FEL beam monitor development

    International Nuclear Information System (INIS)

    A pseudopotential model for calculation of atomic processes under interaction with hard x-ray photons is applied to calculation of Krypton photoionization cross sections by photons with energy in the 20–25 keV range. These cross sections, as well as the mean charge of the resulting ions calculated using the Monte Carlo simulation scheme, are in good agreement with the other theoretical calculations and with the experiment. The obtained results open the doors for new techniques in the design of gas-monitor detectors to control the intensity, coordinates and energy of x-ray free-electron laser (XFEL) beams in the hard x-ray photon energy range. First, Monte Carlo simulations of a scintillation detector application for gas-monitors have been performed. (letter)

  13. Atomic collision experiments utilizing low-velocity, highly-charged ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.M.; Jones, K.W.; Meron, M.

    1982-01-01

    Intense beams of highly-stripped ions are now routinely produced at low velocities using the Brookhaven dual MP-tandens in a unique four-stage accel/decel mode. This mode of operation combines three stages of acceleration, stripping at high energy, and one stage of deceleration to near-zero velocity. To date, experiments have used 10-100 nA beams of bare and few-electron heavy ions at energies as low as 0.2 MeV/amu, and upgrades of the facility should push the lower limit below 0.1 MeV/amu. Recent experiments, such as measurements of charge transfer and x-ray production for S/sup 6-16+/ on He and Ar at 6 to 20 MeV and P(b) measurements for MO x-rays produced in Cl/sup 16 +/ + Ar collisions at 20, 10, and 5 MeV have demonstrated the usefulness of highly-stripped, low-velocity projectiles. These experiments and a few possibilities for future experiments are discussed.

  14. Beam dynamics of a double-gap acceleration cell for ion implantation with multiple atomic species

    International Nuclear Information System (INIS)

    As a result of our work on ion implantation, we derived equations for the beam dynamics of a two-gap-resonator cavity for accelerating and bunching various ion species of varying energies with the cavity designed for one particular ion species of a given energy (the design-reference particle). A two gap structure is useful at low resonant frequencies where lumped circuit elements (inductors) can be used and the structure kept small. A single gap structure has the advantage that each gap can be independently phased to produce the desired beam dynamics behavior for various ion species and ion energies. However at low frequencies, single gap resonant structures can be large. We find that the two-gap structure, where the phase difference between gaps, for the design reference particle, is fixed at π radians can give acceptable performance provided that the individual two gap cells in the entire accelerator are optimized for the ion species having the largest mass to charge ratio and having the maximum required output energy. Our equations show how to adjust the cavity phases and electric fields to obtain equivalent first-order accelerator performance for various ion species and energies. These equations allow for the effective evaluation of various accelerator concepts and can facilitate the tuning of a linac when changing energies and ion species. Extensive simulations have confirmed the efficacy of our equations. copyright 1997 American Institute of Physics

  15. Atomic collision experiments utilizing low-velocity, highly-charged ion beams

    International Nuclear Information System (INIS)

    Intense beams of highly-stripped ions are now routinely produced at low velocities using the Brookhaven dual MP-tandems in a unique four-stage accel/decel mode. This mode of operation combines three stages of acceleration, stripping at high energy, and one stage of deceleration to near-zero velocity. To date, experiments have used 10-100 nA beams of bare and few-electron heavy ions at energies as low as 0.2 MeV/amu, and upgrades of the facility should push the lower limit below 0.1 MeV/amu. Recent experiments, such as measurements of charge transfer and x-ray production for S6-16+ on He and Ar at 6-20 MeV and P(b) measurements for MO x-rays produced in Cl16+ + Ar collisions at 20, 10 and 5 MeV have demonstrated the usefulness of highly-stripped, low-velocity projectiles. These experiments and a few possibilities for future experiments are discussed

  16. Improved laser damage threshold performance of calcium fluoride optical surfaces via Accelerated Neutral Atom Beam (ANAB) processing

    Science.gov (United States)

    Kirkpatrick, S.; Walsh, M.; Svrluga, R.; Thomas, M.

    2015-11-01

    Optics are not keeping up with the pace of laser advancements. The laser industry is rapidly increasing its power capabilities and reducing wavelengths which have exposed the optics as a weak link in lifetime failures for these advanced systems. Nanometer sized surface defects (scratches, pits, bumps and residual particles) on the surface of optics are a significant limiting factor to high end performance. Angstrom level smoothing of materials such as calcium fluoride, spinel, magnesium fluoride, zinc sulfide, LBO and others presents a unique challenge for traditional polishing techniques. Exogenesis Corporation, using its new and proprietary Accelerated Neutral Atom Beam (ANAB) technology, is able to remove nano-scale surface damage and particle contamination leaving many material surfaces with roughness typically around one Angstrom. This surface defect mitigation via ANAB processing can be shown to increase performance properties of high intensity optical materials. This paper describes the ANAB technology and summarizes smoothing results for calcium fluoride laser windows. It further correlates laser damage threshold improvements with the smoothing produced by ANAB surface treatment. All ANAB processing was performed at Exogenesis Corporation using an nAccel100TM Accelerated Particle Beam processing tool. All surface measurement data for the paper was produced via AFM analysis on a Park Model XE70 AFM, and all laser damage testing was performed at Spica Technologies, Inc. Exogenesis Corporation's ANAB processing technology is a new and unique surface modification technique that has demonstrated to be highly effective at correcting nano-scale surface defects. ANAB is a non-contact vacuum process comprised of an intense beam of accelerated, electrically neutral gas atoms with average energies of a few tens of electron volts. The ANAB process does not apply mechanical forces associated with traditional polishing techniques. ANAB efficiently removes surface

  17. Electric Target Based on Non-diffracting Beam and Error Analysis%无衍射光电子标靶及误差分析

    Institute of Scientific and Technical Information of China (English)

    陈慧; 赵斌

    2011-01-01

    提出了一种新型的用于盾构机导向的无衍射光电子标靶,利用映射关系将全站仪激光入射到标靶中CCD上的光斑场盾中心位置和全站仪的角度值联系起来,结合电子水平仪读数,得到标靶的完整姿态角,并计算盾首中心坐标.分析测量过程中全站仪,标靶各部件引起的误差,推导标靶测量姿态角及盾首中心坐标的误差.分析表明,标靶测量盾首的偏差精度达到毫米级,满足盾构导向的精度要求.%A new electronic target based on the principle of the non-diffracting beam is proposed for guidance of shield machine. The spot center location of the incident laser of the total station in CCD fixed in the electronic target and the angle data of the total station are combined by constituting mapping database. The actual attitude angles of the electronic target and the center of the head of shield machine are computed by mapping database and the angles of electronic gradienter. The errors of the total station and components of the electronic target in measuring process are analyzed. The errors of attitude angles and the center of the head of shield machine are derived. The result shows that the measuring precision of the head of shield machine by the electronic target could reach a millimeter-level, which could meet the requirement of the shield machine guidance precision.

  18. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    NARCIS (Netherlands)

    Irimia, D.; Dobrikov, D.; Kortekaas, R.; Voet, H.; Ende, D.A. van den; Groen, W.A.; Janssen, M.H.M.

    2009-01-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms t

  19. Evanescent Wave Atomic Mirror

    Science.gov (United States)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  20. Enhanced high-speed coherent diffraction imaging

    Science.gov (United States)

    Potier, Jonathan; Fricker, Sebastien; Idir, Mourad

    2011-03-01

    Due to recent advances in X-ray microscopy, we are now able to image objects with nanometer resolution thanks to Synchrotron beam lines or Free Electron Lasers (FEL). The PCI (Phase Contrast Imaging) is a robust technique that can recover the wavefront from measurements of only few intensity pictures in the Fresnel diffraction region. With our fast straightforward calculus methods, we manage to provide the phase induced by a microscopic specimen in few seconds. We can therefore obtain high contrasted images from transparent materials at very small scales. To reach atomic resolution imaging and thus make a transition from the near to the far field, the Coherent Diffraction Imaging (CDI) technique finds its roots in the analysis of diffraction patterns to obtain the phase of the altered complex wave. Theoretical results about existence and uniqueness of this retrieved piece of information by both iterative and direct algorithms have already been released. However, performances of algorithms remain limited by the coherence of the X-ray beam, presence of random noise and the saturation threshold of the detector. We will present reconstructions of samples using an enhanced version of HIO algorithm improving the speed of convergence and its repeatability. As a first step toward a practical X-Ray CDI system, initial images for reconstructions are acquired with the laser-based CDI system working in the visible spectrum.

  1. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  2. Atom interferometry with lithium atoms: theoretical analysis and design of an interferometer, applications

    International Nuclear Information System (INIS)

    This thesis is devoted to studies which prepared the construction of an atom Mach-Zehnder interferometer. In such an interferometer, the propagating waves are spatially separated, and the internal state of the atom is not modified. The beam-splitters are diffraction gratings, consisting of standing optical waves near-resonant with an atomic transition. We use the Bloch functions to define the atom wave inside the standing wave grating and thus explain the diffraction process in different cases. We developed a nearly all-analytical model for the propagation of an atom wave inside a Mach-Zehnder interferometer. The contrast of the signal is studied for many cases: phase or amplitude gratings, effects of extra paths, effects of the main mismatches, monochromatic or lightly polychromatic sources. Finally, we discuss three interferometric measurements we think very interesting. The first, the index of refraction of gas for atomic waves, is studied in detail, with numerical simulations. The other measures we propose deal with the electrical properties of lithium. We discuss the ultimate limit for the measure of the static electric polarizability of lithium by atomic interferometry. Then, we discuss how one could measure the possible charge of the lithium atom. We conclude that an optically cooled and collimated atom beam would improve precision. (author)

  3. Plasmonic properties of Ag nanoparticles embedded in GeO2-SiO2 matrix by atom beam sputtering.

    Science.gov (United States)

    Mohapatra, Satyabrata

    2016-02-01

    Nanocomposite thin films containing Ag nanoparticles embedded in the GeO2-SiO2 matrix were synthesized by the atom beam co-sputtering technique. The structural, optical and plasmonic properties and the chemical composition of the nanocomposite thin films were studied by transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX), UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). UV-visible absorption studies on Ag-SiO2 nanocomposites revealed the presence of a strong localized surface plasmon resonance (LSPR) peak characteristic of Ag nanoparticles at 413 nm, which showed a blue shift of 26 nm (413 to 387 nm) along with a significant broadening and drastic decrease in intensity with the incorporation of 16 at% of Ge into the SiO2 matrix. TEM studies on Ag-GeO2-SiO2 nanocomposite thin films confirmed the presence of Ag nanoparticles with an average size of 3.8 nm in addition to their aggregates with an average size of 16.2 nm. Thermal annealing in air resulted in strong enhancement in the intensity of the LSPR peak, which showed a regular red shift of 51 nm (from 387 to 438 nm) with the increase in annealing temperature up to 500 °C. XPS studies showed that annealing in air resulted in oxidation of excess Ge atoms in the nanocomposite into GeO2. Our work demonstrates the possibility of controllably tuning the LSPR of Ag nanoparticles embedded in the GeO2-SiO2 matrix by single-step thermal annealing, which is interesting for optical applications. PMID:26766559

  4. Plasmonic properties of Ag nanoparticles embedded in GeO2-SiO2 matrix by atom beam sputtering.

    Science.gov (United States)

    Mohapatra, Satyabrata

    2016-02-01

    Nanocomposite thin films containing Ag nanoparticles embedded in the GeO2-SiO2 matrix were synthesized by the atom beam co-sputtering technique. The structural, optical and plasmonic properties and the chemical composition of the nanocomposite thin films were studied by transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX), UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). UV-visible absorption studies on Ag-SiO2 nanocomposites revealed the presence of a strong localized surface plasmon resonance (LSPR) peak characteristic of Ag nanoparticles at 413 nm, which showed a blue shift of 26 nm (413 to 387 nm) along with a significant broadening and drastic decrease in intensity with the incorporation of 16 at% of Ge into the SiO2 matrix. TEM studies on Ag-GeO2-SiO2 nanocomposite thin films confirmed the presence of Ag nanoparticles with an average size of 3.8 nm in addition to their aggregates with an average size of 16.2 nm. Thermal annealing in air resulted in strong enhancement in the intensity of the LSPR peak, which showed a regular red shift of 51 nm (from 387 to 438 nm) with the increase in annealing temperature up to 500 °C. XPS studies showed that annealing in air resulted in oxidation of excess Ge atoms in the nanocomposite into GeO2. Our work demonstrates the possibility of controllably tuning the LSPR of Ag nanoparticles embedded in the GeO2-SiO2 matrix by single-step thermal annealing, which is interesting for optical applications.

  5. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric.

    Science.gov (United States)

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-01-01

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator. PMID:27325155

  6. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric

    Science.gov (United States)

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-06-01

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator.

  7. Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation

    International Nuclear Information System (INIS)

    A simple method for cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry (BIFF-AAS) was proposed. Food slurries were prepared by transferring an exact amount of cryogenic-ground homogenized material (50-100 mg) to centrifuge tubes, followed by addition of 5 ml (up to 2.8 mol l-1) nitric acid solution and sonication in an ultrasonic bath during 5-10 min. Thereafter, slurries were diluted with water to 10 ml, centrifuged during 5 min at 5400 rpm and 400 μl aliquot of the supernatant was analyzed by BIFF-AAS. The detection limits based on peak height measurements were 0.03 μg g-1 Cd and 1.6 μg g-1 Pb for 2% (m/v) slurry (200 mg/10 ml). For method validation, the certified reference materials Pig Kidney (BCR 186) and Rice Flour (NIES 10) were used. Quantitative cadmium and lead recoveries were obtained and no statistical differences were found at 95% level by applying the t-test

  8. Measurements of radiation near an atomic spectral line from the interaction of a 30 GeV electron beam and a long plasma

    International Nuclear Information System (INIS)

    Emissions produced or initiated by a 30 GeV electron beam propagating through a ∼ 1 m long heat pipe oven containing neutral and partially ionized vapor have been measured near atomic spectral lines in a beam-plasma wakefield experiment. The Cerenkov spatial profile has been studied as a function of oven temperature and pressure, observation wavelength, and ionizing laser intensity and delay. The Cerenkov peak angle is affected by the creating of plasma, and estimates of neutral and plasma density have been extracted. Increases in visible background radiation, consistent with increased plasma recombination emissions due to dissipation of wakefields, were simultaneously measured

  9. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne, E-mail: grevent@is.mpg.de [Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Szeghalmi, Adriana [Friedrich-Schiller-Universität Jena, Albert-Einstein-Strasse 15, D-07745 Jena (Germany); Knez, Mato [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastian (Spain); Basque Foundation for Science, Alameda Urquijo 36-5, E-48011 Bilbao (Spain); Weigand, Markus [Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Snigirev, Anatoly; Snigireva, Irina [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble (France); Schütz, Gisela [Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart (Germany)

    2013-05-01

    The fabrication and performance of multilayer Al{sub 2}O{sub 3}/Ta{sub 2}O{sub 5} Fresnel zone plates in the hard X-ray range and a discussion of possible future developments considering available materials are reported. Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ∼10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al{sub 2}O{sub 3}/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.

  10. On the Use of Wide-Angle Energy-Sensitive Detectors in White-Beam X-Ray Single-Crystal Diffraction

    DEFF Research Database (Denmark)

    Buras, B.; Staun Olsen, J.; Gerward, Leif

    1980-01-01

    The possible applications of multiple-element or large-area semiconductor detectors in single-crystal X-ray diffraction are discussed on the basis of experimental results using Bremsstrahlung as well as synchrotron radiation.......The possible applications of multiple-element or large-area semiconductor detectors in single-crystal X-ray diffraction are discussed on the basis of experimental results using Bremsstrahlung as well as synchrotron radiation....

  11. Atomic structure of glassy Mg60Cu30Y10 investigated with EXAFS, x-ray and neutron diffraction, and reverse Monte Carlo simulations

    DEFF Research Database (Denmark)

    Jovari, P.; Saksl, K.; Pryds, Nini;

    2007-01-01

    studied by differential scanning calorimetry and in situ x-ray powder diffraction. The alloy shows a glass transition and three crystallization events, the first and dominant one at 456 K corresponding to eutectic crystallization of at least three phases: Mg2Cu and most likely cubic MgY and CuMgY....

  12. Atomic structure of glassy Mg60Cu30Y10 investigated with EXAFS, x-ray and neutron diffraction, and reverse Monte Carlo simulations

    DEFF Research Database (Denmark)

    Jovari, P.; Saksl, K.; Pryds, Nini;

    2007-01-01

    Short range order of amorphous Mg60Cu30Y10 was investigated by x-ray and neutron diffraction, Cu and Y K-edge x-ray absorption fine structure measurements, and the reverse Monte Carlo simulation technique. We found that Mg-Mg and Mg-Cu nearest neighbor distances are very similar to values found i...

  13. Bragg diffraction and the Iron crust of Neutron Stars

    CERN Document Server

    Llanes-Estrada, Felipe J

    2009-01-01

    If neutron stars have a thin atomic crystalline-iron crust, they must diffract X-rays of appropriate wavelength. So that the diffracted beam is visible from Earth, the illuminating source must be very intense and near the reflecting star. An example is a binary system with two neutron stars, one of them inert, the other an X-ray pulsar, in close orbit. The observable to be searched for is a secondary peak added (quasi-) periodically to the main X-ray pulse. The distinguishing feature of this secondary is that it appears at wavelengths related by simple integer numbers, lambda, lambda/2, lambda/3... lambda/n because of Bragg's diffraction law.

  14. Computational Investigation of Dipole Traps Formed by the Projection of Diffraction Patterns from a Circular Aperture

    Science.gov (United States)

    Gillen, Glen D.; Gillen-Christandl, Katharina

    2011-05-01

    Previously we have shown that laser light incident upon a circular diffracting aperture produces intensity distributions suitable for either red-detuned (RDT) or blue-detuned (BDT) optical dipole traps for cold neutral atoms. Typically, the calculated traps are located within a millimeter of the diffracting aperture, which requires the aperture to be located inside of the vacuum chamber. Using a combination of scalar diffraction theory and beam propagation techniques, a mathematical model has been developed to project the diffraction pattern away from the aperture. Projected intensity distributions allow for the diffracting aperture and optics to be located outside of the vacuum chamber. We will present calculations which show that the properties of the RDT and BDT sites are not only maintained through the projection, but also can be manipulated using a simple single-lens optical system. Work supported by the NSF Grant No. PHY-0855524.

  15. Measurement of the scalar polarizability of the indium $6p_{1/2}$ state using two-step atomic-beam spectroscopy

    CERN Document Server

    Augenbraun, Benjamin L; Rupasinghe, P M; Majumder, P K

    2016-01-01

    We have completed a measurement of the Stark shift within the $^{115}$In $6s_{1/2} \\rightarrow 6p_{1/2}$ excited-state transition using two-step laser spectroscopy in an indium atomic beam. Combining this measurement with recent experimental results we determine the scalar polarizability, $\\alpha_{0}$, of the $6p_{1/2}$ state to be $7683 \\pm43 \\,a_{0}^{3}$ in atomic units, a result which agrees very well with recent theoretical calculations. In this experiment, one laser, stabilized to the $5p_{1/2} \\rightarrow 6s_{1/2}$ 410~nm transition, was directed transversely to the atomic beam, while a second, overlapping laser was scanned across the 1343~nm $6s_{1/2} \\rightarrow 6p_{1/2}$ transition. We utilized two-tone frequency-modulation spectroscopy of the infrared laser beam to measure the second-step absorption in the interaction region, where the optical depth is less than 10$^{-3}$. In the course of our experimental work we also determined the hyperfine splitting within the $6p_{1/2}$ state, improving upon th...

  16. Multidimensional characterisation of biomechanical structures by combining Atomic Force Microscopy and Focused Ion Beam: A study of the rat whisker.

    Science.gov (United States)

    Adineh, Vahid Reza; Liu, Boyin; Rajan, Ramesh; Yan, Wenyi; Fu, Jing

    2015-07-01

    Understanding the heterogeneity of biological structures, particularly at the micro/nano scale can offer insights valuable for multidisciplinary research in tissue engineering and biomimicry designs. Here we propose to combine nanocharacterisation tools, particularly Focused Ion Beam (FIB) and Atomic Force Microscopy (AFM) for three dimensional mapping of mechanical modulus and chemical signatures. The prototype platform is applied to image and investigate the fundamental mechanics of the rat face whiskers, a high-acuity sensor used to gain detailed information about the world. Grazing angle FIB milling was first applied to expose the interior cross section of the rat whisker sample, followed by a "lift-out" method to retrieve and position the target sample for further analyses. AFM force spectroscopy measurements revealed a non-uniform pattern of elastic modulus across the cross section, with a range from 0.8GPa to 13.5GPa. The highest elastic modulus was found at the outer cuticle region of the whisker, and values gradually decreased towards the interior cortex and medulla regions. Elemental mapping with EDS confirmed that the interior of the rat whisker is dominated by C, O, N, S, Cl and K, with a significant change of elemental distribution close to the exterior cuticle region. Based on these data, a novel comprehensive three dimensional (3D) elastic modulus model was constructed, and stress distributions under realistic conditions were investigated with Finite Element Analysis (FEA). The simulations could well account for the passive whisker deflections, with calculated resonant frequency as well as force-deflection for the whiskers being in good agreement with reported experimental data. Limitations and further applications are discussed for the proposed FIB/AFM approach, which holds good promise as a unique platform to gain insights on various heterogeneous biomaterials and biomechanical systems. PMID:25839121

  17. Parabolic scaling beams.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  18. Atomic structure of glassy Mg60Cu30Y10 investigated with EXAFS, x-ray and neutron diffraction, and reverse Monte Carlo simulations

    DEFF Research Database (Denmark)

    Jovari, P.; Saksl, K.; Pryds, Nini;

    2007-01-01

    Short range order of amorphous Mg60Cu30Y10 was investigated by x-ray and neutron diffraction, Cu and Y K-edge x-ray absorption fine structure measurements, and the reverse Monte Carlo simulation technique. We found that Mg-Mg and Mg-Cu nearest neighbor distances are very similar to values found in...... studied by differential scanning calorimetry and in situ x-ray powder diffraction. The alloy shows a glass transition and three crystallization events, the first and dominant one at 456 K corresponding to eutectic crystallization of at least three phases: Mg2Cu and most likely cubic MgY and CuMgY....

  19. QED-based Optical Bloch Equations without electric dipole approximation: A model for a two-level atom interacting with a monochromatic X-ray laser beam

    CERN Document Server

    Zhang, Wen-Zhuo

    2012-01-01

    We derive a set of optical Bloch equations (OBEs) directly from the minimal-coupling Hamiltonian density of the bound-state quantum electrodynamics (bound-state QED). Such optical Bloch equations are beyond the former widely-used ones due to that there is no electric dipole approximation (EDA) on the minimal-coupling Hamiltonian density of the bound-state QED. Then our optical Bloch equations can describe a two-level atom interacting with a monochromatic light of arbitrary wavelength, which are suitable to study the spectroscopy and the Rabi oscillations of two-level atoms in X-ray laser beams since that the wavelength of X-ray is close to an atom to make the electric dipole approximation (EDA) invalid.

  20. X-ray diffraction

    International Nuclear Information System (INIS)

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  1. Impact of Casimir-Polder interaction on Poisson-spot diffraction at a dielectric sphere

    CERN Document Server

    Hemmerich, Joshua Leo; Reisinger, Thomas; Nimmrichter, Stefan; Fiedler, Johannes; Hahn, Horst; Gleiter, Herbert; Buhmann, Stefan Yoshi

    2016-01-01

    Diffraction of matter-waves is an important demonstration of the fact that objects in nature possess a mixture of particle-like and wave-like properties. Unlike in the case of light diffraction, matter-waves are subject to a vacuum-mediated interaction with diffraction obstacles. Here we present a detailed account of this effect through the calculation of the attractive Casimir-Polder potential between a dielectric sphere and an atomic beam. Furthermore, we use our calculated potential to make predictions about the diffraction patterns to be observed in an ongoing experiment where a beam of indium atoms is diffracted around a silicon dioxide sphere. The result is an amplification of the on-axis bright feature which is the matter-wave analogue of the well-known `Poisson spot' from optics. Our treatment confirms that the diffraction patterns resulting from our complete account of the sphere Casimir-Polder potential are indistinguishable from those found via a large-sphere non-retarded approximation in the discu...

  2. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    International Nuclear Information System (INIS)

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 μs have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 μm nozzle releases about 1016 particles/pulse and the beam brightness was estimated to be 4x1022 particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10-6 Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Δv/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the cantilever

  3. Diffraction dissociation

    International Nuclear Information System (INIS)

    An attempt is made to analyse the present theoretical situation in the field of diffraction scattering. Two not yet fully answered questions related with a typical diffraction process AB→CD, namely: what is the structure of the transition matrix elements, and what is the structure of the exchange mechanism responsible for the scattering, are formulated and various proposals for answers are reviewed. Interesting general statement that the products (-1)sup(J)P, where J and P are respectively spin and parity, is conserved at each vertex has been discussed. The exchange mechanism in diffractive scattering has been considered using the language of the complex J-plane as the most appropriate. The known facts about the exchange mechanism are recalled and several routs to way out are proposed. The idea to consider the moving pole and associated branch points as like a particle and the associated two and many particle unitarity cuts is described in more details. (S.B.)

  4. PREFACE: Advanced Science Research Symposium 2009 Positron, Muon and other exotic particle beams for materials and atomic/molecular sciences (ASR2009)

    Science.gov (United States)

    Higemoto, Wataru; Kawasuso, Atsuo

    2010-05-01

    It is our great pleasure to deliver the proceedings of ASR2009, the Advanced Science Research International Symposium 2009. ASR2009 is part of a series of symposia which is hosted by the Japan Atomic Energy Agency, Advanced Science Research Center (JAEA-ASRC), and held every year with different scientific topics. ASR2009 was held at Tokai in Japan from 10-12 November 2009. In total, 102 participants, including 29 overseas scientists, made 44 oral presentations and 64 poster presentations. In ASR2009 we have focused on material and atomic/molecular science research using positrons, muons and other exotic particle beams. The symposium covered all the fields of materials science which use such exotic particle beams. Positrons, muons and other beams have similar and different features. For example, although positrons and muons are both leptons having charge and spin, they give quite different information about materials. A muon mainly detects the local magnetic state of the solid, while a positron detects crystal imperfections and electron momenta in solids. Other exotic particle beams also provide useful information about materials which is not able to be obtained with muons or positrons. Therefore, the complementary use of particle beams, coupled with an understanding of their relative advantages, leads to greater excellence in materials research. This symposium crossed the fields of muon science, positron science, unstable-nuclei science, and other exotic particle-beam science. We therefore believe that ASR2009 became an especially important meeting for finding new science with exotic particle beams. Finally, we would like to extend our appreciation to all the participants, committee members, and support staff for their great efforts to make ASR2009 a fruitful symposium. ASR2009 Chairs Wataru Higemoto and Atsuo Kawasuso Advanced Science Research Center, Japan Atomic Energy Agency Organizing committee Y Hatano, JAEA (Director of ASRC) M Fujinami, Chiba Univ. R H

  5. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  6. Extraction of polychromatic thermal neutrons by Bragg diffraction to use for prompt gamma neutron activation analysis

    International Nuclear Information System (INIS)

    Extraction method of thermal neutron beam by Bragg diffraction is investigated. A thermal neutron beam is used for the Prompt Gamma Neutron Activation Analysis system at HANARO, a 30 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic beam including all orders of diffraction is obtained by setting a pair of pyrolytic graphite crystals with a Bragg angle of 45 deg. on a horizontal white beam line. Diffracted neutron flux at the sample position is calculated by considering the integrated reflectivity and mosaic spread of crystals. Due to the divergence effect, the mosaic spread of crystals is optimized to give the maximum and flat flux at the sample position. An experiment has been performed to verify the reflectivities for high order diffractions from pyrolytic graphite. When the focusing technique of bending the crystals is adopted, a design value of 1.0x108 n/cm2s is expected at the sample position. Hence Bragg diffraction is a promising method of extracting thermal neutrons for PGNAA

  7. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  8. The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hofsaess, H.; Zhang, K.; Pape, A.; Bobes, O.; Broetzmann, M. [Georg-August University Goettingen, II. Institute of Physics, Goettingen (Germany)

    2013-05-15

    We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe{sub x} Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition. (orig.)

  9. The early development of neutron diffraction: science in the wings of the Manhattan Project

    OpenAIRE

    Mason, T. E.; Gawne, T. J.; Nagler, S. E.; Nestor, M. B.; Carpenter, J. M.

    2012-01-01

    Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan Project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key...

  10. From atomic structure to excess entropy: a neutron diffraction and density functional theory study of CaO-Al₂O₃-SiO₂ melts.

    Science.gov (United States)

    Liu, Maoyuan; Jacob, Aurélie; Schmetterer, Clemens; Masset, Patrick J; Hennet, Louis; Fischer, Henry E; Kozaily, Jad; Jahn, Sandro; Gray-Weale, Angus

    2016-04-01

    Calcium aluminosilicate CaO-Al2O3-SiO2 (CAS) melts with compositions (CaO-SiO2)(x)(Al2O3)(1-x) for x  modelling. Simulated structure factors are found to be in good agreement with experimental structure factors. Local atomic structures from simulations reveal the role of calcium cations as a network modifier, and aluminium cations as a non-tetrahedral network former. Distributions of tetrahedral order show that an increasing concentration of the network former Al increases entropy, while an increasing concentration of the network modifier Ca decreases entropy. This trend is opposite to the conventional understanding that increasing amounts of network former should increase order in the network liquid, and so decrease entropy. The two-body correlation entropy S2 is found to not correlate with the excess entropy values obtained from thermochemical databases, while entropies including higher-order correlations such as tetrahedral order, O-M-O or M-O-M bond angles and Q(N) environments show a clear linear correlation between computed entropy and database excess entropy. The possible relationship between atomic structures and excess entropy is discussed. PMID:26940854

  11. X-Ray Powder Diffraction from Sub-Micron Crystals of Photosystem-1 Membrane Protein

    OpenAIRE

    Shapiro, D. A.; DePonte, D.; Doak, R. B.; Fromme, P.; Hembree, G.; Hunter, M; Marchesini, S.; Schmidt, K.; Starodub, D.; Weierstall, U.; Chapman, H.; Spence, J

    2008-01-01

    We demonstrate that powder diffraction data can be collected from sub-micron crystals of a mbrane protein with nearly two orders of magnitude more atoms than the molecules commonly used for powder diffraction. The crystals of photosystem-1 protein were size-selected using a 500 nm pore- size filter and delivered to a soft x-ray beam with a photon energy of 1.5 keV using a dynamically focused micro-jet developed for the serial crystallography experiment at beamline 9.0.1. The 10-micron jet pla...

  12. Damage effects of {ion}/{atom} beam milling on MNOS (Al/Si 3N 4/SiO 2/Si) capacitors

    Science.gov (United States)

    Bangert, U.; Belson, J.; Wilson, I. H.

    1984-02-01

    Low energy argon ion and atom beams produced by saddle field sources have been used to study changes in CVD Si 3N 4/SiO 2/Si structures after bombardment of the bare nitride at a particle energy of 2.9 keV. Interface state densities Nst and flatband voltages VFB were extracted from high frequency (1.3 MHz) and quasi-static C- V curves. Bombardment was found to induce an increase in Nst and positive and negative charge storage associated with the nitride (or the nitride/oxide interface). The effect was more pronounced under ion bombardment. On the supposition that displacement damage is similar for ion and atom bombardments the differences in charge storage are interpreted in terms of enhanced trapping under the field associated with ion bombardment.

  13. Study of X-Ray and $\\gamma$-Ray Spectra from Antiprotonic Atoms at the Slowly Extracted Antiproton Beam of LEAR

    CERN Multimedia

    2002-01-01

    This experiment will study the X-ray spectra of antiprotonic atoms and the $\\gamma$ spectra of residual nuclei after the antiproton absorption. We intend to begin with measurements on selected isotopically pure targets. Strong interaction effects, the antiproton absorption and the atomic cascade are analysed through the measurement of energies, lineshapes, relative and absolute intensities of all observable lines. The experiments are continued to determine st in resolved fine structure levels and in different isotopes of the same element. Coincidence techniques may be applied. All components of the experimental set-up are already existing from previous experiments and we could begin the measurements with any slowly extracted beam of low energy at LEAR.

  14. Diode-pumped dual-wavelength Nd:LSO laser at 1059 and 1067  nm with nearly diffraction-limited beam quality.

    Science.gov (United States)

    Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Jian; Xu, Jun

    2016-04-10

    We report a diode-pumped continuous-wave simultaneous dual-wavelength Nd:LSO laser at 1059 and 1067 nm. By employing a specially coated output coupler with relatively high transmissions at high-gain emission lines of 1075 and 1079 nm, the two low-gain emission lines, 1059 and 1067 nm, can be achieved, for the first time to our knowledge, with maximum output power of 1.27 W and slope efficiency of about 29.2%. The output power is only limited by the available pump power. Output beam quality is also measured to be about 1.19 and 1.21 of the beam propagation factors in the x and y directions, respectively. PMID:27139868

  15. Diode-pumped dual-wavelength Nd:LSO laser at 1059 and 1067  nm with nearly diffraction-limited beam quality.

    Science.gov (United States)

    Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Jian; Xu, Jun

    2016-04-10

    We report a diode-pumped continuous-wave simultaneous dual-wavelength Nd:LSO laser at 1059 and 1067 nm. By employing a specially coated output coupler with relatively high transmissions at high-gain emission lines of 1075 and 1079 nm, the two low-gain emission lines, 1059 and 1067 nm, can be achieved, for the first time to our knowledge, with maximum output power of 1.27 W and slope efficiency of about 29.2%. The output power is only limited by the available pump power. Output beam quality is also measured to be about 1.19 and 1.21 of the beam propagation factors in the x and y directions, respectively.

  16. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling

    OpenAIRE

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-01-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ∼10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling,...

  17. Atomic physics

    International Nuclear Information System (INIS)

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 23Po,2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 23Po level of helium-like krypton

  18. Optical molasses loaded from a slow atomic beam%应用慢速原子束制备冷原子粘团的研究

    Institute of Scientific and Technical Information of China (English)

    陈江; 张辉; 阮军; 王心亮; 刘丹丹; 张首刚

    2012-01-01

    Preparation of the optical molasses is one of the key steps for developing a fountain clock. The optical molasses is loaded from a slow atomic beam, and the fluorescence collection method is applied to determine the number of atoms in the optical molasses, meanwhile the time-of-flight(TOF) method is used to measure the temperature of the optical molasses. The number of cold atoms in the optical molasses for loading time of 200 ms is determined to be (8.14±0.2)×107, and the temperature of cold atoms is determined to be (10.72±0.69) μK.%冷原子粘团的制备是喷泉钟研制的关键步骤之一。通过慢速原子束加载获得冷原子粘团,应用荧光收集法测量了冷原子粘团的原子数目,采用飞行时间法测量了冷原子粘团温度。冷原子粘团中原子数目在加载时间200ms的情况下为(8.14±0.2)×107,温度为(10.72±0.69)μK。

  19. Condensed matter applied atomic collision physics, v.4

    CERN Document Server

    Datz, Sheldon

    1983-01-01

    Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc

  20. Grain boundary segregation in Fe–Mn–C twinning-induced plasticity steels studied by correlative electron backscatter diffraction and atom probe tomography

    International Nuclear Information System (INIS)

    We report on the characterization of grain boundary (GB) segregation in an Fe–28Mn–0.3C (wt.%) twinning-induced plasticity (TWIP) steel. After recrystallization of this steel for 24 h at 700 °C, ∼50% general grain boundaries (GBs) and ∼35% Σ3 annealing twin boundaries were observed (others were high-order Σ and low-angle GBs). The segregation of B, C and P and traces of Si and Cu were detected at the general GB by atom probe tomography (APT) and quantified using ladder diagrams. In the case of the Σ3 coherent annealing twin, it was necessary to first locate the position of the boundary by density analysis of the atom probe data, then small amounts of B, Si and P segregation and, surprisingly, depletion of C were detected. The concentration of Mn was constant across the interface for both boundary types. The depletion of C at the annealing twin is explained by a local change in the stacking sequence at the boundary, creating a local hexagonal close-packed structure with low C solubility. This finding raises the question of whether segregation/depletion also occurs at Σ3 deformation twin boundaries in high-Mn TWIP steels. Consequently, a previously published APT dataset of the Fe–22Mn–0.6C alloy system, containing a high density of deformation twins due to 30% tensile deformation at room temperature, was reinvestigated using the same analysis routine as for the annealing twin. Although crystallographically identical to the annealing twin, no evidence of segregation or depletion was found at the deformation twins, owing to the lack of mobility of solutes during twin formation at room temperature