WorldWideScience

Sample records for atomic absorption spectrometr

  1. Spectrofluorimetric, Atomic Absorption Spectrometric and Spectrophotometric Determination of Some Fluoroquinolones

    Directory of Open Access Journals (Sweden)

    Hesham Salem

    2005-01-01

    Full Text Available Simple, accurate, sensitive and selective spectrofluorimetric, atomic absorption spectrometric and spectrophotometric methods are described for the quantitative determination of ten fluoroquinolones (amifloxacin, ciprofloxacin hydrochloride, difloxacin hydrochloride, enoxacin, enrofloxacin, lomefloxacin hydrochloride, levofloxacin, norfloxacin, ofloxacin and pefloxacin mesylate. The first method was a spectrofluorimetric method in which samples of the studied drugs in 0.1 N H2SO4 showed native fluorescence at 450 nm when excitation was at 290 nm. The calibration graph was rectilinear from 0.3-1.4 μg mL-1 (method I. Cobalt sulphate was used for precipitation of the ion associates formed from the reaction with the cited drugs. The formation and solubility of the solid complexes at the optimum conditions of pH and ionic strength values have been studied. The method depends on direct determination of the ions in the precipitate or indirect determination of the ions in the filtrate by atomic absorption spectroscopy. The optimum conditions for precipitation were carefully studied. Rectilinear calibration graphs were obtained in the range of 3-30 μg mL-1 for each of the investigated drugs. The molar ratios of the formed chelats were determined by Job's method and their association constants were also calculated (method II. Ammonium vanadate was used for the spectrophotometric determination of the selected fluoroquinolones by oxidation in sulphuric acid medium resulting in the development of a greenish blue colour measured at 766 nm which was attributed to the vanadium (IV produced by reduction of vanadium (V by the selected drugs. The optimum conditions for heating time, reagent concentration and sulphuric acid concentration were carefully studied. The accuracy and precision of the proposed method was confirmed by estimating five or six replicates within Beer's law limits were obtained in the range 10-40 μg mL-1 for each of the investigated drugs

  2. Atomic absorption spectrometric determination of mineral elements in mammalian bones

    International Nuclear Information System (INIS)

    The phosphorus content of the major bones of male and female selected mammals was determined using the yellow vanadomolybdate colorimetric method. For each animal, the bone with the highest phosphorus content was used as pilot sample. Varying concentrations of strontium were added to solutions of the ashed pilot samples to minimize phosphorus interference in the determination of calcium and magnesium using flame atomic absorption spectrophotometry operated on the air-acetylene mode. At least 6,000 ppm (0.6%) of strontium was required to give optimum results for calcium. The amount of magnesium obtained from the analysis was not affected by the addition of strontium. With the incorporation of strontium in the sample solution, all elements of interest can be determined in the same sample solution. Based on this, a procedure is proposed for the determination of calcium and other elements in bones. Average recoveries of spiked calcium and magnesium were 97.85% and 98.16%, respectively at the 95% confidence level. The coefficients of variation obtained for replicate determinations using one of the samples were 0.00% for calcium, lead and sodium, 2.93% for magnesium, 3.27% for iron and 3.92% for zinc at the concentration levels found in that sample. Results from the proposed procedure compared well with those from classical chemical methods at the 95% confidence level. It is evident that calcium phosphorus, magnesium and sodium which are the most abundant elements in the bones are distributed in varying amounts both in the different types of bones and different animal species, although the general trend is Ca > P > Na > Mg for each bone considered. The calcium - phosphorus ratio is generally 3:1. The work set out to propose an atomic absorption spectrometric method for the multi-element analysis of mammalian bones with a single sample preparation and to study the distribution pattern of these elements in the bones. (Author)

  3. Electrothermal atomization atomic absorption spectrometric determination of trace metals in uranium-plutomium fuel materials

    International Nuclear Information System (INIS)

    Atomic absorption spectrometric methods using the electrothermal mode of atomization developed for the determination of Ag, Be, Ca, Cd, Cr, Co, Cu, Fe, Li, Mn, Na, Ni, Sn and Zn in (U, Pu) solution with 4% plutonium have been described. The carbon rod atomizer has been adapted for glove box operation to enable handling of plutonium containing solution samples. Multielement solution standards with graded concentrations of the analytes and fixed concentration of the matrix are used in the standardization process. Nanogram to sub-nanogram quantities of the analytes have been determined with a precision of better than 9% RSD using 5 μl of the sample aliquots. (orig.)

  4. Novel atomic absorption spectrometric and rapid spectrophotometric methods for the quantitation of paracetamol in saliva: Application to pharmacokinetic studies

    Directory of Open Access Journals (Sweden)

    Issa M

    2008-01-01

    Full Text Available A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III (method I; oxidation of p-aminophenol after the hydrolysis of paracetamol (method II. Iron (II then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 µg/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 µg/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 µg/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%.

  5. Separation of trace antimony and arsenic prior to hydride generation atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    A separation method utilizing a synthetic zeolite (mordenite) was developed in order to eliminate the gas phase interference of Sb(III) on As(III) during quartz furnace hydride generation atomic absorption spectrometric (HGAAS) determination. The efficiency of the proposed separation method in the reduction of suppression effects of transition metal ions on As(III) signal was also investigated. Among the volatile hydride-forming elements and their different oxidation states tested (Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), and Te(VI)), only Sb(III) was found to have a signal depression effect even at low (μg l-1) concentrations under the experimental conditions employed. It has been shown that mordenite adsorbs Sb(III) quantitatively, even at a concentration of 1000 μg l-1, at pHs greater than two, and also, it reduces the initial concentrations of the transition metal ions to lower levels which can be tolerated in many studies. The adsorption of Sb(III) on mordenite follows the Freundlich isotherm and is endothermic in nature

  6. Atomic-absorption spectrometric determination of trace metals in zirconium and zircaloy by discrete sample nebulization

    International Nuclear Information System (INIS)

    A discrete sample nebulization technique was employed to determine trace metals in nuclear grade zirconium and Zircaloy by flame atomic-absorption spectrometry. With 10% (w/v) sample solutions, detection limits for Cd, Cu, Mn, Ni and Pb were 0.6, 2, 1, 3, and 10 μg/g. Micro standard-addition procedures and background correction were employed to minimize matrix interferences produced by the high salt content of the aspirated solutions. (author)

  7. Colorimetric and atomic absorption spectrometric determination of mucolytic drug ambroxol through ion-pair formation with iron and thiocyanate.

    Science.gov (United States)

    Levent, Abdulkadir; Sentürk, Zühre

    2010-09-01

    Colorimetric and atomic absorption spectrometric methods have been developed for the determination of mucolytic drug Ambroxol. These procedures depend upon the reaction of iron(III) metal ion with the drug in the presence of thiocyanate ion to form stable ion-pair complex which extractable chloroform. The red-coloured complex was determined either colorimetrically at 510 nm or by indirect atomic absorption spectrometry (AAS) via the determination of the iron content in the formed complex. The optimum experimental conditions for pH, concentrations of Fe(3+) and SCN(-), shaking time, phase ratio, and the number of extractions were determined. Under the proposed conditions, linearity was obeyed in the concentration ranges 4.1x10(-6) - 5.7x10(-5) M (1.7-23.6 µg mL(-1)) using both methods, with detection limits of 4.6x10(-7) M (0.19 µg mL(-1)) for colorimetry and 1.1x10(-6) M (0.46 µg mL(-1)) for AAS. The proposed methods were applied for the determination of Ambroxol in tablet dosage forms. The results obtained were statistically analyzed and compared with those obtained by applying the high-performance liquid chromatographic method with diode-array detection.

  8. Atomic Absorption Spectrometric Method for Estimation of Diclofenac sodium and Mefenamic acid in Pharmaceutical Formulations

    Directory of Open Access Journals (Sweden)

    Sunil Jawla

    2010-01-01

    Full Text Available Diclofenac sodium and Mefenamic acid have been quantified in tablet dosage form by atomic absorption spectrometry (AAS. These methods are based on formation of the metal complexes of Diclofenac sodium and Mefenamic acid with cupric chloride and cobaltous chloride. The first method is based on reaction of both the drugs with cupric chloride to give light blue colored metal complexes, which are then extracted with dichloromethane and digested with 0.1 M nitric acid. Both the drugs are indirectly estimated via determination of copper content in the formed complexes by AAS. The second method is based on the formation of pink colored complexes of both the drugs with cobaltous chloride. These metal complexes are extracted with dichloromethane and estimated via determination of cobalt content in the formed complexes after digestion with 0.1 M nitric acid by AAS.

  9. An indirect atomic absorption spectrometric determination of ciprofloxacin, amoxycillin and diclofenac sodium in pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    MAHMOUD MOHAMED ISSA

    2008-05-01

    Full Text Available A highly sensitive indirect atomic absorption spectrophotometric (AAS method has been developed for the determination of very low concentrations of ciprofloxacin, amoxycillin and diclofenac sodium. The method is based on the oxidation of these drugs with iron(III. The excess of iron(III was extracted into diethyl ether and then the iron(II in the aqueous layer was aspirated into an air–acetylene flame and determined by AAS. The linear concentration ranges were 25–400, 50–500 and 60–600 ng ml-1 for ciprofloxacin, amoxycillin and diclofenac sodium, respectively. The results were statistically compared with the official method using t- and f-test at p < 0.05. There were insignificant interferences from most of the excipients present. The intra- and inter-day assay coefficients of variation were less than 6.1 % and the recoveries ranged from 95 to 103 %. The method was applied for the analysis of these drug substances in their commercial pharmaceutical formulations.

  10. Determination of trace elements in Egyptian cane sugar (Deshna Factories) by neutron activation, atomic absorption spectrophotometric and inductively coupled plasma-atomic emission spectrometric analysis

    International Nuclear Information System (INIS)

    Multielement instrumental neutron activation (INAA), inductively coupled plasma-atomic emission spectrometric (ICP-AES) and atomic absorption spectrophotometric (AAS) analyses were utilized for the determination of Ag, Al, As, Au, Ba, Be, Br, Ca, Cd, Ce, Cl, Co, Cr, Cu, Eu, Fe, Ga, Hf, K, La, Li, Lu, Mg, Mn, Na, Nb, Ni, P, Pb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Th, Ti, U, V, W and Zn in sugar cane plant, raw juice, juice in different stages, syrup, deposits, molasses, A, B and C sugar, refinery 1 and 2 sugar, and in soil samples picked up from the immediate vicinity of the cane plant roots at surface, 30 and 60 cm depth, respectively. (author)

  11. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium and nickel in drinking and wastewater samples.

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem G; Shah, Faheem; Afridi, Hassan I; Baig, Jameel Ahmed; Soomro, Abdul Sattar

    2013-01-01

    A simple method for the preconcentration of cadmium (Cd) and nickel (Ni) in drinking and wastewater samples was developed. Cloud point extraction has been used for the preconcentration of both metals, after formation of complexes with 8-hydroxyquinoline (8-HQ) and extraction with the surfactant octylphenoxypolyethoxyethanol (Triton X-114). Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation, and the Cd and Ni contents were measured by flame atomic absorption spectrometry. The experimental variables, such as pH, amounts of reagents (8-HQ and Triton X-114), temperature, incubation time, and sample volume, were optimized. After optimization of the complexation and extraction conditions, enhancement factors of 80 and 61, with LOD values of 0.22 and 0.52 microg/L, were obtained for Cd and Ni, respectively. The proposed method was applied satisfactorily for the determination of both elements in drinking and wastewater samples.

  12. Development of a cloud point extraction and preconcentration method for Cd and Ni prior to flame atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Manzoori, Jamshid L. [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: manzoori@tabrizu.ac.ir; Karim-Nezhad, Ghasem [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2004-09-13

    In this work a new cloud point extraction (CPE) methodology was developed for the separation and preconcentration of cadmium and nickel. The analyte in the initial aqueous solution was complexed with dithizone and Triton X-114 was added as surfactant. After phase separation, based on the cloud point of the mixture, and dilution of the surfactant-rich phase with tetrahydrofuran (THF), the enriched analytes were determined by flame atomic absorption spectrometry. After optimization of the complexation and extraction conditions and preconcentration of only 10 ml of sample in the presence of 0.05% Triton X-114, the enhancement factors of 52 and 39 and the detection limits of 0.31 {mu}g l{sup -1} and 1.2 {mu}g l{sup -1} were obtained for cadmium and nickel respectively. The proposed method was applied satisfactorily to the determination of cadmium and nickel in water samples.

  13. Flame atomic absorption spectrometric determination of trace cadmium in alloys and biological samples after solid-liquid extraction and preconcentration with use of nitroso-S

    International Nuclear Information System (INIS)

    Cadmium is quantitatively retained by 2-nitroso-1-naphthol-4-sulfonic acid (nitroso-S) and tetradecyldimethylbenzylammonium chloride (TDBA) on microcrystalline naphthalene in the pH range 5.7-10.5 from a large volumes of aqueous solutions of various samples. After filtration, the solid mass consisting of cadmium complex and naphthalene is dissolved with 5 mL of dimethylformamide and the metal was determined by flame atomic absorption spectrometric. Cadmium complex can alternatively be quantitatively adsorbed on tetradecyldimethylbenzylammonium-naphthalene adsorbent packed in a column and determined similarly. About 25 ng of cadmium can be concentrated in a column from 500 mL of aqueous sample, where its concentration is as low as 0.05 ng/mL. Eight replicate determinations of 0.1 μg/mL of cadmium in final DMF solution gave a mean absorbance of 0.060 with a relative standard deviation of 1.8 %. The sensitivity for 1 % absorption was 7.3 ng/mL. The interference of a large number of anions and cations has been studied and the optimized conditions developed were utilized for the trace determination of cadmium in various alloys and biological samples. (author)

  14. Standard test method for graphite furnace atomic absorption spectrometric determination of lead and cadmium extracted from ceramic foodware

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method covers procedures for using graphite furnace atomic absorption spectroscopy (GFAAS) to quantitatively determine lead and cadmium extracted by acetic acid at room temperature from the food-contact surface of foodware. The method is applicable to food-contact surfaces composed of silicate-based materials (earthenware, glazed ceramicware, decorated ceramicware, decorated glass, and lead crystal glass) and is capable of determining lead concentrations greater than 0.005 to 0.020 g/mL and cadmium concentrations greater than 0.0005 to 0.002 g/mL, depending on instrument design. 1.2 This test method also describes quality control procedures to check for contamination and matrix interference during GFAAS analyses and a specific sequence of analytical measurements that demonstrates proper instrument operation during the time period in which sample solutions are analyzed. 1.3 Cleaning and other contamination control procedures are described in this test method. Users may modify contamination cont...

  15. Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations

    International Nuclear Information System (INIS)

    A preconcentration-separation technique for lead(II), cadmium(II), chromium(III), nickel(II) and manganese(II) ions has been established. The procedure is based on coprecipitation of these ions by the aid of Cu(II)-dibenzyldithiocarbamate precipitate. The precipitate was dissolved in 0.5 mL of concentrated HNO3, and made up to 5 mL with distilled water. The heavy metals were determined by flame atomic absorption spectrometer. The effects of analytical parameters like pH, amounts of reagents, sample volume, etc. on the recoveries of heavy metals were investigated. The influences of matrix ions were also examined. The detection limits for the heavy metals based on 3 sigma (N = 21) were found in the range of 0.34-0.87 μg L-1. In order to validate the proposed method, two certified reference materials of NIST SRM 2711 Montana soil and NIST SRM 1515 Apple leaves were analyzed with satisfactory results. The proposed method was applied for the determination of lead, cadmium, chromium, nickel and manganese in environmental samples

  16. Cloud Point Extraction and Flame Atomic Absorption Spectrometric Determination of Lead, Cadmium and Palladium in Some Food and Biological Samples

    Directory of Open Access Journals (Sweden)

    M. Soylak

    2011-12-01

    Full Text Available The proposed method is based on the complexation of the Pb2+, Cd2+ and Pd2+ ions with 3-(1-(1-H-Indol-3-Yl-3-phenylallyl-1H-indole (IPAI at pH 8.0 in the presence of Triton X-114. The phase separation occured when micellar solution was heated at 55 ◦C. The surfactant-rich phase, diluted to 0.5 mL via 1.0 mol L−1 nitric acid in methanol was directly introduced into the nebulizer of the flame atomic absorption spectrometry (FAAS. Influence of variables such as pH, amount of ligand and Triton X-114, heating time and temperature were evaluated and optimized. The optimized enhancement factors for Pb2+, Cd2+ and Pd2+ ions were 22, 33 and 23, respectively and the detection limit (DLs was between of 1.6–2.6 µgL−1. The relative standard deviation (RSD of each ion was found to be less than 4.6% at 100 µgL−1. In addition, the calibration graphs were linear in the range of 0.01-0.22 μg mL−1 for Cd2+ ion, 0.018-0.26 μg mL−1 for Pb2+ ion and 0.02-0.27 μg mL−1 for Pd2+ ion with the correlation coefficients in the range of 0.995–0.999.

  17. Selective cloud point extraction and graphite furnace atomic absorption spectrometric determination of molybdenum (VI) ion in seawater samples

    Energy Technology Data Exchange (ETDEWEB)

    Filik, Hayati, E-mail: filik@istanbul.edu.tr [Istanbul University, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul (Turkey); Cengel, Tayfun; Apak, Resat [Istanbul University, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul (Turkey)

    2009-09-30

    A cloud point extraction process using the nonionic surfactant Triton X-114 to extract molybdenum from aqueous solutions was investigated. The method is based on the complexation reaction of Mo(VI) with 1,2,5,8-tetrahydroxyanthracene-9,10-dione (quinalizarine: QA) and micelle-mediated extraction of the complex. The enriched analyte in the surfactant-rich phase was determined by graphite furnace atomic absorption spectrometry (GFAAS). The optimal extraction and reaction conditions (e.g. pH, reagent and surfactant concentrations, temperature, incubation and centrifugation times) were evaluated and optimized. Under the optimized experimental conditions, the limit of detection (LOD) for Mo(VI) was 7.0 ng L{sup -1} with an preconcentration factor of {approx}25 when 10 mL of sample solution was preconcentrated to 0.4 mL. The proposed method (with extraction) showed linear calibration within the range 0.03-0.6 {mu}g L{sup -1}. The relative standard deviation (RSD) was found to be 3.7% (C{sub Mo(VI)} = 0.05 {mu}g L{sup -1}, n = 5) for pure standard solutions, whereas RSD for the recoveries from real samples ranged between 2 and 8% (mean RSD = 3.9%). The method was applied to the determination of Mo(VI) in seawater and tap water samples with a recovery for the spiked samples in the range of 98-103%. The interference effect of some cations and anions was also studied. In the presence of foreign ions, no significant interference was observed. In order to verify the accuracy of the method, a certified reference water sample was analysed and the results obtained were in good agreement with the certified values.

  18. Graphite furnace atomic absorption spectrometric determination of Ni and Pb in diesel and gasoline samples stabilized as microemulsion using conventional and permanent modifiers

    International Nuclear Information System (INIS)

    A procedure for the graphite furnace atomic absorption spectrometric determination of Ni and Pb in diesel and gasoline samples was developed. Sample stabilization was necessary because of evident analyte losses that occurred immediately after sampling. Excellent long-term sample stabilization was observed by mixing different organic solvents with propan-1-ol and 50% vol/vol HNO3 at a 3.3:6.5:1 volume ratio. For Pb, efficient thermal stabilization was obtained using aqueous Pd-Mg modifier as well as for Ir as permanent modifier. The drying temperature and ramp rate influenced the sensitivity obtained for Ni, and had to be carefully optimized. Taking this into account, the same sensitivity was attained in all investigated organic media stabilized as microemulsion. Thus, calibration with microemulsions prepared with a single organic solvent was possible, using aqueous or organic stock solutions. Commercial gasoline and diesel samples were directly analyzed after stabilization as microemulsion and by comparative UOP procedures. n-Hexane microemulsions were used for calibration, and good agreement was obtained between the results using the proposed and comparative procedures. Typical coefficients of variation (n = 6) ranged from 1% to 4%, and from 1% to 3% for Ni and Pb, respectively. Detection limits (k = 3) in the original gasoline or diesel samples, derived from 10 blank measurements, were 4.5 and 3.6 μg l-1 for Ni and Pb, respectively, comfortably below the values found in the analyzed samples

  19. Flame atomic absorption spectrometric determination of cadmium(II) and lead(II) after their solid phase extraction as dibenzyldithiocarbamate chelates on Dowex Optipore V-493

    International Nuclear Information System (INIS)

    An enrichment procedure for cadmium and lead after their solid phase extraction as dibenzyldithiocarbamate chelates on Dowex Optipore V-493 has been established prior to their flame atomic absorption spectrometric determinations. The analytical parameters including pH, amounts of dibenzyldithiocarbamate, sample volume, etc., were investigated. The effects of alkaline and earth alkaline ions and some metal ions on the retentions of analytes on Dowex Optipore V-493 resin were examined. Under the optimized conditions, the detection limits (3s, n = 21) for cadmium and lead were 0.43 μg L-1 and 0.65 μg L-1, respectively. The relative standard deviation (R.S.D.), and the recoveries of standard addition for this method were lower than 5% (n = 11) and 95-102%, respectively. Three standard reference samples (LGC 6010 Hard drinking water, NIST SRM 2711 Montana soil and GBW 07605 Tea) were introduced for accuracy and precision of analytical data. The proposed solid phase extraction system was successfully applied to the analysis of environmental samples

  20. Quantitative analysis of sodium di-uranate for Al, Ca, Fe, Mg, Mn, Na by flame-atomic absorption spectrometric method

    International Nuclear Information System (INIS)

    Nuclear Fuel Complex (NFC) receives Sodium Di-Uranate (SDU) from Uranium Corporation of India Limited (UCIL) for producing sinterable UO2 pellets for manufacturing fuel sub assemblies. Several impurities present in ore find their way into SDU during its conversion. Stringent specification have been laid down by the reactor designs for achieving the optimum performance of the fuel and several impurity element like Al, Ca, Fe, Mg, Mn, Na among others affects severely performance of UO2 fuel. Most of the impurity including the above mentioned elements are generally analysed by ICP-OES method. However, determination of Al, Ca, Fe, Mg, Mn and Na by ICP-OES requires lot of dilution as they are present at high levels in SDU. Apart from introducing dilution error, dilution process is very tedious and time consuming work and not a preferred choice in an industrial lab like control lab where large analytical load exists and time bound analysis is a requirement. To avoid these difficulties a simple and reliable Flame Atomic absorption spectrometric technique has been developed for regular analysis. Present method involves dissolution of SDU sample in Conc. HNO3 and after the complete dissolution the sample solution has been evaporated to near dryness on a hot plate. Subsequently sample solution has been brought into 4N HNO3 medium

  1. Graphite furnace atomic absorption spectrometric determination of Ni and Pb in diesel and gasoline samples stabilized as microemulsion using conventional and permanent modifiers

    Science.gov (United States)

    Reyes, Mariela N. Matos; Campos, Reinaldo C.

    2005-06-01

    A procedure for the graphite furnace atomic absorption spectrometric determination of Ni and Pb in diesel and gasoline samples was developed. Sample stabilization was necessary because of evident analyte losses that occurred immediately after sampling. Excellent long-term sample stabilization was observed by mixing different organic solvents with propan-1-ol and 50% vol/vol HNO 3 at a 3.3:6.5:1 volume ratio. For Pb, efficient thermal stabilization was obtained using aqueous Pd-Mg modifier as well as for Ir as permanent modifier. The drying temperature and ramp rate influenced the sensitivity obtained for Ni, and had to be carefully optimized. Taking this into account, the same sensitivity was attained in all investigated organic media stabilized as microemulsion. Thus, calibration with microemulsions prepared with a single organic solvent was possible, using aqueous or organic stock solutions. Commercial gasoline and diesel samples were directly analyzed after stabilization as microemulsion and by comparative UOP procedures. n-Hexane microemulsions were used for calibration, and good agreement was obtained between the results using the proposed and comparative procedures. Typical coefficients of variation ( n = 6) ranged from 1% to 4%, and from 1% to 3% for Ni and Pb, respectively. Detection limits ( k = 3) in the original gasoline or diesel samples, derived from 10 blank measurements, were 4.5 and 3.6 μg l - 1 for Ni and Pb, respectively, comfortably below the values found in the analyzed samples.

  2. Electrothermal atomic absorption spectrometric determination of lithium, sodium, potassium and copper in uranium without preliminary chemical separation

    International Nuclear Information System (INIS)

    Graphite furnace atomization is used for the direct determination of Li (0.25-4 ppm), Na (8-70 ppm), K (20-300 ppm) and Cu (0.5-25 ppm) in uranium dissolved in nitric acid, with relative standard deviations of 4-9%. Only iron seriously depresses the signals from the alkali metals. (Auth.)

  3. Flame Atomic Absorption Spectrometric Determination of Trace Amounts of Silver after Solid-Phase Extraction with 2-Mercaptobenzothiazole Immobilized on Microcrystalline Naphthalene

    Directory of Open Access Journals (Sweden)

    Farid Shakerian

    2013-01-01

    Full Text Available A simple and sensitive solid-phase extraction (SPE procedure combined with flame atomic absorption spectrometry (FAAS was designed for the extraction and determination of trace amounts of silver. A column of immobilized 2-mercaptobenzothiazole (MBT on microcrystalline naphthalene was used as the sorbent. Silver was quantitatively retained on the column in the pH range of 0.5–6.0. After extraction, the solid mass consisting of silver complex and naphthalene was dissolved out of the column with 5.0 mL of dimethylformamide, and the analyte was determined by flame atomic absorption spectrometry (FAAS. Under the optimum experimental conditions, the adsorption capacity was found to be 1.18 mg of silver per gram of the sorbent. A sample volume of 800 mL resulted in a preconcentration factor of 160. The relative standard deviation obtained for ten replicate determinations at a concentration of 0.8 µg L−1 was 1.4%, and the limit of detection was 0.02 µg L−1. The method was successfully applied to the determination of silver in radiology film, waste water, and natural water samples. The accuracy was examined by recovery experiments, independent analysis by electrothermal atomic absorption spectrometry, and analysis of two certified reference materials.

  4. Atomic absorption spectrometric determination of some metal ions after preconcentration by solid phase extraction using amberlite XAD 16 resin loaded with thenoyltrifluoroacetone

    International Nuclear Information System (INIS)

    Complete text of publication follows. The direct determination of extremely low concentrations of trace elements by modern atomic spectroscopic methods, such as atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry is often difficult because of insufficient sensitivity and selectivity of the methods used. For this reason, the preliminary separation and preconcentration of trace elements from the matrix are often required. Solid phase extraction shows several major advantages such as simplicity, rapidity and high enrichment factor, the ability of combination with different detection techniques in the form of on-line or off-line mode and finally cost saving (Tokalioglu et al., Microchim Acta 164 (2009) 471-477.). A new solid phase extraction method for the separation and preconcentration of Cu(II), Pb(II), Ni(II), Co(II), Mn(II) and Fe(III) ions was developed. As solid phase material, Amberlite XAD-16 resin loaded with thenoyltrifluoroacetone (TTA) was used. For this purpose, 0.5 g of the resin was saturated with 10 mL of 0.5% (w/v) TTA solution. After preconcentrating, the metals retained on the resin were eluted with 10 mL of 2 mol L-1 HCl and then determined by flame atomic absorption spectrometry. The effect of some parameters for the preconcentration of the metal ions was investigated. The optimum pH was found as 6. Eluent for quantitative elution was 10 mL of 2 mol L-1 HCl.

  5. Determination of Palladium in Resin by Lead Fire Assaying-Flame Atomic Absorption Spectrometric Method%铅试金富集-火焰原子吸收光谱法测定树脂中钯

    Institute of Scientific and Technical Information of China (English)

    王芳; 陈小兰; 林海山; 李小玲; 肖红新

    2013-01-01

    通过铅试金富集树脂中的钯并用银作钯灰吹保护,得到的银钯合粒用王水溶解,在5%的盐酸介质中,采用原子吸收光谱法测定钯,该法测钯的相对标准偏差RSD为0.53%,加标回收率在99.04%~100.10%之间。%Palladium in resin was enriched by lead assaying, using silver as a protective agent to produce silver-palladium alloy, and then the alloy was dissolved in aqua regia. Air acetylene flame atomic absorption spectrometric method was used to determinate palladium in 5%hydrochloric acid solution. The relative standard deviation (RSD) in determination of palladium is 0.53%and the recovery rate is between 99.04%~100.10%.

  6. Graphite furnace and hydride generation atomic absorption spectrometric determination of cadmium, lead, and tin traces in natural surface waters: Study of preconcentration technique performance

    International Nuclear Information System (INIS)

    In this study three major types of preconcentration methods based upon different principles (cation exchange, physical absorption and hydrophobic extraction) were evaluated and optimized for the extraction and determination of three highly toxic heavy metals namely Cd, Pb and Sn by graphite furnace and hybrid generation atomic absorption spectrometry in real samples. The optimum analytical conditions were examined and the analytical features of each method were revealed and compared. Detection limits as low as 0.003-0.025 μg L-1 for Cd2+, 0.05-0.10 μg L-1 for Pb2+ and 0.1-0.25 μg L-1 for Sn4+ depending on the extraction method were obtained with RSD values between 3.08% and 6.11%. A preliminary assessment of the pollution status of three important natural ecosystems in Epirus region (NW Greece) was performed and some early conclusions were drawn and discussed

  7. Atomic-absorption spectrometric, neutron-activation and radioanalytical techniques for the determination of trace metals in environmental, biochemical and toxicological research

    International Nuclear Information System (INIS)

    Radioanalytical techniques and atomic-absorption spectrometry have been used for the micro-determination of vanadium in biological specimens such as human tissues and body fluids in environmental, biochemical and toxicological research. The use of 48V as a radiotracer permitted investigations on the vaporisation and retention mechanisms of vanadium. Higher vanadium oxides are probably converted into lower oxides, decomposing to VO in gaseous form, followed by the dissociation to 'free vanadium' and oxygen. It was found that about 20% of the 48V radioactivity was consistently retained in the graphite tube after 10 repeated introductions and firings of 50 μl of 50 ng ml-148V-labelled vanadium solution. However, the amount retained, probably in the form of carbide, does not vaporise under the conditions used for the analysis. Determinations of vanadium at the parts per billion level in 10 urine samples by neutron-activation analysis and by graphite furnace atomic-absorption spectrometry showed agreement that can be considered satisfactory for practical purposes. (author)

  8. Use of sodium tungstate as a permanent chemical modifier for slurry sampling electrothermal atomic absorption spectrometric determination of indium in soils

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, Ignacio; Rivas, Ricardo E.; Hernandez-Cordoba, Manuel [University of Murcia, Department of Analytical Chemistry, Faculty of Chemistry, Murcia (Spain)

    2008-06-15

    A number of chemical modifiers have been assessed for the direct determination of indium in soils using electrothermal atomic absorption spectrometry and slurry sampling. The best results were obtained when the graphite atomizer was impregnated with sodium tungstate, which acts as a permanent chemical modifier. Slurries were prepared by suspending 100 mg sample in a solution containing 1% (v/v) concentrated nitric acid and 10% (v/v) concentrated hydrofluoric acid and then 15-{mu}L aliquots were directly introduced into the atomizer. Standard indium solutions prepared in the suspension medium in the range 4-80 {mu}g L{sup -1} indium were used for calibration. The relative standard deviation for ten consecutive measurements of a 40 {mu}g L{sup -1} indium solution was 2.8%. The limit of detection in soils was 0.1 {mu}g g{sup -1}. The reliability of the procedures was confirmed by analysing two standard reference materials and by using an alternative procedure. (orig.)

  9. Preconcentration and atomic absorption spectrometric determination of cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in water samples using 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    The reagent 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone (MPAPT) has been examined for the pre-concentration of metal ions and determination using air acetylene flame atomic absorption spectrometer. The method is based on the complexation and extraction of cadmium (II), cobalt(III), copper(II), lead(II), nickel(II), iron(II), iron(II), manganese(II) and zinc(II) in chloroform. The metal iron are back extracted in nitric acid (1:1) or after evaporation of solvent the residue is digested in nitric acid. After necessary adjustment of volume the metal ions were determined in aqueous solution. Pre-concentration is obtained 10-25 times. Metal ions recovery was 95.4-100.8% with coefficient of variation 0.2-7.5%. The method used for the determination of metals in canal and sewerage waters, within 2-6433 mu g/L with C. V 0.-5.2%. (author)

  10. The determination of trace amounts of heavy metals in waters by a flow-injection system including ion-exchange preconcentration and flame atomic absorption spectrometric detection

    International Nuclear Information System (INIS)

    The flow-injection system combines on-line ion-exchange preconcentration with atomic absorption spectrometry (a.a.s.) for the determination of traces (μg l-1) of heavy metals in water samples. A multifunctional rotary sampling valve which incorporated two parallel sampling columns allows sampling, exchange, elution and a.a.s. to be achieved sequentially. The increases in sensitivity for nickel, copper, lead and cadmium were 20-28-fold at a sampling rate of 40 h-1 with 5-ml samples. Relative standard deviations were 1.5-4.1%. The recoveries of these four metals added to tap, sea and polluted waters were generally satisfactory, except for cadmium in polluted water. The effects of column diameter and elution flow rates on sensitivity are discussed. Possible interferences are described. (Auth.)

  11. Flame atomic absorption spectrometric determination of trace quantities of cadmium in water samples after cloud point extraction in Triton X-114 without added chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Afkhami, Abbas [Department of Chemistry, Faculty of Science, Bu-Ali Sina University, Hamadan (Iran, Islamic Republic of)]. E-mail: afkhami@basu.ac.ir; Madrakian, Tayyebeh [Department of Chemistry, Faculty of Science, Bu-Ali Sina University, Hamadan (Iran, Islamic Republic of); Siampour, Hajar [Department of Chemistry, Faculty of Science, Bu-Ali Sina University, Hamadan (Iran, Islamic Republic of)

    2006-11-16

    A new micell-mediated phase separation method for preconcentration of ultra-trace quantities of cadmium as a prior step to its determination by flame atomic absorption spectrometry has been developed. The method is based on the cloud point extraction (CPE) of cadmium in iodide media with Triton X-114 in the absence of any chelating agent. The optimal extraction and reaction conditions (e.g., acid concentration, iodide concentration, effect of time) were studied, and the analytical characteristics of the method (e.g., limit of detection, linear range, preconcentration, and improvement factors) were obtained. Linearity was obeyed in the range of 3-300 ng mL{sup -1} of cadmium. The detection limit of the method is 1.0 ng mL{sup -1} of cadmium. The interference effect of some anions and cations was also tested. The method was applied to the determination of cadmium in tap water, waste water, and sea water samples.

  12. Selective cloud point extraction and preconcentration of trace amounts of silver as a dithizone complex prior to flame atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Manzoori, Jamshid L.; Karim-Nezhad, Ghasem

    2003-05-19

    Dithizone (diphenylthiocarbazone) was used as a complexing agent in cloud point extraction for the first time and applied for selective preconcentration of trace amounts of silver. The analyte in the initial aqueous solution was acidified with sulfuric acid (pH<1) and Triton X-114 was added as a surfactant. After phase separation, based on the cloud point separation of the mixture, the surfactant rich phase was diluted with tetrahydrofuran (THF) and the analyte determined in the enriched solution by flame atomic absorption spectrometry. After optimization of the complexation and extraction conditions, a preconcentration factor of 43 was obtained for only 10 ml of sample. The analytical curve was linear in the range of 3-200 ng ml{sup -1} and the limit of detection was 0.56 ng ml{sup -1}. The proposed method was applied to the determination of silver in water samples.

  13. On-line preconcentration of cobalt in drinking water using a minicolumn packed with activated carbon coupled to electrothermal atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Cerutti, Soledad; Moyano, Susana; Gasquez, Jose A.; Stripeikis, Jorge; Olsina, Roberto A.; Martinez, Luis D. E-mail: ldm@unsl.edu.ar

    2003-11-21

    An on-line flow injection preconcentration-electrothermal atomic absorption spectrometry method is developed for trace determination of cobalt in drinking water samples by sorption on a conical minicolumn packed with activated carbon at pH 9.5. The cobalt was eluted from the minicolumn with 10% (v/v) nitric acid. An enrichment factor of 190-fold for a sample volume of 10 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 5 ng l{sup -1}. The precision for 10 replicate determinations at the 50 ng l{sup -1} Co level was 4.7% relative standard deviation. The calibration graph using the preconcentration system for cobalt was linear with a correlation coefficient of 0.9993 at levels near the DLs up to at least 0.35 {mu}g l{sup -1}. The method was successfully applied to the determination of cobalt in drinking water samples.

  14. Generation of volatile copper species after in situ ionic liquid formation dispersive liquid-liquid microextraction prior to atomic absorption spectrometric detection.

    Science.gov (United States)

    Stanisz, Ewa; Zgoła-Grześkowiak, Agnieszka; Matusiewicz, Henryk

    2014-11-01

    The new procedure using in situ synthesis of ionic liquid extractant for dispersive liquid-liquid microextraction (in situ IL DLLME) combined with generation of volatile species prior to electrothermal atomic absorption spectrometry (ET AAS) for the determination of copper in soil samples was developed. Analytical signals were obtained without the back-extraction of copper from the IL phase prior to its determination. Under optimal conditions, the extraction in 10 mL of sample solution employing 8 μL of 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (HmimNTf2) (as the extraction solvent) was conducted. The ionic liquid served as two-task reagent: the efficient extractant and enhancement substance for generation step. The chemical generation of volatile species was performed by reduction of acidified copper solution (HCl 0.8 mol L(-1)) with NaBH4 (1.5%). Some essential parameters of the chemical generation such as NaBH4 and HCl concentrations, the kind and concentration of ionic liquid, carrier gas (Ar) flow rate, reaction and trapping time as well as pyrolysis and atomization temperatures were studied. For photogeneration the effect of the parameters such as the kind and concentration of low molecular weight organic acids and ionic liquid, carrier gas (Ar) flow rate, UV irradiation and ultrasonication time on the analytical signals were studied. The detection limit was found as 1.8 ng mL(-1) and the relative standard deviation (RSD) for seven replicate measurements of 100 µg mL(-1) in sample solution was 7%. The accuracy of the proposed method was evaluated by analysis of the certified reference materials. The measured copper contents in the reference materials were in satisfactory agreement with the certified values. The method was successfully applied to analysis of the soil and sediment samples. PMID:25127592

  15. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages.

    Science.gov (United States)

    Tuzen, Mustafa; Pekiner, Ozlem Zeynep

    2015-12-01

    A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium.

  16. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages.

    Science.gov (United States)

    Tuzen, Mustafa; Pekiner, Ozlem Zeynep

    2015-12-01

    A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium. PMID:26041239

  17. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples

    International Nuclear Information System (INIS)

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1 mol L-1 HNO3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL-1 for Cd2+, Pb2+, Pd2+ and Ag+ along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd2+, Pb2+, Pd2+ and Ag+, respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  18. A biosorption system for metal ions on Penicillium italicum - loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations

    International Nuclear Information System (INIS)

    A solid phase extraction (SPE) preconcentration system, coupled to a flame atomic absorption spectrometer (FAAS), was developed for the determination of copper(II), cadmium(II), lead(II), manganese(II), iron(III), nickel(II) and cobalt(II) ions at the μg L-1 levels on Penicillium italicum - loaded on Sepabeads SP 70. The analytes were adsorbed on biosorbent at the pH range of 8.5-9.5. The adsorbed metals were eluted with 1 mol L-1 HCl. The influences of the various analytical parameters including pH of the aqueous solutions, sample volume, flow rates were investigated for the retentions of the analyte ions. The recovery values are ranged from 95-102%. The influences of alkaline, earth alkaline and some transition metal ions were also discussed. Under the optimized conditions, the detection limits (3 s, n = 21) for analytes were in the range of 0.41 μg L-1 (cadmium) and 1.60 μg L-1 (iron). The standard reference materials (IAEA 336 Lichen, NIST SRM 1573a Tomato leaves) were analyzed to verify the proposed method. The method was successfully applied for the determinations of analytes in natural water, cultivated mushroom, lichen (Bryum capilare Hedw), moss (Homalothecium sericeum) and refined table salt samples

  19. Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina

    International Nuclear Information System (INIS)

    A sensitive and selective solid phase extraction procedure for the determination of traces of Cu(II), Zn(II), Pb(II) and Fe(III) has been developed. An alumina-sodium dodecyl sulfate (SDS) coated on with meso-phenyl bis(indolyl) methane (MPBIM) was used for preconcentration and determination of Cu(II), Zn(II), Pb(II) and Fe(III) ions by flame atomic absorption spectrometry. The analyte ions were adsorbed quantitatively on adsorbent due to their complexation with MPBIM. Adsorbed metals were quantitatively eluted using 6 mL of 4 mol L-1 nitric acid. The effects of parameters such as pH, amount of alumina, amount of MBITP, flow rate, type and concentration of eluting agent were examined. The effects of interfering ions on the separation-preconcentration of analytes were also investigated. The relative standard deviation of the method was found to be less than 3.0%. The presented procedure was successfully applied for determination of analytes in real samples

  20. Development of on-line single-drop micro-extraction sequential injection system for electrothermal atomic absorption spectrometric determination of trace metals

    International Nuclear Information System (INIS)

    A novel automatic sequential injection (SI) single-drop micro-extraction (SDME) system is proposed as versatile approach for on-line metal preconcentration and/or separation. Coupled to electrothermal atomic absorption spectrometry (ETAAS) the potentials of this SI scheme are demonstrated for trace cadmium determination in water samples. A non-charged complex of cadmium with ammonium diethyldithiophosphate (DDPA) was produced and extracted on-line into a 60 μL micro-drop of di-isobutyl ketone (DIBK). The extraction procedure was performed into a newly designed flow-through extraction cell coupled on a sequential injection manifold. As the complex Cd(II)-DDPA flowed continuously around the micro-droplet, the analyte was extracting into the solvent micro-drop. All the critical parameters were optimized and offered good performance characteristics and high preconcentration ratios. For 600 s micro-extraction time, the enhancement factor was 10 and the sampling frequency was 6 h-1. The detection limit was 0.01 μg L-1 and the precision (RSD at 0.1 μg L-1 of cadmium) was 3.9%. The proposed method was evaluated by analyzing certified reference material

  1. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Shokrollahi, Ardeshir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Niknam, Khodabakhsh [Chemistry Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Niknam, Ebrahim; Najibi, Asma [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2009-09-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL{sup -1} for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +} along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +}, respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  2. Determination of calcium, magnesium, sodium, and potassium in foodstuffs by using a microsampling flame atomic absorption spectrometric method after closed-vessel microwave digestion: method validation.

    Science.gov (United States)

    Chekri, Rachida; Noël, Laurent; Vastel, Christelle; Millour, Sandrine; Kadar, Ali; Guérin, Thierry

    2010-01-01

    This paper describes a validation process in compliance with the NFIEN ISO/IEC 17025 standard for the determination of the macrominerals calcium, magnesium, sodium, and potassium in foodstuffs by microsampling with flame atomic absorption spectrometry after closed-vessel microwave digestion. The French Standards Commission (Agence Francaise de Normalisation) standards NF V03-110, NF EN V03-115, and XP T-90-210 were used to evaluate this method. The method was validated in the context of an analysis of the 1322 food samples of the second French Total Diet Study (TDS). Several performance criteria (linearity, LOQ, specificity, trueness, precision under repeatability conditions, and intermediate precision reproducibility) were evaluated. Furthermore, the method was monitored by several internal quality controls. The LOQ values obtained (25, 5, 8.3, and 8.3 mg/kg for Ca, Mg, Na, and K, respectively) were in compliance with the needs of the TDS. The method provided accurate results as demonstrated by a repeatability CV (CVr) of < 7% and a reproducibility CV (CVR) of < 12% for all the elements. Therefore, the results indicated that this method could be used in the laboratory for the routine determination of these four elements in foodstuffs with acceptable analytical performance. PMID:21313817

  3. Graphite furnace atomic absorption spectrometric detection of vanadium in water and food samples after solid phase extraction on multiwalled carbon nanotubes.

    Science.gov (United States)

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Gul Kazi, Tasneem; Soylak, Mustafa

    2013-11-15

    Vanadium(V) ions as 8-hydroxyquinoline chelates were loaded on multiwalled carbon nanotubes (MWNTs) in a mini chromatographic column. Vanadium was determined by graphite furnace atomic absorption spectrometry (GFAAS). Various analytical parameters including pH of the working solutions, amounts of 8-hydroxyquinoline, eluent type, sample volume, and flow rates were investigated. The effects of matrix ions and some transition metals were also studied. The column can be reused 250 times without any loss in its sorption properties. The preconcentration factor was found as 100. Detection limit (3 s) and limit of quantification (10 s) for the vanadium in the optimal conditions were observed to be 0.012 µg L(-1) and 0.040 μg L(-1), respectively. The capacity of adsorption was 9.6 mg g(-1). Relative standard deviation (RSD) was found to be 5%. The validation of the method was confirmed by using NIST SRM 1515 Apple leaves, NIST SRM 1570a Spinach leaves and GBW 07605 Tea certified reference materials. The procedure was applied to the determination of vanadium in tap water and bottled drinking water samples. The procedure was also successfully applied to microwave digested food samples including black tea, coffee, tomato, cabbage, zucchini, apple and chicken samples.

  4. On-line sequential injection dispersive liquid-liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples.

    Science.gov (United States)

    Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G

    2009-06-30

    A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 microL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 microg L(-1) and 2.1% at 2.0 microg L(-1) Cu(II), respectively, while for lead were 0.54 microg L(-1) and 1.9% at 30.0 microg L(-1) Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples. PMID:19376348

  5. Electrothermal atomic absorption spectrometric determination of cadmium and lead in traces in aquatic systems following flotation by two chromium(III) collectors.

    Science.gov (United States)

    Kormusoska, Natasa Bakreska; Cundeva, Katarina; Stafilov, Trajce

    2009-10-01

    A fast flotation method for determination of cadmium and lead in aquatic systems by two chromium(III) collectors is described. The first collector is a colloid precipitate of hydrated chromium(III) oxide, Cr2O3 x xH2O, while the second is a bulk chromium(III) pentamethylenedithiocarbamate, Cr(PMDTC)3. Cadmium and lead present in water are incorporated into the collector mass at pH 7.5 by addition of 20 mg of Cr(III) and 0.4 mmol of pentamethyleneammonium pentamethylenedithiocarbamate, PMA-PMDTC, to 0.5 L water sample. A solid precipitate was separated from the processed water system by air bubbles. After dissolving with strong acid, the solution is tested by electrothermal atomic absorption spectrometry (ETAAS). The limit of detection for Cd by flotation/ETAAS method is 0.002 microg L(-1), while for Pb is 0.04 microg L(-1). The precision of the method is expressed as relative standard deviations ranging of 5.0% for Cd (concentration range from 0.1 to 0.5 microg L(-1)) and 4.25% for Pb (concentration range from 0.5 to 5 microg L(-1)). The characteristic mass (mass that gives an integrated absorbance of 0.0044 s) of 1.06 pg for Cd and 16.7 pg for Pb were obtained. The method was validated by the standard additions and by its application to the reference materials (Surface water-SPS-SW-1, River Thames Water-LGC-6019). PMID:19847715

  6. Novel analytical reagent for the application of cloud-point preconcentration and flame atomic absorption spectrometric determination of nickel in natural water samples

    Energy Technology Data Exchange (ETDEWEB)

    Suvardhan, K. [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, AP (India); Rekha, D. [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, AP (India); Kumar, K. Suresh [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, AP (India); Prasad, P. Reddy [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, AP (India); Kumar, J. Dilip [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, AP (India); Jayaraj, B. [Department of Mathematics, S.V. University, Tirupati 517502, AP (India); Chiranjeevi, P. [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, AP (India)]. E-mail: chiranjeevipattium@gmail.com

    2007-06-01

    Cloud-point extraction was applied as a preconcentration of nickel after formation of complex with newly synthesized N-quino[8,7-b]azin-5-yl-2,3,5,6,8,9,11,12octahydrobenzo[b][1,4,7,10,13] pentaoxacyclopentadecin-15-yl-methanimine, and later determined by flame atomic absorption spectrometry (FAAS) using octyl phenoxy polyethoxy ethanol (Triton X-114) as surfactant. Nickel was complexed with N-quino[8,7-b]azin-5-yl-2,3,5,6,8,9,11,12 octahydrobenzo[b][1,4,7,10,13]pentaoxacyclopentadecin-15-yl-methanimine in an aqueous phase and was kept for 15 min in a thermo-stated bath at 40 deg. C. Separation of the two phases was accomplished by centrifugation for 15 min at 4000 rpm. The chemical variables affecting the cloud-point extraction were evaluated, optimized and successfully applied to the nickel determination in various water samples. Under the optimized conditions, the preconcentration system of 100 ml sample permitted an enhancement factor of 50-fold. The detailed study of various interferences made the method more selective. The detection limits obtained under optimal condition was 0.042 ng ml{sup -1}. The extraction efficiency was investigated at different nickel concentrations (20-80 ng ml{sup -1}) and good recoveries (99.05-99.93%) were obtained using present method. The proposed method has been applied successfully for the determination of nickel in various water samples and compared with reported method in terms of Student's t-test and variance ratio f-test which indicate the significance of present method over reported and spectrophotometric methods at 95% confidence 0011lev.

  7. Enrichment of trace amounts of copper(II) ions in water samples using octadecyl silica disks modified by a Schiff base ionophore prior to flame atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, S.A.M. [Department of Chemistry, Faculty of Science, Zanjan University, PO Box 45195-313 Zanjan (Iran, Islamic Republic of); Yaftian, M.R. [Department of Chemistry, Faculty of Science, Zanjan University, PO Box 45195-313 Zanjan (Iran, Islamic Republic of)], E-mail: yaftian@znu.ac.ir

    2009-05-15

    Bis(5-bromo-2-hydroxybenzaldehyde)-1,2-propanediimine is synthesized by the reaction of 5-bromo-2-hydroxybenzaldehyde and 1,2-diaminopropane in ethanol. This ligand is used as a modifier of octadecyl silica disks for preconcentration of trace amounts of copper(II) ions, followed by nitric acid elution and flame atomic absorption spectrometric (FAAS) determination. The effect of parameters influencing the extraction efficiency, i.e. pH of the sample solutions, amount of the Schiff base, type and volume of stripping reagent, sample and eluent flow rates were evaluated. Under optimum experimental conditions, the capacity of the membrane disks modified by 4 mg of the ligand was found to be 247.7 ({+-}2.1) {mu}g of copper. The detection limit and the concentration factor of the presented method are 2.4 ng/l and greater than 400, respectively. The method was applied to the extraction, recovery and detection of copper in different synthetic and water samples.

  8. Cloud point extraction and flame atomic absorption spectrometric determination of trace lead in freshwater fish%浊点萃取-火焰原子吸收光谱法测定淡水鱼中痕量铅

    Institute of Scientific and Technical Information of China (English)

    王秀峰; 李龙; 张春丽; 林朋; 崔书亚

    2012-01-01

    采用以双硫腙为络合剂、Triton X- 100为表面活性剂的新型浊点萃取体系富集淡水鱼中的痕量铅,并用火焰原子吸收光谱法对其进行测定.探讨了溶液pH、表面活性剂浓度、络合剂用量、平衡温度、平衡时间等对浊点萃取及测定灵敏度的影响,优化了实验条件.在最佳条件下测得铅的检出限为0.090μg/L,校准曲线相关系数为0.9999.该方法已用于淡水鱼中痕量铅的测定.%A new cloud point extraction-flame atomic absorption spectrometric method has been developed to determine trace lead. Dithizone was selected as the complex reagent and Triton X - 100 as the surfactant. Effects of pH, concentrations of surfactant and complex reagent, equilibrium temperature and time on the efficiency and sensitivity of cloud point extraction were investigated. Under optimal conditions, the calibration curve was linear over the concentration range of 0. 1 - 60μg/L with correlation coefficient of 0. 9999 and detection limit of 0. 090 μg/L. The present method was applied to the determination of trace lead in freshwater fish samples with satisfactory results.

  9. Ultrasound-assisted emulsification of cosmetic samples prior to elemental analysis by different atomic spectrometric techniques.

    Science.gov (United States)

    Lavilla, I; Cabaleiro, N; Costas, M; de la Calle, I; Bendicho, C

    2009-11-15

    In this work, ultrasound-assisted emulsification with a probe system is proposed as a rapid and simple sample treatment for atomic spectrometric determinations (Electrothermal Atomic Absorption Spectrometry, Inductively Coupled Plasma Optical Emission Spectrometry, Flame Atomic Absorption Spectrometry and Cold Vapour Atomic Absorption Spectrometry) of trace elements (As, Cd, Cr, Cu, Hg, Mg, Mn, Ni, Sr and Zn) in cosmetic samples such as shampoos, gel (hair gel), crèmes (body milk, hair conditioner) and oil (body oil). The type of dispersion medium, the sample mass-to-dispersion medium volume ratio, as well as the parameters related to the ultrasound-assisted emulsification (sonication amplitude and treatment time) were exhaustively studied. Only 1 min of ultrasonic shaking and a dispersion medium containing 0.5% (w/v) of SDS+3% (v/v) of HNO(3) or HCl allows obtaining a stable emulsion at least for 3 months. Thermal programs, nebulization of emulsions, speed of pumps and concentration of reagents used in cold vapour generation were optimized. Calibration using aqueous standards was feasible in all cases. Calibration by the standard addition method and recovery studies was also applied for validation. Microwave-assisted digestion and Inductively Coupled Plasma Mass Spectrometry were used for comparison purposes. Relative standard deviations from analysis of five independent emulsions were less than 9% in all cases. PMID:19782199

  10. Automated sequential injection-microcolumn approach with on-line flame atomic absorption spectrometric detection for implementing metal fractionation schemes of homogeneous and non-homogeneous solid samples of environmental interest

    DEFF Research Database (Denmark)

    Chomchoei, Roongrat; Miró, Manuel; Hansen, Elo Harald;

    2005-01-01

    spectrometric detection and used for the determination of Cu as a model analyte, the potentials of this novel hyphenated approach are demonstrated by the ability of handling up to 300 mg sample of a nonhomogeneous sewage amended soil (viz., CRM 483). The three steps of the endorsed Standards, Measurements...

  11. Flame atomic absorption spectrometric determination of zinc, nickel, iron and lead in different matrixes after solid phase extraction on sodium dodecyl sulfate (SDS)-coated alumina as their bis (2-hydroxyacetophenone)-1, 3-propanediimine chelates

    International Nuclear Information System (INIS)

    A sensitive and simple solid phase extraction method for the simultaneous determination of trace and toxic metals in food samples has been reported. The method is based on the adsorption of zinc, nickel, iron and lead on sodium dodecyl sulfate (SDS)-coated alumina, which is also chelated with bis (2-hydroxyacetophenone)-1, 3-propanediimine (BHAPN). The retained analyte ions on modified solid phase were eluted using 8 mL of 4 mol L-1 HNO3. The analyte determinations were carried out by flame atomic absorption spectrometry. The influences of some metal ions and anions on the recoveries of understudy analyte ions were investigated. The proposed method has been successfully applied for the evaluation of these trace and toxic metals in some traditional food samples from Iran.

  12. Comparison of serum copper determination by colorimetric and atomic absorption spectrometric methods in seven different laboratories. The S.F.B.C. (Société Française de Biologie Clinique) Trace Element Group.

    Science.gov (United States)

    Arnaud, J; Chappuis, P; Zawislak, R; Houot, O; Jaudon, M C; Bienvenu, F; Bureau, F

    1993-02-01

    An interlaboratory collaborative trial was conducted on the determination of serum copper using two different methods, based on colorimetry (test combination Copper, Boehringer Mannheim, Mannheim, Germany) and flame atomic absorption spectrometry (FAAS). The general performance of the colorimetric method was below that of FAAS, except for sensitivity and linear range, as assessed by detection limit (0.44 versus 1.32 mumol/L) and upper limit of linearity (150 versus 50 mumol/L). The range of the between-run CVs and the recovery of standard additions were, respectively, 2.3-11.9% and 92-127% for the colorimetric method and 1.1-6.0% and 93-101% for the FAAS method. Interferences were minimal with both methods. The two techniques correlated satisfactorily (the correlation coefficients ranged from 0.945-0.970 among laboratories) but the colorimetric assay exhibited slightly higher results than the FAAS method. Each method was transferable among laboratories.

  13. Electrothermal atomic absorption spectrometric determination of vanadium in extracts of soil and sewage sludge certified reference materials after fractionation by means of the Communities Bureau of Reference modified sequential extraction procedure

    International Nuclear Information System (INIS)

    A modified three-step sequential extraction procedure proposed by the Commission of European Communities Bureau of Reference (BCR) was applied to certified reference materials of three different soil groups (rendzina, luvisol, cambisol) and sewage sludge of different composition originating from a municipal water treatment plant in order to assess potential mobility and the distribution of vanadium in the resulting fractions. Analysis of the extracts was carried out by electrothermal atomic absorption spectrometry with Zeeman background correction using transversely heated graphite atomizers. Extracts showed significant matrix interferences which were overcome by the standard addition technique. The original soil and sludge certified reference materials (CRMs) and the extraction residue from the sequential extraction were decomposed by a mixture of HNO3-HClO4-HF in an open system. The content of V determined after decomposition of the samples was in very good agreement with the certified total values. The accuracy of the sequential extraction procedure was checked by comparing the sum of the vanadium contents in the three fractions and in the extraction residue with the certified total content of V. The amounts of vanadium leached were in good correlation with the certified total contents of V in the CRMs of soils and sewage sludge. In the soils examined, vanadium was present almost entirely in the mineral lattice, while in the sewage sludge samples 9-14% was found in the oxidizable and almost 25% in the reducible fractions. The recovery ranged from 93-106% and the precision (RSD) was below 10%

  14. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    International Nuclear Information System (INIS)

    Highlights: ► The use of CNTs as sorbent for metal species in solid phase extraction has been described. ► Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. ► Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes – due to their high adsorption and desorption capacities – have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  15. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Latorre, C., E-mail: carlos.herrero@usc.es [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain); Alvarez Mendez, J.; Barciela Garcia, J.; Garcia Martin, S.; Pena Crecente, R.M. [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain)

    2012-10-24

    Highlights: Black-Right-Pointing-Pointer The use of CNTs as sorbent for metal species in solid phase extraction has been described. Black-Right-Pointing-Pointer Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. Black-Right-Pointing-Pointer Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes - due to their high adsorption and desorption capacities - have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  16. Flame atomic absorption spectrometric determination of trace amounts of Pb(II) and Cr(III) in biological, food and environmental samples after preconcentration by modified nano-alumina

    International Nuclear Information System (INIS)

    A new solid-phase extraction sorbent was used for the preconcentration of Pb(II) and Cr(III) ions prior to their determination by flame atomic absorption spectrometry. It was prepared by immobilization of 2,4-dinitrophenylhydrazine on nano-alumina coated with sodium dodecyl sulfate. The sorbent was characterized by scanning electron microscopy, N2 adsorption and Fourier transform infrared spectrometry, and used for preconcentration and separation of Pb(II) and Cr(III) from aqueous solutions. The ions on the sorbent were eluted with a mixture of nitric acid and methanol. The effects of sample pH, flow rates of samples and eluent, type of eluent, breakthrough volume and potentially interfering ions were studied. Linearity is maintained between 1.2 and 350 μg L-1 of Pb(II), and between 2.4 and 520 μg L-1 of Cr(III) for an 800-mL sample. The detection limit (3 s, N=10) for Pb(II) and Cr(III) ions is 0.43 and 0.55 μg L-1, respectively, and the maximum preconcentration factor is 267. The method was successfully applied to the evaluation of these trace and toxic metals in various water, food, industrial effluent and urine samples. (author)

  17. Cinchocaine hydrochloride determination by atomic absorption spectrometry and spectrophotometry.

    Science.gov (United States)

    Abdel-Ghani, Nour T; Youssef, Ahmed F A; Awady, Mohamed A

    2005-05-01

    Two sensitive spectrophotometric and atomic absorption spectrometric procedures have been developed for determination of cinchocaine hydrochloride (Cin.Cl) in pure form and in pharmaceutical formulation. The spectrophotometric method was based on formation of an insoluble colored ion-associate between the cited drug and tetrathiocyanatocobaltate (CoTC) or hexathiocyanatochromate (CrTC) which dissolved and extracted in an organic solvent. The optimal experimental conditions for quantitative extraction such as pH, concentration of the reagents and solvent were studied. Toluene and iso-butyl alcohol proved to be the most suitable solvents for quantitative extraction of Cin-CoTC and Cin-CrTC ion-associates with maximum absorbance at 620 and 555 nm, respectively. The optimum concentration ranges, molar absorptivities, Ringbom ranges and Sandell sensitivities were also evaluated. The atomic absorption spectrometric method is based on measuring of the excess cobalt or chromium in the aqueous solution, after precipitation of the drug, at 240.7 and 357.9 nm, respectively. Linear application ranges, characteristic masses and detection limits were 57.99-361.9, 50.40 and 4.22 microg ml(-1) of Cin.Cl, in case of CoTC, while 37.99-379.9, 18.94 and 0.81 microg ml(-1) in case of CrTC. PMID:15910814

  18. Cinchocaine hydrochloride determination by atomic absorption spectrometry and spectrophotometry.

    Science.gov (United States)

    Abdel-Ghani, Nour T; Youssef, Ahmed F A; Awady, Mohamed A

    2005-05-01

    Two sensitive spectrophotometric and atomic absorption spectrometric procedures have been developed for determination of cinchocaine hydrochloride (Cin.Cl) in pure form and in pharmaceutical formulation. The spectrophotometric method was based on formation of an insoluble colored ion-associate between the cited drug and tetrathiocyanatocobaltate (CoTC) or hexathiocyanatochromate (CrTC) which dissolved and extracted in an organic solvent. The optimal experimental conditions for quantitative extraction such as pH, concentration of the reagents and solvent were studied. Toluene and iso-butyl alcohol proved to be the most suitable solvents for quantitative extraction of Cin-CoTC and Cin-CrTC ion-associates with maximum absorbance at 620 and 555 nm, respectively. The optimum concentration ranges, molar absorptivities, Ringbom ranges and Sandell sensitivities were also evaluated. The atomic absorption spectrometric method is based on measuring of the excess cobalt or chromium in the aqueous solution, after precipitation of the drug, at 240.7 and 357.9 nm, respectively. Linear application ranges, characteristic masses and detection limits were 57.99-361.9, 50.40 and 4.22 microg ml(-1) of Cin.Cl, in case of CoTC, while 37.99-379.9, 18.94 and 0.81 microg ml(-1) in case of CrTC.

  19. Inclusion of riboflavin in β-cyclodextrin: A fluorimetric and absorption spectrometric study

    Science.gov (United States)

    Roy, Dalim Kumar; Deb, Nipamanjari; Ghosh, Bankim Chandra; Mukherjee, Asok K.

    2009-07-01

    Formation of inclusion complexes between riboflavin and β-cyclodextrin (β-CD) with both 1:1 and 1:2 stoichiometry has been established by fluorimetric titration. However, in absorption spectrometric experiment, spectral change of riboflavin in the visible range could be observed only by taking β-CD at a much higher concentration (about 100 times) than riboflavin and under such condition only 1:2 complexes could be detected. Its formation constant ( K) was determined by a multiple linear regression analysis of the absorption data. The reliability of the K value was confirmed by the consistency achieved on analyzing the data at two different wavelengths.

  20. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Průša, Libor [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Hlavova 8, Prague 2, CZ 128 43 Czech Republic (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-12-04

    Graphical abstract: -- Highlights: •In-atomizer trapping HG-AAS was optimized for Sn. •A compact quartz trap-and-atomizer device was employed. •Generation, preconcentration and atomization steps were investigated in detail. •Hundred percent preconcentration efficiency for tin was reached. •Routine analytical method was developed for Sn determination (LOD of 0.03 ng mL{sup −1} Sn). -- Abstract: A quartz multiatomizer with its inlet arm modified to serve as a trap (trap-and-atomizer device) was employed to trap tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcentration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5% was found. The detection limits reached were 0.029 and 0.14 ng mL{sup −1} Sn, respectively, for 120 s preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples.

  1. Use of Atomic Absorption Technique in Environmental Studies

    International Nuclear Information System (INIS)

    This chapter consists of some points including the process of atomic absorption, historical hint, key basics, the atom ionization and formation of plasma, applications in the device of atomic absorption, quantum analysis with atomic absorption, components of the device of atomic absorption, standardization of this device, atomic absorption in the the graphite furnace, supervising the analytical interventions, spectral interventions, non-spectral interventions, the utmost electric energy for atomization, preparation of standards and samples, the system of acidic digestion, similar analytical techniques.

  2. Continuous flow hydride generation-atomic fluorescence spectrometric determination and speciation of arsenic in wine

    International Nuclear Information System (INIS)

    Methods for the atomic fluorescence spectrometric (AFS) determination of total arsenic and arsenic species in wines based on continuous flow hydride generation (HG) with atomization in miniature diffusion flame (MDF) are described. For hydride-forming arsenic, L-cysteine is used as reagent for pre-reduction and complexation of arsenite, arsenate, monomethylarsonate and dimethylarsinate. Concentrations of hydrochloric acid and tetrahydroborate are optimized in order to minimize interference by ethanol. Procedure permits determination of the sum of these four species in 5-10-fold diluted samples with limit of detection (LOD) 0.3 and 0.6 μg l-1 As in white and red wines, respectively, with precision between 2% and 8% RSD at As levels within 0.5-10 μg l-1. Selective arsine generation from different reaction media is used for non-chromatographic determination of arsenic species in wines: citrate buffer at pH 5.1 for As(III); 0.2 mol l-1 acetic acid for arsenite + dimethylarsinate (DMA); 8 mol l-1 HCl for total inorganic arsenic [As(III) + As(V)]; and monomethylarsonate (MMA) calculated by difference. Calibration with aqueous and ethanol-matched standard solutions of As(III) is used for 10- and 5-fold diluted samples, respectively. The LODs are 0.4 μg l-1 for As(III) and 0.3 μg l-1 for the other three As species and precision is within 4-8% RSDs. Arsenic species in wine were also determined by coupling of ion chromatographic separation on an anion exchange column and HG-flame AFS detection. Methods were validated by means of recovery studies and comparative analyses by HG-AFS and electrothermal atomic absorption spectrometry after microwave digestion. The LODs were 0.12, 0.27, 0.15 and 0.13 μg l-1 (as As) and RSDs were 2-6%, 5-9%, 3-7% and 2-5% for As(III), As(V), MMA and DMA arsenic species, respectively. Bottled red and white wines from Bulgaria, Republic of Macedonia and Italy were analyzed by non-chromatographic and chromatographic procedures and the As

  3. Atomic-spectrometric determination of lithium, sodium, potassium and strontium in high-pure scandium

    International Nuclear Information System (INIS)

    Determination of lithium, sodium and potassium in strontium by flame photometry with atomic-absorption spectrophotometer is described. Scandium effect on value of Li, K. Na analytical signal in flame is studied. It is shown, that the base understates analytical signals. Determination of strontium by flame photometry is impossible. Determination of strontium (1x10-13 kg/ml) by atomic-absorption method with electrothermal atomization is possible

  4. Vapor generation – atomic spectrometric techniques. Expanding frontiers through specific-species preconcentration. A review

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Raúl A.; Pacheco, Pablo H.; Cerutti, Soledad [Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Instituto de Química de San Luis, INQUISAL, Centro Científico-Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Martinez, Luis D., E-mail: ldm@unsl.edu.ar [Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Instituto de Química de San Luis, INQUISAL, Centro Científico-Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina)

    2015-05-22

    This article reviews 120 articles found in SCOPUS and specific Journal cites corresponding to the terms ‘preconcentration’; ‘speciation’; ‘vapor generation techniques’ and ‘atomic spectrometry techniques’ in the last 5 years. - Highlights: • Recent advances in vapor generation and atomic spectrometry were reviewed. • Species-specific preconcentration strategies after and before VG were discussed. • New preconcentration and speciation analysis were evaluated within this framework. - Abstract: We review recent progress in preconcentration strategies associated to vapor generation techniques coupled to atomic spectrometric (VGT-AS) for specific chemical species detection. This discussion focuses on the central role of different preconcentration approaches, both before and after VG process. The former was based on the classical solid phase and liquid–liquid extraction procedures which, aided by automation and miniaturization strategies, have strengthened the role of VGT-AS in several research fields including environmental, clinical, and others. We then examine some of the new vapor trapping strategies (atom-trapping, hydride trapping, cryotrapping) that entail improvements in selectivity through interference elimination, but also they allow reaching ultra-low detection limits for a large number of chemical species generated in conventional VG systems, including complete separation of several species of the same element. This review covers more than 100 bibliographic references from 2009 up to date, found in SCOPUS database and in individual searches in specific journals. We finally conclude by giving some outlook on future directions of this field.

  5. Determination of scandium by atomic absorption.

    Science.gov (United States)

    Kriege, O H; Welcher, G G

    1968-08-01

    A comprehensive study has been made of the determination of scandium by atomic absorption. In addition to the instrumental variables such as flame-height, slitwidth and lamp current, a number of solution variables have been studied including the effect of anions (chloride, sulfate, nitrate, and fluoride), organic solvents, and other metals on the determination of scandium. Standard conditions have been established for the detection of minor amounts of scandium in a wide variety of materials including complex alloys of iron, nickel, aluminium, magnesium, and the rare earths. PMID:18960364

  6. Mass spectrometric methods for studying nutrient mineral and trace element absorption and metabolism in humans using stable isotopes: a review

    International Nuclear Information System (INIS)

    Mass spectrometric methods for determining stable isotopes of nutrient minerals and trace elements in human metabolic studies are described and discussed. The advantages and disadvantages of the techniques of electron ionization, fast atom bombardment, thermal ionization, and inductively coupled plasma and gas chromatography mass spectrometry are evaluated with reference to their accuracy, precision, sensitivity, and convenience, and the demands of human nutrition research. Examples of specific applications are described and the significance of current developments in mass spectrometry are discussed with reference to present and probable future research needs. (Author)

  7. Atomic absorbtion spectrometric determination of platinum, palladium and rhodium in catalysts for automotive exhaust

    International Nuclear Information System (INIS)

    Analytical parameters of the electrothermal atomic absorption spectrometry method have been optimized for determination of platinum, palladium and rhodium in ceramic-supported catalysts for automobile exhaust gas treatment. Two chemical sample preparation methods have been proposed. In order to simplify the sample preparation procedure and to prevent the possible losses of platinum group metals the treatment of the previously ground sample with a mixture of mineral acids is recommended. (authors)

  8. Determination of Lead Content in Phosphate Rock and Concentrate Rock——Flame Atomic Absorption Spectrometric Method%火焰原子吸收光谱法测定磷矿石和精磷矿中的铅含量

    Institute of Scientific and Technical Information of China (English)

    沈治荣; 梁聪; 甘丽; 何红莲

    2011-01-01

    This article describes determination of trace harmful heavy metal-lead element in phosphate rock and concentrate rock with flame atomic absorption spectrometry method.The relative standard deviation of this method is 3.1~14.2%,recovery rate is 90%~104%,the sample detection limit is 0.0008%.The method is accurate,fast,easy,make up for method of determination lead in phosphate rock.It provides effective control method for production of feed additives and fertilizers and so on.%研究了用火焰原子吸收光谱法测定磷矿石或磷精矿中微量的铅的检测方法。此方法的相对标准偏差为3.1%-14.2%,回收率为90%-104%,样品检测下限为0.0008%。

  9. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bentlin, Fabrina R.S. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Pozebon, Dirce [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil)], E-mail: dircepoz@iq.ufrgs.br; Mello, Paola A.; Flores, Erico M.M. [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900 Santa Maria, RS (Brazil)

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO{sub 3}){sub 2} was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 {mu}g g{sup -1} of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  10. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Bentlin, Fabrina R S; Pozebon, Dirce; Mello, Paola A; Flores, Erico M M

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO3)2 was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 microg g(-1) of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES).

  11. Column solid phase extraction and flame atomic absorption spectrometric determination of manganese(II) and iron(III) ions in water, food and biological samples using 3-(1-methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid on synthesized graphene oxide.

    Science.gov (United States)

    Pourjavid, Mohammad Reza; Sehat, Ali Akbari; Arabieh, Masoud; Yousefi, Seyed Reza; Hosseini, Majid Haji; Rezaee, Mohammad

    2014-02-01

    A modified, selective, highly sensitive and accurate procedure for the determination of trace amounts of manganese and iron ions is established in the presented work. 3-(1-Methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid (MPPC) and graphene oxide (GO) were used in a glass column as chelating reagent and as adsorbent respectively prior to their determination by flame atomic absorption spectrometry. The adsorption mechanism of titled metals complexes on GO was investigated by using computational chemistry approach based on PM6 semi-empirical potential energy surface (PES). The effect of some parameters including pH, flow rate and volume of sample and type, volume and concentration of eluent, as well as the adsorption capacity of matrix ions on the recovery of Mn(II) and Fe(III) was investigated. The limit of detection was 145 and 162 ng L(-1) for Mn(II) and Fe(III), respectively. Calibration was linear over the range of 0.31-355 μg L(-1) for Mn(II) and 0.34-380 μg L(-1) for Fe(III) ions. The method was successfully applied for the determination of understudied ions in water, food and biological samples. PMID:24411390

  12. Chromatographic separation and inductively coupled plasma atomic emission spectrometric determination of the rare earth metals contained in terbium

    International Nuclear Information System (INIS)

    The chromatographic separation of rare earth elements (REEs), prior to inductively coupled plasma atomic emission spectrometric (ICP-AES) measurements, using a column packed with 2-ethylexyl hydrogen 2-ethyl-hexylphosphonate (PC-88A)-loaded polymer resin in order to exclude spectral interferences was examined. A favourable separation of trace amounts of metals (La, Nd and Sm) from a large amount of terbium was achieved simply by elution with dilute hydrochloric acid. Trace lanthanum and neodymium in metallic terbium were determined by separation of the analyte ions from the matrix element followed by ICP-AES analysis. (author). 16 refs.; 5 figs.; 2 tabs

  13. Determination of Pb(Ⅱ) and Cu(Ⅱ) by Electrothermal Atomic Absorption Spectrometry after Preconcentration by a Schiff Base Adsorbed on Surfactant Coated Alumina

    Institute of Scientific and Technical Information of China (English)

    SABER TEHRANI Mohammad; RASTEGAR Faramarz; PARCHEHBAF Ayob; KHATAMIAN Masoomeh

    2006-01-01

    1,2-Bis(salicylidenamino)ethane loaded onto sodium dodecyl sulfate-coated alumina was used as a new chelating sorbent for the preconcentration of traces of Pb(Ⅱ) and Cu(Ⅱ) prior to atomic absorption spectrometric determination. The influence of pH, flow rates of sample and eluent solutions, and foreign ions on the recovery of Pb(Ⅱ)by electrothermal atomic absorption spectrometry (ETAAS). The data of limit of detection (3σ) for Pb(Ⅱ) and Cu(Ⅱ)posed method was successfully applied to determination of lead and copper in different water samples.

  14. Column solid phase extraction and flame atomic absorption spectrometric determination of manganese(II) and iron(III) ions in water, food and biological samples using 3-(1-methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid on synthesized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Pourjavid, Mohammad Reza, E-mail: pourjavid@gmail.com [NFCRS, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of); Sehat, Ali Akbari [Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of); Arabieh, Masoud; Yousefi, Seyed Reza; Hosseini, Majid Haji; Rezaee, Mohammad [NFCRS, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of)

    2014-02-01

    A modified, selective, highly sensitive and accurate procedure for the determination of trace amounts of manganese and iron ions is established in the presented work. 3-(1-Methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid (MPPC) and graphene oxide (GO) were used in a glass column as chelating reagent and as adsorbent respectively prior to their determination by flame atomic absorption spectrometry. The adsorption mechanism of titled metals complexes on GO was investigated by using computational chemistry approach based on PM6 semi-empirical potential energy surface (PES). The effect of some parameters including pH, flow rate and volume of sample and type, volume and concentration of eluent, as well as the adsorption capacity of matrix ions on the recovery of Mn(II) and Fe(III) was investigated. The limit of detection was 145 and 162 ng L{sup −1} for Mn(II) and Fe(III), respectively. Calibration was linear over the range of 0.31–355 μg L{sup −1} for Mn(II) and 0.34–380 μg L{sup −1} for Fe(III) ions. The method was successfully applied for the determination of understudied ions in water, food and biological samples. - Highlights: • We use synthesized graphene oxide as adsorbent for SPE of Mn(II) and Fe(III) ions. • Adsorption mechanism was investigated by PM6 semi-empirical potential energy surface. • Detection limits were 145 and 162 ng L{sup −1} for Mn and Fe, respectively. • The preconcentration factor was 325 and sample flow rate is 8 mL min{sup −1}. • It was successfully applied to the determination of Mn and Fe ions in real samples.

  15. Arsenic and antimony determination in refined and unrefined table salts by means of hydride generation atomic absorption spectrometry--comparison of sample decomposition and determination methods

    OpenAIRE

    AKSUNER, Nur; TİRTOM, Vedia Nüket; HENDEN, Emür

    2011-01-01

    An evaluation was made of different digestion methods for the determination of arsenic and antimony in table salt samples prior to hydride generation atomic absorption spectrometric analysis. Microwave acid digestion, classical wet digestion, dry ashing, and fusion were applied to the decomposition of salt samples and optimum conditions were investigated. Samples were decomposed by changing heating time, digestion techniques, and the amount and composition of acid, and then the concen...

  16. Microwave Digestion and Continuum Source Atomic Absorption Spectrometric Determination of Six Metal Elements in Medlar(Mespilus germanica L.) Fruit%微波消解-连续光源原子吸收法快速顺序测定枸杞果中的6种金属元素

    Institute of Scientific and Technical Information of China (English)

    高向阳; 王银娟; 卢彬

    2011-01-01

    A new rapid method was established to determine metal elements in medlar fruit by microwave digestion and continuum source atomic absorption spectrometry.Samples were subjected to microwave digestion before simultaneous determination of six metal elements,including iron,zinc,copper,manganese,cadmium and lead.The established method presented a limit of detection ranging from 0.006070 to 0.04975 μg/L.The precision RSDs were between 1.5% and 5.0%(n = 12).The mean spike recoveries for the six metal elements ranged from 86.68% to 111.7%(n = 6).This method has been used to simultaneously determine iron,zinc,copper,manganese,cadmium and lead in medlar fruit with the benefits of rapidity,simplicity and low cost and satisfying results.%建立一种微波消解-连续光源原子吸收法快速测定枸杞果中金属元素的新方法。通过微波消解快速处理样品,用连续光源原子吸收法同时顺序测定枸杞果中的铁、锌、铜、锰、镉、铅6种金属元素,并对仪器使用条件、金属元素含量、精密度、检出限、回收率等进行研究。结果表明:方法检出限为0.006 07 0~0.04975μg/L,RSD为1.5%~5.0%,回收率为86.68%~111.7%。该法用于枸杞中6种金属元素的同时顺序测定,具有快速、简便、成本低廉等特点,分析结果令人满意。

  17. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of some fluoroquinolone antibacterials using ammonium reineckate

    Science.gov (United States)

    Al-Ghannam, Sheikha M.

    2008-04-01

    Three accurate, rapid and simple atomic absorption spectrometric (AAS), conductometric and colorimetric methods were developed for the determination of gatifloxacin (GTF), moxifloxacin (MXF) and sparfloxacin (SPF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone. The optimizations of various experimental conditions were described. Optimum concentration ranges for the determination of GTF, MXF and SPF were 5.0-150, 40-440 μg mL -1 and 0.10-1.5 mg mL -1 using atomic absorption (AAS), conductometric and colorimetric methods, respectively. Detection and quantification limits are ranges from 1.5 to 2.3 μg mL -1 using AAS method or 30-45 μg mL -1 using colorimetric method. The proposed procedures have been applied successfully to the analysis of these drugs in pharmaceutical formulations and the results are favourably comparable to the reference methods.

  18. Experimental determination of the self-absorption factor for MTR plates by passive gamma spectrometric measurement

    Science.gov (United States)

    Berndt, R.; Mortreau, P.

    2011-07-01

    The measurement of the absolute activity or the mass of radioactive substances by gamma spectrometry needs to include a correction for the radiation absorption inside the source volume, the so-called self-absorption factor. It depends on geometry and material composition of the source, the detector geometry and on the geometrical arrangement of source and gamma radiation detector; it can be calculated if full information about all that is available. This article however describes how to determine the self-absorption factor from measurements if the radiation sources are plates of uranium fuel with typical parameters of nuclear fuel for MTR reactors and without using detail information on the source geometry, thus allowing easy inspection without relying on - potentially falsified - declarations on the internal properties of the fuel objects and without calculation.

  19. Experimental determination of the self-absorption factor for MTR plates by passive gamma spectrometric measurement

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, R., E-mail: Reinhard.Berndt@jrc.ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, TP 800, Via Fermi, Ispra (Italy); Mortreau, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, TP 800, Via Fermi, Ispra (Italy)

    2011-07-11

    The measurement of the absolute activity or the mass of radioactive substances by gamma spectrometry needs to include a correction for the radiation absorption inside the source volume, the so-called self-absorption factor. It depends on geometry and material composition of the source, the detector geometry and on the geometrical arrangement of source and gamma radiation detector; it can be calculated if full information about all that is available. This article however describes how to determine the self-absorption factor from measurements if the radiation sources are plates of uranium fuel with typical parameters of nuclear fuel for MTR reactors and without using detail information on the source geometry, thus allowing easy inspection without relying on - potentially falsified - declarations on the internal properties of the fuel objects and without calculation.

  20. Permanent modification in electrothermal atomic absorption spectrometry — advances, anticipations and reality

    Science.gov (United States)

    Tsalev, Dimiter L.; Slaveykova, Vera I.; Lampugnani, Leonardo; D'Ulivo, Alessandro; Georgieva, Rositsa

    2000-05-01

    Permanent modification is an important recent development in chemical modification techniques which is promising in view of increasing sample throughput with 'fast' programs, reducing reagent blanks, preliminary elimination of unwanted modifier components, compatibility with on-line and in situ enrichment, etc. An overview of this approach based on the authors' recent research and scarce literature data is given, revealing both success and failure in studies with permanently modified surfaces (carbides, non-volatile noble metals, noble metals on carbide coatings, etc.), as demonstrated in examples of direct electrothermal atomic absorption spectrometric (ETAAS) applications to biological and environmental matrices and vapor generation (VG)-ETAAS coupling with in-atomizer trapping of hydrides and other analyte vapors. Permanent modifiers exhibit certain drawbacks and limitations such as: poorly reproducible treatment technologies — eventually resulting in poor tube-to-tube repeatability and double or multiple peaks; impaired efficiency compared with modifier addition to each sample aliquot; relatively short lifetimes; limitations imposed on temperature programs, the pyrolysis, atomization and cleaning temperatures being set somewhat lower to avoid excessive loss of modifier; applicability to relatively simple sample solutions rather than to high-salt matrices and acidic digests; side effects of overstabilization, etc. The most important niches of application appear to be the utilization of permanently modified surfaces in coupled VG-ETAAS techniques, analysis of organic solvents and extracts, concentrates and fractions obtained after enrichment and/or speciation separations and direct ETAAS determinations of highly volatile analytes in relatively simple sample matrices.

  1. Solid Phase Extraction of Lead Using Eggshell Membrane in Water Samples Prior to Graphite Furnace Atomic Absorption Spectrometric Determination%鸡蛋膜固相萃取-石墨炉原子吸收光谱法测定水样中的微量铅

    Institute of Scientific and Technical Information of China (English)

    刘金; 彭元; 陈红梅; 程先忠

    2012-01-01

    鸡蛋膜是由蛋白质组成的一种纤维状的生物膜.本研究利用扫描电镜和红外光谱对鸡蛋膜的结构进行分析表征,证实其具有网状结构,表面存在着—OH、—COOH、—NH2等官能团,能与一些金属离子产生吸附和交换作用.在pH =6的条件下,用蛋膜作吸附剂分离富集水样中的微量铅,5 mL 3%的硝酸进行洗脱,然后采用石墨炉原子吸收光谱法进行测定.实验中对吸附分离介质、溶液流速、蛋膜用量、洗脱剂浓度及共存离子的影响等条件进行了优化和讨论.在最佳的实验条件下,蛋膜对铅的富集倍数为30,方法检出限(3σ)为0.017 ng/mL,相对标准偏差(RSD,n=11)为3.45%,加标回收率为96.0% ~ 104.2%.与现行的分离富集方法相比,建立的方法具有简单、无毒、成本低的优点,用于实际水样中铅的分析能够获得满意的结果.%A chicken eggshell membrane (ESM) is composed of many protein fibers, and available in large quantities as a by-product of the food industry. According to a study by Scanning Electron Microscope ( SEM ) and Fourier Transform Infrared ( FTIR) Spectrometry, the ESM with an intricate lattice network of stable and water-insoluble fibers, and special functional groups such as hydroxyl ( —OH) , carboxyl ( —COOH) , aminol ( —NH2 ) , showed an excellent potential for adsorption and exchange of metal ions. In this paper, the ESM was applied to separate and enrich Pb (II) from a water sample under a pH of 6. The trace lead eluted by 5 mL 3% HN03 was determined by using Graphite Furnace Atomic Absorption Spectrometry ( GFAAS ) . Important parameters, such as the sample pH, sample flow rate, concentration and volume of eluent, and interference of coexisting ions were comprehensively studied and optimized. Under the optimized conditions, an enrichment factor of 30 was obtained. The method detection limit for lead was 0.017 ng/mL (3

  2. Electromagnetically induced absorption in metastable 83Kr atoms

    CERN Document Server

    Kale, Y B; Mishra, S R; Singh, S; Rawat, H S

    2015-01-01

    We report electromagnetically induced absorption (EIA) resonances of sub-natural linewidth (FWHM) in metastable noble gas 83Kr* atoms using degenerate two level schemes (DTLSs). This is the first observation of EIA effect in a metastable noble gas atoms. Using these spectrally narrow EIA signals obtained corresponding to the closed hyperfine transition from 4p55s[3/2]2 to 4p55p[5/2]3 hyperfine manifolds of 83Kr* atoms, we have measured the Lande's g-factor (gF) for the lower level (F = 13/2) of the closed transition accurately with small applied magnetic fields of few Gauss.

  3. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    Science.gov (United States)

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  4. The determination of zirconium by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    The interference of iron in the determination of zirconium by atomic absorption spectrophotometry was studied. Attempts were made to emininate this interference by complexing the iron with EDTA, ascorbic acid and hydrazine; also by the addition of ammonium fluoride to the solution. Some experiments were carried out in order to explain the results obtained

  5. ANALYSIS OF UNCERTAINTY MEASUREMENT IN ATOMIC ABSORPTION SPECTROPHOTOMETER

    Directory of Open Access Journals (Sweden)

    NEHA S.MAHAJAN

    2012-05-01

    Full Text Available A spectrophotometer is a photometer that can measure intensity as a function of the light source wavelength. The important features of spectrophotometers are spectral bandwidth and linear range of absorption or reflectance measurement. Atomic absorption spectroscopy (AAS is a very common technique for detecting chemical composition of elements in metal and its alloy. It is very reliable and simple to use. Quality of result (accuracy depends on the uncertainty of measurement value of the test. If uncertainty of measurement is more there may be doubt of about the final result. The final result of Atomic Absorption Spectrophotometer gets affected by the number of parameters; we should take in to account will calculating the final result. This paper deal with the methodology of evaluating the uncertainty of measurement of chemical composition using AAS. The study is useful for quality of measurement equipment and testing process.

  6. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  7. Speciation of four selenium compounds using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Pedersen, Gitte Alsing; Larsen, Erik Huusfeldt

    1997-01-01

    An analytical method for the speciation of selenomethionine, selenocystine, selenite and selenate by high performance liquid chromatography (HPLC) with atomic spectrometric detection is presented. An organic polymeric strong anion exchange column was used as the stationary phase in combination...... with an aqueous solution of 6 mmol L-1 of salicylate ion at pH 8.5 as the mobile phase which allowed the isocratic separation of the four selenium analytes within 8 minutes. The separated selenium species were detected on-line by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass...

  8. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry.

    Science.gov (United States)

    Zhang, Yanlin; Adeloju, Samuel B

    2012-04-01

    A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH(4) were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe(3+), Cu(2+) and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu(2+) and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe(3+) gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg(2+). Due to similarity of resulting sensitivity, Hg(2+) was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h(-1).

  9. Absorption spectrum of very low pressure atomic hydrogen

    CERN Document Server

    Moret-Bailly, Jacques

    2015-01-01

    Spectra of quasars result primarily from interactions of natural light with atomic hydrogen. A visible absorption of a sharp and saturated spectral line in a gas requires a low pressure, so a long path without blushing as a cosmological redshift. Burbidge and Karlsson observed that redshifts of quasars result from fundamental redshifts, written 3K and 4K, that cause a shift of absorbed beta and gamma lines of H to alpha gas line. Thus absorbed spectrum is shifted until an absorbed line overlaps with Lyman alpha line of gas: redshift only occurs if an alpha absorption pumps atoms to 2P state. Thus, space is divided into spherical shells centered on the quasar, containing or not 2P atoms. Neglecting collisional de-excitations in absorbing shells, more and more atoms are excited until amplification of a beam having a long path in a shell, thus perpendicular to the observed ray, is large enough for a superradiant flash at alpha frequency. Energy is provided by atoms and observed ray, absorbing a line at local Lym...

  10. Modified atomic decay rate near absorptive scatterers at finite temperature

    CERN Document Server

    Suttorp, L G

    2015-01-01

    The change in the decay rate of an excited atom that is brought about by extinction and thermal-radiation effects in a nearby dielectric medium is determined from a quantummechanical model. The medium is a collection of randomly distributed thermally-excited spherical scatterers with absorptive properties. The modification of the decay rate is described by a set of correction functions for which analytical expressions are obtained as sums over contributions from the multipole moments of the scatterers. The results for the modified decay rate as a function of the distance between the excited atom and the dielectric medium show the influence of absorption, scattering and thermal-radiation processes. Some of these processes are found to be mutually counteractive. The changes in the decay rate are compared to those following from an effective-medium theory in which the discrete scatterers are replaced by a continuum.

  11. Absorption spectrum of very low pressure atomic hydrogen

    OpenAIRE

    Moret-Bailly, Jacques

    2015-01-01

    Spectra of quasars result primarily from interactions of natural light with atomic hydrogen. A visible absorption of a sharp and saturated spectral line in a gas requires a low pressure, so a long path without blushing as a cosmological redshift. Burbidge and Karlsson observed that redshifts of quasars result from fundamental redshifts, written 3K and 4K, that cause a shift of absorbed beta and gamma lines of H to alpha gas line. Thus absorbed spectrum is shifted until an absorbed line overla...

  12. Graphite Furnace Atomic Absorption Elemental Analysis of Ecstasy Tablets

    OpenAIRE

    French, Holly E.; Michael J. Went; Gibson, Stuart J

    2013-01-01

    Abstract: Six metals (Cu, Mg, Ba, Ni, Cr, Pb) were determined in two separate batches of seized ecstasy tablets by graphite furnace atomic absorption spectroscopy (GFAAS) following digestion with nitric acid and hydrogen peroxide. Large intra-batch variations were found as expected for tablets produced in clandestine laboratories. For example, nickel in batch 1 was present in the range 0.47-13.1 ppm and in batch 2 in the range 0.35-9.06 ppm. Although batch 1 had significantly high...

  13. Application of atomic absorption in molecular analysis (spectrophotometry)

    International Nuclear Information System (INIS)

    The apparatus of atomic absorption has been considered by all the experts in chemical analysis as one of the most important equipments in actual utilization in such field. Among its several applications one should emphasize direct and indirect metals analyses using flame, graphite furnace, cold vapor generator,... Besides such known applications, the authors have developed at the R and D Center of CSN a patent pendent method for the utilization of such equipment for molecular analysis, in substitution of a sophisticated and specific apparatus. (Author)

  14. Electrothermal atomic absorption spectrometric determination of total and hexavalent chromium in atmospheric aerosols

    International Nuclear Information System (INIS)

    A method was developed which allow separate determination of Cr(VI) and total Cr from the same minute sample of atmospheric aerosols. Cr(VI) was leached was with 0.1 M Na2CO3 and the total Cr concentrations were determined after acid digestion. The method was validated by the analysis of certified reference materials, CRM 545, Mess-3 and Pacs-2 with good agreement between certified and found values. Cr concentrations in air samples taken around the chromium smelter show concentrations that exceed the maximum allowed levels in 8 h with higher values closer to the smelter. The limit of detection (LOD) of the method for Cr(VI) determination in air samples was found to be 0.2 ng m-3, i.e. lower than offered by the commonly preferred spectrophotometric and colorimetric techniques

  15. Flame atomic absorption spectrometric determinations of some trace metals after coprecipitation with gold-APDC

    International Nuclear Information System (INIS)

    Complete text of publication follows. For the determination of trace metals in various samples, preconcentration is an inevitable step to overcome interferences. Among various techniques for the separation of trace metals proposed until now, coprecipitation is one of the most useful ones. Many different coprecipitation procedures including use of organic and inorganic collectors have been developed. So far, in the literature, it is reported that APDC, NaDDTC, PAN, TAR, Oxine, etc. as chelating agent for metal-chelate collector have been extensively used for coprecipitation of trace metals. However, metal chelates, especially dithocarbamates, as collectors are ideal for their sensitivities, simplicities and tolerances to interferences.Therefore, in the present work, fundamental studies on the coprecipitation with gold/APDC chelate have been carried out for determination of trace metals in environmental samples by FAAS with microinjection. According to our literature survey, gold/APDC is not used for the coprecipitation of heavy metal ions, until now. In this work, the coprecipitation was carried out in a centrifuge tube. Firstly, the main factors, such as amount of coprecipitant reagent and carrier element, pH of the solution, standing time, sample volume and diverse ions, affecting the coprecipitation of some trace metals were evaluated. Under optimized conditions, the recoveries of Cu, Ni, Pb and Cd were ≥ 95 %. R.S.D. values for ten replicates were lower than 5.0 %. Preconcentration factors were found to be 20. The coprecipitation was applied to various water samples and non-alcoholic beverage.

  16. Organic solvents as interferents in arsenic determination by hydride generation atomic absorption spectrometry with flame atomization

    Science.gov (United States)

    Karadjova, Irina B.; Lampugnani, Leonardo; Dědina, Jiri; D'Ulivo, Alessandro; Onor, Massimo; Tsalev, Dimiter L.

    2006-05-01

    Interference effects of various organic solvents miscible with water on arsenic determination by hydride generation atomic absorption spectrometry have been studied. Arsine was chemically generated in continuous flow hydride generation system and atomized by using a flame atomizer able to operate in two modes: miniature diffusion flame and flame-in-flame. The effects of experimental variables and atomization mode were investigated: tetrahydroborate and hydrochloric acid concentrations, argon, hydrogen and oxygen supply rates for the microflame, and the distance from the atomization region to the observation zone. The nature of the species formed in the flame due to the pyrolysis of organic solvent vapors entering the flame volume together with arsine is discussed. The observed signal depression in the presence of organic solvents has been mainly attributed to the atomization interference due to heterogeneous gas-solid reaction between the free arsenic atoms and finely dispersed carbon particles formed by carbon radicals recombination. The best tolerance to interferences was obtained by using flame-in-flame atomization (5-10 ml min - 1 of oxygen flow rate), together with higher argon and hydrogen supply rates and elevated observation heights.

  17. SPECTROPHOTOMETRIC, ATOMIC ABSORPTION AND CONDUCTOMETRIC ANALYSIS OF TRAMADOL HYDROCHLORIDE

    Directory of Open Access Journals (Sweden)

    Sara M. Anis

    2011-09-01

    Full Text Available Six simple and sensitive spectroscopic and conductometric procedures (A-F were developed for the determination of tramadol hydrochloride. Methods A, B and C are based on the reaction of cobalt (II thiocyanate with tramadol to form a stable ternary complex, which could be measured by spectrophotometric (method A, atomic absorption (method B or conductometric (method C procedures. Methods D and E depend on the reaction of molybdenum thiocyanate with tramadol to form a stable ternary complex, measured by spectrophotometric means (method D or by atomic absorption procedures (method E, while method F depends on the formation of an ion pair complex between the studied drug and bromothymol blue which is extractable into methylene chloride. Tramadol hydrochloride could be assayed in the range of 80-560 and 40-–220 μg ml-1, 1-15 mg ml-1 and 2.5-22.5, 1.25-11.25 and 5-22 μg ml-1 using methods A,B,C,D,E and F, respectively. Various experimental conditions were studied. The results obtained showed good recoveries. The proposed procedures were applied successfully to the analysis of tramadol in its pharmaceutical preparations and the results were favorably comparable with the official method.

  18. Determination of molybdenum in flotation concentrates by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Molybdenum was determined by atomic absorption spectrophotometry in 0.05 N ammoniacal solution after the decomposition of the concentrate with aqua regia. Negros ore from Philippines was used as a flotation feed, which contained chalcopyrites and calcium-magnesium minerals. Among the metals tested copper, iron and the alkaline earths interfered. Less than 50 ppm of copper yielded lower results for molybdenum. Higher results came out with more than 50 ppm of copper. In the presence of iron and citric acid (0.4 g/100 ml) which is a suppressor for hydroxide formation, a lower estimation resulted for molybdenum. Calcium interfered, lower results by 2 and >10% being obtained with respective 2.5 and 20 ppm of calcium. More than 20 ppm of magnesium behaved similarly. Sodium sulfate (0.5 g/100 ml) served as the suppressor for copper, iron and citric acid; 100 ppm each of copper and iron did not interfere in this way. Interferences due to calcium and magnesium (less than 60 ppm) was able to be masked by the addition of sodium silicate (200 ppm as silica). The analysis of flotation products and synthetic samples consisting of molybdenite, chalcopyrite, calcium chloride and magnesium sulfate revealed that the atomic absorption method can be applied to the analysis of the concentrates for molybdenum with an error of about 2%. (auth.)

  19. Transient absorption spectra of the laser-dressed hydrogen atom

    Science.gov (United States)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  20. Antimony in drinking water, red blood cells, and serum: development of analytical methodology using transversely heated graphite furnace atomization-atomic absorption spectrometry.

    Science.gov (United States)

    Subramanian, K S; Poon, R; Chu, I; Connor, J W

    1997-05-01

    An atomic absorption spectrometric (AAS) method has been developed for determining microg/L levels of Sb in samples of water and blood. The AAS method is based on the concept of stabilized temperature platform furnace atomization (STPF) realized through the use of a transversely heated graphite atomizer (THGA) furnace, longitudinal Zeeman-effect background correction, and matrix modification with palladium nitrate-magnesium nitrate-nitric acid. The method of standard additions is not mandatory. The detection limit (3 standard deviations of the blank) is 2.6 microg Sb/L for the water, red blood cells (RBCs), and serum samples. Data are presented on the degree of accuracy and precision. The THGA-AAS method is simple, fast, and contamination-free because the entire operation from sampling to AAS measurement is carried out in the same tube. The method has been applied to the determination of Sb in some leachate tap water samples derived from a static copper plumbing system containing Sn/Sb solders, and in small samples (0.5 ml) of RBCs and serum derived from rats given Sb-supplemented drinking water. PMID:9175512

  1. Microwave plasma atomic emission spectrometric determination of Ca, K and Mg in various cheese varieties.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-02-01

    Microwave plasma-atomic emission spectrometry (MP-AES) was used to determine calcium, magnesium and potassium in various Turkish cheese samples. Cheese samples were dried at 100 °C for 2 days and then digested in a mixture of nitric acid/hydrogen peroxide (3:1). Good linearities (R(2) > 0.999) were obtained up to 10 μg mL(-1) of Ca, Mg and K at 445.478 nm, 285.213 nm and 766.491 nm, respectively. The analytes in a certified reference milk powder sample were determined within the uncertainty limits. Moreover, the analytes added to the cheese samples were recovered quantitatively (>90%). All determinations were performed using aqueous standards for calibration. The LOD values for Ca, Mg and K were 0.036 μg mL(-1), 0.012 μg mL(-1) and 0.190 μg mL(-1), respectively. Concentrations of Ca, K and Mg in various types of cheese samples produced in different regions of Turkey were found between 1.03-3.70, 0.242-0.784 and 0.081-0.303 g kg(-1), respectively. PMID:26304350

  2. Preconcentration and Atomization of Arsane in a Dielectric Barrier Discharge with Detection by Atomic Absorption Spectrometry.

    Science.gov (United States)

    Novák, Petr; Dědina, Jiří; Kratzer, Jan

    2016-06-01

    Atomization of arsane in a 17 W planar quartz dielectric barrier discharge (DBD) atomizer was optimized, and its performance was compared to that of a multiple microflame quartz tube atomizer (MMQTA) for atomic absorption spectrometry (AAS). Argon, at a flow rate of 60 mL min(-1), was the best DBD discharge gas. Free As atoms were also observed in the DBD with nitrogen, hydrogen, and helium discharge gases but not in air. A dryer tube filled with NaOH beads placed downstream from the gas-liquid separator to prevent residual aerosol and moisture transport to the atomizer was found to improve the response by 25%. Analytical figures of merit were comparable, reaching an identical sensitivity of 0.48 s ng (-1) As in both atomizers and limits of detection (LOD) of 0.15 ng mL(-1) As in MMQTA and 0.16 ng mL(-1) As in DBD, respectively. Compared to MMQTA, DBD provided 1 order of magnitude better resistance to interference from other hydride-forming elements (Sb, Se, and Bi). Atomization efficiency in DBD was estimated to be 100% of that reached in the MMQTA. A simple procedure of lossless in situ preconcentration of arsane was developed. Addition of 7 mL min(-1) O2 to the Ar plasma discharge resulted in a quantitative retention of arsane in the optical arm of the DBD atomizer. Complete analyte release and atomization was reached as soon as oxygen was switched off. Preconcentration efficiency of 100% was observed, allowing a decrease of the LOD to 0.01 ng mL(-1) As employing a 300 s preconcentration period. PMID:27159266

  3. Column system using diaion HP-2MG for determination of some metal ions by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa; Soylak, Mustafa

    2004-02-23

    A column solid-phase extraction method for the preconcentration and determination of cadmium(II), copper(II), cobalt(II), iron(III), lead(II), nickel(II) and zinc(II) dithizone chelates by atomic absorption spectrometry has been described. Diaion HP-2MG was used as adsorbent for column studies. The influences of the various analytical parameters including pH of the aqueous solutions, amounts of ligand and resin were investigated for the retentions of the analyte ions. The recovery values are ranged from 95 to 102%. The influences of alkaline and earth alkaline ions were also discussed. The preconcentration factor was 375, when the sample volume and final volume are 750 and 2 ml, respectively. The detection limits of the analyte ions (k=3, N=21) were varying 0.08 {mu}g/l for cadmium to 0.25 {mu}g/l for lead. The relative standard deviations of the determinations at the concentration range of 1.8x10{sup -4} to 4.5x10{sup -5} mmol for the investigated elements were found to be lower than 9%. The proposed solid-phase extraction procedure were applied to the flame atomic absorption spectrometric determinations of analyte ions in natural waters (sea, tap, river), microwave digested samples (milk, red wine and rice) and two different reference standard materials (SRM1515 apple leaves and NRCC-SLRS-4 riverine water)

  4. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    Science.gov (United States)

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  5. Near resonant absorption by atoms in intense fluctuating laser fields

    International Nuclear Information System (INIS)

    The objective of this program was to make quantitative measurements of the effects of higher-order phase/frequency correlations in a laser beam on nonlinear optical absorption processes in atoms. The success of this program was due in large part to a unique experimental capability for modulating the extracavity beam of a stabilized (approx-lt 200 kHz) continuous-wave laser with statistically-well-characterized stochastic phase (or frequency) fluctuations, in order to synthesize laser bandwidths to ∼20 MHz (depending on noise amplitude), with profiles variable between Gaussian and Lorentzian (depending on noise bandwidth). Laser driven processes investigated included the following: (1) the optical Autler-Towns effect in the 3S1/2 (F = 2, MF = 2) → 3P3/2 (F = 3, MF = 3) two- level Na resonance, using a weak probe to the 4D5/2 level; (2) the variance and spectra of fluorescence intensity fluctuations in the two-level Na resonance; (3) the Hanle effect in the 1S0 - 3P1, transition at λ = 555.6 nm in 174 Yb; (4) absorption (and gain) of a weak probe, when the probe is a time-delayed replica of the resonant (with the two-level Na transition) pump laser; and (5) four-wave-mixing in a phase-conjugate geometry, in a sodium cell, and, finally, in a diffuse atomic sodium beam. The experimental results from these several studies have provided important confirmation of advanced theoretical methods

  6. Observations of Absorption Lines from Highly Ionized Atoms

    Science.gov (United States)

    Jenkins, E. B.

    1984-01-01

    In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. fewX 0.001/cucm) existing at coronal temperatures, 5.3 or = log T or = 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity 9v or = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic uv radiation from very hot, dward stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.

  7. Micro-determination of ytterbium with electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    This communication reports the use of a pyrolytic graphite coated tube, lined with tantalum-tungsten, and a local made atomic absorption spectrometer (Model WFD-Y3) for the determination of small amount Yb in pure Y2O3 and mixed rare earth oxides. It is found that the method proposed is sensitive, reproducible and simple in manipulation. Even as low as 0.2 μg Yb in one gram sample (n x 10-7) can be determined directly without pre-concentration. It is found experimentally that the optimum condition for drying is at 150 deg C. for 20 sec, ashing at 1000 deg C. for 20 sec and atomization at 2770 deg C. for 12 sec. Within the range 1.0-18ng Yb/ml the calibration curve of Yb is linear. Before injecting into the tube, the acidity of the sample solution should be ajusted to 0.1 to 2 M with nitric or hydrochloric acid. For 5ng Yb/ml, Al(III), Ca(II) and La(III) interference, when their amount present is 50 μg/ml or more. On the other hand, Cu(II), Fe(III), Mg(II), K(I) and Y(III) in amount up to 1 mg/ml do not interfere

  8. Instrumental modification intended to save time, and volumes of sample and reagent solutions, in the atomic fluorescence spectrometric determination of mercury.

    Science.gov (United States)

    Pérez-Sirvent, Carmen; Martínez-Sánchez, María J; García-Lorenzo, Mariluz; López-García, Ignacio; Hernández-Córdoba, Manuel

    2007-05-01

    Use of small membrane pumps, instead of peristaltic pumps, to introduce sample and reagent solutions into the spectrometer has several advantages in atomic fluorescence spectrometric determination of mercury. This simple modification results in a substantial saving in the time required for the measurements and so 90% of reagent solution volumes and 95% of sample solution volumes are saved, with a consequent decrease in the volume of waste generated. The sampling frequency is almost tripled, with no deterioration in sensitivity, which is similar to that obtained by use of peristaltic pumps. The relative standard deviation for ten consecutive measurements of a 1 microg L-1 mercury solution was approximately 2%. PMID:17351707

  9. Evaluation of microwave digestion and solvent extraction for the determination of trace amounts of selenium in feeds and plant and animal tissues by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Hocquellet, P; Candillier, M P

    1991-05-01

    A sensitive method for the accurate determination of Se in agricultural products at sub-ppm levels is described. The proposed procedure involves the wet oxidation of samples by using a mixture of nitric, sulphuric and perchloric acids, co-extraction of Se and added Pd with diethylammonium N,N-diethyldithiocarbamate in chloroform, and electrothermal atomic absorption spectrometric determination of Se in the organic extract. Atomization and extraction conditions are discussed. Special attention is given to the wet oxidation step, and its advantages in speed and simplicity over conventional heating have been evaluated using an automated microwave digestion system. The results reported, obtained from several reference materials, confirm the accuracy of the method with which a detection limit of 0.002 micrograms g-1 of Se can be achieved. PMID:1877754

  10. Determination of gold in geologic materials by solvent extraction and atomic-absorption spectrometry

    Science.gov (United States)

    Huffman, Claude; Mensik, J.D.; Riley, L.B.

    1967-01-01

    The two methods presented for the determination of traces of gold in geologic materials are the cyanide atomic-absorption method and the fire-assay atomic-absorption method. In the cyanide method gold is leached with a sodium-cyanide solution. The monovalent gold is then oxidized to the trivalent state and concentrated by extracting into methyl isobutyl ketone prior to estimation by atomic absorption. In the fire-assay atomic-absorption method, the gold-silver bead obtained from fire assay is dissolved in nitric and hydrochloric acids. Gold is then concentrated by extracting into methyl isobutyl ketone prior to determination by atomic absorption. By either method concentrations as low as 50 parts per billion of gold can be determined in a 15-gram sample.

  11. Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap.

    Science.gov (United States)

    Demirtaş, İlknur; Bakırdere, Sezgin; Ataman, O Yavuz

    2015-06-01

    Flame atomic absorption spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity; because it is a simple and economical technique for determination of metals. In recent years, atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of µg/mL, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of the atom traps used to improve sensitivity. In atom trapping mode of SQT, analyte is trapped on-line in SQT for few minutes using ordinary sample aspiration, followed by the introduction of a small volume of organic solvent to effect the revolatilization and atomization of analyte species resulting in a transient signal. This system is economical, commercially available and easy to use. In this study, a sensitive analytical method was developed for the determination of lead with the help of SQT atom trapping flame atomization (SQT-AT-FAAS). 574 Fold sensitivity enhancement was obtained at a sample suction rate of 3.9 mL/min for 5.0 min trapping period with respect to FAAS. Organic solvent was selected as 40 µL of methyl isobutyl ketone (MIBK). To obtain a further sensitivity enhancement inner surface of SQT was coated with several transition metals. The best sensitivity enhancement, 1650 fold enhancement, was obtained by the Ta-coated SQT-AT-FAAS. In addition, chemical nature of Pb species trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. Raman spectrometric results indicate that tantalum is coated on SQT surface in the form of Ta2O5. XPS studies revealed that the oxidation state of Pb in species trapped on both bare and Ta coated SQT surfaces is +2. For the accuracy check, the analyses of standard reference material were performed by use of SCP SCIENCE EnviroMAT Low (EU-L-2) and results for Pb were to be in good agreement with

  12. Advances with tungsten coil atomizers: Continuum source atomic absorption and emission spectrometry

    International Nuclear Information System (INIS)

    Two new tungsten coil spectrometers are described: a continuum source tungsten coil atomic absorption spectrometer and a tungsten coil atomic emission spectrometer. Both devices use a 150 W tungsten coil extracted from a slide projector bulb. The power is provided by a computer-controlled, solid state, constant current 0-10 A supply. The heart of the optical system is a high-resolution spectrometer with a multi-channel detector. The continuum source system employs xenon or deuterium lamps, and is capable of multi-element analyses of complex samples like engine oil, urine, and polluted water. Spiked engine oil samples give mean percent recoveries of 98 ± 9, 104 ± 9, and 93 ± 0.8 for Al, V, and Ni, respectively. Copper, Zn, and Cd are determined in urine samples; while Cd, Co, Yb, and Sr are determined in water samples. Detection limits for Cd, Zn, Cu, Yb, Sr, and Co are: 8, 40, 1, 4, 1, and 4 μg l-1. The technique of tungsten coil atomic emission spectrometry using a 150 W commercial projector bulb is reported for the first time. Calcium, Ba, and Sr are determined with detection limits of 0.01, 0.5, and 0.1 μg l-1. Relative standard deviations are lower than 10% in each case, and Sr is determined in two water standard reference materials

  13. Determination of metallic impurities in uranium compounds of nuclear purity by atomic absorption spectrophotometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Atomic absorption spectrometry, with electrothermal atomization, has been used for the determination of Al, Cd, Cr, Fe, Mn and Ni in uranium oxide standards. The analysis were performed without sample dissolution and without uranium chemical separation. This technique is adequate for the qualification of uranium of nuclear purity according to the standard specifications. (Author)

  14. Nasal absorption studies of granisetron in rats using a validated high-performance liquid chromatographic method with mass spectrometric detection.

    Science.gov (United States)

    Woo, Jong Soo

    2007-06-01

    Granisetron is a selective 5-HT3 receptor antagonist that is used therapeutically for the prevention of vomiting and nausea associated with emetogenic cancer chemotherapy. Although forms of the drug are commercially available for intravenous and oral dosage, there is a need for intranasal delivery formulations in specific patient populations in which the use of these dosage forms may be unfeasible and/or inconvenient. A rapid and specific high-performance liq uid chromatography method with mass spectrometric detection (LC-MS) was developed and validated for the analysis of granisetron in plasma after nasal administration in rats. Granisetron was separated in a reverse-phase C-18 column without interference from other components of plasma. This method involves a rapid assay for the determination of granisetron in a small volume of plasma with a run time of 12 min using ondansetron as an internal standard. Data were acquired in the electrospray ionization (ESI) mode with positive ion detection and application of single ion recording (SIR). Granisetron and ondansetron were detected at m/z values of 313.2 and 294.2, respectively. The method described was found to be suitable for the analysis of all samples collected during preclinical pharmacokinetic investigations of granisetron in rats after nasal administration. To date, the first pharmacokinetic study after intranasal administration of granisetron was performed and some pharmacokinetic parameters were presented in this paper. Granisetron was found to be well absorbed through nasal route and the bioavailability of this drug following nasal administration was comparable with that of intravenous administration. PMID:17679558

  15. Comparison of electrothermal atomization diode laser Zeeman- and wavelength-modulated atomic absorption and coherent forward scattering spectrometry

    International Nuclear Information System (INIS)

    Atomic absorption and coherent forward scattering spectrometry by using a near-infrared diode laser with and without Zeeman and wavelength modulation were carried out with graphite furnace electrothermal atomization. Analytical curves and limits of detection were compared. The magnetic field was modulated with 50 Hz, and the wavelength of the diode laser with 10 kHz. Coherent forward scattering was measured with crossed and slightly uncrossed polarizers. The results show that the detection limits of atomic absorption spectrometry are roughly the same as those of coherent forward scattering spectrometry with crossed polarizers. According to the theory with bright flicker noise limited laser sources the detection limits and linear ranges obtained with coherent forward scattering spectrometry with slightly uncrossed polarizers are significantly better than those obtained with crossed polarizers and with atomic absorption spectrometry. This is due to the fact that employing approaches of polarization spectroscopy reduce laser intensity fluctuations to their signal carried fractions

  16. Analytical Absorption Cross-Section for Photon by a Hydrogen 2s Atom

    Institute of Scientific and Technical Information of China (English)

    Boniface Otieno Ndinya; Stephen Onyango Okeyo

    2011-01-01

    We calculate the absorption cross-section for photon by a hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron atoms.With the application of the first-order term of the Baker-Hausdorf expansion, the absorption cross-section for the hydrogen 2s atom decreases to a minimum, the Cooper pair minimum, at low photon energy.Such a minimum is absent in the exact absorption cross-section for photon by a hydrogen 2s atom.We have extended the calculation for the absorption cross-section of the hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron to include the second-order term of the Baker-Hausdorf expansion and observed a great reduction in the dip associated with the Cooper pair minimum at the zero crossing.

  17. Normal blood magnesium levels in volunteers of Rawalpindi by atomic absorption absorption technique

    International Nuclear Information System (INIS)

    Magnesium levels in whole blood samples of 67 healthy volunteers (mean 6.46 -+ 0.221; range 1.345 - 13.163 mg/dL) of Rawalpindi district have been determined by flame atomic absorption spectrophotometric method. Magnesium levels of 41 male and 26 female subjects including doctors, nurses, patients attendees, medical students, sweepers and peons of Rawalpindi Medical College and Rawalpindi General Hospital revealed the normal mean blood levels of 6.088 - + 0.258 mg/dL (range 1.345 - 10.679 mg/dL)and 7.060 -+ 0.375 mg/dL (range 4.495 - 13.163 mg/dL),P<0.05 respectively. Only 10 male volunteers were smokers exhibiting 6.768 -+ 0.558 mg/dL (range 4.466 -10.679 mg/dL). Significant relationship was found in magnesium levels between males and females of poor socio-economic group (P<0.05). No relationship occurred between male smokers and non-smokers and magnesium levels in the age groups of males or females or both, when data was compared by 't' test. (author)

  18. Rare earth aerosol analysis by atomic absorption spectrophotometry using electrothermal atomization

    International Nuclear Information System (INIS)

    Atomic absorption spectrophotometry (AAS) employing electrothermal atomization in a pyrolytic graphite tube is shown to be a precise and accurate method for analysis of 11 rare earth, or rare-earth-like elements in air filter samples taken in a thorium and rare earth refinery. The method is fairly rapid since it involves only fluoric acids. Each element was sequentially analyzed from the same resulting solution by using either the techniques of standard-curve calibration or that of standard additions. The two methods used on the same sample gave essentially identical results (composite ratio for 171 such trials being 0.9996). Matrix effects were negligible and no background correction was necessary. The average percent standard deviation for all duplicate trials (176) was 4.2%. Elements analyzed by this method were La, Nd, Sm, Eu, Gd, Dy, Ho, Tm, Yb, Gd, Sc and Y. Other rare earths such as erbium (Er), lutetium (Lu), and terbium (Tb), with comparable analytical sensitivity by AAS to Dy, Sm, and Nd, respectively, could presumably be analyzed by this method as well

  19. Rare earth analysis in human biological samples by atomic absorption using electrothermal atomization

    International Nuclear Information System (INIS)

    The determination of Sc and seven rare earth elements, Nd, Sm, Dy, Ho, Eu, Tm, and Yb, in biological samplesby atomic absorption spectrophotometric analysis (AAS) using electrothermal atomization in a pyrolytic graphite tube is shown to be rapid, precise and accurate. The technique utilizes the method of standard additions and linear regression analysis to determine results from peak area data. Inter-elemental interferences are negligible. The elements found sensitive enough for this type of analysis are, in order of decreasing sensitivity, Yb, Eu, Tm, Dy, Sc, Ho, Sm and Nd. The determination in these types of materials of Gd and elements less sensitive to AAS detection than Gd does not appear to be feasible. Results are presented on the concentrations of these elements in 41 samples from human subjects, cows and vegetables with normal environmental exposure to the rare earth elements. The composite percent mean deviation in peak-area readings for all samples and all elements examined was 4%. The mean standard error in the results among samples was about 6.5%

  20. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of fluoroquinolone antibiotics using ammonium reineckate ion-pair complex formation

    Science.gov (United States)

    Ragab, Gamal H.; Amin, Alaa S.

    2004-03-01

    Three accurate, rapid and simple atomic absorption spectrometric, conductometric and colorimetric methods were developed for the determination of norfloxacin (NRF), ciprofloxacin (CIP), ofloxacin (OFL) and enrofloxacin (ENF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone in the range 5.0-65, 4.0-48, 5.0-56 and 6.0-72 μg ml -1 of NRF, CPF, OFL and ENF, respectively. The optimizations of various experimental conditions were described. The results obtained showed good recoveries of 99.15±1.15, 99.30±1.40, 99.60±1.50, and 99.00±1.25% with relative standard deviations of 0.81, 1.06, 0.97, and 0.69% for NRF, CPF, OFL, and ENF, respectively. Applications of the proposed methods to representative pharmaceutical formulations are successfully presented.

  1. Non-Dispersive Atomic Absorption System for Engine Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, construct and test a first implementation of a non-dispersive technique for the measurement of atomic absorption in the plumes of liquid...

  2. Ionization of hydrogen atom by X-ray absorption in the presence of optical laser field

    International Nuclear Information System (INIS)

    The absorption of X-rays in hydrogen atom considering the irradiation of the target by an intense optical laser of frequency ω is studied. It is found that the terms of the modified scattering amplitude has different dependence on polarization vectors of X-ray fields and laser fields. There is resonance in the differential cross section for absorption at different frequencies when ω (the laser frequency) becomes nearly equal to atomic transition frequency. (author). 21 refs., 2 figs

  3. Application of cloud point preconcentration and flame atomic absorption spectrometry for the determination of cadmium and zinc ions in urine, blood serum and water samples

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2013-01-01

    Full Text Available A simple, sensitive and selective cloud point extraction procedure is described for the preconcentration and atomic absorption spectrometric determination of Zn2+ and Cd2+ ions in water and biological samples, after complexation with 3,3',3",3'"-tetraindolyl (terephthaloyl dimethane (TTDM in basic medium, using Triton X-114 as nonionic surfactant. Detection limits of 3.0 and 2.0 µg L-1 and quantification limits 10.0 and 7.0 µg L-1were obtained for Zn2+ and Cd2+ ions, respectively. Relative standard deviation was 2.9 and 3.3, and enrichment factors 23.9 and 25.6, for Zn2+ and Cd2+ ions, respectively. The method enabled determination of low levels of Zn2+ and Cd2+ ions in urine, blood serum and water samples.

  4. Understanding the mechanism of H atom absorption in the Pd(1 1 0) surface

    Energy Technology Data Exchange (ETDEWEB)

    Padama, Allan Abraham B. [Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños, Laguna 4031 (Philippines); Kasai, Hideaki, E-mail: kasai@dyn.ap.eg.osaka-u.ac.jp [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka 565-0871 (Japan); Center for Continuing Professional Development, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2015-10-05

    Highlights: • This study elucidates the absorption of H in Pd(1 1 0) (1 × 2) missing-row surface. • Electronic structure depicts the stronger adsorption on ridge than on trough site. • The geometry of missing-row Pd(1 1 0) allows Pd atoms to accommodate H and H{sub 2}. • Assisted absorption is facilitated by the repulsion between H atoms. - Abstract: The underlying mechanism of H atom absorption in the Pd(1 1 0) (1 × 2) missing-row reconstructed surface is investigated by performing density functional theory based calculations. The stronger binding energy of H on ridge than on trough site of the missing-row surface is due to the more pronounced creation of derived bonding state as had been depicted from the electronic structure of the system. Hydrogen absorption takes place with the involvement of other incoming H atoms through an assisted absorption process that is facilitated by the repulsion between the incoming H and the absorbing H. The geometry of the missing-row surface enables the Pd atoms to accommodate the H atoms efficiently leading to H absorption as well as H{sub 2} dissociation.

  5. Selenium determination in biological material by atomic absorption spectrophotometry in graphite furnace and using vapor generation

    International Nuclear Information System (INIS)

    The applicability of the atomic absorption spectrophotometry to the determination of selenium in biological material using vapor generation and electrothermal atomization in the graphite furnace was investigated. Instrumental parameters and the analytical conditions of the methods were studied. Decomposition methods for the samples were tested, and the combustion in the Wickbold apparatus was chosen. (author)

  6. Quantitative determination of impurities in nuclear grade aluminum by Flame-Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    The paper deals with quantitative determination of impurity elements in nuclear grade aluminum, used as fin tubes in research reactors, by Flame-Atomic Absorption Spectrometry (F-AAS). The results have been compared with those obtained by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) method. Experimental conditions used in both the methods are given in the paper. (author)

  7. Optical pumping effect in absorption imaging of F=1 atomic gases

    CERN Document Server

    Kim, Sooshin; Noh, Heung-Ryoul; Shin, Y

    2016-01-01

    We report our study of the optical pumping effect in absorption imaging of $^{23}$Na atoms in the $F=1$ hyperfine spin states. Solving a set of rate equations for the spin populations under a probe beam, we obtain an analytic expression for the optical signal of the $F=1$ absorption imaging. Furthermore, we verify the result by measuring the absorption spectra of $^{23}$Na Bose-Einstein condensates prepared in various spin states with different probe beam pulse durations. The analytic result can be used in quantitative analysis of $F=1$ spinor condensate imaging and readily applied to other alkali atoms with $I=3/2$ nuclear spin such as $^{87}$Rb.

  8. Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas

    CERN Document Server

    Moroshkin, Peter; Sass, Anne; Klaers, Jan; Weitz, Martin

    2014-01-01

    The Kennard-Stepanov relation describes a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. Here we examine absorption and emission spectra of rubidium atoms in dense argon buffer gas environment. We demonstrate that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled in the collisionally broadened atomic gas system. Our experimental findings are supported by a simple theoretical model.

  9. Reduction of interference fringes in absorption imaging of cold atom cloud using eigenface method

    Institute of Scientific and Technical Information of China (English)

    Xiaolin Li; Min Ke; Bo Yan; Yuzhu Wang

    2007-01-01

    Eigenface method used in face recognition is introduced to reduce the pattern of interference fringes appearing in the absorption image of cold rubidium atom cloud trapped by an atom chip. The standard method for processing the absorption image is proposed, and the origin of the interference fringes is analyzed. Compared with the standard processing method which uses only one reference image, we take advantage of fifty reference images and reconstruct a new reference image which is more similar to the absorption image than all of the fifty original reference images. Then obvious reduction of interference fringes can be obtained.

  10. Absorption of twisted light by a mesoscopic atomic target

    Science.gov (United States)

    Peshkov, A. A.; Serbo, V. G.; Fritzsche, S.; Surzhykov, A.

    2016-06-01

    The excitation of a hydrogen-atom target by a twisted Bessel light beam is investigated. The atoms are assumed to have a Gaussian spatial distribution in the target. Theoretical analysis is performed within a nonrelativistic framework using a first-order perturbation approach and density matrix formalism. By using this theory, we derive the expressions for excitation cross sections and for alignment parameters of the excited atomic state. In particular, we make calculations for the 1s\\to 2p transition caused by the interaction of Bessel beams with the atomic target. For this transition, we analyze the population of magnetic sublevels for the excited 2p state and study how it is affected by the projection of the total angular momentum of incident light. The calculations indicate that the projection of the total angular momentum of the incident Bessel beam affects the alignment of atoms for sufficiently small targets with size less than 200 nm. This can be observed experimentally by measuring the linear polarization of the subsequent fluorescent light.

  11. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  12. Determination of cadmium in biodiesel using microemulsion and electrothermal atomization atomic absorption spectrometry.

    Science.gov (United States)

    Lima, Adriana S; Silva, Deise G; Teixeira, Leonardo S G

    2015-01-01

    This work aimed to prepare biodiesel microemulsions for the subsequent quantification of cadmium via graphite furnace atomic absorption spectrometry (GFAAS). The biodiesel samples were prepared using n-propanol as an emulsifier, 10% (v/v) nitric acid as the aqueous phase, and biodiesel. Pseudoternary phase diagrams were constructed to determine the microemulsion region with the specified components. The optimized conditions for microemulsion formation were 57.6% (v/v) n-propanol, 21.2% (v/v) biodiesel, and 21.2% (v/v) nitric acid solution. The stability of the microemulsified system was investigated using aqueous and organic standards, and the system was found to be stable for at least 240 min. The applied pyrolysis and atomization temperatures were 800 and 2000 °C, respectively, and 5 μg of aluminum was used as the chemical modifier. The obtained limits of detection and quantification were 0.2 and 0.5 μg kg(-1), respectively, and the characteristic mass was 1.6 pg. The precision, expressed as the relative standard deviation (% R.S.D., n = 10), was 2.5% for a sample with a cadmium concentration of 6.5 μg kg(-1). The accuracy was determined from addition and recovery experiments, with results varying from 93 to 108% recovery. This study demonstrates that the proposed method based on the use of a microemulsion formation in sample preparation can be applied as an efficient alternative for the determination of cadmium in biodiesel by GFAAS. Cadmium determination in biodiesel samples of different origins (soybean, corn, cotton, and sunflower) was evaluated after acid digestion using the inductively coupled plasma-mass spectrometry (ICP-MS) technique, and the obtained results were compared to the results obtained using the proposed method. The paired t test (95% confidence level) did not show significant differences. The concentrations of cadmium found ranged from 5.3 to 8.0 μg kg(-1). PMID:25381584

  13. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The on-line atomization of gold volatile species was studied and the results were compared with thermodynamic calculations in several quartz atomizers, namely: diffusion flame, flame-in-gas-shield, flame-in-plain-tube, externally heated T-tube and externally heated flame-in-T-tube. Atomization mechanism in the explored devices is proposed, where volatile species are converted to thermodynamically stable AuH at elevated temperature over 500 °C and then atomized by an interaction with a cloud of hydrogen radicals. Because of its inherent simplicity and robustness, diffusion flame was employed as a reference atomizer. It yielded atomization efficiency of 70 to 100% and a very good long time reproducibility of peak area sensitivity: 1.6 to 1.8 s μg−1. Six and eleven times higher sensitivity, respectively, was provided by atomizers with longer light paths in the observation volume, i.e. externally heated T-tube and externally heated flame-in-T-tube. The latter one, offering limit of detection below 0.01 μg ml−1, appeared as the most prospective for on-line atomization. Insight into the mechanism of atomization of gold volatile species, into the fate of free atoms and into subsequent analyte transfer allowed to assess possibilities of in-atomizer preconcentration of gold volatile species: it is unfeasible with quartz atomizers but a sapphire tube atomizer could be useful in this respect. - Highlights: • On-line atomization of gold volatile species for AAS in quartz devices was studied. • Atomization mechanism was proposed and atomization efficiency was estimated. • Possibilities of in-atomizer preconcentration of gold volatile species were assessed

  14. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Yasin [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Mehmet Akif Ersoy University, Faculty of Arts & Sciences, Chemistry Department, 15030 Burdur (Turkey); Musil, Stanislav; Matoušek, Tomáš; Kratzer, Jan [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Dědina, Jiří, E-mail: dedina@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-01-01

    The on-line atomization of gold volatile species was studied and the results were compared with thermodynamic calculations in several quartz atomizers, namely: diffusion flame, flame-in-gas-shield, flame-in-plain-tube, externally heated T-tube and externally heated flame-in-T-tube. Atomization mechanism in the explored devices is proposed, where volatile species are converted to thermodynamically stable AuH at elevated temperature over 500 °C and then atomized by an interaction with a cloud of hydrogen radicals. Because of its inherent simplicity and robustness, diffusion flame was employed as a reference atomizer. It yielded atomization efficiency of 70 to 100% and a very good long time reproducibility of peak area sensitivity: 1.6 to 1.8 s μg{sup −1}. Six and eleven times higher sensitivity, respectively, was provided by atomizers with longer light paths in the observation volume, i.e. externally heated T-tube and externally heated flame-in-T-tube. The latter one, offering limit of detection below 0.01 μg ml{sup −1}, appeared as the most prospective for on-line atomization. Insight into the mechanism of atomization of gold volatile species, into the fate of free atoms and into subsequent analyte transfer allowed to assess possibilities of in-atomizer preconcentration of gold volatile species: it is unfeasible with quartz atomizers but a sapphire tube atomizer could be useful in this respect. - Highlights: • On-line atomization of gold volatile species for AAS in quartz devices was studied. • Atomization mechanism was proposed and atomization efficiency was estimated. • Possibilities of in-atomizer preconcentration of gold volatile species were assessed.

  15. Near resonant absorption by atoms in intense fluctuating fields

    International Nuclear Information System (INIS)

    Using an atomic beam apparatus, we have carried out comprehensive measurements of fluorescence intensity, and fluctuations (variance) in the fluorescence intensity, from the 3S1/2 (F = 2, MF = 2) → 3P3/2 (F = 3, MF = 3) transition in atomic sodium, in a laser driving field on which well-characterized synthesized phase fluctuations have been imposed. These data are taken as a function of detuning of the laser from exact resonance with the transition, and for laser fields modulated with characteristically different bandwidths and amplitudes of phase noise. The experimental results are compared in detail with predictions of recently developed theoretical treatments. The methods are being extended to experimental studies of the role of phase fluctuations in four-wave mixing. 4 refs., 1 fig

  16. Absorption Spectra of a Three-Level Atom Embedded in a PBG Reservoir

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke; ZHANG Han-Zhuang

    2007-01-01

    We introduce the 'decay rate' terms into the density matrix equations of an atom embedded in a photonic band gap (PSG)reservoir successfully.By utilizing the master equations,the probe absorption spectra and the refractivity properties of a three-level atom in the PBG reservoir are obtained.The interaction between the atom and the PBG reservoir as well as the effects of the quantum interference on the absorption of the atom has also been taken into account.It is interesting that two different types of the anomalous dispersion relations of refractivity are exhibited in one dispersion line.The methodology used here can be applied to theoretical investigation of quantum interference effects of other atomic models embedded in a PBG reservoir.

  17. Determination of ultra trace amounts of bismuth in biological and water samples by electrothermal atomic absorption spectrometry (ET-AAS) after cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Shemirani, Farzaneh; Baghdadi, Majid; Ramezani, Majid; Jamali, Mohammad Reza

    2005-04-04

    A new approach for a cloud point extraction electrothermal atomic absorption spectrometric method was used for determining bismuth. The aqueous analyte was acidified with sulfuric acid (pH 3.0-3.5). Triton X-114 was added as a surfactant and dithizone was used as a complexing agent. After phase separation at 50 deg. C based on the cloud point separation of the mixture, the surfactant-rich phase was diluted using tetrahydrofuran (THF). Twenty microliters of the enriched solution and 10 {mu}l of 0.1% (w/v) Pd(NO{sub 3}){sub 2} as chemical modifier were dispersed into the graphite tube and the analyte determined by electrothermal atomic absorption spectrometry. After optimizing extraction conditions and instrumental parameters, a preconcentration factor of 196 was obtained for a sample of only 10 ml. The detection limit was 0.02 ng ml{sup -1} and the analytical curve was linear for the concentration range of 0.04-0.60 ng ml{sup -1}. Relative standard deviations were <5%. The method was successfully applied for the extraction and determination of bismuth in tap water and biological samples (urine and hair)

  18. Chlorine Analysis by Diode Laser Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Joachim Koch; Aleksandr Zybin; Kay Niemax

    2000-01-01

    The general characteristics of Diode Laser Absorption Spectrometry (DLAAS) in low pressure plasmas particulary with respect to the detection of non-metals are comprehensively recapitulated and discussed. Furthermore, a detector, which is based on DLAAS in a microwave-induced low pressure plasma as an alternative technique for halogene-specific analysis of volatile compounds and polymeric matrices is described. The analytical capability of the technique is demonstrated on the chlorine-specific analysis of ablated polymer fragments as well as gas chromatographically separated hydrocarbons. Since the measurements were carried out by means of a balanced-heterodyne detection scheme, different technical noise contributions, such as laser excess and RAM noise could efficiently be suppressed and the registered absorption was limited only by the principal shot noise. Thus, in the case of the polymer analysis a chlorine-specific absolute detection limit of 10 pg could be achieved. Furthermore, fundamental investigations concerning the influence of hydrocarbons on the dissociation capability of the microwave induced plasma were performed. For this purpose, the carbon-, chlorine-and hydrogen-specific stoichiometry of the compounds were empirically determined. Deviations from the exspected proportions were found to be insignificant, implying the possibility of internal standardization relative to the response of a reference sample.

  19. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium

    International Nuclear Information System (INIS)

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min−1 Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml−1 Se in the DBD and 0.15 ng ml−1 Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer. - Highlights: • SeH2 atomization in a dielectric barrier discharge (DBD) was optimized for AAS. • Atomizer performance was compared for DBD and externally heated quartz atomizer. • Detection limits were quantified and interferences were studied in both atomizers. • Atomization efficiency in the DBD was estimated

  20. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium

    Energy Technology Data Exchange (ETDEWEB)

    Duben, Ondřej [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Faculty of Science, Department of Analytical Chemistry, Charles University in Prague, Hlavova 8, Prague, CZ 128 43 Czech Republic (Czech Republic); Boušek, Jaroslav [Faculty of Electrical Engineering and Communications, Brno University of Technology, Technická 1058/10, 61600 Brno (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic)

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min{sup −1} Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml{sup −1} Se in the DBD and 0.15 ng ml{sup −1} Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer. - Highlights: • SeH{sub 2} atomization in a dielectric barrier discharge (DBD) was optimized for AAS. • Atomizer performance was compared for DBD and externally heated quartz atomizer. • Detection limits were quantified and interferences were studied in both atomizers. • Atomization efficiency in the DBD was estimated.

  1. Near resonant absorption by atoms in intense fluctuating fields

    International Nuclear Information System (INIS)

    We have completed a comprehensive study of the effects of phase/frequency fluctuations in the incident laser field on the fluorescence intensity from the 3S1/2 (F = 2, MF = 2) to 3P3/2 (F = 3, MF = 3) transition to atomic sodium. The experiments were carried out in an atomic beam apparatus with a laser driving field on which well-characterized synthesized phase-fluctuations were imposed. The mean fluorescence intensity and the fluctuations in the intensity were measured as a function of detuning of the driving field from the resonance frequency of the transition, and for several different laser powers and bandwidths of laser noise. Power spectra of the intensity fluctuations were measured for a wide range of parameters and the effects of correlated amplitude and phase fluctuations were probed. Detailed comparisons between theoretical predictions and experimental measurements were carried out, and a theoretical model was developed to include the effects of residual Doppler broadening and the nonuniform spatial intensity profile of the driving laser. Experimental investigations of effects of laser phase-noise on degenerate four- wave-mixing have been started

  2. Study on the application of cold vapor atomic absorption spectrometry and hydride generation atomic absorption spectrometry for the determination of Hg and As traces in sea water samples

    International Nuclear Information System (INIS)

    The trace amount of total mercury (Hg) and arsenic (As) in sea water samples were quantitatively determined by using the Atomic Absorption Spectrometry connected with the hydride generation technique (HG-AAS) for As, and with the cold vapour technique (CV-AAS) for Hg. The experiments were carried out at room temperature on a Hydride System Module (HS55) combined with an Atomic Absorption Spectrometer (VARIO 6, Analytik Jena AG). The effect of reductants concentration, and that of matrix on the absorption intensity of each analyzed element was studied in details. The sea water sample after fitrating through a membrane with 0.45(μm-hole size was pre-treated with an oxidant or an reductant to obtain the identical medium. The absorption intensity of each element was then measured on the VARIO-6 under the optimum parameters for spectrometer such as: maximum wavelength, current of hollow cathode lamp, and that for hydride system such as cell temperature, speed of peristaltic pump, pump time, reaction time and rewash time, ect. The analytical procedures were set-up and applied for the determination of these above mentioned elements in the synthesized sea water sample and in the real sea water samples with high precision and accuracy. (author)

  3. Entanglement-preserving absorption of single SPDC photons by a single atom

    CERN Document Server

    Huwer, J; Piro, N; Schug, M; Dubin, F; Eschner, J

    2011-01-01

    We study the controlled interaction between a single trapped Ca40+ ion and single photons belonging to entangled photon pairs. The ion is prepared as a polarization-sensitive single-photon absorber; the absorption of one photon from a pair is marked by a quantum jump of the atomic state and heralded by the coincident detection of the entangled partner photon. For three polarization basis settings of absorption and detection of the herald, we find maximum coincidences always for orthogonal polarizations. Tomographic reconstruction of the biphoton quantum state from the absorption-herald coincidences reveals 93% overlap with the maximally entangled state. This proves that the polarization entanglement shared by the photon pair is preserved in the absorption process and converted to transient photon-atom entanglement.

  4. Mass spectrometric determination of atomization energies of inorganic molecules and their correlation by empirical models of bonding

    International Nuclear Information System (INIS)

    The application of the Knudsen effusion method combined with mass spectrometry for the measurement of atomization energies of inorganic molecules is described. Recent results with emphasis on molecular metals, intermetallic molecules and metal carbides are presented. The use and limitations of various empirica models of bonding are illustrated by comparing experimental values with those calculated by the various models

  5. Direct determination of selenoproteins in polyvinylidene difluoride membranes by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Sidenius, U; Gammelgaard, Bente

    2000-01-01

    were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2-10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well......A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual...

  6. Determination of traces of cadmium in zinc by flameless atomic absorption spectrophotometry after extraction

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, A.; Willmann, K.H.; Simon, F.J.

    1985-01-01

    The suitability of dithizone, diethyldithiocarbamate and tetramethylendithiocarbamate as chelating agents for the extraction-photometric cadmium determination by flameless atomic absorption spectrophotometry in the presence of zinc was investigated. It has been found that the extraction of the dithizone chelate by carbon tetrachloride permits an uninfluenced determination of cadmium in the presence of a zinc excess up to 10/sup 5/. Therefore the use of flameless atomic absorption spectrophotometry raises the selectivity as compared to photometry, because photometry only permits a 1000-fold excess of zinc. With this method 2x10/sup -4/% of cadmium in zinc can be determined without further corrections of matrix effects.

  7. Determination of serum lithium: comparison between atomic emission and absorption spectrometry methods

    Directory of Open Access Journals (Sweden)

    Carlos Elielton do Espírito Santo

    2014-02-01

    Full Text Available Introduction: The therapeutic monitoring of lithium, through concentration measurements, is important for individual dose adjustment, as a marker of treatment adherence and to prevent poisoning and side effects. Objectives: Validate and compare two methods - atomic emission and atomic absorption - for the determination of lithium in serum samples. Methodology: Parameters such as specificity, precision, accuracy, limit of detection (LOD and linearity were considered. The atomic absorption spectrometer was used, operating in either emission or absorption mode. For the quantitative comparison of 30 serum samples from patients with mood disorder treated with lithium, the results were submitted to Student's t-test, F-test and Pearson's correlation. Results: The limit of quantification (LOQ was established as 0.05 mEq/l of lithium, and calibration curves were constructed in the range of 0.05-2 mEq/l of lithium, using aqueous standards. Sample preparation time was reduced, what is important in medical laboratory. Conclusion: Both methods were considered satisfactory, precise and accurate and can be adopted for lithium quantification. In the comparison of quantitative results in lithium-treated patients through statistical tests, no significant differences were observed. Therefore the methods for lithium quantification by flame atomic absorption spectrometry (FAAS and flame atomic emission spectrometry (FAES may be considered similar.

  8. Observing random walks of atoms in buffer gas through resonant light absorption

    Science.gov (United States)

    Aoki, Kenichiro; Mitsui, Takahisa

    2016-07-01

    Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.

  9. Observing random walks of atoms in buffer gas through resonant light absorption

    CERN Document Server

    Aoki, Kenichiro

    2016-01-01

    Using resonant light absorption, random walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured and its spectrum is obtained, down to orders of magnitude below the shot noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a gaussian light beam is computed and its analytical form is obtained. The spectrum has $1/f^2$ ($f$: frequency) behavior at higher frequencies, crossing over to a different, but well defined behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas and the atomic number density, from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.

  10. Determination of trace elements in dolomite and gypsum by atomic absorption spectrometry: overcoming the matrix interference by flotation separation

    Science.gov (United States)

    Stafilov, Trajče; Zendelovska, Dragica; Pavlovska, Gorica; Čundeva, Katarina

    2002-05-01

    The interferences of Ca and Mg as matrix elements in dolomite and gypsum on Ag, Cd, Cr, Mn, Tl and Zn absorbances during their electrothermal atomic absorption spectrometric (ETAAS) determination are investigated. The results reveal that Ca and Mg do not interfere on Zn and Mn, tend to decrease absorbances of Ag, Cd and Cr, while Tl suffers the most significant influence. A flotation separation method is proposed to eliminate matrix interferences. Hydrated iron(III) oxide, Fe 2O 3· xH 2O, and iron(III) hexamethylenedithiocarbamate, Fe(HMDTC) 3, are applied as flotation collectors. The influence of hydrophobic dithiocarbamate anion, HMDTC, on flotation recoveries of each analyte is studied. The most suitable concentrations of dolomite and gypsum solutions for flotation are determined. To avoid flotation suppression due to the reaction of Ca 2+ and Mg 2+ with surfactant ions, a fit foaming agent was selected. The elements present in dolomite and gypsum as traces have been analyzed by ETAAS. Their ETAAS limits of detection following flotation are found to be 0.021 μg·g -1 for Ag, 0.019 μg·g -1 for Cd, 0.014 μg·g -1 for Cr and 0.11 μg·g -1 for Tl. The determination of Mn and Zn can be performed by flame AAS (FAAS). The limit of detection for Mn is 1.5 μg·g -1, while for Zn 0.8 μg·g -1.

  11. Determination of vanadium in food and traditional Chinese medicine by graphite furnace atomic absorption spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Various experimental conditions were described for the vanadium determination by graphite furnace atomic ab-sorption spectroscopy (GFAAS). The experiments showed that when atomization took place under the conditions where thecombination of a pyrolytic coating graphite tube and fast raising temperature were used and the temperature was stable, thesignal peak shapes could be improved, the sensitivity was enhanced, and the memory effect was removed. The vanadium infood and traditional Chinese medicinal herbs can be accurately determined using the standard curve method.

  12. Absorption spectroscopy of cold caesium atoms confined in a magneto-optical trap

    Institute of Scientific and Technical Information of China (English)

    Yan Shu-Bin; Liu Tao; Geng Tao; Zhang Tian-Cai; Peng Kun-Chi; Wang Jun-Min

    2004-01-01

    Absorption spectra of cold caesium atoms confined in a magneto-optical trap are measured around D2 line at 852nm with a weak probe beam. Absorption reduction dip due to electromagnetically induced transparency (EIT)effect induced by the cooling/trapping field in a V-type three-level system and a gain peak near the cycling transition are clearly observed. Several mechanisms mixed with EIT effect in a normal V-type three-level system are briefly discussed. A simple theoretical analysis based on a dressed-state model is presented for interpretation of the absorption spectra.

  13. Padronização interna em espectrometria de absorção atômica Internal standardization in atomic absorption spectrometry

    OpenAIRE

    Kelly G. Fernandes; Mercedes de Moraes; José A. Gomes Neto; Joaquim A. Nóbrega; Pedro V. Oliveira

    2003-01-01

    This paper describes a review on internal standardization in atomic absorption spectrometry with emphasis to the systematic and random errors in atomic absorption spectrometry and applications of internal standardization in flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry. The rules for selecting an element as internal standard, limitations of the method, and some comments about the application of internal standardization in atomic absorption spectrometry...

  14. Investigations on Freon-assisted atomization of refractory analytes (Cr, Mo, Ti, V) in multielement electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Heinrich, Hans-Joachim; Matschat, Ralf

    2007-08-01

    Premixed 1% Freon in argon inner gas of various composition (CCl 2F 2, CHClF 2, CHF 3) was applied to graphite furnace atomizer to minimize unfavorable effects of carbide formation, such as signal tailing and memory effects in the simultaneous determination of Cr, Mo, Ti and V refractory analytes by electrothermal atomic absorption spectrometry using a multielement atomic absorption spectrometer. The effect of these gaseous additives was investigated when applied separately in atomization, pyrolysis and clean-out steps. The halogenation effects were analytically useful only under the precondition of using Ar-H 2 outer gas to the furnace to all heating steps, and also using this gas in the pre-atomization (drying, pyrolysis) steps. Optimum analytical performance was obtained when mixtures of 1% Freon in argon were applied just before and during the atomization step at a flow rate of 50 mL min - 1 and 2% hydrogen was used as purge gas. Using optimum conditions, signal tailings and carry-over contamination were reduced effectively and good precision (relative standard deviation below 1%) could be attained. Applying 1% CHClF 2 and an atomization temperature of 2550 °C, the characteristic masses obtained for simple aqueous solutions were 8.8 pg for Cr, 17 pg for Mo, 160 pg for Ti, and 74 pg for V. The limits of detection were 0.05, 0.2, 2.3 and 0.5 μg L - 1 for Cr, Mo, Ti and V, respectively. The developed method was applied to the analysis of digests of advanced ceramics. The accuracy of the procedure was confirmed by analyzing the certified reference material ERM-ED 102 (Boron Carbide Powder) and a silicon nitride powder distributed in the inter-laboratory comparison CCQM-P74.

  15. High sensitivity probe absorption technique for time-of-flight measurements on cold atoms

    Indian Academy of Sciences (India)

    A K Mohapatra; C S Unnikrishnan

    2006-06-01

    We report on a phase-sensitive probe absorption technique with high sensitivity, capable of detecting a few hundred ultra-cold atoms in flight in an observation time of a few milliseconds. The large signal-to-noise ratio achieved is sufficient for reliable measurements on low intensity beams of cold atoms. We demonstrate the high sensitivity and figure of merit of the simple method by measuring the time-of-flight of atoms moving upwards from a magneto-optical trap released in the gravitational field.

  16. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    International Nuclear Information System (INIS)

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data. - Highlights: • Compute the values of mass attenuation coefficients (μ/ρ) of some carbohydrates. • The values of (μen/ρ) i.e. mass energy-absorption coefficient are calculated. • Effective atomic energy-absorption cross sections (σa,en). • Comparison of all (μ/ρ), (μen/ρ), (σa,en) values with XCOM program. • The measured data for carbohydrates are useful in radiation dosimetry and other fields

  17. Chemical modifiers in electrothermal atomic absorption determination of Platinum and Palladium containing preparations in blood serum

    Directory of Open Access Journals (Sweden)

    Аntonina Alemasova

    2012-11-01

    Full Text Available The biological liquids matrixes influence on the characteristic masses and repeatability of Pt and Pd electrothermal atomic absorption spectroscopy (ETAAS determination was studied. The chemical modifiers dimethylglyoxime and ascorbic acid for matrix interferences elimination and ETAAS results repeatability improvement were proposed while bioliquids ETAAS analysis, and their action mechanism was discussed.

  18. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    Science.gov (United States)

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  19. Rapid accurate analysis of metal (oxide)-on-silica catalysts by atomic absorption spectrometry

    NARCIS (Netherlands)

    Jütte, B.A.H.G.; Heikamp, A.; Agterdenbos, J.

    1979-01-01

    The catalysts, which contain 10–60% copper, chromium, nickel and silicon, are decomposed in sealed Teflon-lined vessels and analyzed by atomic absorption spectrometry. Matrix matching and bracketing standards are applied. The RSD of a single determination is about 1% for all components.

  20. Direct microcomputer controlled determination of zinc in human serum by flow injection atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Nielsen, Bent; Jensen, Arne;

    1986-01-01

    A procedure is described for the direct determination of zinc in human serum by fully automated, microcomputer controlled flow injection atomic absorption spectrometry (Fl-AAS). The Fl system is pumpless, using the negative pressure created by the nebuliser. It only consists of a three-way valve...

  1. Determination and characterization of phytochelatins by liquid chromatography coupled with on line chemical vapour generation and atomic fluorescence spectrometric detection.

    Science.gov (United States)

    Bramanti, Emilia; Toncelli, Daniel; Morelli, Elisabetta; Lampugnani, Leonardo; Zamboni, Roberto; Miller, Keith E; Zemetra, Joseph; D'Ulivo, Alessandro

    2006-11-10

    Liquid chromatography (LC) coupled on line with UV/visible diode array detector (DAD) and cold vapour generation atomic fluorescence spectrometry (CVGAFS) has been developed for the speciation, determination and characterization of phytochelatins (PCs). The method is based on a bidimensional approach, e.g. on the analysis of synthetic PC solutions (apo-PCs and Cd(2+)-complexed PCs) (i) by size exclusion chromatography coupled to UV diode array detector (SEC-DAD); (ii) by the derivatization of PC -SH groups in SEC fractions by p-hydroxymercurybenzoate (PHMB) and the indirect detection of PC-PHMB complexes by reversed phase liquid chromatography coupled to atomic fluorescence detector (RPLC-CVGAFS). MALDI-TOF/MS (matrix assisted laser desorption ionization time of flight mass spectrometry) analysis of underivatized synthetic PC samples was performed in order have a qualitative information of their composition. Quantitative analysis of synthetic PC solutions has been performed on the basis of peak area of PC-PHMB complexes of the mercury specific chromatogram and calibration curve of standard solution of glutathione (GSH) complexed to PHMB (GS-PHMB). The limit of quantitation (LOQ) in terms of GS-PHMB complex was 90 nM (CV 5%) with an injection volume of 35 microL, corresponding to 3.2 pmol (0.97 ng) of GSH. The method has been applied to analysis of extracts of cell cultures from Phaeodactylum tricornutum grown in Cd-containing nutrient solutions, analysed by SEC-DAD-CVGAFS and RPLC-DAD-CVGAFS.

  2. Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    Inexpensive baker's yeast Saccharomyces cerevisiae and green algae Chlorella vulgaris, either free or immobilized on silica gel have been shown to selectively accumulate platinum and palladium from water samples in acidic medium (pH 1.6-1.8). Optimization of conditions of metals biosorption (sample pH, algae and yeast masses, adsorption time, temperature) was performed in batch mode. The procedure of matrix separation based on biosorption of platinum and palladium on algae C. vulgaris covalently immobilized on silica gel in flow mode was developed. The use of algae in flow procedure offers several advantages compared with its use in the batch mode. The procedure shows better reproducibility (-1 thiourea in 1 mol l-1 hydrochloric acid. The influence of thiourea on analytical signals of examined metals during GFAAS determination is discussed. The procedure has been applied for separation of noble metals from tap and waste water samples spiked with platinum and palladium

  3. Simultaneous Preconcentration of Copper, Nickel, Cobalt and Lead Ions Prior to Their Flame Atomic Absorption Spectrometric Determination

    International Nuclear Information System (INIS)

    A sensitive and simple method for the simultaneous preconcentration of nutritionally important minerals in real samples has been reported. The method is based on the adsorption of Cu2+, Ni2+, Co2+ and Pb2+ on 4-propyl-2-thiouracil (PUT) loaded on activated carbon. The metals on the complexes are eluted using 5 mL 3 M HNO3 in acetone. The influences of the analytical parameters including pH and sample volume were investigated. The effects of matrix ions on the retentions of the analytes were also examined. The recoveries of analytes were generally higher than 95 %. The detection limits for Cu2+, Ni2+, Co2+ and Pb2+ were 1.6, 1.3, 1.2, 2.3 ng ml-1, respectively. The method has been successfully applied for these metals content evaluation in some real samples including natural water samples

  4. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry-Performance evaluation for selenium

    Science.gov (United States)

    Duben, Ondřej; Boušek, Jaroslav; Dědina, Jiří; Kratzer, Jan

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min- 1 Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml- 1 Se in the DBD and 0.15 ng ml- 1 Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer.

  5. Quantitative Determination of Arsenic in Bottled Drinking Water Using Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Guţu Claudia

    2013-10-01

    Full Text Available Background: Many studies have been performed in the past few years, to determine arsenic speciation in drinking water, food chain and environment, arsenic being a well-recognized carcinogenic and toxic agent mainly in its inorganic species. The instrumental techniques used for arsenic determination, such as hydride generation atomic absorption spectrometry (HGAAS, graphite furnace atomic absorption spectrometry (GFAAS and inductively coupled plasma mass spectrometry (ICP-MS, can provide a great sensitivity only on the total amount. Objective: The aim of this study was to develop a simple and rapid method and to analyze the concentration of total inorganic arsenic in bottled drinking water. Methods: Total arsenic was determined in samples from six different types of commercially available bottled drinking water using atomic absorption spectrometry with electrothermal or hydride generation vaporisation. All drinking water samples were acidified with 0.1M nitric acid to match the acidity of the standards. Results: The method was linear within the studied range (1-5 μg/L, R = 0.9943. The quantification limits for arsenic determination were 0.48 μg/L (HGAAS and 0.03 μg/L (GFAAS. The evaluated arsenic content in drinking water was within the accepted limits provided by law. Conclusions: A simple and sensitive method for the quantification of arsenic in drinking water using atomic absorbtion spectroscopy was described, which can be further used in toxicological studies. As an additional advantage, the system is very fast, efficient and environmental friendly

  6. A double cell for X-ray absorption spectrometry of atomic Zn

    CERN Document Server

    Mihelic, A; Arcon, I; Padeznik-Gomilsek, J; Borowski, M

    2002-01-01

    A high-temperature cell with a double wall design has been constructed for X-ray absorption spectrometry of metal vapors. The inner cell, assembled from a corundum tube and thin plates without welding or reshaping, serves as a container of the vapor sample. It is not vacuum tight: instead, the outer tube provides inert atmosphere. Several spectra of K-edge atomic absorption of Zn were obtained in the stationary working regime below the Zn boiling point. The K-edge profile shows an extremely strong resonance and, above the continuum threshold, coexcitations of the outer electrons.

  7. Enhancement effect of alkaline earth metal on the determination of aluminium by atomic absorption spectrometry with a graphite furnace

    OpenAIRE

    Matsusaki, Koji

    1987-01-01

    In the determination of aluminium by atomic absorption spectrometry with a graphite furnace, coexisting oxyanion salts of alkaline earth metal enhanced the aluminium atomic absorption. The relative absorbance was increased with decreasing of the ramp atomization rate and with decreasing of the sheathing gas flow rate less than 51 min^. These results show that the enhancement effect is caused by the reductivity of the carbide of alkaline earth metal which is formed in the furnace at ashing and...

  8. Hydride generation – in-atomizer collection of Pb in a quartz trap-and-atomizer device for atomic absorption spectrometry – an interference study

    Energy Technology Data Exchange (ETDEWEB)

    Novotný, Pavel [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic); High School in Hořice, Husova 1414, 508 01 Hořice (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-01-01

    Interferences of selected hydride forming elements (As, Sb, Bi, Se and Sn) on lead determination by hydride generation atomic absorption spectrometry were extensively studied in both on-line atomization and preconcentration (collection) modes. The commonly used on-line atomization mode was found free of significant interferences, whereas strong interference from Bi was observed when employing the preconcentration mode with plumbane collection in a quartz trap-and-atomizer device. Interference of Bi seems to take place in the preconcentration step. Interference of Bi in the collection mode cannot be reduced by increased hydrogen radical amount in the trap and/or the atomizer. - Highlights: ► Interference study on Pb determination by in-atomizer trapping was performed for the first time. ► Bi was found as a severe interferent in the preconcentration mode (Pb:Bi ratio 1:100). ► No interference was found in the on-line atomization (no preconcentration). ► Bi interference occurs during preconcentration.

  9. Effective atomic numbers for photon energy absorption of some low-Z substances of dosimetric interest

    International Nuclear Information System (INIS)

    Effective atomic numbers for photon energy absorption (ZPEAeff) and effective atomic numbers for photon interaction (ZPIeff) of some low-Z substances of dosimetric interest such as A-150 tissue-equivalent plastic (A150TEP), alanine, bakelite, Gafchromic sensor (GS), plastic scintillator (PS), polyethylene, mylar, polystyrene, perspex, radiochromic dye film nylon base (RDF : NB), tissue-equivalent gas-methane based (TEG : MB) and tissue-equivalent gas-propane based (TEG : PB) have been calculated by a direct method in the energy region of 1 keV-20 MeV. Experimental mass attenuation coefficients and ZPIeff of some of these substances at selected photon energies of 26.34, 33.2, and 59.54 keV have been obtained and compared with theoretical values. The ZPEAeff and ZPIeff values steadily increases up to 6-15 keV, and then they steadily decrease up to 600-1500 keV for all the substances studied. From 1.5 MeV, the values increases with increase in energy up to 20 MeV. Significant differences up to 33.68% exist between ZPIeff and the ZPEAeff in the energy region of 10-150 keV. The single effective atomic numbers obtained using the program XMuDat (ZXMUDATeff ) are found to be significantly higher compared to those of ZPEAeff and ZPIeff values in the entire energy of interest for all the substances studied. The directly calculated ZPEAeff and ZPIeff values vary with energy compared to the energy-independent effective atomic numbers predicted by various theoretical expressions. The effects of absorption edges on effective atomic numbers and their variation with photon energy and the possibility of defining two set values of effective atomic numbers below the absorption edges of elements present in the composite substances are discussed

  10. Evaluation of quartz tubes as atomization cells for gold determination by thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    This work describes the development of a new analytical procedure able to determine gold by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) using nickel tubes (NiT) and quartz tubes (QT) as atomization cells. Experiments involving changes in the flow injection operational parameters, reagent concentrations and sizes of the QT were performed in order to optimize sensitivity. Under the same operational conditions, it was observed that the employment of QT increases the sensitivity of gold determination when compared to the nickel tube. Since solutions of highly concentrated hydrochloric acid showed the best performance as carriers, quartz tubes were also preferred due to its greater tolerance to corrosion by mineral acids in comparison to NiT. In addition, changes in the internal diameter of the QT revealed an important improvement in sensitivity for smaller tubes. Under optimized conditions the main figures of merit showed values close to that of graphite furnace atomic absorption spectrometry with the addition of an excellent improvement of the sample throughput. They are: LOD (3 s): 0.004 μg mL−1, sensitivity: 0.306 (μg mL−1)−1, RSD% (n = 10, 1 μg mL−1): 2.5, linear range: 0.01–4 μg mL−1 and sample throughput: 72 h−1. This new method was employed for the determination of gold in homeopathic medicines with no need of sample digestion. Validation of the analytical results will be shown. A full discussion of the most relevant findings regarding the role of the atomization cell as a strategic key for improving sensitivity will be also provided. - Highlights: ► Quartz tubes as furnaces in TS-FFAAS. ► Small tubes for controlling radial dispersion. ► Improved figures of merit for gold determination. ► Analysis of homeopathic medicines.

  11. Atomic calculations and search for variation of the fine-structure constant in quasar absorption spectra

    Science.gov (United States)

    Dzuba, V. A.; Flambaum, V. V.

    A brief review of the search for variation of the fine structure constant in quasar absorption spectra is presented. Special consideration is given to the role of atomic calculations in the analysis of the observed data. A range of methods which allow to perform calculations for atoms or ions with different electron structure and which cover practically all periodic table of elements is discussed. Critical compilation of the results of the calculations as well as a review of the most recent results of the analysis are presented.

  12. Atomic calculations and search for variation of the fine structure constant in quasar absorption spectra

    CERN Document Server

    Dzuba, V A

    2008-01-01

    A brief review of the search for variation of the fine structure constant in quasar absorption spectra is presented. Special consideration is given to the role of atomic calculations in the analysis of the observed data. A range of methods which allow to perform calculations for atoms or ions with different electron structure and which cover practically all periodic table of elements is discussed. Critical compilation of the results of the calculations as well as a review of the most recent results of the analysis are presented.

  13. Absorption-Dispersion Properties in a Four-Level Atomic System with Vacuum-Induced Coherence

    Institute of Scientific and Technical Information of China (English)

    WEI Hua; LI Jia-Hua; ZHAN Zhi-Ming; PENG Ju-Cun

    2005-01-01

    We discuss and analyze absorption-dispersion response for the probe field in a typical four-level atomic system with vacuum-induced coherence (VIC) arising from the cross coupling pathways associated with a pair of upper excited hyperfine levels. We find that VIC effect can preserve electromagnetically induced transparency (EIT) by using the detailed numerical simulations based on the density-matrix equations and analytical calculations in the dressed-state picture. We also show that the atomic hyperfine structure cannot be a hindrance to obtaining EIT.

  14. Absorption-Dispersion Properties in a Four-Level Atomic System with Vacuum-Induced Coherence

    Institute of Scientific and Technical Information of China (English)

    WEIHua; LIJia-Hua; ZHANZhi-Ming; PENGJu-Cun

    2005-01-01

    We discuss and analyze absorption-dispersion response for the probe field in a typical four-level atomic system with vacuum-induced coherence (VIC) arising from the cross coupling pathways associated with a pair of upper excited hyperfine levels. We find that VIC effect can preserve electromagnetically induced transparency (FIT) by using the detailed numerical simulations based on the density-matrix equations and analytical calculations in the dressed-state picture. We also show that the atomic hyperfine structure cannot be a hindrance to obtaining EIT.

  15. Absorptive reduction and width narrowing in A-type atoms confined between two dielectric walls

    Institute of Scientific and Technical Information of China (English)

    Li Yuan-Yuan; Hou Xun; Bai Jin-Tao; Yan Jun-Feng; Gan Chen-Li; Zhang Yan-Peng

    2008-01-01

    This paper investigates the absorptive reduction and the width narrowing of electromagnetically induced trans- parency (EIT) in a thin vapour film of A-type atoms confined between two dielectric walls whose thickness is comparable with the wavelength of the probe field. The absorptive lines of the weak probe field exhibit strong reductions and very narrow EIT dips, which mainly results from the velocity slow-down effects and transient behaviour of atoms in a con-fined system. It is also shown that the lines are modified by the strength of the coupling field and the ratio of L/λ, with L the film thickness and A the wavelength of the probe field. A simple robust recipe for EIT in a thin medium is achievable in experiment.

  16. Determination of metallic impurities in raw materials for radioisotope production by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Atomic absorption spectrometry has been used for the determination of traces of calcium in scandium oxide, copper in zinc, iron in cobalt oxide, manganese In ferric oxide, nickel in copper and zinc in gallium oxide. The influences on the sensitivities arising from the hollow cathode currents, the gas pressures and the acid concentrations have been considered. A study of the interferences from the metallic matrices has also been performed, the interference due to the absorption of the manganese radiation by the atoms of iron being the most outstanding . In order to remove the interfering elements and increase sensitivity, pre-concentration methods have been tested. The addition methods has also been used. (Author) 14 refs

  17. Determination of Trace Iron in High Purity Sodium Fluoride by Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A method is described for the direct determination of iron in high purity sodium fluoride using graphite furnace atomic absorption spectrometry. Interferences caused by the matrix are investigated. It is shown that the ashing temperature can be increased to 1 400°C and matrix interferences eliminated, the sensi tivity of iron increased in 1.27 fold by the addition of nickel nitrate. The method is applied to the determina tion of iron in sodium fluoride and satisfactory results are obtained.

  18. Atomic absorption determination of platinum and rhenium in deactivated catalysts based on γ-alumina

    International Nuclear Information System (INIS)

    A flame atomic absorption method has been developed for the determination of Pt and Re in deactivated catalysts based on γ-Al2O3. Hydrofluoric acid is used for catalyst dissolution. The lower determination limits are 1 μg/ml for Pt and 5 μg/ml for Re, RSD are 0.01-0.15 and 0.03-0.25 respectively

  19. Atomic Absorption and Spectrophotometeric Determinations of Salicylhydroxamic Acid in Its Pure and Pharmaceutical Dosage Forms

    OpenAIRE

    SALEM, Alaa-Eldin AbdelAziz

    2003-01-01

    A new method for the indirect determination of salicylhydroxamic acid (SHAM) using atomic absorption spectrometry (AAS) was proposed. The method is based on precipitating the ion associate complex of SHAM with [Cu (NH3)4]2+. The excess, unreacted, Cu2+ ions were determined using AAS. Another spectrophotometric method based on measuring the absorbance of the formed [Cu (NH3)4]-SHAM complex in dioxane was proposed. The green color of the complex formed was measured at 330 nm. The two...

  20. Computer programs in BASIC language for atomic absorption flame spectroscopy. Part 1. Operating instructions

    International Nuclear Information System (INIS)

    These instructions describe how to use three BASIC language programs to process data from atomic absorption spectrophotometers operated in the flame mode. These programs will also control an automatic sampler if desired. The instructions cover loading the programs, responding to computer prompts, choosing among various options for processing the data, operating the automatic sampler, and producing reports. How the programs differ is also explained. Examples of computer/operator dialogue are presented for typical cases

  1. Mineral Analysis the Infusion of Black Tea Samples by Atomic Absorption Spectrometry

    OpenAIRE

    Lahiji N.; Tadayon F.; Tamiji F.; Lahiji A. H.

    2013-01-01

    Tea infusion is one of the most popular drinks around the world. Since tea infusion is known to contain several essential nutrients, it is considered a healthy beverage. In this study eight different Iranian brands of tea infusion and eleven brands imported tea infusion samples from another country for Cu, Zn, Mn and Al were determined by flame atomic absorption spectrometry after wet digestion. The results of analysis showed that the extraction rates of minerals from dry black tea to infusio...

  2. Comparative mass spectrometric analyses of Photofrin oligomers by fast atom bombardment mass spectrometry, UV and IR matrix-assisted laser desorption/ionization mass spectrometry, electrospray ionization mass spectrometry and laser desorption/jet-cooling photoionization mass spectrometry.

    Science.gov (United States)

    Siegel, M M; Tabei, K; Tsao, R; Pastel, M J; Pandey, R K; Berkenkamp, S; Hillenkamp, F; de Vries, M S

    1999-06-01

    Photofrin (porfimer sodium) is a porphyrin derivative used in the treatment of a variety of cancers by photodynamic therapy. This oligomer complex and a variety of porphyrin monomers, dimers and trimers were analyzed with five different mass spectral ionization techniques: fast atom bombardment, UV and IR matrix-assisted laser desorption/ionization, electrospray ionization, and laser desorption/jet-cooling photoionization. All five approaches resulted in very similar oligomer distributions with an average oligomer length of 2.7 +/- 0.1 porphyrin units. In addition to the Photofrin analysis, this study provides a side-by-side comparison of the spectra for the five different mass spectrometric techniques.

  3. Stimulated emission and multi-peaked absorption in a four level N-type atom

    Institute of Scientific and Technical Information of China (English)

    Wang Kai; Gu Ying; Gong Qi-Huang

    2007-01-01

    Absorption and refrtion of the inner transition F2 (→) F3 of the closed four level N-type atom have been investigated under a weak field. The outer transitions F1 (→) F3 and F2 (→) F4 are resonantly interacted with drive field with frequency ωc and Rabi frequency Ωc, and saturation field with ωs and Ωs, respectively. For the suitable Rabi frequencies Ωc and Ωs, we obtain the Mollow absorption spectrum of probe field. The reason is that the drive field excites the atom to the upper level F3 and simultaneously the saturation field takes the atom out of the lower level F2, leading to the stimulated emission. Meanwhile, due to the dynamic energy splitting induced by the drive and saturation fields, the two- and four-peaked absorption spectra are observed. At the zero off-resonance detuning of probe field, we also find the transfer of dispersion from negative to positive with an increment of Ωs. Finally, the refractive index enhancement is predicted for a wide spectral region.

  4. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    Science.gov (United States)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  5. Time-resolved Absorption Spectra of the Laser-dressed Hydrogen Atom

    Science.gov (United States)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-05-01

    A theoretical study of the transient absorption spectra for the laser-dressed hydrogen atom based on the accurate numerical solution of the time-dependent Schrödinger equation is presented. The timing of absorption is controlled by the time delay between an isolated extreme ultraviolet (XUV) pulse and a dressing infrared (IR) field. We identify two different kinds of physical processes in the spectra. One is the formation of dressed states, signified by the appearance of sidebands between the XUV absorption lines separated by one IR-photon energy. We show that their population is maximized when the XUV pulse coincides with the zero-crossing of the IR field, and that their energy can be manipulated by using a chirped IR field. The other process is the dynamical AC Stark shift induced by the IR field and probed by the XUV pulse. Our calculations indicate that the accidental degeneracy of the hydrogen atom leads to the multiple splittings of each XUV absorption line whose separations change in response to a slowly-varying IR envelope. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 states using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional 3-level model that neglects the dynamical AC Stark effects.

  6. Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, A.P.S. [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia, 166, 09210-170 Santo Andre (Brazil); Firmino, M.A. [Departamento de Engenharia de Materiais, Escola de Engenharia, Universidade Presbiteriana Mackenzie, Rua da Consolacao, 930, 01302-970 Sao Paulo (Brazil); Nomura, C.S. [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia, 166, 09210-170 Santo Andre (Brazil); Rocha, F.R.P.; Oliveira, P.V. [Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 Sao Paulo (Brazil); Gaubeur, I. [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia, 166, 09210-170 Santo Andre (Brazil)], E-mail: ivanise.gaubeur@ufabc.edu.br

    2009-03-23

    The physical and chemical characteristics of peat were assessed through measurement of pH, percentage of organic matter, cationic exchange capacity (CEC), elemental analysis, infrared spectroscopy and quantitative analysis of metals by ICP OES. Despite the material showed to be very acid in view of the percentage of organic matter, its CEC was significant, showing potential for retention of metal ions. This characteristic was exploited by coupling a peat mini-column to a flow system based on the multicommutation approach for the in-line copper concentration prior to flame atomic absorption spectrometric determination. Cu(II) ions were adsorbed at pH 4.5 and eluted with 0.50 mol L{sup -1} HNO{sub 3}. The influence of chemical and hydrodynamic parameters, such as sample pH, buffer concentration, eluent type and concentration, sample flow-rate and preconcentration time were investigated. Under the optimized conditions, a linear response was observed between 16 and 100 {mu}g L{sup -1}, with a detection limit estimated as 3 {mu}g L{sup -1} at the 99.7% confidence level and an enrichment factor of 16. The relative standard deviation was estimated as 3.3% (n = 20). The mini-column was used for at least 100 sampling cycles without significant variation in the analytical response. Recoveries from copper spiked to lake water or groundwater as well as concentrates used in hemodialysis were in the 97.3-111% range. The results obtained for copper determination in these samples agreed with those achieved by graphite furnace atomic absorption spectrometry (GFAAS) at the 95% confidence level.

  7. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer).

    Science.gov (United States)

    This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...

  8. Zero absorption and a large negative refractive index in a left-handed four-level atomic medium

    International Nuclear Information System (INIS)

    In this paper, we have investigated three external fields interacting with the four-level atomic system described by the density-matrix approach. The atomic system exhibits left-handedness with zero absorption and large negative refractive index. Varying the parameters of the three external fields, the properties of zero absorption and large negative refractive index from the atomic system remain unvarying. Our scheme proposes an approach to obtain a negative refractive medium with zero absorption. The zero absorption property of the atomic system may be used to amplify the evanescent waves that have been lost in the imaging by traditional lenses, and a slab fabricated by the left-handed atomic system may be an ideal candidate for designing perfect lenses.

  9. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  10. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, H.; Krawczyk, M. [Politechn Poznanska, Poznan (Poland)

    2007-03-15

    The analytical performance of coupled hydride generation - integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H{sub 2}Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangernents (a water-cooled single silica tube, double-slotted quartz tube or an 'integrated trap') was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3{sigma}), was 0.9 ng mL{sup -1} for Te. For a 2 min in situ preconcentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% (n = 6) for Te. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  11. Some problems connected with boron determination by atomic absorption spectroscopy and the sensitivity improvement

    Directory of Open Access Journals (Sweden)

    JELENA J. SAVOVIC

    2001-08-01

    Full Text Available Two atomizers were compared: an N2O–C2H2 flame and a stabilized U-shaped DC arc with aerosol supply. Both the high plasma temperature and the reducing atmosphere obtained by acetylene addition to the argon stream substantially increase the sensitivity of boron determination by atomic absorption spectroscopy (AAS when the arc atomizer is used. The results were compared with those for silicon as a control element. The experimental characteristic concentrations for both elements were compared with the computed values. The experimentally obtained characteristic concentration for boron when using the arc atomizer was in better agreement with the calculated value. It was estimated that the influence of stable monoxide formation on the sensitivity for both elements was about the same, but reduction of analyte and formation of non-volatile carbide particles was more important for boron, which is the main reason for the low sensitivity of boron determination using a flame atomizer. The use of an arc atomizer suppresses this interference and significantly improves the sensitivity of the determination.

  12. X-ray absorption spectroscopy in electrical fields: An element-selective probe of atomic polarization

    Science.gov (United States)

    Ney, V.; Wilhelm, F.; Ollefs, K.; Rogalev, A.; Ney, A.

    2016-01-01

    We have studied a range of polar and nonpolar materials using x-ray absorption near-edge spectroscopy (XANES) in external electric fields. An energy shift of the XANES by a few meV/kV is found which scales linearly with the applied voltage, thus being reminiscent of the linear Stark effect. This is corroborated by the consistent presence of this energy shift in polar thin films and bulk crystals and its absence in nonpolar materials as well as in conducting films. The observed energy shift of the XANES is different between two atomic species in one specimen and appears to scale linearly with the atomic number of the studied element. Therefore, XANES in electrical fields opens the perspective to study atomic polarization with element specificity in a range of functional materials.

  13. Electrochemical preconcentration and hydride generation methods for trace determination of selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The use of atomic absorption spectrometry in combination with two different preconcentration/separation techniques for the determination of trace concentrations of selenium is described. Electrochemical preconcentration onto a platinum electrode with a subsequent atomization of selenium is discussed briefly. Several parameters are considered such as the presence of depolarizers, and the temperature of the electrolyzed solutions. Special attention is payed to the efficiency of the atomization step, and a method to improve this is proposed. Applications of the technique to real samples are also reported. Secondly, the separation of the selenium as the volatile selenium hydride from the sample solution is considered. Several papers in this thesis deal with commonly occurring interferants as nickel and copper and with ways of minimizing or avoiding the interferring effects, whereas other papers relate to more theoretical aspects of the hydride generation process. New methods for the determination of selenium in technical samples with high contents of nickel and copper are also presented

  14. Determination of trace and minor elements in alloys by atomic-absorption spectroscopy using an induction-heated graphite-well furnace as atom source-II.

    Science.gov (United States)

    Ashy, M A; Headridge, J B; Sowerbutts, A

    1974-06-01

    Results are presented for the atomic-absorption spectrophotometric determination of zinc in aluminium and aluminium-silicon alloys, and aluminium, antimony and tin in steels, by means of solid samples dropped into an induction-heated graphite-well furnace to produce the atomic vapour. PMID:18961510

  15. Flow injection determination of copper in mussels by flame atomic absorption spectrometry after on-line continuous ultrasound-assisted extraction

    Science.gov (United States)

    Moreno-Cid, A.; Yebra, M. C.

    2002-05-01

    Copper was extracted on-line from solid mussel samples by a simple and rapid continuous ultrasound-assisted extraction system (CUES). The CUES is connected to a flow injection manifold, which permits the on-line flame atomic absorption spectrometric determination of copper. The manifold is simple and the copper signal was obtained for a volume of 250 μl of acid leachate injected into an ultrapure water carrier stream. An experimental design was used for the optimization of the continuous leaching procedure. Compared to off-line ultrasonic-assisted extraction methods, sonication time is reduced by factors of 6-12, the leaching takes place at room temperature (20 °C), and the analysis time is reduced because centrifugation was not necessary to separate the liquid phase. The method allowed a total sampling frequency of 11 samples h -1, with a relative standard deviation for the complete procedure of 2.7% (for a sample containing 2.0 μg g -1 copper (wet mass, n=11). The limit of detection was 0.06 μg g -1 (wet mass) for 30 mg of sample. The analytical procedure was verified for a reference standard material (TORT-1). The analytical procedure was applied to mussel samples from Galicia (Spain).

  16. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry in water samples

    Directory of Open Access Journals (Sweden)

    Arpa Şahin Ç.

    2013-04-01

    Full Text Available A simple, rapid and inexpensive solidified floating organic drop microextraction (SFODME and flow injection flame atomic absorption spectrometric determination (FI-FAAS method for copper was developed. 3-amino-7-dimethylamino-2-methylphenazine (Neutral red, NR was used as the complexing agent. Several factors affecting the microextraction efficiency, such as, pH, NR and sodium dodecylbenzenesulfonate (SDBS concentration, extraction time, stirring rate, and temperature were investigated and optimized. Under optimized experimental conditions an enrichment factor of 541 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 0.5 – 20.0 ng mL–1 and the limit of detection (3s was 0.18 ng mL–1, the limit of quantification (10s was 0.58 ng mL–1. The relative standard deviation (RSD for 10 replicate measurements of 10 ng mL–1 copper was 2.7%. The developed method was successfully applied to the extraction and determination of copper in different certified reference materials (Estuarine water, Slew 3 and fortified water, TM 23.2 and real water samples and satisfactory results were obtained.

  17. Coprecipitation of trace elements with Ni2+/2-Nitroso-1-naphthol-4-sulfonic acid and their determination by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ni2+/2-Nitroso-1-naphthol-4-sulfonic acid precipitate was used for the coprecipitation of Co, Pb, Cu, Fe and Zn prior to their flame atomic absorption spectrometric (FAAS) determinations in environmental samples. The precipitate could be easily dissolved with concentrated nitric acid. The recovery values for analyte ions were higher than 95%. The parameters including pH, sample volume, centrifuge time, amounts of nickel and matrix effects were optimized for the quantitative recoveries of the analytes. The relative standard deviations of cobalt, lead, copper, iron and zinc were found 4.5, 5.7, 3.8, 6.1 and 7.5%, respectively. The limit of detection was calculated as 1.05, 2.67, 1.30, 1.38, and 0.50 μg L-1 for cobalt, lead, copper, iron and zinc. The validation of the procedure was checked by the analysis of IAEA 336 lichen and SLRS 4 Riverine water standard reference materials were analyzed with satisfactory results. The presented coprecipitation procedure was successfully applied to some environmental samples for determination of analyte ions.

  18. Evaluation of quartz tubes as atomization cells for gold determination by thermospray flame furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Morzan, Ezequiel; Piano, Ornela; Stripeikis, Jorge; Tudino, Mabel, E-mail: tudino@qi.fcen.uba.ar

    2012-11-15

    This work describes the development of a new analytical procedure able to determine gold by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) using nickel tubes (NiT) and quartz tubes (QT) as atomization cells. Experiments involving changes in the flow injection operational parameters, reagent concentrations and sizes of the QT were performed in order to optimize sensitivity. Under the same operational conditions, it was observed that the employment of QT increases the sensitivity of gold determination when compared to the nickel tube. Since solutions of highly concentrated hydrochloric acid showed the best performance as carriers, quartz tubes were also preferred due to its greater tolerance to corrosion by mineral acids in comparison to NiT. In addition, changes in the internal diameter of the QT revealed an important improvement in sensitivity for smaller tubes. Under optimized conditions the main figures of merit showed values close to that of graphite furnace atomic absorption spectrometry with the addition of an excellent improvement of the sample throughput. They are: LOD (3 s): 0.004 {mu}g mL{sup -1}, sensitivity: 0.306 ({mu}g mL{sup -1}){sup -1}, RSD% (n = 10, 1 {mu}g mL{sup -1}): 2.5, linear range: 0.01-4 {mu}g mL{sup -1} and sample throughput: 72 h{sup -1}. This new method was employed for the determination of gold in homeopathic medicines with no need of sample digestion. Validation of the analytical results will be shown. A full discussion of the most relevant findings regarding the role of the atomization cell as a strategic key for improving sensitivity will be also provided. - Highlights: Black-Right-Pointing-Pointer Quartz tubes as furnaces in TS-FFAAS. Black-Right-Pointing-Pointer Small tubes for controlling radial dispersion. Black-Right-Pointing-Pointer Improved figures of merit for gold determination. Black-Right-Pointing-Pointer Analysis of homeopathic medicines.

  19. In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies

    Energy Technology Data Exchange (ETDEWEB)

    Kılınç, Ersin, E-mail: kilincersin@gmail.com [Medical Laboratory Techniques, Vocational Higher School of Healthcare Studies, Mardin Artuklu University, 47200 Mardin (Turkey); Bakırdere, Sezgin [Yıldız Technical University, Art and Science Faculy, Department of Chemistry, Esenler, TR 34220 İstanbul (Turkey); Aydın, Fırat [Dicle University, Faculty of Science, Department of Chemistry, Laboratory of Chemical Analysis, TR 21280 Diyarbakır (Turkey); Ataman, O. Yavuz [Middle East Technical University, Faculty of Arts and Sciences, Department of Chemistry, 06800 Ankara (Turkey)

    2013-11-01

    Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FAAS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS were optimized. Sensitivity of FAAS for Bi was improved as 4.0 fold by W-coated SQT-FAAS while 613 fold enhancement in sensitivity was achieved by W-coated SQT-AT-FAAS using 5.0 min trapping with respect to conventional FAAS. MIBK was selected as organic solvent for the re-atomization of Bi from the trapping surface. Limit of detection values for W-coated SQT-FAAS and W-coated SQT-AT-FAAS was obtained as 0.14 μg mL{sup −1} and 0.51 ng mL{sup −1}, respectively. Linear calibration plot was obtained in the range of 2.5–25.0 ng mL{sup −1} for W-coated SQT-AT-FAAS. Accuracy of the W-coated SQT-AT-FAAS system was checked by analyzing a standard reference material, NIST 1643e. - Highlights: • Further increasing in sensitivity of SQT-AT-FAAS was obtained by using a W coated SQT. • 613 fold sensitivity enhancement was achieved by W coated SQT-AT-FAAS versus FAAS. • A sensitive, rapid and simple technique for Bi was developed with an LOD of 0.51 ng mL{sup −1}. • The technique is suggested for laboratories equipped with only a flame AA spectrometer.

  20. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    Science.gov (United States)

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  1. Spectro web: oscillator strength measurements of atomic absorption lines in the sun and procyon

    International Nuclear Information System (INIS)

    We update the online SpectroWeb database of spectral standard reference stars with 1178 oscillator strength values of atomic absorption lines observed in the optical spectrum of the Sun and Procyon (α CMi A). The updated line oscillator strengths are measured with best fits to the disk-integrated KPNO-FTS spectrum of the Sun observed between 4000 A and 6800 A using state-of-the-art detailed spectral synthesis calculations. A subset of 660 line oscillator strengths is validated with synthetic spectrum calculations of Procyon observed with ESO-UVES between 4700 A and 6800 A. The new log(gf)-values in SpectroWeb are improvements upon the values offered in the online Vienna Atomic Line Database (VALD). We find for neutral iron-group elements, such as Fe I, Ni I, Cr I, and Ti I, a statistically significant over-estimation of the VALD log((gf)-values for weak absorption lines with normalized central line depths below 15 %. For abundant lighter elements (e.g. Mg I and Ca I) this trend is statistically not significantly detectable, with the exception of Si I for which the log(gf)-values of 60 weak and medium-strong lines are substantially decreased to best fit the observed spectra. The newly measured log(gf)-values are available in the SpectroWeb database at http://spectra.freeshell.org, which interactively displays the observed and computed stellar spectra, together with corresponding atomic line data.

  2. Alternative approaches to correct interferences in the determination of boron in shrimps by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The aim of this study is to propose alternative techniques and methods in combination with the classical chemical modification to correct the major matrix interferences in the determination of boron in shrimps. The performance of an internal standard (Ge) for the determination of boron by the simultaneous multi-element atomic absorption spectrometry was tested. The use of internal standardization increased the recovery from 85.9% to 101% and allowed a simple correction of errors during sampling preparation and heating process. Furthermore, a new preparation procedure based on the use of citric acid during digestion and dilution steps improved the sensitivity of the method and decreased the limit of detection. Finally, a comparative study between the simultaneous multi-element atomic absorption spectrometry with a longitudinal Zeeman-effect background correction system, equipped with a transversely-heated graphite atomizer and the single element atomic absorption spectrometry with a D2 background correction system, equipped with an end-heated graphite atomizer was undertaken to investigate the different behavior of boron in both techniques. Different chemical modifiers for the determination of boron were tested with both techniques. Ni-citric acid and Ca were the optimal chemical modifiers when simultaneous multi-element atomic absorption spectrometry and single-element atomic absorption spectrometry were used, respectively. By using the single-element atomic absorption spectrometry, the calculated characteristic mass was 220 pg and the calculated limit of detection was 370 μg/kg. On the contrary, with simultaneous multi-element atomic absorption spectrometry, the characteristic mass was 2200 pg and the limit of detection was 5.5 mg/kg. - Highlights: • New approaches were developed to cope with interferences of B determination by ETAAS • Ge was used as internal standard for the determination of B by simultaneous ETAAS • Citric acid was used during digestion

  3. Alternative approaches to correct interferences in the determination of boron in shrimps by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pasias, I.N.; Pappa, Ch.; Katsarou, V.; Thomaidis, N.S., E-mail: ntho@chem.uoa.gr; Piperaki, E.A.

    2014-02-01

    The aim of this study is to propose alternative techniques and methods in combination with the classical chemical modification to correct the major matrix interferences in the determination of boron in shrimps. The performance of an internal standard (Ge) for the determination of boron by the simultaneous multi-element atomic absorption spectrometry was tested. The use of internal standardization increased the recovery from 85.9% to 101% and allowed a simple correction of errors during sampling preparation and heating process. Furthermore, a new preparation procedure based on the use of citric acid during digestion and dilution steps improved the sensitivity of the method and decreased the limit of detection. Finally, a comparative study between the simultaneous multi-element atomic absorption spectrometry with a longitudinal Zeeman-effect background correction system, equipped with a transversely-heated graphite atomizer and the single element atomic absorption spectrometry with a D{sub 2} background correction system, equipped with an end-heated graphite atomizer was undertaken to investigate the different behavior of boron in both techniques. Different chemical modifiers for the determination of boron were tested with both techniques. Ni-citric acid and Ca were the optimal chemical modifiers when simultaneous multi-element atomic absorption spectrometry and single-element atomic absorption spectrometry were used, respectively. By using the single-element atomic absorption spectrometry, the calculated characteristic mass was 220 pg and the calculated limit of detection was 370 μg/kg. On the contrary, with simultaneous multi-element atomic absorption spectrometry, the characteristic mass was 2200 pg and the limit of detection was 5.5 mg/kg. - Highlights: • New approaches were developed to cope with interferences of B determination by ETAAS • Ge was used as internal standard for the determination of B by simultaneous ETAAS • Citric acid was used during

  4. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  5. Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Emilene; Rampazzo, Roger T.; Dessuy, Morgana B. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R., E-mail: mgrvale@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Silva, Marcia M. da [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Welz, Bernhard [Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Katskov, Dmitri A. [Tshwane University of Technology (TUT), Faculty of Science, Chemistry Department, Pretoria 0001 (South Africa)

    2011-05-15

    In the present work a direct method for the determination of arsenic in petroleum derivatives has been developed, comparing the performance of a commercial transversely heated platform atomizer (THPA) with that of a transversely heated filter atomizer (THFA). The THFA results in a reduction of background absorption and an improved sensitivity as has been reported earlier for this atomizer. The mixture of 0.1% (m/v) Pd + 0.03% (m/v) Mg + 0.05% (v/v) Triton X-100 was used as the chemical modifier for both atomizers. The samples (naphtha, gasoline and petroleum condensate) were stabilized in the form of a three-component solution (detergentless microemulsion) with the sample, propan-1-ol and 0.1% (v/v) HNO{sub 3} in a ratio of 3.0:6.4:0.6. The characteristic mass of 13 pg found in the THFA was about a factor of two better than that of 28 pg obtained with the THPA; however, the limits of detection (LOD) and quantification (LOQ) were essentially the same for both atomizers (1.9 and 6.2 {mu}g L{sup -1}, respectively, for THPA, and 1.8 and 5.9 {mu}g L{sup -1}, respectively, for THFA) due to the increased noise observed with the THFA. A possible explanation for that is a partial blockage of the radiation from the hollow cathode lamp by the narrow inner diameter of this tube and the associated loss of radiation energy. Due to the lack of an appropriate certified reference material, recovery tests were carried out with inorganic and organic arsenic standards and the results were between 89% and 111%. The only advantage of the THFA found in this work was a reduction of the total analysis time by about 20% due to the 'hot injection' that could be realized with this furnace. The arsenic concentrations varied from < LOQ to 43.3 {mu}g L{sup -1} in the samples analyzed in this work.

  6. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fara, M.; Novak, F. [EGU Prague, PLC, Bichovice, Prague (Czechoslovakia)

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  7. Telecom-heralded single-photon absorption by a single atom

    Science.gov (United States)

    Lenhard, Andreas; Bock, Matthias; Becher, Christoph; Kucera, Stephan; Brito, José; Eich, Pascal; Müller, Philipp; Eschner, Jürgen

    2015-12-01

    We present, characterize, and apply the architecture of a photonic quantum interface between the near infrared and telecom spectral regions. A singly resonant optical parametric oscillator (OPO) operated below threshold, in combination with external filters, generates high-rate (>2.5 ×106s-1 ) narrowband photon pairs (˜7 MHz bandwidth); the signal photons are tuned to resonance with an atomic transition in Ca+, while the idler photons are at telecom wavelength. Interface operation is demonstrated through high-rate absorption of single photons by a single trapped ion (˜670 s-1 ), heralded by coincident telecom photons.

  8. Refraction and absorption of x rays by laser-dressed atoms

    CERN Document Server

    Buth, Christian; Young, Linda

    2008-01-01

    X-ray refraction and absorption by neon atoms under the influence of an 800 nm laser with an intensity of 10^13 W/cm^2 is investigated. For this purpose, we use an ab initio theory suitable for optical strong-field problems. Its results are interpreted in terms of a three-level model. On the Ne 1s --> 3p resonance, we find electromagnetically induced transparency (EIT) for x rays. Our work opens novel perspectives for ultrafast x-ray pulse shaping.

  9. The determination, by atomic-absorption spectrophotometry, of trace elements in sulphide concentrates

    International Nuclear Information System (INIS)

    The separation, concentration, and determination of trace elements in base-metal and sulphide concentrates are described. After the sample has been dissolved, the trace elements that form insoluble hydroxides are precipitated with lanthanum as the coprecipitant and are separated from those elements that form soluble amines with ammonia. The precipitate is dissolved, and the trace elements selenium, tellurium, arsenic, antimony, bismuth, tin, vanadium, chromium, manganese, and aluminium are determined by atomic-absorption spectrophotometry. Coefficients of variation between 1 and 10 per cent, depending on the amount of the element, were obtained, with limits of determination ranging from 0,1 to 50 p.p.m

  10. Impurities determination of uranium metal flame spectrophotometry and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    The atomic absorption flame spectrophotometry has been applied to the determination of chromium, copper, iron, lead, manganese and nickel in the metal of uranium. The first step to be done is to dissolve the uranium sample in nitric acid and then the uranium is extracted by a tributylphosphate-carbon tetrachloride solution. The aqueous phase which contains the chromium, copper, iron, lead, manganese and nickel is aspirated into an airacetylene flame. The results of this method are compared with the results of emission spectrographic method. It is found that this technique is competative to other methods in the sense that it is quite fast and accurate. (author)

  11. Ionisation of hydrogen-like atoms by a multiphoton absorption process

    International Nuclear Information System (INIS)

    The general expression for the amplitude of the probability of ionisation by a multiphoton absorption process is derived. Its non-relativistic limit is taken and the bipolar approximation is used for calculating the ionisation cross-section of hydrogen-like atoms. This latter involves the summation over intermediate virtual states by means of: a) a recursion relationship concerning angular functions, b) a particular technique which when applied to radial functions makes it possible to solve a system of inhomogeneous first-order differential equations. (authors)

  12. Direct determination of sodium and potassium in blood serum by flow injection and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    A simple and reliable method for the measurement of sodium and potassium in blood serum without any sample dilution by using flow injection and atomic absorption spectrophotometry is described. A sample throughout of 100 measurements per hour is possible. The coefficient of variation for within-run determination was about 1,14 and 2,36% for sodium and potassium, respectively, in serum samples (n=10). The method is easily adaptable to pediatric research, because of the low required sample volume of 5ul. (Author)

  13. Determination of vanadium in mussels by electrothermal atomic absorption spectrometry without chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Y.; Fernandez, P. [Centro de Control do Medio Marino, Peirao de Vilaxoan s/n, Vilagarcia de Arousa, 36611 Pontevedra (Spain); Gonzalez, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Quimica, 15706, Santiago de Compostela (Spain)

    2004-05-01

    A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 C and 2600 C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg{sup -1} (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg{sup -1} (wet weight). (orig.)

  14. Expressing self-absorption in the analytical function of inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Kántor, Tibor; Bartha, András

    2015-11-01

    The self-absorption of spectral lines was studied with up to date multi-element inductively coupled plasma atomic emission spectrometry (ICP-AES) instrumentation using radial and axial viewing of the plasma, as well, performing line peak height and line peak area measurements. Two resonance atomic and ionic lines of Cd and Mg were studied, the concentration range was extended up to 2000 mg/L. At the varying analyte concentration, constant matrix concentration of 10,000 mg/L Ca was ensured in the pneumatically nebulized solutions. The physical and the phenomenological formulation of the emission analytical function is overviewed and as the continuity of the earlier results the following equation is offered:

  15. Kaonic mass by critical absorption of kaonic-atom x rays

    Energy Technology Data Exchange (ETDEWEB)

    Lum, G.K.; Wiegand, C.E.; Kessler, E.G. Jr.; Deslattes, R.D.; Jacobs, L.; Schwitz, W.; Seki, R.

    1981-06-01

    The energy of x rays from the transition 6h..-->..5g in kaonic atoms of potassium falls on the K absorption edge of erbium. Measurement of the kaonic-x-ray attenuation in a precisely calibrated set of Er foils yields the x-ray energy 57 458.8 +- 6.3 eV. The kaon mass is related to energy through the Klein-Gordon equation plus corrections for radiative effects, electron screening, and other effects. The negative-kaon mass was found to be 493.640 +- 0.054 MeV/c/sup 2/ in agreement with the currently accepted value 493.669 +- 0.018 MeV/c/sup 2/ which was determined from x rays emitted by high-Z atoms where the corrections were larger than for Z = 19.

  16. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    International Nuclear Information System (INIS)

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D2 and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground water

  17. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za

    2015-03-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D{sub 2} and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground

  18. Multi-element analysis of manganese nodules by atomic absorption spectrometry without chemical separation

    Science.gov (United States)

    Kane, J.S.; Harnly, J.M.

    1982-01-01

    Five manganese nodules, including the USGS reference nodules A-1 and P-1, were analyzed for Co, Cu, Fe, K, Mg, Mn, Na, Ni and Zn without prior chemical separation by using a simultaneous multi-element atomic absorption spectrometer with an air-cetylene flame. The nodules were prepared in three digestion matrices. One of these solutions was measured using sixteen different combinations of burner height and air/acetylene ratios. Results for A-1 and P-1 are compared to recommended values and results for all nodules are compared to those obtained with an inductively coupled plasma. The elements Co, Cu, Fe, K, Mg, Mn, Na, Ni, and Zn are simultaneously determined with a composite recovery for all elements of 100 ?? 7%, independent of the digestion matrices, heights in the flame, or flame stoichiometries examined. Individual recoveries for Co, K, and Ni are considerably poorer in two digests than this composite figure, however. The optimum individual recoveries of 100 ?? 5% and imprecisions of 1-4%, except for zinc, are obtained when Co, K, Mn, Na and Ni are determined simultaneously in a concentrated digest, and in another analytical sequence, when Cu, Fe, Mg, Mn and Zn are measured simultaneously after dilution. Determination of manganese is equally accurate in the two sequences; its measurement in both assures internal consistency between the two measurement sequences. This approach improves analytical efficiency over that for conventional atomic absorption methods, while minimizing loss of accuracy or precision for individual elements. ?? 1982.

  19. [The application of atomic absorption spectrometry in automatic transmission fault detection].

    Science.gov (United States)

    Chen, Li-dan; Chen, Kai-kao

    2012-01-01

    The authors studied the innovative applications of atomic absorption spectrometry in the automatic transmission fault detection. After the authors have determined Fe, Cu and Cr contents in the five groups of Audi A6 main metal in automatic transmission fluid whose travel course is respectively 10-15 thousand kilometers, 20-26 thousand kilometers, 32-38 thousand kilometers, 43-49 thousand kilometers, and 52-58 thousand kilometers by atomic absorption spectrometry, the authors founded the database of primary metal content in the Audi A6 different mileage automatic transmission fluid (ATF). The research discovered that the main metal content in the automatic transmission fluid increased with the vehicles mileage and its normal metal content level in the automatic transmission fluid is between the two trend lines. The authors determined the main metal content of automatic transmission fluid which had faulty symptoms and compared it with its database value. Those can not only judge the wear condition of the automatic transmission which had faulty symptoms but also help the automobile detection and maintenance personnel to diagnose automatic transmission failure reasons without disintegration. This reduced automobile maintenance costs, and improved the quality of automobile maintenance.

  20. Determination of trace elements in ground water by two preconcentration methods using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    This is a comparative study between two different methods of preconcentration done to separate the trace elements cadmium, nickel. chromium, manganese, copper, zinc, and lead in drinking (ground) water samples taken from different locations in Gezira State, central Sudan (the map); these methods are (coprecipitation) with aluminium hydroxide and by Ammonium Pyrrolidine Dithiocarbamate (APDC) using Methyl Isobutyl Ketone (MIBK) as an organic solvent; and subsequent analysis by Atomic Absorption Spectrometry (AAS) for both methods. The result of comparison showed the superiority of the (APDC) coprecipitation method over the aluminium hydroxide coprecipitation method in the total percentage recoveries of the studied trace elements in drinking (ground) water samples, such results confirm previous studies. This study also involves direct analysis of these water samples by atomic absorption spectrometry to determine the concentrations of trace elements Cadmium, Nickel, Chromium, Manganese, Copper, Zinc and Lead and compare it to the corresponding guide line values described by the World Health Organization and the maximum concentrations of trace elements in drinking water permitted by the Sudanese Standards and Metrology Organizations (SSMO), where the concentrations of some elements in some samples were found to be different than the described values by both of the organizations. The study includes a trial to throw light on the effect of the proximity of the water samples sources to the Blue Nile river on its trace elements concentrations; no relation was proved to exist in that respect.(Author)

  1. Determination of Elements by Atomic Absorption Spectrometry in Medicinal Plants Employed to Alleviate Common Cold Symptoms

    Institute of Scientific and Technical Information of China (English)

    F Zehra Küçükbay; Ebru Kuyumcu

    2014-01-01

    Eleven important medicinal plants generally used by the people of Turkey for the treatment of com-mon cold have been studied for their mineral contents .Eleven minor and major elements (essential ,non-essen-tial and toxic) were identified in the Asplenium adiantum-nigrum L .,Althaea of ficinalis L .,Verbascum phlomoides L .,Euphorbiachamaesyce L .,Zizyphus jujube Miller ,Peganum harmala L .,Arum dioscori-dis Sm .,Sambucus nigra L .,Piper longum L .,Tussilago farfara L .and Elettariacardamomum Maton by employing flame atomic absorption and emission spectrometry and electro-thermal atomic absorption spectrom-etry .Microwave digestion procedure for total concentration was applied under optimized conditions for dissolu-tion of medicinal plants .Plant based biological certified reference materials (CRMs) served as standards for quantification .These elements are found to be present in varying concentrations in the studied plants .The baseline data presented in this work can be used in understanding the role of essential ,non-essential and toxic elements in nutritive ,preventive and therapeutic properties of medicinal plants .

  2. New niobium and rhenium halides synthesis routes by atomic vaporization. X-ray absorption spectroscopy characterization

    International Nuclear Information System (INIS)

    New synthetic route as the so called 'chimie douce' or MVS (Metal Vapor Synthesis) has been an increasing field lately to synthesize new kind of solid state structures. Our interest is the assembly of small molecular building blocks of early transition metal halides. We illustrate the use of vaporized rare earth metals to condense NbCls units. We probed the local order around the Nb atom with X-Ray Absorption Spectroscopy, far Infra-Red and XPS in order to better understand the mechanisms involved. A first EXAFS, IR and XPS study on solid state products has shown the evolution of the NbCl5 dimer towards a chain like structure. However, the condensation patterns depends on the rare earth atoms vaporized. These results have been confirmed by X-ray Absorption ab initio calculations. Because our compounds are extremely air sensitive we have developed in situ MVS reactor to take 'snapshots' of the structural intermediates by EXAFS. This study showed the condensation of the initial NbCl5 building blocks by reduction of the Nb oxidation state by rare earth vaporization. This method is a new way of looking at condensation mechanisms via structural evolution observed by EXAFS. (author)

  3. Effect of Atomic Coherence on Absorption in Four-level Systems: an Analytical study

    CERN Document Server

    Sandhya, S N

    2006-01-01

    Absorption profile of a four-level ladder atomic system interacting with three driving fields is studied perturbatively and analytical results are presented. Numerical results where the driving field strengths are treated upto all orders are presented. The absorption features is studied in two regimes, i) the weak middle transition coupling, i.e. $\\Omega_2 \\Omega_{1,3}$ and ii) the strong middle transition coupling $\\Omega_2 \\Omega_{1,3}$. In case i), it is shown that the ground state absorption and the saturation characteristics of the population of level 2 reveal deviation due to the presence of upper level couplings. In particular, the saturation curve for the population of level 2 shows a dip for $\\Omega_1 = \\Omega_3$. While the populations of levels 3 and 4 show a maxima when this resonance condition is satisfied. Thus the resonance condition provides a criterion for maximally populating the upper levels. A second order perturbation calculation reveals the nature of this minima (maxima). In the second ca...

  4. Mass spectrometric immunoassay

    Science.gov (United States)

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2007-12-04

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  5. Evaluation on corrosively dissolved gold induced by alkanethiol monolayer with atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    We have monitored a gold corrosive dissolution behavior accompanied in n-alkanethiol like n-dodecanethiol assembled process with in situ quartz crystal microbalance (QCM), and then observed it with atomic force microscopy (AFM) which showed an evident image of corrosive defects or holes produced on gold substrate, corresponding to gold dissolution induced by the alkanethiol molecules in the presence of oxygen. For detection of the dissolved gold defects during alkanethiol assembled process, an atomic absorption spectroscopy (AAS) has been carried out in this paper, and the detection limit for the dissolved gold could be evaluated to be 15.4 ng/mL. The amount of dissolved gold from the substrates of gold plates as functions of immersion time, acid media, solvents and thiol concentration has been examined in the oxygen saturated solutions. In comparison with in situ QCM method, the kinetics behavior of the long-term gold corrosion on the gold plates in 1.0 mmol/L of n-dodecanethiol solution determined with AAS method was a slow process, and its corrosion rate on gold dissolution could be evaluated to be about 4.4 x 10-5 ng.cm-2.s-1, corresponding to 1.3 x 108 Au atoms.cm-2.s-1, that was much smaller than that of initial rate monitored with in situ QCM. Both kinetics equations obtained with QCM and AAS showed a consistent corrosion behavior on gold surfaces.

  6. Slurry sampling techniques for the determination of lead in Bangladeshi fish samples by electrothermal atomic absorption spectrometry with a metal tube atomizer.

    Science.gov (United States)

    Rahman, Mohammad Arifur; Kaneco, Satoshi; Suzuki, Tohru; Katsumata, Hideyuki; Ohta, Kiyohisa

    2005-05-01

    Ultrasonic slurry sampling electrothermal atomic absorption spectrometry with a metal tube atomizer has been applied to the determination of lead in Bangladeshi fish samples. The slurry sampling conditions, such as slurry stabilizing agent, slurry concentration, pyrolysis temperature for the slurried fish samples, particle size and ultrasonic agitation time, were optimized for electrothermal atomic absorption spectrometry with the Mo tube atomizer. Thiourea was used as the chemical modifier for the interference of matrix elements. The detection limit was 53 fg (3S/N). The determined amount of lead in Bangladeshi fish samples was consistent with those measured in the dissolved acid-digested samples. The advantages of the proposed methods are easy calibration, simplicity, low cost and rapid analysis.

  7. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  8. ANALYSIS OF VARIOUS METAL IONS IN SOME MEDICINAL PLANTS USING ATOMIC ABSORPTION SPECTROPHOTOMETER

    Directory of Open Access Journals (Sweden)

    Y.L. Ramachandra*, C. Ashajyothi and Padmalatha S. Rai

    2012-07-01

    Full Text Available Metal ions such as iron , lead, copper, nickel, cadmium , chromium and zinc were investigated in medicinally important plants Alstonia scholaris, Tabernaemontana coronariae, Asparagus racemosus, Mimosa pudica, Leucas aspera and Adhatoda vasica applying atomic absorption spectrophotometer techniques. The purpose of this study was to standardize various metal ion Contamination in indigenous medicinal plants. Maximum concentration of lead was present in Leucas aspera and Adhatoda vasica followed by Alstonia scholaris, Tabernaemontana coronariae and Asparagus racemosus. The concentration of lead in Mimosa pudica was below the detectable level. The maximum concentration of zinc was detected in Adhatoda vasica followed by Leucas aspera, Asparagus racemosus, Tabernaemontana coronariae, Alstonia scholaris and Mimosa pudica. The concentration of Cadmium, nickel and chromium was below the detectable level.

  9. Analysis of soil reference materials for vanadium(+5) species by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Solid Certified Reference Materials (CRMs) with known vanadium(+5) content are currently not commercially available. Because of this, vanadium species have been determined in solid CRMs of soil, viz. CRM023-50, CRM024-50, CRM049-50, SQC001 and SQC0012. These CRMs are certified with only total vanadium content. Vanadium(+5) was extracted from soil reference materials with 0.1 M Na2CO3. The quantification of V(+5) was carried out by electrothermal atomic absorption spectrometry (ET-AAS). The concentration of V(+5) in the analyzed CRMs was found to be ranging between 3.60 and 86.0 μg g-1. It was also found that SQC001 contains approximately 88% of vanadium as V(+5) species. Statistical evaluation of the results of the two methods by paired t-test was in good agreement at 95% level of confidence.

  10. The coupling of rapidly synergistic cloud point extraction with thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Rapidly synergistic cloud point extraction (RS-CPE) was coupled with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) to result in new CPE patterns and accelerated (1 min) protocols. It is demonstrated, for the case of copper (II) ion, that TS-FF-AAS improves the sampling efficiency and the sensitivity of FAAS determinations. Problems of nebulization associated with previous methods based on the coupling of FAAS and RS-CPE are overcome. TS-FF-AAS also improves sensitivity and gives a limit of detection for copper of 0.20 μg L-1, which is better by a factor of 32. Compared to direct FAAS, the factor is 114. (author)

  11. Neutron activation analysis and atomic absorption spectrophotometry for the analysis of fresh, pasteurised and powder milk

    Energy Technology Data Exchange (ETDEWEB)

    Wasim, M.; Rehman, S.; Arif, M.; Fatima, I.; Zaidi, J.H. [Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan). Chemistry Div.

    2012-07-01

    This study shows the application of semi-absolute k{sub 0} instrumental neutron activation analysis (k{sub 0}-INAA), epithermal neutron activation analysis (ENAA) and atomic absorption spectrophotometry (AAS) for the determination of 21 elements (Br, Ca, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sc Sr, and Zn) in different types of milk samples. The ENAA was required for the determination of iodine, AAS for Cu, Ni and Pb and the rest of the elements were measured by k{sub 0}-INAA. Thirteen elements (Br, Ca, Cl, Cs, Cu, Fe, K, Mg, Na, P, Rb, Sr and Zn) were identified in all milk samples. Ni was detected in eleven and Pb in two samples. Concentrations of most of the elements were within the ranges of the world reported data. The data was further explored by principal component analysis to find relationships between samples and elements. (orig.)

  12. DETERMINATION OF NICKLE CONTENTS IN SELECTED VANASPATI GHEE THROUGH ATOMIC ABSORPTION SPECTROPHOTOMETER

    Directory of Open Access Journals (Sweden)

    Waqas Ahmad

    2014-12-01

    Full Text Available To convert vegetable edible oils into vanaspati ghee, nickel is used as a catalyst in the hydrogenation process. A simple and fast method for the trace level determination of nickel in ghee is reported. In this different methods were applied for the extraction of residual nickel from ghee samples. Using toluene, as organic solvents, an acid mixture was used for the extraction of nickel. Extracted nickel was quantified with atomic absorption. Among the organic solvents, toluene proved to be the best solvent mediating a 95% extraction of nickel from ghee samples. Nickel was extracted and determined in ten different brands of ghee and in all samples its amount was well above the permissible limit of WHO (0.2 μg/g. Other metals like lead, zinc, copper, and cadmium were also determined and their concentrations were found to be much below the WHO permissible limits.

  13. Determination of Trace Selenium in Electrolytic Manganese by Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    YAO Jun; ZHOU Fang-qin; MA Cheng-jin; TUO Yong; LIU Jian-ben; WU Zhu-qin; TAN Zhu-zhong

    2003-01-01

    The effects of four types of graphite tube and five matrix modifiers on the determination of selenium by graphite furnace atomic absorption spectrometry were compared.The results show that platform thermolysis coat graphite tube and magnesium nitrate and cobaltco as matrix modifer can get a high sensitivity and a good recovery.The optimized working conditions and interference in the determination were invesigated.This result is consistent with that of XRF.The recovery is from 100.8 % to102.2 %,the relative standard deviation is from 3.47% to 5.56 % (n=9),and the detection limit of selenium is 378 pg (C=44.5μg/g to 97.3μg/g.).The proposed method can be applied to the rapid determination of selenium in electrolytic manganese.

  14. Laser absorption spectroscopy diagnostics of helium metastable atoms generated in dielectric barrier discharge cryoplasmas

    Science.gov (United States)

    Urabe, Keiichiro; Muneoka, Hitoshi; Stauss, Sven; Sakai, Osamu; Terashima, Kazuo

    2015-10-01

    Cryoplasmas, which are plasmas whose gas temperatures are below room temperature (RT), have shown dynamic changes in their physical and chemical characteristics when the gas temperature in the plasmas (Tgp) was decreased from RT. In this study, we measured the temporal behavior of helium metastable (Hem) atoms generated in a parallel-plate dielectric barrier discharge at ambient gas temperatures (Tga) of 300, 100, and 14 K and with a gas density similar to atmospheric conditions by laser absorption spectroscopy. The increments of Tgp to Tga were less than 20 K. We found from the results that the Hem lifetime and maximum density become longer and larger over one order of magnitude for lower Tga. The reasons for the long Hem lifetime at low Tga are decreases in the rate coefficients of three-body Hem quenching reactions and in the amounts of molecular impurities with boiling points higher than that of He.

  15. The direct determination of HgS by thermal desorption coupled with atomic absorption spectrometry

    Science.gov (United States)

    Coufalík, Pavel; Zvěřina, Ondřej; Komárek, Josef

    2016-04-01

    This research was aimed at the direct determination of HgS in environmental samples by means of thermal desorption coupled with atomic absorption spectrometry. Operating parameters of the apparatus used for thermal desorption (including a prototype desorption unit) are described in this work, as well as the procedure for measuring mercury release curves together with an evaluation of the analytical signal including two methods of peak integration. The results of thermal desorption were compared with HgS contents obtained by sequential extraction. The limits of quantification of the proposed method for the selective determination of the black and red forms of HgS were 4 μg kg- 1 and 5 μg kg- 1, respectively. The limit of quantification of red HgS in soils was 35 μg kg- 1. The developed analytical procedure was applied to soil and sediment samples from historical mining areas.

  16. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.

    Science.gov (United States)

    Çiftçi, Tülin Deniz; Henden, Emur

    2016-08-01

    Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions. PMID:27236436

  17. Cloud point extraction for the determination of copper in environmental samples by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2008-01-01

    Full Text Available A simple cloud point extraction procedure is presented for the preconcentration of copper in various samples. After complexation by 4-hydroxy-2-mercapto-6-propylpyrimidine (PTU, copper ions are quantitatively extracted into the phase rich in Triton X-114 after centrifugation. Methanol acidified with 0.5 mol L-1 HNO3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS. Analytical parameters including concentrations for PTU, Triton X-114 and HNO3, bath temperature, centrifugation rate and time were optimized. The influences of the matrix ions on the recoveries of copper ions were investigated. The detection limits (3SDb/m, n=4 of 1.6 ng mL-1 along with enrichment factors of 30 for Cu were achieved. The proposed procedure was applied to the analysis of environmental samples.

  18. Removal of iron interferences by solvent extraction for geochemical analysis by atomic-absorption spectrophotometry

    Science.gov (United States)

    Zhou, L.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    Iron is a common interferent in the determination of many elements in geochemical samples. Two approaches for its removal have been taken. The first involves removal of iron by extraction with methyl isobutyl ketone (MIBK) from hydrochloric acid medium, leaving the analytes in the aqueous phase. The second consists of reduction of iron(III) to iron(II) by ascorbic acid to minimize its extraction into MIBK, so that the analytes may be isolated by extraction. Elements of interest can then be determined using the aqueous solution or the organic extract, as appropriate. Operating factors such as the concentration of hydrochloric acid, amounts of iron present, number of extractions, the presence or absence of a salting-out agent, and the optimum ratio of ascorbic acid to iron have been determined. These factors have general applications in geochemical analysis by atomic-absorption spectrophotometry. ?? 1985.

  19. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    Science.gov (United States)

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. PMID:27566338

  20. Estimation of lead and cadmium in various food commodities by electrothermal atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    The determination of lead and cadmium was carried out in various types of food commodities including poultry farm chicken eggs, integrated diet of winter season for the inhabitants of Rawalpindi/Islamabad area and different brands of baby cereals, employing electrothermal atomic absorption spectrophotometric technique. The results showed that integrated diet contained the highest amount of lead whereas the maximum concentration of cadmium was observed in samples of baby cereals. The effect of mechanical food processing on the concentration levels of these elements was discussed. The results obtained were compared with the reported values for other countries. Intake values of these toxic elements through these food articles were calculated and compared with the tolerance levels of WHO. (author)

  1. Preconcentration of Vanadium(Ⅴ) on Crosslinked Chitosan and Determination by Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method is proposed for the preconcentration of vanadium(Ⅴ) with crosslinked chitosan (CCTS) and determination by graphite furnace atomic absorption spectrometry (GFAAS). The adsorption rate of vanadium(Ⅴ) by CCTS was 97% at pH 4.0, and vanadium(Ⅴ) was eluted from crosslinked chitosan with 2 mL 2.0 mol*L-1 chlorhydric acid and determined by GFAAS. The detection limit (3σ,n=7) for vanadium(Ⅴ) was 4.8×1 0-12g and the relative standard deviation (R.S.D) at concentration level of 2.6 μg*L-1 is less than 3.6%. The method shows a good selectivity and high sensitivity, and it was applied to determination of vanadium(Ⅴ) in oyster and water samples. The analytic recoveries are (97±5)%.

  2. A summary of transition probabilities for atomic absorption lines formed in low-density clouds

    Science.gov (United States)

    Morton, D. C.; Smith, W. H.

    1973-01-01

    A table of wavelengths, statistical weights, and excitation energies is given for 944 atomic spectral lines in 221 multiplets whose lower energy levels lie below 0.275 eV. Oscillator strengths were adopted for 635 lines in 155 multiplets from the available experimental and theoretical determinations. Radiation damping constants also were derived for most of these lines. This table contains the lines most likely to be observed in absorption in interstellar clouds, circumstellar shells, and the clouds in the direction of quasars where neither the particle density nor the radiation density is high enough to populate the higher levels. All ions of all elements from hydrogen to zinc are included which have resonance lines longward of 912 A, although a number of weaker lines of neutrals and first ions have been omitted.

  3. Determination of lanthanides in yttrium and praseodymium oxides by atomic absorption spectrophotometry using a graphite furnace

    International Nuclear Information System (INIS)

    The operational conditions for the graphite furnace, the instrumental parameters and the sensitivity for the determination of Pr, Nd, Sm, Eu, Y, Gd, Dy, Er, Ho, Tm, and Yb in Y2O3 and Pr2O3 by atomic absorption spectrophotometry are presented. The analyses were carried out into a highly pure argon atmosphere and using pyrolytic graphite tube and graphite supporting electrodes. The accuracy and precision of the method were checked through analyses of synthetic lanthanides mixtures. The concentration range of the lanthanides varied from 0,003 to 3,5% in Y2O3 and from 0,001 to 3,5% in Pr2O3. (Author)

  4. Determination of molybdenum in silicates through atomic absorption spectrometry using pre-concentration by active carbon

    International Nuclear Information System (INIS)

    An analytical procedure for molybdenum determination in geological materials through Atomic Absorption Spectrometry, after pre-concentration of the Mo-APDC complex in activated carbon, has been developed, which is needed in order to reduce the dilution effect in the sample decomposition. During the development of this method the influence of pH, the amount of APDC for complexation of Mo and the interference of Fe, Ca, Mn, Al, K, Na, Mg and Ti were tested. It was shown that none of these causes any significant effect on the Mo determination proposed. The results of the analysis at the international geochemical reference samples JB-1 (basalt) and GH (granite) were very accurate and showed that the detection limit in rocks (1,00g) is 0,6 ppm, when using sample dilution of 1 ml and microinjection techniques. (author)

  5. Spectrometric techniques 4

    CERN Document Server

    Vanasse, George A

    2013-01-01

    Spectrometric Techniques, Volume IV discusses three widely diversified areas of spectrometric techniques. The book focuses on three spectrometric methods. Chapter 1 discusses the phenomenology and applications of Coherent Anti-Stokes Raman Spectroscopy (CARS), the most commonly used optical technique that exploit the Raman effect. The second chapter is concerned with diffraction gratings and mountings for the Vacuum Ultraviolet Spectral Region. Chapter 3 accounts the uses of mass spectrometry, detectors, types of spectrometers, and ion sources. Physicists and chemists will find the book a go

  6. Observations of absorption lines from highly ionized atoms. [of interstellar medium

    Science.gov (United States)

    Jenkins, Edward B.

    1987-01-01

    In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. few x 0.001/cu cm) existing at coronal temperatures log T = 5.3 or 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity (v = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic UV radiation from very hot, dwarf stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.

  7. Wet sample digestion for quantification of vanadium(V) in serum by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Three types of pressure digestion systems used prior to the determination of the ultratrace element vanadium by electrothermal atomic absorption spectrometry were evaluated: The high-pressure ashing (HPA) system, the DAB III pressure digestion system and the pressurized microwave digestion (PMD) system. Complete sample digestion and no loss of graphite tube sensitivity as well as reliable vanadium values could only be achieved with HPA digests of freeze-dried serum. The mean recovery rate was 98% and no loss of tube sensitivity could be observed. Using non-lyophilized serum the mean recovery rate was 70%. The DAB III digestion system, vicarious for closed pressure digestion in steel bombs with an allowable temperature up to about 200C, cannot be recommended to mineralize human biological material for vanadium determinations, because the remaining not completely decomposed organic compounds extracted together with the vanadium-cupferron complex caused a marked carbon-buildup and formation of carbides in the graphite tube were found to change the shape of the absorption signals distinctly, and to decline the tube sensitivity strongly (about 25%) so that reliable results cannot be achieved. The recovery rate was too low in general (about 50%). In addition, a subsequent treatment of the DAB III digests with perchloric acid was unsuccessful. The PMD system proved to be not suited, because the samples became highly contaminated by vanadium possibly from the titan seal. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Methylmercury determination in biological samples using electrothermal atomic absorption spectrometry after acid leaching extraction

    Energy Technology Data Exchange (ETDEWEB)

    Saber-Tehrani, Mohammad; Hashemi-Moghaddam, Hamid; Givianrad, Mohammad Hadi; Abroomand-Azar, Parviz [Islamic Azad University, Department of Chemistry, Science and Research Branch, Tehran (Iran)

    2006-11-15

    An efficient and sensitive method for the determination of methylmercury in biological samples was developed based on acid leaching extraction of methylmercury into toluene. Methylmercury in the organic phase was determined by electrothermal atomic absorption spectrometry (ETAAS). The methylmercury signal was enhanced and the reproducibility increased by formation of certain complexes and addition of Pd-DDC modifier. The complex of methylmercury with DDC produced the optimum analytical signal in terms of sensitivity and reproducibility compared to complexes with dithizone, cysteine, 1,10-phenanthroline, and diethyldithiocarbamate. Method performance was optimized by modifying parameters such as temperature of mineralization, atomization, and gas flow rate. The limit of detection for methylmercury determination was 0.015 {mu}g g{sup -1} and the RSD of the whole procedure was 12% for human teeth samples (n=5) and 15.8% for hair samples (n=5). The method's accuracy was investigated by using NIES-13 and by spiking the samples with different amounts of methylmercury. The results were in good agreement with the certified values and the recoveries were 88-95%. (orig.)

  9. Monitoring heavy metals pollution in Bandar Emam region by using atomic absorption technique

    International Nuclear Information System (INIS)

    The level and distribution of five heavy metals Ni, V, Cr, Pb, and Cd in the sediments waters of three areas Bandar Emam were investigated by the use of atomic absorption technique. Metals have been analyzed for different grain size fractions. These metals levels in sediment are expressed as μgg4+ and metal level in water is expressed as ppm. The concentrations of the elements under investigation is much higher than the concentrations of these elements and these of mean in sediments and waters which were compared with the concentration of these elements in the earth crust and international atomic energy agency and ICRP standards. Significant variations in the level of these metals were considered due to: atmospheric fall out as well as waste waters disposal and anthropogenic inputs, Ni and V were due to non-anthropogenic sources and analysis indicate that the sources of Cr and Cd are mainly oil pollution. High level of lead was considered due to inputs from oil discarded solid waters and the prior high rate petrol combustion lead. Monitoring water and sediments, in other words periodic or continuous determination of the amounts of ionizing radiation in water and sediments is one of the positive steps against the pollution in these regions

  10. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry.

    Science.gov (United States)

    Sahin, Ciğdem Arpa; Tokgöz, Ilknur

    2010-05-14

    A rapid, simple and cost effective solidified floating organic drop microextraction (SFODME) and flow injection flame atomic absorption spectrometric determination (FI-FAAS) method for copper was developed. In this method, a free microdrop of 1-undecanol containing 1,5-diphenyl carbazide (DPC) as the complexing agent was transferred to the surface of an aqueous sample including Cu(II) ions, while being agitated by a stirring bar in the bulk of the solution. Under the proper stirring conditions, the suspended microdrop can remain at the top-center position of the aqueous sample. After the completion of the extraction, the sample vial was cooled by placing it in a refrigerator for 10min. The solidified microdrop was then transferred into a conical vial, where it melted immediately and diluted to 300microL with ethanol. Finally, copper ions in 200microL of diluted solution were determined by FI-FAAS. Several factors affecting the microextraction efficiency, such as type of extraction solvent, pH, complexing agent concentration, extraction time, stirring rate, sample volume and temperature were investigated and optimized. Under optimized conditions for 100mL of solution, the preconcentration factor was 333 and the enrichment factor was 324. The limit of detection (3s) was 0.4ngmL(-1), the limit of quantification (10s) was 1.1ngmL(-1) and the relative standard deviation (RSD) for 10 replicate measurements of 10ngmL(-1) copper was 0.9%. The proposed method was successfully applied to the determination of copper in different water samples. PMID:20441870

  11. Matrix elimination method for the determination of precious metals in ores using electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Salih, Bekir; Celikbiçak, Omür; Döker, Serhat; Doğan, Mehmet

    2007-03-28

    Poly(N-(hydroxymethyl)methacrylamide)-1-allyl-2-thiourea) hydrogels, poly(NHMMA-ATU), were synthesized by gamma radiation using (60)Co gamma source in the ternary mixture of NHMMA-ATU-H(2)O. These hydrogels were used for the specific gold, silver, platinum and palladium recovery, pre-concentration and matrix elimination from the solutions containing trace amounts of precious metal ions. Elimination of inorganic matrices such as different transition and heavy metal ions, and anions was performed by adjusting the solution pH to 0.5 that was the selective adsorption pH of the precious metal ions. Desorption of the precious metal ions was performed by using 0.8 M thiourea in 3M HCl as the most efficient desorbing agent with recovery values more than 95%. In the desorption medium, thiourea effect on the atomic signal was eliminated by selecting proper pyrolysis and atomization temperatures for all precious metal ions. Precision and the accuracy of the results were improved in the graphite furnace-atomic absorption spectrometer (GFAAS) measurements by applying the developed matrix elimination method performing the adsorption at pH 0.5. Pre-concentration factors of the studied precious metal ions were found to be at least 1000-fold. Detection limits of the precious metal ions were found to be less than 10 ng L(-1) of the all studied precious metal ions by using the proposed pre-concentration method. Determination of trace levels of the precious metals in the sea-water, anode slime, geological samples and photographic fixer solutions were performed using GFAAS clearly after applying the adsorption-desorption cycle onto the poly(NHMMA-UTU) hydrogels. PMID:17386783

  12. Atomic Transition Frequencies, Isotope Shifts, and Sensitivity to Variation of the Fine Structure Constant for Studies of Quasar Absorption Spectra

    Science.gov (United States)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, α = {e}2/hslash c , could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that α varies spatially (61). That is, in one direction on the sky α seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger.

  13. Absorption-amplification response with or without spontaneously generated coherence effect in a four-level atomic system

    Institute of Scientific and Technical Information of China (English)

    李家华; 杨文星; 彭菊村

    2004-01-01

    We discuss and analyze the absorption properties of a weak probe field in a typical four-level atomic system in the presence of a spontaneously generated coherence (SGC) term. The influences of the SGC and a coherent pump field on the probe absorption-amplification are investigated. The results show that the absorption of such a weak probe field can be dramatically enhanced due to the SGC effect. At the same time, the probe-absorption profile exhibits a two-peak structure and the probe-absorption peak gradually decreases as the pump intensity increases. On the contrary, the amplification of such a weak probe field near the line center of the probe transition can be achieved by adjusting the coherent pump field intensity in the absence of the SGC effect.

  14. Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Hua; YANG Wen-Xing; PENG Ju-Cun

    2004-01-01

    We discuss and analyze the absorption-amplification properties of a weak probe field in a typical four-level atomic system in the presence of an additional coherence term, the spontaneously generated coherence term. Theinfluences of the spontaneously generated coherence and a coherent pump field on the probe absorption (amplification)are investigated in detail. We show that the absorption of such a weak probe field can be dramatically enhanced dueto the presence of the spontaneously generated coherence. At the same time, the probe-absorption profile exhibitsthe double-peak structure and the probe-absorption peak gradually decreases as the pump intensity increases. On thecontrary, the amplification of such a weak probe field near the line center of the probe transition can be achieved byadjusting the coherent pump field intensity in the absence of the spontaneously generated coherence.

  15. Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

    Institute of Scientific and Technical Information of China (English)

    LIJia-Hua; YANGWen-Xing; PENGJu-Cun

    2004-01-01

    We discuss and analyze the absorption-amplification properties of a weak probe field in a typical fourlevel atomic system in the presence of an additional coherence term, the spontaneously generated coherence term. The influences of the spontaneously generated coherence and a coherent pump field on the probe absorption (amplification) are investigated in detail. We show that the absorption of such a weak probe field can be dramatically enhanced due to the presence of the spontaneously generated coherence. At the same time, the probe-absorption profile exhibits the double-peak structure and the probe-absorption peak gradually decreases as the pump intensity increases. On the contrary, the amplification of such a weak probe field near the line center of the probe transition can be achieved by adiusting the coherent Dump field intensity in the absence of the spontaneously generated coherence.

  16. Simultaneous determination of cadmium and lead in wine by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Freschi, Gian P. G.; Dakuzaku, Carolina S.; de Moraes, Mercedes; Nóbrega, Joaquim A.; Gomes Neto, José A.

    2001-10-01

    A method has been developed for the direct simultaneous determination of Cd and Pb in white and red wine by electrothermal atomic absorption spectrometry (ET-AAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of both analytes during pyrolysis and atomization stages were investigated in 0.028 mol l -1 HNO 3 and in 1+1 v/v diluted wine using mixtures of Pd(NO 3) 2+Mg(NO 3) 2 and NH 4H 2PO 4+Mg(NO 3) 2 as chemical modifiers. With 5 μg Pd+3 μg Mg as the modifiers and a two-step pyrolysis (10 s at 400°C and 10 s at 600°C), the formation of carbonaceous residues inside the atomizer was avoided. For 20 μl of sample (wine+0.056 mol l -1 HNO 3, 1+1, v/v) dispensed into the graphite tube, analytical curves in the 0.10-1.0 μg l -1 Cd and 5.0-50 μg l -1 Pb ranges were established. The characteristic mass was approximately 0.6 pg for Cd and 33 pg for Pb, and the lifetime of the tube was approximately 400 firings. The limits of detection (LOD) based on integrated absorbance (0.03 μg l -1 for Cd, 0.8 μg l -1 for Pb) exceeded the requirements of Brazilian Food Regulations (decree #55871 from Health Department), which establish the maximum permissible level for Cd at 200 μg l -1 and for Pb at 500 μg l -1. The relative standard deviations ( n=12) were typically <8% for Cd and <6% for Pb. The recoveries of Cd and Pb added to wine samples varied from 88 to 107% and 93 to 103%, respectively. The accuracy of the direct determination of Cd and Pb was checked for 10 table wines by comparing the results with those obtained for digested wine using single-element ET-AAS, which were in agreement at the 95% confidence level.

  17. Autler-Townes doublet in the absorption spectra for the transition between excited states of cold cesium atoms

    Institute of Scientific and Technical Information of China (English)

    Liang Qiang-Bing; Yang Bao-Dong; Yang Jian-Feng; Zhang Tian-Cai; Wang Jun-Min

    2010-01-01

    Autler-Townes splitting in absorption spectra of the excited states 6 2P3/2 - 82S1/2 of cold cesium atoms confined in a magneto-optical trap has been observed.Experimental data of the Autler-Townes splitting fit well to the dressedatom theory,by which the fact of the cold atoms dressed by cooling/trapping laser beams is revealed.The results of the theoretical fitting with experiment not only told us the effective Rabi frequency cold atoms experienced,but also could be used for measuring the probability amplitudes of the dressed states.

  18. SPECIATION OF SELENIUM(IV) AND SELENIUM(VI) USING COUPLED ION CHROMATOGRAPHY: HYDRIDE GENERATION ATOMIC ABSORPTION SPECTROMETRY

    Science.gov (United States)

    A simple method was developed to speciate inorganic selenium in the microgram per liter range using coupled ion chromatography-hydride generation atomic absorption spectrometry. Because of the differences in toxicity and adsorption behavior, determination of the redox states selenite, Se(IV), and s...

  19. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  20. Overcoming Matrix Effects in a Complex Sample: Analysis of Multiple Elements in Multivitamins by Atomic Absorption Spectroscopy

    Science.gov (United States)

    Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad

    2011-01-01

    A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…

  1. VUV absorption spectroscopy measurements of the role of fast neutral atoms in high-power gap breakdown

    Energy Technology Data Exchange (ETDEWEB)

    FILUK,A.B.; BAILEY,JAMES E.; CUNEO,MICHAEL E.; LAKE,PATRICK WAYNE; NASH,THOMAS J.; NOACK,DONALD D.; MARON,Y.

    2000-03-20

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

  2. Assessing the Engagement, Learning, and Overall Experience of Students Operating an Atomic Absorption Spectrophotometer with Remote Access Technology

    Science.gov (United States)

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of…

  3. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    Science.gov (United States)

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  4. Manganese dioxide causes spurious gold values in flame atomic-absorption readings from HBr-Br2 digestions

    Science.gov (United States)

    Campbell, W.L.

    1981-01-01

    False readings, apparently caused by the presence of high concentrations of manganese dioxide, have been observed in our current flame atomic-absorption procedure for the determination of gold. After a hydrobromic acid (HBr)-bromine (Br2) leach, simply heating the sample to boiling to remove excess Br2 prior to extraction with methyl-isobutyl-ketone (MIBK) eliminates these false readings. ?? 1981.

  5. Direct observation of transient fluorine atoms with 25-μm wavelength-stabilized diode laser absorption

    International Nuclear Information System (INIS)

    Through the use of continuous diode laser absorption, detection of transient fluorine atoms with an initial number density in the range of 1014 cm-3 has been demonstrated. A crucial part of the continuous-detection technique was laser frequency stabilization with a reference cell of atomic fluorine with Zeeman modulation of the absorption lines to generate a feedback signal. Long-term wavelength stability was demonstrated with second-harmonic phase-sensitive detection of the second-derivative signal for periods up to several hours. For determination of the short-term wavelength stability in the range of microseconds to seconds, a transient signal was generated by photolysis of F2 with an excimer laser at 308 nm. The initial diode laser absorption was compared to a calculated value obtained from the measured excimer laser fluence, the known dissociation cross section of F2, and the atomic fluorine absorption cross section, which included a statistical population distribution, the finite bandwidth of the laser diode, and the effects of pressure broadening. The observed absorption was approximately 33% less than the calculated value, possibly because of the diode laser's wavelength instability on the time scale of a few seconds, which is consistent with an observed amplitude instability from pulse to pulse when pulsed at 1--10 Hz

  6. Comparisons of selected methods for the determination of kinetic parameters from electrothermal atomic absorption data

    Science.gov (United States)

    Fonseca, Rodney W.; Pfefferkorn, Lisa L.; Holcombe, James A.

    1994-12-01

    Three of the methods available for the determination of kinetic parameters for atom formation in ETAAS were compared. In the approach of mcnally and holcombe [ Anal. Chem. 59, 1015 (1987)], Arrhenius-type plots are used to extract activation energy values while an approximation of the order of release is obtained by studying the alignment of the absorption maxima at increasing analyte concentrations. In the method of rojas and olivares [ Spectrochim. Acta47B, 387 (1992)], plots are prepared for different orders of release, with the correct order yielding a longer linear region from whose slope the activation energy is calculated. The method of yan et al. [ Spectrochim. Acta48B, 605 (1993)] uses a single absorption profile for the calculations. Activation energy and the order of release are obtained from the slope and intercept, respectively, on their graph. All three methods assume linear heating rate, constant activation energies, and furnace isothermality. The methods were tested with the same experimental data sets for Cu, Au and Ni using a spatially isothermal cuvette. Since intensive mathematical treatments commonly have deleterious effects on the uncertainty of the final result, the methods were compared using both the original data and a smoothed version of it. In general, the three methods yielded comparable results for the metals studied. However, choosing the most linear plot to determine the correct order of release when using Rojas and Olivares' method was sometimes subjective, and McNally and Holcombe's method provided only estimates for the orders of release that were neither zero nor unity.

  7. Sapphire: a better material for atomization and in situ collection of silver volatile species for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Musil, Stanislav, E-mail: stanomusil@biomed.cas.cz; Matoušek, Tomáš; Dědina, Jiří

    2015-06-01

    Sapphire is presented as a high temperature and corrosion resistant material of an optical tube of an atomizer for volatile species of Ag generated by the reaction with NaBH{sub 4}. The modular atomizer design was employed which allowed to carry out the measurements in two modes: (i) on-line atomization and (ii) in situ collection (directly in the optical tube) by means of excess of O{sub 2} over H{sub 2} in the carrier gas during the trapping step and vice versa in the volatilization step. In comparison with quartz atomizers, the sapphire tube atomizer provides a significantly increased atomizer lifetime as well as substantially improved repeatability of the Ag in situ collection signals shapes. In situ collection of Ag in the sapphire tube atomizer was highly efficient (> 90%). Limit of detection in the on-line atomization mode and in situ collection mode, respectively, was 1.2 ng ml{sup −1} and 0.15 ng ml{sup −1}. - Highlights: • Sapphire was tested as a new material of an atomizer tube for Ag volatile species. • Two measurement modes were investigated: on-line atomization and in situ collection. • In situ collection of Ag was highly efficient (> 90%) with LOD of 0.15 ng ml{sup −1}. • No devitrification of the sapphire tube observed in the course of several months.

  8. Optimized determination of iron in grape juice, wines, and other alcoholic beverages by atomic absorption spectrometry.

    Science.gov (United States)

    Olalla, M; Cruz González, M; Cabrera, C; López, M C

    2000-01-01

    This paper describes a study of the different methods of sample preparation for the determination of iron in grape juice, wines, and other alcoholic beverages by atomic absorption spectrometry with electrothermal atomization; results are also reported for the practical application of these methods to the analysis of commercial samples produced in Spain. The methods examined include dealcoholization and dry and wet mineralization treatment using different acids and/or mixtures of them, both with and without heating. The sensitivity, detection limit, accuracy, precision, and selectivity of each method were established. The best results were obtained for wet mineralization with heated acid (HNO3-H2SO4); the results for table wines had an accuracy of 97.5-101.6%, a relative standard deviation of 3.51%, a detection limit of 19.2 micrograms/L, and a determination limit of 32.0 micrograms/L. The method was also sufficiently sensitive and selective. It was applied to the determination of iron in grape juice, different types of wines, and beverages with high alcoholic content, all of which are produced and widely consumed in Spain. The values obtained ranged from 3.394 +/- 2.15 mg/L for the juice, 2.938 +/- 1.47 mg/L for the white wines, 19.470 +/- 5.43 mg/L for the sweet wines, 0.311 +/- 0.07 mg/L for the brandies, and 0.564 +/- 0.12 mg/L for the anisettes. Thus, the method is useful for routine analysis in the quality control of these beverages. PMID:10693020

  9. Gas chromatography coupled with atomic absorption spectrometry — a sensitive instrumentation for mercury speciation

    Science.gov (United States)

    Emteborg, Håkan; Sinemus, Hans-Werner; Radziuk, Bernard; Baxter, Douglas C.; Frech, Wolfgang

    1996-07-01

    New instrumentation for the speciation of mercury is described, and is applied to the analysis of natural water samples. The separation of mercury species is effected using gas chromatography of derivatized mercury species on a widebore capillary column. The solvent is vented using a bypass valve and the separated mercury species are pyrolysed on-line at 800°C for production of mercury atoms. These are then detected by atomic absorption spectrometry (AAS) at the 253.7 and 184.9 nm lines simultaneously in a quartz cuvette. The use of the 184.9 nm line provides a more than five-fold increase in sensitivity compared with the conventional 253.7 nm line and an absolute detection limit of 0.5 pg of mercury. The dynamic range of the combined analytical lines provides a linear response over more than three orders of magnitude. A number of organic compounds not containing mercury are also detected following pyrolysis, especially at the 184.9 nm line. These background species must not co-elute at the retention times for methyl- and inorganic mercury, as otherwise a positive interference would result. By maximizing the chromatographic resolution and minimizing the band broadening in the cuvette by use of a make-up gas, the retention times of interest are freed from co-eluting background peaks. The instrumentation has been applied to the determination of ng l -1 concentrations of methyl- and inorganic mercury in Lake Constance, Germany and within the Lake Constance drinking water supply organization, Bodenseewasserversorgung (BWV). The accuracy for the sum of methyl- and inorganic mercury has been assessed by comparison with an independent method for total mercury based on AAS detection implemented at BWV. Relative detection limits using 1 litre water samples and 15 ml injections of the final hexane extract were 0.03 ng l -1 for methylmercury and 0.4 ng l -1 for inorganic mercury based on the 3j criterion.

  10. Data correlation in on-line solid-phase extraction-gas chromatography-atomic emission/mass spectrometric detection of unknown microcontaminants

    NARCIS (Netherlands)

    Hankemeier, Th.; Rozenbrand, J.; Abhadur, M.; Vreuls, J.J.; Brinkman, U.A.Th.

    1998-01-01

    A procedure is described for the (non-target) screening of hetero-atom-containing compounds in tap and waste water by correlating data obtained by gas chromatography (GC) using atomic emission (AED) and mass selective (MS) detection. Solid-phase extraction (SPE) was coupled on-line to both GC system

  11. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    International Nuclear Information System (INIS)

    The absolute number densities of helium atoms in the 2s 3S1 metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 1012 cm−3 and 0.011 × 1012 cm−3, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 1012 cm−3 and 0.97 × 1012 cm−3 were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges. - Highlights: • We determine He metastable number densities for four plasma types • The highest number densities were observed in a dielectric barrier discharge • No helium metastable atoms were observed downstream from the exits of glow discharges

  12. Mesoporous Silica Nanoparticles as an Adsorbent for Preconcentration and Determination of Trace Amount of Nickel in Environmental Samples by Atom Trap Flame Atomic Absorption Spectrometry

    Science.gov (United States)

    Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.

    2016-01-01

    A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.

  13. Method of trivalent chromium concentration determination by atomic spectrometry

    Science.gov (United States)

    Reheulishvili, Aleksandre N.; Tsibakhashvili, Neli Ya.

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  14. Determination of selenium and tellurium in the gas phase using specific columns and atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Muangnoicharoen, S.; Chiou, K.Y.; Manuel, O.K.

    1986-11-01

    Total selenium and tellurium in the gas phase were analyzed after adsorption on gold-coated beads and charcoal. The thermally eluting gas was trapped on columns filled with quartz beads that were cooled in an ice bath. The beads were boiled in dilute HCl, and the resulting solution was analyzed for Se and Te by graphite furnace atomic absorption spectrometry. Their results demonstrate that gold-coated beads efficiently trap gaseous Se and Te at a low gas flow rate, but at higher flow rates charcoal traps are more expedient. With charcoal traps, it was found that local air samples contain Se in the range of 0.92-3.05 ng m/sup -3/ and Te in the range of 0.10-0.34 ng m/sup -3/. Detection limits down to about 0.1 ng m/sup -3/ allow the ready detection of Se and Te in rural air with a precision of about +/- 6% at the nanogram level of Te and about +/- 4% at the nanogram level of Se.

  15. Atomic absorption spectrophotometry for the determination of metallic impurities in coal

    International Nuclear Information System (INIS)

    The Brazilian Energetic Alternative Program expects the reduction of our dependence on foreign energy sources, through replacing fuel oil by mineral coal. Its gasification by means of nuclear energy must be also considered. However, the intensive burning of coal leads to serious environmental problems. During its combustion the release, to atmosphere, of toxic elements such as As, Hg, Pb, Sb, Se, Cd, Zn and others is of great concern. Increase in atmospheric pollution will take place by burning increased amounts of coal. In addition, some of those elements are concentrated in fly ashes. The determination of impurities in coal is also important for the Figueiras Project in the Nuclebras Mineral Prospection Program. Hence, it is important to have reliable analytical methods which can monitor inorganic constituents at various stages of coal production and utilization. The atomic absorption spectrophotometry is a suitable analytical technique to determine pollutants in coal because it is sensitive, simple, economic and cover a large range of concentrations. The need of a previous treatment of the sample is overcome by using an acid attack (HNO3 + HClO4 + HF) which has proved to be rapid and efficient. (Author)

  16. Determination of chromium and molybdenum in medical foods by graphite furnace atomic absorption spectrophotometry.

    Science.gov (United States)

    Phifer, E C

    1995-01-01

    Graphite furnace atomic absorption spectrophotometry was used to determine chromium and molybdenum in 7 medical foods from 5 manufacturers. Linear standard curves were obtained for both elements for concentrations between 5 and 25 ng/mL. Detection limits were 0.24 ng/mL for Cr and 0.67 ng/mL for Mo. Characteristic masses were 3.1 and 14.7 pg for Cr and Mo, respectively. No difference was detected between wet and dry ashing methods, and dry ashing was used to complete the study. The method was validated by assaying various National Institute of Standards and Technology standard reference materials. Analysis of these products for Cr and Mo were within certified values. One product was evaluated by this method for reproducibility (n = 5). Relative standard deviations were 6.8 and 4.8% for Cr and Mo, respectively. This product contained 0.31 +/= 0.02 micrograms Cr/g and 0.63 +/- 0.03 micrograms Mo/g. The remaining products contained 0.09-1.28 micrograms Cr/g and 0.07-2.3 micrograms Mo/g. Mean recovery values were 98 +/- 14% (n = 14) for Cr at spike levels of 0.20-1.89 micrograms/g and 102 +/- 24% (n = 10) for Mo at spike levels of 0.30-1.89 micrograms/g. PMID:8664588

  17. Speciation Analysis of Serum Copper by Ultrafiltration Com-bined with Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-Hua; MA Hui-Min; MA Quan-Li; LIANG Shu-Chuan

    2001-01-01

    UItrafiltration combined with graphite furnace atomic absorp-tion spectrometry(GFAAS)was used to study protein binding and speciation of copper in human serum..UItrafiltration was carried out using a cell unit ultrafiltration membraoes having a nominal cut-off of 10,000Dalton.The effects of var-ious experimental factors including the kind and concentration of electrolyte,sample storge,pH,pressure and the precon-ditioning of the membranes on the speciation analysis of serum copper by ultrafiltration were examined.It was observed that 4.5±2.3% of the total copper in serum was ultrafiltrable and this value did not seem to be influenced by the total serum ele-mental concentration,the PH (6.5——10) adn the pressure(≤1.5kg/cm2).the preconditioning of the ultrafiltration system with 0.1mol/L calcium nitrate can overcome the adsorption loss of copper effectively,and the addition of tris-HCI sohtion (pH 7.4)to serum accelerates the ultrafiltration.The present method was proved to be suitable for speciation analysis for its simplicity,rapidity,small sample reuqirement and easy con-trol.The results obtained with the method are accurate and reliable.

  18. Determination of lead in croatian wines by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A method has been developed for direct determination of lead in wine by graphite furnace atomic absorption spectrometry (GFAAS) with Zeeman-effect background correction. The thermal behaviour of Pb during pyrolysis and atomisation stages was investigated without matrix modifier and in the presence of Pd(NO3)2, Pd(NO3)2 + Mg(NO3)2 x 6H2O, and NH4H2PO4 + Mg(NO3)2 x 6H2O as matrix modifiers. A simple 1:1 dilution of wine samples with Pd(NO3)2 as a matrix modifier proved optimal for accurate determination of Pb in wine. Mean recoveries were 106 % for red and 114 % for white wine, and the detection limit was 3 μg L-1. Within-run precision of measurements for red and white wine was 2.1 % and 1.8 %, respectively. The proposed method was applied for analysis of 23 Croatian wines. Median Pb concentrations were 33 μg L-1, range (16 to 49) μg L-1 in commercially available wines and 46 μg L-1, range (14 to 559) μg L-1 in home-made wines. There were no statistically significant differences (P<0.05) in Pb concentration between commercial and home-made wines or between red and white wines. (authors)

  19. EVALUATION OF HEAVY METALS CONTENT IN EDIBLE MUSHROOMS BY MICROWAVE DIGESTION AND FLAME ATOMIC ABSORPTION SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Cristiana Radulescu

    2011-05-01

    Full Text Available The aim of this work was to determine the heavy metal (Cd, Cr, Ni, Pb, Mn, Zn, Fe and Cu content of the fruiting bodies (cap and stipe of four species (Amanita caesarea, Pleurotus ostreatus, Fistulina hepatica and Armillariella mellea and their substrate, collected from forest sites in Dâmboviţa County, Romania. The elements were determined by Flame Atomic Absorption Spectrometry (FAAS after microwave assisted digestion. From the same collecting point were taken n = 5 samples of young and mature fruiting bodies of mushrooms and their substrate. The high concentrations of lead, chrome and cadmium (Pb: 0.25 – 1.89 mg.kg-1, Cr: 0.36 – 1.94 mg.kg-1, Cd: 0.23 – 1.13 mg.kg-1 for all collected wild edible mushrooms, were determined. These data were compared with maximum level for certain contaminants in foodstuffs established by the commission of the European Committees (EC No 466/2001. A quantitative evaluation of the relationship of element uptake by mushrooms from substrate was made by calculating the accumulation coefficient (Ka. The moderately acid pH value of soil influenced the accumulation of Zn and Cd inside of the studied species. The variation of heavy metals content between edible mushrooms species is dependent upon the ability of the species to extract elements from the substrate and on the selective uptake and deposition of metals in tissue.

  20. Iron in Alzheimer's and Control Hippocampi - Moessbauer, Atomic Absorption and ELISA Studies

    International Nuclear Information System (INIS)

    Alzheimer disease is a neurodegenerative process of unknown mechanism taking place in a part of the brain - hippocampus. Oxidative stress and the role of iron in it is one of the suggested mechanisms of cells death. In this study several methods were used to assess iron and iron binding compounds in human hippocampus tissues. Moessbauer spectroscopy was used for identification of the iron binding compound and determination of total iron concentration in 12 control and one Alzheimer disease sample of hippocampus. Moessbauer parameters obtained for all samples suggest that most of the iron is ferritin-like iron. The average concentration of iron determined by Moessbauer spectroscopy in control hippocampus was 45 ± 10 ng/mg wet tissue. The average concentration of iron in 10 Alzheimer disease samples determined by atomic absorption was 66 ± 13 ng/mg wet tissue. The concentration of H and L chains of ferritin in 20 control and 10 AD hippocampi was assessed with enzyme-linked immuno-absorbent assay. The concentration of H and L ferritin was higher in Alzheimer disease compared to control (19.36 ± 1.51 vs. 5.84 ± 0.55 ng/μg protein for H, and 1.39 ± 0.25 vs. 0.55 ± 0.10 for L). This 3-fold increase of the concentration of ferritin is accompanied by a small increase of the total iron concentration. (authors)

  1. Determination of iron in natural and mineral waters by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    ROLANDAS KAZLAUSKAS

    2004-05-01

    Full Text Available Simple methods for the determination of Fe in natural and mineral waters by flame atomic absorption spectrometry (AAS are suggested. The results of the investigation of selectivity of the proposed AAS method proved that this procedure is not affected by high concentrations of other metals. The calibration graph for iron was linear at levels near the detection limit up to at least 0.10 mg ml-1. For the determination of microamounts of iron in mineral waters, an extraction AAS technique was developed. Iron was retained as Fe-8-oxyquinoline complex and extracted into chloroform. The optimal conditions for the extraction of the iron complex were determined. The AAS method was applied to the determination of Fe in mineral waters and natural waters from different areas of Lithuania. The accuracy of the developed method was sufficient and evaluated in comparison with a photometric method. The obtained results demonstrated that the procedure could be successfully applied for the analysis of water samples with satisfactory accuracy.

  2. [The determination of chromium in feeds by flame atomic absorption spectrophotometry].

    Science.gov (United States)

    Wang, Jian; Jia, Bin; Guo, Li-ping; Lin, Qiu-ping

    2005-07-01

    Chromium in feeds is regulated by China Standard GB 13078-2001. A method of flame atomic absorption spectrophotometry for the determination of Cr in feeds has been developed in allusion to shortage of China standard method. Several acetylene flow-rate, burner-high and the additive of interference suppressor NH4Cl were studied respectively on the effect of sensitivities of Cr(III) and Cr(VI). The two sets analytical average results of Cr in feed sample determined by calibration curves of Cr(III) and Cr(VI) were tested by t test, no marked discrepancy was found. Optimum instrumental conditions of Cr(III) and Cr(VI) with same sensitivity were confirmed. Sensitivity was 0.014 microg x mL(-1) with detection limit 0.70 mg x kg(-1). The recoveries were 94.4%-104.9%. Relative standard deviation of sample determination (5-6 times) was 1.90%-4.08%. This method is simply, fast and exact, the detection limit was answered for Cr limit in feeds regulated by GB 13078-2001, it can be applied to the analysis of Cr in feeds.

  3. Stabilizing Agents for Calibration in the Determination of Mercury Using Solid Sampling Electrothermal Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Hana Zelinková

    2012-01-01

    Full Text Available Tetramethylene dithiocarbamate (TMDTC, diethyldithiocarbamate (DEDTC, and thiourea were investigated as stabilizing agents for calibration purposes in the determination of mercury using solid sampling electrothermal atomic absorption spectrometry (SS-ETAAS. These agents were used for complexation of mercury in calibration solutions and its thermal stabilization in a solid sampling platform. The calibration solutions had the form of methyl isobutyl ketone (MIBK extracts or MIBK-methanol solutions with the TMDTC and DEDTC chelates and aqueous solutions with thiourea complexes. The best results were obtained for MIBK-methanol solutions in the presence of 2.5 g L-1 TMDTC. The surface of graphite platforms for solid sampling was modified with palladium or rhenium by using electrodeposition from a drop of solutions. The Re modifier is preferable due to a higher lifetime of platform coating. A new SS-ETAAS procedure using the direct sampling of solid samples into a platform with an Re modified graphite surface and the calibration against MIBK-methanol solutions in the presence of TMDTC is proposed for the determination of mercury content in solid environmental samples, such as soil and plants.

  4. Use of Atomic Absorption Spectrometry in Assessment of Biomonitor Plants for Lead, Cadmium and Copper Pollution

    Institute of Scientific and Technical Information of China (English)

    Gokce Kaya; Mehmet Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep,Turkey.Lead,cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry.Lead,Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304~602,0.4~0.44 and 31~37 mg · kg-1,respectively.Significantly increased lead concentration up to 2 750 mg · kg-1 was found in the leaves of Eleagnus angustifolia L.plant.The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima >Morus sp.> Juglans regia L.> Ficus carica L.>Cydonia oblonga Miller> Prunus x domestica L.The plants,Populus nigra L.,Eleagnus angustifolia L.and Salix sp.were found useful for Cd,and the plant,Eleagnus angustifolia L.for Pb,to be considered as potential biomonitor.Especially,leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations.Therefore,people who and animals which live in this area and benefit from these soil and plants have vital risks.

  5. Speciation of iron (II) and (III) by using solvent extraction and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Mehmet [Department of Chemistry, Science and Arts Faculty, Firat University, Elazig (Turkey)]. E-mail: myaman@firat.edu.tr; Kaya, Gokce [Department of Chemistry, Science and Arts Faculty, Firat University, Elazig (Turkey)

    2005-05-17

    A method for speciation, preconcentration and separation of Fe{sup 2+} and Fe{sup 3+} in different matrices was developed using solvent extraction and flame atomic absorption spectrometry. PAN as complexing reagent for Fe{sup 2+} and chloroform as organic solvent were used. The complex of Fe{sup 2+}-PAN was extracted into chloroform phase in the pH range of 0.75-4.0 and Fe{sup 3+} remains in water phase in the pH range 0.75-1.25. The optimum conditions for maximum recovery of Fe{sup 2+} and minimum recovery of Fe{sup 3+} were determined as pH = 1, the stirring time of 20 min, the PAN amount of 0.5 mg and chloroform volume of 8 mL. The developed method was applied to the determination of Fe{sup 2+} and Fe{sup 3+} in tea infusion, fruit juice, cola and pekmez. It is seen that there is high bioavailable iron (Fe{sup 2+}) in pekmez. The developed method is sensitive, simple and need the shorter time in comparison with other similar studies.

  6. Analysis of long-range bullet entrance holes by atomic absorption spectrophotometry and scanning electron microscopy.

    Science.gov (United States)

    Ravreby, M

    1982-01-01

    Bullet residue and primer particles were analyzed by scanning electron microscopy with energy dispersive analysis (SEM-EDA) and by flame and flameless atomic absorption spectrophotometry (AAS). The residue and particles were on cloth targets around entrance holes produced by bullets fired at distances of 10 to 200 m. Primer particles and their chemical constituents were almost always detected by SEM-EDA around the holes produced by rifles and pistols fired at long ranges, and in many cases the barium and antimony associated with primer particles were detected by flameless AAS. Particles were also detected by SEM-EDA on the rear of bullets fired into and recovered from wooden blocks. Usually a hole caused by a bullet jacketed with gilding metal could be distinguished from one caused by a bullet jacketed with yellow brass alloy. Paint from bullet tips of military tracers was also detected. Analysis of the various residues around entrance holes provides a means for identifying the type of ammunition used. PMID:7097199

  7. Fitness analysis method for magnesium in drinking water with atomic absorption using quadratic curve calibration

    Directory of Open Access Journals (Sweden)

    Esteban Pérez-López

    2014-11-01

    Full Text Available Because of the importance of quantitative chemical analysis in research, quality control, sales of services and other areas of interest , and the limiting of some instrumental analysis methods for quantification with linear calibration curve, sometimes because the short linear dynamic ranges of the analyte, and sometimes by limiting the technique itself, is that there is a need to investigate a little more about the convenience of using quadratic curves for analytical quantification, which seeks demonstrate that it is a valid calculation model for chemical analysis instruments. To this was taken as an analysis method based on the technique and atomic absorption spectroscopy in particular a determination of magnesium in a sample of drinking water Tacares sector Northern Grecia, employing a nonlinear calibration curve and a curve specific quadratic behavior, which was compared with the test results obtained for the same analysis with a linear calibration curve. The results show that the methodology is valid for the determination referred to, with all confidence, since the concentrations are very similar, and as used hypothesis testing can be considered equal.

  8. Evaluation for the method for the determination of impurities in uranium products by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Objective: To establish a reliable method for the determination of Al, Ca, Cd, Co, Cr, Cu, Fe, Mn, Mo, Mg, Ni, Pb, V and Zn as impurities in a uranium oxide (U3 O8). Methodology: The sample, generally a solid or a powder, is solubilized by acid digestion with concentrated nitric acid, carrying to dryness for the recover with 6 N Nitric Acid to extract the uranium matrix, try butyl phosphate to 30 % in carbon tetrachloride (C Cl4), the aqueous phase containing the impurities is heat up with perchloric acid (HClO4) in order to eliminate the remainder organic solvent. A Perking Elmer Atomic Absorption spectrophotometer is used for the analysis of the samples which were read for 5 times and the average is reported as final result. The method is considered as valid since it comply with linearity in the concentration for each one of the elements. The accuracy of the method is check with the repeatability of the results. For the evaluation of the accuracy, reference certified standards are used. (Author)

  9. Atomic absorption determination, in metal sulphide concentrates, of the elements that form gaseous hydrides

    International Nuclear Information System (INIS)

    An account is given of the investigational work on the determination of trace amounts of arsenic, antimony, bismuth, germanium, selenium, and tellurium by the technique using hydride generation and atomic-absorption spectrophotometry. The gaseous hydride is generated by reduction with sodium borohydride, and is subsequently swept by a flow of nitrogen into an air-entrained hydrogen-nitrogen flame. The generation equipment used is simple and inexpensive, and can be readily assembled in most laboratories. The optimum parameters were determined for each element. The effects of 31 probable interfering elements were investigated, and it was found that, although the majority did not interfere, severe interference was encountered when copper, nickel, and the noble metals were present. Methods for the elimination of copper and nickel were developed to allow the determination of arsenic, antimony, bismuth, selenium, and tellurium at the lower parts-per-million level in metal sulphide concentrates with an acceptable accuracy and precision. The determination of microgram amounts of germanium was found to be unsatisfactory

  10. Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, T.G. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: tgkazi@yahoo.com; Jalbani, N. [PCSIR Laboratories Karachi (Pakistan)], E-mail: nusratjalbani_21@yahoo.com; Arain, M.B. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: bilal_KU2004@yahoo.com; Jamali, M.K. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: mkhanjamali@yahoo.com; Afridi, H.I. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: hassanimranafridi@yahoo.com; Sarfraz, R.A. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: rajaadilsarfraz@gmail.com; Shah, A.Q. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: aqshah07@yahoo.com

    2009-04-15

    It was extensively investigated that a significant flux of toxic metals, along with other toxins, reaches the lungs through smoking. In present study toxic metals (TMs) (Al, Cd, Ni and Pb) were determined in different components of Pakistani local branded and imported cigarettes, including filler tobacco (FT), filter (before and after normal smoking by a single volunteer) and ash by electrothermal atomic absorption spectrometer (ETAAS). Microwave-assisted digestion method was employed. The validity and accuracy of methodology were checked by using certified sample of Virginia tobacco leaves (ICHTJ-cta-VTL-2). The percentages (%) of TMs in different components of cigarette were calculated with respect to their total contents in FT of all branded cigarettes before smoking, while smoke concentration has been calculated by subtracting the filter and ash contents from the filler tobacco content of each branded cigarette. The highest percentage (%) of Al was observed in ash of all cigarettes, with range 97.3-99.0%, while in the case of Cd, a reverse behaviour was observed, as a range of 15.0-31.3% of total contents were left in the ash of all branded cigarettes understudy.

  11. Use of atomic absorption spectrometry in assessment of biomonitor plants for lead, cadmium and copper pollution.

    Science.gov (United States)

    Gokce, Kaya; Mehmet, Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep, Turkey. Lead, cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry. Lead, Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304-602, 0.4-0.44 and 31-37 mg x kg(-1), respectively. Significantly increased lead concentration up to 2 750 mg x kg(-1) was found in the leaves of Eleagnus angustifolia L. plant. The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima > Morus sp. > Juglans regia L. > Ficus carica L. > Cydonia oblonga Miller > Prunus x domestica L. The plants, Populus nigra L. , Eleagnus angustifolia L. and Salix sp. were found useful for Cd, and the plant, Eleagnus angusti folia L. for Pb, to be considered as potential biomonitor. Especially, leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations. Therefore, people who and animals which live in this area and benefit from these soil and plants have vital risks.

  12. Bismuth determination in environmental samples by hydride generation-electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso-Perez, Carmen; Moreda-Pineiro, Jorge; Lopez-Mahia, Purificacion; Muniategui-Lorenzo, Soledad; Fernandez-Fernandez, Esther; Prada-Rodriguez, Dario [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071, A Coruna (Spain)

    2003-12-04

    A hydride generation procedure, via flow injection, coupled to electrothermal atomic absorption spectrometry was optimised for Bi determination in sea water and hot-spring water and acid extracts from coal, coal fly ash and slag samples. The effects of several variables such as hydrochloric acid and sodium tetrahydroborate concentrations, hydrochloric acid and sodium tetrahydroborate flow rates, reaction coil length, trapping and atomisation temperatures, trapping time and the Ar flow rate have been investigated by using a 2{sup 9}*3/128 Plackett-Burman design. From these studies, certain variables (sodium tetrahydroborate concentration and trapping time) showed up as significant, and they were optimised by a 2{sup 2}+star central composite design. In addition, a study of the bismuthine trapping and atomisation efficiency from graphite tubes (GTs) permanently treated with uranium, tantalum, lanthanum oxide, niobium, beryllium oxide, chromium oxide and tantalum carbide were investigated. The results obtained were compared with those achieved by iridium and zirconium-treated GTs. The best analytical performances, with characteristic mass of 35 pg and detection limit of 70 ng l{sup -1}, were achieved by using U-treated GTs. Accuracy were checked using several reference materials: 1643d (Trace Elements in Water), TM-24 (Reference Water), GBW-07401 (Soil) and 1632c (Trace Elements in Coal)

  13. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer.

    Science.gov (United States)

    Kamada, T; Yamamoto, Y

    1977-05-01

    The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water. PMID:18962096

  14. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)

    2012-05-15

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black

  15. 原子吸收光谱技术在重元素测定方面的应用%Applications of Atomic Absorption Spectrometry in Determination of Heavy Elements

    Institute of Scientific and Technical Information of China (English)

    韦鑫

    2012-01-01

    Heavy metal elements such as copper, lead, cobalt, manganese, cadmium, and mercury were closely re- lated to the human body health. If more than a certain concentration, it can cause harm to the human body. Atomic ab- sorption spectrometric (AAS) method was generally used to the determination of heavy metal elements. The atomic ab-sorption technique used in heavy metal was introduced from the applications of AAS.%重金属元素如铜、铅、钴、锰、镉、汞等如果超过一定的浓度会对人体产生危害,与人的身体健康可谓是息息相关。原子吸收光谱法一般用来测定样品中的重金属元素,本文从原子吸收光谱的应用等方面简单介绍了原子吸收技术在重金属研究方面的应用。

  16. X-ray absorption spectroscopy: EXAFS and XANES - A versatile tool to study the atomic and electronic structure of materials

    International Nuclear Information System (INIS)

    X-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-ray Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, they will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and sample limitations

  17. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an atmospheric pressure air plasma jet

    Science.gov (United States)

    Conway, J.; Gogna, G. S.; Gaman, C.; Turner, M. M.; Daniels, S.

    2016-08-01

    Atomic oxygen number density [O] is measured in an air atmospheric pressure plasma jet (APPJ) using two-photon absorption laser induced fluorescence (TALIF). Gas flow is fixed at 8 slpm, the RF power coupled into the plasma jet varied between 5 W and 20 W, and the resulting changes in atomic oxygen density measured. Photolysis of molecular oxygen is employed to allow in situ calibration of the TALIF system. During calibration, O2 photo-dissociation and two-photon excitation of the resulting oxygen atoms are achieved within the same laser pulse. The atomic oxygen density produced by photolysis is time varying and spatially non-uniform which needs to be corrected for to calibrate the TALIF system for measurement of atomic oxygen density in plasma. Knowledge of the laser pulse intensity I 0(t), wavelength, and focal spot size allows correction factors to be determined using a rate equation model. Atomic oxygen is used for calibration and measurement, so the laser intensity can be increased outside the TALIF quadratic laser power dependence region without affecting the calibration reliability as the laser power dependence will still be the same for both. The atomic O density results obtained are not directly benchmarked against other known density measurement techniques. The results show that the plasma jet atomic oxygen content increases as the RF power coupled into the plasma increases.

  18. Commercial Applications of X Ray Spectrometric Techniques

    International Nuclear Information System (INIS)

    In the 21st century, the X-ray fluorescence (XRF) technique is widely used in process control, industrial applications and for routine elemental analysis. The technique has a multielement capability capable of detecting elements with Z ≥ 10, with a few instruments capable of detecting also elements with Z ≥ 5. It is characterized by a non-destructive analysis process and relatively good detection limits, typically one part per million, for a wide range of elements. The first commercial XRF instruments were introduced to the market about 50 years ago. They were the wavelength dispersive X ray fluorescence (WDXRF) spectrometers utilizing Bragg’s law and reflection on crystal lattices for sequential elemental analysis of sample composition. The advances made in radiation detector technology, especially the introduction of semiconductor detectors, improvements in signal processing electronics, availability and exponential growth of personal computer market led to invention of energy dispersive X ray fluorescence (EDXRF) technique. The EDXRF is more cost effective as compared to WDXRF. It also allows for designing compact instruments. Such instruments can be easily tailored to the needs of different customers, integrated with industrial installations, and also miniaturized for the purpose of in-situ applications. The versatility of the technique has been confirmed in a spectacular way by using the XRF and X-ray spectrometric techniques, among few others, during the NASA and ESA missions in search for the evidence of life and presence of water on the surface of Mars. The XRF technique has achieved its strong position within the atomic spectroscopy group of analytical techniques not only due to its versatility but also due to relatively low running costs, as compared to the commonly used methods, e.g., atomic absorption spectrometry (AAS) or inductively coupled plasma atomic emission/mass spectrometry (ICP-AES/MS). Presently, the XRF technique together with X ray

  19. Spectrometric techniques 3

    CERN Document Server

    Vanasse, George A

    2013-01-01

    Spectrometric Techniques, Volume III presents the applications of spectrometric techniques to atmospheric and space studies. This book reviews the spectral data processing and analysis techniques that are of broad applicability.Organized into five chapters, this volume begins with an overview of the instrumentation used for obtaining field data. This text then reviews the contribution that space-borne spectroscopy in the thermal IR has made to the understanding of the planets. Other chapters consider the instruments that have recorded the planetary emission spectra. This book discusses as well

  20. Temperature-controlled electrothermal atomization-atomic absorption spectrometry using a pyrometric feedback system in conjunction with a background monitoring device

    Science.gov (United States)

    Van Deijck, W.; Roelofsen, A. M.; Pieters, H. J.; Herber, R. F. M.

    The construction of a temperature-controlled feedback system for electrothermal atomization-atomic absorption spectrometry (ETA-AAS) using an optical pyrometer applied to the atomization stage is described. The system was used in conjunction with a fast-response background monitoring device. The heating rate of the furnace amounted to 1400° s -1 with a reproducibility better than 1%. The precision of the temperature control at a steady state temperature of 2000°C was 0.1%. The analytical improvements offered by the present system have been demonstrated by the determination of cadmium and lead in blood and finally by the determination of lead in serum. Both the sensitivity and the precision of the method have been improved. The accuracy of the method was checked by determining the lead content for a number of scrum samples both by ETA-AAS and differential pulse anodic stripping voltametry (DPASV) and proved to be satisfactory.

  1. Determination of arsenic and cadmium in crude oil by direct sampling graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Alexandre de; Zmozinski, Ariane Vanessa [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Damin, Isabel Cristina Ferreira [Faculdade Dom Bosco de Porto Alegre, 90520-280, Porto Alegre, RS (Brazil); Silva, Marcia Messias, E-mail: mmsilva@iq.ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti Rodrigues [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2012-05-15

    In this work, a direct sampling graphite furnace atomic absorption spectrometry method has been developed for the determination of arsenic and cadmium in crude oil samples. The samples were weighed directly on the solid sampling platforms and introduced into the graphite tube for analysis. The chemical modifier used for both analytes was a mixture of 0.1% Pd + 0.06% Mg + 0.06% Triton X-100. Pyrolysis and atomization curves were obtained for both analytes using standards and samples. Calibration curves with aqueous standards could be used for both analytes. The limits of detection obtained were 5.1 {mu}g kg{sup -1} for arsenic and 0.2 {mu}g kg{sup -1} for cadmium, calculated for the maximum amount of sample that can be analyzed (8 mg and 10 mg) for arsenic and cadmium, respectively. Relative standard deviations lower than 20% were obtained. For validation purposes, a calibration curve was constructed with the SRM 1634c and aqueous standards for arsenic and the results obtained for several crude oil samples were in agreement according to paired t-test. The result obtained for the determination of arsenic in the SRM against aqueous standards was also in agreement with the certificate value. As there is no crude oil or similar reference material available with a certified value for cadmium, a digestion in an open vessel under reflux using a 'cold finger' was adopted for validation purposes. The use of paired t-test showed that the results obtained by direct sampling and digestion were in agreement at a 95% confidence level. Recovery tests were carried out with inorganic and organic standards and the results were between 88% and 109%. The proposed method is simple, fast and reliable, being appropriated for routine analysis. - Highlights: Black-Right-Pointing-Pointer A direct sampling GF AAS method to determine As and Cd in crude oil was proposed. Black-Right-Pointing-Pointer The conventional chemical modifier Pd/Mg has been used to stabilize As and Cd. Black

  2. Narrow Na and K Absorption Lines Toward T Tauri Stars - Tracing the Atomic Envelope of Molecular Clouds

    CERN Document Server

    Pascucci, I; Heyer, M; Rigliaco, E; Hillenbrand, L; Gorti, U; Hollenbach, D; Simon, M N

    2015-01-01

    We present a detailed analysis of narrow of NaI and KI absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The NaI 5889.95 angstrom line is detected toward all but one source, while the weaker KI 7698.96 angstrom line in about two thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present towards both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of NaI and CO detections and peak centroids demonstrates that the atomic and molecular gas are not co-located, the atomic gas is more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of NaI radial velocities shows a c...

  3. Comparison of coal digestion methods for atomic absorption determination of cadmium in coal

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Ryozo; Kamata, Eijiro; Goto, Kazuo; Shibata, Shozo (Government Industrial Research Inst., Nagoya (Japan))

    1983-08-01

    To determine cadmium in coals, the decomposition method of coal matrix by using nitric-perchloric acid digestion in the sealed PTFE vessel modified in the authors laboratory was compared, in referring the recovery of cadmium, with nitric-hydrofluoric acid digestion followed by perchloric-periodic acid digestion, low temperature ashing method, and ASTM ashing method. The analytical values of NBS 1632a coal using these decomposition methods were all agreed with that of NBS certified. The cadmium quantity over than 1.0 ppm found to be determine by the calibration method with a representative synthesized coal solution containing the same quantities of acids as used in the procedure, without matching the major elements in coal digests. One half a gram of coal samples were treated in the sealed PTFE vessel with 7 ml of 1:1 perchloric-nitric acid mixture, heating at 150/sup 0/C for 7 h followed by hydrofluoric acid digestion, addition of boric acid, aquatic dilution and filtration. The solutions were then nebulized for the atomic absorption measurement. In the cadmium quantity less than 1.0 ppm, both the acid digests and the ashed samples were treated with hydrofluoric acid to expel silicic materials and then with dithizone-CCL/sub 4/ reagent to extract cadmium in the presence of ammonium citrate at pH 9.5--10. The organic layer was back-extracted with 2:100 hydrochloric acid. Eight coals mined in Australia, Canada, China, and Japan were analyzed. The correlation coefficient of concentrations of cadmium upon those of zinc was calculated to be 0.75, which showed cadmium occurred closely with zinc in coal.

  4. Determination of Inorganic Arsenic Species by Electrochemical Hydride Generation Atomic Absorption Spectrometry with Selective Electrochemical Reduction

    Institute of Scientific and Technical Information of China (English)

    LI Xun; WANG Zheng-Hao

    2007-01-01

    A new direct procedure for the determination of inorganic arsenic species was developed by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS) with selective electrochemical reduction. The determination of inorganic arsenic species is based on the fact that As(Ⅲ) shows significantly higher absorbance at low electrolytic currents than As(Ⅴ) in 0.3 mol·L-1 H2SO4.The electrolytic current used for the determination of As(Ⅲ) without considerable interferences of As(V) was 0.4 A, whereas the current for the determination of As(Ⅲ)and As(V) was 1.2 A. For equal concentrations of As(Ⅲ) and As(V) in a sample, the interferences of As(V) during the As(Ⅲ) determination were smaller than 5%. The absorbance for As(V) could be calculated by subtracting that for As(Ⅲ) measured at 0.4 A from the total absorbance for As(Ⅲ) and As(V) measured at 1.2 A, and then the concentration of As(V) can be obtained by its calibration curve at 1.2 A. The methodology developed provided the detection limits of 0.3 and 0.6 ng·ml-1 for As(Ⅲ) and As(V) respectively.The relative standrad deviations were of 3.5% for 20 ng·ml-1 As(Ⅲ) and 302% for 20 ng·ml-1 As(V).The method was successfully applied to determination of soluble inorganic arsenic species in Chinese medicine.

  5. Simple analysis of total mercury and methylmercury in seafood using heating vaporization atomic absorption spectrometry.

    Science.gov (United States)

    Yoshimoto, Keisuke; Anh, Hoang Thi Van; Yamamoto, Atsushi; Koriyama, Chihaya; Ishibashi, Yasuhiro; Tabata, Masaaki; Nakano, Atsuhiro; Yamamoto, Megumi

    2016-01-01

    This study aimed to develop a simpler method for determining total mercury (T-Hg) and methylmercury (MeHg) in biological samples by using methyl isobutyl ketone (MIBK) in the degreasing step. The fat in the samples was extracted by MIBK to the upper phase. T-Hg transferred into the water phase. This was followed by the extraction of MeHg from the water phase using HBr, CuCl2 and toluene. The MeHg fraction was reverse-extracted into L-cysteine-sodium acetate solution from toluene. The concentrations of T-Hg and MeHg were determined by heating vaporization atomic absorption spectrometry. Certified reference materials for T-Hg and MeHg in hair and fish were accurately measured using this method. This method was then applied to determine T-Hg and MeHg concentrations in the muscle, liver and gonads of seafood for the risk assessment of MeHg exposure. The mean T-Hg and MeHg concentrations in squid eggs were 0.023 and 0.022 µg/g, and in squid nidamental glands 0.052 and 0.049 µg/g, respectively. The MeHg/T-Hg ratios in the eggs and nidamental glands of squid were 94.4% and 96.5%, respectively. The mean T-Hg and MeHg concentrations in the gonads of sea urchins were 0.043 and 0.001 µg/g, respectively, with a MeHg/T-Hg ratio of 3.5%. We developed an efficient analytical method for T-Hg and MeHg using MIBK in the degreasing step. The new information on MeHg concentration and MeHg/T-Hg ratios in the egg or nidamental glands of squid and gonads of sea urchin will also be useful for risk assessment of mercury in seafood. PMID:27432235

  6. Analysis of Cu and Zn elements in human hair using atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Quality and concentration of elements in human hair can reflect health status of the person or the environment where that person resides or work. High concentration of Zn can cause toxic to the human body or deficiency for Cu. Low concentration of Cu can cause cell lack of oxygen and lead to anemia. In this study determination of Cu and Zn were carried out using flame atomic absorption spectrofotometry. The analysis results on 27 hair samples of young people at 16 to 19 years-old from Bandung city indicated that geomean concentrations of Cu = 15.7 ± 45 µg/g and Zn = 20.4 ± 205 µg/g. The geomean data of copper of young Bandung (Indonesian) was lower than that of young Nigerian (11.4 µg/g), whereas two data of copper which caused high standard deviation (45 µg/g) were sample number 13 (110 µg/g) and sample number 18 (218 µg/g) maybe it come from pollutant source around the young Indonesian live. Similar to copper data, standard deviation of Zn is also high (205 µg/g). It is due to sample number 6 (657 µg/g), sample number 7 (356 µg/g), sample number 9 (1058 µg/g), sample number 21 (460 µg/g), and sample number 27 (436 µg/g), If the geomean of Zn (201.4 µg/g) was compared with the geomean of young Nigerian (125.9 µg/g), then concentration of Zn from young Indonesian was higher. The high concentration of Zn maybe become characteristic of young Bandung people or Indonesian, but it still need further study. (author)

  7. Lead and cadmium determinations by atomic absorption technique in biological samples: blood, placenta and umbilical cord

    International Nuclear Information System (INIS)

    In order to determine the possibility contamination of lead and cadmium in pregnant women living in the mining-smelting city of La Oroya in Peru, lead and cadmium concentrations were assessed in maternal blood (pre-birth), umbilical cord blood and placental tissue. Forty deliveries with normal evolution were evaluated between October 2002 and January 2003. Samples were analyzed by atomic absorption on a graphite furnace at the Peruvian Institute of Nuclear Energy (IPEN) laboratories. Results are summarized as follows: a) Mean lead concentrations in maternal blood (MB), umbilical cord blood (UCB) and placental tissue (PT) were 27.23 μg/dL, 18.48 μg/dL and 363.97 μg/100g, respectively; b) Mean cadmium concentrations in MB, UCB and PT were 8.82 μg/dL, 12,0 μg/dL and 104,44 μg/100g, respectively; c) The correlation coefficient between lead concentration in maternal blood and umbilical cord was 0.122; d). The correlation coefficient of cadmium concentration between MB and UCB was 0.223; e). The correlation coefficient of lead concentration between MB and PT was 0.189; f). The correlation coefficient of cadmium concentration between MB and PT was 0.633. Trans-placental transport of lead was 67.84% (27,23 μg/dL in MB vs. 18.48 μg/dL in UCB); whereas in the case of cadmium, the concentration in UC (12,00 μg/dL) was greater than in MB (8.82 μg/dL.). These results could indicate that the placenta acts as a barrier trapping lead and cadmium. This barrier is efficient for lead since the concentration in cord blood is inferior to maternal blood but it is less efficient for cadmium. (author)

  8. Determination of Lead in Human Teeth by Hydride Generation Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Hassan T. Abdulsahib

    2011-01-01

    Full Text Available Problem statement: The determination of lead in human teeth at concentration levels of ìg/ml is proposed using Hydride Generation Atomic Absorption Spectrometry (HG-AAS. To do this, 2% (wv lanthanum chloride solution is employed as matrix modifying reagent to increase sensitivity and remove matrix interferences. Approach: About 100 µL of sample and 100 µL of 3.0% (m/v NaBH4 are simultaneously injected into carrier streams. The detection of limit of 0.46 µg L-1 for Pb was achieved and the relative standard deviation of 3.0% for 10 µg L-1 lead was obtained. The recovery percentage of the method has been found to be (92.8-100.5% for known quantities of lead added to teeth sample which were completely recovered. A comparison of the proposed method with standard addition method showed nearly results in the same samples of teeth and the results compared with other studies in the world. Results: The method was shown to be satisfactory for determination of traces of lead in teeth samples with excellent accuracy. Teeth analysis reveals that intact teeth contained the highest amounts of lead which provide an evidence that lead may reduce the prevalence of dantal caries. Statistically significant differences (pConclusion: Statistically significant difference between age groups were seen in the mean value of lead concentrations in human teeth, the concentration of lead increased with age. The differences may be due to the exposure of lead and others factors such as differences in diet and drinking water.

  9. Simple analysis of total mercury and methylmercury in seafood using heating vaporization atomic absorption spectrometry.

    Science.gov (United States)

    Yoshimoto, Keisuke; Anh, Hoang Thi Van; Yamamoto, Atsushi; Koriyama, Chihaya; Ishibashi, Yasuhiro; Tabata, Masaaki; Nakano, Atsuhiro; Yamamoto, Megumi

    2016-01-01

    This study aimed to develop a simpler method for determining total mercury (T-Hg) and methylmercury (MeHg) in biological samples by using methyl isobutyl ketone (MIBK) in the degreasing step. The fat in the samples was extracted by MIBK to the upper phase. T-Hg transferred into the water phase. This was followed by the extraction of MeHg from the water phase using HBr, CuCl2 and toluene. The MeHg fraction was reverse-extracted into L-cysteine-sodium acetate solution from toluene. The concentrations of T-Hg and MeHg were determined by heating vaporization atomic absorption spectrometry. Certified reference materials for T-Hg and MeHg in hair and fish were accurately measured using this method. This method was then applied to determine T-Hg and MeHg concentrations in the muscle, liver and gonads of seafood for the risk assessment of MeHg exposure. The mean T-Hg and MeHg concentrations in squid eggs were 0.023 and 0.022 µg/g, and in squid nidamental glands 0.052 and 0.049 µg/g, respectively. The MeHg/T-Hg ratios in the eggs and nidamental glands of squid were 94.4% and 96.5%, respectively. The mean T-Hg and MeHg concentrations in the gonads of sea urchins were 0.043 and 0.001 µg/g, respectively, with a MeHg/T-Hg ratio of 3.5%. We developed an efficient analytical method for T-Hg and MeHg using MIBK in the degreasing step. The new information on MeHg concentration and MeHg/T-Hg ratios in the egg or nidamental glands of squid and gonads of sea urchin will also be useful for risk assessment of mercury in seafood.

  10. Chemical modifiers in arsenic determination in biological materials by tungsten coil electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, C.G.; Huerta, V.N.; Neira, J.Y. [Departamento de Analisis Instrumental, Facultad de Farmacia, Universidad de Concepcion, P.O. Box 237, Concepcion (Chile)

    2004-01-01

    Palladium, iridium, and rhodium are evaluated as possible chemical modifiers in the determination of As in digest solutions of biological materials (human hair and clam) by tungsten coil electrothermal atomic absorption spectrophotometry (TCA-AAS). The modifier in solution was applied onto the coil and thermally pre-reduced; the pre-reduction conditions, the amount of modifier, and the thermal program were optimized. Palladium was not satisfactory, whereas Ir and Rh were effective modifiers and rendered better relative sensitivity for As by a factor of 1.4 and 1.9, respectively compared to the case without modifier. Upon optimization of thermal conditions for As in pre-reduced Ir (2.0 {mu}g) and Rh (2.0 {mu}g) modifiers and in the digest solutions of the study matrices, Rh (2.0 {mu}g) was more effective modifier and was selected as such. The mean within-day repeatability was 2.8% in consecutive measurements (25-100 {mu}g L{sup -1}) (3 cycles, each of n=6) and confirmed good short-term stability of the absorbance measurements. The mean reproducibility was 4.4% (n=20 in a 3-day period) and the detection limit (3{sigma}{sub blank}/slope) was 29 pg (n=15). The useful coil lifetime in Rh modifier was extended to 300-400 firings. Validation was by determination of As in the certified reference material (CRM) of ''Oyster tissue'' solution with a percentage relative error (E{sub rel}%) of 2% and percentage relative standard deviation (RSD%) of 3% (n=4), and by analytical recovery of As spiked in CRM of human hair [94{+-}8% (n=4)]. The methodology is simple, fast (sample readout frequency 21 h{sup -1}), reliable, of low cost, and was applied to the determination of As in hair samples of exposed and unexposed workers. (orig.)

  11. Effects of spontaneously induced coherence on absorption of a ladder-type atom

    Institute of Scientific and Technical Information of China (English)

    Ma Hong-Mei; Gong Shang-Qing; Sun Zhen-Rong; Li Ru-Xin; Xu Zhi-Zhan

    2006-01-01

    This paper investigates the effects of spontaneously induced coherence on absorption properties in a nearly equispaced three-level ladder-type system driven by two coherent fields. It find that the absorption properties of this system with the probe field applied on the lower transition can be significantly modified if this coherence is optimized. In the case of small spontaneous decay rate in the upper excited state, it finds that such coherence does not destroy the electromagnetically induced transparency (EIT). Nevertheless, the absorption peak on both sides of zero detuning and the linewidth of absorption line become larger and narrower than those in the case corresponding to the effects of spontaneously induced coherence; while in the case of large decay rate, it finds that, instead of EIT with low resonant absorption, a sharp absorption peak at resonance appears. That is, electromagnetically induced absorption in the nearly equispaced ladder-type system can occur due to such coherent effects.

  12. Speciation and subcellular location of Se-containing proteins in human liver studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and hydride generation-atomic fluorescence spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chunying; Zhao, Jiujiang; Zhang, Peiqun; Chai, Zhifang [Institute of High Energy Physics and Laboratory of Nuclear Analytical Techniques, Chinese Academy of Sciences, Beijing (China)

    2002-02-01

    Speciation of Se-containing proteins in the subcellular fractions of human liver was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by hydride generation-atomic fluorescence spectrometric (HG-AFS) detection. It was found that about 24 kinds of Se-containing proteins existed in subcellular fractions of normal human liver. The molecular weights (MW) of the subunits were mostly in the range 20-30 kDa and 50-80 kDa. Major Se-containing protein fractions at 61 kDa and 21 kDa are probably selenoprotein P and glutathione peroxidase, respectively. The 54 kDa protein is probably a thioredoxin reductase, which is presented in nuclei, mitochondria, lysosome, microsome and cytosol. We noticed that the Se-containing protein with the lowest MW of 9.3 kDa only existed in lysosome. Most of the proteins have not been identified and would require further investigation to characterize them. The specific subcellular distributions of different Se-containing proteins suggest that they could play important biological roles in each organelle. (orig.)

  13. Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-06-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two questionnaires, one for teachers and the other for students. By analyzing the responses, we conclude that (i) teachers lack a quantum model for the emission and absorption of electromagnetic radiation capable of explaining the spectra, (ii) teachers and students share the same difficulties, and (iii) these difficulties concern the model of the atom, the model of radiation, and the model of the interaction between them.

  14. Determination of metallic elements in water by the combined preconcentration techniques of ion exchange and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Having as an aim the utilization of atomic absorption method with flame's excitement, the limits of detection in water of six metals (Ag, Co, Cr, Cu, Ni, Zn) were determined in synthetical samples through atomic absorption spectroscopy. Techniques to optimize the data have been pointed out and presented their statistical treatment. By means of the routine and the addition methods three 'real' samples have also been analysed in order to determine the contents of Cu and Zn. Aiming a pre-concentration and by utilizing the 60Co obtained activating a sample of cobalt in the CDTN/NUCLEBRAS TRIGA MARK-I reactor, the retainement of this cobalt in ion exchange resin and the variation of the factor of elution within different concentration of HCl in water have been determined. The limits of detection are presented and so are the quantitative ones, with and without pre-concentration in an ion exchanger resin and latter elution. (Author)

  15. Arsenic in marine tissues — The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    Science.gov (United States)

    Karadjova, Irina B.; Petrov, Panayot K.; Serafimovski, Ivan; Stafilov, Trajče; Tsalev, Dimiter L.

    2007-03-01

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant ( Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel ( Mytilus galloprovincialis) and Brown algae ( Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 °C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 °C and atomization temperature 2100 °C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of CRMs has

  16. Arsenic in marine tissues - The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Karadjova, Irina B.; Petrov, Panayot K. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria); Serafimovski, Ivan [Food Institute, Faculty of Veterinary Medicine, Sts. Cyril and Methodius University, P.O. Box 95, MK-1000, Skopje (Macedonia, The Former Yugoslav Republic of); Stafilov, Trajce [Institute of Chemistry, Faculty of Science, Sts. Cyril and Methodius University, P.O. Box 162, MK-1000, Skopje (Macedonia, The Former Yugoslav Republic of); Tsalev, Dimiter L. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria)], E-mail: tsalev@chem.uni-sofia.bg

    2007-03-15

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant (Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel (Mytilus galloprovincialis) and Brown algae (Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 deg. C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 deg. C and atomization temperature 2100 deg. C) with 1.5 {mu}g Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 {mu}mol of zirconium and then with 0.10 {mu}mol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely

  17. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sardans, Jordi, E-mail: j.sardans@creaf.uab.ca [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain); Montes, Fernando [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/ Senda del Rey 9. 28040 Madrid (Spain); Penuelas, Josep [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain)

    2010-02-15

    Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at mug L{sup -1} levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages

  18. Towards broadening thermospray flame furnace atomic absorption spectrometry: Influence of organic solvents on the analytical signal of magnesium

    OpenAIRE

    Ezequiel Morzan; Jorge Stripeikis; Mabel Tudino

    2015-01-01

    This study demonstrates the influence of the solvent when thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) is employed for the determination of elements of low volatility, taking magnesium (Mg) as leading case. Several organic solvents/water solutions of different characteristics (density, surface tension, viscosity, etc.) and proportions were employed for the TS-FF-AAS analytical determination. To this end, solutions containing methanol, ethanol and isopropanol in water w...

  19. Determination of Copper-Based Fungicides by Flame Atomic Absorption Spectrometry Using Digestion Procedure with Sulfuric and Nitric Acid

    OpenAIRE

    Jelena Milinović; Rada Đurović

    2007-01-01

    Copper-based fungicides can be effectively digested by treatment with a mixture of concentrated sulfuric and nitric acid in exactly 15 minutes for the rapid determination via copper using flame atomic absorption spectrometry (AAS). Under optimum conditions, the results of copper fungicide analysis were consistent to those obtained by the AOAC’s recommended method. Recovery values ranged from 98.63 to 103.40%. Relative standard deviation values are lower than 2%. The proposed digestion procedu...

  20. Determination of Trace Silver in Water Samples by Online Column Preconcentration Flame Atomic Absorption Spectrometry Using Termite Digestion Product

    OpenAIRE

    Joyce Nunes Bianchin; Eduardo Carasek; Edmar Martendal

    2011-01-01

    A new method for Ag determination in water samples using solid phase extraction (SPE) coupled to a flow injection system and flame atomic absorption spectrometry was developed. The sorbent used for Ag preconcentration and extraction was the termite digestion product. Flow and chemical variables of the system were optimized through a multivariate procedure. The factors selected were adsorbent mass, buffer type and concentration, sample pH, and sample flow rate. The detection limit and precisio...

  1. Determination of Arsenic in Palm Kernel Expeller using Microwave Digestion and Graphite Furnace Atomic Absorption Spectrometry Method

    OpenAIRE

    Abdul Niefaizal Abdul Hammid; Ainie Kuntom; RazaIi Ismail; Norazilah Pardi

    2013-01-01

    A study on the method to determine arsenic in palm kernel expeller wascarried out. Microwave digestion technique is widely applied in the analytical chemistry field. In comparison to conventional sample digestion method, the microwave technique is simple, reduced contamination, usage of safe reagent and matrix completely digested. A graphite furnace atomic absorption spectrometry method was used for the total determination of arsenic in palm kernel expeller. Arsenic was extracted from palm ke...

  2. Nonlinear Absorption-Gain Response and Population Dynamics in a Laser-Driven Four-Level Dense Atomic System

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Hua; LIU Ji-Bing; LUO Jin-Ming; XIE Xiao-Tao

    2006-01-01

    We theoretically investigate the response of nonlinear absorption and population dynamics in optically dense media of four-level atoms driven by a single-mode probe laser, via taking the density-dependent near dipoledipole (NDD) interactions into consideration. The influence of the NDD effects on the absorption of the probe field and population dynamics is predicted via numerical calculations. It is shown that the NDD effects can reduce gradually to transient absorption with the increase of the strengths of the NDD interactions, and transient amplification can be achieved. In the steady-state limit, the probe field exhibits transparency for strong NDD interactions. Alternatively, the population entirely remains at the ground state due to the NDD effects.

  3. Distinguishing plasmonic absorption modes by virtue of inversed architectures with tunable atomic-layer-deposited spacer layer

    International Nuclear Information System (INIS)

    We demonstrated the distinguishing between plasmonic absorption modes by exploiting an inversed architecture with tunable atomic-layer-deposited dielectric spacer layer. The dielectric spacer layer was manipulated between the bottom metal–nanoparticle monolayer and the upper metal film to inspect the contributions of metal nanoparticles and dielectric film in a step-by-step manner. The experimental and simulated differences between the two peak absorption positions (Δf) and between the corresponding half width at half maxima (Δw) confirmed the evolutions of gap plasmon and interference-enhanced local surface plasmon resonance absorption modes in the plasmonic metamaterial absorbers (PMAs), which were useful for understanding the underlying mechanism of amorphous PMAs. (paper)

  4. Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra

    CERN Document Server

    Berengut, J C; Flambaum, V V; King, J A; Kozlov, M G; Murphy, M T; Webb, J K

    2010-01-01

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, alpha, could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that alpha varies spatially. That is, in one direction on the sky alpha seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger. To continue this study we need accurate laboratory measurements of atomic transition frequencies. The aim of this paper is to provide a compilation of transitions of importance to the search for alpha variation. They are E1 transitions to the ground state in several different atoms and ions, with wavelengths ranging from around 900 - 6000 A, and require an accuracy of better than 10^{-4} A. We discuss isotope shift measurements that are...

  5. Absorption and Recurrence Spectra of Nonhydrogenic Rydberg Atom Near a Metal Surface

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jun; WANG De-Hua; XUE Chun-Hua; QI Yi-Hong; LOU Sen-Yue

    2008-01-01

    Multielectron atoms near a metal surface are essentially more complicated than hydrogen atom with regard to theoretical treatments. By using the semicalssical closed orbit theory generalized to the multielecton atoms, we study the dynamical properties of the Rydberg lithium atom near a metal surface. The photoabsorption spectra and recurrence spectra of this system have also been calculated. Considering the effect of the ionic core potential of the Rydberg lithium atom, the number of the closed orbits increases, which leads to more peaks in the recurrence spectra than the case of hydrogen atom near a metal surface. This result shows that the core-scattered effects play an important role in nonhydrogenic atoms. This study is a new application of the dosed-orbit theory and is of potential experimental interest.

  6. Determination of yttrium and rare-earth elements in rocks by graphite-furnace atomic-absorption spectrometry.

    Science.gov (United States)

    Gupta, J G

    1981-01-01

    With use of synthetic solutions and several international standard reference materials a method has been developed for determining traces of Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in rocks by electrothermal atomization in a pyrolytically-coated graphite furnace. Depending on the element, the sensitivity is of the order of 10(-9)-10(-12) g at 2500 degrees . To avoid matrix interferences the lanthanides are separated from the common elements by co-precipitation with calcium and iron as carriers. The data for Canadian reference rock SY-2 (syenite), U.S.G.S. reference rocks W-2 (diabase), DNC-1 (diabase) and BIR-1 (basalt), and South African reference rock NIM-18/69 (carbonatite) obtained by graphite-furnace atomization are compared with the values obtained by flame atomic-absorption. The results are in good agreement with literature values. PMID:18962852

  7. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zeini Jahromi, Elham [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Bidari, Araz [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Assadi, Yaghoub [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of) and Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)]. E-mail: y_assadi@iust.ac.ir; Milani Hosseini, Mohammad Reza [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jamali, Mohammad Reza [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2007-03-07

    Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 {mu}L methanol (disperser solvent) containing 34 {mu}L carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 {+-} 1 {mu}L). Then a 20 {mu}L of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L{sup -1} with detection limit of 0.6 ng L{sup -1}. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L{sup -1} of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L{sup -1} are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data

  8. Optimized determination of calcium in grape juice, wines, and other alcoholic beverages by atomic absorption spectrometry.

    Science.gov (United States)

    Olalla, Manuel; González, Maria Cruz; Cabrera, Carmen; Gimenez, Rafael; López, Maria Carmen

    2002-01-01

    This paper describes a study of the different methods of sample preparation for the determination of calcium in grape juice, wines, and other alcoholic beverages by flame atomic absorption spectrometry; results are also reported for the practical application of these methods to the analysis of commercial samples produced in Spain. The methods tested included dealcoholization, dry mineralization, and wet mineralization with heating by using different acids and/or mixtures of acids. The sensitivity, detection limit, accuracy, precision, and selectiviy of each method were established. Such research is necessary because of the better analytical indexes obtained after acid digestion of the sample, as recommended by the European Union, which advocates the direct method. In addition, although high-temperature mineralization with an HNO3-HCIO4 mixture gave the best analytical results, mineralization with nitric acid at 80 degrees C for 15 min gave the most satisfactory results in all cases, including those for wines with high levels of sugar and beverages with high alcoholic content. The results for table wines subjected to the latter treatment had an accuracy of 98.70-99.90%, a relative standard deviation of 2.46%, a detection limit of 19.0 microg/L, and a determination limit of 31.7 microg/L. The method was found to be sufficiently sensitive and selective. It was applied to the determination of Ca in grape juice, different types of wines, and beverages with high alcoholic content, all of which are produced and widely consumed in Spain. The values obtained for Ca were 90.00 +/- 20.40 mg/L in the grape juices, 82.30 +/- 23.80 mg/L in the white wines, 85.00 +/- 30.25 mg/L in the sweet wines, 84.92 +/- 23.11 mg/L in the red wines, 85.75 +/- 27.65 mg/L in the rosé wines, 9.51 +/- 6.65 mg/L in the brandies, 11.53 +/- 6.55 mg/L in the gin, 7.3 +/- 6.32 mg/L in the pacharán, and 8.41 +/- 4.85 mg/L in the anisettes. The method is therefore useful for routine analysis in the

  9. Speciation analysis of thallium using solid phase extraction and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Complete text of publication follows. Thallium is a heavy, very toxic metallic element, which occurs in earth's crust in an estimated abundance from 0.1 to 0.8 mg.kg-1. In the environment, it is mainly combined with other elements (primarily oxygen, sulfur, halogens, potassium and rubidium) in inorganic compounds. During the weathering processes it can be mobilized by aqueous media and accumulated in sediments and soils. The main sources of pollution nowadays come from anthropogenic emissions from refineries, coal-fired power stations, mining activities, metal smelters and the cement industry. Thallium exists in natural waters as either Tl(I) (thallous) or Tl(III) (thallic) species. The oxidation state of Tl affects its complexation and subsequent bioavailability and toxicity in the environment. Thallium content in surface waters is within the range 1-82 ng l-1. Due to this low contents of Tl in water samples, it is necessary to combine the laboratory separation, preconcentration and determination techniques for the purpose of Tl speciation analysis. The scope of the presented work was to use an solid phase extraction (SPE) for the separation and preconcentration of Tl species in water samples followed by the determination using electrothermal atomic absorption spectrometry (ET AAS). In this method, Tl(III) was stabilized by formation of a Tl(III)-DTPA complex. Tl(I) species remained in its original form. These two species were then separated by using a cation exchange resin Amberlite IR120 and nitric acid as the eluent in a batch SPE protocol. The potential interferences of Fe (III), Al, Ca, Mg and other metals were investigated. The optimized experimental conditions for separation/preconcentration step (pH 2-3, time 15 min, temperature 60 deg C) and Zeeman ET AAS determination (chemical modifier Pd + ascorbic acid, atomization temperature 2100 deg C) were used for the speciation analysis of thallium in filtered acid water samples from open quartzite mine in the

  10. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization

    International Nuclear Information System (INIS)

    The measurement conditions for determining boron using graphite furnace–atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L−1 when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS. (author)

  11. Solid-phase extraction of copper(II) in water and food samples using silica gel modified with bis(3-aminopropyl)amine and determination by flame atomic absorption spectrometry.

    Science.gov (United States)

    Cagirdi, Duygu; Altundag, Hüseyin; Imamoglu, Mustafa; Tuzen, Mustafa

    2014-01-01

    A simple and selective separation and preconcentration method was developed for the determination of Cu(ll) ions. This method is based on adsorption of Cu(ll) ions from aqueous solution on a bis(3-aminopropyl)amine modified silica gel column and flame atomic absorption spectrometric determination after desorption. Various analytical parameters such as pH, type of eluent solution and its volume, flow rate of sample and eluent, and sample volume were optimized. Effects of some cation, anion, and transition metal ions on the recoveries of Cu(ll) ions were also investigated. Cu(ll) ions were quantitatively recovered at pH 6; 5.0 mL of 2 M HCI was used as the eluent. The preconcentration factor was found to be 150. The LOD was 0.12 microg/L for Cu(ll). The accuracy of the method was confirmed by analysis of Tea Leaves (INCT-TL-1) and Fish Protein (DORM-3) certified reference materials. The optimized method was applied to various water and food samples for the determination of Cu(ll). PMID:25145149

  12. A new ultrasonic-assisted cloud-point-extraction procedure for pre-concentration and determination of ultra-trace levels of copper in selected beverages and foods by flame atomic absorption spectrometry.

    Science.gov (United States)

    Altunay, Nail; Gürkan, Ramazan; Orhan, Ulaş

    2015-01-01

    A new ultrasonic-assisted cloud-point-extraction (UA-CPE) method was developed for the pre-concentration of Cu(II) in selected beverage and food samples prior to flame atomic absorption spectrometric (FAAS) analysis. For this purpose, Safranin T was used as an ion-pairing reagent based on charge transfer in the presence of oxalate as the primary chelating agent at pH 10. Non-ionic surfactant, poly(ethyleneglycol-mono-p-nonylphenylether) (PONPE 7.5) was used as an extracting agent in the presence of NH4Cl as the salting out agent. The variables affecting UA-CPE efficiency were optimised in detail. The linear range for Cu(II) at pH 10 was 0.02-70 µg l(-)(1) with a very low detection limit of 6.10 ng l(-)(1), while the linear range for Cu(I) at pH 8.5 was 0.08-125 µg l(-)(1) with a detection limit of 24.4 ng l(-)(1). The relative standard deviation (RSD %) was in the range of 2.15-4.80% (n = 5). The method was successfully applied to the quantification of Cu(II), Cu(I) and total Cu in selected beverage and food samples. The accuracy of the developed method was demonstrated by the analysis of two standard reference materials (SRMs) as well as recoveries of spiked samples.

  13. Handbook of theoretical atomic physics. Data for photon absorption, electron scattering, and vacancies decay

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, Miron [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Chernysheva, Larissa [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Yarzhemsky, Victor [Kurnakov Institute of General and Inorganic Chemistry, Moscow (Russian Federation)

    2012-07-01

    The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomic data are presented. The atomic data are useful for investigating the electronic structure and physical processes in solids and liquids, molecules and clusters, astronomical objects, solar and planet atmospheres and atomic nucleus. Deep understanding of chemical reactions and processes is reached by deep and accurate knowledge of atomic structure and processes with participation of atoms. This book is useful for theorists performing research in different domains of contemporary physics, chemistry and biology, technologists working on production of new materials and for experimentalists performing research in the field of photon and electron interaction with atoms, molecules, solid bodies and liquids.

  14. Determination of the elemental composition of cyanobacteria cells and cell fractions by atomic emission and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    An approach to studying the elemental composition of cyanobacteria Spirulina platensis and Nostoc commune using a set of complementary analytical methods (ICP-AES, PAAS, and ETAAS) was proposed . The procedures were adapted for the determination of macro- and microelements (Na, K, Mg, Ca, Fe, Mn, Cu, Mo, Zn, B, and Se) in the biomass of cyanobacteria and separated cell fractions (chloroform and water-methanol extracts and precipitates). The conditions for the mineralization of biological materials were optimized for autoclave and microwave sample preparation procedures. The evaporation and atomization of Se and Mo in a graphite furnace in the presence of chloroform and methanol were studied

  15. Hydride generation atomic fluorescence spectrometric determination of As, Bi, Sb, Se(IV) and Te(IV) in aqua regia extracts from atmospheric particulate matter using multivariate optimization

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso-Perez, Carmen [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain); Moreda-Pineiro, Jorge [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain)]. E-mail: jmoreda@udc.es; Lopez-Mahia, Purificacion [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain); Muniategui-Lorenzo, Soledad [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain); Fernandez-Fernandez, Esther [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain); Prada-Rodriguez, Dario [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain)

    2004-11-22

    A highly sensitive and simple method, based on hydride generation and atomic fluorescence detection, has been developed for the determination of As, Bi, Sb, Se(IV) and Te(IV) in aqua regia extracts from atmospheric particulate matter samples. Atmospheric particulates matter was collected on glass fiber filters using a medium volume sampler (PM1 particulate matter). Two-level factorial designs have been used to optimise the hydride generation atomic fluorescence spectrometry (HG-AFS) procedure. The effects of several parameters affecting the hydride generation efficiency (hydrochloric acid, sodium tetrahydroborate and potassium iodide concentrations and flow rates) have been evaluated using a Plackett-Burman experimental design. In addition, parameters affecting the hydride measurement (delay, analysis and memory times) have been also investigated. The significant parameters obtained (sodium tetrahydroborate concentration, sodium tetrahydroborate flow rate and analysis time for As; hydrochloric acid concentration and sodium tetrahydroborate flow rate for Se(IV); and sodium tetrahydroborate concentration and sodium tetrahydroborate flow rate for Te(IV)) have been optimized by using 2{sup n} + star central composite design. Hydrochloric acid concentration and sodium tetrahydroborate flow rate were the significant parameters obtained for Sb and Bi determination, respectively. Using a univariate approach these parameters were optimized. The accuracy of methods have been verified by using several certified reference materials: SRM 1648 (urban particulate matter) and SRM 1649a (urban dust). Detection limits in the range of 6 x 10{sup -3} to 0.2 ng m{sup -3} have been achieved. The developed methods were applied to several atmospheric particulate matter samples corresponding to A Coruna city (NW Spain)

  16. Self-consistent dynamical linear response of atoms in quantum plasmas: photo-absorption and collective effects in dense plasmas

    International Nuclear Information System (INIS)

    In modeling dense and partially ionized matter, the treatment of the free electrons remains an important issue. Compared to bound electrons, the delocalized and non-discrete nature of these electrons is responsible to treat them differently, which is usually adopted in the modeling of radiative properties of plasmas. However, in order to avoid inconsistencies in the calculation of absorption spectra, all the electrons should be described in the same formalism. We use two variational average-atom models: a semi-classical and a quantum model, which allow this common treatment for all the electrons. We calculate the photo-extinction cross-section, by applying the framework of the linear dynamical response theory to each of these models of an atom in a plasma. For this study, we develop and use a self-consistent approach, of random-phase-approximation (RPA) type, which, while going beyond the independent electron response, permits to evaluate the collective effects by the introduction of the dynamical polarization. This approach uses the formalism of the time dependent density functional theory (TDDFT), applied in the case of an atomic system immersed in a plasma. For both models, semi-classical and quantum, we derive and verify in our calculations, a new sum rule, which allows the evaluation of the atomic dipole from a finite volume in the plasma. This sum rule turns out to be a crucial device in the calculation of radiative properties of atoms in dense plasmas. (author)

  17. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Erikat, I. A., E-mail: ihsanas@yahoo.com [Department of Physics, Jerash University, Jerash-26150 (Jordan); Hamad, B. A. [Department of Physics, The University of Jordan, Amman-11942 (Jordan)

    2013-11-07

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir–C and Ir–Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  18. Estimation of lead, cadmium and nickel content by means of Atomic Absorption Spectroscopy in dry fruit bodies of some macromycetes growing in Poland. II.

    Directory of Open Access Journals (Sweden)

    Jan Grzybek

    2014-08-01

    Full Text Available The content of lead, cadmium, and nickel in dry fruit bodies of 34 species of macromyoetes collected in Poland from 72 natural babitats by means of Atomic Absorption Spectroscopy (AAS was estimated.

  19. DETERMINATION OF TRACE AMOUNTS OF SELENIUM IN CORN, LETTUCE, POTATOES, SOYBEANS, AND WHEAT BY HYDRIDE GENERATION/CONDENSATION AND FLAME ATOMIC ABSORPTION SPECTROMETRY

    Science.gov (United States)

    Because of the nutritional and toxicological significance of low selenium concentrations in agricultural crops, a procedure utilizing wet digestion followed by hydride generation/condensation-flame atomic absorption was developed for the routine analysis of selenium in different ...

  20. Spontaneous absorption of an accelerated hydrogen atom near a conducting plane in vacuum

    CERN Document Server

    Yu, H; Yu, Hongwei; Zhu, Zhiying

    2006-01-01

    We study, in the multipolar coupling scheme, a uniformly accelerated multilevel hydrogen atom in interaction with the quantum electromagnetic field near a conducting boundary and separately calculate the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy. It is found that the perfect balance between the contributions of vacuum fluctuations and radiation reaction that ensures the stability of ground-state atoms is disturbed, making spontaneous transition of ground-state atoms to excited states possible in vacuum with a conducting boundary. The boundary-induced contribution is effectively a nonthermal correction, which enhances or weakens the nonthermal effect already present in the unbounded case, thus possibly making the effect easier to observe. An interesting feature worth being noted is that the nonthermal corrections may vanish for atoms on some particular trajectories.

  1. Flame atomic absorption spectrometric (FAAS) determination of copper, iron and zinc in food samples after solid-phase extraction on Schiff base-modified duolite XAD 761

    International Nuclear Information System (INIS)

    The present study involves the development of solid-phase extraction (SPE) procedure for the preconcentration of trace amounts of copper (Cu2+), iron (Fe3+) and zinc (Zn2+) ions on duolite XAD 761 modified by bis(2-hydroxyacetophenone)-2,2-dimethyl-1,3-propanediimine(BHAPDMPDI). The complexation between the metal ions and the proposed ligand was investigated potentiometrically. The metal ions retained on the sorbent were quantitatively determined via complexation with BHAPDMPDI. The complexed metal ions were efficiently eluted using 6 mL of 4 mol L−1 nitric acid in acetone. The influences of the analytical parameters, including pH, amounts of the ligand and the solid phase, eluent conditions and sample volume, on the recoveries of the metal ions were optimized. Using the optimized parameters, the linear response of the SPE method for Cu2+, Zn2+ and Fe3+ ions were in the ranges of 0.01–0.34, 0.01–0.28 and 0.02–0.31 μg mL−1, respectively, and the detection limits for Cu2+, Zn2+ and Fe3+ ions were 1.8, 1.6 and 2.4 μg mL−1, respectively. The proposed method exhibits a preconcentration factor of 208 for all of the ions studied and an enhancement factor for Cu2+, Fe3+ and Zn2+ ions of 34, 28 and 38, respectively. The presented results demonstrate the successful application of the proposed method for the determination of these metal ions in some real samples with high recoveries (> 95%) and reasonable relative standard deviation (RDS < 5%). Highlights: ► Highly efficient adsorbent for dye removal was synthesized. ► The sorbent was fully characterized. ► The proposed method has a potential of a waste water treatment alternative. ► Excellent properties of the sorbent have been illustrated in detail

  2. Flame Atomic Absorption Spectrometric Determination of Gold After Solid-Phase Extraction of Its 2-Aminobenzothiazole Complex on Diaion SP-207.

    Science.gov (United States)

    Unsal, Yunus Emre; Tuzen, Mustafa; Soylak, Mustafa

    2016-03-01

    An SPE of Au (III) on a 2-aminobenzothiazole-coated Diaion SP 207-column system has been developed. The parameters, including pH of solution, amount of 2-aminobenzothiazole, eluent type, sample volume, and flow rates, were examined. The effects of alkali, alkali earth, and some metals were also studied. The recovery values at optimal conditions and detection limits for Au (III) were found as >95% and 3.8 μg L(-1), respectively. The factor of preconcentration was 250. The RSD value was determination of gold was applied to water, mine, soil, and anodic slime samples. PMID:26964845

  3. Copper(II)-rubeanic acid coprecipitation system for separation-preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations

    International Nuclear Information System (INIS)

    A simple and facile preconcentration procedure based on the coprecipitation of trace heavy metal ions with copper(II)-rubeanic acid complex has been developed. The analytical parameters including pH, amounts of rubeanic acid, sample volume, etc. was investigated for the quantitative recoveries of Pb(II), Fe(III), Cd(II), Au(III), Pd(II) and Ni(II). No interferic effects were observed from the concomitant ions. The detection limits for analyte ions by 3 sigma were in the range of 0.14 μg/l for iron-3.4 μg/l for lead. The proposed coprecipitation method was successfully applied to water samples from Palas Lake-Kayseri, soil and sediment samples from Kayseri and Yozgat-Turkey

  4. A new preconcentration and separation method for flame atomic absorption spectrometric determinations of some trace metal ions on a diaion HP-20 column

    International Nuclear Information System (INIS)

    A preconcentration/separation method for determination of Cr(3), Cd(2), Bi(3) and Co(2) has been proposed. The analytes were adsorbed on a column filled Diaion HP-20 resin as metal-8-hydroxiquinoline complexes and desorbed from the column by using 10 ml of 1M HNO3 in acetone. The influences of some analytical parameters such as pH, amounts of oxine, type of eluent etc on the recoveries of chromium, cadmium, bismuth and cobalt were discussed. Effects of the various alkaline salts on the recoveries of the investigated ions were also examined. The method was applied for the determination of Cr(3), Cd(2), Bi(3), and Co(2) contents of table salt samples, some chemical grade alkaline salts produced in Turkey and a stream sediment standard reference material sample (GBW 07309) with satisfactory results (recoveries > 95%, relative standard deviations < 9%). The limit of detection for analyte ions (3s, N=20) was between 23-305 ng/g

  5. Bi(III)4-methylpiperidinedithiocarbamate coprecipitation procedure for separation-pre-concentration of trace metal ions in water samples by flame atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    A pre-concentration method was developed for determination of trace amounts of cadmium, copper and lead in water samples by FAAS after coprecipitation by using potassium 4-methylpiperidinedithiocarbamate (K4-MPDC) as a chelating agent and Bi(III) as a carrier element. This procedure is based on filtration of the solution containing precipitate on a cellulose nitrate membrane filter following Cd(II), Cu(II) and Pb(II) coprecipitation with Bi(III)4-MPDC and then the precipitates together with membrane filter were dissolved in concentrated nitric acid. The metal contents of the final solution were determined by FAAS. Several parameters including pH of sample solution, amount of carrier element and reagent, standing time, sample volume for precipitation and the effects of diverse ions were examined. The accuracy of the method was tested with standard reference material (MBH, C31XB20 and CRM BCR-32) and Cd, Cu and Pb added samples. Determination of Cd, Cu and Pb was carried out in sea water, river water and tap water samples. The recoveries were >95%. The relative standard deviations of determination were less than 10%

  6. Optimization of the preconcentration system of cadmium with 1(2-thiazolylazo)-p-cresol using a knotted reactor and flame atomic absorption spectrometric detection

    International Nuclear Information System (INIS)

    The present paper proposes an on-line preconcentration procedure for cadmium determination in drinking water samples. It is based on the precipitation of cadmium(II) ions on a knotted reactor (KR) using 1(2-thiazolylazo)-p-cresol (TAC) as complexing reagent. The optimization step was performed using a full factorial design involving the variables: pH, eluent concentration (nitric acid) and TAC concentration. The results of this experiment demonstrated that these variables at chosen levels are not statistically significant. Under optimized experimental established conditions, analytical parameters for the preconcentration method were: a detection limit of 40.0 ng/l, precision as relative standard deviation (RSD) of 1.2 and 1.0%, for cadmium concentration of 2.5 and 20.0 μg/l, respectively. The preconcentration factor considering the slopes of the analytical curves with and without preconcentration is 23 for a sample volume of 10 ml. This system shows a sampling frequency of 25 h-1. In order to check the accuracy, the standard reference material, NIST SRM 1643d trace elements in water was analyzed. A comparison, using t-test demonstrates that there is not significant difference among the achieved results with proposed method and the certified values. The addition/recovery experiments in the samples analyzed demonstrated the accuracy and applicability of the system developed for cadmium determination in water samples

  7. Pretreatment of oily samples for analysis by flow injection-spectrometric methods.

    Science.gov (United States)

    Burguera, José Luis; Burguera, Marcela

    2011-01-15

    This review presents a critical discussion of selected reports dealing with the pretreatment methods of oily samples and the determination of their organic and inorganic constituents using flow systems and spectrometric methods. Special emphasis is given to the on-line couplings with detection systems based on UV-visible spectrophotometry and spectrofluorimetry, atomic absorption spectrometry either with flame or electrothermal atomization as well as inductively coupled plasma optical emission spectrometry or inductively coupled plasma-mass spectrometry. Simple dilution with organic solvents, digestion with concentrated acids under thermal heating, microwave or ultrasound radiation and emulsification procedures are mostly used. The empirical preparation of certain organized assemblies like micelles, emulsions and specially microemulsions added to the confusion of some of the terms, demand a brief description of their characteristics, the correct formulation and some of their applications to the manipulation and treatment of oily samples. The analytical capabilities of combining flow manifolds with spectrometric methods for the determination of specific parameters in oily samples apparently have not been sufficiently exploited yet. PMID:21147308

  8. Evaluation of cadmium, lead, copper, iron and zinc in Turkish dietary vegetable oils and olives using electrothermal and flame atomic absorption spectrometry

    OpenAIRE

    Acar, Orhan

    2012-01-01

    The Cd, Pb, Cu, Fe and Zn contents of some edible vegetable oils (soybean, sunflower, flower, nut, corn and olive) and of olives (olive-1, black, green, black crushed with seeds and green crushed with seeds) were determined and evaluated by an electrothermal atomic absorption spectrometer (ETAAS) using an Sc + Ir + NH4H2PO4 chemical modifier mixture and flame atomic absorption spectrometer (FAAS) after microwave digestion. T...

  9. EVALUATION OF HEAVY METALS IN ETHANOLIC LEAF EXTRACT OF ACACIA CATECHU AS INDICATOR OF POLLUTION BY ATOMIC ABSORPTION SPECTROPHOTOMETRIC (FAAS) ANALYSIS

    OpenAIRE

    Lakshmi T; Rajendran R; Antony silvester

    2013-01-01

    Acacia catechu ethanolic leaf extract were selected to determine their heavy metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant material was procured from green chem herbal extracts, Bangalore, India and was digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 6030) and the conc...

  10. Nonstationary structure of atomic and molecular layers in electrothermal. Atomic absorption spectrometry: formation of atomic and molecular absorbing layers of gallium and indium

    International Nuclear Information System (INIS)

    The dynamics of the formation of absorbing layers of gallium and indium atoms and their compounds in a graphite tubular atomizer was investigated by the shadow spectral filming method. These compounds are localozed in the central part of the furnace over the platform and dissapear ay the hotter walls. It the case of gallium and indium atomization, the effects of chemical reactions between the vapor and the walls of the furnace on the formation of absorbing layers are stronger than that of diffusion and convective mass-transfer processes, which are common to all of the elements. Atom propagation from the center to the stomizer ends proceeds through the cascade mechanism because of its relatively low rate of warming up and strong longitudinal anisothermicity

  11. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J. (UCB)

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  12. The use of atomic absorption spectroscopy to measure arsenic, selenium, molybdenum, and vanadium in water and soil samples from uranium mill tailings sites

    Energy Technology Data Exchange (ETDEWEB)

    Hollenbach, M.H.

    1988-01-01

    The Technical Measurements Center (TMC) was established to support the environmental measurement needs of the various DOE remedial action programs. A laboratory intercomparison study conducted by the TMC, using soil and water samples from sites contaminated by uranium mill tailings, indicated large discrepancies in analytical results reported by participating laboratories for arsenic, selenium, molybdenum, and vanadium. The present study was undertaken to investigate the most commonly used analytical techniques for measuring these four elements, ascertain routine and reliable quantification, and assess problems and successes of analysts. Based on a survey of the technical literature, the analytical technique of atomic absorption spectroscopy was selected for detailed study. The application of flame atomic absorption, graphite furnace atomic absorption, and hydride generation atomic absorption to the analysis of tailings-contaminated samples is discussed. Additionally, laboratory sample preparation methods for atomic absorption spectroscopy are presented. The conclusion of this report is that atomic absorption can be used effectively for the determination of arsenic, selenium, molybdenum, and vanadium in water and soil samples if the analyst understands the measurement process and is aware of potential problems. The problem of accurate quantification of arsenic, selenium, molybdenum, and vanadium in water and soil contaminated by waste products from uranium milling operations affects all DOE remedial action programs (Surplus Facilities Management Program (SFMP), Formerly Utilized Site Remedial Action Program (FUSRAP), and Uranium Mill Tailings Remedial Action Program (UMTRAP)), since all include sites where uranium was processed. 96 refs., 9 figs.

  13. Ultraviolet vapor generation atomic fluorescence spectrometric determination of mercury in natural water with enrichment by on-line solid phase extraction

    Science.gov (United States)

    Qin, Deyuan; Gao, Feng; Zhang, Zhaohui; Zhao, Liqian; Liu, Jixin; Ye, Jianping; Li, Junwei; Zheng, Fengxi

    2013-10-01

    A novel method, which coupled an on-line solid phase extraction (SPE) enrichment with ultraviolet vapor generation (UVG) atomic fluorescence spectrometry (AFS), was developed to improve the sensitivity of mercury determination and to remove the interference of some anion and organics to UVG of mercury. A high mercury retention efficiency and maximum exclusion of inorganic and organic matrix in water samples were achieved by using C18 SPE mini cartridge modified with sodium diethyldithiocarbamate (DDTC). Fast and efficient elution from the cartridge was found by using L-cysteine mixing solution. Furthermore, through the investigation of different UV reactor designs, the most important factor was the structure of the reactor (which corresponded roughly to the photon flux) wherein the tubing was sintered into the UV lamp to give the highest UV generation efficiency. The second factor was the materials of the tubing (which roughly corresponded to the working wavelength). Synthetic quartz, characterized by the highest transparency at 185 nm, attained the highest UVG efficiency, suggesting that the most favorable wavelength for UVG was 185 nm. Under optimum conditions, the achievable detection limit (3σ) with sample loadings of 10.0 mL was 0.03 ng L- 1 and 0.08 ng L- 1 with different manifolds, respectively. The method was successfully applied to the determination of Hg in tap water, river water and lake water samples.

  14. Use of Ni/NixB Nanoparticles as a Novel Adsorbent for the Preconcentration of Mercury Species prior to Cold Vapor-Atomic Fluorescence Spectrometric Determination.

    Science.gov (United States)

    Yayayürük, Onur; Henden, Emür

    2016-01-01

    A selective matrix separation/enrichment method, utilizing a simple batch procedure with nickel/nickel boride (Ni/NixB) nanoparticles was proposed for the determination of inorganic mercury(II), Hg(2+) and methyl mercury(I), CH3Hg(+) in waters prior to cold vapor-atomic fluorescence spectrometry (CV-AFS). The Ni/NixB nanoparticles, were synthesized by the chemical reduction of Ni(II) to Ni/NixB. The novel adsorbent was selective to Hg(2+) and CH3Hg(+) species between pH values of 4 - 10. Both of the mercury species were recovered from the adsorbent using 1.0 mol L(-1) hot HNO3 with high efficiency. It was observed that the adsorbent selectively removed Hg(2+) and CH3Hg(+) from the bulk solution in the presence of several competitor ions (As(3+), Sb(3+), Pb(2+), Zn(2+), Cu(2+), Cd(2+) and Fe(3+)) with ≥96% adsorption. The limit of detection (3σ above blank) was found to be 1.8 ng L(-1) with a preconcentration factor of 20. The validation of the method was tested through spike recovery experiments with several water samples (tap and seawater) at μg L(-1) concentration levels, and all recovery values were found to vary between 95 and 105%. PMID:27506713

  15. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1). PMID:27345208

  16. A comparison of simultaneous plasma, atomic absorption, and iron colorimetric determinations of major and trace constituents in acid mine waters

    Science.gov (United States)

    Ball, J.W.; Nordstrom, D.K.

    1994-01-01

    Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of

  17. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; LIN Sheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic field below ionization threshold. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  18. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANGDe-Hua; LINSheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic fied below ionization threshoM. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  19. The rapid and precise determination of noble metals in matte-leach residues by atomic-absorption spectrophotometry

    International Nuclear Information System (INIS)

    A method is proposed for the rapid analysis of platinum-group metals and gold in matte-leach residues. So that the precision of the atomic-absorption measurement is ensured, many measurements are taken (a chart recorder being used) and the calculation is done on a computer. The dissolution of samples was investigated and optimized. Iridium, which is usually present as a minor constituent, is treated on a separate aliquot portion that is concentrated before measurement. The precision of the method ranges from 0,5 per cent for platinum to 2,3 per cent for iridium

  20. Evaluation of emery dust on the manufacture of abrasives by neutron activation analysis and atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    In this work it is presented an evaluation on the degree of contamination by emery dust in a working area where abrasives are manufactured, in a factory located in the industrial area of Toluca City by neutron activation analysis and atomic absorption spectroscopy. The samples were collected on Whatman filters and attacked with hot concentrated HCl. The elements founded were: Al, Si, V, Mg, Br, Mn, Ni, Zn, Fe, Cr, Ca and Pb. They are a risk for the health of the workers. (Author)

  1. Determination of Heavy Metals in Meat, Intestine, Liver, Eggs, and Chicken Using Neutron Activation Analysis and Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    The elements As, Cd, Co, Cr, Fe, Hg, Ni, Pb, Sb, se and Zn in meat, intestine, and liver of cow and goat, as well as in broiler, local breed chicken and eggs have been determined using Neutron Activation Analysis and Atomic Absorption Spectrometry. Mercury was determined after being separated radiochemically. The results showed that concentration of the essential elements studied i.e. Cr, Cu, Fe, Zn, Co, and Ni were higher in liver and intestine than in the meat, but still in the normal range, while toxic elements As, Cd, and Pb were undetectable in all samples. (author). 8 refs., 6 tabs

  2. X-ray absorption spectroscopy and atomic force microscopy study of bias-enhanced nucleation of diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.M.; Jimenez, I.; Vazquez, L.; Gomez-Aleixandre, C.; Albella, J.M.; Sanchez, O. [Instituto de Ciencia de Materiales, C.S.I.C., Cantoblanco28049, Madrid (Spain); Terminello, L.J. [Lawrence Livermore National Laboratory, Livermore, California94551 (United States); Himpsel, F.J. [Department of Physics, University of Wisconsin--Madison, Madison, Wisconsin53706 (United States)

    1998-04-01

    The bias-enhanced nucleation of diamond on Si(100) has been studied by x-ray absorption near-edge spectroscopy (XANES) and atomic force microscopy, two techniques well suited to characterize nanometric crystallites. Diamond nuclei of {approximately}15nm are formed after 5 min of bias-enhanced treatment. The number of nuclei and its size increases with the time of application of the bias voltage. A nanocrystalline diamond film is attained after 20 min of bias-enhanced nucleation. At the initial nucleation stages, the Si substrate appears covered with diamond crystallites and graphite, without SiC being detected by XANES. {copyright} {ital 1998 American Institute of Physics.}

  3. Arsenic speciation by hydride generation-quartz furnace atomic absorption spectrometry. Optimization of analytical parameters and application to environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Molenat, N.; Astruc, A.; Holeman, M.; Pinel, R. [Laboratoire de Chimie Analytique Bioinorganique et Environnement, Dept. de Chimie, Faculte des Sciences et Techniques, 64 - Pau (France); Maury, G. [Montpellier-2 Univ., 34 (France). Dept. de Chimie Organique Fine

    1999-11-01

    Analytical parameters of hydride generation, trapping, gas chromatography and atomic absorption spectrometry detection in a quartz cell furnace (HG/GC/QFAAS) device have been optimized in order to develop an efficient and sensitive method for arsenic compounds speciation. Good performances were obtained with absolute detection limits in the range of 0.1 - 0.5 ng for arsenite, arsenate, mono-methyl-arsonic acid (MMAA), dimethyl-arsinic acid (DMAA) and trimethyl-arsine oxide (TMAO). A pH selective reduction for inorganic arsenic speciation was successfully reported. Application to the accurate determination of arsenic compounds in different environmental samples was performed. (authors)

  4. Determination of Gd, Sm, Eu and Dy in uranium compounds by atomic absorption spectrophotometry using a graphite furnace

    International Nuclear Information System (INIS)

    The separation of Gd, Sm, Eu and Dy from uranium and its determination by graphite furnace atomic absorption spectrophotometry is outlined. The lanthanides were separated by means of the percolation of the uranyl nitrate solution 0,3 M in HF (50-250g of U3O8 perliter) through an Al2O3 column. The lanthanides retained in the column were eluted with 1M HCl. As thorium is also retained into the column under these conditions, its interference was studied. The determination limits of the method range from 0,01 to 0,1 μg of lanthanide per gram of uranium. (Author)

  5. Hydride generation and condensation flame atomic absorption spectroscopic determination of antimony in raw coffee beans and processed coffee.

    Science.gov (United States)

    Kuennen, R W; Hahn, M H; Fricke, F L; Wolnik, K A

    1982-09-01

    A method was developed for determining Sb at nanogram per gram levels in raw coffee beans and processed coffee. The procedure uses either total acid digestion or extraction with 6M HCl followed by hydride generation/condensation with subsequent revolatilization of stibine (SbH3) and detection by flame atomic absorption spectroscopy. The lowest quantifiable level, based on a 2 g (dry weight) sample, is 2 ng Sb/g. The results of recoveries on spiked samples, precision studies on composited coffee samples, and the analysis of National Bureau of Standards Standard Reference Materials demonstrate the reliability and accuracy of the procedure. Sb concentrations in coffee samples were verified by neutron activation analysis and inductively coupled plasma atomic emission spectroscopy. Advantages of the method compared with the AOAC colorimetric procedure and hydride generation without condensation are discussed. PMID:7130087

  6. Application of methane as a gaseous modifier for the determination of silicon using electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Hans-Joachim, E-mail: hans-joachim.heinrich@bam.de; Kipphardt, Heinrich

    2012-04-15

    For determination of silicon in aqueous solutions by electrothermal atomic absorption spectrometry methane/argon mixtures as a gaseous modifier were applied during the pyrolysis step to improve the analytical performance. The beneficial effects observed on thermal stabilization, signal enhancement and shape of absorbance signals were attributed to the thermal decomposition products of methane, which were hydrogen and carbon black (soot). Using a 5% CH{sub 4} mixture with argon, the optimized pyrolysis and atomization temperatures were 1350 Degree-Sign C and 2450 Degree-Sign C, respectively. A flushing step following the pyrolysis was mandatory to avoid background absorption and accelerated deposition of pyrolytic graphite. Characteristic masses of 50 and 30 pg were obtained for standard transversely heated graphite atomizer (THGA) tubes and end-capped THGA tubes, respectively, which were lower than with other previously applied modifiers. A limit of detection of 0.2 {mu}g L{sup -1} (3 s, n = 10) has been obtained. In addition, this gaseous modifier did not contribute to contamination which often was significant when a liquid modifier solution was co-injected. The proposed method has been applied to the determination of silicon in ultrapure water, nitric and hydrochloric acids. - Highlights: Black-Right-Pointing-Pointer CH{sub 4}/Ar gas mixtures act as new modifier in the determination of Si using ET AAS. Black-Right-Pointing-Pointer CH{sub 4} improved thermal stabilization, atomization efficiency and signal shape of Si. Black-Right-Pointing-Pointer Optimum performance by addition of 5% CH{sub 4} during pyrolysis at 1350 Degree-Sign C. Black-Right-Pointing-Pointer Gaseous modifier does not contribute to blank values. Black-Right-Pointing-Pointer Optimized method suitable for determination of Si in ultrapure reagents.

  7. Nonlinear absorption in ionic liquids with transition metallic atoms in the anion

    Science.gov (United States)

    Nóvoa-López, José A.; López Lago, Elena; Seijas, Julio A.; Pilar Vázquez-Tato, M.; Troncoso, Jacobo; de la Fuente, Raúl; Salgueiro, José R.; Michinel, Humberto

    2016-02-01

    Nonlinear absorption has been investigated by open aperture Z-scan in ionic liquids obtained by combination of 1-butyl-3-methyl-imidazolium cations with anions containing a transition metal (Co, Zn, Cu or Ni) and thiocyanate groups. The laser source was a Ti:Sapphire oscillator (80-fs pulses, λ = 810 nm, repetition rate of 80.75 MHz). All liquids present quite low heat capacities that favor the development of strong thermal effects. Thermal effects and nonlinear absorption make them potential materials for optical limiting purposes.

  8. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    Science.gov (United States)

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  9. Spectrometric techniques 2

    CERN Document Server

    Vanasse, George A

    2013-01-01

    Spectrometric Techniques, Volume II provides information pertinent to vacuum ultraviolet techniques to complete the demonstration of the diversity of methods available to the spectroscopist interested in the ultraviolet visible and infrared spectral regions. This book discusses the specific aspects of the technique of Fourier transform spectroscopy.Organized into five chapters, this volume begins with an overview of the large number of systematic effects in the recording of an interferogram. This text then examines the design approach for a Fourier transform spectrometer with focus on optics.

  10. Green method for ultrasensitive determination of Hg in natural waters by electrothermal-atomic absorption spectrometry following sono-induced cold vapor generation and 'in-atomizer trapping'

    International Nuclear Information System (INIS)

    Sono-induced cold vapor generation (SI-CVG) has been used for the first time in combination with a graphite furnace atomizer for determination of Hg in natural waters by electrothermal-atomic absorption spectrometry after in situ trapping onto a noble metal-pretreated platform (Pd, Pt or Rh) inserted into a graphite tube. The system allows 'in-atomizer trapping' of Hg without the use of conventional reduction reactions based on sodium borohydride or tin chloride in acid medium for cold vapor generation. The sono-induced reaction is accomplished by applying ultrasound irradiation to the sample solution containing Hg(II) in the presence of an organic compound such as formic acid. As this organic acid is partly degraded upon ultrasound irradiation to yield CO, CO2, H2 and H2O, the amount of lab wastes is minimized and a green methodology is achieved. For this purpose, experimental variables influencing the generation/trapping process are fully investigated. The limit of detection for a 10 min trapping time and 10 mL sample volume was 0.03 μg L-1 (Integrated absorbance) and the repeatability expressed as relative standard deviation was about 3%. Carbonates and chlorides at 100 mg L-1 level caused a signal depression by 20-30%. The enhanced trapping efficiency observed with the sono-induced cold vapor generation as compared with 'in-atomizer trapping' methods employing chemical vapor generation is discussed. A reaction pathway for SI-CVG is proposed on the basis of the current knowledge for synthesis of noble metal nanoparticles by ultrasound

  11. Contents of cadmium, mercury and lead in fish from the Atlantic sea (Morocco) determined by atomic absorption spectrometry.

    Science.gov (United States)

    Chahid, Adil; Hilali, Mustapha; Benlhachimi, Abdeljalil; Bouzid, Taoufiq

    2014-03-15

    As a part of a specific monitoring program, lead (Pb) cadmium (Cd) and mercury (Hg) concentrations in important species of fish from various fishing ports of the southern Kingdom of Morocco (Sardina pilchardus, Scomber scombrus, Plectorhinchus mediterraneus, Trachurus trachurus, Octopus vulgaris, Boops boops, Sarda sarda, Trisopterus capelanus, and Conger conger) were investigated by the Moroccan Reference Laboratory (NRL) for trace elements in foodstuffs of animal origin. The samples were analysed for lead and cadmium by a graphite furnace atomic absorption spectrometry (GFAAS); and for mercury by cold vapour atomic absorption spectrometry (CVAAS). The results were expressed as μg/g of wet weight (w/w). The levels of Cd, Pb and Hg in muscles of fish were 0.009-0.036, 0.013-0.114 and 0.049-0.194 μg/g, respectively. The present study showed that different metals were present in the sample at different levels but within the maximum residual levels prescribed by the EU for the fish and shellfish from these areas, in general, should cause no health problems for consumers.

  12. MERCURY QUANTIFICATION IN SOILS USING THERMAL DESORPTION AND ATOMIC ABSORPTION SPECTROMETRY: PROPOSAL FOR AN ALTERNATIVE METHOD OF ANALYSIS

    Directory of Open Access Journals (Sweden)

    Liliane Catone Soares

    2015-08-01

    Full Text Available Despite the considerable environmental importance of mercury (Hg, given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique, were used in validation of the method, which proved to be accurate and precise.

  13. Determination of total selenium in pharmaceutical and herbal supplements by hydride generation and graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Kazi, Tasneem G; Kolachi, Nida F; Afridi, Hassan I; Brahman, Kapil Dev; Shah, Faheem

    2014-01-01

    The total selenium (Se) was determined in herbal and pharmaceutical supplements used for liver diseases. The total Se contents were determined in different pharmaceutical and herbal supplements by hydride generation atomic absorption spectrometry (HGAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after microwave-assisted acid digestion. The accuracy of the techniques was evaluated by using certified reference material and the standard addition method. The recoveries of total Se were 99.4 and 99.0% for HGAAS and GFAAS, respectively. The precision of the techniques expressed as RSD were 2.34 and 4.54% for HGAAS and GFAAS measurements, respectively. The LOD values for HGAAS and GFAAS were 0.025 and 0.052 pglg, respectively. The concentrations of Se in pharmaceutical and herbal supplements were found in the range of 19.2-53.8 and 25.0-42.5 pg/g, respectively, corresponding to 35-76% and 45-76% of the total recommended dose of Se for adults. PMID:25632445

  14. Flow Injection and Atomic Absorption Spectrometry - An Effective and Attractive Analytical Chemical Combination

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Nielsen, Steffen

    1998-01-01

    One of the advantages of the flow injection (FI) concept is that it is compatible with virtually all detection techniques. Being a versatile vehicle for enhancing the performance of the individual detection devices, the most spectacular results have possibly been obtained in conjunction with atomic...

  15. DETERMINATION OF COPPER AND ZINC IN MINERAL WATERS BY ATOMIC ABSORPTION SPECTROPHOTOMETRY

    Directory of Open Access Journals (Sweden)

    Tatiana Mitina

    2011-12-01

    Full Text Available The content of copper and zinc in mineral waters were determined by atomic spectroscopy with preliminary extraction of metals. Validation of the technique was carried out by the method of standard additions and proved the reliability of analytical data.

  16. Influence of soil composition in the determination of chromium by atomic absorption spectrometry with flame air / acetylene

    International Nuclear Information System (INIS)

    The Air-acetylene Flame Atomic Absorption determination of chromium is a complex task, being strongly influenced by sample composition and instrumental conditions. The objective of this work was to study the influence of Al, Ca, Fe, K, Mg, and Na on the absorption of chromium in the air-acetylene flame, both separately and combined in solution, when acetylene flow and burner height vary. Dissolutions of the mixtures simulated the composition of four soils from the Quibu River Basin in Havana, Cuba. Chromium absorption first increased and then decreased with increment of acetylene flow for shorter burner heights (∼ 2-4 mm); while a continuous increase was observed for larger heights (> 4 mm). This behavior was the same in the presence and absence of interfering chemical element, mentioned above. On the other hand, the dependence of the magnitude of the interference with acetylene flow and burner height was complex and dependent on the interfering element, particularly at larger heights where the behavior of Al was remarkably different. The interference of the four mixtures of Al, Ca, K, Fe, Mg and Na decreased in comparison to individual interfering effects and was less dependent on acetylene flow and burner height. Finally, a significant reduction of interference on chromium determination in soil samples was achieved by an adequate selection of acetylene flow and burner height

  17. Chemical vapor generation of silver for atomic absorption spectrometry with the multiatomizer: Radiotracer efficiency study and characterization of silver species

    International Nuclear Information System (INIS)

    Volatile Ag species were generated in flow injection arrangement from nitric acid environment in the presence of surfactants (Triton X-100 and Antifoam B) and permanent Pd deposits as the reaction modifiers. Atomic absorption spectrometry (AAS) with multiple microflame quartz tube atomizer heated to 900 deg. C was used for atomization; evidence was found for thermal mechanism of atomization. Relative and absolute limits of detection (3σ, 250 μl sample loop) measured under optimized conditions were: 1.4 μg l-1 and 0.35 ng, respectively. The efficiency of chemical vapor generation (CVG) as well as spatial distribution of residual analyte in the apparatus was studied by 111Ag radioactive indicator (half-life 7.45 days) of high specific activity. It was found out that 23% of analyte was released into the gaseous phase. However, only 8% was found on filters placed at the entrance to the atomizer due to transport losses. About 40% of analyte remained in waste liquid, whereas the rest was found deposited over the CVG system. Presented study follows the hypothesis that the 'volatile' Ag species are actually metallic nanoparticles formed upon reduction in liquid phase and then released with good efficiency to the gaseous phase. Number/charge size distributions of dry aerosol were determined by Scanning Mobility Particle Sizer. Ag was detected in 40-45 nm particles holding 10 times more charge if compared to Boltzmann equilibrium. At the same time, Ag was also present on 150 nm particles, the main size mode of the CVG generator. The increase of Ag in standards was reflected by proportional increase in particle number/charge for 40-45 nm size particles only. Transmission electron microscopy revealed particles of 8 ± 2 nm sampled from the gaseous phase, which were associated in isolated clusters of few to few tens of nanometres. Ag presence in those particles was confirmed by Energy Dispersive X-ray Spectroscopy (EDS) analysis.

  18. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Vilar Farinas, M. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Barciela Garcia, J. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Garcia Martin, S. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Pena Crecente, R. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Herrero Latorre, C. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain)]. E-mail: cherrero@lugo.usc.es

    2007-05-22

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO{sub 3}){sub 2} and (NH{sub 4})H{sub 2}PO{sub 4}-Mg(NO{sub 3}){sub 2}] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 {mu}g L{sup -1}), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged

  19. Determination of Ultratrace Amounts of Copper(Ⅱ) in Water Samples by Electrothermal Atomic Absorption Spectrometry After Cloud Point Extraction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel approach was developed for the determination of ultratrace amounts of copper in water samples by using electrothermal atomic absorption spectrometry (ETAAS) after cloud point extraction (CPE). 1-( 2-Pyridylazo)-2-naphthol was used as the chelating reagent and Triton X-114 as the micellar-forming surfactant. CPE was conducted in a pH 8.0 medium at 40 ℃ for 10 min. After the separation of the phases by centrifugation, the surfactant-rich phase was diluted with 1 mL of a methanol solution of 0. 1 mol/L HNO3. Then 20 μL of the diluted surfactant-rich phase was injected into the graphite furnace for atomization in the absence of any matrix modifier. Various experimental conditions that affect the extraction and atomization processes were optimized. A detection limit of 5 ng/L was obtained after preconcentration. The linear dynamic range of the copper mass concentration was found to be 0-2.0ng/mL, and the relative standard deviation was found to be less than 3.1% for a sample containing 1.0 ng/mL Cu(Ⅱ). This developed method was successfully applied to the determination of ultratrace amounts of Cu in drinking water, tap water, and seawater samples.

  20. Emission, optical--optical double resonance, and excited state absorption spectroscopy of matrix isolated chromium and molybdenum atoms

    International Nuclear Information System (INIS)

    Making use of a combination of time-resolved emission, optical--optical double resonance, and excited state absorption spectroscopy, it has been possible to assign virtually all spectral features with energies below the z7P0 state of matrix isolated Cr atoms. The a5S state located at 7593 cm-1 in the free gaseous Cr atom has lifetimes of 6.32 and 5.1 s in Ar and Kr matrices, respectively. Matrix perturbations on Cr emission lines are small (-1). The dependence of nonradiative decay rates on the local density of states is elucidated. The magnitude of matrix shifts for a particular transition is correlated with the electronic configurations of ground and excited states and it is pointed out that states having only ''s'' electrons in addition to ''d'' electrons maintain their gas phase energy relationships in the matrix environment. Direct fluorescence is observed from the z7P0 level of Mo to the 7s ground state. The spin-orbit splitting of the ''relaxed'' z7P0 state is 690 cm-1, slightly lower than the 707 cm-1 splitting of the free gaseous Mo atom

  1. Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Wen Xiaodong [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Wu Peng [Analytical and Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Chen Li [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Hou Xiandeng, E-mail: houxd@scu.edu.cn [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Analytical and Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China)

    2009-09-14

    In this work, the microsampling nature of tungsten coil electrothermal vaporization Ar/H{sub 2} flame atomic fluorescence spectrometry (W-coil ETV-AFS) as well as tungsten coil electrothermal atomic absorption spectrometry (W-coil ET-AAS) was used with cloud point extraction (CPE) for the ultrasensitive determination of cadmium in rice and water samples. When the temperature of the extraction system is higher than the cloud point temperature of the selected surfactant Triton X-114, the complex of cadmium with dithizone can be quantitatively extracted into the surfactant-rich phase and subsequently separated from the bulk aqueous phase by centrifugation. The main factors affecting the CPE, such as concentration of Triton X-114 and dithizone, pH, equilibration temperature and incubation time, were optimized for the best extract efficiency. Under the optimal conditions, the limits of detection for cadmium by W-coil ETV-AFS and W-coil ET-AAS were 0.01 and 0.03 {mu}g L{sup -1}, with sensitivity enhancement factors of 152 and 93, respectively. The proposed methods were applied to the determination of cadmium in certified reference rice and water samples with analytical results in good agreement with certified values.

  2. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  3. Theory of x-ray absorption by laser-dressed atoms

    CERN Document Server

    Buth, C; Buth, Christian; Santra, Robin

    2006-01-01

    An ab initio theory is devised for the x-ray photoabsorption cross section of atoms in the field of a moderately intense optical laser (10^13 W/cm^2). The laser dresses the core-excited atomic states, which introduces a dependence of the cross section on the angle between the polarization vectors of the two linearly polarized radiation sources. We use the Hartree-Fock-Slater approximation to describe the atomic many-body problem in conjunction with a non-relativistic quantum-electrodynamic approach to treat the photon-electron interaction. The continuum wave functions of ejected electrons are treated with a complex absorbing potential that is derived from smooth exterior complex scaling. The solution to the two-color (x-ray plus laser) problem is discussed in terms of a direct diagonalization of the complex symmetric matrix representation of the Hamiltonian. Alternative treatments with time-independent and time-dependent non-Hermitian perturbation theories are presented that exploit the weak interaction stren...

  4. Atomic structure of Mn-rich nanocolumns probed by x-ray absorption spectroscopy

    Science.gov (United States)

    Rovezzi, M.; Devillers, T.; Arras, E.; d'Acapito, F.; Barski, A.; Jamet, M.; Pochet, P.

    2008-06-01

    In this letter, we have used the extended x-ray-absorption fine-structure (EXAFS) technique to investigate the structure of Mn-rich self-organized nanocolumns grown by low temperature molecular beam epitaxy. The EXAFS analysis has shown that Mn-rich nanocolumns exhibit a complex local structure that cannot be described by a simple substitutional model. Additional interatomic distances had to be considered in the EXAFS model which are in excellent agreement with the structure of a Ge-3Mn building block tetrahedron of Ge3Mn5.

  5. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    Science.gov (United States)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using

  6. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    Energy Technology Data Exchange (ETDEWEB)

    Milne, Chris J; Pham, Van-Thai; Veen, Renske M van der; El Nahhas, Amal; Lima, Frederico; Vithanage, Dimali A; Chergui, Majed [Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Federale de Lausanne (Switzerland); Gawelda, Wojciech [Laser Processing Group, Instituto de Optica, CSIC (Spain); Johnson, Steven L; Beaud, Paul; Ingold, Gerhard; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Abela, Rafael [Swiss Light Source, Paul Scherrer Institut (Switzerland); Benfatto, Maurizio [Laboratori Nazionali di Frascati, INFN (Italy); Hauser, Andreas [Departement de Chimie Physique, Universite de Geneve (Switzerland); Bressler, Christian, E-mail: majed.chergui@epfl.c, E-mail: chris.milne@psi.c [European XFEL Project Team, Deutsches Elektronen Synchrotron (Germany)

    2009-11-15

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [Fe{sup II}(bpy){sub 3}]{sup 2+}, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 A. In addition an analysis technique using the reduced {chi}{sup 2} goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  7. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    International Nuclear Information System (INIS)

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [FeII(bpy)3]2+, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 A. In addition an analysis technique using the reduced χ2 goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  8. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Bencs, László; Laczai, Nikoletta; Ajtony, Zsolt

    2015-07-01

    A combination of former convective-diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass - m0) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m0 values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm3 min- 1) of the internal sheath gas during atomization. The theoretical and experimental ratios of m0(mini-flow)-to-m0(stop-flow) were closely similar for each study analyte. Likewise, the calculated m0 data gave a fairly good agreement with the corresponding experimental m0 values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology.

  9. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively.

  10. Pre-concentration of trace metals from sea-water for determination by graphite-furnace atomic-absorption spectrometry.

    Science.gov (United States)

    Sturgeon, R E; Berman, S S; Desaulniers, A; Russell, D S

    1980-02-01

    Determination of Cd, Zn, Pb, Cu, Fe, Mn, Co, Cr and Ni in coastal sea-water by graphite-furnace atomic-absorption spectrometry after preconcentration by solvent extraction and use of a chelating ion-exchange resin is described. Following the extraction of the pyrrolidine-N-carbodithioate and oxinate complexes into methyl isobutyl ketone, the trace metals are further preconcentrated by back-extraction into 1.5M nitric acid. Preconcentration on the chelating resin is effected by a combined column and batch technique, allowing greater preconcentration factors to be obtained. Provided samples are appropriately treated to release non-labile metal species prior to preconcentration, both methods yield comparable analytical results with respect to the mean concentrations determined as well as to mean relative standard deviations. Control and treatment of the analytical blank is also described. PMID:18962623

  11. Study of new technique of solid combustible materials to determination of volatile elements by flame atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    A new technique for direct trace element analysis of solid combustible materials is described. The samples (up to 10 mg) are weighed on a graphite platform wich is then placed in a quartz tube, at the focal point of three infrared lamps. When the lamps are turned on, the sample burns in a stream of air, and the resulting dry aerosol containing volatile elements such as Hg, Cd, Bi, Tl, Zn, Pb and Cu is carried into the mixing chamber and thence into the flame, where the atomic absorption measurement is carried out. This technique overcomes chemical sample preparation steps, avoiding contaminations of losses associated with these steps. A ''furnace in flame'' system where the aerosol is transported to a flame heated T-tube is also described. The influence of flame stoichiometry, observation height, platform material and air flux intensity was studied inorder to determine optimal analytical conditions. (author)

  12. An analysis of lead (Pb) from human hair samples (20-40 years of age) by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    This analysis of lead from human hair samples in five different groups namely scavengers from Payatas Quezon City, tricycle drivers, car shop workers, paint factory workers, and students from Polytechnic University of the Philippines. The people from Nagcarlan, Laguna represented as a ''base-line value'' or as a control group. The method applied was acid digestion using HNO3 and HClO4 then the samples were subjected to atomic absorption spectrophotometer. In terms of lead found from hair, the scavengers from Payatas Q.C. obtained high exposure of lead among the samples that were tested. The result of the analysis of concentration of lead was expressed in mg/L. (Authors)

  13. Coprecipitation of trace amounts of silicon with aluminum hydroxide and the determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2014-01-01

    Full Text Available A simple preconcentration method of silicon based on coprecipitation with aluminum hydroxide prior to its flame atomic absorption (FAAS determination was established. The recovery values of analyte ion was higher than 95%. The parameters including types of hydroxide ion source for precipitation, acid type for dissolution step, amount of aluminum ion as collector, pH, temperature, standing and centrifuge time, and sample volume were optimized for the quantitative recovery of the analyte. The influences of matrix ions were also examined. The relative standard deviation was found to be 3.2%. The limit of detection was calculated as (0.1 mg L-1. The preconcentration factor is 100 for (200 mL solution. The proposed method was successfully applied for the determination of silicon in some water and alloy samples.

  14. Cloud point extraction thermospray flame quartz furnace atomic absorption spectrometry for determination of ultratrace cadmium in water and urine

    Science.gov (United States)

    Wu, Peng; Zhang, Yunchang; Lv, Yi; Hou, Xiandeng

    2006-12-01

    A simple, low cost and highly sensitive method based on cloud point extraction (CPE) for separation/preconcentration and thermospray flame quartz furnace atomic absorption spectrometry was proposed for the determination of ultratrace cadmium in water and urine samples. The analytical procedure involved the formation of analyte-entrapped surfactant micelles by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution and a Triton X-114 solution. When the temperature of the system was higher than the cloud point of Triton X-114, the complex of cadmium-PDC entered the surfactant-rich phase and thus separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, the limit of detection was 0.04 μg/L for cadmium with a sample volume of 10 mL. The analytical results of cadmium in water and urine samples agreed well with those by ICP-MS.

  15. Cloud point extraction-thermospray flame quartz furnace atomic absorption spectrometry for determination of ultratrace cadmium in water and urine

    Energy Technology Data Exchange (ETDEWEB)

    Wu Peng [Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064 (China); Zhang Yunchang [College of Chemistry, Sichuan University, Chengdu, Sichuan 610064 (China); Lv Yi [College of Chemistry, Sichuan University, Chengdu, Sichuan 610064 (China); Hou Xiandeng [Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064 (China) and College of Chemistry, Sichuan University, Chengdu, Sichuan 610064 (China)]. E-mail: houxd@scu.edu.cn

    2006-12-15

    A simple, low cost and highly sensitive method based on cloud point extraction (CPE) for separation/preconcentration and thermospray flame quartz furnace atomic absorption spectrometry was proposed for the determination of ultratrace cadmium in water and urine samples. The analytical procedure involved the formation of analyte-entrapped surfactant micelles by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution and a Triton X-114 solution. When the temperature of the system was higher than the cloud point of Triton X-114, the complex of cadmium-PDC entered the surfactant-rich phase and thus separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, the limit of detection was 0.04 {mu}g/L for cadmium with a sample volume of 10 mL. The analytical results of cadmium in water and urine samples agreed well with those by ICP-MS.

  16. Speciation determination of chromium(III) and (VI) using preconcentration cloud point extraction with flame atomic absorption spectrometry (FAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, K. [Department of Environmental Sciences, S.V. University, Tirupati, 517502 A.P. (India); Kumar, K. Suresh; Prasad, B.; Suvardhan, K. [Department of Chemistry, S. V. University, Tirupati, 517502 A.P. (India); Lekkala, Ramesh Babu [Department of Environmental Sciences, S.V. University, Tirupati, 517502 A.P. (India); Janardhanam, K. [Department of Environmental Sciences, S.V. University, Tirupati, 517502 A.P. (India)], E-mail: Kandukurijanardhanam@gmail.com

    2008-02-11

    bis-[2-Hydroxy-1-naphthaldehyde] thiourea was synthesized and preconcentration cloud point extraction (CPE) for speciation determination of chromium(III) and (VI) in various environmental samples with flame atomic absorption spectrometry (FAAS) has been developed. Chromium(III) complexes with bis-[2-hydroxynaphthaldehyde] thiourea is subsequently entrapped in the surfactant micelles. After complexation of chromium(III) with reagent, the analyte was quantitatively extracted to the surfactant-rich phase in the non-ionic surfactant Triton X-100 after centrifugation. The effect of pH, concentration of chelating agent, surfactant, equilibration temperature and time on CPE was studied. The relative standard deviation was 2.13% and the limits of detection were around 0.18 {mu}g L{sup -1}.

  17. Atmospheric deposition of heavy metals studied by analysis of moss samples using neutron activation analysis and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    In a study of the atmospheric deposition of trace elements in different parts of Norway samples of the moss Hylocomium splendens were analyzed with respect to 26 elements. The determination of Cu, Zn, Pb, Cd and Ni was carried out by flame atomic absorption spectrometry, while an additional 21 elements were determined by instrumental neutron activation analysis. Several elements showed a substantially higher deposition in the southernmost parts of Norway than in places located farther north. As regards Pb, As and Sb, the difference amounted to a factor of ten or more. A similar but less pronounced trend was evident for elements such as V, Zn, Cd, Se and Ag. In some cases local pollution sources or marine aerosols had a significant effect on the results. For several heavy metals however long-distance transport from areas to the south and the south west of Norway was responsible for a major part of the air pollution

  18. Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media.

    Science.gov (United States)

    Zhang, Yiqi; Wu, Zhenkun; Yao, Xin; Zhang, Zhaoyang; Chen, Haixia; Zhang, Huaibin; Zhang, Yanpeng

    2013-12-01

    We experimentally demonstrate dressed multi-wave mixing (MWM) and the reflection of the probe beam due to electromagnetically induced absorption (EIA) grating can coexist in a five-level atomic ensemble. The reflection is derived from the photonic band gap (PBG) of EIA grating, which is much broader than the PBG of EIT grating. Therefore, EIA-type PBG can reflect more energy from probe than EIT-type PBG does, which can effectively affect the MWM signal. The EIA-type as well as EIT-type PBG can be controlled by multiple parameters including the frequency detunings, propagation angles and powers of the involved light fields. Also, the EIA-type PBG by considering both the linear and third-order nonlinear refractive indices is also investigated. The theoretical analysis agrees well with the experimental results. This investigation has potential applications in all-optical communication and information processing.

  19. Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media

    CERN Document Server

    Zhang, Yiqi; Yao, Xin; Zhang, Zhaoyang; Chen, Haixia; Zhang, Huaibin; Zhang, Yanpeng

    2013-01-01

    We experimentally demonstrate dressed multi-wave mixing (MWM) and the reflection of the probe beam due to electromagnetically induced absorption (EIA) grating can coexist in a five-level atomic ensemble. The reflection is derived from the photonic band gap (PBG) of EIA grating, which is much broader than the PBG of EIT grating. Therefore, EIA-type PBG can reflect more energy from probe than EIT-type PBG does, which can effectively affect the MWM signal. The EIA-type as well as EIT-type PBG can be controlled by multiple parameters including the frequency detunings, propagation angles and powers of the involved light fields. Also, the EIA-type PBG by considering both the linear and third-order nonlinear refractive indices is also investigated. The theoretical analysis agrees well with the experimental results. This investigation has potential applications in all-optical communication and information processing.

  20. Evaluation of trace elements in chewing tobacco and snuff using instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Waheed, S.; Siddique, N.; Rahman, S. [Chemistry Div., Directorate of Science, Pakistan Inst. of Nuclear Science and Tech., Islamabad (Pakistan)

    2009-07-01

    Nine samples of chewing tobacco, snuff, tobacco leaf and ash were analyzed using Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS). Almost all samples of chewing tobacco and snuff studied in this work contain substantial amounts of Mg, Mn, Na, K. V. Sc, Rb and Fe. Furthermore, varying amounts of Al, Ba, Ca, Ce, Co and Zn were also detected in all tobacco samples. Of the toxic elements which were determined using INAA. As, Sb and Hg were quantified in only few tobacco samples. However, other toxic elements, which were determined using AAS, such as Cu, Pb and Cd were detected in almost all samples of chewing tobacco and snuff. The concentration of majority of the detected elements is high in ash samples which imply that most elements in chewing tobacco and snuff may originate from the addition of ash. (orig.)

  1. Application of multiwalled carbon nanotubes treated by potassium permanganate for determination of trace cadmium prior to flame atomic absorption spectrometry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this study we investigated the enrichment ability of oxidized multiwalled carbon nanotubes (MWCNTs) and established a new method for the determination of trace cadmium in environment with flame atomic absorption spectrometry. The MWCNTs were oxidized by potassium permanganate under appropriate conditions before use as preconcentration packing. Parameters influencing the recoveries of target analytes were optimized. Under optimal conditions, the target analyte exhibited a good linearity (R2=0.9992)over the concentration range 0.5-50 ng/ml. The detection limit and precision of the proposed method were 0.15 ng/ml and 2.06%,respectively. The proposed method was applied to the determination of cadmium in real-world environmental samples and the recoveries were in the range of 91.3%-108.0%. All these experimental results indicated that this new procedure could be applied to the determination of trace cadmium in environmental waters.

  2. DIRECT DETERMINATION OF GOLD IN SUSPENSIONS OF ROCK AND ORE REFERENCE MATERIALS USING ELECTROTHERMAL HIGH RESOLUTION ATOMIC ABSORPTION SPECTROMETRY

    OpenAIRE

    Zakharov, Y. А.; Irisov, D. S.; Okunev, R. V.; Musin, R. Kh.; Haibullin, R. R.

    2014-01-01

    High resolution continuum source atomic absorption spectrometer ContrAA-700 with graphite furnace is used for direct gold determination in rocks and ores on the level 10-6-10-3 % mas. Russian standard reference materials of gold containing ore СЗР-4 (2.13 ± 0.05 g/ton), black slates of Sykhoy Log СЛг-1 (2.50 ± 0.03 g/ton) and СЧС-1 (0.10 ± 0.02 g/ton) in mass 1 mg was inserted into the furnace in the suspension form prepared on the mix of concentrated HNO3 and HCl (1:3) with following sevenfo...

  3. Quantitative analysis of trace impurities in iron metal powder using flame-atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Nuclear Fuel Complex (NFC) is responsible for fabrication of fuel and reactor core components required for operating the nuclear power reactors in India. Structural materials used in water cooled reactors must possess a combination of high corrosion resistance and low neutron absorption cross section. Alloys of zirconium meet all these requirements and hence preferred a choice for making structural materials. In order to ensure adequate mechanical strength to components in the reactor core and also for dependable corrosion resistance at elevated temperatures and pressurized water environment, zirconium has to be alloyed with certain alloying constituents like chromium, nickel, iron and tin to get desirable properties. That is how alloys of zirconium have become indispensable to present day CANDU type of reactors as structural components and as fuel cladding material. The present paper deals with the chemical characterization of iron metal powder to be used as alloying element in formation of zircaloy

  4. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Peng, Jin-feng; Liu, Rui; Liu, Jing-fu; He, Bin; Hu, Xia-lin; Jiang, Gui-bin

    2007-05-01

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO 3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L - 1 ) and a relative standard deviation (2.5% at 50 ng L - 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L - 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  5. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Peng Jinfeng; Liu Rui [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085 (China); Liu Jingfu [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085 (China)], E-mail: jfliu@rcees.ac.cn; He Bin; Hu Xialin; Jiang Guibin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085 (China)

    2007-05-15

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO{sub 3} that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L{sup -1}) and a relative standard deviation (2.5% at 50 ng L{sup -1} level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L{sup -1} and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  6. Determination of mercury in gasoline by cold vapor atomic absorption spectrometry with direct reduction in microemulsion media

    International Nuclear Information System (INIS)

    The determination of Hg in gasoline by cold vapor atomic absorption spectrometry, after direct aqueous NaBH4 reduction in a three-component (microemulsion) medium, was investigated. Microemulsions were prepared by mixing gasoline with propan-1-ol and 50% v / v HNO3 at a 20 : 15 : 1 volume ratio. A long-term homogeneous system was immediately formed this way. After reduction, the Hg vapor generated in a reaction flask was transported to an intermediate K2Cr2O7/H2SO4 trap solution in order to avoid poisoning of the Au-Pt trap by the gasoline vapors. A second reduction step was then conducted and the generated Hg vapor transported to the Au-Pt trap, followed by thermal release of Hg0 and atomic absorption measurement. Purified N2 was used as purge and transport gas. After multivariate optimization by central composite design calibration graphs showed coefficients of correlation of 0.9999 and a characteristic mass of 2 ng was obtained. Typical coefficients of variation of 5% and 6% were found for ten consecutive measurements at concentration levels of 1 and 8 μg L-1 of Hg2+, respectively. The limit of detection was 0.10 μg L-1 (0.14 μg kg-1) in the original sample. A total measurement cycle took 11 min, permitting duplicate analysis of 3 samples per hour. The results obtained with the proposed procedure in the analysis of commercial gasoline samples were in agreement with those obtained by a comparative procedure. Gasoline samples of the Rio de Janeiro city have shown Hg concentrations below 0.27 μg L-1

  7. Improved limit of detection and quantitation development and validation procedure for quantification of zinc in Insulin by atomic absorption spectrometry.

    Science.gov (United States)

    Qadir, Muhammad Abdul; Ahmed, Mahmood; Haq, Iftikharul; Ahmed, Saghir

    2015-05-01

    A simple and expeditious analytical method for determination of zinc in human insulin isophane suspension by flame atomic absorption spectrophotometer (FAAS) was validated. The method was carried out on atomic absorption spectrometer with 0.4 nm bandwidth, 1.0 filter factor on deuterium (D2) background correction. The integration time was set at 3.0 second with 5.0 mA lamp current. The parameters of method validation showed adequate linearity, efficiency and relative standard deviation values were between 0.64%-1.69% (n=7), 1.31%-1.58% (n=10) for repeatability and intermediate precision respectively. The limit of detection 0.0032 μg/mL, 0.0173 μg/mL, 0.0231 μg/mL and limit of quantitation 0.0107μg/mL, 0.0578 μg/mL, 0.0694 μg/mL based on signal to noise (SN), calibration curve method (CCM) and fortification of blank (FB) were obtained respectively. The percentages of recovery for low, medium and high spiked concentration levels of zinc in human insulin were 99.38 ± 0.04 to 100.3 ± 0.03, 98.45 ± 0.38 to 100.3 ± 0.07 and 99.42 ± 0.03 to 99.42 ± 0.08 respectively. With the use of this method, five samples from each vial of human insulin isophane suspension were analyzed and the zinc content was determined. The zinc content were 22.1 ± 0.025 μg/mL and 24.3 ± 0.028 μg/mL which compliance the British Pharmacopoeia standard. PMID:26004720

  8. Determination of mercury in gasoline by cold vapor atomic absorption spectrometry with direct reduction in microemulsion media

    Science.gov (United States)

    Brandão, Geisamanda Pedrini; de Campos, Reinaldo Calixto; Luna, Aderval Severino

    2005-06-01

    The determination of Hg in gasoline by cold vapor atomic absorption spectrometry, after direct aqueous NaBH 4 reduction in a three-component (microemulsion) medium, was investigated. Microemulsions were prepared by mixing gasoline with propan-1-ol and 50% v / v HNO 3 at a 20 : 15 : 1 volume ratio. A long-term homogeneous system was immediately formed this way. After reduction, the Hg vapor generated in a reaction flask was transported to an intermediate K 2Cr 2O 7/H 2SO 4 trap solution in order to avoid poisoning of the Au-Pt trap by the gasoline vapors. A second reduction step was then conducted and the generated Hg vapor transported to the Au-Pt trap, followed by thermal release of Hg 0 and atomic absorption measurement. Purified N 2 was used as purge and transport gas. After multivariate optimization by central composite design calibration graphs showed coefficients of correlation of 0.9999 and a characteristic mass of 2 ng was obtained. Typical coefficients of variation of 5% and 6% were found for ten consecutive measurements at concentration levels of 1 and 8 μg L -1 of Hg 2+, respectively. The limit of detection was 0.10 μg L -1 (0.14 μg kg -1) in the original sample. A total measurement cycle took 11 min, permitting duplicate analysis of 3 samples per hour. The results obtained with the proposed procedure in the analysis of commercial gasoline samples were in agreement with those obtained by a comparative procedure. Gasoline samples of the Rio de Janeiro city have shown Hg concentrations below 0.27 μg L -1.

  9. Dosage du mercure dans le gaz naturel par absorption atomique sans flammes Mercury Titration in Natural Gas by Flameless Atomic Absorption

    Directory of Open Access Journals (Sweden)

    La Villa F.

    2006-11-01

    Full Text Available Cet article présente la méthode mise au point par l'Institut Français du Pétrole pour déterminer par absorption atomique sans flamme, les traces de mercure métallique contenu dans un gaz naturel. La méthode d'analyse nécessite une extraction du mercure soit sous forme d'ion mercurique en faisant passer le gaz dans une solution oxydante, soit sous forme d'amalgame avec de l'or ou de l'argent. Le premier mode opératoire s'applique aux échantillons dont la concentration en mercure est supérieure à I ttg/Nm3, le second pour des concentrations inférieures à 5 pg/Nm3. Les seuils de détection sont respectivement 10 ng (en solution et 0,3 ng (en amalgame. La répétabilité pour 100 ng de mercure (en amalgame est de ± 7% pour une probabilité de.95 %. En conclusion, dans un échantillon de gaz naturel, compte tenu du volume des prélèvements effectués, il est possible de détecter des concentrations de l'ordre du nanogramme de mercure par mètre cube de gaz. This article describes the method developed by IFP using flameless atomic absorption to determine metallic mercury traces in a natural gas. The analyst method requires a mercury extraction either in the form of mercuric ions by making the gas pass through an oxidizing solution or in the form of an amalgam with gold or silver. The former operating method applies ta samples having a mercury concentration greater than I !ag/Nm3, and the latter for concentrations smaller than 5 (-Lg/Nm3. Detection thresholds are respectively 10 ng (in solution and 0.3 ng (in amalgam. The repeatability for 100 ng of mercury (in amalgam is ± 7 % with a probability of 95%. To conclude, in a sample of natural gas, considering the volume of the samples taken, it is possible ta detect concentrations in the vicinity of one nanogrom of mercury per cubic meter of gas.

  10. Unusual calibration curves observed for iron using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Welz, Bernhard, E-mail: w.bernardo@terra.com.b [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis-SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CMPq-INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador-BA (Brazil); Santos, Lisia M.G. dos [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis-SC (Brazil); Instituto Nacional de Controle de Qualidade em Saude-INCQS-Fiocruz, 21040-900 Rio de Janeiro-RJ (Brazil); Araujo, Rennan G.O. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis-SC (Brazil); Departamento de Quimica, Universidade Federal de Sergipe, 49100-000 Sao Cristovao-SE (Brazil); Jacob, Silvana do C. [Instituto Nacional de Controle de Qualidade em Saude-INCQS-Fiocruz, 21040-900 Rio de Janeiro-RJ (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CMPq-INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador-BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre-RS (Brazil); Okruss, Michael; Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-Department Berlin, 12489 Berlin (Germany)

    2010-03-15

    The simultaneous determination of cadmium and iron in plant and soil samples has been investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry. The primary cadmium resonance line at 228.802 nm and an adjacent secondary iron line at 228.726 nm, which is within the spectral interval covered by the charge-coupled device (CCD) array detector, have been used for the investigations. Due to the very high iron content in most of the soil samples the possibility has been investigated to reduce the sensitivity and extend the working range by using side pixels for measurement at the line wings instead of the line core. It has been found that the calibration curves measured at all the analytically useful pixels of this line consisted of two linear parts with distinctly different slopes. This effect has been independent of the positioning of the wavelength, i.e., if the Cd line or the Fe line was in the center of the CCD array. The most likely explanation for this unusual behavior is a significant difference between the instrument width DELTAlambda{sub Instr} and the absorption line width DELTAlambda{sub Abs}, which is quite pronounced in the case of Fe. Using both parts of the calibration curves and simultaneous measurement at the line center and at the wings made it possible to extend the working range for the iron determination to more than three orders of magnitude.

  11. The response of a neutral atom to a strong laser field probed by transient absorption near the ionisation threshold

    CERN Document Server

    Simpson, E R; Austin, D R; Diveki, Z; Hutchinson, S E E; Siegel, T; Ruberti, M; Averbukh, V; Miseikis, L; Strüber, C; Chipperfield, L; Marangos, J P

    2015-01-01

    We present transient absorption spectra of an extreme ultraviolet attosecond pulse train in helium dressed by an 800 nm laser field with intensity ranging from $2\\times10^{12}$ W/cm$^2$ to $2\\times10^{14}$ W/cm$^2$. The energy range probed spans 16-42 eV, straddling the first ionisation energy of helium (24.59 eV). By changing the relative polarisation of the dressing field with respect to the attosecond pulse train polarisation we observe a large change in the modulation of the absorption reflecting the vectorial response to the dressing field. With parallel polarized dressing and probing fields, we observe significant modulations with periods of one half and one quarter of the dressing field period. With perpendicularly polarized dressing and probing fields, the modulations of the harmonics above the ionisation threshold are significantly suppressed. A full-dimensionality solution of the single-atom time-dependent Schr\\"odinger equation obtained using the recently developed ab-initio time-dependent B-spline...

  12. 火焰原子吸收光谱法间接测定药剂中的核黄素%Indirect determination of riboflavin in pharmaceuticals by flame atomic absorption spectrometry

    Institute of Scientific and Technical Information of China (English)

    苏颖颖; 李晓红

    2011-01-01

    本文利用高碘酸钠对相邻羟基氧化作用的专属性,在一定介质中,高碘酸钠与核黄素完全反应后,过量的高碘酸的钠与硝酸铅或者硝酸铜生成沉淀,通过测定Pb或者Cu,建立了间接测定核黄素含量的方法.铅体系和铜体系测定的相对标准偏差(RSD)分别为4.8%和5.2%,检出限分别为0.6μg.mL和0.5μg·mL.用铅体系间接原子吸收光谱法测定维生素B片剂和针剂中的核黄素,测定结果与药典方法基本一致.%In the present work, a flame atomic absorption spectrometric method was developed for indirect determination of riboflavin. An excessive sodium periodate was used to react with riboflavin, and the remaining periodate was precipitated with excessive lead nitrate or copper nitrate. The precipitation, lead periodate or copper periodate formed was separated from the reaction medium by membrane filtration, and then was dissolved in 0.2 mol L-1 nitric acid following the determination of lead or copper by flame atomic absorption spectrometry. The calibration curve was linear over the range of 0. 001 ~ 0. 020 mg mL-1 and 0. 0025 ~ 0. 0500 mg mL-1; the relative standard deviation (RSD) for determination of 0. 005 mg mL-1 riboflavin was 4. 8% and 5. 2%; and the detection limit was 0. 0006 and 0. 0005 mg mL-1 , respectively, with lead or copper AAS measurement. The method was used for determination of riboflavin in Vitamin B2 tablets and injections.

  13. Automated continuous monitoring of inorganic and total mercury in wastewater and other waters by flow-injection analysis and cold-vapour atomic absorption spectrometry

    OpenAIRE

    Birnie, S. E.

    1988-01-01

    An automated continuous monitoring system for the determination of inorganic and total mercury by flow-injection analysis followed by cold-vapour atomic absorption spectrometry is described. The method uses a typical flow-injection manifold where digestion and reduction of the injected sample takes place. Mercury is removed by aeration from the flowing stream in a specially designed air-liquid separator and swept into a silica cell for absorption measurement at a wavelength of 253.7 nm. A cal...

  14. Liquid-liquid extraction of zinc and cadmium with 1,2-naphthoquinone thiosemicarbazone into methyl isobutyl ketone, and their simultaneous determination by atomic-absorption spectrophotometry

    International Nuclear Information System (INIS)

    Zinc and cadmium are extracted from aqueous solution with 1,2-naphtoquinone thiosemicarbazone for simultaneous determination by atomic-absorption spectrophotometry. This compound reacts with zinc and cadmium in weakly acid medium to produce chelates which are extractable into methyl isobutyl ketone. The atomic absorption is measured at 213.9 and 228.8 nm for zinc and cadmium, respectively. The sensitivity is 0.3 ng per ml of original aqueous solution and several foreign ions are tolerated in 100-fold ratio to Zn or Cd. (Author)

  15. Treatment of the emission and absorption spectra of a general formalism Λ-type three-level atom driven by a two-mode field with nonlinearities

    International Nuclear Information System (INIS)

    An analytical expression of the emission and absorption spectra, for a Λ-type three-level cavity-bound atom interacting with a two-mode cavity field, is given using the dressed states of the system. We take explicitly into account the existence of forms of nonlinearities of both the field and the intensity-dependent atom-field coupling. The characteristics of the emission and absorption spectra for binomial and squeezed coherent states of the modes are exhibited. The effects of the mean number of photons, detuning and the nonlinearity forms on the spectra are analysed

  16. Spatial transport of atomic coherence in electromagnetically induced absorption with a paraffin-coated Rb vapor cell.

    Science.gov (United States)

    Lee, Yoon-Seok; Moon, Han Seb

    2014-06-30

    We report the spatial transport of spontaneously transferred atomic coherence (STAC) in electromagnetically induced absorption (EIA), which resulted from moving atoms with the STAC of the 5S(1/2) (F = 2)-5P(3/2) (F' = 3) transition of (87)Rb in a paraffin-coated vapor cell. In our experiment, two channels were spatially separate; the writing channel (WC) generated STAC in the EIA configuration, and the reading channel (RC) retrieved the optical field from the spatially transported STAC. Transported between the spatially separated positions, the fast light pulse of EIA in the WC and the delayed light pulse in the RC were observed. When the laser direction of the RC was counter-propagated in the direction of the WC, we observed direction reversal of the transported light pulse in the EIA medium. Furthermore, the delay time, the magnitude, and the width of the spatially transported light pulse were investigated with respect to the distance between the two channels.

  17. Determination of cadmium, aluminium, and copper in beer and products used in its manufacture by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Viñas, Pilar; Aguinaga, Nerea; López-García, Ignacio; Hernandez-Córdoba, Manuel

    2002-01-01

    Procedures were developed for determining cadmium, aluminium, and copper in beer and the products used in its manufacture by electrothermal atomic absorption spectrometry. Beer samples were injected into the furnace and solid samples were introduced as suspensions after preparation in a medium containing hydrogen peroxide, nitric acid, and ammonium dihydrogen phosphate for cadmium atomization. Calibration was performed with aqueous standards, and characteristic masses and detection limits were, respectively, 1 and 0.3 pg for cadmium, 18 and 5.4 pg for aluminium, and 5.6 and 6.8 pg for copper. Different samples of beer, wort, brewer's yeast, malt, raw grain, and hops were analyzed by the proposed procedures. Cadmium was found in low concentrations (0.001-0.08 microg/g and 0-1.3 ng/mL); copper (3-13 microg/g and 25-137 ng/mL) and aluminium (0.6-9 microg/g and 0.1-2 microg/mL) were found at higher levels. The reliability of the procedure was confirmed by comparing the results obtained with others based on microwave oven sample digestion, and by analyzing several certified reference materials. PMID:12083268

  18. Compartmentalization of trace elements in guinea pig tissues by INAA [instrumental neutron activation analysis] and AAS [atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Human scalp hair analysis has received considerable attention from a variety of disciplines over the last 20 yr or so. Trace element levels of hair have been used in environmental, epidemiological, forensic, nutritional, predictive, and preventive medicine studies. There still exist confusion, skepticism, and controversy, however, among the experts as well as lay persons in the interpretation of hair trace element data. Much of the criticism stems from the lack of quantitative and reliable data on the ability of hair to accurately reflect dose-response relationships. To better define the significance or hair trace element levels (under the auspices of the International Atomic Energy Agency), the authors have undertaken a controlled set of animal experiments in which trace element levels in hair and other tissues have been measured after a mild state of systemic intoxication by chronic, low-does exposure to cadmium and selenium. Instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS) methods have been developed for the determination of several elements with a high degree of precision and accuracy

  19. Investigation of lead contents in lipsticks by solid sampling high resolution continuum source electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Gunduz, Sema; Akman, Suleyman

    2013-02-01

    In this study, the lead contents of different kinds of lipsticks were determined by solid sampling high resolution continuum source electrothermal atomic absorption spectrometry (SS-HR-CS ET AAS) and the results were compared with those obtained after microwave-assisted acid digestion of the samples. The experimental parameters for solid sampling such as the maximum amount of sample on the platforms of solid autosampler, graphite furnace program were optimized. Samples were directly loaded on the platforms of solid autosampler between 0.25 and 2.0mg and lead was determined applying 800 °C for pyrolysis and 2100 °C for atomization. Under optimized conditions, interference-free determination could be performed using aqueous standards. The LOD and the characteristic mass were 21.3 and 12.6 pg, respectively. The lead in the same lipstick samples was determined after microwave-assisted acid digestion and compared with those found by solid sampling. Mostly, there was no significant difference between the lead concentrations found by the two techniques. The lead in 25 lipstick samples with different properties were 0.11-4.48 ng mg(-1) which were not significantly different from those (<0.026-7.19 ng mg(-1)) reported by FDA for around 400 samples. PMID:23099440

  20. An X-ray absorption spectroscopy investigation of the local atomic structure in Cu-Ni-Si alloy after severe plastic deformation and ageing

    Science.gov (United States)

    Azzeddine, H.; Harfouche, M.; Hennet, L.; Thiaudiere, D.; Kawasaki, M.; Bradai, D.; Langdon, T. G.

    2015-08-01

    The local atomic structure of Cu-Ni-Si alloy after severe plastic deformation (SPD) processing and the decomposition of supersaturated solid solution upon annealing were investigated by means of X-ray absorption spectroscopy. The coordination number and interatomic distances were obtained by analyzing experimental extend X-ray absorption fine structure data collected at the Ni K-edge. Results indicate that the environment of Ni atoms in Cu-Ni-Si alloy is strongly influenced by the deformation process. Moreover, ageing at 973 K affects strongly the atomic structure around the Ni atoms in Cu-Ni-Si deformed by equal channel angular pressing and high pressure torsion. This influence is discussed in terms of changes and decomposition features of the Cu-Ni-Si solid solution.

  1. Effect of two kinds of iron drops on the discoloration, atomic absorption and structural changes of primary teeth enamel

    Directory of Open Access Journals (Sweden)

    Mehran M.

    2009-03-01

    Full Text Available "nBackground and Aim: Black staining after taking iron drops on the primary teeth is always concern of parents. There is not an exact explanation for the mechanism of iron black staining. The purpose of this study was to compare tooth discolorations, atomic absorption and structural changes of primary teeth enamel caused by two kinds of iron drops[ Kharazmi(Iran and Fer-in-sol(USA]. "nMaterials and Methods: In this ex-vivo study, 93 sound primary teeth in normal color range were divided into five groups. Two groups of samples were immersed into the Artificial Caries Challenge(ACC for two weeks before getting exposured to iron drops: Group 1 Control(NS: sound enamel teeth which were kept in Normal Saline environment(NS(13teeth. Group 2 (NS-KH: NS, kharazmi iron drop (20 teeth. Group 3 (ACC-KH: ACC, Kharazmi iron drop (20teeth. Group 4 (NS-F-in-S: NS, Fer-in-Sol iron drop (20teeth. Group 5 (ACC-F-in-S: ACC, Fer-in-Sol iron drop. Visual tooth discolorations were determined by a specialist in operative dentistry who was not aware of experimental groups. The iron concentration was measured by ICP system (Vista-pro, Australia and the structural changes were studied by SEM (Philips, Netherland. The data of discoloration were studied with Kruskal-Wallis test and multiple comparison using Bonferroni type test, and with the data of atomic absorption were studied with oneway ANOVA test and Tukey HSD test. "nResults: The discoloration in the teeth immersed into the ACC (ACC-KH, ACC-F-in-S was more severe than the sound enamel surface (NS-KH, NS-F-IN-S (p<0.001 and Kharazmi iron drop caused more discoloration in the teeth immersed into the ACC (p=0.018. The teeth immersed into the ACC, absorbed more iron than the sound enamel surface (p<0.001 and also the teeth immersed into the ACC absorbed more Kharazmi iron drop (p<0.001. In the Scanning Electron Microscopy study, at low magnification in the sound teeth the perikymata was arranged regular. At low

  2. Cloud point extraction for the determination of cadmium and lead in biological samples by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Maranhão, Tatiane De A.; Borges, Daniel L. G.; da Veiga, Márcia A. M. S.; Curtius, Adilson J.

    2005-06-01

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of Cd and Pb from digested biological samples. After complexation with O,O-diethyldithiophosphate (DDTP) in hydrochloric acid medium, the analytes are quantitatively extracted to the phase rich in the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 0.1 mol L-1 HNO3 was added to the surfactant-rich phase prior to its analysis by electrothermal atomic absorption spectrometry (ET AAS). The adopted concentrations for DDTP, Triton X-114 and hydrochloric acid were all optimized. Pyrolysis and atomization temperatures were optimized using the extracts and pyrolysis temperatures of 700 °C for both elements and atomization temperatures of 1400 and 1600 °C for cadmium and lead, respectively, were used without adding any modifier, which shows that considerable analyte stabilization is provided by the medium itself. A more detailed investigation was carried out to determine which components of the extract were responsible for the high thermal stability achieved and it revealed that the amount of DDTP added and the phosphorus content of the digested samples contributed significantly to this phenomenon. Detection limits (3σB) of 6 and 40 ng g-1, along with enrichment factors of 129 and 18 for Cd and Pb, respectively, were achieved. The proposed procedure was applied to the analysis of five certified biological reference materials after microwave-assisted acid digestion in a mixture of H2O2 and HNO3. Comparison with certified values was performed for accuracy evaluation, resulting in good agreement according to the t-test for a 95% confidence level. The high efficiency of cloud point extraction to carry out the determination of the studied analytes in complex matrices was, therefore, demonstrated.

  3. Cloud point extraction for the determination of cadmium and lead in biological samples by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Maranhao, Tatiane de A. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil)]. E-mail: daniel@qmc.ufsc.br; Veiga, Marcia A.M.S. da [Instituto de Quimica, Universidade de Sao Paulo, 05513-970, CP 26077, Sao Paulo, SP (Brazil); Curtius, Adilson J. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil)

    2005-06-30

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of Cd and Pb from digested biological samples. After complexation with O,O-diethyldithiophosphate (DDTP) in hydrochloric acid medium, the analytes are quantitatively extracted to the phase rich in the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 0.1 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by electrothermal atomic absorption spectrometry (ET AAS). The adopted concentrations for DDTP, Triton X-114 and hydrochloric acid were all optimized. Pyrolysis and atomization temperatures were optimized using the extracts and pyrolysis temperatures of 700 deg. C for both elements and atomization temperatures of 1400 and 1600 deg. C for cadmium and lead, respectively, were used without adding any modifier, which shows that considerable analyte stabilization is provided by the medium itself. A more detailed investigation was carried out to determine which components of the extract were responsible for the high thermal stability achieved and it revealed that the amount of DDTP added and the phosphorus content of the digested samples contributed significantly to this phenomenon. Detection limits (3{sigma} {sub B}) of 6 and 40 ng g{sup -1}, along with enrichment factors of 129 and 18 for Cd and Pb, respectively, were achieved. The proposed procedure was applied to the analysis of five certified biological reference materials after microwave-assisted acid digestion in a mixture of H{sub 2}O{sub 2} and HNO{sub 3}. Comparison with certified values was performed for accuracy evaluation, resulting in good agreement according to the t-test for a 95% confidence level. The high efficiency of cloud point extraction to carry out the determination of the studied analytes in complex matrices was, therefore, demonstrated.

  4. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Teramoto, Yoshiyuki; Ono, Ryo [Department of Advanced Energy, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8568 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2012-06-01

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.

  5. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    International Nuclear Information System (INIS)

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N2 discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N2 discharge pulse is estimated to be 2.9 - 9.8 × 1013 atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 × 1016 atoms/J. The energy efficiency of atomic nitrogen production in N2 discharge is constant against the discharge energy, while that in N2/O2 discharge increases with discharge energy. In the N2/O2 discharge, two-step process of N2 dissociation plays significant role for atomic nitrogen production.

  6. Determination of Arsenic, Mercury and Barium in herbarium mount paper using dynamic ultrasound-assisted extraction prior to atomic fluorescence and absorption spectrometry

    OpenAIRE

    Lummas, S.; Ruiz-Jimenez, J.; Luque de Castro, M.D.; Colston, Belinda; Gonzalez-Rodriguez, Jose; B. Chen; W. Corns

    2011-01-01

    A dynamic ultrasound-assisted extraction method using Atomic Absorption and Atomic Flourescence spectrometers as detectors was developed to analyse mercury, arsenic and barium from herbarium mount paper originating from the herbarium collection of the National Museum of Wales. The variables influencing extraction were optimised by a multivariate approach. The optimal conditions were found to be 1% HNO3 extractant solution used at a flow rate of 1 mL min-1. The duty cycle and amplitude of the ...

  7. Local surrounding of vanadium atoms in CuCr1 - x V x S2: X-ray absorption spectroscopy analysis

    Science.gov (United States)

    Smirnova, Yu. O.; Smolentsev, N. Yu.; Guda, A. A.; Soldatov, M. A.; Kvashnina, K. O.; Glatzel, P.; Korotaev, E. V.; Soldatov, A. V.; Mazalov, L. N.

    2013-03-01

    In the present work local surrounding of vanadium atoms in layered copper-chromium disulfides CuCr1 - x V x S2 is investigated using high-resolution X-ray absorption spectroscopy above vanadium K-edge. Based on experimental and theoretically simulated spectra comparison it is shown that vanadium atoms replace chromium ones even at high concentrations of vanadium and that they are in 3+ oxidation state.

  8. Mapping atomic and diffuse interstellar band absorption across the Magellanic Clouds and the Milky Way

    CERN Document Server

    Bailey, Mandy; Sarre, Peter J; Beckman, John E

    2015-01-01

    Diffuse interstellar bands (DIBs) trace warm neutral and weakly-ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic study of two of the strongest DIBs, at 5780 and 5797 \\AA, in optical spectra of 666 early-type stars in the Small and Large Magellanic Clouds, along with measurements of the atomic Na\\,{\\sc i}\\,D and Ca\\,{\\sc ii}\\,K lines. The resulting maps show for the first time the distribution of DIB carriers across large swathes of galaxies, as well as the foreground Milky Way ISM. We confirm the association of the 5797 \\AA\\ DIB with neutral gas, and the 5780 \\AA\\ DIB with more translucent gas, generally tracing the star-forming regions within the Magellanic Clouds. Likewise, the Na\\,{\\sc i}\\,D line traces the denser ISM whereas the Ca\\,{\\sc ii}\\,K line traces the more diffuse, warmer gas. The Ca\\,{\\sc ii}\\,K line has an additional component at $\\sim200$--220 km s$^{-1}$ seen towards both Magellanic Clouds; this may be associated with a pan-Magellanic ...

  9. Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems

    Science.gov (United States)

    Kruger, Pamela C.; Parsons, Patrick J.

    2007-03-01

    Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass ( m0), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 ± 0.6 pg, compared to 16.1 ± 0.7 pg for the Z5100, and 23.3 ± 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection limits (3

  10. Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Pamela C. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Parsons, Patrick J. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Lead Poisoning/Trace Elements Laboratory, Wadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509 (United States)], E-mail: patrick.parsons@wadsworth.org

    2007-03-15

    Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass (m{sub 0}), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 {+-} 0.6 pg, compared to 16.1 {+-} 0.7 pg for the Z5100, and 23.3 {+-} 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection

  11. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m0) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m0 values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm3 min−1) of the internal sheath gas during atomization. The theoretical and experimental ratios of m0(mini-flow)-to-m0(stop-flow) were closely similar for each study analyte. Likewise, the calculated m0 data gave a fairly good agreement with the corresponding experimental m0 values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m0) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m0 of 18 analytes were calculated for stopped & mini furnace gas flows. • Experimental

  12. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  13. International comparison of Cd content in a quality control material of Navajuelas (Tagelus dombeii) determined by anodic stripping voltammetry, atomic absorption spectrometry and neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Queirolo, F. (Universidad Catolica del Norte, Antofagasta (Chile). Dept. of Chemistry Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry); Ostapczuk, P. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie); Valenta, P.; Stegen, S. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry); Marin, C.; Vinagre, F.; Sanchez, A. (Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry)

    1991-05-01

    The determination of Cd was performed by neutron activation analysis (NAA), atomic absorption spectrometry (AAS) with flame or in the electrothermal mode and anodic stripping voltammetry in the differential pulse mode (DPASV) and the square wave mode (SWASV). (orig./EF).

  14. Investigations into the Role of Modifiers for Entrapment of Hydrides in Flow Injection Hydride Generation Electrothermal Atomic Absorption Spectrometry as Exemplified for the Determination of Germanium

    DEFF Research Database (Denmark)

    Hilligsøe, Bo; Andersen, Jens Enevold Thaulov; Hansen, Elo Harald

    1997-01-01

    Pd-conditioned graphite tubes, placed in the furnace of an atomic absorption spectrometry instrument, are used for entrapment of germane as generated in an associated flow injection system. Two different approaches are tested with the ultimate aim to allow multiple determinations, that is...

  15. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    Science.gov (United States)

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  16. Determination of Pb in Biological Samples by Graphite Furnace Atomic Absorption Spectrophotometry: An Exercise in Common Interferences and Fundamental Practices in Trace Element Determination

    Science.gov (United States)

    Spudich, Thomas M.; Herrmann, Jennifer K.; Fietkau, Ronald; Edwards, Grant A.

    2004-01-01

    An experiment is conducted to ascertain trace-level Pb in samples of bovine liver or muscle by applying graphite furnace atomic absorption spectrophotometry (GFAAS). The primary objective is to display the effects of physical and spectral intrusions in determining trace elements, and project the usual methods employed to minimize accuracy errors…

  17. USEPA METHOD STUDY 38 - SW-846 METHOD 3010, ACID DIGESTION OF AQUEOUS SAMPLES AND EXTRACTS FOR TRACE METALS BY FLAME ATOMIC ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    An interlaboratory collaborative study was conducted on SW-846 Method 3010, "Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by Flame Atomic Absorption Spectroscopy", to determine the mean recovery and precision for analyses of 21 trace metals in surf...

  18. Speciation of arsenic(III)/arsenic(V) and selenium(IV)/ selenium(VI) using coupled ion chromatography - hydride generation atomic absorption spectrometry

    Science.gov (United States)

    Simple analytical methods have been developed to speciate inorganic arsenic and selenium in the ppb range using coupled ion chromatography-hydride generation atomic absorption spectrometry. Because of the differences in toxicity and adsorption behavior, determinations of the redox states arsenite A...

  19. Determination of platinum traces contamination by graphite furnace atomic absorption spectrometry after preconcentration by cloud point extraction

    International Nuclear Information System (INIS)

    A simple and sensitive method is described for the determination of platinum surface contamination originating from cisplatin, carboplatin and oxaliplatin. Following extraction from swabs and preconcentration with the cloud point extraction (CPE) method, detection was by graphite furnace atomic absorption spectrometry (GFAAS). After desorption of platinum compounds from the swab, CPE involved on preconcentration of platinum in aqueous solution with diethyldithiocarbamate (DDTC) as chelating agent and Triton X-114 as extraction medium. DDTC is not only a chelating agent, but may also be a good candidate for the inactivation of platinum compounds. DDTC is recommended by the Word Health Organization (WHO) for the destruction of platinum-based anticancer drugs. The main factors affecting CPE efficiency, pH of the sample solution, concentrations of DDTC and Triton X-114, equilibration temperature and incubation time, were evaluated in order to enhance sensitivity of the method. The desorption of platinum compounds from the swab was investigated in parallel. Since platinum is bound to DDTC, it must exchange with copper in order to enhance platinum atomizing by GFAAS. A preconcentration factor of 29 was obtained for 10 mL of a platinum solution at 10 μg mL-1. In optimal conditions, the limit of detection was 0.2 ng mL-1, corresponding to 2.0 ng of platinum metal on the swab. Absorbance was linear between 0.7 and 15 ng mL-1. The proposed method was applied for the determination of surface contamination by platinum compounds with correct results.

  20. Determination of platinum traces contamination by graphite furnace atomic absorption spectrometry after preconcentration by cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chappuy, M. [Analytical Development Laboratory, Pharmaceutical Establishment of Paris Hospitals, 7 rue du Fer a Moulin, 75005 Paris (France); Caudron, E., E-mail: eric.caudron@eps.aphp.fr [Analytical Development Laboratory, Pharmaceutical Establishment of Paris Hospitals, 7 rue du Fer a Moulin, 75005 Paris (France); Groupe de Chimie Analytique de Paris-Sud, EA 4041, IFR 141, School of Pharmacy, Univ Paris-Sud, 92296 Chatenay-Malabry (France); Bellanger, A. [Department of Pharmacy, Pitie-Salpetriere Hospital (Paris Public Hospital Authority), 47 boulevard de l' hopital, 75013 Paris (France); Pradeau, D. [Analytical Development Laboratory, Pharmaceutical Establishment of Paris Hospitals, 7 rue du Fer a Moulin, 75005 Paris (France)

    2010-04-15

    A simple and sensitive method is described for the determination of platinum surface contamination originating from cisplatin, carboplatin and oxaliplatin. Following extraction from swabs and preconcentration with the cloud point extraction (CPE) method, detection was by graphite furnace atomic absorption spectrometry (GFAAS). After desorption of platinum compounds from the swab, CPE involved on preconcentration of platinum in aqueous solution with diethyldithiocarbamate (DDTC) as chelating agent and Triton X-114 as extraction medium. DDTC is not only a chelating agent, but may also be a good candidate for the inactivation of platinum compounds. DDTC is recommended by the Word Health Organization (WHO) for the destruction of platinum-based anticancer drugs. The main factors affecting CPE efficiency, pH of the sample solution, concentrations of DDTC and Triton X-114, equilibration temperature and incubation time, were evaluated in order to enhance sensitivity of the method. The desorption of platinum compounds from the swab was investigated in parallel. Since platinum is bound to DDTC, it must exchange with copper in order to enhance platinum atomizing by GFAAS. A preconcentration factor of 29 was obtained for 10 mL of a platinum solution at 10 {mu}g mL{sup -1}. In optimal conditions, the limit of detection was 0.2 ng mL{sup -1}, corresponding to 2.0 ng of platinum metal on the swab. Absorbance was linear between 0.7 and 15 ng mL{sup -1}. The proposed method was applied for the determination of surface contamination by platinum compounds with correct results.

  1. Behaviour of the thermospray nebulizer as a system for the introduction of organic solutions in flame atomic absorption spectrometry

    Science.gov (United States)

    Mora, Juan; Canals, Antonio; Hernandis, Vicente

    1996-10-01

    The results obtained in the evaluation of the thermospray nebulizer for the introduction of organic solutions in atomic spectrometry are described. To this end, the influence of the nebulization variables (i.e., liquid flow, control temperature and inner diameter of the capillary) and of the nature of the solvent on the fraction of solvent vaporized, on the drop size distribution of the primary aerosol, on the rates of analyte and solvent transport to the atomization cell and on the analytical signal has been studied. Experimental fraction of solvent vaporized values obtained under different nebulization conditions are reported for the first time. The results show that the characteristics of the aerosol generated strongly depend on the nebulization variables since they determine the amount of energy available for surface generation. The median of the volume drop size distribution of the primary aerosol decreases when the control temperature or the liquid flow is increased or when the inner diameter of the capillary is decreased. As regards the physical properties of the solvent, the so-called expansion factor (i.e., the volume of vapour produced per unit volume of liquid solvent) is the most influential. Surface tension and viscosity are much less significant here than in ordinary pneumatic nebulization. The volatility of the solvent and the characteristics of the primary aerosol determine the solvent transport efficiency which reaches values close to 100% in many cases. The analytical signal is mainly determined by the analyte transport rate, although a severe negative effect appears which is related to the high solvent load to the flame. Due to this fact, the use of organic solvents instead of water in thermospray nebulization for Flame Atomic Absorption Spectrometry does not provide clear advantages, at least without desolvation. A new modified Nukiyama-Tanasawa equation has been presented and evaluated in order to predict the Sauter mean diameter of the thermal

  2. [Determination of trace elements in Lophatherum gracile brongn from different habitat by microwave digestion-atomic absorption spectroscopy].

    Science.gov (United States)

    Yuan, Ke; Xue, Yue-Qin; Gui, Ren-Yi; Sun, Su-Qin; Yin, Ming-Wen

    2010-03-01

    A method of microwave digestion technique was proposed to determine the content of Zn, Fe, Cu, Mn, K, Ca, Mg, Ni, Cd, Pb, Cr, Co, Al, Se and As in Lophatherum gracile brongn of different habitat by atomic absorption spectroscopy. The RSD of the method was between 1.23% and 3.32%, and the recovery rates obtained by standard addition method were between 95.8% and 104.20%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of metal elements in Lophatherum gracile brongn. The experimental results also indicated that different areas' Lophantherum gracile brongn had different trace elements content. The content of trace elements K, Mg, Ca, Fe and Mn beneficial to the human body was rich. The content of the heavy metal trace element Pb in Lophantherum gracile brongn of Hunan province was slightly high. The content of the heavy metal trace element Cu in Lophantherum gracile brongn of Guangdong province and Anhui province is also slightly higher. Beside, the contents of harmful trace heavy metal elements Cd, Cu, Cr, Pb and As in Lophatherum gracile brongn of different habitat are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation and National Food Sanitation Standard. These determination results provided the scientific data for further discussing the relationship between the content of trace elements in Lophantherum gracile brongn and the medicine efficacy.

  3. Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation

    International Nuclear Information System (INIS)

    A new method is proposed for preconcentration and matrix separation of methylmercury prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Generation of methylmercury hydride (MeHgH) from a 5-ml solution is carried out in a closed vial and trapped onto an aqueous single drop (3-μl volume) containing Pd(II) or Pt(IV) (50 and 10 mg/l, respectively). The hydrogen evolved in the headspace (HS) after decomposition of sodium tetrahydroborate (III) injected for hydride generation caused the formation of finely dispersed Pd(0) or Pt(0) in the drop, which in turn, were responsible for the sequestration of MeHgH. A preconcentration factor of ca. 40 is achieved with both noble metals used as trapping agents. The limit of detection of methylmercury was 5 and 4 ng/ml (as Hg) with Pd(II) or Pt(IV) as trapping agents, and the precision expressed as relative standard deviation was about 7%. The preconcentration system was fully characterised through optimisation of the following variables: Pd(II) or Pt(IV) concentration in the drop, extraction time, pH of the medium, temperatures of both sample solution and drop, concentration of salt in the sample solution, sodium tetrahydroborate (III) concentration in the drop and stirring rate. The method has been successfully validated against two fish certified reference materials (CRM 464 tuna fish and CRM DORM-2 dogfish muscle) following selective extraction of methylmercury in 2 mol/l HCl medium

  4. Evaluation of four sample treatments for determination of platinum in automotive catalytic converters by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Conventional and microwave assisted digestion, both using aqua regia, alkaline fusion with lithium metaborate and aqueous slurries were evaluated as sample treatments for determination of Pt in automotive catalytic converters by Graphite Furnace Atomic Absorption Spectrometry (GF-AAS). Determination of platinum by GF-AAS in samples of the catalytic converter's substrates, prepared by the four methods described, indicates that the highest platinum concentration i.e. maximum Pt extraction in the range of 748 ± 15-998 ± 10 μg mL-1, is obtained for samples dissolved by alkaline fusion, closely followed by analysis of aqueous plus Triton X-100 slurries 708 ± 14-958 ± 10 μg mL-1, while neither one of the acid digestion procedures achieved total dissolution of the samples. Slurry analysis is thus shown to be a viable alternative and is recommended, based on its speed and ease of implementation. Aqueous standards calibration curves and the standard addition methods were also compared. The results showed that no appreciable matrix effects are present, regardless of the sample preparation procedure used. Precision of the measurements, expressed as percentage relative standard deviation, ranged between 2.5 to 4.9%. Accuracy of the results was assessed by recovery tests which rendered values between 98.9 and 100.9%

  5. Quantification of minerals and trace elements in raw caprine milk using flame atomic absorption spectrophotometry and flame photometry.

    Science.gov (United States)

    Singh, Mahavir; Yadav, Poonam; Garg, V K; Sharma, Anshu; Singh, Balvinder; Sharma, Himanshu

    2015-08-01

    This study reports minerals and trace elements quantification in raw caprine milk of Beetal breed, reared in Northern India and their feed, fodder & water using flame atomic absorption spectrophotometry and flame photometry. The mineral and trace elements' concentration in the milk was in the order: K > Ca > Na > Fe > Zn > Cu. The results showed that minerals concentration in caprine milk was lesser than reference values. But trace elements concentration (Fe and Zn) was higher than reference values. Multivariate statistical techniques, viz., Pearsons' correlation, Cluster analysis (CA) and Principal component analysis (PCA) were applied to analyze the interdependences within studied variables in caprine milk. Significantly positive correlations were observed between Fe - Zn, Zn - K, Ca - Na and Ca - pH. The results of correlation matrix were further supported by Cluster analysis and Principal component analysis as primary cluster pairs were found for Ca - pH, Ca - Na and Fe - Zn in the raw milk. No correlation was found between mineral & trace elements content of the milk and feed. PMID:26243956

  6. Determination of platinum and palladium in road dust after their separation on immobilized fungus by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Woinska, Sylwia; Godlewska-Zylkiewicz, Beata, E-mail: bgodlew@uwb.edu.pl

    2011-07-15

    A flow solid phase extraction procedure based on biosorption of Pt(IV) and Pd(II) on Aspergillus sp. immobilized on cellulose resin Cellex-T was proposed for the separation and preconcentration of Pt and Pd before their determination by electrothermal atomic absorption spectrometry (ETAAS). The analytical conditions including sample pH, eluent type, flow rates of sample and eluent solutions were examined. The analytes were selectively retained on the biosorbent in acidic medium (pH 1) and subsequently eluted from the column with 1 mL of thiourea solution (0.25 mol L{sup -1} thiourea in 0.3 mol L{sup -1} HCl). The reproducibility of the procedure was below 5%. The limit of detection of the method was 0.020 ng mL{sup -1} for Pt and 0.012 ng mL{sup -1} for Pd. The method validation was performed by analysis of certified reference materials BCR-723 (tunnel dust) and SARM-76 (platinum ore). The developed separation procedure was applied to the determination of Pt and Pd in road dust samples by ETAAS. The applied biosorbent is characterized by high sorption capacity: 0.47 mg g{sup -1} for Pt and 1.24 mg g{sup -1} for Pd.

  7. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL-1. The relative standard deviation (n = 7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin.

  8. Determination of total arsenic in coal and wood using oxygen flask combustion method followed by hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A simple and sensitive procedure for the determination of total arsenic in coal and wood was conducted by use of oxygen flask combustion (OFC) followed by hydride generation atomic absorption spectrometry (HGAAS). The effect of various items (composition of absorbent, standing time between the combustion and filtration, particle size and mass of sample) was investigated. Under the optimized conditions of the OFC method, nine certified reference materials were analyzed, and the values of arsenic concentration obtained by this method were in good accordance with the certified values. The limit of detection (LOD) and relative standard deviation (RSD) of the method were 0.29 μg g-1 and less than 8%, respectively. In addition, eight kinds of coals and four chromated copper arsenate (CCA)-treated wood wastes were analyzed by the present method, and the data were compared to those from the microwave-acid digestion (MW-AD) method. The determination of arsenic in solid samples was discussed in terms of applicable scope and concentration range of arsenic.

  9. Immersed single-drop microextraction-electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of); Naderi, Mehrnoush [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of)

    2009-06-15

    A new method based on single-drop microextraction (SDME) combined with electrothermal vaporization atomic absorption spectroscopy (ETV-AAS) was developed for the trace determination of mercury in water samples. A microdrop of m-xylene was applied as the extraction solvent. After extraction, the microdrop was introduced, directly, into a graphite furnace of AAS. Some important extraction parameters such as type of solvent, volume of solvent, sample stirring, ionic strength, sample pH, chelating agent concentration, sample temperature, and extraction time were investigated and optimized. The highest possible microdrop volume of 10 {mu}L, a sampling temperature of 27 {sup o}C, and use of m-xylene containing dithizone, as complexing agent, are major parameters led to achieve a high enrichment factor of 970. Under the optimized conditions, the detection limit of the method was 0.01 {mu}g L{sup -1} and the relative standard deviation was 6.1% (n = 7). The proposed method has been successfully applied to the determination of Hg in two river water samples. The effects of interfering species such as Pt, Pd, Cu, Au, and Bi, having the tendency to form complexes with dithizone, at two concentration levels of 100 and 1000 {mu}g L{sup -1} were also studied.

  10. An automatic countercurrent liquid-liquid micro-extraction system coupled with atomic absorption spectrometry for metal determination.

    Science.gov (United States)

    Mitani, Constantina; Anthemidis, Aristidis N

    2015-02-01

    A novel and versatile automatic sequential injection countercurrent liquid-liquid microextraction (SI-CC-LLME) system coupled with atomic absorption spectrometry (FAAS) is presented for metal determination. The extraction procedure was based on the countercurrent flow of aqueous and organic phases which takes place into a newly designed lab made microextraction chamber. A noteworthy feature of the extraction chamber is that it can be utilized for organic solvents heavier or lighter than water. The proposed method was successfully demonstrated for on-line lead determination and applied in environmental water samples using an amount of 120 μL of chloroform as extractant and ammonium diethyldithiophosphate as chelating reagent. The effect of the major experimental parameters including the volume of extractant, as well as the flow rate of aqueous and organic phases were studied and optimized. Under the optimum conditions for 6 mL sample consumption an enhancement factor of 130 was obtained. The detection limit was 1.5 μg L(-1) and the precision of the method, expressed as relative standard deviation (RSD) was 2.7% at 40.0 μg L(-1) Pb(II) concentration level. The proposed method was evaluated by analyzing certified reference materials and spiked environmental water samples. PMID:25435230

  11. Solid sample graphite furnace atomic absorption spectroscopy for supporting arsenic determination in sediments following a sequential extraction procedure

    International Nuclear Information System (INIS)

    Solid sample graphite furnace atomic absorption spectroscopy (SS-GFAAS) has been proposed since its appearance as a good alternative to wet methods of analysis in many matrices. Here, we examine the use of SS-GFAAS for total and leachable arsenic determination in sediments from distinct origins. Our direct analysis of seven selected sediments was not always free of spectral matrix interference, but the spectroscopic technique gave very good results for (a) direct arsenic measurement in solid residues from a range of leaching processes, (b) total arsenic determination (HNO3 leaching test) and (c) the evaluation of its potential remobilisation (modified BCR three-step sequential extraction scheme). For the optimised instrumental conditions, the analysis limit was 0.44 mg kg-1 and long-term reproducibility was between 10-15%. The sum of leachable arsenic in HNO3 65% and the residual fraction, gave recoveries from 72 to 118% of total arsenic content. These results are a good alternative to other cumbersome wet methods involving HF

  12. Cloud point extraction for the preconcentration of silver and palladium in real samples and determination by atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tavallali, Hossein; Yazdandoust, Saeed; Yazdandoust, Mozhdeh [Department of Chemistry, Payame Noor University (PNU), Shiraz (Iran)

    2010-03-15

    A cloud point extraction procedure is presented for the preconcentration and simultaneous determination of Ag{sup +} and Pd{sup 2+} in various samples. After complexation with 2-((2-((1H-benzo[d]imidazole-2-yl)methoxy)phenoxy)methyl)-1H-benzo[d]imidazol (BIMPI), which was used as a new chelating agent, analyte ions were quantitatively extracted to a phase rich in Triton X-114 following centrifugation, and determination was carried out by flame atomic absorption spectrometry (FAAS). Under the optimum experimental conditions (i. e., pH = 7.0, 15.0.10{sup -5} mol/L BIMPI and 0.036% (w/v) Triton X-114), calibration graphs were linear in the range of 28.0-430.0 {mu}g/L and 57.0-720.0 {mu}g/L with detection limits of 10.0 and 25.0 {mu}g/L for Ag{sup +} and Pd{sup 2+}, respectively. The enrichment factors were 35.0 and 28.0 for Ag{sup +} and Pd{sup 2+}, respectively. The method has been successfully applied to evaluate these metals in some real samples, including waste water, soil and hydrogenation catalyst samples. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Preconcentration procedure using cloud point extraction in the presence of electrolyte for cadmium determination by flame atomic absorption spectrometry

    Science.gov (United States)

    Coelho, Luciana Melo; Arruda, Marco Aurélio Zezzi

    2005-06-01

    This paper describes a micelle-mediated phase separation in the presence of electrolyte as a preconcentration method for cadmium determination by flame atomic absorption spectrometry (FAAS). Cadmium was complexed with ammonium O,O-diethyldithiophosphate (DDTP) in an acidic medium (0.32 mol l- 1 HCl) using Triton X-114 as surfactant and quantitatively extracted into a small volume (about 20 μl) of the surfactant-rich phase after centrifugation. The chemical variables that affect the cloud point extraction, such as complexing time (0 20 min), Triton X114 concentration (0.043 0.87% w/v) and complexing agent concentration (0.01 0.1 mol l- 1), were investigated. The cloud point is formed in the presence of NaCl at room temperature (25 °C), and the electrolyte concentration (0.5 5% w/v) was also investigated. Under optimized conditions, only 8 ml of sample was used in the presence of 0.043% w/v Triton X-114 and 1% (w/v) NaCl. This method permitted limits of detection and quantification of 0.9 μg l- 1 and 2.9 μg l- 1 Cd, respectively, and a linear calibration range from 3 to 400 μg l- 1 Cd. The proposed method was applied to Cd determination in physiological solutions (containing 0.9% (w/v) of NaCl), mineral water, lake water and cigarette samples (tobacco).

  14. Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, M. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Shokrollahi, A.; Ahmadi, F.; Rajabi, H.R. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, M. [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-02-11

    A cloud point extraction procedure was presented for the preconcentration of copper, nickel and cobalt ions in various samples. After complexation with methyl-2-pyridylketone oxime (MPKO) in basic medium, analyte ions are quantitatively extracted to the phase rich in Triton X-114 following centrifugation. 1.0 mol L{sup -1} HNO{sub 3} nitric acid in methanol was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The adopted concentrations for MPKO, Triton X-114 and HNO{sub 3}, bath temperature, centrifuge rate and time were optimized. Detection limits (3 SDb/m) of 1.6, 2.1 and 1.9 ng mL{sup -1} for Cu{sup 2+}, Co{sup 2+} and Ni{sup 2+} along with preconcentration factors of 30 and for these ions and enrichment factor of 65, 58 and 67 for Cu{sup 2+}, Ni{sup 2+} and Co{sup 2+}, respectively. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed procedure was applied to the analysis of biological, natural and wastewater, soil and blood samples.

  15. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun Mei, E-mail: sunmei@ustc.edu.cn [Hefei National Laboratory for Physical Sciences on Microscale, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026 (China); Wu Qianghua [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL{sup -1}. The relative standard deviation (n = 7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin.

  16. Cloud point extraction and flame atomic absorption spectrometry combination for copper(II) ion in environmental and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Shokrollahi, Ardeshir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: ashokrollahi@mail.yu.ac.ir; Ghaedi, Mehrorang [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Hossaini, Omid; Khanjari, Narges [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-12-30

    A cloud point extraction procedure was presented for the preconcentration of copper(II) ion in various samples. After complexation by 4-(phenyl diazenyl) benzene-1,3-diamine (PDBDM) (chrysoidine), copper(II) ions were quantitatively recovered in Triton X-114 after centrifugation. 0.5 ml of methanol acidified with 1.0 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The influence of analytical parameters including ligand, Triton X-114 and HNO{sub 3} concentrations, bath temperature, heating time, centrifuge rate and time were optimized. The effect of the matrix ions on the recovery of copper(II) ions was investigated. The detection limit (3S.D.{sub b}/m, n = 10) of 0.6 ng mL{sup -1} along with preconcentration factor of 30 and enrichment factor of 41.1 with R.S.D. of 1.0% for Cu was achieved. The proposed procedure was applied to the analysis of various environmental and biological samples.

  17. Cloud point extraction-flame atomic absorption spectrometry method for preconcentration and determination of trace cadmium in water samples.

    Science.gov (United States)

    Ning, Jinyan; Jiao, Yang; Zhao, Jiao; Meng, Lifen; Yang, Yaling

    2014-01-01

    A method based on cloud point extraction (CPE) separation/preconcentration of trace cadmium (Cd) as a prior step to its determination by flame atomic absorption spectrometry has been developed. Cadmium reacted with 8-hydroxyquinoline to form hydrophobic chelates, which were extracted into the micelles of nonionic surfactant oligoethylene glycol monoalkyl ether (Genapol X-080) in an alkaline medium. Octanol was used to depress the cloud point of Genapol X-080 in the extraction process. The chemical variables that affect the CPE, such as pH of complexation reaction, amount of chelating agent, Genapol X-080 and octanol were evaluated and optimized. Under optimized conditions, linearity was obeyed in the range of 10-500 μg/L, with the correlation coefficient of 0.9993. For 5 mL of sample solution, the enhancement factor was about 20. The limit of detection and limit of quantification of the method were 0.21 and 0.63 μg/L, respectively. The relative standard deviations (n = 6) was 3.2% for a solution containing 100 μg/L of Cd. The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. Recoveries of spiked samples varied in the range of 94.1-103.8%.

  18. Determination of Trace Amounts of Nickel (Ⅱ) by Graphite Furnace Atomic Absorption Spectrometry Coupled with Cloud Point Extraction

    Institute of Scientific and Technical Information of China (English)

    SHAH Syed Mazhar; WANG Hao-nan; SU Xing-guang

    2011-01-01

    A new method based on the cloud point extraction(CPE) for separation and preconcentration of nickel(Ⅱ)and its subsequent determination by graphite furnace atomic absorption spectrometry(GFAAS) was proposed,8-hydroxyquinoline and Triton X-100 were usedl as the ligand and surfactant respectively. Nickel(Ⅱ) can form a hydrophobic complex with 8-hydroxyquinoline, the complex can be extracted into the small volume surfactant rich phase at the cloud point temperature(CPT) for GFAAS determination. The factors affecting the cloud point extraction,such as pH, ligand concentration, surfactant concentration, and the incubation time were optimized. Under the optimal conditions, a detection limit of 12 ng/L and a relative standard deviation(RSD) of 2.9% were obtained for Ni(Ⅱ) determination. The enrichment factor was found to be 25. The proposed method was successfully applied to the determination of nickel(Ⅱ) in certified reference material and different types of water samples and the recovery was in a range of 95% 103%.

  19. Determination of trace nickel in water samples by cloud point extraction preconcentration coupled with graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun Zhimei [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Department of Chemistry and Biology, Huainan Normal University, Huainan 232001 (China); Liang Pei [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China)]. E-mail: liangpei@mail.ccnu.edu.cn; Ding Qiong [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Cao Jing [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China)

    2006-09-21

    A new method based on the cloud point extraction (CPE) preconcentration and graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the determination of trace nickel in water samples. When the micelle solution temperature is higher than the cloud point of surfactant p-octylpolyethyleneglycolphenyether (Triton X-100), the complex of Ni{sup 2+} with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) could enter surfactant-rich phase and be concentrated, then determined by GFAAS. The main factors affecting the cloud point extraction were investigated in detail. An enrichment factor of 27 was obtained for the preconcentration of Ni{sup 2+} with 10 mL solution. Under the optimal conditions, the detection limit of Ni{sup 2+} is 0.12 ng mL{sup -1} with R.S.D. of 4.3% (n = 10, c = 100 ng mL{sup -1}). The proposed method was applied to determination of trace nickel in water samples with satisfactory results.

  20. Preconcentration and determination of zinc and lead ions by a combination of cloud point extraction and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tavallali, H. [Chemistry Department, Payamenore University, Shiraz (Iran); Shokrollahi, A.; Zahedi, M. [Chemistry Department, Yasouj University, Yasouj (Iran); Niknam, K. [Chemistry Department, Persian Gulf University, Bushehr (Iran); Soylak, M. [Chemistry Department, University of Erciyes, Kayseri (Turkey); Ghaedi, M.

    2009-04-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of lead(II) and zinc(II). After complexation with 3-[(4-bromophenyl) (1-H-inden-3-yl)methyl]-1 H-indene (BPIMI), the analytes were quantitatively extracted to a phase rich in Triton X-114 after centrifugation. Methanol acidified with 1 mol/L HNO{sub 3} was added to the surfactant rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of bis((1H-benzo [d] imidazol-2yl)ethyl)sulfane, Triton X-114, pH and amount of surfactant were all optimized. Detection limits (3 SDb/m) of 2.5 and 1.6 ng/mL for Pb{sup 2+} and Zn{sup 2+} along with preconcentration factors of 30 and an enrichment factor of 32 and 48 for Pb{sup 2+}and Zn {sup 2+} ions were obtained, respectively. The proposed cloud point extraction was been successfully applied for the determination of these ions in real samples with complicated matrices such as food and soil samples, with high efficiency. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  1. Flame Atomic Absorption Determination of Gold Ion in Aqueous Samples after Preconcentration Using 9-Acridinylamine Functionalized γ-Alumina Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Karimi

    2013-01-01

    Full Text Available A simple and sensitive solid phase extraction utilizing 9-acridinylamine functionalized alumina nanoparticles was developed, and their potential use for preconcentration and subsequent determination of gold by flame atomic absorption spectrometry (FAAS was investigated. A number of parameters, namely, type, concentration, and volume of eluent, pH of the sample solution, flow rate of extraction, and volume of the sample, were evaluated. The effect of a variety of ions on preconcentration and recovery was also investigated. Gold ions were found to be recovered quantitatively at pH 3.0, with 0.1 mol L−1 thiourea in 2 mol L−1 H2SO4 as eluent. The limit of detection (LOD, defined as five times the standard deviation of the blank, was determined to be lower than 13.0 ppb. Under optimum conditions, the accuracy and precision (RSD% of the method were >98.0 and <1.5%, respectively. To gauge its ability in terms of application to real samples, the proposed method was successfully applied for determination of gold concentration in waste water samples and one soil standard material, and satisfactory results were obtained.

  2. Trace metal characterization and speciation in geothermal effluent by multiple scanning anodic stripping voltammetry and atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, B.R.

    1979-05-25

    Recent studies have shown geothermal power plants to have a significant environmental impact on the ground water of the area. The heavy metals arsenic and mercury are special problems, as both are concentrated by flora and fauna exposed to the effluent waters. Because the toxicity of these and other metallic pollutants present in geothermal effluent depends on the chemical form, or speciation, of the particular metal, any serious study of the environmental impact of a geothermal development should include studies of trace metal speciation, in addition to trace metal concentration. This proposal details a method for determining metal speciation in dilute waters. The method is based on ion-exchange and backed by atomic absorption spectrometry and multiple scanning anodic stripping voltammetry. Special laboratory studies will be performed on mercury, arsenic and selenium speciation in synthetic geothermal water. The method will be applied to three known geothermal areas in Washington and Oregon, with emphasis on the speciation of mercury, arsenic and selenium in these waters. The computer controlled electrochemical instrumentation was built and tested. Using this instrumentation, a new experimental procedure was developed to determine the chemical form (speciation) of metal ions in very dilute solutions (ng/ml). This method was tested on model systems including Pb, Cd, and As with C1/sup -/, CO/sub 3//sup 2 -/ and glycine ligands. Finally, the speciation of lead in a geothermal water was examined and the PbC1/sup +/ complex was observed and quantified.

  3. Evaluation of four sample treatments for determination of platinum in automotive catalytic converters by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Puig, Ana I.; Alvarado, José I.

    2006-09-01

    Conventional and microwave assisted digestion, both using aqua regia, alkaline fusion with lithium metaborate and aqueous slurries were evaluated as sample treatments for determination of Pt in automotive catalytic converters by Graphite Furnace Atomic Absorption Spectrometry (GF-AAS). Determination of platinum by GF-AAS in samples of the catalytic converter's substrates, prepared by the four methods described, indicates that the highest platinum concentration i.e. maximum Pt extraction in the range of 748 ± 15-998 ± 10 μg mL - 1 , is obtained for samples dissolved by alkaline fusion, closely followed by analysis of aqueous plus Triton X-100 slurries 708 ± 14-958 ± 10 μg mL - 1 , while neither one of the acid digestion procedures achieved total dissolution of the samples. Slurry analysis is thus shown to be a viable alternative and is recommended, based on its speed and ease of implementation. Aqueous standards calibration curves and the standard addition methods were also compared. The results showed that no appreciable matrix effects are present, regardless of the sample preparation procedure used. Precision of the measurements, expressed as percentage relative standard deviation, ranged between 2.5 to 4.9%. Accuracy of the results was assessed by recovery tests which rendered values between 98.9 and 100.9%.

  4. FLAME ATOMIC ABSORPTION DETERMINATION OF COPPER IN CEREALS FOOD SAMPLES WITH THE PRECONCENTRATION OF POTASSIUM TETRATITANATE WHISKER

    Institute of Scientific and Technical Information of China (English)

    XU Wanzhen; ZHANG Xinghua; YAN Yongsheng; LIU Aiqin; JING Junjie

    2007-01-01

    A simple and reliable method has been developed for separation and preconcentration of trace amounts of copper ions in cereals food for subsequent measurement by flame atomic absorption spectrometry (FAAS). The Cu2+ ions are adsorbed selectively and quantitatively during the passage. The retained copper ions were desorbed from the potassium tetratitanate whisker with 10.0mL of 2mol/L sulphuric acid solutions as eluent and were determined by FAAS. The linear range was 0.05μg/mL~0.20μg/mL in the original solution with a correlation coefficient of 0.9998. The detection limit of the proposed method is 2.1ng/mL in the original solution (3σ, n=9). Determination of copper in standard ions showed that the proposed method has good accuracy (recovery was more than 95%). The method was successfully applied for recovery and determination of copper in cereals food samples.

  5. FLAME ATOMIC ABSORPTION DETERMINATION OF COPPER IN CEREALS FOOD SAMPLES WITH THE PRECONCENTRATION OF POTASSIUM TETRATITANATE WHISKER

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simple and reliable method has been developed for separation and preconcentration of trace amounts of copper ions in cereals food for subsequent measurement by flame atomic absorption spectrometry (FAAS). The Cu2+ ions are adsorbed selectively and quantitatively during the passage. The retained copper ions were desorbed from the potassium tetratitanate whisker with 10.0mL of 2mol/L sulphuric acid solutions as eluent and were determined by FAAS. The linear range was 0.05μg/mL~0.20μg/mL in the original solution with a correlation coefficient of 0.9998. The detection limit of the proposed method is 2.1ng/mL in the original solution (3σ, n=9). Determination of copper in standard ions showed that the proposed method has good accuracy (recovery was more than 95%). The method was successfully applied for recovery and determination of copper in cereals food samples.

  6. Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation

    International Nuclear Information System (INIS)

    A simple method for cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry (BIFF-AAS) was proposed. Food slurries were prepared by transferring an exact amount of cryogenic-ground homogenized material (50-100 mg) to centrifuge tubes, followed by addition of 5 ml (up to 2.8 mol l-1) nitric acid solution and sonication in an ultrasonic bath during 5-10 min. Thereafter, slurries were diluted with water to 10 ml, centrifuged during 5 min at 5400 rpm and 400 μl aliquot of the supernatant was analyzed by BIFF-AAS. The detection limits based on peak height measurements were 0.03 μg g-1 Cd and 1.6 μg g-1 Pb for 2% (m/v) slurry (200 mg/10 ml). For method validation, the certified reference materials Pig Kidney (BCR 186) and Rice Flour (NIES 10) were used. Quantitative cadmium and lead recoveries were obtained and no statistical differences were found at 95% level by applying the t-test

  7. Cloud Point Extraction Using Tergitol TMN-6 of Gold(III)in Real Samples by Flame Atomic Absorption Spectrometry Determination

    International Nuclear Information System (INIS)

    A simple, safe and rapid method on the basis of cloud point extraction (CPE) with tergitol TMN-6 had been used for the preconcentration and extraction of gold(Au) ion in selenium reduction solution sample prior to flame atomic absorption spectrometry (FAAS).Pyrrolidine dithio formic acid salt (PDFAS) which was regarded as a selective complexing agent could formed stable Au-complex with Au ion, and Au-complex could be extracted by TMN-6 at a short time. Some influencing factors such as sample pH, concentration of TMN-6, concentration of PDFAS and the effect of foreign ions were further researched .Under the optimum conditions, the limit of detection (LOD) was 1.3 meu g L/sup -1/, the calibration graph was linear in the range of 0-500 meu g/L and the relative standard deviation (RSD%) was 2.0%(n=8). The CPE method had been shown to be a useful and effective methodology for the separation of Au, with a preconcentration factor of 30. The recoveries of the spiked Au(?) ions were got in the range 95-103%. (author)

  8. Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mendil, Durali, E-mail: dmendil@gop.edu.tr [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Uluoezlue, Ozguer Dogan; Tuezen, Mustafa [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Department of Chemistry, 38039 Kayseri (Turkey)

    2009-06-15

    The element contents (Fe, Mn, Zn, Cu, Pb, Co, Cd, Na, K, Ca and Mg) in edible oils (olive oil, hazelnut oil, sunflower oil, margarine, butter and corn oil) from Turkey were determined using atomic absorption spectrometry after microwave digestion. The concentrations of trace element in the samples were found to be 291.0-52.0, 1.64-0.04, 3.08-1.03, 0.71-0.05, 0.03-0.01, 1.30-0.50, 84.0-0.90, 50.1-1.30, 174.2-20.8 and 20.8-0.60 {mu}g/g for iron, manganese, zinc, copper, lead, cobalt, sodium, potassium, calcium, and magnesium, respectively. Cadmium was found to be 4.57-0.09 {mu}g/kg. The high heavy metal and minerals accumulation levels in the samples were found in olive oil for Cu, Pb, Co, margarine for Fe, K, corn oil for Zn, Mn, butter for Na, Mg, sunflower oil for Ca and hazelnut oil for Cd, respectively.

  9. Determination of essential and toxic elements in commercial baby foods by instrumental neutron activation analysis and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The World Health Organization recommends that infants should be breast fed exclusively for at least six months after birth. After this period, it is recommended to start introducing complementary foods, in order to meet the child's nutritional, mineral and energy needs. Commercial food products for infants form an important part of the diet for many babies. Thus, it is very important that such food contains sufficient amounts of minerals. Inadequate complementary feeding is a major cause of high rates of infant malnutrition in developing countries. In this study, essential elements: Ca, Cl, Co, Cr, Fe, K, Mg, Mn, Na, Se and Zn and toxic elements: As, Cd, Hg levels were determined in twenty seven different commercial infant food product samples by Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometry (AAS). In order to validate both methodologies the reference material: INCT MPH-2 Mixed Polish Herbs and NIST - SRM 1577b Bovine Liver by INAA and NIST - SRM 1548th Typical Diet and NIST - SRM 1547 Peach Leaves by AAS were analyzed. The twenty seven baby food samples were acquired from Sao Paulo city supermarkets and stores. Essential and toxic elements were determined. Most of the essential element concentrations obtained were lower than the World Health Organization requirements, while concentrations of toxic elements were below the tolerable upper limit. These low essential element concentrations in these samples indicate that infants should not be fed only with commercial complementary foods. (author)

  10. Dispersive Liquid-Liquid Microextraction of Bismuth in Various Samples and Determination by Flame Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Teslima Daşbaşı

    2016-01-01

    Full Text Available A dispersive liquid-liquid microextraction method for the determination of bismuth in various samples by flame atomic absorption spectrometry is described. In this method, crystal violet was used as counter positive ion for BiCl4- complex ion, chloroform as extraction solvent, and ethanol as disperser solvent. The analytical parameters that may affect the extraction efficiency like acidity of sample, type and amount of extraction and disperser solvents, amount of ligand, and extraction time were studied in detail. The effect of interfering ions on the analyte recovery was also investigated. The calibration graph was linear in the range of 0.040–1.00 mg L−1 with detection limit of 4.0 μg L−1 (n=13. The precision as relative standard deviation was 3% (n=11, 0.20 mg L−1 and the enrichment factor was 74. The developed method was applied successfully for the determination of bismuth in various water, pharmaceutical, and cosmetic samples and the certified reference material (TMDA-64 lake water.

  11. [Study on adsorption behavior of crosslinked polyarylonitrile for copper, lead, cadmium and zinc ions by atomic absorption spectrometry].

    Science.gov (United States)

    Shawket, Abliz; Peng, Yang; Wang, Ji-De; Ismayil, Nurulla

    2010-04-01

    The crosslinked polymer polyacrylonitrile was synthesized by suspension polymerization using acrylonitrile and divinylbenzene. It has been used as adsorbent of some toxic heavy metals in environmental waters. Its adsorption for metals and the factors which affect the adsorption capacity were studied by atomic absorption spectrometry (AAS). The experimental results showed that under the optimal adsorption conditions, the pH of adsorbate solution was 5-6, static adsorption time was 1.5-2 h, and adsorption procedure was carried out at room temperature, polyacrylonitrile as adsorbent has high adsorption capacity (mg x g(-1)) for Cu2+, Pb2+, Cd2+ and Zn2+, which can reach 26.6, 45.2, 39.7 and 32.5 separately. Adsorption rate (%) was 83.6, 87.1, 85.3 and 86.7 respectively during the 1.5-2 h static adsorption time. It will be more than five-hour static adsorption time before adsorption rate reaches more than 96%. Using 0.10 mol x L(-1) chloride acid as the best desorption solvent to desorb the adsorbates, the recovery of them reached 95%. At the same time the adsorption mechanism of polymer was studied. PMID:20545173

  12. The use of a sequential extraction procedure for heavy metal analysis of house dusts by atomic absorption spectrometry.

    Science.gov (United States)

    Altundag, Huseyin; Dundar, Mustafa Sahin; Doganci, Secil; Celik, Muhammed; Tuzen, Mustafa

    2013-01-01

    In general, dust is considered as house or street dust. Indoor dust, as a contamination source, has been studied for many years. In this work, the original Community Bureau of Reference of the European Commission (BCR) three-stage sequential extraction procedure was applied to the fractionation of Cr, Cu, Fe, Mn, Pb, and Zn in 20 house dust samples from five different areas of Sakarya, Turkey. Acetic acid, hydroxylammonium chloride, and hydrogen peroxide plus ammonium acetate were used for the first, second, and third steps of the BCR method, respectively. The extracts were analyzed for the studied heavy metals using flame atomic absorption spectrometry. Validation of the results was performed by using a standard reference material (BCR 701 Sediment) to certify the experimental results obtained and to evaluate the reliability of the method used. The elemental loadings typically increased in magnitude according to the area order: Izmit Caddesi>Ankara Caddesi >Erenler>Karaman>Korucuk. The results were in agreement with values reported in the literature.

  13. Determination of heavy metal contents by atomic absorption spectroscopy (AAS) in some medicinal plants from Pakistani and Malaysian origin.

    Science.gov (United States)

    Akram, Sobia; Najam, Rahila; Rizwani, Ghazala H; Abbas, Syed Atif

    2015-09-01

    This study depicts a profile of existence of heavy metals (Cu, Ni, Zn, Cd, Hg, Mn, Fe, Na, Ca, and Mg) in some important herbal plants like (H. Integrifolia, D. regia, R. communis, C. equisetifolia, N. oleander, T. populnea, M. elengi, H. schizopetalus, P. pterocarpum) from Pakistan and an antidiabetic Malaysian herbal drug product containing (Punica granatum L. (Mast) Hook, Momordica charantia L., Tamarindus indica L., Lawsonia inermis L.) using atomic absorption spectrophotometer. Heavy metals in these herbal plants and Malaysian product were in the range of 0.02-0.10 ppm of Cu, 0.00-0.02 ppm of Ni, 0.02-0.29 ppm of Zn, 0.00-0.04 ppm of Cd, 0.00-1.33 ppm of Hg, 0.00-0.54 ppm of Mn, 0.22-3.16 ppm of Fe, 0.00-9.17 ppm of Na, 3.27-15.63 ppm of Ca and 1.85-2.03 ppm of Mg. All the metals under study were within the prescribed limits except mercury. Out of 10 medicinal plants/product under study 07 were beyond the limit of mercury permissible limits. Purpose of this study is to determine heavy metals contents in selected herbal plants and Malaysian product, also to highlight the health concerns related to the presence of toxic levels of heavy metals. PMID:26408897

  14. Correlation between Soft X-ray Absorption and Emission Spectra of the Nitrogen Atoms within Imidazolium-Based Ionic Liquids.

    Science.gov (United States)

    Horikawa, Yuka; Tokushima, Takashi; Takahashi, Osamu; Hoke, Hiroshi; Takamuku, Toshiyuki

    2016-08-01

    Soft X-ray absorption spectroscopy (XAS) has been performed on the N K-edge of two imidazolium-based ionic liquids (ILs), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][TFSA]) and 1-ethyl-3-methylimidazolium bromide ([C2mim][Br]), to clarify the electronic structures of the ILs. Soft X-ray emission spectroscopy (XES) has also been applied to the ILs by excitation at various X-ray energies according to the XAS spectra. It was possible to fully associate the XAS peaks with the XES peaks. Additionally, both XAS and XES spectra of the ILs were well reproduced by the theoretical spectra for a single-molecule model on [C2mim](+) and [TFSA](-) using density functional theory. The assignments for the XAS and XES peaks of the ILs were accomplished from both experimental and theoretical approaches. The theoretical XAS and XES spectra of [C2mim](+) and [TFSA](-) did not significantly depend on the conformations of the ions. The reproducibility of the theoretical spectra for the single-molecule model suggested that the interactions between the cations and anions are very weak in the ILs, thus scarcely influencing the electronic structures of the nitrogen atoms. PMID:27388151

  15. Analysis of trace element in intervertebral disc by Atomic Absorption Spectrometry techniques in degenerative disc disease in the Polish population

    Directory of Open Access Journals (Sweden)

    Andrzej Nowakowski

    2015-05-01

    Full Text Available Objective. Although trace elements are regarded crucial and their content has been determined in number of tissue there are only few papers addressing this problem in intervertebral disc in humans. Most of the trace elements are important substrates of enzymes influencing metabolism and senescence process. Others are markers of environmental pollution. Therefore the aim of the research was to analyzed of the trace element content in the intervertebral disc, which may be a vital argument recognizing the background of degenerative changes to be the effect of the environment or metabolic factors. Materials and methods. Material consist of 18 intervertebral disc from 15 patients, acquired in surgical procedure of due to the degenerative disease with Atomic Absorption Spectrometry content of Al, Cd, Co, Pb, Cu, Ni, Mo, Mg, Zn was evaluated. Results. Only 4 of the trace elements were detected in all samples. The correlation analysis showed significant positive age correlation with Al and negative in case of Co. Among elements significant positive correlation was observed between Al/Pb, Co/Mo, Al/Mg, Al/Zn Pb/Zn and Mg/Zn. Negative correlation was observed in Al/Co, Cd/Mg, Co/Mg, Mo/Mg, Co/Zn and Mo/Zn. Conclusions. This study is the first to our knowledge that profiles the elements in intervertebral disc in patients with degenerative changes. We have confirmed significant differences between the trace element contents in intervertebral disc and other tissue. It can be ground for further investigation.

  16. Evaluation of various techniques for the pretreatment of sewage sludges prior to trace metal analysis by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Six techniques were evaluated for their suitability for the pretreatment of dried sewage sludge prior to trace metal analysis by atomic absorption spectrophotometry. The evaluation comprised analysis of two prepared samples of dried sludge for aluminium, cadmium, chromium, copper, iron, lead, manganese, nickel and zinc, after the following pretreatment: dry ashing at 500 degrees Celsius followed by extraction with dilute hydrochloric acid; dry ashing at 500 degrees Celsius followed by extraction with aqua regia; nitric acid digestion followed by extraction with hydrochloric acid; extraction with aqua regia; ashing with magnesium nitrate solution at 550 degrees Celsius followed by digestion with hydrochloric acid and extraction with nitric acid; extraction with nitric acid. Procedures involving the use of perchloric acid, hydrofluoric acid and hydrogen peroxide were not considered for reasons of safety. Except in the case of aluminium the direct mineral acid digestion and/or extraction methods generally gave higher recoveries than the procedures incorporating an ashing step. Direct extraction of the sample with aqua regia was recommended as a rapid and simple general method of sample pretreatment prior to analysis for all the metals investigated except aluminium. For this metal, more drastic sample pretreatment will be required, for example fusion or hydrofluoric acid digestion

  17. Mass Spectrometric Analysis of Water-soluble Gold Nanoclusters

    International Nuclear Information System (INIS)

    Batches of water-soluble gold nanoclusters of nominal 2.0 or 3.5-nm diameter were prepared to evaluate particle size determinations by a number of techniques such as transmission electron microscopy or atomic force microscopy and to validate estimates derived by mass spectrometric analysis using matrix-assisted laser desorption ionization (MALDI). Good agreement was found and MALDI lends itself to analyses even in the presence of aggregates

  18. On the opportunity of spectroscopic determination of absolute atomic densities in non-equilibrium plasmas from measured relative intensities within resonance multiplets distorted by self-absorption

    CERN Document Server

    Lavrov, B P

    2007-01-01

    The opportunities of the application of the recently proposed approach in optical emission spectroscopy of non-equilibrium plasmas have been studied. The approach consists of several methods of the determination of {\\em absolute} particle densities of atoms from measured {\\em relative} intensities within resonance multiplets distorted by self-absorption. All available spectroscopic data concerning resonance spectral lines of atoms having multiplet ground states from boron up to gallium were analyzed. It is found that in the case of C, O, F, S and Cl atoms an application of the methods needs VUV technique, while densities of B, Al, Si, Sc, Ti, V, Co, Ni, Ga atoms may be obtained by means of the intensity measurements in UV and visible parts of emission spectra suitable for ordinary spectrometers used for optical diagnostics and monitoring of non-equilibrium plasmas including industrial plasma technologies.

  19. Determination of Cd, Pb and As in sediments of the Sava River by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    SIMONA MURKO

    2010-01-01

    Full Text Available The applicability of nitric acid, palladium nitrate and a mixture of palladium and magnesium nitrate as matrix modifiers were estimated for the accurate and reproducible determination of cadmium (Cd, lead (Pb and arsenic (As in sediments of the Sava River by electrothermal atomic absorption spectrometry, ETAAS. Decomposition of the samples was done in a closed vessel microwave-assisted digestion system using nitric, hydrochloric and hydrofluoric acids, followed by the addition of boric acid to convert the fluorides into soluble complexes. The parameters for the determination of Cd, Pb and As in sediments were optimised for each individual element and for each matrix modifier. In addition, two sediment reference materials were also analysed. In determination of Cd and Pb, nitric acid was found to be the most appropriate matrix modifier. The accurate and reliable determination of Cd and Pb in sediments was possible also in the presence of boric acid. The use of a mixture of palladium and magnesium nitrate efficiently compensated for matrix effects and enabled the accurate and reliable determination of As in the sediments. Quantification of Cd and As was performed by calibration using acid matched standard solutions, while the standard addition method was applied for the quantification of Pb. The repeatability of the analytical procedure for the determination of Cd, Pb and As in sediments was ±5 % for Cd, ±4 % for Pb and ±2 % for As. The LOD values of the analytical procedure were found to be 0.05 mg/kg for Cd and 0.25 mg/kg for Pb and As, while the LOQ values were 0.16 mg/kg for Cd and 0.83 mg/kg for Pb and As. Finally, Cd, Pb and As were successfully determined in sediments of the Sava River in Slovenia.

  20. Atomic Absorption Spectrometry in Wilson’s Disease and Its Comparison with Other Laboratory Tests and Paraclinical Findings

    Directory of Open Access Journals (Sweden)

    Rana Fereiduni

    2012-03-01

    Full Text Available Objective: Wilson's disease (WD is an autosomal recessive disease with genetic abnormality on chromosome 13 causing defect in copper metabolism and increased copper concentration in liver, central nervous system and other organs, which causes different clinical manifestations. The aim of this study was to determine the sensitivity of different clinical and paraclinical tests for diagnosis of Wilson’s disease.Methods: Paraffin blocks of liver biopsy from 41 children suspicious of WD were collected. Hepatic copper concentrations were examined with atomic absorption spectrophotometry (Australian GBC, model: PAL 3000. Fifteen specimens had hepatic copper concentration (dry weight more than 250μg/g. Clinical and laboratory data and histologic slides of liver biopsies of these 15 children were reviewed retrospectively. Liver tissue was examined for staging and grading of hepatic involvement and also stained with rubeonic acid method for copper.Findings: Patients were 5-15 years old (mean age=9.3 years, standard deviation=2.6 with slight male predominance (9/15=60%. Five (33% patients were 10 years old. Three (20% of them were referred for icterus, 8 (54% because of positive family history, 2 (13% due to abdominal pain and 2 (13% because of hepatosplenomegaly and ascites. Serum AST and ALT levels were elevated at the time of presentation in all patients. In liver biopsy, histological grade and stage was 0-8 and 0-6 respectively, 2 (13% had cirrhosis, 1 (7% had normal biopsy and 12 (80% showed chronic hepatitis. Hepatic copper concentrations were between 250 and 1595 μg/g dry weight. The sensitivity of various tests were 85% for serum copper, 83% for serum ceruloplasmin, 53% for urinary copper excretion, 44% for presence of KF ring and 40% for rubeonic acid staining on liver biopsies.

  1. Coacervative extraction of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Hagarová, Ingrid; Bujdoš, Marek; Matúš, Peter; Kubová, Jana

    2013-10-01

    In this work, a relatively simple and sensitive method for separation/preconcentration of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry has been proposed. The method is based on the extraction of Pb-dithizone chelate with coacervates made up of lauric acid in the presence of potassium ions and methanol. Several important factors affecting extraction efficiency such as pH, concentration of lauric acid and dithizone, ionic strength, incubation and centrifugation time were investigated and optimized. After separation of aqueous bulk solution from surfactant-rich phase, the final extract was redissolved by using 500 μl of methanol acidified with 0.2 mol l- 1 HNO3. Under the optimized conditions (using initial sample volume of 10 ml), enrichment factor of 17.0, detection limit of 0.12 μg l- 1, quantification limit of 0.38 μg l- 1, relative standard deviation of 4.2% (for 2 μg l- 1 of Pb; n = 26), linearity of the calibration graph in the range of 0.5-4.0 μg l- 1 (with correlation coefficient better than 0.995) were achieved. The method was validated by the analysis of certified reference material (TMDA-61). Extraction recoveries for the CRM, spiked model solutions and spiked natural water samples were in the range of 91-96%. Finally, the method was applied to the separation/preconcentration and determination of trace lead in natural waters.

  2. Coacervative extraction of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hagarová, Ingrid, E-mail: hagarova@fns.uniba.sk; Bujdoš, Marek; Matúš, Peter; Kubová, Jana

    2013-10-01

    In this work, a relatively simple and sensitive method for separation/preconcentration of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry has been proposed. The method is based on the extraction of Pb–dithizone chelate with coacervates made up of lauric acid in the presence of potassium ions and methanol. Several important factors affecting extraction efficiency such as pH, concentration of lauric acid and dithizone, ionic strength, incubation and centrifugation time were investigated and optimized. After separation of aqueous bulk solution from surfactant-rich phase, the final extract was redissolved by using 500 μl of methanol acidified with 0.2 mol l{sup −1} HNO{sub 3}. Under the optimized conditions (using initial sample volume of 10 ml), enrichment factor of 17.0, detection limit of 0.12 μg l{sup −1}, quantification limit of 0.38 μg l{sup −1}, relative standard deviation of 4.2% (for 2 μg l{sup −1} of Pb; n = 26), linearity of the calibration graph in the range of 0.5–4.0 μg l{sup −1} (with correlation coefficient better than 0.995) were achieved. The method was validated by the analysis of certified reference material (TMDA-61). Extraction recoveries for the CRM, spiked model solutions and spiked natural water samples were in the range of 91–96%. Finally, the method was applied to the separation/preconcentration and determination of trace lead in natural waters. - Highlights: • The potential of coacervates for the extraction of metal ions is examined. • No difficulties in coupling of ETAAS with the proposed CAE are observed. • Achieved preconcentration factor results in enhanced sensitivity. • Analytical performance is confirmed by the reliable determination of trace Pb. • The proposed CAE is ecofriendly and efficient.

  3. Determination of calcium, magnesium and zinc in lubricating oils by flame atomic absorption spectrometry using a three-component solution.

    Science.gov (United States)

    Zmozinski, Ariane V; de Jesus, Alexandre; Vale, Maria G R; Silva, Márcia M

    2010-12-15

    Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g(-1), 0.052 μg g(-1) and 0.41 μg g(-1), respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil.

  4. Preconcentration of gold ions from water samples by modified organo-nanoclay sorbent prior to flame atomic absorption spectrometry determination

    Energy Technology Data Exchange (ETDEWEB)

    Afzali, Daryoush, E-mail: daryoush_afzali@yahoo.com [Nanochemistry Department, Research Institute of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Mostafavi, Ali [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mirzaei, Mohammad [Nanochemistry Department, Research Institute of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2010-09-15

    In this work, the applicability of modified organo nanoclay as a new and easy prepared solid sorbent for the preconcentration of trace amounts of Au(III) ion from water samples is studied. The organo nanoclay was modified with 5-(4'-dimethylamino benzyliden)-rhodanine and used as a sorbent for separation of Au(III) ions. The sorption of gold ions was quantitative in the pH range of 2.0-6.0. Quantitative desorption occurred with 6.0 mL of 1.0 mol L{sup -1} Na{sub 2}S{sub 2}O{sub 3}. The amount of eluted Au(III) was measured using flame atomic absorption spectrometry. In the initial solution the linear dynamic range was in the range of 0.45 ng mL{sup -1} to 10.0 {mu}g mL{sup -1}, the detection limit was 0.1 ng mL{sup -1} and the preconcentration factor was 105. Also, the relative standard deviation was {+-}2.3% (n = 8 and C = 2.0 {mu}g mL{sup -1}) and the maximum capacity of the sorbent was 3.9 mg of Au(III) per gram of modified organo nanoclay. The influences of the experimental parameters including sample pH, eluent volume and eluent type, sample volume, and interference of some ions on the recoveries of the gold ion were investigated. The proposed method was applied for preconcentration and determination of gold in different samples.

  5. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Georg, E-mail: georg.hartmann@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany); Schuster, Michael, E-mail: michael.schuster@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer We optimized cloud point extraction and ET-AAS parameters for Au-NPs measurement. Black-Right-Pointing-Pointer A selective ligand (sodium thiosulphate) is introduced for species separation. Black-Right-Pointing-Pointer A limit of detection of 5 ng Au-NP per L is achieved for aqueous samples. Black-Right-Pointing-Pointer Measurement of samples with high natural organic mater content is possible. Black-Right-Pointing-Pointer Real water samples including wastewater treatment plant effluent were analyzed. - Abstract: The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 {+-} 0.06 (particle size 2 nm) to 0.52 {+-} 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L{sup -1} is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L{sup -1}. The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L{sup -1} is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.

  6. Preconcentration procedure using cloud point extraction in the presence of electrolyte for cadmium determination by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Melo Coelho, Luciana [Departamento de Quimica Analitica, Universidade Estadual de Campinas (Unicamp), Cidade Universitaria ' Zeferino Vaz' , 13084-971, Campinas, Sao Paulo (Brazil); Arruda, Marco Aurelio Zezzi [Departamento de Quimica Analitica, Universidade Estadual de Campinas (Unicamp), Cidade Universitaria ' Zeferino Vaz' , 13084-971, Campinas, Sao Paulo (Brazil)]. E-mail: zezzi@iqm.unicamp.br

    2005-06-30

    This paper describes a micelle-mediated phase separation in the presence of electrolyte as a preconcentration method for cadmium determination by flame atomic absorption spectrometry (FAAS). Cadmium was complexed with ammonium O,O-diethyldithiophosphate (DDTP) in an acidic medium (0.32 mol l{sup -} {sup 1} HCl) using Triton X-114 as surfactant and quantitatively extracted into a small volume (about 20 {mu}l) of the surfactant-rich phase after centrifugation. The chemical variables that affect the cloud point extraction, such as complexing time (0-20 min), Triton X114 concentration (0.043-0.87% w/v) and complexing agent concentration (0.01-0.1 mol l{sup -} {sup 1}), were investigated. The cloud point is formed in the presence of NaCl at room temperature (25 deg. C), and the electrolyte concentration (0.5-5% w/v) was also investigated. Under optimized conditions, only 8 ml of sample was used in the presence of 0.043% w/v Triton X-114 and 1% (w/v) NaCl. This method permitted limits of detection and quantification of 0.9 {mu}g l{sup -} {sup 1} and 2.9 {mu}g l{sup -} {sup 1} Cd, respectively, and a linear calibration range from 3 to 400 {mu}g l{sup -} {sup 1} Cd. The proposed method was applied to Cd determination in physiological solutions (containing 0.9% (w/v) of NaCl), mineral water, lake water and cigarette samples (tobacco)

  7. Simultaneous flow injection preconcentration of lead and cadmium using cloud point extraction and determination by atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edson Luiz [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario, 303, CP 96, 13416-000 Piracicaba, SP (Brazil)], E-mail: edsonqmc@hotmail.com; Santos Roldan, Paulo dos [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario, 303, CP 96, 13416-000 Piracicaba, SP (Brazil)

    2009-01-15

    A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool, or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3 mol L{sup -1} HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15 mL of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75 {mu}g L{sup -1} for lead and cadmium, respectively. For a solution containing 100 and 10 {mu}g L{sup -1} of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n = 7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%.

  8. Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ulusoy, Halil Ibrahim, E-mail: hiulusoy@yahoo.com [University of Cumhuriyet, Faculty of Science, Department of Chemistry, TR-58140, Sivas (Turkey); Akcay, Mehmet; Ulusoy, Songuel; Guerkan, Ramazan [University of Cumhuriyet, Faculty of Science, Department of Chemistry, TR-58140, Sivas (Turkey)

    2011-10-10

    Graphical abstract: The possible complex formation mechanism for ultra-trace As determination. Highlights: {yields} CPE/HGAAS system for arsenic determination and speciation in real samples has been applied first time until now. {yields} The proposed method has the lowest detection limit when compared with those of similar CPE studies present in literature. {yields} The linear range of the method is highly wide and suitable for its application to real samples. - Abstract: Cloud point extraction (CPE) methodology has successfully been employed for the preconcentration of ultra-trace arsenic species in aqueous samples prior to hydride generation atomic absorption spectrometry (HGAAS). As(III) has formed an ion-pairing complex with Pyronine B in presence of sodium dodecyl sulfate (SDS) at pH 10.0 and extracted into the non-ionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114). After phase separation, the surfactant-rich phase was diluted with 2 mL of 1 M HCl and 0.5 mL of 3.0% (w/v) Antifoam A. Under the optimized conditions, a preconcentration factor of 60 and a detection limit of 0.008 {mu}g L{sup -1} with a correlation coefficient of 0.9918 was obtained with a calibration curve in the range of 0.03-4.00 {mu}g L{sup -1}. The proposed preconcentration procedure was successfully applied to the determination of As(III) ions in certified standard water samples (TMDA-53.3 and NIST 1643e, a low level fortified standard for trace elements) and some real samples including natural drinking water and tap water samples.

  9. Trace-element determination in lichens of Cordoba (Argentina) using neutron activation analysis and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ramalina ecklonii (Spreng.) Mey. and Flot. is a lichen widely distributed in Cordoba, a central province of Argentina. The ability of this lichen as an atmospheric pollution bioindicator has already been studied in relation to its physiological response to air pollutants. This work has to do with the study of R. ecklonii in terms of its capacity to accumulate heavy metals and other trace elements. The sampled area, located in the province of Cordoba, covered 50,000 km2 and was divided following a grid of 25 x 25 km. Lichens were collected at the intersecting points, no least than 500 m from main routes or highly populated centres and individuals were randomly gathered following the four cardinal directions and no more than 100 m from the geographically settled point. From each pool, three sub-samples were taken for independent analysis using atomic absorption spectrometry (AAS) and neutron activation analysis (NAA), for the determination of twenty nine elements (Cu, Ni, Mn, and Pb (AAS) and As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb, and Zn (NAA). The quality of the determinations was checked using standard reference material and data sets were evaluated using descriptive statistics, correlation analysis, and factor analysis. The highest variation coefficients correspond to Ca, Cr, and Zn. The studied elements were identified as of physiological importance and as emitted by natural (soil and rocks) and anthropogenic sources (non-ferrous metallurgy, coal combustion, oil-fired plants, fossil fuel combustion and, other industries). (author)

  10. Simultaneous flow injection preconcentration of lead and cadmium using cloud point extraction and determination by atomic absorption spectrometry.

    Science.gov (United States)

    Silva, Edson Luiz; Roldan, Paulo Dos Santos

    2009-01-15

    A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool, or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3molL(-1) HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15mL of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75microgL(-1) for lead and cadmium, respectively. For a solution containing 100 and 10microgL(-1) of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n=7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%. PMID:18456398

  11. Liquid-liquid extraction of molybdenum and its ultra-trace determination by graphite furnace atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    A highly sensitive and reliable method for the determination of molybdenum at nanogram level in rocks, ores, minerals, soils and hydrogeochemical samples has been developed by liquid-liquid extraction of the metal into a suitable organic solvent, followed by its measurement by Graphite Furnace Atomic Absorption Spectrophotometer. Molybdenum in the sample (∼200 mesh) was opened by NH4HF2 and H2SO4 dissolution. At pH 4-6, major matrix elements like Fe, Ti, Nb, Cu, Th, REEs etc are removed by the solvent extraction of the complexes of these elements with the, O-O' type of ligand, 2,3 dihydroxynaphthalene (2,3 H2ND) leaving Mo (VI) in aqueous solution. Subsequently, Mo (VI) was reduced with hydroxylamine hydrochloride to Mo (V) which was allowed to form a 1:2 complex with the cited ligand, 2,3 H2ND at pH 2-4. At this very pH, the Mo (V)-2,3 H2ND neutral complex was readily extracted in ethyl or butyl acetate. Then Mo (V) was stripped off into aqueous solution (minimum volume). This solution was fed into the graphite furnace through an auto sampler. The concentration of the analyte in the sample was found out/read from the calibration curve prepared against known standards. The method was validated by applying it on a host of rock samples including Geological Reference Materials and water samples. Molybdenum can be estimated up to 1 μg per gram rock sample with a precision of 2.0% and 2 ppb in water samples with a precision of ±5%. (author)

  12. Quantifying uncertainty in the measurement of arsenic in suspended particulate matter by Atomic Absorption Spectrometry with hydride generator

    Directory of Open Access Journals (Sweden)

    Ahuja Tarushee

    2011-04-01

    Full Text Available Abstract Arsenic is the toxic element, which creates several problems in human being specially when inhaled through air. So the accurate and precise measurement of arsenic in suspended particulate matter (SPM is of prime importance as it gives information about the level of toxicity in the environment, and preventive measures could be taken in the effective areas. Quality assurance is equally important in the measurement of arsenic in SPM samples before making any decision. The quality and reliability of the data of such volatile elements depends upon the measurement of uncertainty of each step involved from sampling to analysis. The analytical results quantifying uncertainty gives a measure of the confidence level of the concerned laboratory. So the main objective of this study was to determine arsenic content in SPM samples with uncertainty budget and to find out various potential sources of uncertainty, which affects the results. Keeping these facts, we have selected seven diverse sites of Delhi (National Capital of India for quantification of arsenic content in SPM samples with uncertainty budget following sampling by HVS to analysis by Atomic Absorption Spectrometer-Hydride Generator (AAS-HG. In the measurement of arsenic in SPM samples so many steps are involved from sampling to final result and we have considered various potential sources of uncertainties. The calculation of uncertainty is based on ISO/IEC17025: 2005 document and EURACHEM guideline. It has been found that the final results mostly depend on the uncertainty in measurement mainly due to repeatability, final volume prepared for analysis, weighing balance and sampling by HVS. After the analysis of data of seven diverse sites of Delhi, it has been concluded that during the period from 31st Jan. 2008 to 7th Feb. 2008 the arsenic concentration varies from 1.44 ± 0.25 to 5.58 ± 0.55 ng/m3 with 95% confidence level (k = 2.

  13. [Determination of trace elements in Lophatherum gracile brongn from different habitat by microwave digestion-atomic absorption spectroscopy].

    Science.gov (United States)

    Yuan, Ke; Xue, Yue-Qin; Gui, Ren-Yi; Sun, Su-Qin; Yin, Ming-Wen

    2010-03-01

    A method of microwave digestion technique was proposed to determine the content of Zn, Fe, Cu, Mn, K, Ca, Mg, Ni, Cd, Pb, Cr, Co, Al, Se and As in Lophatherum gracile brongn of different habitat by atomic absorption spectroscopy. The RSD of the method was between 1.23% and 3.32%, and the recovery rates obtained by standard addition method were between 95.8% and 104.20%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of metal elements in Lophatherum gracile brongn. The experimental results also indicated that different areas' Lophantherum gracile brongn had different trace elements content. The content of trace elements K, Mg, Ca, Fe and Mn beneficial to the human body was rich. The content of the heavy metal trace element Pb in Lophantherum gracile brongn of Hunan province was slightly high. The content of the heavy metal trace element Cu in Lophantherum gracile brongn of Guangdong province and Anhui province is also slightly higher. Beside, the contents of harmful trace heavy metal elements Cd, Cu, Cr, Pb and As in Lophatherum gracile brongn of different habitat are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation and National Food Sanitation Standard. These determination results provided the scientific data for further discussing the relationship between the content of trace elements in Lophantherum gracile brongn and the medicine efficacy. PMID:20496714

  14. Determination of manganese in diesel, gasoline and naphtha by graphite furnace atomic absorption spectrometry using microemulsion medium for sample stabilization

    Science.gov (United States)

    Brandão, Geisamanda Pedrini; de Campos, Reinaldo Calixto; de Castro, Eustáquio Vinicius Ribeiro; de Jesus, Honério Coutinho

    2008-08-01

    The determination of Mn in diesel, gasoline and naphtha samples at µg L - 1 level by graphite furnace atomic absorption spectrometry, after sample stabilization in a three-component medium (microemulsion) was investigated. Microemulsions were prepared by mixing appropriate volumes of sample, propan-1-ol and nitric acid aqueous solution, and a stable system was immediately and spontaneously formed. After multivariate optimization by central composite design the optimum microemulsion composition as well as the temperature program was defined. In this way, calibration using aqueous analytical solution was possible, since the same sensitivity was observed in the optimized microemulsion media and 0.2% v/v HNO 3. The use of modifier was not necessary. Recoveries at the 3 µg L - 1 level using both inorganic and organic Mn standards spiked solutions ranged from 98 to 107% and the limits of detection were 0.6, 0.5 and 0.3 µg L - 1 in the original diesel, gasoline and naphtha samples, respectively. The Mn characteristic mass 3.4 pg. Typical relative standard deviation ( n = 5) of 8, 6 and 7% were found for the samples prepared as microemulsions at concentration levels of 1.3, 0.8, and 1.5 µg L - 1 , respectively. The total determination cycle lasted 4 min for diesel and 3 min for gasoline and naphtha, equivalent to a sample throughput of 7 h - 1 for duplicate determinations in diesel and 10 h - 1 for duplicate determinations in gasoline and naphtha. Accuracy was also assessed by using other method of analysis (ASTM D 3831-90). No statistically significant differences were found between the results obtained with the proposed method and the reference method in the analysis of real samples.

  15. Determination of gold, indium, tellurium and thallium in the same sample digest of geological materials by atomic-absorption spectroscopy and two-step solvent extraction

    Science.gov (United States)

    Hubert, A.E.; Chao, T.T.

    1985-01-01

    A rock, soil, or stream-sediment sample is decomposed with hydrofluoric acid, aqua regia, and hydrobromic acid-bromine solution. Gold, thallium, indium and tellurium are separated and concentrated from the sample digest by a two-step MIBK extraction at two concentrations of hydrobromic add. Gold and thallium are first extracted from 0.1M hydrobromic acid medium, then indium and tellurium are extracted from 3M hydrobromic acid in the presence of ascorbic acid to eliminate iron interference. The elements are then determined by flame atomic-absorption spectrophotometry. The two-step solvent extraction can also be used in conjunction with electrothermal atomic-absorption methods to lower the detection limits for all four metals in geological materials. ?? 1985.

  16. Characterization of the physico-chemical properties of polymeric materials for aerospace flight. [differential thermal and atomic absorption spectroscopic analysis of nickel cadmium batteries

    Science.gov (United States)

    Rock, M.

    1981-01-01

    Electrodes and electrolytes of nickel cadmium sealed batteries were analyzed. Different thermal analysis of negative and positive battery electrodes was conducted and the temperature ranges of occurrence of endotherms indicating decomposition of cadmium hydroxide and nickel hydroxide are identified. Atomic absorption spectroscopy was used to analyze electrodes and electrolytes for traces of nickel, cadmium, cobalt, and potassium. Calibration curves and data are given for each sample analyzed. Instrumentation and analytical procedures used for each method are described.

  17. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices—CCSD(T) calculations and atomic site occupancies

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Barry M.; McCaffrey, John G., E-mail: john.mccaffrey@nuim.ie [Department of Chemistry, Maynooth University, National University of Ireland—Maynooth, County Kildare (Ireland)

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y{sup 1}P←a{sup 1}S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm{sup −1}). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr{sub 2} while this transition is quenched in Ba{sub 2}. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba{sub 2} indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  18. Application of atomic absorption spectrometry with continuous light source to analyze selected metals important for human health in different parts of oranges

    OpenAIRE

    Szwerc Wojciech; Sowa Ireneusz

    2014-01-01

    The publication describes the application of high-resolution continuum source atomic absorption spectrometry (H-R CS AAS) to determine some physiologically essential and toxic elements occurring in citrus fruits of different origins. Before analysis, the samples were mineralized using a mixture of deionized water and 69% nitric acid 3:1 (v/v) in high pressure microwave digestion at 188°C during one hour.

  19. Selective Flow Injection Analysis of Ultra-trace Amounts of Cr(VI), Preconcentration of It by Solvent Extraction, and Determination by Electrothermal Atomic Absorption Spectrometry (ETAAS)

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Sturup, Stefan; Spliid, Henrik;

    1999-01-01

    A rapid, robust, sensitive and selective time-based flow injection (FI) on-line solvent extraction system interfaced with electrothermal atomic absorption spectrometry (ETAAS) is described for analyzing ultra-trace amounts of Cr(VI). The sample is initially mixed on-line with isobutyl methyl keto......(VI)-reference material, synthetic seawater and waste waters, and waste water samples from an incineration plant and a desulphurization plant, respectively....

  20. Limits on the temporal variation of the fine structure constant, quark masses and strong interaction from quasar absorption spectra and atomic clock experiments

    CERN Document Server

    Flambaum, V V; Thomas, A W; Young, R D

    2004-01-01

    We perform calculations of the dependence of nuclear magnetic moments on quark masses and obtain limits on the variation of $(m_q/\\Lambda_{QCD})$ from recent measurements of hydrogen hyperfine (21 cm) and molecular rotational transitions in quasar absorption systems, atomic clock experiments with hyperfine transitions in H, Rb, Cs, Yb$^+$, Hg$^+$ and optical transition in Hg$^+$. Experiments with Cd$^+$, deuterium/hydrogen, molecular SF$_6$ and Zeeman transitions in $^3$He/Xe are also discussed.