WorldWideScience

Sample records for atomic absorption determination

  1. Determination of hafnium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yoshida, Isao; Kobayashi, Hiroshi; Ueno, Keihei.

    1977-01-01

    Optimum conditions for atomic absorption spectrophotometric determination of hafnium were investigated by use of a Jarrel-Ash AA-1 instrument which was equipped with a premixed gas burner slotted 50 mm in length and 0.4 mm in width. Absorption of hafnium, which was atomized in an nitrous oxide-acetylene flame, was measured on a resonance line at 307.29 nm. The absorption due to hafnium was enhanced in the presence of ammonium fluoride and iron(III) ion, as shown in Figs. 2 and 3, depending on their concentration. The highest absorption was attained by the addition of (0.15 -- 0.3)M ammonium fluoride, 0.07 M of iron(III) ion and 0.05 M of hydrochloric acid. An excess of the additives decreased the absorption. The presence of zirconium, which caused a significant interference in the ordinary analytical methods, did not affect the absorption due to hafnium, if the zirconium concentration is less than 0.2 M. A standard procedure was proposed; A sample containing a few mg of hafnium was dissolved in a 25-ml volumetric flask, and ammonium fluoride, ferric nitrate and hydrochloric acid were added so that the final concentrations were 0.3, 0.07 and 0.05 M, respectively. Atomic absorption was measured on the aqueous solution in a nitrous oxide-acetylene flame and the hafnium content was calculated from the absorbance. Sensitivity was as high as 12.5 μg of Hf/ml/l% absorption. The present method is especially recommendable to the direct determination of hafnium in samples containing zirconium. (auth.)

  2. Water analysis. Determination of elements by atomic absorption

    International Nuclear Information System (INIS)

    Anon.

    Analysis of homogeneous water solutions (plain water, polluted waters, effluents...) by atomic absorption spectrometry with correction for non specific absorption. The quantity ratio is determined by comparison with standard solutions, correction tables are given [fr

  3. The determination of zirconium by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Rodriguez, E.R.; Cunha, M.T.C. da

    1975-01-01

    The interference of iron in the determination of zirconium by atomic absorption spectrophotometry was studied. Attempts were made to emininate this interference by complexing the iron with EDTA, ascorbic acid and hydrazine; also by the addition of ammonium fluoride to the solution. Some experiments were carried out in order to explain the results obtained [pt

  4. Direct atomic absorption determination of silicon in metallic niobium

    International Nuclear Information System (INIS)

    Blinova, Eh.S.; Guzeev, I.D.; Nedler, V.V.; Khokhrin, V.M.

    1984-01-01

    Consideration is being given to realization of the basic advantage of non-flame atomizer-analysis of directly solid samples-for silicon determination in niobium for the content of the first one of less than 1x10 -3 mass %. Analysis technique is described. Diagrams of the dependences of atomic silicon absorption in graphite cells of usual type as well as lined by tungsten carbide and atomic silicon absorption on the value of niobium weighed amount are presented. It is shown that Si determination in metallic niobium according to aqueous reference solutions results in understatement of results 2.4 times. The optimal conditions for Si determination in niobium are the following: 2400 deg C temperature, absence of carbon and oxygen. Different niobium specimens with the known silicon content were used as reference samples

  5. Determination of cadmium in aluminium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Batistoni, D.A.; Erlijman, L.H.

    1978-12-01

    A direct method for the determination of cadmium in elemental aluminium is described. Metal samples are dissolved in diluted hydrochloric acid and cadmium is determined by atomic absorption spectrometry in an air-acetylene flame. Interference by non-specific absorption observed at the analytical wavelength incorrected for by means of a non-absorbing line emitted by the hollow-cathode lamp. Relatively large amounts of arsenic do not interfere. The minimun determinable concentration of cadmium for this procedure is 2-3 ppm, expressed on aluminium basis. (author) [es

  6. Determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Usenko, S.I.; Prorok, M.M.

    1992-01-01

    A method of direct determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization was developed. Concomitant elements Si, K, Mg, Na, present in natural waters in the concentration of 0.05-100 mg/cv 3 , do not produce effect on the value of boron atomic absorption. Boron determination limit constituted 0.02 mg/cm 3 for 25 ml of solution introduced

  7. Flotation atomic absorption determination of bismuth in nonferrous metal alloys

    International Nuclear Information System (INIS)

    Ososkov, V.K.; Plintus, A.M.; Kornelli, M.Eh.; Zakhariya, A.N.; Lozanova, E.V.

    1986-01-01

    Technique of flotation concentration and atomic absorption determination of bismuth microquantities in alloys on the basis of copper and zinc has been developed. Fine-dispersed EhDEh-10P anionite was used as a carrier in flotation concentration. State standard samples (SSS) of brasses and German silver were used as analysed objects. Effect of macrocomponents on the results of bismuth content determination has been studied. Satisfactory coincidence of the results obtained and SSS certificates is shown

  8. Determination of metals in atmospheric particulates using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Alduan, F.A.; Capdevila, C.

    1979-01-01

    Nineteen trace metals in atmospheric samples have been determined by atomic absorption spectrometry, using a graphite furnace for most elements. Paper filters have been used to collect air samples. The sample preparation procedure involves the removal of organic matter and the conversion of the metals to soluble salts by ashing the filters in an oxygen plasma at 125 deg C for 6 h. and by subsequent dissolution in HN0 3 HCl solution. The sensitivities achieved are in the range of 2,5.10 -5 and 6,3.10 -3 μg/m 3 , for an air volume of 2000 m 3 . (author)

  9. The determination of vanadium in brines by atomic absorption spectroscopy

    Science.gov (United States)

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  10. Determination of molybdenum in flotation concentrates by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Ise, Kazuo

    1978-01-01

    Molybdenum was determined by atomic absorption spectrophotometry in 0.05 N ammoniacal solution after the decomposition of the concentrate with aqua regia. Negros ore from Philippines was used as a flotation feed, which contained chalcopyrites and calcium-magnesium minerals. Among the metals tested copper, iron and the alkaline earths interfered. Less than 50 ppm of copper yielded lower results for molybdenum. Higher results came out with more than 50 ppm of copper. In the presence of iron and citric acid (0.4 g/100 ml) which is a suppressor for hydroxide formation, a lower estimation resulted for molybdenum. Calcium interfered, lower results by 2 and >10% being obtained with respective 2.5 and 20 ppm of calcium. More than 20 ppm of magnesium behaved similarly. Sodium sulfate (0.5 g/100 ml) served as the suppressor for copper, iron and citric acid; 100 ppm each of copper and iron did not interfere in this way. Interferences due to calcium and magnesium (less than 60 ppm) was able to be masked by the addition of sodium silicate (200 ppm as silica). The analysis of flotation products and synthetic samples consisting of molybdenite, chalcopyrite, calcium chloride and magnesium sulfate revealed that the atomic absorption method can be applied to the analysis of the concentrates for molybdenum with an error of about 2%. (auth.)

  11. Atomic absorption spectrometric determination of mineral elements in mammalian bones

    International Nuclear Information System (INIS)

    Udoh, Anthony P.

    2000-01-01

    The phosphorus content of the major bones of male and female selected mammals was determined using the yellow vanadomolybdate colorimetric method. For each animal, the bone with the highest phosphorus content was used as pilot sample. Varying concentrations of strontium were added to solutions of the ashed pilot samples to minimize phosphorus interference in the determination of calcium and magnesium using flame atomic absorption spectrophotometry operated on the air-acetylene mode. At least 6,000 ppm (0.6%) of strontium was required to give optimum results for calcium. The amount of magnesium obtained from the analysis was not affected by the addition of strontium. With the incorporation of strontium in the sample solution, all elements of interest can be determined in the same sample solution. Based on this, a procedure is proposed for the determination of calcium and other elements in bones. Average recoveries of spiked calcium and magnesium were 97.85% and 98.16%, respectively at the 95% confidence level. The coefficients of variation obtained for replicate determinations using one of the samples were 0.00% for calcium, lead and sodium, 2.93% for magnesium, 3.27% for iron and 3.92% for zinc at the concentration levels found in that sample. Results from the proposed procedure compared well with those from classical chemical methods at the 95% confidence level. It is evident that calcium phosphorus, magnesium and sodium which are the most abundant elements in the bones are distributed in varying amounts both in the different types of bones and different animal species, although the general trend is Ca > P > Na > Mg for each bone considered. The calcium - phosphorus ratio is generally 3:1. The work set out to propose an atomic absorption spectrometric method for the multi-element analysis of mammalian bones with a single sample preparation and to study the distribution pattern of these elements in the bones. (Author)

  12. Determination numbers of ionized atoms from emission and absorption lines

    International Nuclear Information System (INIS)

    Alizadeh Azimi, A.; Shokouhi, N.

    2002-01-01

    Saha, M., (1920) estimated that salter chromosphere is not only due to radiation from neutral atoms, but from ionized atoms. The failure to observe these stellar lines in the laboratory was attributed to internal temperature and pressure about 10* E + 6 K 10* E-7 atm. In this research we found that emission lines of ionized atoms (like Cs) could be measured in laboratory condition, (about 10* E-3 atm and 2000 K) by using Graphite France Atomic Absorption with injection 124 u g C sel. We calculated the numbers of ionized atoms from Bottzman law. We also measured these numbers from area under the energy-time curve

  13. Determination of lead in mother's milk by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Bandarchian, F.; Assadian, F

    2002-01-01

    With due attention to increasing air pollution specially the lead amount that is generated from gasoline burning in automobiles, it seems that it is necessary to control the amount of it continuously. Because Pb has an easy absorbability to body and also damages the nervous system. For this reason determination of it in mother's milk has a special importance. In this research, the milks of 15 mothers twice a day were examined and the concentration of Pb were determined by atomic absorption spectroscopy. In accordance the international organization, the permissible amount in body is 0.05 ppm. Fortunately, the obtained data was less than of it and it showed the absorbance of lead by babies is insignificant

  14. Determination of Lead in Urine by Atomic Absorption Spectrophotometry1

    Science.gov (United States)

    Selander, Stig; Cramé, Kim

    1968-01-01

    A method for the determination of lead in urine by means of atomic absorption spectrophotometry (AAS) is described. A combination of wet ashing and extraction with ammonium pyrrolidine dithiocarbamate into isobutylmethylketone was used. The sensitivity was about 0·02 μg./ml. for 1% absorption, and the detection limit was about 0·02 μg./ml. with an instrumental setting convenient for routine analyses of urines. Using the scale expansion technique, the detection limit was below 0·01 μg./ml., but it was found easier to determine urinary lead concentrations below 0·05 μg./ml. by concentrating the lead in the organic solvent by increasing the volume of urine or decreasing that of the solvent. The method was applied to fresh urines, stored urines, and to urines, obtained during treatment with chelating agents, of patients with lead poisoning. Urines with added inorganic lead were not used. The results agreed well with those obtained with a colorimetric dithizone extraction method (r = 0·989). The AAS method is somewhat more simple and allows the determination of smaller lead concentrations. PMID:5647975

  15. Determination of Lead in Blood by Atomic Absorption Spectrophotometry1

    Science.gov (United States)

    Selander, Stig; Cramér, Kim

    1968-01-01

    Lead in blood was determined by atomic absorption spectrophotometry, using a wet ashing procedure and a procedure in which the proteins were precipitated with trichloroacetic acid. In both methods the lead was extracted into isobutylmethylketone before measurement, using ammonium pyrrolidine dithiocarbamate as chelator. The simpler precipitation procedure was shown to give results identical with those obtained with the ashing technique. In addition, blood specimens were examined by the precipitation method and by spectral analysis, which method includes wet ashing of the samples, with good agreement. All analyses were done on blood samples from `normal' persons or from lead-exposed workers, and no additions of inorganic lead were made. The relatively simple protein precipitation technique gave accurate results and is suitable for the large-scale control of lead-exposed workers. PMID:5663425

  16. Determination of lead and cadmium in urine by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Vasil'eva, L.A.; Grinshtejn, I.L.; Gucher, Sh.; Izgi, B.

    2008-01-01

    The applicability of a DETATA sorbent to the preconcentration of lead and cadmium followed by the determination of these elements in urine using atomic absorption spectrometry with electrothermal atomization was demonstrated. After preconcentration by a factor of 10, the limits of detection were 0.01 and 0.2 μg/l for cadmium and lead, respectively. The accuracy of the results was supported by the analysis of Seronorm TM Trace Elements Urine Batch no.101021 [ru

  17. Determination of cobalt in human liver by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Caldas, E.D.; Gine-Rosias, M.F.; Dorea, J.G.

    1991-01-01

    A detailed study of the use of electrothermal atomic absorption spectrometry for the determination of cobalt in human liver is described. Comparisons of sample digestion using nitric acid or nitric acid plus perchloric acid, atomization procedures and the application of palladium and magnesium nitrate chemical modifiers were studied using NBS SRM 1577a Bovine Liver. The best results were achieved with sample decomposition in nitric acid, atomization from the tube wall and no chemical modifier. Cobalt was determined in 90 samples of livers from foetuses and deceased newborns using the standard addition method with an average recovery of 99.8%. (author). 30 refs.; 4 figs.; 2 tabs

  18. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Průša, Libor [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Hlavova 8, Prague 2, CZ 128 43 Czech Republic (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-12-04

    Graphical abstract: -- Highlights: •In-atomizer trapping HG-AAS was optimized for Sn. •A compact quartz trap-and-atomizer device was employed. •Generation, preconcentration and atomization steps were investigated in detail. •Hundred percent preconcentration efficiency for tin was reached. •Routine analytical method was developed for Sn determination (LOD of 0.03 ng mL{sup −1} Sn). -- Abstract: A quartz multiatomizer with its inlet arm modified to serve as a trap (trap-and-atomizer device) was employed to trap tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcentration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5% was found. The detection limits reached were 0.029 and 0.14 ng mL{sup −1} Sn, respectively, for 120 s preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples.

  19. Determination of microquantities of cesium in leaching tests by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Crubellati, R.O.; Di Santo, N.R.

    1988-01-01

    An original method for cesium determinations by atomic absorption spectrometry with electrothermal atomization is described. The effect of foreign ions (alkali and earth alkaline metals) present in leaching test of glasses with incorporated radioactive wastes was studied. The effect of different mineral acids was also investigated. A comparison between the flame excitation method and the electrothermal atomization one was made. Under optimum conditions, cesium in quantities down to 700 ng in 1000 ml of sample could be determined. The calibration curve was linear in the range of 0.7 - 15 ng/mL. The fact that the proposed determinations can be performed in a short time and that a small sample volume is required are fundamental advantages of this method, compared with the flame excitation procedure. Besides, it is adaptable to be applied in hot cells and glove boxes. (Author) [es

  20. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    Science.gov (United States)

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  1. Determination of technetium by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Kaye, J.H.; Ballou, N.E.

    1978-01-01

    A detection limit of 6 x 10 -11 g has been achieved for measurement of technetium by graphite furnace atomic absorption spectrometry. A commercially available, demountable, hollow cathode lamp was used and both argon and neon were used as fill gases for the lamp. The range of applicability of the method, when the unresolved 2614.23 to 2615.87 A doublet is used for analysis, is from 60 pg to at least 3 ng of technetium per aliquot analyzed. 3 figures, 1 table

  2. A laboratory manual for the determination of metals in water and wastewater by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Smith, R.

    1983-01-01

    This guide presents, in addition to a brief discussion of the basic principles and practical aspects of atomic absorption spectrophotometry, a scheme of analysis for the determination of 19 metals in water and wastewater, 16 by flame atomic absorption and 3 by vapour generation techniques. Simplicity, speed and accuracy were the main criteria considered in the selection of the various methods

  3. Determination of antimony by using tungsten trap atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Titretir, Serap [Department of Chemistry, Inoenue University, 44065 Malatya (Turkey); Kenduezler, Erdal [Department of Primary Education, Faculty of Education, Ahi Evran University, 40100 Kirsehir (Turkey); Arslan, Yasin [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Atatuerk University, 25240 Erzurum (Turkey); Kula, Ibrahim [Department of Chemistry, Mugla University, 48000 Mugla (Turkey); Bakirdere, Sezgin [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak (Turkey); Ataman, O. Yavuz. [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    An electrically heated tungsten coil was used as a trap in the determination of antimony. The technique consists of three steps. Initially, SbH{sub 3} is formed by hydride generation procedure; then the analyte species in vapor form are transported to W-coil trap heated at 370 deg. C. Following the preconcentration step, the trap is heated to 895 deg. C; analyte species are revolatilized and transported to the flame-heated quartz atom cell where atomization and the formation of signal take place. The experimental parameters were optimized both for trap and no-trap studies. The most important experimental parameters are concentrations of HCl and NaBH{sub 4} solutions, H{sub 2} and Ar gas flow rates, and collection and revolatilization temperatures of W-coil. Accuracy was tested using a certified reference material, waste water EU-L-1. Limit of detection for the system is 16 ng l{sup -1} using a sample of 36 ml collected in 4.0 min. Enhancement factor in sensitivity was 17.

  4. Determination of molybdenum in human urine by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Pita Calvo, C.; Bermejo Barrera, P.; Bermejo Barrera, A.

    1995-01-01

    Various matrix modifiers were investigated for the determination of molybdenum in human urine samples by electrothermal atomization atomic absorption spectrometry. Methods with nitric acid, barium difluoride, magnesium nitrate, palladium-magnesium nitrate and palladium-hydroxylamine hydrochloride were studied by introducing the urine samples directly into the graphite furnace with 0.3% Triton X-100. The charring and atomization curves, the amount of modifier and the calibration and addition graphs were studied in all instances. The precision, accuracy and chemical interferences of the methods were also investigated. The matrix interferences have been removed with the modifiers barium difluoride, palladium-magnesium nitrate and palladium-hydroxylamine hydrochloride. The limits of detection and quantification were 0.2 and 0.7 μg l -1 , respectively, for these modifiers. The characteristic masses were 14.1, 18.0 and 14.9 pg of Mo for palladium-magnesium nitrate, palladium-hydroxylamine hydrochloride and barium difluoride, respectively. The method with palladium-magnesium nitrate has been applied to the study of the amount of molybdenum in human urine samples. The molybdenum levels found lie between 4.8-205.6 μg l -1

  5. Quantitative determination of impurities in nuclear grade aluminum by Flame-Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Jat, J.R.; Nayak, A.K.; Balaji Rao, Y.; Ravindra, H.R.

    2013-01-01

    The paper deals with quantitative determination of impurity elements in nuclear grade aluminum, used as fin tubes in research reactors, by Flame-Atomic Absorption Spectrometry (F-AAS). The results have been compared with those obtained by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) method. Experimental conditions used in both the methods are given in the paper. (author)

  6. Selenium determination in biological material by atomic absorption spectrophotometry in graphite furnace and using vapor generation

    International Nuclear Information System (INIS)

    Carvalho Vidal, M. de F. de.

    1984-01-01

    The applicability of the atomic absorption spectrophotometry to the determination of selenium in biological material using vapor generation and electrothermal atomization in the graphite furnace was investigated. Instrumental parameters and the analytical conditions of the methods were studied. Decomposition methods for the samples were tested, and the combustion in the Wickbold apparatus was chosen. (author) [pt

  7. Organic solvents as interferents in arsenic determination by hydride generation atomic absorption spectrometry with flame atomization

    Czech Academy of Sciences Publication Activity Database

    Karadjova, I.B.; Lampugnani, L.; Dědina, Jiří; D'Ulivo, A.; Onor, M.; Tsalev, D.L.

    2006-01-01

    Roč. 61, č. 5 (2006), s. 525-531 ISSN 0584-8547 R&D Projects: GA AV ČR IAA400310507 Institutional research plan: CEZ:AV0Z40310501 Keywords : hydride generation * atomic absorption spectrometry * interferences Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.092, year: 2006

  8. Determination of trace amounts of cadmium in sea water by a flameless atomic absorption method

    International Nuclear Information System (INIS)

    Yamazoe, Seigo; Oshima, Shozo

    1975-01-01

    Determination of trace amounts of cadmium in sea water has been developed by a flameless atomic absorption method using a carbon rod atomizer. Sea water is diluted with isopropyl alcohol and the white salt formed is removed by filtration, then the filtrate is fed to the instrument as a sample for measurement. A complete separation of the salt is not needed in this pre-treatment. The effect of the residual salt can be avoided by separating the atomic absorption of cadmium and the molecular absorption of the residual salt by means of controlling the temperature and the time of ashing and atomization of the sample in the carbon rod. The repeatability and the accuracy are 2.0--8.5% in the coefficient of variation and 0.8--5.3% respectively. (auth.)

  9. Evaluation of a method for the determination of chromium in urine by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Garcia, M.; Sardinas, O.; Castaneda, I.; Sanchez, R.

    1990-01-01

    A method for the determination of chromium in urine by atomic absorption spectrometry, using electrothermic atomization with pyrolytic graphite tubes, is proposed. The determinations are performed by standard addition. The method is applicable to biologic monitoring of populations with different degrees of exposition. It is also used in the analysis of chromium in sediments. Results of chromium in urine of a population group non-exposed to the metal are presented. 11 refs

  10. Determination of boron in sea water by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Horta, A.M.T.C.; Curtius, A.J.

    1978-01-01

    The chelation-extraction of boric acid with are acid solution of 2-ethyl-1,3 hexanediol in methy1-isobutye-ketone is studied. By this way a simple, quick and precise method for boron determination can be obtained [pt

  11. Direct determination of selenoproteins in polyvinylidene difluoride membranes by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Sidenius, U; Gammelgaard, Bente

    2000-01-01

    A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual...... were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2-10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well...

  12. [Determination of trace cobalt in human urine by graphite furnace atomic absorption spectrometr].

    Science.gov (United States)

    Zhong, L X; Ding, B M; Jiang, D; Liu, D Y; Yu, B; Zhu, B L; Ding, L

    2016-05-20

    To establish a method to determine cobalt in human urine by graphite furnace atomic absorption spectrometry. Urine with 2% nitric acid diluted two-fold, to quantify the curve, graphite furnace atomic absorption spectrometric detection. Co was linear within 2.5~40.0 ng/ml with r>0.999. Spike experiment showed that Co received good recovery rate, which was 90.8%~94.8%. Intra-assay precisions were 3.2%~5.1% for Co, inter-assay precisions were 4.4%~5.2% for Co. The method by using graphite furnace atomic absorption spectrometr to determine urine Co was fast, accurate and with low matrix effect. It could meet the requirement in GBZ/T 210.5-2008.

  13. Direct determination of beryllium, cadmium, lithium, lead and silver in thorium nitrate solution by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Thulasidas, S.K.; Kulkarni, M.J.; Porwal, N.K.; Page, A.G.; Sastry, M.D.

    1988-01-01

    An electrothermal atomization atomic absorption spectrometric (ET-AAS) method is developed for the direct determination of Ag, Be, Cd, Li and Pb in thorium nitrate solution. The method offers detection of sub-nanogram amounts of these analytes in 100-microgram thorium samples with a precision of around 10%. A number of spiked samples and pre-analyzed ThO 2 samples have been analyzed to evaluate the performance of the analytical methods developed here

  14. Tungsten determination in heat resistant nickel-base-alloys by the method of atomic absorption

    International Nuclear Information System (INIS)

    Gregorczyk, S.; Wycislik, A.

    1980-01-01

    A method of atomic absorption was developed. It allows for the tungsten to be determined in heatresistant nickel-base-alloys within the range 0.01 to 7%. It consists in precipitating tungsten acid in the presence of alkaloids with its following decomposition by hydrofluoric acid in the teflon bomb. (author)

  15. Chemical modifiers in electrothermal atomic absorption determination of Platinum and Palladium containing preparations in blood serum

    Directory of Open Access Journals (Sweden)

    Аntonina Alemasova

    2012-11-01

    Full Text Available The biological liquids matrixes influence on the characteristic masses and repeatability of Pt and Pd electrothermal atomic absorption spectroscopy (ETAAS determination was studied. The chemical modifiers dimethylglyoxime and ascorbic acid for matrix interferences elimination and ETAAS results repeatability improvement were proposed while bioliquids ETAAS analysis, and their action mechanism was discussed.

  16. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  17. Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers

    OpenAIRE

    Becker, Emilene M.; Rampazzo, Roger T.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Silva, Márcia M. da; Welz, Bernhard; Katskov, Dmitri A.

    2011-01-01

    Acesso restrito: Texto completo. In the present work a direct method for the determination of arsenic in petroleum derivatives has been developed, comparing the performance of a commercial transversely heated platform atomizer (THPA) with that of a transversely heated filter atomizer (THFA). The THFA results in a reduction of background absorption and an improved sensitivity as has been reported earlier for this atomizer. The mixture of 0.1% (m/v) Pd+0.03% (m/v) Mg+0.05% (v/v) Triton X-...

  18. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    Science.gov (United States)

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  19. Quantitative Determination of Arsenic in Bottled Drinking Water Using Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Guţu Claudia

    2013-10-01

    Full Text Available Background: Many studies have been performed in the past few years, to determine arsenic speciation in drinking water, food chain and environment, arsenic being a well-recognized carcinogenic and toxic agent mainly in its inorganic species. The instrumental techniques used for arsenic determination, such as hydride generation atomic absorption spectrometry (HGAAS, graphite furnace atomic absorption spectrometry (GFAAS and inductively coupled plasma mass spectrometry (ICP-MS, can provide a great sensitivity only on the total amount. Objective: The aim of this study was to develop a simple and rapid method and to analyze the concentration of total inorganic arsenic in bottled drinking water. Methods: Total arsenic was determined in samples from six different types of commercially available bottled drinking water using atomic absorption spectrometry with electrothermal or hydride generation vaporisation. All drinking water samples were acidified with 0.1M nitric acid to match the acidity of the standards. Results: The method was linear within the studied range (1-5 μg/L, R = 0.9943. The quantification limits for arsenic determination were 0.48 μg/L (HGAAS and 0.03 μg/L (GFAAS. The evaluated arsenic content in drinking water was within the accepted limits provided by law. Conclusions: A simple and sensitive method for the quantification of arsenic in drinking water using atomic absorbtion spectroscopy was described, which can be further used in toxicological studies. As an additional advantage, the system is very fast, efficient and environmental friendly

  20. Flameless atomic absorption determination of ruthenium using a ''Saturn-1'' spectrophotometer

    International Nuclear Information System (INIS)

    Pichkov, V.N.; Sinitsyn, N.M.; Sadikova, F.G.; Govorova, M.I.; Yakshinskij, A.I.

    1980-01-01

    A flameless atomic absorption method is suggested for determining ruthenium in samples of complicated composition using a ''Saturn-1'' spectrophotometer with a L'vov graphite cuvette. The method was used for determining ruthenium in a copper-based sample (10 -3 % Ru) and in electrolyte slurries (10 -3 -10 -2 %). The limit of detection Csub(min, 0.95) = 3.0x10 -3 μg Ru/ml. Other platinum metals do not interfere [ru

  1. Flame emission spectrometry using atomic absorption apparatus. I. Determination of Sr in sea water

    International Nuclear Information System (INIS)

    Aizawa, S.; Yoshimura, E.; Hamachi, M.; Haraguchi, H.; Dokiya, Y.; Fuwa, K.

    1976-01-01

    Flame emission determination of Sr in seawater was studied using an ordinary atomic absorption apparatus. The analytical line 4607 A was used with a background correction at 4616 A. The ionization was negligible in an air acetylene flame with seawater, and the interference of H 2 SO 4 was eliminated using the higher part of the flame. Sr concentration of seawater of Tokyo Bay and Sagami Bay has been determined

  2. An indirect method for determining phosphorus in aluminium alloys by atomic-absorption spectrometry.

    Science.gov (United States)

    Bernal, J L; Del Nozal, M A; Deban, L; Aller, A J

    1981-07-01

    An indirect method is described for the determination of phosphorus in aluminium alloys. Ammonium molybdate is added to a solution of the aluminium alloy and the molybdophosphoric acid formed is selectively extracted into n-butyl acetate. The twelve molybdenum atoms associated with each phosphate ion are determined by direct atomic-absorption spectrometry with the n-butyl acetate phase in a nitrous oxide-acetylene flame, with measurement at 313.2 nm. The most suitable conditions have been established and the effect of other ions has been studied.

  3. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  4. Indirect determination of uranium by atomic-absorption spectrophotometry using an air-acetylene flame

    International Nuclear Information System (INIS)

    Alder, J.F.; Das, B.C.

    1977-01-01

    An indirect method has been developed for the determination of uranium by atomic-absorption spectrophotometry using an air-acetylene flame. Use is made of the reduction of copper(II) by uranium(IV) followed by complex formation of the copper(I) ions so produced with neocuproine (2,9-dimethyl-1,10-phenanthroline) and finally the determination of copper in this complex by atomic-absorption spectrophotometry. The results show that the method can be recommended, provided that care is taken to ensure the complete reduction of uranium(VI) to uranium(IV). The sensitivity of the method is 4.9 μg of uranium and the upper limit 500 μg without dilution. (author)

  5. Atomic absorption determination of vanadium in products of metallurgical production and mineral feed stock

    International Nuclear Information System (INIS)

    Polikarpova, N.V.; Panteleeva, E.Yu.

    1983-01-01

    Rapid and selective method of atomic absorption determination of vanadium in metallurgical process products and numerical feed stock is suggested. Buffering mixture of aluminium and phosphoric acid is used to suppress the effect of sample composition on the value of vanadium atomic absorption. The concentration of buffer components can vary from 400 up to 2000 μg/ml Al and from 2 up to 5% vol. H 3 PO 4 . The suggested mixture completely eli-- minates the strong chromium effect. The developed method was used for analyzing steels, alloys based on Mo, Ni, Ti, Cr, as well as titanium magnetite ores and concentrates. The method enables to determine from 0.05 up to 10% vanadium with 0.05-0.01 relative standard deviation, respectively

  6. Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry.

    Science.gov (United States)

    Donati, George L; Pharr, Kathryn E; Calloway, Clifton P; Nóbrega, Joaquim A; Jones, Bradley T

    2008-09-15

    Cadmium concentrations in human urine are typically at or below the 1 microgL(-1) level, so only a handful of techniques may be appropriate for this application. These include sophisticated methods such as graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry. While tungsten coil atomic absorption spectrometry is a simpler and less expensive technique, its practical detection limits often prohibit the detection of Cd in normal urine samples. In addition, the nature of the urine matrix often necessitates accurate background correction techniques, which would add expense and complexity to the tungsten coil instrument. This manuscript describes a cloud point extraction method that reduces matrix interference while preconcentrating Cd by a factor of 15. Ammonium pyrrolidinedithiocarbamate and Triton X-114 are used as complexing agent and surfactant, respectively, in the extraction procedure. Triton X-114 forms an extractant coacervate surfactant-rich phase that is denser than water, so the aqueous supernatant is easily removed leaving the metal-containing surfactant layer intact. A 25 microL aliquot of this preconcentrated sample is placed directly onto the tungsten coil for analysis. The cloud point extraction procedure allows for simple background correction based either on the measurement of absorption at a nearby wavelength, or measurement of absorption at a time in the atomization step immediately prior to the onset of the Cd signal. Seven human urine samples are analyzed by this technique and the results are compared to those found by the inductively coupled plasma mass spectrometry analysis of the same samples performed at a different institution. The limit of detection for Cd in urine is 5 ngL(-1) for cloud point extraction tungsten coil atomic absorption spectrometry. The accuracy of the method is determined with a standard reference material (toxic metals in freeze-dried urine) and the determined values agree with

  7. Determination of five trace elements in leaves in Nanfang sweet orange by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Li Fangqing

    2006-01-01

    The five trace elements of copper, zinc, manganese, iron and cobalt in leaves of Nanfang sweet orange are determined by flame atomic absorption spectrometry. The technique is simple, precise and sensitive. The effect of the type of digesting solution (mixed acid), the ratio of mixed acid, the volume of digesting solution and the time of digesting are investigated in details. The results show that leaves of Nanfang sweet orange contain higher amount of iron and zinc. (authors)

  8. On-line Incorporation of Cloud Point Extraction in Flame Atomic Absorption Spectrometric Determination of Silver

    OpenAIRE

    DALALI, Nasser; JAVADI, Nasrin; AGRAWAL, Yadvendra KUMAR

    2008-01-01

    A cloud point extraction method was incorporated into a flow injection system, coupled with flame atomic absorption spectrometry, for determination of trace amounts of silver. The analyte in the aqueous solution was acidified with 0.2 mol L-1 sulfuric acid and complexed with dithizone. The cloud point extraction was performed using the non-ionic surfactant Triton X-114. After obtaining the cloud point, the surfactant-rich phase containing the dithizonate complex was collected in a m...

  9. Integration of Solid-phase Extraction with Electrothermal Atomic Absorption Spectrometry for Determination of Trace Elements

    OpenAIRE

    NUKATSUKA, Isoshi; OHZEKI, Kunio

    2006-01-01

    An enrichment step in a sample treatment is essential for trace analysis to improve the sensitivity and to eliminate the matrix of the sample. Solid-phase extraction (SPE) is one of the widely used enrichment technique. Electrothermal atomic absorption spectrometry (ETAAS) is a well-established determination technique for trace elements. The integration of SPE with ETAAS leads to further improvement of sensitivity, an automation of the measurement and the economy in the sample size, amounts o...

  10. Determination of trace amounts of selenium in minerals and rocks by flemeless atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Capdevila, C.; Alduan, F.A.

    1980-01-01

    The determination of trace amounts of selenium in silicate rocks and feldspart by solvent extraction and graphite furnace atomic-absorption spectrometry has been studied. Sodium diethyl-ditiocarbamate and ammonium pyrrolidinedithiocarbamate have been tried as chelating agents. The best results are achieved when selenium is extracted into carbon tetrachloride as the sodium diethylditiocarbamate complex. The method allows to detect 0,75 ppm of selenium in the sample. Recoveries are about 100%. (author)

  11. Direct microcomputer controlled determination of zinc in human serum by flow injection atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Nielsen, Bent; Jensen, Arne

    1986-01-01

    A procedure is described for the direct determination of zinc in human serum by fully automated, microcomputer controlled flow injection atomic absorption spectrometry (Fl-AAS). The Fl system is pumpless, using the negative pressure created by the nebuliser. It only consists of a three-way valve......, programmable from the microcomputer, to control the sample volume. No pre-treatment of the samples is necessary. The limit of detection is 0.14 mg l–1, and only small amounts of serum (

  12. Exploiting flow Injection and sequential injection schemes for trace metal determinations by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Determination of low or trace-level amounts of metals by electrothermal atomic absorption spectrometry (ETAAS) often requires the use of suitable preconcentration and/or separation procedures in order to attain the necessary sensitivity and selectivity. Such schemes are advantageously executed...... by superior performance and versatility. In fact, two approaches are conceivable: The analyte-loaded ion-exchange beads might either be transported directly into the graphite tube where they are pyrolized and the measurand is atomized and quantified; or the loaded beads can be eluted and the eluate forwarded...

  13. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bentlin, Fabrina R.S. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Pozebon, Dirce [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil)], E-mail: dircepoz@iq.ufrgs.br; Mello, Paola A.; Flores, Erico M.M. [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900 Santa Maria, RS (Brazil)

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO{sub 3}){sub 2} was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 {mu}g g{sup -1} of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  14. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bentlin, Fabrina R.S.; Pozebon, Dirce; Mello, Paola A.; Flores, Erico M.M.

    2007-01-01

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO 3 ) 2 was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 μg g -1 of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  15. Atomic-absorption determination of tantalum and niobium in ore concentrates

    International Nuclear Information System (INIS)

    Elinson, S.V.; Korovin, Yu.I.; Kuchumov, V.A.

    1975-01-01

    A flame atom-absorption method was developed for determining tantalum and niobium at their level greater than 5% in Ta-Nb ore concentrates. Flame was produced by a nitrous oxide-acetylene mixture. The optimal composition of a buffer (3 mg/ml) of iron was determined by the method of factorial planning of the experiment and steep ascention by gradient. The optimizing parameter in factorial planning was obtained from the difference of optical densities of Ta and Nb, by taking the average value for two solutions which had dissimilar total composition and which imitated the real composition of the ore concentrates, i.e., the value of (ΔD/Dsub(av))sub(Ta) or (ΔD/Dsub(av))sub(Nb). The optimization of analytical conditions corresponded to the condition (ΔD/Dsub(av))→ 0, which indicated that the chosen optimizing parameter also facilitated the attainment of maximum D values. The variation coefficient in the determination of Ta and Nb was respectively 0.8 and 1.4%. There was a good agreement between the results obtained in Ta analysis by the atom-absorption and the extraction-gravimetric methods, and in Nb analysis by the atom-absorption, differential spectrophotometric and x-ray fluorescence methods

  16. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: A comparative study

    International Nuclear Information System (INIS)

    Cabon, J.Y.; Giamarchi, P.; Le Bihan, A.

    2010-01-01

    Two methods available for direct determination of total Fe in seawater at low concentration level have been examined: electrothermal atomization atomic absorption spectrometry (ETAAS) and electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS). In a first part, we have optimized experimental conditions of ETAAS (electrothermal program, matrix chemical modification) for the determination of Fe in seawater by minimizing the chemical interference effects and the magnitude of the simultaneous background absorption signal. By using the best experimental conditions, a detection limit of 80 ng L -1 (20 μL, 3σ) for total Fe concentration was obtained by ETAAS. Using similar experimental conditions (electrothermal program, chemical modification), we have optimized experimental conditions for the determination of Fe by LEAFS. The selected experimental conditions for ETA-LEAFS: excitation wavelength (296.69 nm), noise attenuation and adequate background correction led to a detection limit (3σ) of 3 ng L -1 (i.e. 54 pM) for total Fe concentration with the use a 20 μL seawater sample. For the two methods, concentration values obtained for the analysis of Fe in a NASS-5 (0.2 μg L -1 ) seawater sample were in good agreement with the certified values.

  17. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: a comparative study.

    Science.gov (United States)

    Cabon, J Y; Giamarchi, P; Le Bihan, A

    2010-04-07

    Two methods available for direct determination of total Fe in seawater at low concentration level have been examined: electrothermal atomization atomic absorption spectrometry (ETAAS) and electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS). In a first part, we have optimized experimental conditions of ETAAS (electrothermal program, matrix chemical modification) for the determination of Fe in seawater by minimizing the chemical interference effects and the magnitude of the simultaneous background absorption signal. By using the best experimental conditions, a detection limit of 80 ng L(-1) (20 microL, 3sigma) for total Fe concentration was obtained by ETAAS. Using similar experimental conditions (electrothermal program, chemical modification), we have optimized experimental conditions for the determination of Fe by LEAFS. The selected experimental conditions for ETA-LEAFS: excitation wavelength (296.69 nm), noise attenuation and adequate background correction led to a detection limit (3sigma) of 3 ng L(-1) (i.e. 54 pM) for total Fe concentration with the use a 20 microL seawater sample. For the two methods, concentration values obtained for the analysis of Fe in a NASS-5 (0.2 microg L(-1)) seawater sample were in good agreement with the certified values. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Electrochemical preconcentration and hydride generation methods for trace determination of selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bye, R.

    1986-01-01

    The use of atomic absorption spectrometry in combination with two different preconcentration/separation techniques for the determination of trace concentrations of selenium is described. Electrochemical preconcentration onto a platinum electrode with a subsequent atomization of selenium is discussed briefly. Several parameters are considered such as the presence of depolarizers, and the temperature of the electrolyzed solutions. Special attention is payed to the efficiency of the atomization step, and a method to improve this is proposed. Applications of the technique to real samples are also reported. Secondly, the separation of the selenium as the volatile selenium hydride from the sample solution is considered. Several papers in this thesis deal with commonly occurring interferants as nickel and copper and with ways of minimizing or avoiding the interferring effects, whereas other papers relate to more theoretical aspects of the hydride generation process. New methods for the determination of selenium in technical samples with high contents of nickel and copper are also presented

  19. Some problems connected with boron determination by atomic absorption spectroscopy and the sensitivity improvement

    Directory of Open Access Journals (Sweden)

    JELENA J. SAVOVIC

    2001-08-01

    Full Text Available Two atomizers were compared: an N2O–C2H2 flame and a stabilized U-shaped DC arc with aerosol supply. Both the high plasma temperature and the reducing atmosphere obtained by acetylene addition to the argon stream substantially increase the sensitivity of boron determination by atomic absorption spectroscopy (AAS when the arc atomizer is used. The results were compared with those for silicon as a control element. The experimental characteristic concentrations for both elements were compared with the computed values. The experimentally obtained characteristic concentration for boron when using the arc atomizer was in better agreement with the calculated value. It was estimated that the influence of stable monoxide formation on the sensitivity for both elements was about the same, but reduction of analyte and formation of non-volatile carbide particles was more important for boron, which is the main reason for the low sensitivity of boron determination using a flame atomizer. The use of an arc atomizer suppresses this interference and significantly improves the sensitivity of the determination.

  20. Determination of metallic impurities in raw materials for radioisotope production by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Roca, M.; Alvarez, F.; Capdevila, C.

    1969-01-01

    Atomic absorption spectrometry has been used for the determination of traces of calcium in scandium oxide, copper in zinc, iron in cobalt oxide, manganese In ferric oxide, nickel in copper and zinc in gallium oxide. The influences on the sensitivities arising from the hollow cathode currents, the gas pressures and the acid concentrations have been considered. A study of the interferences from the metallic matrices has also been performed, the interference due to the absorption of the manganese radiation by the atoms of iron being the most outstanding . In order to remove the interfering elements and increase sensitivity, pre-concentration methods have been tested. The addition methods has also been used. (Author) 14 refs

  1. Determination of 17 impurity elements in nuclear quality uranium compounds by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Andonie, O.; Smith, L.A.; Cornejo, S.

    1985-01-01

    A method is described for the determination of 17 elements (Al, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, V and Zn) in the ppm level, in nuclearly pure uranium compounds by flame atomic absorption spectroscopy. The analysis is performed by first dissolving the uranium sample in nitric acid and then extracting the uranium with tributyl phosphate solution. The aqueous phase, free of uranium, which contains the elements to analyze is inspirated into the flame of an atomic absorption spectrophotometer using air-acetylene or nitrous oxide-acetylene flame according to the element in study. This method allows to extract the uranium selectively in more than 99.0% and the recovery of the elements sudied was larger 90% (for K) to 100% (for Cr). The sensitivity of the method vary from 0.096 μg/g U (for Cd) to 5.5 μg/g U (for Na). (Author)

  2. The determination of magnesium in simulated PWR coolant by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gatford, C.; Torrance, K.

    1988-06-01

    The determination of magnesium in simulated PWR coolant has been investigated by graphite furnace atomic absorption spectrometry with atomization from a L'vov platform. The presence of boric acid in the coolant suppresses the magnesium absorption to such an extent that removal of the boron is necessary and three variations of a methyl borate volatilization technique for the in situ removal of boron from the sample platform were investigated. This work has shown that dilution of the sample with an equal volume of acidified methanol and volatilization of the methyl borate was adequate for the determination of magnesium in coolant samples containing up to 2000 mg 1 -1 of boron. In simulated coolant samples containing 25 and 4 μg 1 -1 of magnesium, positive biases of about 2 and 0.5 μg 1 -1 were measured and these errors were considered to be due to contamination. The limit of detection in the presence of 100 and 2000 mg 1 -1 boron were 0.14 and 0.93 μg 1 -1 respectively. These performance characteristics suggest the method is completely acceptable for monitoring the chemical purity of PWR coolant and associated waters containing boric acid. If, however, more precise analyses were to be required for research purposes then any significant improvement in the above figures would require increased purity of reagents, clean-room conditions to reduce contamination and a more versatile atomic absorption spectrophotometer. (author)

  3. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    Science.gov (United States)

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  4. Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlioglu, Ipek; Korkmaz, Deniz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2007-01-15

    The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3{sigma} limit of detection was estimated as 0.053 {mu}g l{sup -1} for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat CRM-TMDW and Metals on Soil/Sediment 4, IRM-008.

  5. Matrix modifiers application during microimpurities determination in complex samples by electrothermal atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Bejzel', N.F.; Daaman, F.I.; Fuks-Pol', G.R.; Yudelevich, I.G.

    1993-01-01

    The review covers publications of primarily last 5 years and is devoted to the use of matrix modifiers (MM) for the determinations of trace impurities in complex samples by electrothermal atomic-absorption analysis. The role of MM in analytical process has been discussed as well as MM influence on all the elements of analytical system; factors, determining the effectiveness of MM action, the basis types of MM have been described. A great body of information is tabulated on the use of different MM for the determination of particular analysis in geological, medicobiological, technological, ecological samples and in pure materials and chemicals

  6. Matrix modification for determination of microimpurities in complex samples by electrothermal atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Bejzel', N.F.; Daaman, F.I.; Fuks-Pol', G.R.; Yudelevich, I.G.

    1993-01-01

    The review covers publications of primarily last 5 years and is devoted to the use of matrix modifiers (MM) for the determinations of trace impurities in complex samples by electrothermal atomic-absorption analysis. The role of MM in analytical process has been discussed as well as MM influence on all the elements of analytical system; factors, determining the effectiveness of MM action, the basis types of MM have been described. A great body of information is tabulated on the use of different MM for the determination of particular analysis in geological, medicobiological, technological, ecological samples and in pure materials and chemicals

  7. [Determination of mercury in Boletus impolitus by flow injection-atomic absorption spectrometry].

    Science.gov (United States)

    Li, Tao; Wang, Yuan-Zhong

    2008-04-01

    Various test conditions and effect factors for the determination of mercury by flow injection-atomic absorption spectrometry were discussed, and a method for the determination of mercury in Boletus impolitus has been developed. The linear range for mercury is 0-60 microg x L(-1). The relative standard deviation is less than 3.0%, and the recovery is 96%-107%. This method is simple, rapid and has been applied to the determination of mercury in Boletus impolitus samples with satisfactory results.

  8. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fara, M.; Novak, F. [EGU Prague, PLC, Bichovice, Prague (Czechoslovakia)

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  9. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    Science.gov (United States)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  10. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, H.; Krawczyk, M. [Politechn Poznanska, Poznan (Poland)

    2007-03-15

    The analytical performance of coupled hydride generation - integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H{sub 2}Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangernents (a water-cooled single silica tube, double-slotted quartz tube or an 'integrated trap') was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3{sigma}), was 0.9 ng mL{sup -1} for Te. For a 2 min in situ preconcentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% (n = 6) for Te. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  11. Atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Haswell, S.J.

    1991-01-01

    Atomic absorption spectroscopy is now well established and widely used technique for the determination of trace and major elements in a wide range analyte types. There have been many advances in the atomic spectroscopy over the last decade and for this reason and to meet the demand, it was felt that there was a need for an updated book. Whilst interest in instrumental design has tended to dominate the minds of the spectrocopist, the analyst concerned with obtaining reliable and representative data, in diverse areas of application, has been diligently modifying and developing sample treatment and instrumental introduction techniques. Such methodology is de fundamental part of analysis and form the basis of the fourteen application chapters of this book. The text focuses in the main on AAS; however, the sample handling techniques described are in many cases equally applicable to ICP-OES and ICP-MS analysis. (author). refs.; figs.; tabs

  12. Radiation trapping in atomic absorption spectroscopy at lead determination in different matricies

    International Nuclear Information System (INIS)

    El-Gohary, Z.

    2005-01-01

    The determination of lead by flame atomic absorption analysis in the presence of Sn and Fe atoms and different matrices such as OH and SO 3 was investigated with the objective of understanding the spectral interference processes at the analytical lines 283.31 nm for a wide range of concentration. The radiation trapping factor was interpreted and evaluated assuming Voigt distribution of the atomic and rotational lines in the flame. The radiation trapping factor was increased by increasing the number density (plasma of the absorbing medium is optically thick). In plasma, there is a certain point of equilibrium between the trapping and the escaping of radiation, which is relevant to 50% of absorption. The spectral background interference can cause a variation of the number density at equilibrium point as a result of the degree of overlap with the analytical line. The spectral background interference can be easily avoided by using another resonance absorption line for the analysis. The chemical modification of the matrix is applied to minimize the interference effect. Nitric acid, ammonium nitrate and magnesium nitrate are most commonly recommended as matrix modifiers

  13. Determination of cobalt in human biological liquids from electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dragan, Felicia [University of Oradea, Faculty of Medicine and Pharmacy, 29 N Jiga, 410028 Oradea (Romania); HIncu, Lucian [University of Medicine and Pharmacy ' Carol Davila' , Faculty of Pharmacy, 6 Traian Vuia, 020956 Bucuresti (Romania); Bratu, Ioan, E-mail: fdragan@uoradea.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    Problems and possibilities of the determination of Co in serum and urine samples by electrothermal atomic absorption spectrometry (ETAAS) are described. Optimal instrumental parameters as well as a suitable atomizer, calibration procedure and hydrogen peroxide as modifier are proposed for direct ETAAS measurement of Co in serum and urine. The detection limit achieved was 0.1 {mu}g L{sup -1} for both matrices and relative standard deviations varied in the range 5-20% depending on the Co concentration in the sample. The validity of the method was verified by the analyses of standard reference materials. For serum samples with Co content lower than the detection limit, a separation and preconcentration procedure based on liquid/liquid extraction is suggested prior to determination of Co in the organic phase by ETAAS. This procedure permits determination of 0.02 {mu}g L{sup -1} Co in serum samples with a relative standard deviation of 10-18%.

  14. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    Science.gov (United States)

    Chao, T.T.; Fishman, M. J.; Ball, J.W.

    1969-01-01

    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  15. Determination of Ca, Cu, Fe and Pb in sugarcane raw spirits by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Lorenzo, Magdalena; Reyes, Arlyn; Blanco, Idania; Vasallo, Maria C

    2010-01-01

    The determination of Ca, Cu, Fe and Pb in sugarcane raw spirits by atomic absorption spectrophotometry was carried out. For 20 μL injected sample, calibration within the 0,5-25,0 mg. L -1 Ca; 0,25-5,0 mg. L -1 Cu, Pb and Cu intervals were established using the ratios Cu, Ca, Fe and Pb absorbance versus analyte concentration, respectively. Typical linear correlations of r = 0,999 were obtained. The proposed method was applied for the direct determination of Ca, Cu, Fe and Pb in sugar cane spirits, and in samples. The results obtained were in accordance to those obtained at 95% confidence level

  16. Zeeman atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given

  17. Hydride generation-atomic absorption spectrometry for determination of trace arsenic in draining waste water of uranium hydrometallurgical plant

    International Nuclear Information System (INIS)

    Sun Suqing; Sun Shiying; Xue Jingxia

    1986-01-01

    The arsenate is reduced to the arsenite by potassium iodide-sulfourea in dilute sulphuric acid. Then the arsenite is reduced to arsine by sodium borohydride. The arsine carried into silica tube atomizer by nitrogen is atomized at 920 deg C and determined by the homemade atomic absorption instrument. It is shown that the sensitivity of the mentioned method is 0.2 ng/ml (1% absorption). The recovery is 88-103% and the relative standard deviation is ≤ 10%

  18. Atomic absorption determination of iron and copper impurities in rare earth compounds

    International Nuclear Information System (INIS)

    Zelyukova, Yu.V.; Kravchenko, J.B.; Kucher, A.A.

    1978-01-01

    An extraction atomic absorption method for the determination of copper and iron impurities in rare earth compounds has been developed. The extraction separation of determined elements as hydroxy quinolinates with isobuthyl alcohol was used. It increased the sensitivity of these element determination and excluded the effect of the analysed sample. Cu, Te, Zn, Bi, Sn, In, Ga, Tl and the some other elements can be determined at pH 2.0-3.0 but rare earths are remained in an aqueous phase. The condition of the flame combustion does not change during the introduction of isobutyl extract but the sensitivity of the determination of the elements increased 2-3 times. The limit of Fe determination is 0.01 mg/ml and the limit of Cu determination is 0.014 mg/ml

  19. Determination of cadmium in human urine by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Shimizu, Tokuo; Shijo, Yoshio; Sakai, Kaoru

    1981-01-01

    A trace amount of cadmium in human urine was determined by graphite furnace atomic absorption spectrometry. A urine sample (25 ml) was digested with 5 ml of HNO 3 and 30 ml of H 2 O 2 in a long-neck flask on a hot-plate (200 0 C), then diluted to 50 ml. The standard addition method was carried out before digesting. Ten μl of the resulted solution was injected into a tube treated with tungsten carbide, and the cadmium signal was measured with the ramp mode atomization. Interference induced by organic materials in urine was avoided by HNO 3 -H 2 O 2 digestion. Interference induced by inorganic salts could be reduced by 2-fold dilution and tungsten carbide treatment. The cadmium signal was separated sufficiently from the molecular absorption due to NaCl etc. by the ramp mode atomization. Since the blank level of H 2 O 2 was relatively high, the determination was limited to about 0.1 μg/l. The coefficient of variation was 1.76% at 0.36 μg/l in 24 h human urine (n = 4). The time required was (8 -- 10)h. The precision of this method was higher than those of direct methods, and the reasonable values of urine levels of cadmium were obtained. (author)

  20. Determination of vanadium in mussels by electrothermal atomic absorption spectrometry without chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Y.; Fernandez, P. [Centro de Control do Medio Marino, Peirao de Vilaxoan s/n, Vilagarcia de Arousa, 36611 Pontevedra (Spain); Gonzalez, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Quimica, 15706, Santiago de Compostela (Spain)

    2004-05-01

    A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 C and 2600 C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg{sup -1} (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg{sup -1} (wet weight). (orig.)

  1. Automated atomic absorption spectrometric determination of total arsenic in water and streambed materials

    Science.gov (United States)

    Fishman, M.

    1977-01-01

    An automated method to determine both inorganic and organic forms of arsenic In water, water-suspended mixtures, and streambed materials Is described. Organic arsenic-containing compounds are decomposed by either ultraviolet radiation or by suHurlc acid-potassium persulfate digestion. The arsenic liberated, with Inorganic arsenic originally present, is reduced to arsine with sodium borohydrlde. The arable Is stripped from the solution with the aid of nitrogen and Is then decomposed In a tube furnace heated to 800 ??C which Is placed in the optical path of an atomic absorption spectrometer. Thirty samples per hour can be analyzed to levels of 1 ??g arsenic per liter.

  2. Atomic absorption determination of metals in soils using ultrasonic sample preparation

    International Nuclear Information System (INIS)

    Chmilenko, F.A.; Smityuk, N.M.; Baklanov, A.N.

    2002-01-01

    It was shown that ultrasonic treatment accelerates sample preparation of soil extracts from chernozem into different solvents by a factor of 6 to 60. These extracts are used for the atomic absorption determination of soluble species of Cd, Co, Cr, Cu, Ni, Pb, and Zn. The optimum ultrasound parameters (frequency, intensity, and treatment time) were found for preparing soil extracts containing analytes in concentrations required in agrochemical procedures. Different extractants used to extract soluble heavy metals from soils of an ordinary chernozem type in agrochemical procedures using ultrasonic treatment were classified in accordance with the element nature [ru

  3. Impurities determination of uranium metal flame spectrophotometry and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Rukihati.

    1978-01-01

    The atomic absorption flame spectrophotometry has been applied to the determination of chromium, copper, iron, lead, manganese and nickel in the metal of uranium. The first step to be done is to dissolve the uranium sample in nitric acid and then the uranium is extracted by a tributylphosphate-carbon tetrachloride solution. The aqueous phase which contains the chromium, copper, iron, lead, manganese and nickel is aspirated into an airacetylene flame. The results of this method are compared with the results of emission spectrographic method. It is found that this technique is competative to other methods in the sense that it is quite fast and accurate. (author)

  4. Alternative set of conditions for molybdenum determination by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Edgar, R.M.

    1975-01-01

    In comparing a newly developed procedure with that recommended by Perkin--Elmer, et al., (Analytical Methods for Atomic Absorption Spectrophotometry, Perkin--Elmer Corp., Norwalk, Conn. 1973) two areas were found in which the new procedure appeared more suitable for Mo determination. If Cr is present in concentrations greater than 100 ppM, the recommended procedure results in an enhancement effect on Mo absorption. This erroneously high result is eliminated when the new procedure is followed. In the recommended procedure, when the sample has to be dissolved in hydrofluoric acid and Al is added to help eliminate interferences, the acid combines with the Al to form insoluble aluminum fluoride. The part that Al plays in eliminating interferences is lessened, because it is no longer in solution

  5. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    Science.gov (United States)

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  6. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    Science.gov (United States)

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  7. Alternative approaches to correct interferences in the determination of boron in shrimps by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pasias, I.N.; Pappa, Ch.; Katsarou, V.; Thomaidis, N.S., E-mail: ntho@chem.uoa.gr; Piperaki, E.A.

    2014-02-01

    The aim of this study is to propose alternative techniques and methods in combination with the classical chemical modification to correct the major matrix interferences in the determination of boron in shrimps. The performance of an internal standard (Ge) for the determination of boron by the simultaneous multi-element atomic absorption spectrometry was tested. The use of internal standardization increased the recovery from 85.9% to 101% and allowed a simple correction of errors during sampling preparation and heating process. Furthermore, a new preparation procedure based on the use of citric acid during digestion and dilution steps improved the sensitivity of the method and decreased the limit of detection. Finally, a comparative study between the simultaneous multi-element atomic absorption spectrometry with a longitudinal Zeeman-effect background correction system, equipped with a transversely-heated graphite atomizer and the single element atomic absorption spectrometry with a D{sub 2} background correction system, equipped with an end-heated graphite atomizer was undertaken to investigate the different behavior of boron in both techniques. Different chemical modifiers for the determination of boron were tested with both techniques. Ni-citric acid and Ca were the optimal chemical modifiers when simultaneous multi-element atomic absorption spectrometry and single-element atomic absorption spectrometry were used, respectively. By using the single-element atomic absorption spectrometry, the calculated characteristic mass was 220 pg and the calculated limit of detection was 370 μg/kg. On the contrary, with simultaneous multi-element atomic absorption spectrometry, the characteristic mass was 2200 pg and the limit of detection was 5.5 mg/kg. - Highlights: • New approaches were developed to cope with interferences of B determination by ETAAS • Ge was used as internal standard for the determination of B by simultaneous ETAAS • Citric acid was used during

  8. [Graphite furnace atomic absorption spectrometry for determination of thallium in blood].

    Science.gov (United States)

    Zhang, Q L; Gao, G

    2016-04-20

    Colloidal palladium was used as chemical modifier in the determination of blood thallium by graphite furnace atomic absorption spectrometry. Blood samples were precipitated with 5% (V/V)nitric acid, and then determined by GFAAS with colloidal palladium used as a chemical modifier. 0.2% (W/V)sodium chloride was added in the standard series to improve the matrix matching between standard solution and sample. The detection limit was 0.2 μg/L. The correlation coefficient was 0.9991. The recoveries were between 93.9% to 101.5%.The relative standard deviations were between 1.8% to 2.7%.The certified reference material of whole blood thallium was determined and the result was within the reference range Conclusion: The method is accurate, simple and sensitive, and it can meet the needs of detection thallium in blood entirely.

  9. Utilization of electrodeposition for electrothermal atomic absorption spectrometry determination of gold

    International Nuclear Information System (INIS)

    Konecna, Marie; Komarek, Josef

    2007-01-01

    Gold was determined by electrothermal atomic absorption spectrometry after electrochemical preconcentration on the graphite ridge probe used as a working electrode and sample support. The probe surface was electrochemically modified with Pd, Re and the mixture of both. The electrolysis of gold was performed under galvanostatic control at 0.5 mA. Maximum pyrolysis temperature for the probe surface modified with Pd was 1200 deg. C, with Re 1300 deg. C. The relative standard deviation for the determination of 2 μg l -1 Au was not higher than 5.6% (n = 8) for 2 min electrodeposition. The sensitivity of gold determination was reproducible for 300 electrodeposition and atomization cycles. When the probe surface was modified with a mixture of Pd and Re the detection limit was 31 ng l -1 for 2 min electrodeposition, 3.7 ng l -1 for 30 min, 1.5 ng l -1 for 1 h and 0.4 ng l -1 for 4 h electrodeposition, respectively. The procedure was applied to the determination of gold in river water samples. The relative standard deviation for the determination of 2.5 ng l -1 Au at 4 h electrodeposition time at 0.5 mA was 7.5%

  10. The determination, by atomic-absorption spectrophotometry, of impurities in manganese dioxide

    International Nuclear Information System (INIS)

    Balaes, G.E.E.; Robert, R.V.D.

    1981-01-01

    This report describes various methods for the determination of impurities in electrolytic manganese dioxide by atomic-absorption spectrophotometry (AAS). The sample is dissolved in a mixture of acids, any residue being ignited and retreated with acid. Several AAS methods were applied so that the analysis required to meet the specifications could be attained. These involved conventional flame AAS, AAS with electrothermal atomization (ETA), hydride generation coupled with AAS, and cold-vapour AAS. Of the elements examined, copper, iron, zinc, and lead can be determined direct with confidence with or without corrections based on recoveries obtained from spiked solutions. Nickel can be determined direct by use of the method of standard additions, and copper, nickel, and lead by ETA with the method of standard additions. Arsenic and antimony are determined by hydride generation coupled with AAS, and mercury by cold-vapour AAS. The precision of analysis (relative standard deviation) is generally less than 0,050. Values were obtained for aluminium, molybdenum, magnesium, sodium, copper, chromium, and cadmium, but the accuracy of these determinations has not been fully established

  11. The determination, by atomic-absorption spectrophotometry using electrothermal atomization, of platinum, palladium, rhodium, ruthenium, and iridium

    International Nuclear Information System (INIS)

    Haines, J.; Robert, R.V.D.

    1982-01-01

    A method that involves measurement by atomic-absorption spectrophotometry using electrothermal atomization has been developed for the determination of trace quantities of platinum, palladium, rhodium, ruthenium, and iridium in mineralogical samples. The elements are separated and concentrated by fusion, nickel sulphide being used as the collector, and the analyte elements are measured in the resulting acid solution. An organic extraction procedure was found to offer no advantages over the proposed method. Mutual interferences between the five platinum-group metals examined, as well as interferences from gold, silver, and nickel were determined. The accuracy of the measurement was established by the analysis of a platinum-ore reference material. The lower limits of determination of each of the analyte elements in a sample material are as follows: platinum 1,6μg/l, palladium 0,2μg/1, rhodium 0,5μg/l, ruthenium 3μg/l, and iridium 2,5μg/l. The relative standard deviations range from 0,05 for rhodium to 0.08 for iridium. The method, which is described in detail in the Appendix, is applicable to the determination of these elements in ores, tailings, and geological materials in which the total concentration of the noble metals is less than 1g/t

  12. Atomic absorption determination of ultratrace tellurium in rocks utilizing high sensitivity sampling systems

    International Nuclear Information System (INIS)

    Beaty, R.D.

    1973-01-01

    The sampling boat and the graphite furnace were shown to possess the required sensitivity to detect tellurium at ultratrace levels, in a variety of sample types, by atomic absorption. In the sampling boat approach, tellurium in sample solutions is chemically separated and concentrated by extraction into methyl isobutyl ketone before measurement. For samples exhibiting extraction interferences or excessively high background absorption, a preliminary separation of tellurium by coprecipitation with selenium is described. Using this technique, tellurium can be quantitatively detected down to 5 nanograms and linear response is observed to 100 nanograms. Relative standard deviations of better than 7 percent are achieved for 50 nanograms of tellurium. For samples that have a tellurium content below the detection limits of the sampling boat, the graphite furnace is used for atomization. By this method, as little as 0.07 nanograms of tellurium can be detected, and a precision of 1 percent relative standard deviation is achievable at the 5 nanogram level. A routinely applicable procedure was developed for determining tellurium in rocks, using the graphite furnace, after a hydrofluoric acid decomposition of the sample. Using this procedure, tellurium data were obtained on 20 different rocks, and the significance of this new information is discussed. (Diss. Abstr. Int., B)

  13. Determination of trace elements in ground water by two preconcentration methods using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Elhag, A. Y.

    2004-01-01

    This is a comparative study between two different methods of preconcentration done to separate the trace elements cadmium, nickel. chromium, manganese, copper, zinc, and lead in drinking (ground) water samples taken from different locations in Gezira State, central Sudan (the map); these methods are (coprecipitation) with aluminium hydroxide and by Ammonium Pyrrolidine Dithiocarbamate (APDC) using Methyl Isobutyl Ketone (MIBK) as an organic solvent; and subsequent analysis by Atomic Absorption Spectrometry (AAS) for both methods. The result of comparison showed the superiority of the (APDC) coprecipitation method over the aluminium hydroxide coprecipitation method in the total percentage recoveries of the studied trace elements in drinking (ground) water samples, such results confirm previous studies. This study also involves direct analysis of these water samples by atomic absorption spectrometry to determine the concentrations of trace elements Cadmium, Nickel, Chromium, Manganese, Copper, Zinc and Lead and compare it to the corresponding guide line values described by the World Health Organization and the maximum concentrations of trace elements in drinking water permitted by the Sudanese Standards and Metrology Organizations (SSMO), where the concentrations of some elements in some samples were found to be different than the described values by both of the organizations. The study includes a trial to throw light on the effect of the proximity of the water samples sources to the Blue Nile river on its trace elements concentrations; no relation was proved to exist in that respect.(Author)

  14. Determination of mercury, lead and cadmium in water by the CRA-atomic absorption spectrophotometry with solvent extraction

    International Nuclear Information System (INIS)

    Shim, Y.B.; Won, M.S.; Kim, C.J.

    1980-01-01

    The method of CRA-atomic absorption spectrophotometer with solvent extraction for the determination of mercury, lead and cadmium in water was studied. The optimum extracting conditions for CRA-atomic absorption spectrophotometry were the following: the complexes of mercury, lead and cadmium with dithizone were separated from the aqueous solution and concentrated into the 10 ml chloroform solution. Back extraction was performed; the concentrated mercury, lead and cadmium was extracted from the chloroform solution into the 10 ml 6-normal aqueous hydrochloric acid solution. In this case, recovery ratios were the following: mercury was 94.7%, lead 97.7% and cadmium 103.6%. The optimum operating conditions for the determination of mercury, lead and cadmium by the CRA-atomic absorption spectrophotometry also were investigated to test the dry step, ash step and atomization step for each metal. The experimental results of standard addition method were the following: the determination limit of each metal within 6% relative deviation was that lead was 0.04 ppb, and cadmium 0.01 ppb. Especially, mercury has been known impossible to determine by CRA-atomic absorption spectrophotometry until now. But in this study, mercury can be determined with CRA-atomic absorption spectrophotometer. Its determination limit was 4 ppb within 8% relative deviation. (author)

  15. The method of atomic absorption spectrophotometry for determining of cadmium in fruit and vegetable products

    International Nuclear Information System (INIS)

    Brzozowska, B.

    1977-01-01

    The method of atomic absorption with the technique of standard addition was used for determination of cadmium in the following tinned products: green peas, cut bean pods, sorel, stewed black currants, greengage plums, orange juice. The products were dry mineralized. Each mineralizate was divided into three portions, known amounts of cadmium were added to two portions and all portions were supplemented to a defined volume. Determinations were performed using a Pye Unicam SP 90 A spectrophotometer and they served as a base for plotting a curve in the system: absorbance - concentration of added metal. The curve was extrapolated to zero absorbance for reading directly the content of the metal in the product. This content was in the range from 10 to 80 μg/kg at variance coefficient 5-15% and the recovery was 80-130%. (author)

  16. On-line determination of manganese in solid seafood samples by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yebra, M.C.; Moreno-Cid, A.

    2003-01-01

    Manganese is extracted on-line from solid seafood samples by a simple continuous ultrasound-assisted extraction system (CUES). This system is connected to an on-line manifold, which permits the flow-injection flame atomic absorption spectrometric determination of manganese. Optimisation of the continuous leaching procedure is performed by an experimental design. The proposed method allows the determination of manganese with a relative standard deviation of 0.9% for a sample containing 23.4 μg g -1 manganese (dry mass). The detection limit is 0.4 μg g -1 (dry mass) for 30 mg of sample and the sample throughput is ca. 60 samples per hour. Accurate results are obtained by measuring TORT-1 certified reference material. The procedure is finally applied to mussel, tuna, sardine and clams samples

  17. Liquid-Liquid Extraction and Determination of Trace Elements in Iron Minerals by Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Taseska, Milena; Stafilov, Trajche; Makreski, Petre; Jacimovic, Radojko; Jovanovski, Gligor

    2006-01-01

    Various trace elements (cadmium, chromium, cobalt, nickel, manganese) in some iron minerals were determined by flame (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). The studied minerals were chalcopyrite (CuFeS 2 ), hematite (Fe 2 O 3 ) and pyrite (FeS 2 ). To avoid the interference of iron, a method for liquid-liquid extraction of iron and determination of investigated elements in the inorganic phase was proposed. Iron was extracted by diisopropyl ether in hydrochloride acid solution and the extraction method was optimized. Some parameters were obtained to be significantly important: Fe mass in the sample should not exceed 0.3 g, the optimal concentration of HCI should be 7.8 mol 1 -1 and ratio of the inorganic and organic phase should be 1: 1. The procedure was verified by the method of standard additions and by its applications to reference standard samples. The investigated minerals originate from various mines in the Republic of Macedonia. (Author)

  18. Levels of trace elements in different varieties of wheat determined by Atomic Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Mohamed, A.E.; Taha, G.M.

    2003-01-01

    Trace elements Ag, Au, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were determined in six wheat samples purchased from the open market in different localities (Egypt, Saudi Arabia, Yemen, Oman, Dubai and Australia). The dried powdered samples were decomposed in HNO3-HClO4 acids mixtures and elements were determined using recording atomic absorption spectrophotometer. The results were within the safety baseline of all the assayed elements. Certified biological standards, Brown's Kale (BK), Orchard Leaves (OL) and tomato leaves (TOML) were used to assure the accuracy of results. However, Co, Pb and Sr were absent from samples except the Egyptian samples. The obtained databases were statistically treated. Several significant and strong positive correlation coefficients (r=0.506-1.00) between the groups of elements were observed. On the other hand, strong negative correlations (r=0.492-0.873) between another group of elements were also shown. (author)

  19. Determination of trace amounts of tin in geological materials by atomic absorption spectrometry

    Science.gov (United States)

    Welsch, E.P.; Chao, T.T.

    1976-01-01

    An atomic absorption method is described for the determination of traces of tin in rocks, soils, and stream sediments. A dried mixture of the sample and ammonium iodide is heated to volatilize tin tetraiodide -which is then dissolved in 5 % hydrochloric acid, extracted into TOPO-MIBK, and aspirated into a nitrous oxide-acetylene flame. The limit of determination is 2 p.p.m. tin and the relative standard deviation ranges from 2 to 14 %. Up to 20 % iron and 1000 p.p.m. Cu, Pb, Zn, Mn, Hg, Mo, V, or W in the sample do not interfere. As many as 50 samples can be easily analyzed per man-day. ?? 1976.

  20. Absorption properties of identical atoms

    International Nuclear Information System (INIS)

    Sancho, Pedro

    2013-01-01

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions

  1. Determination of trace elements in atomic absorption spectrophotometry. Study of the atomic cloud and atom generator. Application to the measurement of physical quantities

    International Nuclear Information System (INIS)

    Hircq, Bernard.

    1976-06-01

    After the description of the absorption cell the principal parameters are studied: argon flow rate in the cell, atomization temperature, cell geometry etc. The technique is applied to the measurement of impurities in uranium after deposition on a carbon filament. The atomic concentration distribution and the dimensions of the cloud generated by a graphite filament are then studied along the axes parallel to the filament and as a function of the various experimental parameters. From the determination of the cloud elevation rate it is possible to calculate the absolute atomic concentration, which allows certain physical quantities to be evaluated: oscillator force, Lorentz Widening, diffusion coefficient... The size and penetration depth of the deposit are then determined with an ionic microprobe and the distribution with a Castaing microprobe. The chemical transformations undergone by the uranium matrix during the heat cycles are studied by the X-ray method [fr

  2. Combined discrete nebulization and microextraction process for molybdenum determination by flame atomic absorption spectrometry (FAAS)

    International Nuclear Information System (INIS)

    Oviedo, Jenny A.; Jesus, Amanda M.D. de; Fialho, Lucimar L.; Pereira-Filho, Edenir R.

    2014-01-01

    Simple and sensitive procedures for the extraction/preconcentration of molybdenum based on vortex-assisted solidified floating organic drop microextraction (VA-SFODME) and cloud point combined with flame absorption atomic spectrometry (FAAS) and discrete nebulization were developed. The influence of the discrete nebulization on the sensitivity of the molybdenum preconcentration processes was studied. An injection volume of 200 μ resulted in a lower relative standard deviation with both preconcentration procedures. Enrichment factors of 31 and 67 and limits of detection of 25 and 5 μ L -1 were obtained for cloud point and VA-SFODME, respectively. The developed procedures were applied to the determination of Mo in mineral water and multivitamin samples. (author)

  3. Determination of cadmium in bovine tissue by spectrophotometry of atomic absorption

    International Nuclear Information System (INIS)

    Gonzalez Zeledon, Mauricio

    2004-01-01

    The present work utilized the suggested method by Food Safety and Inspection Service (FSIS) for the analysis of cadmium in animal tissue, it was adapted by the Toxicology's Laboratory of MAG, where the project was organized. This method consist of a burning of sample and the instrumental analysis by means of the atomic absorption's technique. In the study there were determined parameters of carrying out of the analytical methodology, it was getting the following values: linearity : 0,020 -1,0 mg/L; homogeneity of the model: homoscedastic; limit of detection (LD) : 0,0049 mg/kg (4,9 μg/Kg); limit of quantification (LC): 0,016 μg/L (16 mg/kg); sensibility of calibration: 0,243 A * L/gm; analytical sensibility: 105 L/mg; instrumental repetitively: [es

  4. [Determination of inorganic elements in different parts of Sonchus oleraceus L by flame atomic absorption spectrometry].

    Science.gov (United States)

    Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi

    2007-06-01

    Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.

  5. Determination of Aluminum in Dialysis Concentrates by Atomic Absorption Spectrometry after Coprecipitation with Lanthanum Phosphate.

    Science.gov (United States)

    Selvi, Emine Kılıçkaya; Şahin, Uğur; Şahan, Serkan

    2017-01-01

    This method was developed for the determination of trace amounts of aluminum(III) in dialysis concentrates using atomic absorption spectrometry after coprecipitation with lanthanum phosphate. The analytical parameters that influenced the quantitative coprecipitation of analyte including amount of lanthanum, amount of phosfate, pH and duration time were optimized. The % recoveries of the analyte ion were in the range of 95-105 % with limit of detection (3s) of 0.5 µg l -1 . Preconcentration factor was found as 1000 and Relative Standard Deviation (RSD) % value obtained from model solutions was 2.5% for 0.02 mg L -1 . The accuracy of the method was evaluated with standard reference material (CWW-TMD Waste Water). The method was also applied to most concentrated acidic and basic dialysis concentrates with satisfactory results.

  6. Determination of tin in biological reference materials by atomic absorption spectrophotometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Chiba, M.; Iyengar, V.; Gills, T.

    1991-01-01

    Because of a lack of reliable analytical techniques for the determination of tin in biological materials, there have been no reference materials certified for this element. However, the authors' experience has shown that it is feasible to use both atomic absorption and nuclear activation techniques at least for selected matrices. Therefore, an investigation was undertaken to determine tin in several biological materials such as non-fat milk powder (NBS-SRM-1549), citrus leaves (NBS-SRM-1572), total diet (NIST-SRM-1548), mixed diet (NBS-RM-8431), and USDIET-I by atomic absorption spectrophotometry (AAS) and neutron activation analysis (NAA). AAS-ashed samples were extracted with MIBK and assayed using a Perkin Elmer model 5000 apparatus. NAA was carried out by irradiating the samples at the NIST reactor in the RT-4 facility and counting with the help of a Ge(Li) detector connected to a multichannel analyzer. The concentration of tin measured by both AAS and NAA agree well for USDIET-I, total diet, citrus leaves and non-fat milk powder (the concentration ranges for tin in these matrices were from 0.0025 to 3.8 micro g/g). However, in the case of mixed diet (RM-8431), the mean values found were 47 ± 5.6 (n = 19) by AAS and 55.5 ± 2.5 (n = 6) by INAA. Since RM-8431 is not certified it is difficult to draw conclusions. For apple and peach leaves, a distillation step was required. The results were apple leaves 0.085 ± 0.015 (n = 10) by AAS and < 0.2 (n = 3) by RNAA; for peach leaves 0.077 ± 0.02 (n = 9) by AAS and < 0.1 (n = 3) by RNAA. All concentrations are expressed in micro g/g dry weight

  7. Determination of the Rb atomic number density in dense rubidium vapors by absorption measurements of Rb2 triplet bands

    International Nuclear Information System (INIS)

    Horvatic, Vlasta; Veza, Damir; Niemax, Kay; Vadla, Cedomil

    2008-01-01

    A simple and accurate way of determining atom number densities in dense rubidium vapors is presented. The method relies on the experimental finding that the reduced absorption coefficients of the Rb triplet satellite bands between 740 nm and 750 nm and the triplet diffuse band between 600 nm and 610 nm are not temperature dependent in the range between 600 K and 800 K. Therefore, the absolute values of the reduced absorption coefficients of these molecular bands can provide accurate information about atomic number density of the vapor. The rubidium absorption spectrum was measured by spatially resolved white-light absorption in overheated rubidium vapor generated in a heat pipe oven. The absolute values for the reduced absorption coefficients of the triplet bands were determined at lower vapor densities, by using an accurate expression for the reduced absorption coefficient in the quasistatic wing of the Rb D1 line, and measured triplet satellite bands to the resonance wing optical depth ratio. These triplet satellite band data were used to calibrate in absolute scale the reduced absorption coefficients of the triplet diffuse band at higher temperatures. The obtained values for the reduced absorption coefficient of these Rb molecular features can be used for accurate determination of rubidium atomic number densities in the range from about 5 x 10 16 cm -3 to 1 x 10 18 cm -3

  8. Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1976-01-01

    An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.

  9. Simultaneous determination of selenium and tellurium in native sulfur by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Arikawa, Yoshiko; Hirai, Shoji; Ozawa, Takejiro.

    1979-01-01

    A method for the determination of selenium and tellurium in native sulfur has been investigated by means of atomic absorption spectrophotometry. Native sulfur collected from around fumarole or volcanic crater is ground down into powder, a portion of which weighing 1 g is subjected to analysis. A 2.6% (w/v) sodium hydroxide solution is added by 10 ml to the sample in a teflon beaker, and the mixture is then heated on a hot plate. Sulfur is decomposed and dissolved in the form of disulfide and thiosulfate. A 30% hydrogenperoxide solution is added by 10 ml to oxidize them to sulfate. At the same time selenium and tellurium contained in the sulfur sample are also thought to be oxidized to Se(VI) and Te(VI) states. The solution is neutralized with hydrochloric acid and diluted with distilled water to 100 ml. The sample solution thus prepared is sprayed into the air-acetylene flame of the atomic absorption spectrophotometer. The absorbance is measured at 195.9 nm for selenium and 214.2 nm for tellurium. Calibration curve is prepared by measuring the absorbances of the solutions prepared as follows. One gram portions of pure sulfur (99.9999%) are decomposed as for the samples. After neutralization, standard solutions containing each same amount of selenium and tellurium (0 -- 1000 μg) are added to the sulfur solution and then diluted with water to 100 ml. The standard deviations were estimated to be 50.4 ppm for selenium at 756 ppm and 16.6 ppm for tellurium at 587 ppm. For the check of the reliability of the method, results were compared with those obtained by neutron activation analysis. Results obtained by both methods showed good agreement. (author)

  10. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  11. Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Emilene; Rampazzo, Roger T.; Dessuy, Morgana B. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R., E-mail: mgrvale@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Silva, Marcia M. da [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Welz, Bernhard [Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Katskov, Dmitri A. [Tshwane University of Technology (TUT), Faculty of Science, Chemistry Department, Pretoria 0001 (South Africa)

    2011-05-15

    In the present work a direct method for the determination of arsenic in petroleum derivatives has been developed, comparing the performance of a commercial transversely heated platform atomizer (THPA) with that of a transversely heated filter atomizer (THFA). The THFA results in a reduction of background absorption and an improved sensitivity as has been reported earlier for this atomizer. The mixture of 0.1% (m/v) Pd + 0.03% (m/v) Mg + 0.05% (v/v) Triton X-100 was used as the chemical modifier for both atomizers. The samples (naphtha, gasoline and petroleum condensate) were stabilized in the form of a three-component solution (detergentless microemulsion) with the sample, propan-1-ol and 0.1% (v/v) HNO{sub 3} in a ratio of 3.0:6.4:0.6. The characteristic mass of 13 pg found in the THFA was about a factor of two better than that of 28 pg obtained with the THPA; however, the limits of detection (LOD) and quantification (LOQ) were essentially the same for both atomizers (1.9 and 6.2 {mu}g L{sup -1}, respectively, for THPA, and 1.8 and 5.9 {mu}g L{sup -1}, respectively, for THFA) due to the increased noise observed with the THFA. A possible explanation for that is a partial blockage of the radiation from the hollow cathode lamp by the narrow inner diameter of this tube and the associated loss of radiation energy. Due to the lack of an appropriate certified reference material, recovery tests were carried out with inorganic and organic arsenic standards and the results were between 89% and 111%. The only advantage of the THFA found in this work was a reduction of the total analysis time by about 20% due to the 'hot injection' that could be realized with this furnace. The arsenic concentrations varied from < LOQ to 43.3 {mu}g L{sup -1} in the samples analyzed in this work.

  12. Determination of calcium in Mashhad city tap water by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mashhadian, N.V.

    2012-01-01

    Summary: Calcium in drinking water is one of the sources of calcium that may contribute significantly to the daily calcium intake. In this study, the samples of tap water were randomly taken from five zones of Mashhad city. Calcium concentration was determined by flame atomic absorption spectrometry (FAAS) technique. The precision of the method was evaluated. The CV% of 6 replicate determinations at 5 macro g/ml Ca was 4.2 in one day and 4.5, among 6 consecutive days. The recovery of spiked samples (98.7%) also showed that the proposed method is reliable for the determination of amounts of calcium in water samples. The mean of calcium in tap water in the city of Mashhad was 52.61+-12.91 (SD) macro g/ml. At present, the amount of calcium in Mashhad tap waters is within the national standard. However, due to the climate and environmental changes, determination of calcium in tap water of Mashhad in different seasons is recommended. (author)

  13. Determination of iron in natural and mineral waters by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    ROLANDAS KAZLAUSKAS

    2004-05-01

    Full Text Available Simple methods for the determination of Fe in natural and mineral waters by flame atomic absorption spectrometry (AAS are suggested. The results of the investigation of selectivity of the proposed AAS method proved that this procedure is not affected by high concentrations of other metals. The calibration graph for iron was linear at levels near the detection limit up to at least 0.10 mg ml-1. For the determination of microamounts of iron in mineral waters, an extraction AAS technique was developed. Iron was retained as Fe-8-oxyquinoline complex and extracted into chloroform. The optimal conditions for the extraction of the iron complex were determined. The AAS method was applied to the determination of Fe in mineral waters and natural waters from different areas of Lithuania. The accuracy of the developed method was sufficient and evaluated in comparison with a photometric method. The obtained results demonstrated that the procedure could be successfully applied for the analysis of water samples with satisfactory accuracy.

  14. Elimination of ionic interference effects in the atomic absorption spectrometric determination of ruthenium

    International Nuclear Information System (INIS)

    El-Defrawy, M.M.M.; Posta, J.; Beck, M.T.

    1978-01-01

    In connection with work on the catalytic effect of ruthenium complexes, new compounds were prepared. Atomic absorption spectrometry (a.a.s.) was to be used for their analysis. The standard methods could not be applied to the complexes studied, therefore the effect of cyanide ions for elimination of interfering effects has been studied, because of the great stability of cyanide complexes. (Auth.)

  15. Determination of trace impurities in titanium dioxide by direct solid sampling electrothermal atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vojtková, Blanka; Dočekal, Bohumil

    2005-01-01

    Roč. 99, S (2005), s489-s491 ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.09.2005-22.09.2005] Institutional research plan: CEZ:AV0Z40310501 Keywords : solid sampling * electrothermal atomic absorption spectrometry * trace analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.445, year: 2005

  16. Improved hopcalite procedure for the determination of mercury vapor in air by flameless atomic absorption.

    Science.gov (United States)

    Rathje, A O; Marcero, D H

    1976-05-01

    Mercury vapor is efficiently trapped from air by passage through a small glass tube filled with hopcalite. The hopcalite and adsorbed mercury are dissolved in a mixture of nitric and hydrochloric acids. Solution is rapid and complete, with no loss of mercury. Analysis is completed by flameless atomic absorption.

  17. Determination of cadmium in real water samples by flame atomic absorption spectrometry after cloud point extraction

    International Nuclear Information System (INIS)

    Naeemullah, A.; Kazi, T.G.

    2011-01-01

    Water pollution is a global threat and it is the leading world wide cause of death and diseases. The awareness of the potential danger posed by heavy metals to the ecosystems and in particular to human health has grown tremendously in the past decades. Separation and preconcentration procedures are considered of great importance in analytical and environmental chemistry. Cloud point is one of the most reliable and sophisticated separation methods for determination of traces quantities of heavy metals. Cloud point methodology was successfully employed for preconcentration of trace quantities of cadmium prior to their determination by flame atomic absorption spectrometry (FAAS). The metals react with 8-hydroxquinoline in a surfactant Triton X-114 medium. The following parameters such as pH, concentration of the reagent and Triton X-114, equilibrating temperature and centrifuging time were evaluated and optimized to enhance the sensitivity and extraction efficiency of the proposed method. Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation and the cadmium content was measured by FAAS. The validation of the procedure was carried out by spiking addition methods. The method was applied for determination of Cd in water samples of different ecosystems (lake and river). (author)

  18. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  19. Determination of lithium in sodium by vacuum distillation-graphite furnace atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Xie Chun; Sun Shiping; Jia Yunteng; Wen Ximeng

    1996-12-01

    When sodium is used as a coolant in China Experimental Fast Reactor, the lithium content in sodium has an effect on the nuclear property of reactor. A method has been developed to determine the trace lithium in sodium metal at the level of less than ten parts per million. About 0.4 g sodium is placed into a high-purity tantalum crucible, then it is placed in a stainless-steel still to distill at 360 degree C under vacuum (0.01 Pa). After the sodium has been removed, the residue is dissolved by nitric acid (1:2) and analyzed with Graphite Furnace Atomic Absorption Spectroscopy at 671.0 nm wavelength. The distillation conditions, working conditions of the instrument and interferences from matrix sodium, acid and concomitant elements have been studied. Standard addition experiments are carried out with lithium chloride and lithium nitrate. The percentage recoveries are 96.8% and 97.4% respectively. The relative standard deviation is less than +- 5%. The method has been used to determine lithium content in high pure sodium and industrial grade sodium. (11 refs., 5 figs., 5 tabs.)

  20. Minicolumn field preconcentration and flow-injection flame atomic absorption spectrometric determination of cadmium in seawater

    International Nuclear Information System (INIS)

    Yebra-Biurrun, M.C.; Moreno-Cid, A.; Puig, L.

    2004-01-01

    A simple method for the continuous field preconcentration of trace dissolved cadmium in seawater samples has been developed based on the minicolumn field sampling technique. For this purpose, minicolumns containing Chelite P (aminomethylphosphonic groups) were connected to a field flow preconcentration system (FFPS). Once in the laboratory, these minicolumns are sequentially inserted into a flow-injection system for on-line cadmium elution and detection by flame atomic absorption spectrometry. Factorial designs have been used to optimise the FFPS and the flow-injection elution process. Six experimental variables were optimised: sample pH, sample flow-rate, eluent concentration, eluent volume, eluent flow-rate and minicolumn diameter. The detection limit (3F) of the procedure was 2.7 ng l -1 for a sample volume of 300 ml. The precision (expressed as relative standard deviation) for 11 independent determinations was 0.5-9.4% for cadmium solutions of 10-300 ng l -1 . Analysis of certified reference materials (SLEW-3 and NASS-5) showed good agreement with the certified values. This procedure has been successfully applied to the determination of cadmium in seawater samples from Galicia (Spain)

  1. [Determination of soil exchangeable base cations by using atomic absorption spectrophotometer and extraction with ammonium acetate].

    Science.gov (United States)

    Zhang, Yu-ge; Xiao, Min; Dong, Yi-hua; Jiang, Yong

    2012-08-01

    A method to determine soil exchangeable calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) by using atomic absorption spectrophotometer (AAS) and extraction with ammonium acetate was developed. Results showed that the accuracy of exchangeable base cation data with AAS method fits well with the national standard referential soil data. The relative errors for parallel samples of exchangeable Ca and Mg with 66 pair samples ranged from 0.02%-3.14% and 0.06%-4.06%, and averaged to be 1.22% and 1.25%, respectively. The relative errors for exchangeable K and Na with AAS and flame photometer (FP) ranged from 0.06%-8.39% and 0.06-1.54, and averaged to be 3.72% and 0.56%, respectively. A case study showed that the determination method for exchangeable base cations by using AAS was proven to be reliable and trustable, which could reflect the real situation of soil cation exchange properties in farmlands.

  2. Atomic absorption spectrophotometry for the determination of metallic impurities in coal

    International Nuclear Information System (INIS)

    Silva, M.J.S.F. da.

    1983-06-01

    The Brazilian Energetic Alternative Program expects the reduction of our dependence on foreign energy sources, through replacing fuel oil by mineral coal. Its gasification by means of nuclear energy must be also considered. However, the intensive burning of coal leads to serious environmental problems. During its combustion the release, to atmosphere, of toxic elements such as As, Hg, Pb, Sb, Se, Cd, Zn and others is of great concern. Increase in atmospheric pollution will take place by burning increased amounts of coal. In addition, some of those elements are concentrated in fly ashes. The determination of impurities in coal is also important for the Figueiras Project in the Nuclebras Mineral Prospection Program. Hence, it is important to have reliable analytical methods which can monitor inorganic constituents at various stages of coal production and utilization. The atomic absorption spectrophotometry is a suitable analytical technique to determine pollutants in coal because it is sensitive, simple, economic and cover a large range of concentrations. The need of a previous treatment of the sample is overcome by using an acid attack (HNO 3 + HClO 4 + HF) which has proved to be rapid and efficient. (Author) [pt

  3. An indirect atomic absorption spectrometric determination of ciprofloxacin, amoxycillin and diclofenac sodium in pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    MAHMOUD MOHAMED ISSA

    2008-05-01

    Full Text Available A highly sensitive indirect atomic absorption spectrophotometric (AAS method has been developed for the determination of very low concentrations of ciprofloxacin, amoxycillin and diclofenac sodium. The method is based on the oxidation of these drugs with iron(III. The excess of iron(III was extracted into diethyl ether and then the iron(II in the aqueous layer was aspirated into an air–acetylene flame and determined by AAS. The linear concentration ranges were 25–400, 50–500 and 60–600 ng ml-1 for ciprofloxacin, amoxycillin and diclofenac sodium, respectively. The results were statistically compared with the official method using t- and f-test at p < 0.05. There were insignificant interferences from most of the excipients present. The intra- and inter-day assay coefficients of variation were less than 6.1 % and the recoveries ranged from 95 to 103 %. The method was applied for the analysis of these drug substances in their commercial pharmaceutical formulations.

  4. Determination of Heavy Metals and Radioactive Elements in Alluvial Soil using Atomic Absorption and Gamma Spectroscopy

    International Nuclear Information System (INIS)

    Hamed, S.S.; Walley EI Dine, N.; Soliman, S.I.; Moussa, W.M.

    2008-01-01

    The paper describes some methods dealing with measurements of some heavy and radioactive elements (U, Th and K) in Egyptian cultivated soil samples. Samples were collected from Toshka area. Also, soil and plant samples were collected from Kalube and EI - Gabal EI - Asfar to compare the obtained results from both region. Flame atomic absorption spectrometry (FAAS),Neutron activation analysis (INAA) and Natural radioactivity techniques were followed. FAAS and INAA techniques agreed fairly well for the compared elements Co,Zn and Fe which determined by the two techniques. Also for K which was determined by FAAS and natural radioactivity. It was found that the concentration range in soil samples for Co, Fe, K and Zn lies between 4.18 and 29.2 μg/g, 3.0 and 3.8 mg/g, 3.49 and 13.28 mg/g and 120 and 663 μg/g respectively while in plant samples the concentration of Co was from 3.02 to 4.02 μg/g, Fe from 1.18 to 1.35 mg/g and Zn from 29.63 to 73.02 μg/g

  5. Column preconcentration and electrothermal atomic absorption spectrometric determination of rhodium in some food and standard samples.

    Science.gov (United States)

    Taher, Mohammad Ali; Pourmohammad, Fatemeh; Fazelirad, Hamid

    2015-12-01

    In the present work, an electrothermal atomic absorption spectrometric method has been developed for the determination of ultra-trace amounts of rhodium after adsorption of its 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol/tetraphenylborate ion associated complex at the surface of alumina. Several factors affecting the extraction efficiency such as the pH, type of eluent, sample and eluent flow rates, sorption capacity of alumina and sample volume were investigated and optimized. The relative standard deviation for eight measurements of 0.1 ng/mL of rhodium was ±6.3%. In this method, the detection limit was 0.003 ng/mL in the original solution. The sorption capacity of alumina and the linear range for Rh(III) were evaluated as 0.8 mg/g and 0.015-0.45 ng/mL in the original solution, respectively. The proposed method was successfully applied for the extraction and determination of rhodium content in some food and standard samples with high recovery values. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Lead determination in uranium mineralization soils by atomic absorption spectrometry with graphite oven

    International Nuclear Information System (INIS)

    Teixeira, Gleber Tacio

    2001-01-01

    The contamination of soils by lead has a great environmental importance due to its toxicity to vegetables, animals and humans. In general, the mobility of the lead is small due to its low solubility and strong adsorption in the soil. However, its solubility can be altered by several conditions (pH, redox potential and ionic stronger). Consequently, lead can migrate through the soil and can contaminate superficial and underground waters. The objective of this work was to determine the concentration of total lead in soil samples with uranium mineralization, in an area at Ipora/GO, having been evaluated as economically insuitable the extraction of that mineral. The radiogenic lead appears as a product of natural radioactive elements decay. In the decay series of uranium-238 we found the isotope lead-214 (half-life of 26,8 min), lead-210 (half-life of 22,3 min), and lead-206 that is stable. The sampling was done in profiles around north, south, east and west directions, starting from a reference point (FT), chosen by presenting the largest radiation of that place (4800 cps). A mass of 1 Kg of superficial soil was collected to each 20 m, in each profile, until 150 m of FT. Approximately, 1 g of dry soil, fraction 2 mm, was digested with a mixture of acids HNO 3 /HClO 4 2:1 (v/v), and the resulting solution was analyzed by atomic absorption. An atomic absorption spectrometer was used with graphite furnace, with deuterium arc to background correction and pyrolytic coated tube. Phosphoric acid was used as chemical modifier. The obtained results, using the standard additions method, presented a decrease of the lead concentration, in all profiles, when the distance of FT was increased. It was also made a radiometric screening in each sampling point. The lead concentration variate from 115,1 μg.g -1 in FT, to less than 40 μg.g -1 at 150 m of distance of FT ( 3 ) 2 was used. The method was applied to a certified sample, showing a good agreement between certified and

  7. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    Science.gov (United States)

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2017-09-01

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg -1 ; ICP-MS, 437ngg -1 ) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Determination of copper in powdered chocolate samples by slurry-sampling flame atomic-absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Walter N.L. dos; Silva, Erik G.P. da; Fernandes, Marcelo S.; Araujo, Rennan G.O.; Costa, Anto' ' enio C.S.; Ferreira, Sergio L.C. [Nucleo de Excelencia em Quimica Analitica da Bahia, Universidade Federal da Bahia, Instituto de Quimica, Salvador, Bahia (Brazil); Vale, M.G.R. [Instituto de Quimica, Universidade Federal da Bahia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul (Brazil)

    2005-06-01

    Chocolate is a complex sample with a high content of organic compounds and its analysis generally involves digestion procedures that might include the risk of losses and/or contamination. The determination of copper in chocolate is important because copper compounds are extensively used as fungicides in the farming of cocoa. In this paper, a slurry-sampling flame atomic-absorption spectrometric method is proposed for determination of copper in powdered chocolate samples. Optimization was carried out using univariate methodology involving the variables nature and concentration of the acid solution for slurry preparation, sonication time, and sample mass. The recommended conditions include a sample mass of 0.2 g, 2.0 mol L{sup -1} hydrochloric acid solution, and a sonication time of 15 min. The calibration curve was prepared using aqueous copper standards in 2.0 mol L{sup -1} hydrochloric acid. This method allowed determination of copper in chocolate with a detection limit of 0.4 {mu}g g{sup -1} and precision, expressed as relative standard deviation (RSD), of 2.5% (n=10) for a copper content of approximately 30 {mu}g g{sup -1}, using a chocolate mass of 0.2 g. The accuracy was confirmed by analyzing the certified reference materials NIST SRM 1568a rice flour and NIES CRM 10-b rice flour. The proposed method was used for determination of copper in three powdered chocolate samples, the copper content of which varied between 26.6 and 31.5 {mu}g g{sup -1}. The results showed no significant differences with those obtained after complete digestion, using a t-test for comparison. (orig.)

  9. Application of extraction-chromatographic concentration to atomic absorption determination of lead and cadmium in drinking and sea water

    International Nuclear Information System (INIS)

    Bol'shova, T.A.; Agapkina, G.I.; Ershova, N.I.; Narankho, K.E.

    1988-01-01

    To increase the detection limits for lead and cadmium atomic-absorption determination in natural waters methods of extraction-chromatographic concentration of these metals using tri-n-octylamine (TOA) on polytetrafluoroethylene (PTFE) is developed. Chromatograpy was carried out from 1.5-2.0 M HBr solutions. For cadmium and lead elution acetic acid was used. It is shown that extraction-chromatographic concentration permits to decrease limits of metal atomic-absorption detection by 10 3 with the 500 ml volume sample analysis

  10. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Leal, L.O.; Elsholz, O.; Forteza, R.; Cerda, V.

    2006-01-01

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl 2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L -1 . The detection limit (3σ b /S) achieved is 5 ng L -1 . The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L -1 Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples

  11. Determination of essential elements in food and feed materials by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yawar, W.; Rahman, S.

    1993-01-01

    Determination of baseline levels of essential elements like iron, copper, manganese and zinc was carried out in different varieties of animal feeds and in wheat grains by atomic absorption spectrophotometry. Various food articles contain different amount of essential elements. The precision and accuracy have been calculated. The range of values of iron, copper, manganese and zinc in animal feeds in form 389+-12 to 7465+-222 micro g/g; 1.1 to 3.1 +- 0.5 micro g/g; 27 +- to 267 micro g/g and 46 +- 5 to 245 + 12 micro g/g, respectively whereas the range in wheat grains for iron, copper, manganese and zinc is 40 +- 2 to 55 +- micro g/g; 6 +- 0.5 to 16 +- 2 micro g/g; 35 +- 3 to 67 +- 4.3 micro g/g and 38 +- 2.7 to 64 +- 3.34 micro g/g, respectively. In order to check the accuracy, NBs reference materials, SRM-1567 (wheat flour) and SRM-1571 (orchard leaves) were analysed. The values so obtained were found to be in fairly good agreement with the standard values. The results were also compared with other reported values. (author)

  12. Determination of calcium and magnesium in hydroethanolic extracts of propolis by atomic absorption flame spectrophotometry

    Directory of Open Access Journals (Sweden)

    E. Q. SANTANA

    2009-01-01

    Full Text Available

    Propolis is a natural product collected by honeybees and has a large range of pharmacological activity, including antimicrobial, antitumoral, antioxidant and anti-inflammatory. Its use as a popular medicine is increasing all over the world, creating a need for quality control of the commercial products. In this study the levels of calcium and magnesium in commercial hydroalcoholic propolis extracts from varios states of Brazil were determined by atomic absorption flame spectrophotometry and different values were obtained for northern and southern states. This study can be extended to the analysis of metals that are harmful to health. The results showed that the calibration curves were linear over a wide concentration range (0.5-4.0 µg.mL-1 for calcium and 0.05-0.4 µg.mL-1 for magnesium with good correlation coefficients (0.999 and 0.988, respectively. Good analytical recovery (94% was obtained. The proposed method showed adequate precision and relative standard deviation lower than 2 %. The method is accurate and precise as well as having advantages such as simplicity and speed. Keywords: hydroalcoholic propolis extract; mineralization; analysis; calcium; magnesium.

  13. A new hydride generator for the determination of volatile elements by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Kersabiec, A.M. de

    1979-01-01

    The production of hydrides in order to use them for analysis by atomic absorption spectrophotometry depends on many parameters. A new apparatus has been designed for this specific operation. It is characterized by a reaction chamber with variable size and by appliances for regulation and control of the physical conditions of operation. Properties are both methodological studies and utilization in large scale analysis. The entire description of the apparatus is completed by an analytical study [fr

  14. A COMPARISON OF A SPECTROPHOTOMETRIC (QUERCETIN) METHOD AND AN ATOMIC-ABSORPTION METHOD FOR DETERMINATION OF TIN IN FOOD

    DEFF Research Database (Denmark)

    Engberg, Å

    1973-01-01

    Procedures for the determination of tin in food, which involve a spectrophotometric method (with the quercetin-tin complex) and an atomic-absorption method, are described. The precision of the complete methods and of the individual analytical steps required is evaluated, and the parameters...

  15. Nonflame atomic absorption determination of total mercury in natural waters using an HS-3 mercury-hydride system

    Energy Technology Data Exchange (ETDEWEB)

    Evdokimova, E.V.; Solov`eva, M.Kh.; Telegin, G.F. [Institute of Problems in the Technology of Microelectronics and High-Purity Materials, Moscow (Russian Federation)

    1995-02-01

    A method for nonflame atomic absorption determination of mercury with a detection limit of 1 x 10{sup -3} {mu}g/ml in natural waters without preconcentration is described. The method can be applied successfully in analysis of the environment.

  16. Atomic hydrogen and argon ground state density determination in a recombining plasma using visible light absorption spectroscopy

    NARCIS (Netherlands)

    Otorbaev, D.K.; Buuron, A.J.M.; Sanden, van de M.C.M.; Meulenbroeks, R.F.G.; Schram, D.C.

    1995-01-01

    The atomic radical density in the first excited state, obtained by the technique of optical absorption spectroscopy, and a simple kinetic model are used to determine the radical ground state density in a recombining expanding plasma. The kinetic model used does not require knowledge of the shape of

  17. Atomic absorption spectrophotometer

    International Nuclear Information System (INIS)

    Stockdale, T. J.

    1985-01-01

    In atomic absorption spectrophotometer, a reference path may be provided for radiation which excludes the flame. This radiation provides a signal from a detector which varies only with the instrumental drift produced by variations in the radiation source brightness and by variations in detector gain. The signal can be used to compensate for drift in other signals received through a sample path including the flame. In the present invention, radiation passes through the sample path continuously during measurement, and only through the reference path between sample measurements. Movable mirrors shift the radiation between the paths upon externally applied commands. Conveniently, the reference path measurement is made while the flame is stabilized during the change between samples. The reference path measurements are stored and used to correct for drift

  18. Direct determination of cadmium in unicellular green algae by flameless atomic absorption

    International Nuclear Information System (INIS)

    Meisch, H.U.; Reinle, W.

    1977-01-01

    Cadmium is detectable without any disturbance by direct injection of Cd-containing microorganisms (unicellular green algae) into the graphite furnace of an atomic absorption instrument, if the decomposition temperature is increased to 700 0 C. This has been done without loss of the trace method by charging the input suspension with a 10 7 fold molar excess of (NH 4 ) 2 SO 4 . The precision of the uncomplicated method is compared to the results of Cd-analysis after HNO 3 -decomposition. (author)

  19. Atomic absorption spectrophotometry in perspective

    International Nuclear Information System (INIS)

    Soffiantini, V.

    1981-01-01

    Atomic absorption spectrophotometry is essentially an analytical technique used for quantitative trace metal analysis in a variety of materials. The speed and specificity of the technique is its greatest advantage over other analytical techniques. What atomic absorption spectrophotometry can and cannot do and its advantages and disadvantages are discussed, a summary of operating instructions are given, as well as a summary of analytical interferences. The applications of atomic absorption spectrophotometry are also shortly discussed

  20. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry

    OpenAIRE

    Tuzen, Mustafa; Soylak, Mustafa; Citak, Demirhan; Ferreira, Hadla S.; Korn, Maria das Graças Andrade; Bezerra, Marcos de Almeida

    2009-01-01

    Texto completo: acesso restrito. p. 1041-1045 A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L−1 nitric acid solution, the analytes are determinate employing fla...

  1. Matrix effects on the determination of manganese in geological materials by atomic-absorption spectrophotometry under different flame conditions

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1978-01-01

    Suppression caused by five of the seven matrix elements studied (Si, Al, Fe, Ca and Mg) was observed in the atomic-absorption determination of manganese in geological materials, when synthetic solutions and the recommended oxidizing air-acetylene flame were used. The magnitude of the suppression effects depends on (1) the kind and concentration of the interfering elements, (2) the type of acid medium, and (3) the concentration of manganese to be determined. All interferences noted are removed or alleviated by using a reducing nitrous oxide-acetylene flame. The atomic-absorption method using this flame can be applied to the determination of total and extractable manganese in a wide range of geological materials without interferences. Analyses of six U.S. Geological Survey rock standards for manganese gave results in agreement with the reported values. ?? 1978.

  2. Flameless atomic absorption determination of noble metals after extraction by mixture of di-2-ethylhexyldithiophosphoric acid and n-octylaniline

    International Nuclear Information System (INIS)

    Yukhin, Yu.M.; Udalova, T.A.; Tsimbalist, V.G.; AN SSSR, Novosibirsk. Inst. Geologii i Geofiziki)

    1985-01-01

    A possibility of using the mixture of di-2-ethylhexyl dithiophosphoric acid (D2EHDTPA) and p-octylaniline (OA) (extractants of acid and basic character) for extraction atomic absorption determination of noble metals is studied. The mixture of D2EHDTPA with OA is shown to extract noble metals from hydrochloric acid solutions with distribution factors > 10 3 . An extraction atomic absorption method for determination of noble metals in copperbearing materials is suggested. The minimum determined contents of noble metals at the initial sample equal to 100 for gold, silver, platinum, palladium, rhodium and ruthenium make up (g/t) 0.0005, 0.0001, 0.015, 0.005, 0.002 and 0.015 respectively. Relative standard deviation constitutes Ssub(r)<0.2

  3. Determination of metallic elements in water by the combined preconcentration techniques of ion exchange and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Paula, M.H. de.

    1981-01-01

    Having as an aim the utilization of atomic absorption method with flame's excitement, the limits of detection in water of six metals (Ag, Co, Cr, Cu, Ni, Zn) were determined in synthetical samples through atomic absorption spectroscopy. Techniques to optimize the data have been pointed out and presented their statistical treatment. By means of the routine and the addition methods three 'real' samples have also been analysed in order to determine the contents of Cu and Zn. Aiming a pre-concentration and by utilizing the 60 Co obtained activating a sample of cobalt in the CDTN/NUCLEBRAS TRIGA MARK-I reactor, the retainement of this cobalt in ion exchange resin and the variation of the factor of elution within different concentration of HCl in water have been determined. The limits of detection are presented and so are the quantitative ones, with and without pre-concentration in an ion exchanger resin and latter elution. (Author) [pt

  4. [Evaluation of uncertainty for determination of tin and its compounds in air of workplace by flame atomic absorption spectrometry].

    Science.gov (United States)

    Wei, Qiuning; Wei, Yuan; Liu, Fangfang; Ding, Yalei

    2015-10-01

    To investigate the method for uncertainty evaluation of determination of tin and its compounds in the air of workplace by flame atomic absorption spectrometry. The national occupational health standards, GBZ/T160.28-2004 and JJF1059-1999, were used to build a mathematical model of determination of tin and its compounds in the air of workplace and to calculate the components of uncertainty. In determination of tin and its compounds in the air of workplace using flame atomic absorption spectrometry, the uncertainty for the concentration of the standard solution, atomic absorption spectrophotometer, sample digestion, parallel determination, least square fitting of the calibration curve, and sample collection was 0.436%, 0.13%, 1.07%, 1.65%, 3.05%, and 2.89%, respectively. The combined uncertainty was 9.3%.The concentration of tin in the test sample was 0.132 mg/m³, and the expanded uncertainty for the measurement was 0.012 mg/m³ (K=2). The dominant uncertainty for determination of tin and its compounds in the air of workplace comes from least squares fitting of the calibration curve and sample collection. Quality control should be improved in the process of calibration curve fitting and sample collection.

  5. Determination of concentration of heavy metals (Pb, Cd, Fe) in animal tissues using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    RAZAFINTSALAMA, V.T.

    2009-01-01

    Heavy metals are classified among the inorganic compounds. The latter type of metal is found in rocks, fertilizers, urban mud but may also originate from the atmospheric pollution. A particular characteristic of heavy metals is their bioaccumulation in the food chain. Therefore, lead and cadmium, which are classified as heavy metals may be easily found in animal products and can lead to food poisoning if their concentrations are higher than the maximum permissible values as requested by international agencies such as the c odex alimentarius . The values are set down and differ according to types of food for human consuption and the trading companies take action accordingly. Therefore, it is necessary to set up a quality control system through analytical laboratory measurements and testings. This study underlies the method of determination of lead, cadmium and iron in animal tissues by atomic absorption spectrometry. The results showed that the method is sensitive and reliable. For each analyte, the Z-score lies between -2 and 2, indicating that the method is working properly. The analytical results showed that: (i) only beef and chicken meats and beef liver contain lead [0,09μg.g - 1; 0,29μg.g - 1]. The limit value of 0,1μg.g - 1 is almost reached in beef and chicken meats, (ii) as far as cadmium is concerned, the five studied samples contain this analyte [0,02μg.g - 1; 0,9μg.g - 1]. Except the chicken liver of which the concentration (0,15μg.g - 1) exceeds the maximum permissible value (0,1μg.g - 1), the others are in conformity with the standards and appropriate to be consumed,(iii) iron is higher in the liver and kidney samples: beef liver 282mg.g - 1, chicken liver 250 mg.g - 1, pork kidney 247mg.g - 1. The study also showed that the calcium concentration in animal tissues is low and they can be classified as poor-calcium food. [fr

  6. Standardization of digestion procedure for the determination of heavy metals in biological materials by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Khalid, N.; Chaudhri, S.A.

    1999-01-01

    Proper decomposition of the sample is one of the basic requirements of the atomic absorption spectroscopic analysis. In the present studies, heavy metals (Cu, Fe, Mn and Zn) were determined in biological samples by designating them in a mixture of nitric acid and perchloric acid. The quantification was made with atomic absorption spectrometry using an air-acetylene flame. The reliability of the procedure used was checked by analysing standard reference materials from NBS and IAEA, such as Rice flour (NBS-SRM-1568), Horse Kidney (IAEA H-8), Mixed Human diet(IAEA H-9), Copepod (IAEA MA-A-1) and fish flesh (IAEA MA-A-2) under identical conditions. A good agreement was observed between determined and the certified values reported by NBS and IAEA. (author)

  7. Determination of Mercury in an Assortment of Dietary Supplements Using an Inexpensive Combustion Atomic Absorption Spectrometry Technique

    OpenAIRE

    Levine, Keith E.; Levine, Michael A.; Weber, Frank X.; Hu, Ye; Perlmutter, Jason; Grohse, Peter M.

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a res...

  8. Determination of trace amounts of selenium in minerals and rocks by flame less atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Alduan, F. A.; Capdevilla, C.

    1980-01-01

    The determination of trace amounts of selenium In silicate rocks and feldspar by solvent extraction and graphite furnace atomic-absorption spectrometry has been stu- died. Sodium diethyl-ditio carbamate and ammonium pyrrolidine dithiocarbamate have been tried as chelating agents. The best results are achieved when selenium is extracted Into carbon tetrachloride as the sodium diethyldithiocarbamate complex. The method allows to detect 0,75 ppm of selenium in the sample. Recoveries are about 100%. (Author) 7 refs

  9. Determination of copper and iron in the human aqueous humor by atomic absorption spectrometer with graphite furnace

    International Nuclear Information System (INIS)

    Iqbal, Z.; Mohammad, Z.; Shah, M.T.; Saeed, M.; Imdadullah

    1999-01-01

    The concentration of copper and iron was determined in human aqueous humor using atomic absorption spectrophotometer equipped with graphite furnace. The mean (+- SEM) concentrations of copper (n=16) and iron (n=14) were 0.0234 -+ 0.0045 mu g.ml/sup -1/ and 0.045 -+ 0.0092 mu.ml/sup -1/ respectively. In male and female, the concentrations of copper (p< 0.82) and iron (p<0.38) were not significantly different. (author)

  10. Atomic absorption instrument functional description

    International Nuclear Information System (INIS)

    Bystroff, R.I.; Boyle, W.G. Jr.; Barton, G.W. Jr.

    1976-01-01

    This report describes a proposed system for automating atomic absorption analysis. The system consists of two atomic absorption instruments and an automatic sampler that can be attached to either instrument. A computer program controls the sampling and gathers data. The program then uses the data to perform bookkeeping, data processing, and report writing

  11. Effect of organic solvents on desorption and atomic absorption determination of heavy metal ions after ion exchange concentration

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Safronova, V.G.; Zakrevskaya, L.V.

    1986-01-01

    The effect of organic solvents (acetone, methylethylketone, dioxane, ethanol) on desorption of Cu, Mn, Co, Cd, Zn, Pb, Ni from cationite KU-23 ion exchange resin and on the detection limits of their atomic absorption determination has been examined. Cobalt and cadmium can be separated quantitatively using desorption by a mixture of HCl and acetone. Addition of an organic solvent results in a higher absorbance, mainly due to a high rate and efficiency of atomization. Acetone has proved to be the best solvent: addition of 60 vol. % of this solvent to the concentrate provides 2 times lower detection limits for the heavy metas in water

  12. Comparative studies of method for determining total mercury in fish. Dithizone and flameless atomic absorption spectrophotometry techniques

    International Nuclear Information System (INIS)

    Protasowicki, M.; Ociepa, A.; Chodyniecki, A.

    1977-01-01

    Two methods for determining total mercury in fish were compared: the dithizone and flameless atomic absorption spectrophotometry techniques. The studies involved determination of recovery when 1μg of mercury as solutions of HgCl 2 or CH 3 HgC were added to each sample of herring flesh. Mean recoveries in the dithizone method were found to be 91.4+-7.47% and 90.25+-4.73% for the two solutions respectively, while the recoveries obtained with the flameless atomic absorption spectrophotometry were 95.00+-9.13% and 98.70+-7.14%, respectively. Both techniques were used to determine the mercury content in the same herring flesh sample. The first technique showed the content of 0.050+-0.018μg Hg g -1 while the result obtained with the other one was 0.062+-0.013μg Hg g -1 . The statistical treatment of the results obtained showed no difference between the two techniques, the significance level being α=0.05. Therefore, the results obtained with the dithizone method are comparable with those obtained with the flameless atomic absorption spectrophotometry for mercury contents of the magnitude order of 0.050 ug.g -1 . (author)

  13. The relation of double peaks, observed in quartz hydride atomizers, to the fate of free analyte atoms in the determination of arsenic and selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    D'Ulivo, Alessandro; Dedina, Jiri

    2002-01-01

    The mechanism at the origin of double peaks formation in quartz hydride atomizers were investigated by continuous flow hydride generation atomic absorption spectrometry. Arsenic and selenium were used as model analytes. The effect of atomization mode (flame-in-gas-shield (FIGS), miniature diffusion flame and double flame (DF)) and some experimental parameters as oxygen supply rate for microflame and the distance from atomization to free atoms detection point, were investigated on the shape of both analytical signals and calibration graphs. Rollover of calibration graphs and double peak formation are strictly related each to the other and could be observed only in FIGS atomizer mode under some particular conditions. A mechanism based on incomplete atomization of hydrides cannot explain the collected experimental evidences because the microflame of FIGS is able to produce quantitative atomization of large amount of hydrides even at supply rate of oxygen close to extinction threshold of microflame. The heterogeneous gas-solid reactions between finely dispersed particles, formed by free atom recombination, and the free atoms in the gaseous phase are at the origin of double peak formation

  14. Sequential determination of arsenic, selenium, antimony, and tellurium in foods via rapid hydride evolution and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fiorino, J.A.; Jones, J.W.; Capar, S.G.

    1976-01-01

    Analysis of acid digests of foods for As, Se, Sb, and Te was semiautomated. Hydrides generated by controlled addition of base stabilized NaBH 4 solution to acid digests are transported directly into a shielded, hydrogen (nitrogen diluted), entrained-air flame for atomic absorption spectrophotometric determination of the individual elements. The detection limits, based on 1 g of digested sample, are approximately 10 to 20 ng/g for all four elements. Measurement precision is 1 to 2 percent relative standard deviation for each element measured at 0.10 μg. A comparison is made of results of analysis of lyophilized fish tissues for As and Se by instrumental neutron activation (INAA), hydride generation with atomic absorption spectrometry, fluorometry, and spectrophotometry. NBS standard reference materials (orchard leaves and bovine liver) analyzed for As, Se, and Sb by this method show excellent agreement with certified values and with independent NAA values

  15. Study on the application of electrothermal atomization atomic absorption spectrometry for the determination of metallic Cu, Pb, Zn, Cd traces in sea water samples

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Dung; Doan Thanh Son; Tran Thi Ngoc Diep

    2004-01-01

    The trace amount of some heavy metallic elements (Cu, Zn, Pb, Cd) in sea water samples were determined directly (without separation) and quantitatively by using Electro-Thermal Atomization Atomic Absorption Spectrometry (ETA-AAS). The effect of mainly major constituents such as Na, Mg, Ca, K, and the mutual effect of the trace elements, which were present in the matrix on the absorption intensity of each analyzed element was studied. The adding of a certain chemical modification for each trace element was also investigated in order to eliminate the overall effect of the background during the pyrolysis and atomization. The sea water sample after fitrating through a membrane with 0.45 μm-hole size was injected in to the graphite tube via an autosampler (MPE50). The absorption intensity of each element was then measured on the VARIO-6 under the optimum parameters for spectrometer such as: maximum wavelength, current of hollow cathode lamp, and that for graphite furnace such as dry temperature, pyrolysis temperature, atomization temperature, ect. The analytical procedures were set-up and applied for the determination of these above mentioned elements in the synthesized sea water sample and in the real sea water samples with high precision and accuracy. (author)

  16. Determination of arsenic in geological materials by electrothermal atomic-absorption spectrometry after hydride generation

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.; Welsch, E.P.

    1979-01-01

    Rock and soil samples are decomposed with HClO4-HNO3; after further treatment, arsine is generated and absorbed in a dilute silver nitrate solution. Aliquots of this solution are injected into a carbon rod atomizer. Down to 1 ppm As in samples can be determined and there are no significant interferences, even from chromium in soils. Good results were obtained for geochemical reference samples. ?? 1979.

  17. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sardans, Jordi; Montes, Fernando; Penuelas, Josep

    2010-01-01

    Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at μg L -1 levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages of

  18. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sardans, Jordi, E-mail: j.sardans@creaf.uab.ca [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain); Montes, Fernando [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/ Senda del Rey 9. 28040 Madrid (Spain); Penuelas, Josep [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain)

    2010-02-15

    Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at mug L{sup -1} levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages

  19. X-ray absorption in atomic potassium

    International Nuclear Information System (INIS)

    Gomilsek, Jana Padeznik; Kodre, Alojz; Arcon, Iztok; Nemanic, Vincenc

    2008-01-01

    A new high-temperature absorption cell for potassium vapor is described. X-ray absorption coefficient of atomic potassium is determined in the energy interval of 600 eV above the K edge where thresholds for simultaneous excitations of 1s and outer electrons, down to [1s2p] excitation, appear. The result represents also the atomic absorption background for XAFS (X-ray absorption fine structure) structure analysis. The K ionization energy in the potassium vapor is determined and compared with theoretical data and with the value for the metal

  20. Determination of the elemental composition of cyanobacteria cells and cell fractions by atomic emission and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sedykh, Eh.M.; Lyabusheva, O.A.; Bannykh, L.N.; Tambiev, A.Kh.

    2005-01-01

    An approach to studying the elemental composition of cyanobacteria Spirulina platensis and Nostoc commune using a set of complementary analytical methods (ICP-AES, PAAS, and ETAAS) was proposed . The procedures were adapted for the determination of macro- and microelements (Na, K, Mg, Ca, Fe, Mn, Cu, Mo, Zn, B, and Se) in the biomass of cyanobacteria and separated cell fractions (chloroform and water-methanol extracts and precipitates). The conditions for the mineralization of biological materials were optimized for autoclave and microwave sample preparation procedures. The evaporation and atomization of Se and Mo in a graphite furnace in the presence of chloroform and methanol were studied [ru

  1. A comparison of simultaneous plasma, atomic absorption, and iron colorimetric determinations of major and trace constituents in acid mine waters

    Science.gov (United States)

    Ball, J.W.; Nordstrom, D. Kirk

    1994-01-01

    Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of

  2. Determination of silver in soils, sediments, and rocks by organic-chelate extraction and atomic absorption spectrophotometry

    Science.gov (United States)

    Chao, T.T.; Ball, J.W.; Nakagawa, H.M.

    1971-01-01

    A useful method for the determination of silver in soil, sediment, and rock samples in geochemical exploration has been developed. The sample is digested with concentrated nitric acid, and the silver extracted with triisooctyl thiophosphate (TOTP) in methyl isobutyl ketone (MIBK) after dilution of the acid digest to approximately 6 M. The extraction of silver into the organic extractant is quantitative and not affected by the nitric acid concentration from 4 M to 8 M, or by different volumes of TOTP-MIBK. The extracted silver is stable and remains in the organic phase up to several days. The silver concentration is determined by atomic absorption spectrophotometry. ?? 1971.

  3. Determination of Heavy Metals in Meat, Intestine, Liver, Eggs, and Chicken Using Neutron Activation Analysis and Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Surtipanti, S.; Suwirma, S.; Yumiarti, S.; Mellawati, Yune

    1995-01-01

    The elements As, Cd, Co, Cr, Fe, Hg, Ni, Pb, Sb, se and Zn in meat, intestine, and liver of cow and goat, as well as in broiler, local breed chicken and eggs have been determined using Neutron Activation Analysis and Atomic Absorption Spectrometry. Mercury was determined after being separated radiochemically. The results showed that concentration of the essential elements studied i.e. Cr, Cu, Fe, Zn, Co, and Ni were higher in liver and intestine than in the meat, but still in the normal range, while toxic elements As, Cd, and Pb were undetectable in all samples. (author). 8 refs., 6 tabs

  4. Determination of Heavy Metals in Meat, Intestine, Liver, Eggs, and Chicken Using Neutron Activation Analysis and Atomic Absorption Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Surtipanti, S; Suwirma, S; Yumiarti, S; Mellawati, Yune [National Atomic Energy Agency, Jakarta (Indonesia), Center for the Application of Isotopes Radiation

    1995-01-01

    The elements As, Cd, Co, Cr, Fe, Hg, Ni, Pb, Sb, se and Zn in meat, intestine, and liver of cow and goat, as well as in broiler, local breed chicken and eggs have been determined using Neutron Activation Analysis and Atomic Absorption Spectrometry. Mercury was determined after being separated radiochemically. The results showed that concentration of the essential elements studied i.e. Cr, Cu, Fe, Zn, Co, and Ni were higher in liver and intestine than in the meat, but still in the normal range, while toxic elements As, Cd, and Pb were undetectable in all samples. (author). 8 refs., 6 tabs.

  5. Determination of gold in copper-bearing sulphide ores and metallurgical flotation products by atomic-absorption spectrometry.

    Science.gov (United States)

    Strong, B; Murray-Smith, R

    1974-12-01

    A method is described which is specific for the determination of gold in sulphide copper ores and concentrates. Direct decomposition with aqua regia was found to be incomplete. A carefully controlled roasting stage followed by treatment with hydrochloric acid and then aqua regia was effective for dissolving all the gold. The gold is extracted into 4-methylpentan-2-one (methyli-sobutylketone) then aspirated into a very lean air-acetylene flame and the gold determined by atomic-absorption spectrometry. No interferences were observed from large concentrations of copper, iron or nickel.

  6. Determination of U and Impurities Elements in The Uranium Tetra Fluoride by Potentiometric and Atomic Absorption Spectrophotometric Methods

    International Nuclear Information System (INIS)

    Putro Kasino, P

    1998-01-01

    The determination of u and impurities contents in the Uranium tetra fluoride (UF 4 )has been carried out by potentiometric titration using modified 'Davies-Gray' and atomic absorption spectrophotometric methods. Dissolution process of the powder sample using saturated Al 2 (SO 4 ) 3 solution introduced to determine UF 4 compound content in the UF 4 sample. The uranium Content in the obtained filtrate is analyzed by potentiometric. The impurities content is determined by ato-Mic absorption spectrophotometric using ammonium oxalate powder in introducing of the sample preparation. The experiment covered the observation on influence of stirring time of UF 4 sample dissolution in respect to separate UF 4 from its impurities in determination of uranium content. Also the effects of Ammonium Oxalate added and agitating time were observed deal with the sample preparation for the determination of Impurities content.The analysis result found that UF 4 content was 96.15 ± 0.04% the relative station 0.7%. However the best impurities determination was achieved by addition of ammonium oxalate powder and 15 Minutes of agitation time at temperature of 800 0 C

  7. Direct determination by atomic absorption of calcium, cobalt and zinc in nuclear grade uranium oxide

    International Nuclear Information System (INIS)

    Guido, O.O.; Amaya, Carlos.

    1975-05-01

    A study has been made of the effect of flame composition (fuel: C 2 H 2 , comburent: air or N 2 O) and location of the burner on the three analytes in a nitric medium, in presence and in absence of uranium. For calcium it was necessary to use N 2 O, while for zinc and cobalt the use of air was found more adequate. The standard additions method for the quantitative determination was adopted. The absorption at the analytical wavelength not corresponding to the elements studied was determined by comparison between this method and another indirect one, using extraction with TBP, and the results were expressed as equivalent concentrations. Confidence intervals of the analytical results were evaluated statistically using a scheme of calculation adapted to the proposed method. This evaluation allowed an estimation of the detection limits (calcium: 5 ppm, cobalt: 3 ppm, zinc: 1 ppm). (author)

  8. Buffer choice and effects of sample composition examined by experiment planning methods for determination of molybdenum by atomic absorption with a flame atomizer

    International Nuclear Information System (INIS)

    Zav'yalkov, P.I.; Danishehvskii, A.L.; Rakita, R.A.; Yakshinskii, A.I.

    1986-01-01

    The authors use orthogonal experiment planning to define the optimum form of buffer and to establish the effects of sample composition since there are high levels of cation and anion interference in the atomic-absorption determination of molybdenum. A spectroscopic buffer has been identified (HCLO 4 + NH 4 Cl mixture), which eliminates the interference from the elements tested and improves the analytical characteristics in determining molybdenum. A model has been formulated enabling one to estimate the buffer performance and the effects of the components on the determination of molybdenum. The model enables one to forecast the expected order of the effect without performing additional experiments

  9. Flameless atomic absorption determination of beryllium in the presence of various anions and cations

    International Nuclear Information System (INIS)

    Hurlbut, J.A.; Bokowski, D.L.

    1976-01-01

    A method for determining trace amounts of beryllium in the presence of various anions and cations is described. The method involves use of a Perkin-Elmer Model 503 spectrophotometer equipped with an HGA-2100 graphite furnace. The absorption signal from 20 ng/ml of beryllium varies significantly from acid to acid, and both 5 percent (V/V) nitric acid and 5 percent (V/V) sulfuric acid were studied as possible analysis solvents. Absorption signal enhancement and suppression caused by the presence of other chemicals appears similar in either solvent. Concentrations of more than 0.1M hydrochloric and hydrofluoric acid suppress the signal in both solvents. Group II cations, lanthanum, cerium, chromium, molybdenum, tungsten, manganese, aluminum, and silicon, when present in concentrations of 100 μg/ml, enhance the beryllium signal. The addition of 100 μg/ml of lanthanum increases the signal over two fold and masks the signal enhancement caused by the other listed elements; however, hydrochloric and hydrofluoric acids still interfere. The recovery of 20 ng/ml of beryllium in the presence of 100 μg/ml of lanthanum and in the presence of 100 μg/ml each of thirty elements tested is 20 μg/ml with a relative standard deviation of 4 percent and a range of 19 to 22 ng/ml. The presence of lanthanum permits direct detection of less than 1 ng/ml of beryllium in urine

  10. Flame and flameless atomic-absorption determination of tellurium in geological materials

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.; Hubert, A.E.

    1978-01-01

    The sample is digested with a solution of hydrobromic acid and bromine and the excess of bromine is expelled. After dilution of the solution to approximately 3 M in hydrobromic acid, ascorbic acid is added to reduce iron(III) before extraction of tellurium into methyl isobutyl ketone (MIBK). An oxidizing air-acetylene flame is used to determine tellurium in the 0.1-20 ppm range. For samples containing 4-200 ppb of tellurium, a carbon-rod atomizer is used after the MIBK extract has been washed with 0.5 M hydrobromic acid to remove the residual iron. The flame procedure is useful for rapid preliminary monitoring, and the flameless procedure can determine tellurium at very low concentrations. ?? 1978.

  11. Methylmercury determination using a hyphenated high performance liquid chromatography ultraviolet cold vapor multipath atomic absorption spectrometry system

    International Nuclear Information System (INIS)

    Campos, Reinaldo C.; Goncalves, Rodrigo A.; Brandao, Geisamanda P.; Azevedo, Marlo S.; Oliveira, Fabiana; Wasserman, Julio

    2009-01-01

    The present work investigates the use of a multipath cell atomic absorption mercury detector for mercury speciation analysis in a hyphenated high performance liquid chromatography assembly. The multipath absorption cell multiplies the optical path while energy losses are compensated by a very intense primary source. Zeeman-effect background correction compensates for non-specific absorption. For the separation step, the mobile phase consisted in a 0.010% m/v mercaptoethanol solution in 5% methanol (pH = 5), a C 18 column was used as stationary phase, and post column treatment was performed by UV irradiation (60 deg. C, 13 W). The eluate was then merged with 3 mol L -1 HCl, reduction was performed by a NaBH 4 solution, and the Hg vapor formed was separated at the gas-liquid separator and carried through a desiccant membrane to the detector. The detector was easily attached to the system, since an external gas flow to the gas-liquid separator was provided. A multivariate approach was used to optimize the procedure and peak area was used for measurement. Instrumental limits of detection of 0.05 μg L -1 were obtained for ionic (Hg 2+ ) and HgCH 3 + , for an injection volume of 200 μL. The multipath atomic absorption spectrometer proved to be a competitive mercury detector in hyphenated systems in relation to the most commonly used atomic fluorescence and inductively coupled plasma mass spectrometric detectors. Preliminary application studies were performed for the determination of methyl mercury in sediments.

  12. Methylmercury determination using a hyphenated high performance liquid chromatography ultraviolet cold vapor multipath atomic absorption spectrometry system

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Reinaldo C. [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S Vicente 225, 22453-900 Rio de Janeiro (Brazil)], E-mail: rccampos@puc-rio.br; Goncalves, Rodrigo A.; Brandao, Geisamanda P.; Azevedo, Marlo S. [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S Vicente 225, 22453-900 Rio de Janeiro (Brazil); Oliveira, Fabiana; Wasserman, Julio [Institut of Geosciences, Fluminense Federal University, Av. Gal. Milton Tavares de Souza, s/n, 24.210-340, Niteroi, Rio de Janeiro (Brazil)

    2009-06-15

    The present work investigates the use of a multipath cell atomic absorption mercury detector for mercury speciation analysis in a hyphenated high performance liquid chromatography assembly. The multipath absorption cell multiplies the optical path while energy losses are compensated by a very intense primary source. Zeeman-effect background correction compensates for non-specific absorption. For the separation step, the mobile phase consisted in a 0.010% m/v mercaptoethanol solution in 5% methanol (pH = 5), a C{sub 18} column was used as stationary phase, and post column treatment was performed by UV irradiation (60 deg. C, 13 W). The eluate was then merged with 3 mol L{sup -1} HCl, reduction was performed by a NaBH{sub 4} solution, and the Hg vapor formed was separated at the gas-liquid separator and carried through a desiccant membrane to the detector. The detector was easily attached to the system, since an external gas flow to the gas-liquid separator was provided. A multivariate approach was used to optimize the procedure and peak area was used for measurement. Instrumental limits of detection of 0.05 {mu}g L{sup -1} were obtained for ionic (Hg{sup 2+}) and HgCH{sub 3}{sup +}, for an injection volume of 200 {mu}L. The multipath atomic absorption spectrometer proved to be a competitive mercury detector in hyphenated systems in relation to the most commonly used atomic fluorescence and inductively coupled plasma mass spectrometric detectors. Preliminary application studies were performed for the determination of methyl mercury in sedi0011men.

  13. Application of methane as a gaseous modifier for the determination of silicon using electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Hans-Joachim, E-mail: hans-joachim.heinrich@bam.de; Kipphardt, Heinrich

    2012-04-15

    For determination of silicon in aqueous solutions by electrothermal atomic absorption spectrometry methane/argon mixtures as a gaseous modifier were applied during the pyrolysis step to improve the analytical performance. The beneficial effects observed on thermal stabilization, signal enhancement and shape of absorbance signals were attributed to the thermal decomposition products of methane, which were hydrogen and carbon black (soot). Using a 5% CH{sub 4} mixture with argon, the optimized pyrolysis and atomization temperatures were 1350 Degree-Sign C and 2450 Degree-Sign C, respectively. A flushing step following the pyrolysis was mandatory to avoid background absorption and accelerated deposition of pyrolytic graphite. Characteristic masses of 50 and 30 pg were obtained for standard transversely heated graphite atomizer (THGA) tubes and end-capped THGA tubes, respectively, which were lower than with other previously applied modifiers. A limit of detection of 0.2 {mu}g L{sup -1} (3 s, n = 10) has been obtained. In addition, this gaseous modifier did not contribute to contamination which often was significant when a liquid modifier solution was co-injected. The proposed method has been applied to the determination of silicon in ultrapure water, nitric and hydrochloric acids. - Highlights: Black-Right-Pointing-Pointer CH{sub 4}/Ar gas mixtures act as new modifier in the determination of Si using ET AAS. Black-Right-Pointing-Pointer CH{sub 4} improved thermal stabilization, atomization efficiency and signal shape of Si. Black-Right-Pointing-Pointer Optimum performance by addition of 5% CH{sub 4} during pyrolysis at 1350 Degree-Sign C. Black-Right-Pointing-Pointer Gaseous modifier does not contribute to blank values. Black-Right-Pointing-Pointer Optimized method suitable for determination of Si in ultrapure reagents.

  14. Optimization of trace elements determination (Arsenic and chromium) in blood and serum of human by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ahmadi Faghih, M. A.; Aflaki, F.

    2003-01-01

    Trace elements play an important role in the bio physiology of cells by affecting their growth and contributions to various biological processes such as wound healing. Determination of toxic trace elements in biological fluids is an important subject of interest for toxicological purposes. Increasing the concentration of these elements in the blood levels, cause serious diseases in patients. Recently instrumental analysis procedures such as atomic absorption spectrometry have been used in clinical measurements for determination of many toxic trace elements in the biological samples. In this paper we are reporting the study of various methods of blood and serum samples preparation for determining the toxic trace elements of Arsenic and Chromium. The measurement of this elements performed by using electrothermal atomic absorption spectrometry. The best and reliable results for Chromium analysis was achieved by injection of diluted serum samples, where the samples were diluted with H CI 0.1N. In Arsenic analysis, the best results obtained by extraction with aqueous solution of TCA. For determining all of these elements the RSD% was less than 5%

  15. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry.

    Science.gov (United States)

    Tuzen, Mustafa; Soylak, Mustafa; Citak, Demirhan; Ferreira, Hadla S; Korn, Maria G A; Bezerra, Marcos A

    2009-03-15

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L(-1) nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 microg L(-1), respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 microg L(-1). The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.

  16. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Soylak, Mustafa; Citak, Demirhan; Ferreira, Hadla S.; Korn, Maria G.A.; Bezerra, Marcos A.

    2009-01-01

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L -1 nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 μg L -1 , respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 μg L -1 . The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish

  17. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa [Department of Chemistry, Gaziosmanpasa University, 60250 Tokat (Turkey); Soylak, Mustafa [Department of Chemistry, Erciyes University, 38039 Kayseri (Turkey)], E-mail: soylak@erciyes.edu.tr; Citak, Demirhan [Department of Chemistry, Gaziosmanpasa University, 60250 Tokat (Turkey); Ferreira, Hadla S.; Korn, Maria G.A. [Universidade Federal da Bahia, Instituto de Quimica, 40170-290 Salvador (Brazil); Bezerra, Marcos A. [Universidade Estadual do Sudoeste da Bahia, 45200-190 Jequie (Brazil)

    2009-03-15

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L{sup -1} nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 {mu}g L{sup -1}, respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 {mu}g L{sup -1}. The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.

  18. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Vilar Farinas, M. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Barciela Garcia, J. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Garcia Martin, S. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Pena Crecente, R. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Herrero Latorre, C. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain)]. E-mail: cherrero@lugo.usc.es

    2007-05-22

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO{sub 3}){sub 2} and (NH{sub 4})H{sub 2}PO{sub 4}-Mg(NO{sub 3}){sub 2}] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 {mu}g L{sup -1}), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged

  19. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    International Nuclear Information System (INIS)

    Vilar Farinas, M.; Barciela Garcia, J.; Garcia Martin, S.; Pena Crecente, R.; Herrero Latorre, C.

    2007-01-01

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO 3 ) 2 and (NH 4 )H 2 PO 4 -Mg(NO 3 ) 2 ] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 μg L -1 ), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged -1

  20. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer.

    Science.gov (United States)

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-06-20

    Atomization conditions for antimony hydride in the plasma atomizer based on a dielectric barrier discharge (DBD) with atomic absorption spectrometric detection were optimized. Argon was found as the best discharge gas under a flow rate of 50 mL min - 1 while the DBD power was optimum at 30 W. Analytical figures of merit including interference study of As, Se and Bi have been subsequently investigated and the results compared to those found in an externally heated quartz tube atomizer (QTA). The limit of detection (LOD) reached in DBD (0.15 ng mL -1  Sb) is comparable to that observed in QTA (0.14 ng mL -1  Sb). Finally, possibility of Sb preconcentration by stibane in situ trapping in a DBD atomizer was studied. For trapping time of 300 s, the preconcentration efficiency and LOD, respectively, were 103 ± 2% and 0.02 ng mL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Surfactant/oil/water system for the determination of selenium in eggs by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Ieggli, C. V. S.; Bohrer, D.; Noremberg, S.; do Nascimento, P. C.; de Carvalho, L. M.; Vieira, S. L.; Reis, R. N.

    2009-06-01

    An oil-in-water formulation has been optimized to determine trace levels of selenium in whole hen eggs by graphite furnace atomic absorption spectrometry. This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures. Graphite furnace atomic absorption spectrometric (GF AAS) measurement was carried out using standard addition calibration and Pd as a modifier. The precision, expressed as relative standard deviation, was better than 5% and the limit of detection was 1 µg L - 1 . The validation of the method was performed against a standard reference material Whole Egg Powder (RM 8415), and the measured Se corresponded to 95.2% of the certified value. The method was used for the determination of the Se level in eggs from hens treated with Se dietary supplements. Inorganic and organic Se sources were added to hen feed. The Se content of eggs was higher when hens were fed with organic Se compared to the other treatments. The proposed method, including sample emulsification for subsequent Se determination by GF AAS has proved to be sensitive, reproducible, simple and economical.

  2. Surfactant/oil/water system for the determination of selenium in eggs by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ieggli, C.V.S. [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil); Bohrer, D. [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil)], E-mail: ndenise@quimica.ufsm.br; Noremberg, S.; Nascimento, P.C. do; Carvalho, L.M. de [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil); Vieira, S.L.; Reis, R.N. [Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 7712, CEP 90540-000, Porto Alegre (Brazil)

    2009-06-15

    An oil-in-water formulation has been optimized to determine trace levels of selenium in whole hen eggs by graphite furnace atomic absorption spectrometry. This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures. Graphite furnace atomic absorption spectrometric (GF AAS) measurement was carried out using standard addition calibration and Pd as a modifier. The precision, expressed as relative standard deviation, was better than 5% and the limit of detection was 1 {mu}g L{sup - 1}. The validation of the method was performed against a standard reference material Whole Egg Powder (RM 8415), and the measured Se corresponded to 95.2% of the certified value. The method was used for the determination of the Se level in eggs from hens treated with Se dietary supplements. Inorganic and organic Se sources were added to hen feed. The Se content of eggs was higher when hens were fed with organic Se compared to the other treatments. The proposed method, including sample emulsification for subsequent Se determination by GF AAS has proved to be sensitive, reproducible, simple and economical.

  3. Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination

    International Nuclear Information System (INIS)

    Pourreza, Nahid; Hoveizavi, Reza

    2005-01-01

    A simultaneous preconcentration method was developed for determination of trace amounts of Cu, Fe and Pb by atomic absorption spectrometry. The method is based on the retention of their methylthymol blue complexes by naphthalene methyltrioctyl ammonium chloride adsorbent in a column. The adsorbed metal complexes were eluted from the column with nitric acid and Cu, Fe and Pb were determined by flame atomic absorption spectrometry. Several parameters such as pH of the sample solution, ligand concentration, volume of the sample and the amount of methyltrioctyl ammonium chloride loaded on naphthalene were evaluated. The effect of diverse ions on the preconcentration was also investigated. A preconcentration factor of up to 100 or more can easily be achieved depending on the volume of the sample taken. The calibration graphs were obtained in the range of 5-40, 10-100 and 10-200 ng ml -1 for Cu, Fe and Pb in the initial solution, respectively, when using 500 ml of the solution. The detection limit based on three standard deviations of the blank was 0.54, 3.1, and 4.5 ng ml -1 for Cu, Fe and Pb, respectively. The relative standard deviations (R.S.D.) of 0.62-1.4% for Cu, 1.9-3.4% for Fe and 1.0-2.2% for Pb were obtained. The method was applied to the determination of Cu, Fe and Pb in river and wastewater samples

  4. Determination of Sodium, Potassium, Magnesium, and Calcium Minerals Level in Fresh and Boiled Broccoli and Cauliflower by Atomic Absorption Spectrometry

    Science.gov (United States)

    Nerdy

    2018-01-01

    Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.

  5. Determination of silver in fresh water by atomic absorption spectrometry following flotation preconcentration by iron(III) collectors

    Energy Technology Data Exchange (ETDEWEB)

    Cundeva, K.; Stafilov, T. [Institute of Chemistry, Faculty of Science, St. Cyril and Methodius University, Skopje (Yugoslavia)

    1997-08-01

    Colloid precipitate flotation of silver from fresh water is applied for preconcentration and separation. Optimal conditions using hydrated iron(III) oxide and iron(III) tetramethylenedithiocarbamate as collectors were investigated. Various factors affecting the silver recovery, including collector mass, nature of the supporting electrolyte, pH of the working medium, electrokinetic potential of the collector particle surfaces, type of surfactant, induction time etc., were checked. Within the optimal pH range (5.5-6.5) silver was separated quantitatively (94.9- 100.0%) with 30 mg Fe(III) as collector. The content of silver was determined by electrothermal atomic absorption spectrometry and compared to that from inductively coupled plasma-atomic emission spectrometry. The detection limit of silver by the method described is 0.01 {mu}g/L. (orig.) With 2 figs., 3 tabs.

  6. Determination of vanadium in sea water by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite

    International Nuclear Information System (INIS)

    Shimizu, Tokuo; Sakai, Kaoru

    1981-01-01

    The trace amount of vanadium in sea water was determined by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite. To correct the background absorption, a deuterium lamp with a higher-brilliant thermal cathode was used. The sensitivity for vanadium increased 10 -- 20 fold by the use of the tube coated with pyrolytic graphite, and the utility lifetime of the tube was greatly extended. Vanadium(V) - 4-(2-pyridylazo)resorcinol (PAR) complexes were extracted into chloroform as an ion-pair with benzyldimethyltetradecylammonium (Zephiramine) cation alternatively. The sample of sea water, which was made to 0.1 N in sulfuric acid and 0.1% in hydrogen peroxide, was loaded onto the column of Dowex 1-X 4 resin (SO 4 2- -form). Vanadium was then eluted from the resin with 1 N sulfuric acid-0.1% hydrogen peroxide or 1 N hydrochloric acid-0.1% hydrogen peroxide evaporated to dry. After dissolution of the elute in 0.2 N nitric acid, vanadium was extracted. Secondly, the sample of sea water was adjusted to pH 5.0, and loaded onto the column of Chelex-100 resin. Vanadium was eluted from the resin with 2 N ammonia. The above two methods took much time, but the coprecipitation method was not so and recommended for the determination of vanadium in sea water. Vanadium was coprecipitated with iron(III) hydroxide-hydrous titanium(IV) oxide at pH 6.0. The precipitate was digested with nitric acid-hydrogen peroxide. The solution was diluted to 50 ml with water. The resulting solutions were employed to determine the vanadium concentration by the graphite furnace atomic absorption measurement. The trace amounts of vanadium in various kinds of the coastal sea water were determined by the coprecipitation method. (author)

  7. Critical evaluation of analytical performance of atomic absorption spectrometry and inductively coupled plasma mass spectrometry for mercury determination

    International Nuclear Information System (INIS)

    Krata, A.; Bulska, E.

    2005-01-01

    The analytical performance of cold vapor atomic absorption spectrometry (CV AAS), graphite furnace atomic absorption spectrometry (GF AAS) and inductively coupled plasma mass spectrometry (ICP-MS) for mercury determination have been investigated with the use of two reference materials SRM 2710 Montana I Soil and BCR-144R (sewage sludge from domestic origin). The digestion conditions and their influence on determination of mercury have been studied. Samples were decomposed by microwave digestion in closed vessels with the use of HCl alone or mixture of HCl+HNO 3 +HF. The digestion solutions were analyzed by CV AAS using NaBH 4 as a reducing agent, by GF AAS with Pd or mixture of Pd/Rh as modifiers and by ICP-MS with Rh as internal standard. In the case of CV AAS, results were not dependent on digestion conditions. In the case of GF AAS and ICP-MS, results depended significantly on digestion conditions; in both cases, the use of the mixture of acids as defined above suppressed the signal of mercury. Therefore, in those cases, the microwave digestion with HCl is recommended. Detection limits of 0.003, 0.01 and 0.2 μg g -1 were achieved by ICP-MS, CV AAS and GF AAS, respectively

  8. Influence of soil composition in the determination of chromium by atomic absorption spectrometry with flame air / acetylene

    International Nuclear Information System (INIS)

    Duran Sosa, Ibis; Granda Valdes, Mayra; Pomares Alfonso, Mario Simeon

    2014-01-01

    The Air-acetylene Flame Atomic Absorption determination of chromium is a complex task, being strongly influenced by sample composition and instrumental conditions. The objective of this work was to study the influence of Al, Ca, Fe, K, Mg, and Na on the absorption of chromium in the air-acetylene flame, both separately and combined in solution, when acetylene flow and burner height vary. Dissolutions of the mixtures simulated the composition of four soils from the Quibu River Basin in Havana, Cuba. Chromium absorption first increased and then decreased with increment of acetylene flow for shorter burner heights (∼ 2-4 mm); while a continuous increase was observed for larger heights (> 4 mm). This behavior was the same in the presence and absence of interfering chemical element, mentioned above. On the other hand, the dependence of the magnitude of the interference with acetylene flow and burner height was complex and dependent on the interfering element, particularly at larger heights where the behavior of Al was remarkably different. The interference of the four mixtures of Al, Ca, K, Fe, Mg and Na decreased in comparison to individual interfering effects and was less dependent on acetylene flow and burner height. Finally, a significant reduction of interference on chromium determination in soil samples was achieved by an adequate selection of acetylene flow and burner height

  9. Determination of total selenium in nutritional supplements and selenised yeast by Zeeman-effect graphite furnace atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Ekelund, J.

    1989-01-01

    A method for the determination of total selenium in nutritional supplements and selenised yeast is described. The samples were ashed in nitric acid. Hydrochloric acid was used to prevent precipitation of, in particular, iron salts. After appropriate dilutions, the selenium was determined by Zeeman......-effect background corrected graphite furnace atomic absorption spectrometry. A furnace ashing step at 1100 °C was necessary in order to obtain a total recovery of selenium when present in the organic form. Palladium nitrate-magnesium nitrate was used as a matrix modifier. Independent methods were used to determine...... the content of selenium in a selenised yeast check sample. Accuracy was assured using this sample and by recovery experiments. Between-day random error showed a coefficient of variation of 4.2%. Results from the analysis of eight different commercial supplements were in good agreement with declared contents....

  10. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    Science.gov (United States)

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  11. Sensitivity improvement for antimony determination by using in-situ atom trapping in a slotted quartz tube and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Titretir, Serap, E-mail: serap.titretir@inonu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Inoenue University, 44280 Malatya (Turkey); S Latin-Small-Letter-Dotless-I k, Ahmet Inanc [Department of Chemistry, Faculty of Arts and Sciences, Inoenue University, 44280 Malatya (Turkey); Arslan, Yasin [Department of Chemistry, Faculty of Arts and Sciences, Mehmet Akif Ersoy University, Istiklal Yerleskesi, 15030 Burdur (Turkey); Ataman, O. Yavuz [Department of Chemistry, Faculty of Arts and Sciences, Middle East Technical University, 06800 Ankara (Turkey)

    2012-11-15

    Significant improvement has been achieved for antimony determination using a slotted quartz tube (SQT) as an atom trap (AT) for in situ preconcentration and flame atomic absorption spectrometry (FAAS). The suggested technique consists of trapping analyte species during ordinary nebulization followed by releasing the collected analyte via introducing organic solvent. Procedures and analytical figures of merit have been presented for the techniques called FAAS, SQT-FAAS and finally SQT-AT-FAAS with the relevant comparisons. Analytical parameters, namely composition of the aqueous medium, sample flow rate, flame conditions, distance between burner head and SQT, sampling period and type of organic solvent and its volume have been optimized. Using SQT-AT-FAAS, a sensitivity enhancement of 369 fold has been obtained, 3 s limit of detection was 3.9 {mu}g L{sup -1} when 25.0 mL of sample was collected in 4.0 min. Interference effects of some elements on antimony signal were studied. - Highlights: Black-Right-Pointing-Pointer Atom trapping in a quartz tube was used for Sb with flame AAS. Black-Right-Pointing-Pointer An inexpensive, simple and sensitive analytical method was suggested for Sb. Black-Right-Pointing-Pointer Almost no background absorption was observed. Black-Right-Pointing-Pointer Range is in microgram per liter level.

  12. Sensitivity improvement for antimony determination by using in-situ atom trapping in a slotted quartz tube and flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Titretir, Serap; Şık, Ahmet İnanç; Arslan, Yasin; Ataman, O. Yavuz

    2012-01-01

    Significant improvement has been achieved for antimony determination using a slotted quartz tube (SQT) as an atom trap (AT) for in situ preconcentration and flame atomic absorption spectrometry (FAAS). The suggested technique consists of trapping analyte species during ordinary nebulization followed by releasing the collected analyte via introducing organic solvent. Procedures and analytical figures of merit have been presented for the techniques called FAAS, SQT-FAAS and finally SQT-AT-FAAS with the relevant comparisons. Analytical parameters, namely composition of the aqueous medium, sample flow rate, flame conditions, distance between burner head and SQT, sampling period and type of organic solvent and its volume have been optimized. Using SQT-AT-FAAS, a sensitivity enhancement of 369 fold has been obtained, 3 s limit of detection was 3.9 μg L −1 when 25.0 mL of sample was collected in 4.0 min. Interference effects of some elements on antimony signal were studied. - Highlights: ► Atom trapping in a quartz tube was used for Sb with flame AAS. ► An inexpensive, simple and sensitive analytical method was suggested for Sb. ► Almost no background absorption was observed. ► Range is in microgram per liter level.

  13. Determination of mercury in an assortment of dietary supplements using an inexpensive combustion atomic absorption spectrometry technique.

    Science.gov (United States)

    Levine, Keith E; Levine, Michael A; Weber, Frank X; Hu, Ye; Perlmutter, Jason; Grohse, Peter M

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a result, manufacturers and regulatory agencies concerned with monitoring lot-to-lot product quality may find this approach an attractive alternative to the more classical acid-decomposition, cold vapor atomic absorption methodology. Dietary supplement samples analyzed included astragalus, calcium, chromium picolinate, echinacea, ephedra, fish oil, ginger, ginkgo biloba, ginseng, goldenseal, guggul, senna, St John's wort, and yohimbe products. Quality control samples analyzed with the dietary supplements indicated a high level of method accuracy and precision. Ten replicate preparations of a standard reference material (NIST 1573a, tomato leaves) were analyzed, and the average mercury recovery was 109% (2.0% RSD). The method quantitation limit was 0.3 ng, which corresponded to 1.5 ng/g sample. The highest found mercury concentration (123 ng/g) was measured in a concentrated salmon oil sample. When taken as directed by an adult, this product would result in an approximate mercury ingestion of 7 mug per week.

  14. Determination of trace elements in Egyptian cane sugar (Deshna Factories) by neutron activation, atomic absorption spectrophotometric and inductively coupled plasma-atomic emission spectrometric analysis

    International Nuclear Information System (INIS)

    Awadallah, R.M.; Sherif, M.K.; Mohamed, A.E.; Grass, F.

    1986-01-01

    Multielement instrumental neutron activation (INAA), inductively coupled plasma-atomic emission spectrometric (ICP-AES) and atomic absorption spectrophotometric (AAS) analyses were utilized for the determination of Ag, Al, As, Au, Ba, Be, Br, Ca, Cd, Ce, Cl, Co, Cr, Cu, Eu, Fe, Ga, Hf, K, La, Li, Lu, Mg, Mn, Na, Nb, Ni, P, Pb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Th, Ti, U, V, W and Zn in sugar cane plant, raw juice, juice in different stages, syrup, deposits, molasses, A, B and C sugar, refinery 1 and 2 sugar, and in soil samples picked up from the immediate vicinity of the cane plant roots at surface, 30 and 60 cm depth, respectively. (author)

  15. Atomic absorption spectrophotometric determination of microamounts of beryllium in aluminum and copper using solvent extraction with acetylacetone

    International Nuclear Information System (INIS)

    Matsusaki, Koji

    1975-01-01

    A sensitive method for the determination of microamounts of beryllium in aluminum and copper by atomic absorption spectrophotometry using the methylisobutylketone (MIBK) extraction with acetylacetone (AA) was investigated. An aqueous sample solution containing (0.5--5)μg of beryllium and less than 100 mg of aluminum or less than 500 mg of copper was taken into a 100-ml separation funnel, and 2 ml of 5% AA, 20 mg of EDTA for 1 mg of aluminum or 8.8 mg of EDTA for 1 mg of copper, and 10 ml of saturated NaCl solution were added. The pH was adjusted to 5--7 with 10 ml of 2 M NaCH 3 COO-CH 3 COOH buffer, and the solution was diluted to 50 ml. After 10 minutes, the solution was shaken for 2 minutes with 10 ml of MIBK. The organic phase was introduced into a nitrous oxide-acetylene flame and the absorption measured at 234.9 nm against a reagent blank. None of metal elements interfered with the determination of beryllium, and beryllium above 0.001% in aluminum, and above 0.0002% in copper was determined. This method was successfully applied to the determination of beryllium in aluminum and copper alloys. (auth.)

  16. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  17. Membrane filtration of nickel(II) on cellulose acetate filters for its preconcentration, separation, and flame atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Soylak, Mustafa [Chemistry Dept., Faculty of Science Arts, University of Erciyes, Kayseri (Turkey); Unsal, Yunus Emre; Aydin, Ayse [Fen Bilimleri Enstitusu, University of Erciyes, Kayseri (Turkey); Kizil, Nebiye [Saglik Bilimleri Enstitusu, University of Erciyes, Kayseri (Turkey)

    2010-01-15

    An enrichment method for trace amounts of Ni(II), as 8-hydroxyquinoline chelates, has been established on a cellulose acetate membrane filter. Ni(II)-8-hydroxyquinoline chelates adsorbed on a membrane filter were eluted using 5 mL of 1 M HNO{sub 3}. The eluent nickel concentration was determined by a flame atomic absorption spectrometer. The influence of some analytical parameters, including pH, amount of reagent, sample volume, etc., on recovery was investigated. The interference of co-existent ions was studied. The nickel detection limit was 4.87 {mu}g/L. The method was applied to real samples for the determination of nickel(II) ions. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Determination of lead in water by electrothermal atomic absorption spectrometry with a nickel(II)-ammonium tartrate modifier

    International Nuclear Information System (INIS)

    Sekerka, I.; Lechner, J.F.

    1991-01-01

    A method is described for the determination of low concentrations of lead in water samples. Atomic absorption spectrometry is used with a tungsten ribbon furnace and Zeeman background correction. Interferences are eliminated by the addition of ammonium tartrate and nickel(II) nitrate to the samples to act as a matrix modifier and adjust the pH. The results show the superior performance of this modifier over other types used conventionally. The detection limit is 1 μg l -1 relative standard deviation of -1 can be obtained. The instrumentation is simple and the method is efficient for the determination of lead in various water samples. 25 refs.; 7 figs.; 6 tabs

  19. Determination of Zinc Ions in Environmental Samples by Dispersive Liquid- Liquid Micro Extraction and Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    F. Arabi

    2012-11-01

    Full Text Available In this work preconcentration of the Zn ions was investigated in water sample by Dispersive liquid- liquid micro extraction (DLLME using chloroform as an extraction solvent, methanol as a disperser solvent and 8-Hydroxyquinoline as a chelating agent. The determination of extracted ions was done by graphite furnace atomic absorption spectrometry. The influence of various analytical parameters including pH, extraction and disperser solvent type and volume and concentration of the chelating agent on the extraction efficiency of analyses was investigated. After extraction, the enrichment factor was 26 and the detection limit of the method was 0.0033 µg l-1 and the relative standard deviations (R.S.D for five determinations of 1 ng/ml Zn were 7.41%. 

  20. Determination of total tin in geological materials by electrothermal atomic-absorption spectrophotometry using a tungsten-impregnated graphite furnace

    Science.gov (United States)

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    An electrothermal atomic-absorption spectrophotometric method is described for the determination of total tin in geological materials, with use of a tungsten-impregnated graphite furnace. The sample is decomposed by fusion with lithium metaborate and the melt is dissolved in 10% hydrochloric acid. Tin is then extracted into trioctylphosphine oxide-methyl isobutyl ketone prior to atomization. Impregnation of the furnace with a sodium tungstate solution increases the sensitivity of the determination and improves the precision of the results. The limits of determination are 0.5-20 ppm of tin in the sample. Higher tin values can be determined by dilution of the extract. Replicate analyses of eighteen geological reference samples with diverse matrices gave relative standard deviations ranging from 2.0 to 10.8% with an average of 4.6%. Average tin values for reference samples were in general agreement with, but more precise than, those reported by others. Apparent recoveries of tin added to various samples ranged from 95 to 111% with an average of 102%. ?? 1984.

  1. Determination of hafnium, molybdenum, and vanadium in niobium and niobium-based alloys by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ide, Kunikazu; Kobayashi, Takeshi; Sudo, Emiko.

    1985-01-01

    The analytical procedure is as follows: Weigh 1 g of a sample and put it into a 100 cm 3 PTFE beaker. Add 5 ml of distilled water and 5 ml of hydrofluoric acid, and then heat the solution on a hot plate, adding 3 ml of nitric acid dropwise. Dilute the solution to 100 cm 3 with distilled water. When hafnium is determined, add 2 g of diammonium titanium hexafluoride ((NH 4 ) 2 TiF 6 )) before dilution. Working standard solutions are prepared by adding the stock standard solutions of hafnium, molybdenum, and vanadium into niobium solutions. When hafnium is determined, add 2 g of (NH 4 ) 2 TiF 6 and the alloying elements in amounts corresponding to those in sample solutions into the working standard solutions. The tolerable amounts of hydrofluoric acid were 2.9 M, 2.1 M, and 3.1 M and those of nitric acid were 1.0 M, 1.6 M, and 1.6 M for hafnium, molybdenum, and vanadium, respectively. It was found that (NH 4 ) 2 TiF 6 greatly increased the sensitivity for hafnium determination. Niobium showed minus effect for hafnium and plus effect for molybdenum and vanadium. The atomic absorption of molybdenum and vanadium were not influenced by the presence of 20 % of each alloying element, while the atomic absorption of hafnium was given plus effect by 20 % of zirconium, iron, cobalt, nickel, manganese, chromium or vanadium and minus effect by 20 % tungsten. The analytical values of hafnium, molybdenum, and vanadium in niobium-based alloys by this method showed a good agreement with those by X-ray fluorescence analysis. The lower limits of determination (S/N=2) were 0.05, 0.001, and 0.002 % and the relative standard deviation were 3, 1, and 1.5 % for hafnium, molybdenum, and vanadium, respectively. (author)

  2. Determination of total arsenic in fish by hydride-generation atomic absorption spectrometry: method validation, traceability and uncertainty evaluation

    Science.gov (United States)

    Nugraha, W. C.; Elishian, C.; Ketrin, R.

    2017-03-01

    Fish containing arsenic compound is one of the important indicators of arsenic contamination in water monitoring. The high level of arsenic in fish is due to absorption through food chain and accumulated in their habitat. Hydride generation (HG) coupled with atomic absorption spectrometric (AAS) detection is one of the most popular techniques employed for arsenic determination in a variety of matrices including fish. This study aimed to develop a method for the determination of total arsenic in fish by HG-AAS. The method for sample preparation from American of Analytical Chemistry (AOAC) Method 999.10-2005 was adopted for acid digestion using microwave digestion system and AOAC Method 986.15 - 2005 for dry ashing. The method was developed and validated using Certified Reference Material DORM 3 Fish Protein for trace metals for ensuring the accuracy and the traceability of the results. The sources of uncertainty of the method were also evaluated. By using the method, it was found that the total arsenic concentration in the fish was 45.6 ± 1.22 mg.Kg-1 with a coverage factor of equal to 2 at 95% of confidence level. Evaluation of uncertainty was highly influenced by the calibration curve. This result was also traceable to International Standard System through analysis of Certified Reference Material DORM 3 with 97.5% of recovery. In summary, it showed that method of preparation and HG-AAS technique for total arsenic determination in fish were valid and reliable.

  3. Method corroboration for the determination of high concentration of chromium in various alloys using atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Khalid, A.; Rahman, S.

    2009-01-01

    Atomic absorption spectrophotometric technique was employed to determine high concentration of chromium as usually found in alloys. Different instrumental parameters, such as wavelength, slit width, burner height and flow rate of fuel were optimized, for the minimum absorption signal with low background. The effect of cations (Al/sup +3/, Ca/sup +2/, Cd/sup +2/, Co/sup +2/, Cu/sup +2/, Fe/sup +2/, K/sup +/, Li/sup +/, Mg/sup +2/, Mn/sup +2/, Mo/sup +6/, Na/sup +/, Ni/sup +2/, Sr/sup +2/, V/sup +2/ and Zn/sup +2/) and acids (HCl, HNO/sup 3/, HClO/sub 4/ and H/sup 2/SO/sub 4/) on the determination of chromium under the optimized conditions was studied. The reliability of the procedure was cross-checked by analyzing the alloy samples with other analytical techniques such as spectrometry, ICP-ES and neutron activation analysis and comparing the results, which are in quite good agreement with each other. The developed procedure was successfully applied for the determination of chromium in various types of alloys. (author)

  4. Direct determination of lead in human urine and serum samples by electrothermal atomic absorption spectrometry and permanent modifiers

    International Nuclear Information System (INIS)

    Andrada, Daniel; Pinto, Frederico G.; Magalhaes, Cristina Goncalves; Nunes, Berta R.; Silva, Jose Bento Borba da; Franco, Milton B.

    2006-01-01

    The object of the present study was the development of alternative methods for the direct determination of lead in undigested samples of human urine and serum by electrothermal atomic absorption spectrometry (ETAAS). Thus, some substances have been investigated to act as chemical modifiers. Volumes of 20 μL of diluted samples, 1 + 1, v/v for urine and 1 + 4, v/v for serum, with HNO 3 1% v/v and 0.02% v/v of cetyl trimethyl ammonium chloride (CTAC) were prepared directly in the autosampler cups and placed into the graphite furnace. For modifiers in solutions 10 μL were used. Pyrolysis and atomization temperature curves were used in all optimizations in the matrixes diluted as exposed. For urine with permanent iridium (500 μg), the best pyrolysis and atomization temperatures were 900 and 1600 deg C, respectively, with a characteristic mass of 12 pg (recommended of 10 pg), with symmetrical absorption pulses and corrected background. Spiked urine samples presented recoveries between 86 and 112% for Ir permanent. The analysis results of certified urine samples are in agreement with certified values (95% of confidence) for two levels of the metal. For serum, good results were obtained with the mixture of Zr+Rh or Ir+Rh as permanent modifiers, with characteristic masses of 9.8 and 8.1 pg, respectively. Recoveries from spiked serum samples varied between 98.6 and 100.1% (Ir+Rh) and between 93.9 and 105.2% (Zr+Rh). In both recovery studies, the relative standard deviation (n=3) was lower than 7%. Calibration for both samples were made with aqueous calibration curves and presented r 2 higher than 0.99. The limits of detection were 0.7 μg L -1 for serum samples, with Zr+Rh permanent, and 1.0 μg L -1 for urine with iridium permanent. (author)

  5. Direct determination of lead in human urine and serum samples by electrothermal atomic absorption spectrometry and permanent modifiers

    Directory of Open Access Journals (Sweden)

    Andrada Daniel

    2006-01-01

    Full Text Available The object of the present study was the development of alternative methods for the direct determination of lead in undigested samples of human urine and serum by electrothermal atomic absorption spectrometry (ET AAS. Thus, some substances have been investigated to act as chemical modifiers. Volumes of 20 µL of diluted samples, 1 + 1, v/v for urine and 1 + 4, v/v for serum, with HNO3 1% v/v and 0.02% v/v of cetil trimethyl ammonium chloride (CTAC were prepared directly in the autosampler cups and placed into the graphite furnace. For modifiers in solutions 10 µL were used. Pyrolysis and atomization temperature curves were used in all optimizations in the matrixes diluted as exposed. For urine with permanent iridium (500 µg, the best pyrolysis and atomization temperatures were 900 and 1600 ºC, respectively, with a characteristic mass of 12 pg (recommended of 10 pg, with symmetrical absorption pulses and corrected background. Spiked urine samples presented recoveries between 86 and 112% for Ir permanent. The analysis results of certified urine samples are in agreement with certified values (95% of confidence for two levels of the metal. For serum, good results were obtained with the mixture of Zr+Rh or Ir+Rh as permanent modifiers, with characteristic masses of 9.8 and 8.1 pg, respectively. Recoveries from spiked serum samples varied between 98.6 and 100.1% (Ir+Rh and between 93.9 and 105.2% (Zr+Rh. In both recovery studies, the relative standard deviation (n=3 was lower than 7%. Calibration for both samples were made with aqueous calibration curves and presented r² higher than 0.99. The limits of detection were 0.7 µg L-1 for serum samples, with Zr+Rh permanent, and 1.0 µg L-1 for urine with iridium permanent.

  6. Nickel and strontium nitrates as modifiers for the determination of selenium in wine by Zeeman electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, J. [Inst. of Agriculture, Skopje (Yugoslavia); Stafilov, T. [Inst. of Chemistry, Faculty of Science Sts. Cyril and Methodius Univ., Skopje (Yugoslavia); Mihajlovic, D. [RZ Tehnicka Kontrola, Skopje (Yugoslavia)

    2001-08-01

    A mixed matrix modifier of nickel and strontium nitrates was used as a chemical modifier for the determination of selenium in wines by Zeeman electrothermal atomic absorption spectrometry. Wine samples were heated on a boiling water bath with small amounts of nitric acid and hydrogen peroxide. For complete elimination of interference, especially from sulfates and phosphates, selenium is complexed with ammonium pyrolidinedithiocarbamate (APDTC), extracted into methyl isobutyl ketone (MIBK), and measured by ETAAS. The graphite furnace temperature program was optimized for both aqueous and organic solutions. Pyrolysis temperatures of 1300 C and 800 C were chosen for aqueous and organic solutions, respectively; 2700 C and 2100 C were used as optimum atomization temperatures for aqueous and organic solutions, respectively. The optimum modifier mass established is markedly lower than those presented in the literature. The platform atomization ensures pretreatment stabilization up to 1100 C and 1600 C, respectively, for organic and aqueous selenium solutions. The procedure was verified by the method of standard addition. The investigated wine samples originated from the different regions of the Republic of Macedonia. The selenium concentration varied from not detectable to 0.93 {mu}g L{sup -1}. (orig.)

  7. Determination of mercury and selenium in herbal medicines and hair by using a nanometer TiO2-coated quartz tube atomizer and hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Li, Shun-Xing; Zheng, Feng-Ying; Cai, Shu-Jie; Cai, Tian-Shou

    2011-01-01

    The nanometer TiO 2 particle was coated onto the inner wall of a T-shaped quartz tube atomizer (QTA) and then was used as a new atomizer (NT-QTA) for the determination of Hg and Se by hydride generation atomic absorption spectrometry (HGAAS). After coating 67.4 mg TiO 2 on a quartz tube, the analytical performance of NT-QTA-HGAAS was compared to conventional QTA-HGAAS and it was improved as follows: (a) the linear range of the calibration curves was expanded from 10.0-80.0 ng mL -1 to 5.0-150.0 ng mL -1 for Hg, and from 10.0-70.0 ng mL -1 to 5.0-100.0 ng mL -1 for Se; (b) the characteristic concentration of was decreased from 2.8 ng mL -1 /1% to 1.1 ng mL -1 /1% for Hg and from 1.2 ng mL -1 /1% to 0.8 ng mL -1 /1% for Se; and (c) the interference from the coexistence of As on the determination of Hg and Se could be eliminated. The achieved technique was applied for the determination of Hg and Se in herbal medicines and hair.

  8. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  10. Separation and enrichment of gold(III) from environmental samples prior to its flame atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    Senturk, Hasan Basri; Gundogdu, Ali; Bulut, Volkan Numan; Duran, Celal; Soylak, Mustafa; Elci, Latif; Tufekci, Mehmet

    2007-01-01

    A simple and accurate method was developed for separation and enrichment of trace levels of gold in environmental samples. The method is based on the adsorption of Au(III)-diethyldithiocarbamate complex on Amberlite XAD-2000 resin prior to the analysis of gold by flame atomic absorption spectrometry after elution with 1 mol L -1 HNO 3 in acetone. Some parameters including nitric acid concentration, eluent type, matrix ions, sample volume, sample flow rate and adsorption capacity were investigated on the recovery of gold(III). The recovery values for gold(III) and detection limit of gold were greater than 95% and 16.6 μg L -1 , respectively. The preconcentration factor was 200. The relative standard deviation of the method was -1 . The validation of the presented procedure was checked by the analysis of CRM-SA-C Sandy Soil certified reference material. The presented procedure was applied to the determination of gold in some environmental samples

  11. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium and nickel in drinking and wastewater samples.

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem G; Shah, Faheem; Afridi, Hassan I; Baig, Jameel Ahmed; Soomro, Abdul Sattar

    2013-01-01

    A simple method for the preconcentration of cadmium (Cd) and nickel (Ni) in drinking and wastewater samples was developed. Cloud point extraction has been used for the preconcentration of both metals, after formation of complexes with 8-hydroxyquinoline (8-HQ) and extraction with the surfactant octylphenoxypolyethoxyethanol (Triton X-114). Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation, and the Cd and Ni contents were measured by flame atomic absorption spectrometry. The experimental variables, such as pH, amounts of reagents (8-HQ and Triton X-114), temperature, incubation time, and sample volume, were optimized. After optimization of the complexation and extraction conditions, enhancement factors of 80 and 61, with LOD values of 0.22 and 0.52 microg/L, were obtained for Cd and Ni, respectively. The proposed method was applied satisfactorily for the determination of both elements in drinking and wastewater samples.

  12. Determination of total inorganic arsenic in potable water through spectroscopy of atomic absorption with generation of hydride

    International Nuclear Information System (INIS)

    Rodriguez Roman, Susan; Barquero, M.

    2000-01-01

    Arsenic is an element that has been studied in the analysis of environmental samples for its toxicity showed in very low concentrations. The objective of this work is the validation of a method for the determination of total inorganic arsenic in drinking water. Through the spectrophotometric technique of atomic absorption an automatic system of flow injection for the generation of hydrides is used. The prereduction of Arsenic was made with potasium iodide 1,5% m/v and ascorbic acid 0.25% m/v dissolved in hydrochloric acid 3,7% m/v. The recuperation percentage of the method was 97 ± 3% in a dynamic range to 30 μg/L. The detection limit was 0,7 μg/L established over 0,5 mL of sample. The samples analyzed were found under the set limits of normative in Costa Rica of 10 μg/L. (author) [es

  13. Study of new technique of solid combustible materials to determination of volatile elements by flame atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Campos, R.C. de.

    1988-01-01

    A new technique for direct trace element analysis of solid combustible materials is described. The samples (up to 10 mg) are weighed on a graphite platform wich is then placed in a quartz tube, at the focal point of three infrared lamps. When the lamps are turned on, the sample burns in a stream of air, and the resulting dry aerosol containing volatile elements such as Hg, Cd, Bi, Tl, Zn, Pb and Cu is carried into the mixing chamber and thence into the flame, where the atomic absorption measurement is carried out. This technique overcomes chemical sample preparation steps, avoiding contaminations of losses associated with these steps. A ''furnace in flame'' system where the aerosol is transported to a flame heated T-tube is also described. The influence of flame stoichiometry, observation height, platform material and air flux intensity was studied inorder to determine optimal analytical conditions. (author) [pt

  14. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Nascentes, Clesia C.; Kamogawa, Marcos Y.; Fernandes, Kelly G.; Arruda, Marco A.Z.; Nogueira, Ana Rita A.; Nobrega, Joaquim A.

    2005-01-01

    In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min -1 using 0.14 mol l -1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l -1 , respectively. The relative standard deviations varied from 2.7% to 7.3% (n=8) for solutions containing the analytes in the 25-50 μg l -1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0-155 μg l -1 ; Mn: 110-348 μg l -1 , Pb: 13.0-32.9 μg l -1 , and Zn: 52.7-226 μg l -1 . Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery

  15. Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap.

    Science.gov (United States)

    Demirtaş, İlknur; Bakırdere, Sezgin; Ataman, O Yavuz

    2015-06-01

    Flame atomic absorption spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity; because it is a simple and economical technique for determination of metals. In recent years, atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of µg/mL, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of the atom traps used to improve sensitivity. In atom trapping mode of SQT, analyte is trapped on-line in SQT for few minutes using ordinary sample aspiration, followed by the introduction of a small volume of organic solvent to effect the revolatilization and atomization of analyte species resulting in a transient signal. This system is economical, commercially available and easy to use. In this study, a sensitive analytical method was developed for the determination of lead with the help of SQT atom trapping flame atomization (SQT-AT-FAAS). 574 Fold sensitivity enhancement was obtained at a sample suction rate of 3.9 mL/min for 5.0 min trapping period with respect to FAAS. Organic solvent was selected as 40 µL of methyl isobutyl ketone (MIBK). To obtain a further sensitivity enhancement inner surface of SQT was coated with several transition metals. The best sensitivity enhancement, 1650 fold enhancement, was obtained by the Ta-coated SQT-AT-FAAS. In addition, chemical nature of Pb species trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. Raman spectrometric results indicate that tantalum is coated on SQT surface in the form of Ta2O5. XPS studies revealed that the oxidation state of Pb in species trapped on both bare and Ta coated SQT surfaces is +2. For the accuracy check, the analyses of standard reference material were performed by use of SCP SCIENCE EnviroMAT Low (EU-L-2) and results for Pb were to be in good agreement with

  16. Determination of arsenic in petroleum refinery streams by electrothermal atomic absorption spectrometry after multivariate optimization based on Doehlert design

    Science.gov (United States)

    Cassella, Ricardo J.; de Sant'Ana, Otoniel D.; Santelli, Ricardo E.

    2002-12-01

    This paper reports the development of a methodology for the determination of arsenic in petroleum refinery aqueous streams containing large amounts of unknown volatile organic compounds, employing electrothermal atomic absorption spectrometry with polarized Zeeman-effect background correction. In order to make the procedure applicable, the influence of chemical modification and the drying step was examined. Also, pyrolysis and atomization temperatures and the amount of nitric acid added to the sample were optimized using a multivariate approach based on Doehlert matrix. Obtained results indicate that, in this kind of sample, arsenic must be determined by standard addition procedure with a careful control of the drying step temperature and ramp pattern. In order to evaluate the accuracy of the procedure, a test was performed in six spiked samples of petroleum refinery aqueous streams and the relative errors verified in the analysis of such samples (added As between 12.5 and 190 μg l -1) ranged from -7.2 to +16.7%. The detection limit and the relative standard deviation were also calculated and the values are 68 pg and 7.5% (at 12.5 μg l -1 level), respectively.

  17. Determination of arsenic in petroleum refinery streams by electrothermal atomic absorption spectrometry after multivariate optimization based on Doehlert design

    International Nuclear Information System (INIS)

    Cassella, Ricardo J.; Sant'Ana, Otoniel D. de; Santelli, Ricardo E.

    2002-01-01

    This paper reports the development of a methodology for the determination of arsenic in petroleum refinery aqueous streams containing large amounts of unknown volatile organic compounds, employing electrothermal atomic absorption spectrometry with polarized Zeeman-effect background correction. In order to make the procedure applicable, the influence of chemical modification and the drying step was examined. Also, pyrolysis and atomization temperatures and the amount of nitric acid added to the sample were optimized using a multivariate approach based on Doehlert matrix. Obtained results indicate that, in this kind of sample, arsenic must be determined by standard addition procedure with a careful control of the drying step temperature and ramp pattern. In order to evaluate the accuracy of the procedure, a test was performed in six spiked samples of petroleum refinery aqueous streams and the relative errors verified in the analysis of such samples (added As between 12.5 and 190 μg l -1 ) ranged from -7.2 to +16.7%. The detection limit and the relative standard deviation were also calculated and the values are 68 pg and 7.5% (at 12.5 μg l -1 level), respectively

  18. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    Science.gov (United States)

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  19. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    International Nuclear Information System (INIS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; Furtado da Silva, Alessandra; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson Jose

    2005-01-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 deg. C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 deg. C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1

  20. Determination of mercury in gasoline by cold vapor atomic absorption spectrometry with direct reduction in microemulsion media

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Geisamanda Pedrini [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S. Vicente, 225, Gavea, 22453-900, Rio de Janeiro, RJ (Brazil); Calixto de Campos, Reinaldo [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S. Vicente, 225, Gavea, 22453-900, Rio de Janeiro, RJ (Brazil)]. E-mail: rccampos@rdc.puc-rio.br; Luna, Aderval Severino [Department of Analytical Chemistry, Rio de Janeiro State University, Rua S. Francisco Xavier, s/n, Maracana, 20550-900, Rio de Janeiro, RJ (Brazil)

    2005-06-30

    The determination of Hg in gasoline by cold vapor atomic absorption spectrometry, after direct aqueous NaBH{sub 4} reduction in a three-component (microemulsion) medium, was investigated. Microemulsions were prepared by mixing gasoline with propan-1-ol and 50% v / v HNO{sub 3} at a 20 : 15 : 1 volume ratio. A long-term homogeneous system was immediately formed this way. After reduction, the Hg vapor generated in a reaction flask was transported to an intermediate K{sub 2}Cr{sub 2}O{sub 7}/H{sub 2}SO{sub 4} trap solution in order to avoid poisoning of the Au-Pt trap by the gasoline vapors. A second reduction step was then conducted and the generated Hg vapor transported to the Au-Pt trap, followed by thermal release of Hg{sup 0} and atomic absorption measurement. Purified N{sub 2} was used as purge and transport gas. After multivariate optimization by central composite design calibration graphs showed coefficients of correlation of 0.9999 and a characteristic mass of 2 ng was obtained. Typical coefficients of variation of 5% and 6% were found for ten consecutive measurements at concentration levels of 1 and 8 {mu}g L{sup -1} of Hg{sup 2+}, respectively. The limit of detection was 0.10 {mu}g L{sup -1} (0.14 {mu}g kg{sup -1}) in the original sample. A total measurement cycle took 11 min, permitting duplicate analysis of 3 samples per hour. The results obtained with the proposed procedure in the analysis of commercial gasoline samples were in agreement with those obtained by a comparative procedure. Gasoline samples of the Rio de Janeiro city have shown Hg concentrations below 0.27 {mu}g L{sup -1}.

  1. Extraction atomic absorption determination of Cu, Ca, Mg and In in potassium chloride

    International Nuclear Information System (INIS)

    Telegin, G.F.; Chaplygin, V.I.

    1980-01-01

    Determination of microadmixtures of Cu, Ca, Mg, and In in potassium chloride by means of extraction separation of hydroxyquinolines of the elements determined by isoamyl alcohol from the sample basis is described. In is extracted in 10 min at pH 1.5-2.5% (100%). The extract is sprayed in the acetylene-air flame. Lower limits of the concentrations determined are 10 -5 -10 -7 %

  2. Determination of total inorganic arsenic in potable water through spectroscopy of atomic absorption with generation of hydride

    International Nuclear Information System (INIS)

    Rodriguez Roman, S.

    1997-01-01

    This study developed a method for the cuantitative analysis of arsenic in potable water , through the spectrophotometric technique of atomic absorption. It used an automatic system of injection of flux for the generation of hydrides. It studied the effect produced by reducer agents, in the prereduction of arsenic in water, obtaining the best result with the use of potasium iodide 1.5% and ascorbic acid 0.25% in hydrochloric acid 3.7%, for the direct determination of total inorganic arsenic. It observed the effect produced by cadmium and selenium to the half of the concentration of arsenic, chromium, lead and silver at the same concentration, and barium at a ten times higher concentration, in the recuperation of total inorganic arsenic. It also used sodium borohydride 0.3% in sodium hydroxide 0.05% (5mL/min), for the formation of the volatile hydrides. It used hydrochloric acid 3.7% (12 mL/min) as disolution of transport; argon as inert gas, and a flame air-acetylene, for the atomization of the hydrides. This method was applied to 19 samples of potable water, and the result was no detectable for all of them. (S. Grainger)

  3. On-line preconcentration and determination of mercury in biological and environmental samples by cold vapor-atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ferrua, N.; Cerutti, S.; Salonia, J.A.; Olsina, R.A.; Martinez, L.D.

    2007-01-01

    An on-line procedure for the determination of traces of total mercury in environmental and biological samples is described. The present methodology combines cold vapor generation associated to atomic absorption spectrometry (CV-AAS) with preconcentration of the analyte on a minicolumn packed with activated carbon. The retained analyte was quantitatively eluted from the minicolumn with nitric acid. After that, volatile specie of mercury was generated by merging the acidified sample and sodium tetrahydroborate(III) in a continuous flow system. The gaseous analyte was subsequently introduced via a stream of Ar carrier into the atomizer device. Optimizations of both, preconcentration and mercury volatile specie generation variables were carried out using two level full factorial design (2 3 ) with 3 replicates of the central point. Considering a sample consumption of 25 mL, an enrichment factor of 13-fold was obtained. The detection limit (3σ) was 10 ng L -1 and the precision (relative standard deviation) was 3.1% (n = 10) at the 5 μg L -1 level. The calibration curve using the preconcentration system for mercury was linear with a correlation coefficient of 0.9995 at levels near the detection limit up to at least 1000 μg L -1 . Satisfactory results were obtained for the analysis of mercury in tap water and hair samples

  4. Determination of tellurium in lead and lead alloy using flow injection-hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mesko, Marcia F.; Pozebon, Dirce; Flores, Erico M.M.; Dressler, Valderi L.

    2004-01-01

    A method based on flow injection-hydride generation atomic absorption spectrometry (FI-HG AAS) for the determination of trace amount of Te in lead and lead alloy is described. A flow injection system (FI) and related analytical parameters as well as Te determination and interference caused by Pb, Bi and Ag on Te were investigated. The Pb interference could be overcome by using a small sample volume, while the Bi interference could be overcome by thiourea. However, it was not possible to minimise the interference caused by Ag on Te. The optimised conditions for Te determination in the analysed samples were: 6 mol l -1 HCl as sample carrier solution, 0.75% (m/v) sodium tetrahydroborate as Te reductant, 40 μl of sample solution, and 200 ml min -1 Ar flow rate as carrier gas. The limit of quantification (LOQ) was 1.0 μg g -1 Te (using 250 mg of sample in 50 ml final solution), the limit of detection (LOD) was 2.5 μg l -1 and the relative standard deviation (RSD) was 6% for five consecutive measurements of sample solution. The standard addition calibration method was used. Relatively high sample throughput (ca. 45 sample runs can be performed in a working hour), reduced sample manipulation since matrix separation is not necessary, and minor waste generation are the main advantages of the proposed method for Te determination by FI-HG AAS

  5. Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Nakadi, Flávio V; Prodanov, Caroline; Boschetti, Wiliam; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2018-03-01

    Thermochemical processes can convert the biomass into fuels, such as bio-oil. The biomass submitted to pyrolysis process, such as fibers, are generally rich in silicon, an element that can lead to damages in an engine when there is high concentration in a fuel. High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is an interesting alternative for Si determination in the products and byproducts of the pyrolysis process because, besides the flame (F) and graphite furnace (GF) atomizers, it has enhanced the application of direct analysis of solid samples (SS) within GF. This study aimed the development of methods to determine Si in biomass samples, their products and byproducts using HR-CS AAS. A high-resolution continuum source atomic absorption spectrometer contrAA 700 equipped with F and GF atomizers was used throughout the study. HR-CS F AAS (λ = 251.611nm, 1 detection pixel, N 2 O/C 2 H 2 flame) was used to evaluate Si content in biomass and ash, after a microwave-assisted acid digestion with HNO 3 and HF. HR-CS GF AAS (T pyr = 1400°C, T atom = 2650°C) has evaluated Si in pyrolysis water and bio-oil at 251.611nm, and in peach pit biomass and ash at 221.174nm using SS, both wavelengths with 1 detection pixel. Rhodium (300μg) was applied as permanent modifier and 10μgPd + 6μg Mg were pipetted onto the standards/samples at each analysis. Three different biomass samples were studied: palm tree fiber, coconut fiber and peach pit, and three certified reference materials (CRM) were used to verify the accuracy of the methods. The figures of merit were LOD 0.09-20mgkg -1 , and LOQ 0.3-20mgkg -1 , considering all the methods. There were no significant differences between the CRM certified values and the determined ones, using a Student t-test with a confidence interval of 95% (n = 5). Si concentration ranged from 0.11-0.92% mm -1 , 1.1-1.7mgkg -1 , 3.3-13mgkg -1 , and 0.41-1.4%mm -1 , in biomass, bio-oil, pyrolysis water and ash, respectively

  6. Investigation of artifacts caused by deuterium background correction in the determination of phosphorus by electrothermal atomization using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Borges, Daniel L.G.; Welz, Bernhard; Silva, Marcia M.; Heitmann, Uwe

    2008-01-01

    The artifacts created in the measurement of phosphorus at the 213.6-nm non-resonance line by electrothermal atomic absorption spectrometry using line source atomic absorption spectrometry (LS AAS) and deuterium lamp background correction (D 2 BC) have been investigated using high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). The absorbance signals and the analytical curves obtained by LS AAS without and with D 2 BC, and with HR-CS AAS without and with automatic correction for continuous background absorption, and also with least-squares background correction for molecular absorption with rotational fine structure were compared. The molecular absorption due to the suboxide PO that exhibits pronounced fine structure could not be corrected by the D 2 BC system, causing significant overcorrection. Among the investigated chemical modifiers, NaF, La, Pd and Pd + Ca, the Pd modifier resulted in the best agreement of the results obtained with LS AAS and HR-CS AAS. However, a 15% to 100% higher sensitivity, expressed as slope of the analytical curve, was obtained for LS AAS compared to HR-CS AAS, depending on the modifier. Although no final proof could be found, the most likely explanation is that this artifact is caused by a yet unidentified phosphorus species that causes a spectrally continuous absorption, which is corrected without problems by HR-CS AAS, but which is not recognized and corrected by the D 2 BC system of LS AAS

  7. Investigation of ultraviolet photolysis vapor generation with in-atomizer trapping graphite furnace atomic absorption spectrometry for the determination of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Jeremy T. [Department of Chemistry, Biochemistry, and Physics, Marist College, 3399 North Road, Poughkeepsie, NY 12601 (United States); Fitzgerald, Neil [Department of Chemistry, Biochemistry, and Physics, Marist College, 3399 North Road, Poughkeepsie, NY 12601 (United States)], E-mail: neil.fitzgerald@marist.edu

    2009-09-15

    Generation of mercury vapor by ultraviolet irradiation of mercury solutions in low molecular weight organic acid solutions prior to measurement by Atomic Absorption Spectrometry is a cheap, simple and green method for determination of trace concentrations of mercury. In this work mercury vapor generated by ultraviolet photolysis was trapped onto a palladium coated graphite furnace significantly improving the detection limit of the method. The system was optimized and a detection limit of 0.12 {mu}g L{sup - 1} (compared to 2.1 {mu}g L{sup - 1} for a previously reported system in the absence of trapping) with a precision of 11% for a 10 {mu}g L{sup - 1} mercury standard (RSD, N = 5)

  8. Indium determination by spectral overlappings of lines in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gomez, J.J.; Huicque, L. d'; Garcia Vior, L.O.

    1991-01-01

    A molybdenum hollow-cathode lamp filled with neon can be used to determine indium. Characteristic concentration for this element is 4.5 mg/L in the 325 nm spectral region for the Mo(I) 325.621 nm line. In addition, values of 0.4 mg/L and 0.3 mg/L are obtained with the Mo(I) 410.215 nm and Ne(I) 451.151 nm lines, respectively. These spectral overlappings allow the determination of indium in silver-cadmium-indium alloys. (Author) [es

  9. Determination of indium in geological materials by electrothermal-atomization atomic absorption spectrometry with a tungsten-impregnated graphite furance

    Science.gov (United States)

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    The sample is fused with lithium metaborate and the melt is dissolved in 15% (v/v) hydrobromic acid. Iron(III) is reduced with ascorbic acid to avoid its coextraction with indium as the bromide into methyl isobutyl ketone. Impregnation of the graphite furnace with sodium tungstate, and the presence of lithium metaborate and ascorbic acid in the reaction medium improve the sensitivity and precision. The limits of determination are 0.025-16 mg kg-1 indium in the sample. For 22 geological reference samples containing more than 0.1 mg kg-1 indium, relative standard deviations ranged from 3.0 to 8.5% (average 5.7%). Recoveries of indium added to various samples ranged from 96.7 to 105.6% (average 100.2%). ?? 1984.

  10. Preconcentration of lead using solidification of floating organic drop and its determination by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mahmoud Chamsaz

    2013-07-01

    Full Text Available A simple microextraction method based on solidification of a floating organic drop (SFOD was developed for preconcentration of lead prior to its determination by electrothermal atomic absorption spectrometry (ETAAS. Ammonium pyrolidinedithiocarbamate (APDC was used as complexing agent, and the formed complex was extracted into a 20 μL of 1-undecanol. The extracted complex was diluted with ethanol and injected into a graphite furnace. An orthogonal array design (OAD with OA16 (45 matrix was employed to study the effects of different parameters such as pH, APDC concentration, stirring rate, sample solution temperature and the exposure time on the extraction efficiency. Under the optimized experimental conditions the limit of detection (based on 3 s and the enhancement factor were 0.058 μg L−1 and 113, respectively. The relative standard deviation (RSD for 8 replicate determinations of 1 μg L−1 of Pb was 8.8%. The developed method was validated by the analysis of certified reference materials and was successfully applied to the determination of lead in water and infant formula base powder samples.

  11. Flame Atomic Absorption Determination of Gold Ion in Aqueous Samples after Preconcentration Using 9-Acridinylamine Functionalized γ-Alumina Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Karimi

    2013-01-01

    Full Text Available A simple and sensitive solid phase extraction utilizing 9-acridinylamine functionalized alumina nanoparticles was developed, and their potential use for preconcentration and subsequent determination of gold by flame atomic absorption spectrometry (FAAS was investigated. A number of parameters, namely, type, concentration, and volume of eluent, pH of the sample solution, flow rate of extraction, and volume of the sample, were evaluated. The effect of a variety of ions on preconcentration and recovery was also investigated. Gold ions were found to be recovered quantitatively at pH 3.0, with 0.1 mol L−1 thiourea in 2 mol L−1 H2SO4 as eluent. The limit of detection (LOD, defined as five times the standard deviation of the blank, was determined to be lower than 13.0 ppb. Under optimum conditions, the accuracy and precision (RSD% of the method were >98.0 and <1.5%, respectively. To gauge its ability in terms of application to real samples, the proposed method was successfully applied for determination of gold concentration in waste water samples and one soil standard material, and satisfactory results were obtained.

  12. Graphene oxide sheets immobilized polystyrene for column preconcentration and sensitive determination of lead by flame atomic absorption spectrometry.

    Science.gov (United States)

    Islam, Aminul; Ahmad, Hilal; Zaidi, Noushi; Kumar, Suneel

    2014-08-13

    A novel solid-phase extractant was synthesized by coupling graphene oxide (GO) on chloromethylated polystyrene through an ethylenediamine spacer unit to develop a column method for the preconcentration/separation of lead prior to its determination by flame atomic absorption spectrometry. It was characterized by Fourier transform infrared spectroscopy, far-infrared spectroscopy, thermogravimetric analysis/differential thermal analysis, scanning electron microscopy, energy-dispersive spectrometry, and transmission electron microscopy. The abundant oxygen-containing surface functional groups form a strong complex with lead, resulting in higher sorption capacity (227.92 mg g(-1)) than other nanosorbents used for sorption studies of the column method. Using the column procedure here is an alternative to the direct use of GO, which restricts irreversible aggregation of GO and its escape into the ecosystem, making it an environmentally sustainable method. The column method was optimized by varying experimental variables such as pH, flow rate for sorption/desorption, and elution condition and was observed to exhibit a high preconcentration factor (400) with a low preconcentration limit (2.5 ppb) and a high degree of tolerance for matrix ions. The accuracy of the proposed method was verified by determining the Pb content in the standard reference materials and by recovery experiments. The method showed good precision with a relative standard deviation <5%. The proposed method was successfully applied for the determination of lead in tap water, electroplating wastewater, river water, and food samples after preconcentration.

  13. [Determination of metals in waste bag filter of steel works by microwave digestion-flame atomic absorption spectrometry].

    Science.gov (United States)

    Ning, Xun-An; Zhou, Yun; Liu, Jing-Yong; Wang, Jiang-Hui; Li, Lei; Ma, Xiao-Guo

    2011-09-01

    A method of microwave digestion technique-flame atomic absorption spectrometry was proposed to determine the total contents of Cu, Zn, Pb, Cd, Cr and Ni in five different kinds of waste bag filters from a steel plant. The digestion effects of the six acid systems on the heavy metals digestion were studied for the first time. The relative standard deviation (RSD) of the method was between 1.02% and 9.35%, and the recovery rates obtained by standard addition method ranged from 87.7% to 105.6%. The results indicated that the proposed method exhibited the advantages of simplicity, speediness, accuracy and repeatability, and it was suitable for determining the metal elements of the waste bag filter. The results also showed that different digestion systems should be used according to different waste bag filters. The waste bag filter samples from different production processes had different metal elements content. The Pb and Zn were the highest in the waste bag filters, while the Cu, Ni, Cd and Cr were relatively lower. These determination results provided the scientific data for further treatment and disposal of the waste bag filter.

  14. Direct analysis of Antarctic krill by slurry sampling: determination of copper, iron, manganese and zinc by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Alves Flávia L.

    2000-01-01

    Full Text Available Slurry sampling in combination with flame atomic absorption spectrometry was employed for the direct determination of four essential trace elements, namely Cu, Fe, Mn and Zn in Antarctic krill. The effect of instrumental operating conditions and slurry sampling preparation on the analytical signal was investigated. For the determination of Cu, Fe and Zn, samples were suspended in a solution containing 2 mol L-1 HNO3. In the case of Mn, 4 mol L-1 HNO3 was necessary for the preparation of the slurry. The precision between sample replicates was better than 5%. The method was applied to the direct determination of Cu, Fe, Mn and Zn in Antarctic krill samples using aqueous reference solutions to prepare the calibration curves. The results obtained were in good agreement with those achieved by FAAS and ICP-AES after microwave-assisted wet digestion of the krill samples. The detection limits were 4.5, 1.0, 4.9 and 8.4 mug L-1 for Cu, Zn, Mn and Fe, respectively.

  15. Optimization of Flame Atomic Absorption Spectrometry for ...

    African Journals Online (AJOL)

    Optimization of Flame Atomic Absorption Spectrometry for Measurement of High Concentrations of Arsenic and Selenium. ... This procedure allowed a rapid determination of As from minimum 4.462 mg/L to higher concentrations without sample pretreatment. Besides As, this method successfully measured Se concentrations ...

  16. A method optimization study for atomic absorption ...

    African Journals Online (AJOL)

    A sensitive, reliable and relative fast method has been developed for the determination of total zinc in insulin by atomic absorption spectrophotometer. This designed study was used to optimize the procedures for the existing methods. Spectrograms of both standard and sample solutions of zinc were recorded by measuring ...

  17. Evaluation of atomic absorption Spectrophotometry (ashing, non ...

    African Journals Online (AJOL)

    Three commonly used techniques, namely atomic absorption spectrophotometry (AAS-Ashing and AAS-Non Ashing) and titrimetry (potassium permanganate titration) have been evaluated in this study to determine the calcium content in six food samples whose calcium levels ranged from 0 to more than 250mg/100g ...

  18. Green method for ultrasensitive determination of Hg in natural waters by electrothermal-atomic absorption spectrometry following sono-induced cold vapor generation and 'in-atomizer trapping'

    International Nuclear Information System (INIS)

    Gil, Sandra; Lavilla, Isela; Bendicho, Carlos

    2007-01-01

    Sono-induced cold vapor generation (SI-CVG) has been used for the first time in combination with a graphite furnace atomizer for determination of Hg in natural waters by electrothermal-atomic absorption spectrometry after in situ trapping onto a noble metal-pretreated platform (Pd, Pt or Rh) inserted into a graphite tube. The system allows 'in-atomizer trapping' of Hg without the use of conventional reduction reactions based on sodium borohydride or tin chloride in acid medium for cold vapor generation. The sono-induced reaction is accomplished by applying ultrasound irradiation to the sample solution containing Hg(II) in the presence of an organic compound such as formic acid. As this organic acid is partly degraded upon ultrasound irradiation to yield CO, CO 2 , H 2 and H 2 O, the amount of lab wastes is minimized and a green methodology is achieved. For this purpose, experimental variables influencing the generation/trapping process are fully investigated. The limit of detection for a 10 min trapping time and 10 mL sample volume was 0.03 μg L -1 (Integrated absorbance) and the repeatability expressed as relative standard deviation was about 3%. Carbonates and chlorides at 100 mg L -1 level caused a signal depression by 20-30%. The enhanced trapping efficiency observed with the sono-induced cold vapor generation as compared with 'in-atomizer trapping' methods employing chemical vapor generation is discussed. A reaction pathway for SI-CVG is proposed on the basis of the current knowledge for synthesis of noble metal nanoparticles by ultrasound

  19. Determination of Cd and Pb in canned pineapple by atomic absorption spectroscopy using a graphite oven

    International Nuclear Information System (INIS)

    Linares P, G.; Sanchez P, L.; Benavides M, A.; Acosta L, C.

    1997-01-01

    Owing to the food susceptibility to be contaminated it is necessary to realize pursuit studies or frequent monitoring about the content of certain metals which represent health risks by its toxicological effects in the human being and another living organisms. In this work the cadmium and lead concentrations are determined in six national brands of canned pineapple analysing separately sugar sirup and the fruit. (Author)

  20. Extraction and atomic absorption spectrophotometric determination of iron and ruthenium by using potassium xanthates

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, M; Kiboku, M [Kinki Univ., Higashi-Osaka, Osaka (Japan)

    1981-06-01

    Potassium xanthates (potassium o-alkyl dithiocarbonate; KRX) react with many metal ions, and so the complex formation with iron (II, III) ion and the extraction of their complexes has been studied to some extent, but those of ruthenium (III) have not been. Iron-xanthate and ruthenium-xanthate complexes can be extracted into methyl isobutyl ketone (MIBK) from weakly acidic solution to weakly alkaline solution. For quantitative extraction of iron (20 ..mu..g/40 ml), KRX concentration should be above 2.0 x 10/sup -2/ mol dm/sup -3/ of KEtX, 1.0 x 10/sup -2/ mol dm/sup -3/ of KPrX, and 5.0 x 10/sup -3/ mol dm/sup -3/ of KBtX and KPeX, and for that of ruthenium (202 ..mu..g/40 ml), it should be above 2.0 x 10/sup -1/ mol dm/sup -3/ of KEtX and KPrX. Formation constant of ruthenium-xanthate complexes is presumed to be small. A 100-fold excess of Ni(II), Co(II), Cu(II), WO/sub 4//sup 2 -/, PO/sub 4//sup 3 -/, CrO/sub 4//sup 2 -/, and Cr/sub 2/O/sub 7//sup 2 -/ interfered with the determination of iron, however, the interferences are eliminated by adding 5 ml of 0.1 mol dm/sup -3/ ascorbic acid solution. For the determination of ruthenium, a 50-fold excess of Ag(I), Hg(II), Pb(II), Zn(II), Mn(II), Cr(III), and Pt(II), or a 100-fold excess of NO/sub 2//sup -/, S/sub 2/O/sub 3//sup 2 -/, CrO/sub 4//sup 2 -/ and Cr/sub 2/O/sub 7//sup 2 -/, respectively, interfered. The coefficient of variation after each ten runs, ranges from 0.9% to 3.2% in the determination of 10 ..mu..g, 20 ..mu..g, and 30 ..mu..g of iron, and from 1.4% to 4.3% in the determination of 100 ..mu..g, 200 ..mu..g, and 300 ..mu..g of ruthenium. The determination limit in aqueous samples is 0.02 ppm for iron and 0.2 ppm for ruthenium, when the volume ratio of aqueous phase to organic phase (MIBK) is 10:1.

  1. Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Pamela C. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Parsons, Patrick J. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Lead Poisoning/Trace Elements Laboratory, Wadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509 (United States)], E-mail: patrick.parsons@wadsworth.org

    2007-03-15

    Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass (m{sub 0}), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 {+-} 0.6 pg, compared to 16.1 {+-} 0.7 pg for the Z5100, and 23.3 {+-} 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection

  2. Metal concentrations in scleractinean corals determined by instrumental neutron activation analysis and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gomez Saunders, M.; Montero Cabrera, M.E.; Herrera Peraza, E.F.; Castellon Insua, L.; Gonzalez Labrada, K.; Lopez Reyes, M.C.

    1997-01-01

    Five species of scleractinean corals, extracted from the Northern Havana reef, were studied by INAA and AAS. Selected specimens were sectioned in 'foot', 'enter' and 'head' parts before pulverization procedure. INAA for different irradiation and decay time regimes in a reactor allowed the determination of: Na, Mg, Al, Cl, Sc, Cr, Co, Th, Lu, Eu, Ce, Hf, La and Sr. AAS was performed in a Pye Unicam Model 929 spectrometer. Cu, Mn, Ni, Zn, and Fe were detected. Ca concentration in all species was also established. Obtained Metal-Calcium ratios for Sr, Cu, Zn, Cr, Co, Fe, Mn, Ni and Sc are compared with reported values. (author)

  3. Determination of Cd, Pb and As in sediments of the Sava River by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    SIMONA MURKO

    2010-01-01

    Full Text Available The applicability of nitric acid, palladium nitrate and a mixture of palladium and magnesium nitrate as matrix modifiers were estimated for the accurate and reproducible determination of cadmium (Cd, lead (Pb and arsenic (As in sediments of the Sava River by electrothermal atomic absorption spectrometry, ETAAS. Decomposition of the samples was done in a closed vessel microwave-assisted digestion system using nitric, hydrochloric and hydrofluoric acids, followed by the addition of boric acid to convert the fluorides into soluble complexes. The parameters for the determination of Cd, Pb and As in sediments were optimised for each individual element and for each matrix modifier. In addition, two sediment reference materials were also analysed. In determination of Cd and Pb, nitric acid was found to be the most appropriate matrix modifier. The accurate and reliable determination of Cd and Pb in sediments was possible also in the presence of boric acid. The use of a mixture of palladium and magnesium nitrate efficiently compensated for matrix effects and enabled the accurate and reliable determination of As in the sediments. Quantification of Cd and As was performed by calibration using acid matched standard solutions, while the standard addition method was applied for the quantification of Pb. The repeatability of the analytical procedure for the determination of Cd, Pb and As in sediments was ±5 % for Cd, ±4 % for Pb and ±2 % for As. The LOD values of the analytical procedure were found to be 0.05 mg/kg for Cd and 0.25 mg/kg for Pb and As, while the LOQ values were 0.16 mg/kg for Cd and 0.83 mg/kg for Pb and As. Finally, Cd, Pb and As were successfully determined in sediments of the Sava River in Slovenia.

  4. Use of atomic absorption spectrometry to determine metallic impurities in coal

    International Nuclear Information System (INIS)

    Silva, M.J.S.F. da.

    1983-01-01

    The Brazilian Energetic Alternative Program expects the reduction of our dependence on foreign energy sources, by replacing fuel oil by mineral coal. Its gasification by means of nuclear energy must be also considered. However, the intensive burning of coal leads to serious environmental problems. During its combustion the release to atmosphere of toxic elements such as As, Hg, Pb, Zn and others is of great concern. Hence, it is important to have reliable analytical methods which can monitor inorganic constituents at various stages of coal production and utilization. The AAS is a suitable analytical technique to determine pollutants in coal because it is sensitive, simple, economic and cover a large range of concentration. The need of a previous treatment of sample is overcome by using an acid attack (HNO 3 + HClO 4 + HF) which has been proved to be rapid and efficient. (Author) [pt

  5. Determination of microamounts of potassium in sodium iodide by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ogasawara, Ken; Ohta, Masatoshi; Abe, Kenzo

    1980-01-01

    Microdetermination of potassium in sodium iodide was developed by the standard addition method. Twenty grams of sample were dissolved in 50 ml of water in a quartz beaker. To the solution, 30 ml of concentrated hydrochloric acid and 30 ml of 30% hydrogen peroxide were added, and evaporated to dryness. By this process sodium iodide was converted into sodium chloride. The cake thus obtained was dissolved in water and diluted to exactly 200 ml. To 25 ml aliquots of the solution, the standard potassium and cesium chloride solutions were added and diluted to 50 ml with water; the concentration of potassium was 0 -- 1 mg/l and that of cesium 4 mM. These solutions were introduced into an air-propane flame and the absorbances were measured at 769.9 nm. During the conversion reaction, hydrochloric acid was completely decomposed, and remained hydrogen peroxide had no influence for absorbance, and other backgrounds were negligible. The linear calibration curve was obtained in the range 0 -- 2 mg of potassium per liter. Potassium in sodium iodide was determined by this method within the coefficient of variation of +-(20 -- 3)% in the range (1.7 -- 32.5) ppm. (author)

  6. Standard test method for graphite furnace atomic absorption spectrometric determination of lead and cadmium extracted from ceramic foodware

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method covers procedures for using graphite furnace atomic absorption spectroscopy (GFAAS) to quantitatively determine lead and cadmium extracted by acetic acid at room temperature from the food-contact surface of foodware. The method is applicable to food-contact surfaces composed of silicate-based materials (earthenware, glazed ceramicware, decorated ceramicware, decorated glass, and lead crystal glass) and is capable of determining lead concentrations greater than 0.005 to 0.020 g/mL and cadmium concentrations greater than 0.0005 to 0.002 g/mL, depending on instrument design. 1.2 This test method also describes quality control procedures to check for contamination and matrix interference during GFAAS analyses and a specific sequence of analytical measurements that demonstrates proper instrument operation during the time period in which sample solutions are analyzed. 1.3 Cleaning and other contamination control procedures are described in this test method. Users may modify contamination cont...

  7. Atomic-absorption spectrometric determination of cobalt, nickel, and copper in geological materials with matrix masking and chelation-extraction

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.; Crenshaw, G.L.

    1979-01-01

    An atomic-absorption spectrometric method is reported for the determination of cobalt, nickel, and copper in a variety of geological materials including iron- and manganese-rich, and calcareous samples. The sample is decomposed with HP-HNO3 and the residue is dissolved in hydrochloric acid. Ammonium fluoride is added to mask iron and 'aluminum. After adjustment to pH 6, cobalt, nickel, and copper are chelated with sodium diethyl-dithiocarbamate and extracted into methyl isobutyl ketone. The sample is set aside for 24 h before analysis to remove interferences from manganese. For a 0.200-g sample, the limits of determination are 5-1000 ppm for Co, Ni, and Cu. As much as 50% Fe, 25% Mn or Ca, 20% Al and 10% Na, K, or Mg in the sample either individually or in various combinations do not interfere. Results obtained on five U.S. Geological Survey rock standards are in general agreement with values reported in the literature. ?? 1979.

  8. The use of slurry sampling for the determination of manganese and copper in various samples by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Tokman, Nilgun

    2007-01-01

    Manganese and copper in multivitamin-mineral supplements and standard reference materials were determined by slurry sampling electrothermal atomic absorption spectrometry. Slurries were prepared in an aqueous solution containing Triton X-100. The effects of different parameters such as ratio of solid to liquid phase volume, total slurry volume and addition of Triton X-100 as a dispersant on the analytical results were investigated. The graphite furnace programs were optimized for slurry sampling depending on the analytes and their concentrations in the samples. The linear calibration method with aqueous standard solutions was used for the quantification. At optimum experimental conditions, R.S.D. values were below 5%. The analytes were determined in the limits of 95% confidence level with respect to certified values in coal and soil standard reference materials and to those found by wet-digestion in multivitamin-mineral supplements. Detection limits (3δ) for Mn and Cu were 0.10 μg L -1 and 1.82 μg L -1 for 10 μL coal standard reference material slurry, respectively

  9. Electrothermal atomic absorption spectrometric determination of cobalt, copper, lead and nickel traces in aragonite following flotation and extraction separation.

    Science.gov (United States)

    Zendelovska, D; Pavlovska, G; Cundeva, K; Stafilov, T

    2001-03-30

    A method of determination of Co, Cu, Pb and Ni in nanogram quantities from aragonite is presented. Flotation and extraction of Co, Cu, Pb and Ni is suggested as methods for elimination matrix interferences of calcium. The method of flotation is performed by iron(III) hexamethylenedithiocarbamate, Fe(HMDTC)(3), as a colloid precipitate collector. The liquid-liquid extraction of Co, Cu, Pb and Ni is carried out by sodium diethyldithiocarbamate, NaDDTC, as complexing reagent into methylisobutyl ketone, MIBK. The electrothermal atomic absorption spectrometry (ETAAS) is used for determination of analytes. The detection limits of ETAAS followed by flotation are: 7.8 ng.g(-1) for Co, 17.1 ng.g(-1) for Cu, 7.2 ng.g(-1) for Pb and 9.0 mug.g(-1) for Ni. The detection limits of ETAAS followed by extraction are found to be: 12.0 ng.g(-1) for Co, 51.0 ng.g(-1) for Cu, 24.0 ng.g(-1) for Pb and 21.0 ng.g(-1) for Ni.

  10. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sun Mei; Wu Qianghua

    2010-01-01

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL -1 . The relative standard deviation (n = 7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin.

  11. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun Mei, E-mail: sunmei@ustc.edu.cn [Hefei National Laboratory for Physical Sciences on Microscale, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026 (China); Wu Qianghua [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL{sup -1}. The relative standard deviation (n = 7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin.

  12. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Sun, Mei; Wu, Qianghua

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL(-1). The relative standard deviation (n=7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin. 2009 Elsevier B.V. All rights reserved.

  13. Determination of essential and toxic elements in commercial baby foods by instrumental neutron activation analysis and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Vallinoto, Priscila

    2013-01-01

    The World Health Organization recommends that infants should be breast fed exclusively for at least six months after birth. After this period, it is recommended to start introducing complementary foods, in order to meet the child's nutritional, mineral and energy needs. Commercial food products for infants form an important part of the diet for many babies. Thus, it is very important that such food contains sufficient amounts of minerals. Inadequate complementary feeding is a major cause of high rates of infant malnutrition in developing countries. In this study, essential elements: Ca, Cl, Co, Cr, Fe, K, Mg, Mn, Na, Se and Zn and toxic elements: As, Cd, Hg levels were determined in twenty seven different commercial infant food product samples by Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometry (AAS). In order to validate both methodologies the reference material: INCT MPH-2 Mixed Polish Herbs and NIST - SRM 1577b Bovine Liver by INAA and NIST - SRM 1548th Typical Diet and NIST - SRM 1547 Peach Leaves by AAS were analyzed. The twenty seven baby food samples were acquired from Sao Paulo city supermarkets and stores. Essential and toxic elements were determined. Most of the essential element concentrations obtained were lower than the World Health Organization requirements, while concentrations of toxic elements were below the tolerable upper limit. These low essential element concentrations in these samples indicate that infants should not be fed only with commercial complementary foods. (author)

  14. Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy.

    Science.gov (United States)

    Akkaya, Erhan; Chormey, Dotse Selali; Bakırdere, Sezgin

    2017-09-20

    In this study, solidified floating organic drop microextraction (SFODME) by 1-undecanol was combined with slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) for the determination of cadmium at trace levels. Formation of a complex with 4,4'-dimethyl-2,2'-bipyridine facilitated the extraction of cadmium from aqueous solutions. Several chemical variables were optimized in order to obtain high extraction outputs. Parameters such as concentration of the ligand, pH, and amount of buffer solution were optimized to enhance the formation of cadmium complex. The SFODME method was assisted by dispersion of extractor solvent into aqueous solutions using 2-propanol. Under the optimum extraction and instrumental conditions, the limit of detection and limit of quantitation values obtained for cadmium using the combined methods (SFODME-SQT-FAAS) were found to be 0.4 and 1.3 μg L -1 , respectively. Matrix effects on the method were also examined for tap water and wastewater, and spiked recovery results were found to be very satisfactory. Graphical Abstract SFODME-SQT-FAAS system for sensitive determination of cadmium.

  15. Flame emission, atomic absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Horlick, G.

    1980-01-01

    Six hundred and thirty references are cited in this review. The information in the review is divided into 12 major areas: books, reviews, and bibliographies; fundamental studies in flames; developments in instrumentation; measurement techniques and procedure; flame emission spectrometry; flame atomic absorption spectrometry; flame molecular absorption spectrometry; electrothermal atomization atomic absorption spectroscopy; hydride generation techniques; graphite furnace atomic emission spectrometry; atomic fluorescence spectrometry; and analytical comparisons

  16. Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse

    International Nuclear Information System (INIS)

    Kılınç, Ersin; Bakırdere, Sezgin; Aydın, Fırat; Ataman, O. Yavuz

    2012-01-01

    Sensitivity of flame atomic absorption spectrometry (FAAS) for Bi determination was improved by slotted quartz tube (SQT) that was used also for atom trapping (AT). The trapped analyte was released by aspirating a small volume of organic solvent after a reasonable analyte collection time. Sensitivity was improved by 2.9 times by SQT-FAAS and 256 times by SQT-AT-FAAS with respect to FAAS. Optimum trapping period was found to be 6.0 min (36.0 mL of solution). Limit of detection (LOD) for SQT-AT-FAAS was found to be 1.6 ng mL −1 . %RSD was calculated as 4.0% for five replicate measurements of 7.5 ng mL −1 Bi by SQT-AT-FAAS. Accuracy of the method developed was checked by analyzing a standard reference material of simulated fresh water (NIST 1643e) and result found was in good agreement with the certified one. The method can be applied in any laboratory equipped with a flame AA spectrometer. The consumption of time and sample volume is fairly low and application is simple and easy.

  17. Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse

    Energy Technology Data Exchange (ETDEWEB)

    K Latin-Small-Letter-Dotless-I l Latin-Small-Letter-Dotless-I nc, Ersin, E-mail: ekilinc@dicle.edu.tr [Dicle University, Faculty of Science, Department of Chemistry, Laboratory of Chemical Analysis, TR 21280 Diyarbak Latin-Small-Letter-Dotless-I r (Turkey); Bak Latin-Small-Letter-Dotless-I rdere, Sezgin [Y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I z Technical University, Faculty of Education, Department of Science Education, TR 34210 Esenler-Istanbul (Turkey); Ayd Latin-Small-Letter-Dotless-I n, F Latin-Small-Letter-Dotless-I rat [Dicle University, Faculty of Science, Department of Chemistry, Laboratory of Chemical Analysis, TR 21280 Diyarbak Latin-Small-Letter-Dotless-I r (Turkey); Ataman, O. Yavuz [Middle East Technical University, Faculty of Arts and Sciences, Department of Chemistry, 06800 Ankara (Turkey)

    2012-07-15

    Sensitivity of flame atomic absorption spectrometry (FAAS) for Bi determination was improved by slotted quartz tube (SQT) that was used also for atom trapping (AT). The trapped analyte was released by aspirating a small volume of organic solvent after a reasonable analyte collection time. Sensitivity was improved by 2.9 times by SQT-FAAS and 256 times by SQT-AT-FAAS with respect to FAAS. Optimum trapping period was found to be 6.0 min (36.0 mL of solution). Limit of detection (LOD) for SQT-AT-FAAS was found to be 1.6 ng mL{sup -1}. %RSD was calculated as 4.0% for five replicate measurements of 7.5 ng mL{sup -1} Bi by SQT-AT-FAAS. Accuracy of the method developed was checked by analyzing a standard reference material of simulated fresh water (NIST 1643e) and result found was in good agreement with the certified one. The method can be applied in any laboratory equipped with a flame AA spectrometer. The consumption of time and sample volume is fairly low and application is simple and easy.

  18. Determination of palladium in various samples by atomic absorption spectrometry after preconcentration with dimethylglyoxime on silica gel

    International Nuclear Information System (INIS)

    Tokalioglu, Serife; Oymak, Tuelay; Kartal, Senol

    2004-01-01

    A preconcentration method based on the adsorption of palladium-dimethylglyoxime (DMG) complex on silica gel for the determination of palladium at trace levels by atomic absorption spectrometry (AAS) has been developed. The retained palladium as Pd(DMG) 2 complex was eluted with 1 mol l -1 HCl in acetone. The effect of some analytical parameters such as pH, amount of reagent and the sample volume on the recovery of palladium was examined in synthetic solutions containing street dust matrix. The influence of some matrix ions on the recovery of palladium was investigated by using the developed method when the elements were present both individually and together. The results showed that 2500 μg ml -1 Na + , K + , Mg 2+ , Al 3+ and Fe 3+ ; 5000 μg ml -1 Ca 2+ ; 500 μg ml -1 Pb 2+ ; 125 μg ml -1 Zn 2+ ; 50 μg ml -1 Cu 2+ and 25 μg ml -1 Ni 2+ did not interfere with the palladium signal. At the optimum conditions determined experimentally, the recovery for palladium was found to be 95.3±1.2% at the 95% confidence level. The relative standard deviation and limit of detection (3s/b) of the method were found to be 1.7% and 1.2 μg l -1 , respectively. In order to determine the adsorption behaviour of silica gel, the adsorption isotherm of palladium was studied and the binding equilibrium constant and adsorption capacity were calculated to be 0.38 l mg -1 and 4.06 mg g -1 , respectively. The determination of palladium in various samples was performed by using both flame AAS and graphite furnace AAS. The proposed method was successfully applied for the determination of palladium in the street dust, anode slime, rock and catalytic converter samples

  19. Determination of arsenic and cadmium in shellfish samples by graphite furnace atomic absorption spectrometry using matrix modifier

    International Nuclear Information System (INIS)

    Cortez Diaz, Mirella del Carmen

    2002-01-01

    Heavy metals are a big source of environmental contamination and are also highly toxic to humans. Since shellfish are bio-accumulators of these metals, proper techniques for quantifying them should be available. This work aims to develop an analytical method for the quantitative determination of heavy metals in biological materials (shellfish), specifically arsenic and cadmium at the trace level, using graphite furnace atomic absorption spectrometry, for which nickel and phosphate solutions were used to modify the modifiers. Prior to the analysis, the sample was diluted with nitric acid in a DAB II pressure digestion system order to destroy the organic matter. The instrument conditions were initially set (wavelength, slit, integration peaks, graphite tube, etc.), then the work range was defined for each element and the most appropriate operational parameters were studied, such as: temperature, ramp times, hold times and internal gas flow, in the different stage of the electrothermal treatment (drying, calcination, atomization) for the furnace program. Once the above mentioned conditions were set and since this was a biological sample, a matrix chemical modifier had to be used, in order to make the elements that accompany the element being studied more volatile. In this way the chemical and spectral interferences decrease together with the high background absorption of the matrix. Therefore, different matrix modifiers were studied for the definition of each analyte. The method validation was done using Certified Oyster Tissue Reference Material N o 1566a from the National Institute of Standards and Technology applying different tests in order to eliminate outliers. Repeatability, uncertainty, sensitivity, lineal range, working range, detection limit and quantification limit were evaluated for each element, and the results were compared with the values for the certified material. The Fisher and Student tests were the statistical tools used. The experimental values

  20. Determination of arsenic and cadmium in shellfish samples by graphite furnace atomic absorption spectrometry using matrix modifier

    International Nuclear Information System (INIS)

    Villalobos Aranda, Juan; Cortez Diaz, Mirella

    2003-01-01

    Serious problems of environmental contamination due to the activity of the man exist at the present time. Where the greater impact is the produced one by heavy metals that go to the sea. Where the shellfish can collect some of them, the highly toxic ones, since these are bioaccumulation of these metals. Therefore one becomes necessary to count with the reliable analytical procedures to determine these elements. The purpose of this work is to present the determination of arsenic and cadmium in shellfish, by spectroscopy of atomic absorption with graphite furnace. For each determined element, solutions of nickel and phosphate like matrix modifiers were used respectively The validation was made using a Reference Certified Material, Oyster ' Tissue 156 (National Institute of Standards and Technology). The sample previously was digested in triplicate by two consecutive days, with nitric acid in a pressure digestion system DAB 11. For each element it was evaluated: limit of detection and quantification, sensitivity, repeatability, linear, slope rank and uncertainty. In addition, the obtained results were compared with the certified values of the certified material of reference using like statistical tools the tests of Student and Fisher. In both tests the calculated values were smaller to the shown ones in table, for degrees of freedom with 95% of confidence. Thus it was verified that it does not exist significant differences between the precision and the average values of the results obtained with respect to the values of the certified material. In addition, the obtained parameters are appropriate for the determination of these trace elements in this type of environmental sample (author)

  1. Determination of Inorganic Arsenic in a Wide Range of Food Matrices using Hydride Generation - Atomic Absorption Spectrometry.

    Science.gov (United States)

    de la Calle, Maria B; Devesa, Vicenta; Fiamegos, Yiannis; Vélez, Dinoraz

    2017-09-01

    The European Food Safety Authority (EFSA) underlined in its Scientific Opinion on Arsenic in Food that in order to support a sound exposure assessment to inorganic arsenic through diet, information about distribution of arsenic species in various food types must be generated. A method, previously validated in a collaborative trial, has been applied to determine inorganic arsenic in a wide variety of food matrices, covering grains, mushrooms and food of marine origin (31 samples in total). The method is based on detection by flow injection-hydride generation-atomic absorption spectrometry of the iAs selectively extracted into chloroform after digestion of the proteins with concentrated HCl. The method is characterized by a limit of quantification of 10 µg/kg dry weight, which allowed quantification of inorganic arsenic in a large amount of food matrices. Information is provided about performance scores given to results obtained with this method and which were reported by different laboratories in several proficiency tests. The percentage of satisfactory results obtained with the discussed method is higher than that of the results obtained with other analytical approaches.

  2. Determination of trace metals in non-conventional oilseeds and oil bearing resources by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Anwer, T.; Kazi, T.G.; Bhanger, M.I.; Iqbal, S.; Anwar, F.

    2003-01-01

    The presence of small amount of trace metals in oil and fats is well known to produce deleterious effect. Crude oils and fat of rice bran varieties (super, 86), mango kernel and muskmelon were evaluated for the determination of Ca, Mg, and Zn by using atomic absorption spectrometric technique. Both rice bran varieties (super, 86) were found to contain high calcium content 12.72, 12.11 micro g/g respectively. In case of Mg, highest content noted in mango kernel 9.91 micro g/g and lowest concentration was in rice bran (super) 2.23 micro g/g. The concentration of Zn was high in rice bran (86) 21.0 micro g/g followed by mango kernel 14.4 micro g/g, rice bran (super) 12.20 micro g/g and muskmelon 8.71 micro g/g. The information gained in present study provides baseline for the stability of these oils. (author)

  3. Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Sandra [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain); Fragueiro, Sandra [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain); Lavilla, Isela [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain); Bendicho, Carlos [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain)]. E-mail: bendicho@uvigo.es

    2005-01-10

    A new method is proposed for preconcentration and matrix separation of methylmercury prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Generation of methylmercury hydride (MeHgH) from a 5-ml solution is carried out in a closed vial and trapped onto an aqueous single drop (3-{mu}l volume) containing Pd(II) or Pt(IV) (50 and 10 mg/l, respectively). The hydrogen evolved in the headspace (HS) after decomposition of sodium tetrahydroborate (III) injected for hydride generation caused the formation of finely dispersed Pd(0) or Pt(0) in the drop, which in turn, were responsible for the sequestration of MeHgH. A preconcentration factor of ca. 40 is achieved with both noble metals used as trapping agents. The limit of detection of methylmercury was 5 and 4 ng/ml (as Hg) with Pd(II) or Pt(IV) as trapping agents, and the precision expressed as relative standard deviation was about 7%. The preconcentration system was fully characterised through optimisation of the following variables: Pd(II) or Pt(IV) concentration in the drop, extraction time, pH of the medium, temperatures of both sample solution and drop, concentration of salt in the sample solution, sodium tetrahydroborate (III) concentration in the drop and stirring rate. The method has been successfully validated against two fish certified reference materials (CRM 464 tuna fish and CRM DORM-2 dogfish muscle) following selective extraction of methylmercury in 2 mol/l HCl medium.

  4. Discussion of parameters associated with the determination of arsenic by electrothermal atomic absorption spectrometry in slurried environmental samples.

    Science.gov (United States)

    Vassileva, E; Baeten, H; Hoenig, M

    2001-01-02

    A slurry sampling-fast program procedure has been developed for the determination of arsenic in plants, soils and sediments by electrothermal atomic absorption spectrometry. Efficiencies of various single and mixed modifiers for thermal stabilization of arsenic and for a better removal of the matrix during pyrolysis step were compared. The influence of the slurry concentration, amounts of modifier and parameters of the pyrolysis step on the As integrated absorbance signals have been studied and a comparison between fast and conventional furnace programs was also made. The ultrasonic agitation of the slurry followed by a fast electrothermal program using an Ir/Mg modifier provides the most consistent performance in terms of precision and accuracy. The reliability of the whole procedure has been compared with results obtained after application of a wet digestion method with an HF step and validated by analyzing eleven certified reference materials. Arsenic detection and quantitation limits expressed on dry sample matter were about 30 and 100 micrograms kg-1, respectively.

  5. Electrothermal atomic absorption spectrometric determination of copper in nickel-base alloys with various chemical modifiers*1

    Science.gov (United States)

    Tsai, Suh-Jen Jane; Shiue, Chia-Chann; Chang, Shiow-Ing

    1997-07-01

    The analytical characteristics of copper in nickel-base alloys have been investigated with electrothermal atomic absorption spectrometry. Deuterium background correction was employed. The effects of various chemical modifiers on the analysis of copper were investigated. Organic modifiers which included 2-(5-bromo-2-pyridylazo)-5-(diethylamino-phenol) (Br-PADAP), ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2-pyridylazo)resorcinol, ethylenediaminetetraacetic acid and Triton X-100 were studied. Inorganic modifiers palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, hydrogen peroxide and potassium nitrate were also applied in this work. In addition, zirconium hydroxide and ammonium hydroxide precipitation methods have also been studied. Interference effects were effectively reduced with Br-PADAP modifier. Aqueous standards were used to construct the calibration curves. The detection limit was 1.9 pg. Standard reference materials of nickel-base alloys were used to evaluate the accuracy of the proposed method. The copper contents determined with the proposed method agreed closely with the certified values of the reference materials. The recoveries were within the range 90-100% with relative standard deviation of less than 10%. Good precision was obtained.

  6. Determination of trace impurities of aluminium, cadmium, chromium, copper and nickel in indium phosphate by flameless atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Chruscinska, T.J.

    1990-01-01

    The sample (0.25 g) was treated with a nitric (0.9 ml) + hydrochloric (0.25 ml) acid mixture, heated to syrup under glass and then dissolved with 5 mol · 1 -1 HNO 3 (1 ml). The traces were determined in 0.2 mol · 1 -1 HNO 3 using Perkin-Elmer Model 430 Atomic Absorption Spectrometer equipped with a HGA 76B Graphite Furnace and an AS-1 Auto Sampling System. Pyrolytically coated and then tantalum treated tubes was employed. Additive errors due to contamination with, and loss of, the analyte element were controlled by estimation of the blank value and recovery. Background was corrected throughout. The background correction system efficiency was checked for the continuum background by two line method and for structured background by decreasing the slit or choosing different analytical lines. No other multiplicative (influencing the slope of the analytical curve) matrix interferences were found except for cadmium. (author). 12 refs, 4 tabs, 3 figs

  7. Preconcentration and determination of zinc and lead ions by a combination of cloud point extraction and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tavallali, H. [Chemistry Department, Payamenore University, Shiraz (Iran); Shokrollahi, A.; Zahedi, M. [Chemistry Department, Yasouj University, Yasouj (Iran); Niknam, K. [Chemistry Department, Persian Gulf University, Bushehr (Iran); Soylak, M. [Chemistry Department, University of Erciyes, Kayseri (Turkey); Ghaedi, M.

    2009-04-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of lead(II) and zinc(II). After complexation with 3-[(4-bromophenyl) (1-H-inden-3-yl)methyl]-1 H-indene (BPIMI), the analytes were quantitatively extracted to a phase rich in Triton X-114 after centrifugation. Methanol acidified with 1 mol/L HNO{sub 3} was added to the surfactant rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of bis((1H-benzo [d] imidazol-2yl)ethyl)sulfane, Triton X-114, pH and amount of surfactant were all optimized. Detection limits (3 SDb/m) of 2.5 and 1.6 ng/mL for Pb{sup 2+} and Zn{sup 2+} along with preconcentration factors of 30 and an enrichment factor of 32 and 48 for Pb{sup 2+}and Zn {sup 2+} ions were obtained, respectively. The proposed cloud point extraction was been successfully applied for the determination of these ions in real samples with complicated matrices such as food and soil samples, with high efficiency. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  8. Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation

    International Nuclear Information System (INIS)

    Gil, Sandra; Fragueiro, Sandra; Lavilla, Isela; Bendicho, Carlos

    2005-01-01

    A new method is proposed for preconcentration and matrix separation of methylmercury prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Generation of methylmercury hydride (MeHgH) from a 5-ml solution is carried out in a closed vial and trapped onto an aqueous single drop (3-μl volume) containing Pd(II) or Pt(IV) (50 and 10 mg/l, respectively). The hydrogen evolved in the headspace (HS) after decomposition of sodium tetrahydroborate (III) injected for hydride generation caused the formation of finely dispersed Pd(0) or Pt(0) in the drop, which in turn, were responsible for the sequestration of MeHgH. A preconcentration factor of ca. 40 is achieved with both noble metals used as trapping agents. The limit of detection of methylmercury was 5 and 4 ng/ml (as Hg) with Pd(II) or Pt(IV) as trapping agents, and the precision expressed as relative standard deviation was about 7%. The preconcentration system was fully characterised through optimisation of the following variables: Pd(II) or Pt(IV) concentration in the drop, extraction time, pH of the medium, temperatures of both sample solution and drop, concentration of salt in the sample solution, sodium tetrahydroborate (III) concentration in the drop and stirring rate. The method has been successfully validated against two fish certified reference materials (CRM 464 tuna fish and CRM DORM-2 dogfish muscle) following selective extraction of methylmercury in 2 mol/l HCl medium

  9. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Choleva, Tatiana G; Kappi, Foteini A; Tsogas, George Z; Vlessidis, Athanasios G; Giokas, Dimosthenis L

    2016-05-01

    This work describes a new method for the extraction and determination of gold nanoparticles in environmental samples by means of in-situ suspended aggregate microextraction and electrothermal atomic absorption spectrometry. The method relies on the in-situ formation of a supramolecular aggregate phase through ion-association between a cationic surfactant and a benzene sulfonic acid derivative. Gold nanoparticles are physically entrapped into the aggregate phase which is separated from the bulk aqueous solution by vacuum filtration on the surface of a cellulose filter in the form of a thin film. The film is removed from the filter surface and is dissociated into an acidified methanolic solution which is used for analysis. Under the optimized experimental conditions, gold nanoparticles can be efficiently extracted from water samples with recovery rates between 81.0-93.3%, precision 5.4-12.0% and detection limits as low as 75femtomolL(-1) using only 20mL of sample volume. The satisfactory analytical features of the method along with the simplicity indicate the efficiency of this new approach to adequately collect and extract gold nanoparticle species from water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Separation and enrichment of gold(III) from environmental samples prior to its flame atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Senturk, Hasan Basri; Gundogdu, Ali [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Bulut, Volkan Numan [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 28049 Giresun (Turkey); Duran, Celal [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Soylak, Mustafa [Department of Chemistry, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri (Turkey)], E-mail: soylak@erciyes.edu.tr; Elci, Latif [Department of Chemistry, Faculty of Arts and Sciences, Pamukkale University, 20020 Denizli (Turkey); Tufekci, Mehmet [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2007-10-22

    A simple and accurate method was developed for separation and enrichment of trace levels of gold in environmental samples. The method is based on the adsorption of Au(III)-diethyldithiocarbamate complex on Amberlite XAD-2000 resin prior to the analysis of gold by flame atomic absorption spectrometry after elution with 1 mol L{sup -1} HNO{sub 3} in acetone. Some parameters including nitric acid concentration, eluent type, matrix ions, sample volume, sample flow rate and adsorption capacity were investigated on the recovery of gold(III). The recovery values for gold(III) and detection limit of gold were greater than 95% and 16.6 {mu}g L{sup -1}, respectively. The preconcentration factor was 200. The relative standard deviation of the method was <6%. The adsorption capacity of the resin was 12.3 mg g{sup -1}. The validation of the presented procedure was checked by the analysis of CRM-SA-C Sandy Soil certified reference material. The presented procedure was applied to the determination of gold in some environmental samples.

  11. Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation

    International Nuclear Information System (INIS)

    Aleixo, Poliana Carolina; Junior, Dario Santos; Tomazelli, Andrea Cristina; Rufini, Iolanda A.; Berndt, Harald; Krug, Francisco Jose

    2004-01-01

    A simple method for cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry (BIFF-AAS) was proposed. Food slurries were prepared by transferring an exact amount of cryogenic-ground homogenized material (50-100 mg) to centrifuge tubes, followed by addition of 5 ml (up to 2.8 mol l -1 ) nitric acid solution and sonication in an ultrasonic bath during 5-10 min. Thereafter, slurries were diluted with water to 10 ml, centrifuged during 5 min at 5400 rpm and 400 μl aliquot of the supernatant was analyzed by BIFF-AAS. The detection limits based on peak height measurements were 0.03 μg g -1 Cd and 1.6 μg g -1 Pb for 2% (m/v) slurry (200 mg/10 ml). For method validation, the certified reference materials Pig Kidney (BCR 186) and Rice Flour (NIES 10) were used. Quantitative cadmium and lead recoveries were obtained and no statistical differences were found at 95% level by applying the t-test

  12. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-01-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s 5 ) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s 3 ) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations. (paper)

  13. Determination of calcium, copper, chromium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.

    1981-01-01

    The direct determinacao of calcium, copper, chomium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry with, air-acetylene flame is proposed. Effects of fuel/oxidant ratio, burner height and water content in the samples were investigated in detail. The method allows the determition of the elements with good precision (r.s.d. -1 for the elements tested. (author) [pt

  14. International comparison of Cd content in a quality control material of Navajuelas (Tagelus dombeii) determined by anodic stripping voltammetry, atomic absorption spectrometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Queirolo, F.; Forschungszentrum Juelich GmbH; Universidad de Extremadura, Badajoz; Ostapczuk, P.; Valenta, P.; Stegen, S.; Universidad de Extremadura, Badajoz; Marin, C.; Vinagre, F.; Sanchez, A.

    1991-01-01

    The determination of Cd was performed by neutron activation analysis (NAA), atomic absorption spectrometry (AAS) with flame or in the electrothermal mode and anodic stripping voltammetry in the differential pulse mode (DPASV) and the square wave mode (SWASV). (orig./EF)

  15. Investigations into the Role of Modifiers for Entrapment of Hydrides in Flow Injection Hydride Generation Electrothermal Atomic Absorption Spectrometry as Exemplified for the Determination of Germanium

    DEFF Research Database (Denmark)

    Hilligsøe, Bo; Andersen, Jens Enevold Thaulov; Hansen, Elo Harald

    1997-01-01

    Pd-conditioned graphite tubes, placed in the furnace of an atomic absorption spectrometry instrument, are used for entrapment of germane as generated in an associated flow injection system. Two different approaches are tested with the ultimate aim to allow multiple determinations, that is...

  16. Determination of Fe Content of Some Food Items by Flame Atomic Absorption Spectroscopy (FAAS): A Guided-Inquiry Learning Experience in Instrumental Analysis Laboratory

    Science.gov (United States)

    Fakayode, Sayo O.; King, Angela G.; Yakubu, Mamudu; Mohammed, Abdul K.; Pollard, David A.

    2012-01-01

    This article presents a guided-inquiry (GI) hands-on determination of Fe in food samples including plantains, spinach, lima beans, oatmeal, Frosted Flakes cereal (generic), tilapia fish, and chicken using flame atomic absorption spectroscopy (FAAS). The utility of the GI experiment, which is part of an instrumental analysis laboratory course,…

  17. Application of atomic absorption spectrophotometry to determine Cd, Cu, Pb, Zn,...in vegetable samples in Dalat

    Energy Technology Data Exchange (ETDEWEB)

    Giang, Nguyen; Tam, Nguyen Thanh; Ngoc Trinh, Le Thi; Mai, Truong Phuong; Minh, Nguyen Van [Nuclear Research Institute, Dalat (Viet Nam)

    2004-08-01

    Nowadays atomic absorption spectrometry has become valuable method for trace element analysis because high specificity; low detection litmus, easy to use; easy sample preparation, low investment and running costs... atomic absorption spectrometry is generally accepted as one the most suitable method for single - element analysis of trace elements in various kinds of materiel. In 2003, we applied flame - atomic absorption spectrometry for analyzing Ca, Cd, Cu, Pb, Zn...in vegetables and their extracted juices were collected form 11 locations of Dalat, including two kinds of vegetables (goods and safety) in both the summer and winter. Average concentration of Ca = 240 mg/kg wet, Cd = 0.035 mg/kg wet, Cu = 0.67 mg/kg wet, Mg = 131 mg/kg wet, Fe = 8.1/kg wet, Mn = 3.1/kg wet, Na = 3266 mg/kg wet, Pb = 0.345 mg/kg wet and Zn = 3.3 mg wet. In their extracted juices: Ca = 89 mg/kg wet, Cd = 0.008 mg/kg wet, Cu = 0.19 mg/kg wet, Mg = 43 mg/kg wet, Fe = 2.3 mg/kg wet, Mn = 0.61 mg/kg wet, Na = 971 mg/kg wet, Pb = 0.107 mg/kg wet and Zn = 0.65 mg/kg wet. (author)

  18. Application of atomic absorption spectrophotometry to determine Cd, Cu, Pb, Zn,...in vegetable samples in Dalat

    International Nuclear Information System (INIS)

    Nguyen Giang; Nguyen Thanh Tam; Le Thi Ngoc Trinh; Truong Phuong Mai; Nguyen Van Minh

    2004-01-01

    Nowadays atomic absorption spectrometry has become valuable method for trace element analysis because high specificity; low detection litmus, easy to use; easy sample preparation, low investment and running costs... atomic absorption spectrometry is generally accepted as one the most suitable method for single - element analysis of trace elements in various kinds of materiel. In 2003, we applied flame - atomic absorption spectrometry for analyzing Ca, Cd, Cu, Pb, Zn...in vegetables and their extracted juices were collected form 11 locations of Dalat, including two kinds of vegetables (goods and safety) in both the summer and winter. Average concentration of Ca = 240 mg/kg wet, Cd = 0.035 mg/kg wet, Cu = 0.67 mg/kg wet, Mg = 131 mg/kg wet, Fe = 8.1/kg wet, Mn = 3.1/kg wet, Na = 3266 mg/kg wet, Pb = 0.345 mg/kg wet and Zn = 3.3 mg wet. In their extracted juices: Ca = 89 mg/kg wet, Cd = 0.008 mg/kg wet, Cu = 0.19 mg/kg wet, Mg = 43 mg/kg wet, Fe = 2.3 mg/kg wet, Mn = 0.61 mg/kg wet, Na = 971 mg/kg wet, Pb = 0.107 mg/kg wet and Zn = 0.65 mg/kg wet. (author)

  19. Coacervative extraction of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hagarová, Ingrid, E-mail: hagarova@fns.uniba.sk; Bujdoš, Marek; Matúš, Peter; Kubová, Jana

    2013-10-01

    In this work, a relatively simple and sensitive method for separation/preconcentration of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry has been proposed. The method is based on the extraction of Pb–dithizone chelate with coacervates made up of lauric acid in the presence of potassium ions and methanol. Several important factors affecting extraction efficiency such as pH, concentration of lauric acid and dithizone, ionic strength, incubation and centrifugation time were investigated and optimized. After separation of aqueous bulk solution from surfactant-rich phase, the final extract was redissolved by using 500 μl of methanol acidified with 0.2 mol l{sup −1} HNO{sub 3}. Under the optimized conditions (using initial sample volume of 10 ml), enrichment factor of 17.0, detection limit of 0.12 μg l{sup −1}, quantification limit of 0.38 μg l{sup −1}, relative standard deviation of 4.2% (for 2 μg l{sup −1} of Pb; n = 26), linearity of the calibration graph in the range of 0.5–4.0 μg l{sup −1} (with correlation coefficient better than 0.995) were achieved. The method was validated by the analysis of certified reference material (TMDA-61). Extraction recoveries for the CRM, spiked model solutions and spiked natural water samples were in the range of 91–96%. Finally, the method was applied to the separation/preconcentration and determination of trace lead in natural waters. - Highlights: • The potential of coacervates for the extraction of metal ions is examined. • No difficulties in coupling of ETAAS with the proposed CAE are observed. • Achieved preconcentration factor results in enhanced sensitivity. • Analytical performance is confirmed by the reliable determination of trace Pb. • The proposed CAE is ecofriendly and efficient.

  20. Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ulusoy, Halil Ibrahim, E-mail: hiulusoy@yahoo.com [University of Cumhuriyet, Faculty of Science, Department of Chemistry, TR-58140, Sivas (Turkey); Akcay, Mehmet; Ulusoy, Songuel; Guerkan, Ramazan [University of Cumhuriyet, Faculty of Science, Department of Chemistry, TR-58140, Sivas (Turkey)

    2011-10-10

    Graphical abstract: The possible complex formation mechanism for ultra-trace As determination. Highlights: {yields} CPE/HGAAS system for arsenic determination and speciation in real samples has been applied first time until now. {yields} The proposed method has the lowest detection limit when compared with those of similar CPE studies present in literature. {yields} The linear range of the method is highly wide and suitable for its application to real samples. - Abstract: Cloud point extraction (CPE) methodology has successfully been employed for the preconcentration of ultra-trace arsenic species in aqueous samples prior to hydride generation atomic absorption spectrometry (HGAAS). As(III) has formed an ion-pairing complex with Pyronine B in presence of sodium dodecyl sulfate (SDS) at pH 10.0 and extracted into the non-ionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114). After phase separation, the surfactant-rich phase was diluted with 2 mL of 1 M HCl and 0.5 mL of 3.0% (w/v) Antifoam A. Under the optimized conditions, a preconcentration factor of 60 and a detection limit of 0.008 {mu}g L{sup -1} with a correlation coefficient of 0.9918 was obtained with a calibration curve in the range of 0.03-4.00 {mu}g L{sup -1}. The proposed preconcentration procedure was successfully applied to the determination of As(III) ions in certified standard water samples (TMDA-53.3 and NIST 1643e, a low level fortified standard for trace elements) and some real samples including natural drinking water and tap water samples.

  1. The relation of double peaks, observed in quartz hydride atomizers, to the fate of free atoms in the determination of arsenic and selenium by atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    D'Ulivo, A.; Dědina, Jiří

    2002-01-01

    Roč. 57, č. 12 (2002), s. 2069-2079 ISSN 0584-8547 R&D Projects: GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : hydride atomization * hydride generation * atomic absortion spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.695, year: 2002

  2. Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of boron in plant tissues

    International Nuclear Information System (INIS)

    Resano, M.; Briceno, J.; Aramendia, M.; Belarra, M.A.

    2007-01-01

    In this work, the potential of graphite furnace atomic absorption spectrometry for the direct determination of B in plant tissues has been investigated. Three certified reference materials (NIST SRM 1570a spinach leaves, NIST SRM 1573a tomato leaves and BCR CRM 679 white cabbage) were selected for this study, the goal always being to develop a fast procedure that could be robust enough to provide a satisfactory performance for all of them, without any modifications in the conditions applied. The use of a suitable chemical modifier was found to be essential for obtaining a reproducible and sufficiently sensitive signal for boron solutions. In this regard, the performance of the combination of citric acid plus W (added as a permanent modifier) was noteworthy, resulting in well-defined signal profiles, a remarkable analyte stabilization during the pyrolysis step (up to 2100 deg. C) and minimal memory effects. This mixture of modifiers provided a good performance for the direct analysis of solid samples as well, but only if a suitable temperature program, favoring the interaction between the analyte and the modifiers, was used. Thus, such a temperature program, with two pyrolysis steps and the addition of NH 4 NO 3 in order to carry out the in situ sample microdigestion, was optimized. Under these conditions, the peak areas obtained for both solid samples and aqueous standards were comparable. Finally, the analysis of the samples was carried out. In all cases, a good agreement with the certified values was obtained, while R.S.D. values ranged between 6 and 10%. It can be concluded that the method proposed shows significant advantages for the determination of this complicated element in solid samples such as the use of aqueous standards for calibration, a high sample throughput (20 min per sample), a suitable limit of detection (0.3 μg g -1 ) and reduced risk of analyte losses and contamination

  3. Atomic absorption analysis of serial titanium alloys

    International Nuclear Information System (INIS)

    Gorlova, M.N.; Feofanova, N.M.; Kornyushkova, Yu.D.

    1977-01-01

    Atom-absorption technique is described, which makes it possible to rapidly and precisely determine the following alloying elements and admixtures in titanium alloys: Al (2.0 - 8.5%); Mo (0.5 - 8%); Cr (0.5 - 12%); Si (0.2 - 0.5%); Mn(0.2 - 2.5%); V(0.5 - 6%); Sn(2.0 - 3.0%); Fe(0.1 - 1.0%); Zr(2.0 - 12.0%). The atom absorption method with flame atomization of the sample provides for best results if the alloy is dissolved in a mixture HCl + HBF 4 in the ratio 2:1. In order to obtain correct results the standard solutions must contain titanium in concentrations corresponding to the weight of the sample being analyzed. Sensitivity of zirconium determination may be increased approximately twofold by adding 10 mg/ml of FeCl 3 into the solution. Being as precise, as the classic analytical methods, the atom absorption technique is about 5 times more efficient

  4. Preconcentration of gold ions from water samples by modified organo-nanoclay sorbent prior to flame atomic absorption spectrometry determination

    Energy Technology Data Exchange (ETDEWEB)

    Afzali, Daryoush, E-mail: daryoush_afzali@yahoo.com [Nanochemistry Department, Research Institute of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Mostafavi, Ali [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mirzaei, Mohammad [Nanochemistry Department, Research Institute of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2010-09-15

    In this work, the applicability of modified organo nanoclay as a new and easy prepared solid sorbent for the preconcentration of trace amounts of Au(III) ion from water samples is studied. The organo nanoclay was modified with 5-(4'-dimethylamino benzyliden)-rhodanine and used as a sorbent for separation of Au(III) ions. The sorption of gold ions was quantitative in the pH range of 2.0-6.0. Quantitative desorption occurred with 6.0 mL of 1.0 mol L{sup -1} Na{sub 2}S{sub 2}O{sub 3}. The amount of eluted Au(III) was measured using flame atomic absorption spectrometry. In the initial solution the linear dynamic range was in the range of 0.45 ng mL{sup -1} to 10.0 {mu}g mL{sup -1}, the detection limit was 0.1 ng mL{sup -1} and the preconcentration factor was 105. Also, the relative standard deviation was {+-}2.3% (n = 8 and C = 2.0 {mu}g mL{sup -1}) and the maximum capacity of the sorbent was 3.9 mg of Au(III) per gram of modified organo nanoclay. The influences of the experimental parameters including sample pH, eluent volume and eluent type, sample volume, and interference of some ions on the recoveries of the gold ion were investigated. The proposed method was applied for preconcentration and determination of gold in different samples.

  5. Method Comparison of Neutron Activation Analysis and Atomic Absorption Spectrometry for Determination of Zinc in Food Samples

    International Nuclear Information System (INIS)

    Endah Damastuti; Syukria Kurniawati; Natalia Adventini

    2009-01-01

    Zinc as a micro nutrient, has important roles in human metabolism system. It is required by the body in appropriate amount from food intake. Due to the very low concentration of Zinc in food, high selectivity and sensitivity analysis technique is required for the determination, such as Neutron Activation Analysis (NAA) and Atomic Absorption Spectrometry (AAS). In this experiment, both methods were compared in zinc analysis of food samples. The subject of this experiment is to examine of those methods conformity and improving the technique capability in zinc analysis in food sample. Those methods were validated by analyzing zinc in SRM NIST 1548a Typical Diet and were tested its accuracy and precision. The results of Zn concentration were 25.1 ± 2.14 mg/kg by NAA and 24.1 ± 1.40 mg/kg by AAS while the certificate value was 24.6 ± 1.80 mg/kg. Percentage of relative bias, %CV, μ-test score and HORRAT(Horwitz ratio) value given by NAA were 2%, 8.5%, 0.18 and 0.9 respectively, while %relative bias, %CV, μ-test score and HORRAT value given by AAS were 2%, 5.8 %, 0.20 and 0.6 respectively. The result obtained for Zn concentration in various food samples by NAA and AAS were varied from 13.7 – 29.3 mg/kg with mean value 19.8 mg/kg and 11.2 – 26.0 mg/kg with mean value 17.3 mg/kg (author)

  6. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia, E-mail: e.vasileva-veleva@iaea.org

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6–4.3%), repeatability (4–9%), reproducibility (9–11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as

  7. Determination of Hg(II) as a pollutant in Karachi coastal waters by cold vapor atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Naqvi, I.I.; Shazli, J.; Ali, S.R.; Mohiuddin, S.; Zehra, I.

    2002-01-01

    Now a days, environmental monitoring has great importance and mercury is well known for its toxicity. Mercury (which is at trace level) is analyzed by cold vapor atomic absorption spectroscopy with amendments that are appropriate to the present laboratory need. The results are consistent with previous analysis, through other methods, two areas namely Ibrahim Hyderi and Fisheries were found to have mercury levels around 0.193 mu/L and 0.110 mu g/L, respectively. Whereas other areas have mercury levels similar to other places reported earlier. (author)

  8. Determination of Br and Cl in gasoline by neutron activation analysis and Pb by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Jimenez B, J.; Lopez M, B.E.

    1995-01-01

    Several mexican gasolines (NOVA, MAGNA-SIN, DIESEL and DIESEL-SIN) were analyzed by neutron activation technique. Measurements of lead content were carried out by atomic absorption spectroscopy. Important amounts of halogens (bromine and chlorine) and metals (vanadium and aluminium) were found. The amount of lead was < 1 ppm in the MAGNA-SIN, DIESEL and DIESEL-SIN. The presence of bromine in these gasolines is important because they are highly consumed in Mexico, therefore, it is necessary to evaluate its environmental impact. (Author)

  9. Graphite furnace atomic absorption spectrometric determination of vanadium after cloud point extraction in the presence of graphene oxide

    Science.gov (United States)

    López-García, Ignacio; Marín-Hernández, Juan José; Hernández-Córdoba, Manuel

    2018-05-01

    Vanadium (V) and vanadium (IV) in the presence of a small concentration of graphene oxide (0.05 mg mL-1) are quantitatively transferred to the coacervate obtained with Triton X-114 in a cloud point microextraction process. The surfactant-rich phase is directly injected into the graphite atomizer of an atomic absorption spectrometer. Using a 10-mL aliquot sample and 150 μL of a 15% Triton X-114 solution, the enrichment factor for the analyte is 103, which results in a detection limit of 0.02 μg L-1 vanadium. The separation of V(V) and V(IV) using an ion-exchanger allows speciation of the element at low concentrations. Data for seven reference water samples with certified vanadium contents confirm the reliability of the procedure. Several beer samples are also analyzed, those supplied as canned drinks showing low levels of tetravalent vanadium.

  10. An indirect sequential determination of phosphorus and arsenic in high-purity tungsten and its compounds by atomic-absorption spectrophotometry

    International Nuclear Information System (INIS)

    Tekula-Buxbaum, P.

    1981-01-01

    An indirect atomic-absorption spectrophotometric method based on selective extraction of heteropolymolybdic acids has been developed for determination of small quantities of P and As in high-purity tungsten metal and tungsten compounds. The method is suitable for determination of 5-100 ppm of phosphorus and arsenic. The relative standard deviation is 38-5% for P and 31-3% for As, depending on the concentrations. (auth.)

  11. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer

    Czech Academy of Sciences Publication Activity Database

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-01-01

    Roč. 1010, JUN (2018), s. 11-19 ISSN 0003-2670 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * Stibane * atomization and preconcentration Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  12. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    Science.gov (United States)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6-4.3%), repeatability (4-9%), reproducibility (9-11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as straightforward

  13. Flow injection on-line dilution for zinc determination in human saliva with electrothermal atomic absorption spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Burguera-Pascu, Margarita [Department of Oral Medicine, School of Dentistry, University of Granada, Granada (Spain)], E-mail: margaburpas@hotmail.com; Rodriguez-Archilla, Alberto [Department of Oral Medicine, School of Dentistry, University of Granada, Granada (Spain); Burguera, Jose Luis; Burguera, Marcela; Rondon, Carlos; Carrero, Pablo [Department of Chemistry, Faculty of Sciences, University of Los Andes, Merida (Venezuela)

    2007-09-26

    An automated method is described for the determination of zinc in human saliva by electrothermal atomic absorption spectrometry (ET AAS) after on-line dilution of samples with a significant reduction of sample consumption per analysis (<0.4 mL including the dead volume of the system). In order to fulfill this aim without changing the sample transport conduits during the experiments, a flow injection (FI) dilution system was constructed. Its principal parts are: one propulsion device (peristaltic pump, PP) for either samples, standards or washing solution all located in an autosampler tray and for the surfactant solution (Triton X-100) used as diluent, and a two-position time based solenoid injector (TBSI{sub 1}) which allowed the introduction of 10 {mu}L of either solution in the diluent stream. To avoid unnecessary waste of samples, the TBSI{sub 1} also permitted the recirculation of the solutions to their respective autosampler cups. The downstream diluted solution fills a home made sampling arm assembly. The sequential deposition of 20 {mu}L aliquots of samples or standards on the graphite tube platform was carried out by air displacement with a similar time based solenoid injector (TBSI{sub 2}). The dilution procedure and the injection of solutions into the atomizer are computer controlled and synchronized with the operation of the temperature program. Samples or standards solutions were submitted to two drying steps (at 90 and 130 deg. C), followed by pyrolysis and atomization at 700 and 1700 deg. C, respectively. The aqueous calibration was linear up to 120.0 {mu}g L{sup -1} for diluted standard solutions/samples and its slope was similar (p > 0.05) to the standard addition curve, indicating lack of matrix effect. The precision tested by repeated analysis of real saliva samples was less than 3% and the detection limit (3{sigma}) was of 0.35 {mu}g L{sup -1}. To test the accuracy of the proposed procedure, recovery tests were performed, obtaining mean recovery

  14. Determination of selected metals in urban runoff and related estuarine sediments by neutron activation and atomic absorption

    International Nuclear Information System (INIS)

    Christensen, E.R.; Guinn, V.P.; Scherfig, J.

    1977-01-01

    Pollution sources for Newport Bay, California are of a nonpoint nature. To assess the heavy metals loading of the runoff into the Bay, 18 water samples, taken during dry and rainy periods, have been analyzed for Mn, Cu, Zn, and Pb, using atomic absorption spectrometry (AAS). In addition, 7 sediment cores from the Upper Bay and 5 sediment grab samples from the Lower Bay were analyzed for Cr, Mn, Fe, Co, Cu, Zn, and Pb. Instrumental neutron activation analysis (INAA) was used for Cr, Fe, and Co, whereas Mn, Cu, and Pb were determined by AAS. Zinc was determined by both of these techniques. Three major streams pass into Newport Bay carrying: (1) agricultural and to some extent urban and residential runoff (70-90%), (2) urban runoff (10-30%), and (3) residential runoff (<5%). The levels of Zn and Pb are much higher under storm conditions, e.g., 338 μg/l Zn and 425 μg/l Pb, than during dry weather, where typical concentrations are 20 μg/l Zn and 9 μg/l Pb. For Cu there is a moderate increase from about 10 μg/l in dry weather to a maximum of 54 μg/l under storm conditions. Soil erosion appears to be responsible for high Mn values (max. 1230 μg/l) in agricultural storm runoff. The cleansing action of a storm is evidenced by high concentrations in the beginning, and much lower levels towards the end of the storm.Vertical profiles of heavy metals in sediment cores indicate that Zn and Pb are the only metals of those investigated that show clearly increased levels in the uppermost layers. Typical enrichment ratios are 2.0 for Zn and 5.5 for Pb. Maximum concentrations of Zn and Pb in sediments from the Upper Bay were 300 ppm and 132 ppm, respectively. The highest Pb value was found close to the mouth of the urban drainage channel. Dating of selected cores was carried out by the Pb-210 method. Mass injection rates into Upper Newport Bay for Zn and Pb of anthropogenic origin were estimated to be 6.0 and 6.5 tons/yr, respectively

  15. Comparison of different sample preparation methods for platinum determination in cultured cells by graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Man Xiao

    2017-01-01

    Full Text Available Background Platinum-based agents are widely used in chemotherapy against solid tumors and insufficient intracellular drug accumulation is one of the leading causes of platinum resistance which is associated with poor survival of tumor patients. Thus, the detection of intracellular platinum is pivotal for studies aiming to overcome platinum resistance. In the present study, we aimed to establish a reliable graphite furnace atomic absorption spectrometry (GFAAS-based assay to quantify the intracellular platinum content for cultured cells. Methods Several most commonly applied cell preparation methods, including 0.2% HNO3, 0.2% Triton X-100, concentrated nitric acid, RIPA combined with concentrated nitric acid and hydroxide, followed by GFAAS for platinum detection were compared in ovarian, cervical and liver cancer cell lines to obtain the optimal one, and parameters regarding linearity, accuracy, precision and sensitivity were evaluated. Influence of other metals on platinum detection and the storage conditions of samples were also determined. Results The treatment of cells with 0.2% HNO3 was superior to other approaches with fewer platinum loss and better repeatability. The recovery rate and precision of this method were 97.3%–103.0% and 1.4%–3.8%, respectively. The average recoveries in the presence of other metals were 95.1%–103.1%. The detection limit was 13.23 ug/L. The recovery rate of platinum remained acceptable even in cell samples stored in −20 °C or −80 °C for two months. Discussion After comparison, we found that 0.2% HNO3 was optimal for intracellular platinum quantification based on GFAAS, which presented values compatible with that of inductively-coupled plasma mass-spectrometry (ICP-MS, and this is partially attributed to the simplicity of this method. Moreover, the assay was proved to be accurate, sensitive, cost-effective and suitable for the research of platinum-based antitumor therapy.

  16. Zinc and palladium traces separation from uranium by tri-n-octylamine extraction. Direct determination in organic phase by atomic absorption

    Energy Technology Data Exchange (ETDEWEB)

    de Moraes, S; Cipriani, M; Abrao, A

    1974-12-01

    A procedure for the extraction and determination of Zn and Pd as traces from nuclear grade uranium ADU, UO/sub 2/, UO/sub 3/, U/sub 3/O/sub 8/ is introduced. The elements are extracted from UO/sub 2/Cl/sub 2/-HCl-KI solution with tri-n-octylamine in benzene and determined by atomic absorption spectrophotometry. The adition of potassium iodide to the UO/sub 2/Cl/sub 2/-HCl solutions improved the extraction of both elements. Direct burn of the organic phase in the atomic absorption spectrophotometer using hydrogen-air flame provided enhancement of the absorbance for both elements. The relative standard deviations were Zn, 3% and Pd, 2.9%.

  17. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    OpenAIRE

    Abdollahi Atousa; Amirkavehei Mooud; Gheisari Mohammad Mehdi; Tadayon Fariba

    2014-01-01

    A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap). The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS). The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically ...

  18. Single-laboratory evaluation of SW-846 Methods 7090/7091 determination of beryllium by flame and furnace atomic absorption spectrophotometry. Summary report January-August 1987

    International Nuclear Information System (INIS)

    Hodge, V.F.; Darby, D.A.; Thompson, W.E.; Jones, C.L.

    1988-02-01

    The results of a single-laboratory study of the Determination of Beryllium by Flame and Furnace Atomic Absorption Spectrophotometry, are described. The study examined the application of these two powerful beryllium detection methods to the analysis of selected liquid and solid samples after digestion by appropriate SW-846 methods. Method performance data including detection limits, optimum concentration ranges (linearity), spike recoveries, interferences, precision, accuracy, and optimum operating parameters are presented and discussed

  19. Elimination of the inter-element interferences of iron, gold, molybdenum, tin and antimony when determined in organic solvents by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Aneva, Zara; Arpadjan, Sonja

    1988-01-01

    The mutual interferences in the flame atomic absorption spectrometric determination of iron, gold, molybdenum, tin and antimony after their extraction - pre-concentration as chloride complexes from platinum solutions into isobutyl methyl ketone are investigated. It is suggested that the interferences are caused by chemical reactions in the flame and are influenced by the flame characteristics. The possibility of eliminating the interferences by addition of long-chain quaternary ammonium salts is discussed. (author)

  20. Rapid Determination of Trace Palladium in Active Pharmaceutical Ingredients by Magnetic Solid-Phase Extraction and Flame Atomic Absorption Spectrometry

    Science.gov (United States)

    Yin, Q. H.; Zhu, D. M.; Yang, D. Z.; Hu, Q. F.; Yang, Y. L.

    2018-01-01

    Clutaraldehyde cross-linked magnetic chitosan nanoparticles were synthesized and used as an adsorbent for the dispersive solid-phase extraction of palladium in active pharmaceutical ingredients (APIs) prior to analysis by a flame atomic absorption spectrophotometer. FT-IR, X-ray diffraction, and TEM were used to characterize the adsorbent. Various parameters of experimental performance, such as adsorbent amount, pH, adsorption time, desorption solutions, coexisting ions, and adsorbent reusability, were investigated and optimized. Under the optimized conditions, good linearity was achieved in the 5.0-500 μg/L concentration range, with correlation coefficients of 0.9989. The limit of detection is 2.8 μg/L and the recoveries of spiked samples ranged from 91.7 to 97.6%. It was confirmed that the GMCNs nanocomposite was a promising adsorbing material for extraction and preconcentration of Pd in APIs.

  1. Atomic absorption spectrometry using tungsten and molybdenum tubes as metal atomizer

    International Nuclear Information System (INIS)

    Kaneco, Satoshi; Katsumata, Hideyuki; Ohta, Kiyohisa; Suzuki, Tohru

    2007-01-01

    We have developed a metal tube atomizer for the electrothermal atomization atomic absorption spectrometry (ETA-AAS). Tungsten, molybdenum, platinum tube atomizers were used as the metal atomizer for ETA-AAS. The atomization characteristics of various metals using these metal tube atomizers were investigated. The effects of heating rate of atomizer, atomization temperature, pyrolysis temperature, argon purge gas flow rate and hydrogen addition on the atomic absorption signal were investigated for the evaluation of atomization characteristics. Moreover, ETA-AAS with metal tube atomizer has been combined with the slurry-sampling techniques. Ultrasonic slurry-sampling ETA-AAS with metal tube atomizer were effective for the determination of trace metal elements in biological materials, calcium drug samples, herbal medicine samples, vegetable samples and fish samples. Furthermore, a preconcentration method of trace metals involving adsorption on a metal wire has been applied to ETA-AAS with metal tube atomizer. (author)

  2. Determination of gold, indium, tellurium and thallium in the same sample digest of geological materials by atomic-absorption spectroscopy and two-step solvent extraction

    Science.gov (United States)

    Hubert, A.E.; Chao, T.T.

    1985-01-01

    A rock, soil, or stream-sediment sample is decomposed with hydrofluoric acid, aqua regia, and hydrobromic acid-bromine solution. Gold, thallium, indium and tellurium are separated and concentrated from the sample digest by a two-step MIBK extraction at two concentrations of hydrobromic add. Gold and thallium are first extracted from 0.1M hydrobromic acid medium, then indium and tellurium are extracted from 3M hydrobromic acid in the presence of ascorbic acid to eliminate iron interference. The elements are then determined by flame atomic-absorption spectrophotometry. The two-step solvent extraction can also be used in conjunction with electrothermal atomic-absorption methods to lower the detection limits for all four metals in geological materials. ?? 1985.

  3. Micro-sampling method based on high-resolution continuum source graphite furnace atomic absorption spectrometry for calcium determination in blood and mitochondrial suspensions.

    Science.gov (United States)

    Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Satrústegui, Jorgina; Procopio, Jesús R

    2017-08-01

    A micro-sampling and straightforward method based on high resolution continuum source atomic absorption spectrometry (HR-CS AAS) was developed to determine extracellular and intracellular Ca in samples of interest in clinical and biomedical analysis. Solid sampling platforms were used to introduce the micro-samples into the graphite furnace atomizer. The secondary absorption line for Ca, located at 239.856nm, was selected to carry out the measurements. Experimental parameters such as pyrolysis and atomization temperatures and the amount of sample introduced for the measurements were optimized. Calibration was performed using aqueous standards and the approach to measure at the wings of the absorption lines was employed for the expansion of the linear response range. The limit of detection was of 0.02mgL -1 Ca (0.39ng Ca) and the upper limit of linear range was increased up to 8.0mgL -1 Ca (160ng Ca). The proposed method was used to determine Ca in mitochondrial suspensions and whole blood samples with successful results. Adequate recoveries (within 91-107%) were obtained in the tests performed for validation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Rapid determination of main components by means of flame-atomic-absorption spectrometry for chromium, silicon and tungsten in CrSiW materials

    International Nuclear Information System (INIS)

    Mueller, E.; Stahlberg, R.

    1985-01-01

    The application of Flame-Atomic-Absorption Spectrometry (FAAS) for determining chromium, silicon and tungsten in CrSiW materials is described. The FAAS determinations of the main components are shown under optimum conditions. Sufficient precision and reliability have been achieved for routine analysis. The application of a mixture of acids for preparing CrSiW solutions is proposed. The preparation of samples is discussed in detail. Optimum conditions are recommended for determining chromium, silicon and tungsten using one solution only. (orig.) [de

  5. Atomic absorption assessment of mineral iron quantity in ferritin

    International Nuclear Information System (INIS)

    Marinova, M.; Vladimirova, L.

    2009-01-01

    Possibilities for quantitative determination of the number of iron atoms in the mineral core of ferritin by atomic absorption spectroscopy (AAS) are investigated in the work. Different measurements with AAS show an iron content from 1000 up to 4500 atoms per molecule ferritin. This motivated us to investigate the amount of iron in the Horse Spleen Ferritin with atomic absorption spectroscopy under application of the Bulgarian standard BDS EN 14082/2003 Foodstuffs - Determination of trace elements - Determination of lead, cadmium, zinc, copper, iron and chromium by atomic absorption spectrometry (AAS) after dry ashing. The obtained results give approx. 1800 atoms per molecule Ferritin. It is in accordance with previous results, published by leading researchers. The investigation of the iron content with AAS under the use of the Bulgarian standard is a good opportunity to study many other objects of biological interest. (authors)

  6. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  7. A new approach for the determination of sulphur in food samples by high-resolution continuum source flame atomic absorption spectrometer.

    Science.gov (United States)

    Ozbek, N; Baysal, A

    2015-02-01

    The new approach for the determination of sulphur in foods was developed, and the sulphur concentrations of various fresh and dried food samples determined using a high-resolution continuum source flame atomic absorption spectrometer with an air/acetylene flame. The proposed method was optimised and the validated using standard reference materials, and certified values were found to be within the 95% confidence interval. The sulphur content of foods ranged from less than the LOD to 1.5mgg(-1). The method is accurate, fast, simple and sensitive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Determination of Arsenic in Soil Alkali by Graphite Furnace Atomic Absorption Spectrophotometery Using Modified Corn Silk Fiber as Adsorbent

    International Nuclear Information System (INIS)

    Zhou, X.; Ju, S.; Liu, M.; Zhao, Y.

    2015-01-01

    A safe, rapid, simple and environmentally friendly method based modified corn silk fiber (MC), chemical modified with succinic anhydride (C/sub 4/H/sub 4/O/sub 3/), was developed for the extraction and preconcentration of As(III) in food additives soil alkali sample prior to graphite furnace atomic absorption spectrometry (GFAAS) analysis. The structure and properties of VC (unmodified corn silk fiber) and MC were analyzed and discussed by means of FTIR, SEM and TG, and the effect of adsorbent amount, pH, soil alkali solution concentration, adsorption time and adsorption temperature were carefully optimized. Under the optimum conditions, the relative standard deviations (RSD, n=6) were 1.27-3.05%, the calibration graph was linear in the range of 0-100 meu g/ L and the limits of detection (LOD) was 0.13 meu g/L. The surface of MC became loose and porous which increased the adsorption area. Comparing with VC, carboxy groups were measured in MC and the increase of negative electron group in fiber molecular made its coordination combining ability with As(III) enhanced; In comparison with the removal arsenic rate of VC, MC's significantly increased by 2.86 fold. The recovery rate of soil alkali, treated by VC and MC, reached to 96.85% and 94.32%, and it did not affected the function of soil alkali. (author)

  9. Determining the arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillets from Vietnam.

    Science.gov (United States)

    Molognoni, Luciano; Vitali, Luciano; Ploêncio, Leandro As; Santos, Jacson N; Daguer, Heitor

    2016-07-01

    Pangasius is a fish produced on a large scale in Vietnam and exported to many countries. Since river contamination from human activities can affect the safety of this food, fish consumption can cause exposure to potentially toxic elements for humans. The aim of this study, therefore, was to assess arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillet produced in the provinces of Dong Thap and Can Tho (Vietnam) and exported to Brazil. The limits of detection were: arsenic 0.5443 µg kg(-1) , cadmium 0.0040 mg kg(-1) , chromium 0.0004 mg kg(-1) , copper 0.0037 mg kg(-1) and lead 0.0284 mg kg(-1) . Analysis of 20 samples showed results below the limit of detection for arsenic, chromium and lead, while copper average concentration was 0.0234 mg kg(-1) . Cadmium average concentration was 0.0547 mg kg(-1) , with no significant difference between the two regions studied. The samples of Pangasius had no detectable concentrations of arsenic, chromium, copper and lead, and do not represent a hazard to public health. However, cadmium analysis revealed non-compliant samples, demonstrating the importance of monitoring the quality of imported Pangasius fish. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Simultaneous preconcentration of cadmium and lead in water samples with silica gel and determination by flame atomic absorption spectrometry.

    Science.gov (United States)

    Xu, Hongbo; Wu, Yun; Wang, Jian; Shang, Xuewei; Jiang, Xiaojun

    2013-12-01

    A new method that utilizes pretreated silica gel as an adsorbent has been developed for simultaneous preconcentration of trace Cd(II) and Pb(II) prior to the measurement by flame atomic absorption spectrometry. The effects of pH, the shaking time, the elution condition and the coexisting ions on the separation/preconcentration conditions of analytes were investigated. Under optimized conditions, the static adsorption capacity of Cd(II) and Pb(II) were 45.5 and 27.1mg/g, the relative standard deviations were 3.2% and 1.7% (for n = 11), and the limits of detection obtained were 4.25 and 0.60 ng/mL, respectively. The method was validated by analyzing the certified reference materials GBW 07304a (stream sediment) and successfully applied to the analysis of various treated wastewater samples with satisfactory results. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. Determination of caesium in river and sea waters by electrothermal atomic-absorption spectrometry. Interference of cobalt and iron

    International Nuclear Information System (INIS)

    Frigieri, P.; Trucco, R.; Ciaccolini, I.; Pampurini, G.

    1980-01-01

    For the enrichment or the simple recovery of caesium from river and sea waters, selective inorganic exchangers were considered. Ammonium hexacyanocobalt ferrate (NCFC) was chosen because it can be used in strongly acidic solutions (with the exception of concentrated sulphuric acid). Caesium is fully retained by the NCFC chromatographic column and can then be recovered by dissolution in hot sulphuric acid. The solution is then diluted and analysed, either directly or following caesium separation, by atomic-absorption spectrometry. To check the reliability of the analytical procedure, a series of experiments were carried out in which the possible interfering species were added to the aqueous caesium solution prior to analysis. The well known ionic interference in flame atomisation processes caused by magnesium, calcium, strontium and metals was investigated by electrothermal atomisation measurements. The experimental data showed that this effect does not occur even when these elements are present in concentrations of the order of thousands of parts per million. However, strong interferences from iron and cobalt were observed. (author)

  12. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Duarte, Fabio Andrei; Bizzi, Cezar Augusto; Goldschmidt Antes, Fabiane; Dressler, Valderi Luiz; Flores, Erico Marlon de Moraes

    2009-01-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 deg. C and the atomization temperature was set at 650 deg. C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  13. Control of electrolytic refinement of silver by atomic absorption method

    International Nuclear Information System (INIS)

    Kulish, N.G.; Burylev, B.P.

    1983-01-01

    Results of atomic absorption determination of 18 elements: Fe, Cu, Zn, Cd, Bi, Ga, In, Ca, Mg, K, Na, Sb, Te, Ni, Co, Cr, Mn, Pb in silver and electrolytes are presented. When determining impurities in silver the basis has been separated by the extraction of O-isopropyl-N-ethyl thiocarbamate in the 1M HN0 3 medium. Optimum measuring conditions and the range of linear dependence between concentration and atomic absorption value are given

  14. Flow injection analysis-flame atomic absorption spectrometry system for indirect determination of sulfite after on-line reduction of solid-phase manganese (IV) dioxide reactor.

    Science.gov (United States)

    Zare-Dorabei, Rouholah; Boroun, Shokoufeh; Noroozifar, Meissam

    2018-02-01

    A new and simple flow injection method followed by atomic absorption spectrometry was developed for indirect determination of sulfite. The proposed method is based on the oxidation of sulfite to sulphate ion using solid-phase manganese dioxide (30% W/W suspended on silica gel beads) reactor. MnO 2 will be reduced to Mn(II) by sample injection in to the column under acidic carrier stream of HNO 3 (pH 2) with flow rate of 3.5mLmin -1 at room temperature. Absorption measurement of Mn(II) which is proportional to the concentration of sulfite in the sample was carried out by atomic absorption spectrometry. The calibration curve was linear up to 25mgL -1 with a detection limit (DL) of 0.08mgL -1 for 400µL injection sample volume. The presented method is efficient toward sulfite determination in sugar and water samples with a relative standard deviation (RSD) less than 1.2% and a sampling rate of about 60h -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  15. evaluation of atomic absorption spectrophotometry (ashing, non ...

    African Journals Online (AJOL)

    cistvr

    1Department of Agricultural and Food Science and 2Department of ... used techniques, namely atomic absorption spectrophotometry (AAS-Ashing and ..... fact that more preparation steps were involved in the Ashing procedure and thus.

  16. Study for the determination of samarium, europium,terbium, dysprosium and yttrium in gadolinium oxide matrix by means of atomic absorption spectrophotometry using a graphite furnace

    International Nuclear Information System (INIS)

    Caires, A.C.F.

    1985-01-01

    A study for determination of samarium, europium, terbium, dysprosium and yttrium in a gadolinium oxide matrix by atomic absorption spectrophotometry using a graphite furnace is presented. The best charrring and atomization conditions were estabilished for each element, the most convenient ressonance lines being selected as well. The study was carried out for the mentioned lanthanides both when pure and when in binary mixtures with gadolinium, besides those where all for them were together with gadolinium. The determination limits for pure lanthanides were found to be between 1.3 and 9.6 ng assuming a 20% relative standard deviation as acceptable. The detection limits were in the range 0.51 and 7.5 ng, assuming as positive any answer higher than twofold the standard deviation. (author) [pt

  17. Preconcentration of Co, Ni, Cd and Zn on naphthalene–2,4,6-trimorpholino-1,3,5-triazin adsorbent and flame atomic absorption determination

    Directory of Open Access Journals (Sweden)

    TAYYEBEH MADRAKIAN

    2010-05-01

    Full Text Available A preconcentration method was developed for the determination of trace amounts of Co, Ni, Cd and Zn by atomic absorption spectrometry. The method is based on the retention of the metal cations by naphthalene–2,4,6-trimorpholino-1,3,5-triazin adsorbent in a column. The adsorbed metals were then eluted from the column with hydrochloric acid and the Co, Ni, Cd and Zn were determined by flame atomic absorption spectrometry. The optimal extraction and elution conditions were studied. The effects of diverse ions on the preconcentration were also investigated. A preconcentration factor of 250 for Co(II, Ni(II and Zn(II, and 400 for Cd(II can easily be achieved. Calibration graphs were obtained and the detection limits of the method for Co(II, Ni(II, Cd(II and Zn(II were 0.51, 0.49, 0.17 and 0.10 ng mL-1, respectively. The relative standard deviations (RSD of 0.37–2.31 % for Co, 0.37–3.73 % for Ni, 2.20–2.40 % for Cd and 1.50–2.56 % for Zn were obtained. The method was also used for the simultaneous preconcentration of these elements and the method was successfully applied to their preconcentration and determination. The method was applied to the determination of Co, Ni, Cd and Zn in several real samples.

  18. Solvent extraction with thiothenoyltrifluoroacetone and fluorined β-diketones for the determination of metal traces in waters by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Jauniaux, M.; Meyer, M. de; Lejeune, W.; Levert, J.M.

    1975-01-01

    A method is described for the determination of metal elements: aluminium, cadmium, copper, iron, lead and zinc as traces in water. The elements are extracted as metal chelates of fluorinated (β-ketones (trifluoracetyl-acetone, thenoyl trifluoroacetone) or thiothenoyl trifluoroacetone with ethyle propionate. They are measured by atomic absorption spectroscopy of the organic extraction. The calibration curves are linear between 0 and 100 μg/l at least. Sensitivities vary from 1 PPB to about 10 PPB according to the metals. The method can be applied for other elements. (author)

  19. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  20. Development and Validation of a Sensitive Method for Trace Nickel Determination by Slotted Quartz Tube Flame Atomic Absorption Spectrometry After Dispersive Liquid-Liquid Microextraction.

    Science.gov (United States)

    Yolcu, Şükran Melda; Fırat, Merve; Chormey, Dotse Selali; Büyükpınar, Çağdaş; Turak, Fatma; Bakırdere, Sezgin

    2018-05-01

    In this study, dispersive liquid-liquid microextraction was systematically optimized for the preconcentration of nickel after forming a complex with diphenylcarbazone. The measurement output of the flame atomic absorption spectrometer was further enhanced by fitting a custom-cut slotted quartz tube to the flame burner head. The extraction method increased the amount of nickel reaching the flame and the slotted quartz tube increased the residence time of nickel atoms in the flame to record higher absorbance. Two methods combined to give about 90 fold enhancement in sensitivity over the conventional flame atomic absorption spectrometry. The optimized method was applicable over a wide linear concentration range, and it gave a detection limit of 2.1 µg L -1 . Low relative standard deviations at the lowest concentration in the linear calibration plot indicated high precision for both extraction process and instrumental measurements. A coal fly ash standard reference material (SRM 1633c) was used to determine the accuracy of the method, and experimented results were compatible with the certified value. Spiked recovery tests were also used to validate the applicability of the method.

  1. Ionic liquid ultrasound assisted dispersive liquid-liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination

    Energy Technology Data Exchange (ETDEWEB)

    Molaakbari, Elaheh [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Young Research Society, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mostafavi, Ali, E-mail: mostafavi.ali@gmail.com [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Afzali, Daryoush [Environment and Nanochemistry Department, Research Institute of Environmental Science, International Center for Science, High Technology and Environmental Science, Kerman (Iran, Islamic Republic of); Mineral Industries Research Center, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2011-01-30

    In this article, we consider ionic liquid based ultrasound-assisted dispersive liquid-liquid microextraction of trace amounts of rhodium from aqueous samples and show that this is a fast and reliable sample pre-treatment for the determination of rhodium ions by flame atomic absorption spectrometry. The Rh(III) was transferred into its complex with 2-(5-bromo-2-pyridylazo)-5-diethylamino phenol as a chelating agent, and an ultrasonic bath with the ionic liquid, 1-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide at room temperature was used to extract the analyte. The centrifuged rhodium complex was then enriched in the form of ionic liquid droplets and prior to its analysis by flame atomic absorption spectrometry, 300 {mu}L ethanol was added to the ionic liquid-rich phase. Finally, the influence of various parameters on the recovery of Rh(III) was optimized. Under optimum conditions, the calibration graph was linear in the range of 4.0-500.0 ng mL{sup -1}, the detection limit was 0.37 ng mL{sup -1} (3S{sub b}/m, n = 7) and the relative standard deviation was {+-}1.63% (n = 7, C = 200 ng mL{sup -1}). The results show that ionic liquid based ultrasound assisted dispersive liquid-liquid microextraction, combined with flame atomic absorption spectrometry, is a rapid, simple, sensitive and efficient analytical method for the separation and determination of trace amounts of Rh(III) ions with minimum organic solvent consumption.

  2. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries.

    Science.gov (United States)

    de Oliveira, Tatiane Milão; Augusto Peres, Jayme; Lurdes Felsner, Maria; Cristiane Justi, Karin

    2017-08-15

    Milk is an important food in the human diet due to its physico-chemical composition; therefore, it is necessary to monitor contamination by toxic metals such as Pb. Milk sample slurries were prepared using Triton X-100 and nitric acid for direct analysis of Pb using graphite furnace atomic absorption spectrometry - GF AAS. After dilution of the slurries, 10.00µl were directly introduced into the pyrolytic graphite tube without use of a chemical modifier, which acts as an advantage considering this type of matrix. The limits of detection and quantification were 0.64 and 2.14µgl -1 , respectively. The figures of merit studied showed that the proposed methodology without pretreatment of the raw milk sample and using external standard calibration is suitable. The methodology was applied in milk samples from the Guarapuava region, in Paraná State (Brazil) and Pb concentrations ranged from 2.12 to 37.36µgl -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Graphite furnace atomic absorption spectrometry with a tantalum boat for the determination of yttrium, samarium, and dysprosium in a mish metal

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro; Tamura, Shohei

    1982-01-01

    The determination of yttrium, samarium, and dysprodium by means of graphite-furnace atomic absorption spectrometry (AAS) was studied by a tantalum boat inserted into a graphite tube atomizer. These elements could not be determined by the use of a commercial graphite tube, In the atomization from a tantalum boat, better analytical sensitivities and negligible memory effects for these rare earths are obtained. The analytical sensitivities of yttrium, samarium, and dysprodium with the tantalum boat were 0.60 ng, 0.86 ng, and 0.17 ng respectively. This method was applied for the determination of yttrium, samarium, and dysprosium in a mish metal. The measurements were performed with slightly acidified solutions (0.01 mol dm 3 HCI or HNO 3 ). The sensitivities and the precisions for these elements decreased with increasing acid concentration. An enhancement in the sensitivities of yttrium and dysprosium upon the addition of a large excess of lanthanum, neodymium, and praseodymium salts were observed. The yttrium, samarium, and dysprosium in a mish metal were determined with both analytical curves of standard solutions containing an excess of lanthanum, cerium, and neodymium ions and of the standard addition. The precisions for this work were in the 3 - 9.3% range. (author)

  4. Modernization of Atomic Absorption Spectrophotometer

    International Nuclear Information System (INIS)

    Tasic, Visa; Milivojevic, Dragan; Karabasevic, Dejan

    2003-01-01

    In Copper Institute in Bor, connection has been made between absorption spectrophotometer and standard PC with the aim to make its operation more reliable and comfortable. Applied solution includes both software and hardware components. An I/O interface module has been installed in PC [1]. Software component consists of programs for measuring and interpretation of results. Paper presents details of this job realization.(Author)

  5. Coupling continuous ultrasound-assisted extraction, preconcentration and flame atomic absorption spectrometric detection for the determination of cadmium and lead in mussel samples

    International Nuclear Information System (INIS)

    Yebra-Biurrun, M.C.; Cancela-Perez, S.; Moreno-Cid-Barinaga, A.

    2005-01-01

    Continuous ultrasound-assisted extraction has been coupled with preconcentration and flame atomic absorption spectrometry for the determination of cadmium and lead in mussel samples. Experimental designs were used for the optimisation of the leaching and preconcentration steps. The use of diluted nitric acid as extractant in the continuous mode at a flow rate of 3.5 ml min -1 and room temperature was sufficient for quantitative extraction of these trace metals. A minicolumn containing a chelating resin (Chelite P, with aminomethylphosphoric acid groups) was proved as an excellent material for the quantitative preconcentration of cadmium and lead prior to their flame atomic absorption detection. A flow injection manifold was used as interface for coupling the three analytical steps, which allowed the automation of the whole analytical process. A good precision of the whole procedure (2.0 and 2.3%), high enrichment factors (20.5 and 11.8) and a detection limit of 0.011 and 0.25 μg g -1 for cadmium and lead, respectively, were obtained for 80 mg of sample. The sample throughputs were ca. 16 and 14 samples h -1 for cadmium and lead, respectively. The accuracy of the analytical procedures was verified by using a standard reference material (BCR 278-R, mussel tissue) and the results were in good agreement with the certified values. The method was successfully applied to the determination of trace amounts of cadmium and lead in mussel samples from the coast of Galicia (NW, Spain)

  6. Determination and Uncertainty Analysis of Inorganic Arsenic in Husked Rice by Solid Phase Extraction and Atomic Absorption Spectrometry with Hydride Generation.

    Science.gov (United States)

    Saxena, Sushil Kumar; Karipalli, Agnes Raju; Krishnan, Anoop A; Rangasamy, Rajesh; Malekadi, Praveen; Singh, Dhirendra P; Vasu, Vimesh; Singh, Vijay K

    2017-05-01

    This study enables the selective determination of inorganic arsenic (iAs) with a low detection limit using an economical instrument [atomic absorption spectrometer with hydride generation (HG)] to meet the regulatory requirements as per European Commission (EC) and Codex guidelines. Dry rice samples (0.5 g) were diluted using 0.1 M HNO3-3% H2O2 and heated in a water bath (90 ± 2°C) for 60 min. Through this process, all the iAs is solubilized and oxidized to arsenate [As(V)]. The centrifuged extract was loaded onto a preconditioned and equilibrated strong anion-exchange SPE column (silica-based Strata SAX 500 mg/6 mL), followed by selective and sequential elution of As(V), enabling the selective quantification of iAs using atomic absorption spectrometry with HG. In-house validation showed a mean recovery of 94% and an LOQ of 0.025 mg/kg. The repeatability (HorRatr) and reproducibility (HorRatR) values were <2, meeting the performance criteria mandated by the EC. The combined standard measurement uncertainty by this method was less than the maximum standard measurement uncertainty; thus, the method can be considered for official control purposes. The method was applied for the determination of iAs in husked rice samples and has potential applications in other food commodities.

  7. Separation/preconcentration of silver(I) and lead(II) in environmental samples on cellulose nitrate membrane filter prior to their flame atomic absorption spectrometric determinations

    International Nuclear Information System (INIS)

    Soylak, Mustafa; Cay, Rukiye Sungur

    2007-01-01

    An enrichment method for trace amounts of Ag(I) and Pb(II) has been established prior to their flame atomic absorption spectrometric determinations. The preconcentration/separation procedure is based on chelate formation of Ag(I) and Pb(II) with ammonium pyrrolidine dithiocarbamate (APDC) and on retention of the chelates on cellulose nitrate membrane filter. The influences of some analytical parameters including pH and amounts of reagent, etc. on the recoveries of analytes were investigated. The effects of interferic ions on the quantitative recoveries of analytes were also examined. The detection limits (k = 3, N = 11) were 4.6 μg L -1 for silver(I) and 15.3 μg L -1 for lead(II). The relative standard deviations (R.S.D.) of the determinations for analyte ions were below 3%. The method was applied to environmental samples for the determination of analyte ions with satisfactory results (recoveries >95%)

  8. Atomic absorption spectrophotometric determination of microgram levels of Co, Ni, Cu, Pb, and Zn in soil and sediment extracts containing large amounts of Mn and Fe

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1973-01-01

    An atomic absorption spectrophotometric method has been developed for the determination of seven metal ions in the hydroxylamine extract of soils and sediments. Mn, Fe, and Zn are directly determined in the aqueous extract upon dilution. Co, Ni, Cu, and Pb in a separate aliquot of the extract are chelated with APDC (ammonium pyrrolidine dithiocarbamate) and extracted into MIBK (methyl isobutyl ketone) before determination. Data are presented to show the quantitative recovery of microgram levels of Co, Ni, Cu, and Pb by APDC-MIBK chelation-extraction from synthetic solutions containing as much as 2,000 ug/ml (micrograms per milliliter) Mn or 50 ug/ml Fe. Recovery of known amounts of the metal ions from sample solutions is equally satisfactory. Reproducible results are obtained by replicate analyses of two sediment samples for the seven metals.

  9. Preconcentration and atomic absorption spectrometric determination of cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in water samples using 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    Khuhawar, M.Y.; Das, P.; Dewani, V.K.

    2005-01-01

    The reagent 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone (MPAPT) has been examined for the pre-concentration of metal ions and determination using air acetylene flame atomic absorption spectrometer. The method is based on the complexation and extraction of cadmium (II), cobalt(III), copper(II), lead(II), nickel(II), iron(II), iron(II), manganese(II) and zinc(II) in chloroform. The metal iron are back extracted in nitric acid (1:1) or after evaporation of solvent the residue is digested in nitric acid. After necessary adjustment of volume the metal ions were determined in aqueous solution. Pre-concentration is obtained 10-25 times. Metal ions recovery was 95.4-100.8% with coefficient of variation 0.2-7.5%. The method used for the determination of metals in canal and sewerage waters, within 2-6433 mu g/L with C. V 0.-5.2%. (author)

  10. Dispersive liquid-liquid microextraction (DLLME combined with graphite furnace atomic absorption spectrometry (GFAAS for determination of trace Cu and Zn in water Samples

    Directory of Open Access Journals (Sweden)

    Ghorbani A.

    2014-07-01

    Full Text Available Dispersive liquid-liquid microextraction (DLLME combined with graphite furnace atomic absorption spectrometry (GFAAS was proposed for the determination of trace amounts of Copper and Zinc ions using 8-hydroxyquinoline (8-HQ as chelating agent. Several factors influencing the microextraction efficiency of Cu and Zn and their subsequent determinations, such as pH, extraction and disperser solvent type and their volume, concentration of the chelating agent and extraction time were studied, and the optimized experimental conditions were established. After extraction, the enrichment factors were 25 and 26 for Cu and Zn, respectively. The detection limits of the method were 0.025 and 0.0033 μg/L for Cu and Zn, and the relative standard deviations (R.S.D for five determinations of 1 ng/ml Cu and Zn were 8.51% and 7.41%, respectively.

  11. Liquid-phase microextraction with solidification of the organic floating drop for the preconcentration and determination of mercury traces by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, I.; Rivas, R.E.; Hernandez-Cordoba, M. [Faculty of Chemistry, University of Murcia, Department of Analytical Chemistry, Murcia (Spain)

    2010-04-15

    A procedure for the determination of traces of mercury by liquid-phase microextraction based on solidification of a floating organic droplet for separation and electrothermal atomic absorption spectrometry for final measurement has been developed. For this purpose, 50 {mu}L of pre-heated (50 C) undecanoic acid (UA), are added to 25 mL of aqueous sample solution at pH 5. The mixture, maintained at 50 C, is stirred for 10 min using a high stirring rate in order to fragment the UA drop into droplets, thus favoring the extraction process. Next, the vial is immersed in an ice bath, which results in the solidification of the UA drop that is easily separated. Injection into the atomizer is carried out after gentle heating. The pyrolytic atomizers are coated with electrolytically reduced palladium that acts as an effective chemical modifier for more than 500 firings. Under the optimized conditions, the detection limit was 70 ng L{sup -1} mercury with an enrichment factor of 430. The relative standard deviation of the measurements was in the 2.1-3.5% range. Recovery studies applied to the determination of mercuric ions in bottled and tap water samples were in the 92-104% range. (orig.)

  12. Determination of trace amounts of rare earth elements in samarium, terbium and disprosium oxides by graphite furnace atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Dantas, E.S.K.

    1990-01-01

    A graphite furnace atomic-absorption spectrometry method for the determination of neodymium, europium, terbium, dysprosium and yttrium at trace level in samarium oxide; of samarium, europium, dysprosium, holmium, erbium and yttrium in terbium oxide and of europium, terbium, holmium, erbium and yttrium in dysprosium oxide was established. The best pyrolysis and atomization temperatures were determined for each lanthanide considered. Calibration curves were obtained for the pure elements, for binary mixtures formed by the matrix and each of the lanthanides studied and, finally, for the complex mixtures constituted by the matrix and all the other lanthanide of the group under scrutiny. This study has been carried out to examine the interference of the presence of one lanthanide on the behaviour of the other, since a lack of linearity on the calibration curves has been observed in some cases. Detection and determination limits have been determined as well. The detection limits encountered were within the range 0.002 to 0.3% for different elements. The precision of the method expressed as the relative standard deviation was calculated for each element present in each of the matrices studied. The conclusion arrived at is that the method can be applied for determining the above mentioned lanthanides present in the matrices studied with purity up to 99.50%. (author)

  13. Quality in the organizations (enterprises and institutions of production and of services). Validation of the determination by atomic absorption of sodium and potassium in acid rain

    International Nuclear Information System (INIS)

    Arreola T, D.L.

    2005-01-01

    The present work is focused to the environmental area and in specific to the validation of an analytical method by means of one of the techniques more used for the determination of metals, the atomic absorption spectrophotometry. Applied to the study of the acid rain and its diverse forms in the nature. As well as their consequences and the role that the man carries out in the contribution toward this phenomenon. To approach the following text it will be mention shortly how is distributed, beginning with the introduction that is about the importance of the role of the acid rain, its effects and repercussions in the environment. In the first chapter the points that we should be evaluated to carry out a validation are analyzed. Being the main ones, the precision, accuracy, lineal interval, among others. Continuing in the second chapter with the foundation study, equipment and interferences of the atomic absorption spectrophotometry technique. The last chapter contains the experimental part, continuing for each evaluated point, from the experimental development, results and its analysis. (Author)

  14. Spectral interferences in atomic absorption spectrometry, (5)

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro

    1979-01-01

    Spectral interferences were observed in trace element analysis of concentrated solutions by atomic absorption spectrometry. Molecular absorption and emission spectra for strontium chloride and nitrate, barium chloride and nitrate containing 12 mg/ml of metal ion in airacetylene flame were measured in the wavelength range from 200 to 700 nm. The absorption and emission spectra of SrO were centered near 364.6 nm. The absorption spectra of SrOH around 606.0, 671.0 and 682.0 nm were very strong. And, emission spectrum of BaOH in the wavelength range from 480 to 550 nm was stronger. But, the absorption of this band spectrum was very weak. In the wavelength range from 200 to 400 nm, some unknown bands of absorption were observed for strontium and barium. Absorption spectra of SrCl and BaCl were observed in the argon-hydrogen flame. Also, in the carbon tube atomizer, the absorption spectra of SrCl and BaCl were detected clearly in the wavelength range from 185 to 400 nm. (author)

  15. Flow injection analysis-flame atomic absorption spectrometry system for indirect determination of cyanide using cadmium carbonate as a new solid-phase reactor

    International Nuclear Information System (INIS)

    Noroozifar, M.; Khorasani-Motlagh, M.; Hosseini, S.-N.

    2005-01-01

    A new and simple flow injection system procedure has been developed for the indirect determination of cyanide. The method is based on insertion of aqueous cyanide solutions into an on-line cadmium carbonate packed column (25% m/m suspended on silica gel beads) and a sodium hydroxide with pH 10 is used as the carrier stream. The eluent containing the analyte as cadmiumcyanide complexes, produced from reaction between cadmium carbonate and cyanide, measured by flame atomic absorption spectrometry. The absorbance is proportional to the concentration of cyanide in the sample. The linear range of the system is up to 15 mg L -1 with a detection limit 0.2 mg L -1 and sampling rate 72 h -1 . The method is suitable for determination of cyanide in industrial waste waters with a relative standard deviation better than 1.22%

  16. Application of cloud point preconcentration and flame atomic absorption spectrometry for the determination of cadmium and zinc ions in urine, blood serum and water samples

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2013-01-01

    Full Text Available A simple, sensitive and selective cloud point extraction procedure is described for the preconcentration and atomic absorption spectrometric determination of Zn2+ and Cd2+ ions in water and biological samples, after complexation with 3,3',3",3'"-tetraindolyl (terephthaloyl dimethane (TTDM in basic medium, using Triton X-114 as nonionic surfactant. Detection limits of 3.0 and 2.0 µg L-1 and quantification limits 10.0 and 7.0 µg L-1were obtained for Zn2+ and Cd2+ ions, respectively. Relative standard deviation was 2.9 and 3.3, and enrichment factors 23.9 and 25.6, for Zn2+ and Cd2+ ions, respectively. The method enabled determination of low levels of Zn2+ and Cd2+ ions in urine, blood serum and water samples.

  17. Optimization of microwave assisted digestion procedure for the determination of zinc, copper and nickel in tea samples employing flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Soylak, Mustafa; Tuzen, Mustafa; Souza, Anderson Santos; Korn, Maria das Gracas Andrade; Ferreira, Sergio Luis Costa

    2007-01-01

    The present paper describes the development of a microwave assisted digestion procedure for the determination of zinc, copper and nickel in tea samples employing flame atomic absorption spectrometry (FAAS). The optimization step was performed using a full factorial design (2 3 ) involving the factors: composition of the acid mixture (CMA), microwave power (MP) and radiation time (RT). The experiments of this factorial were carried out using a certified reference material of tea GBW 07605 furnished by National Research Centre for Certified Reference Materials, China, being the metal recoveries considered as response. The relative standard deviations of the method were found below 8% for the three elements. The procedure proposed was used for the determination of copper, zinc and nickel in several samples of tea from Turkey. For 10 tea samples analyzed, the concentration achieved for copper, zinc and nickel varied at 6.4-13.1, 7.0-16.5 and 3.1-5.7 (μg g -1 ), respectively

  18. Determination and Evaluation of Mineral Constituents of Medicinal Plants used for the Treatment of Asthma and other Ailments by Atomic Absorption Spectrophotometry

    International Nuclear Information System (INIS)

    Sahito, S.B.; Jatoi, W.B.; Mahar, P.

    2013-01-01

    Mineral contents have been determined for thirty samples from three medicinal plants (Hibiscus rosa-sinensis, Salvadora oleoides and Euphoria hirta) . Fifteen essential trace and toxic elements were determined, using atomic absorption spectrophotometer. Ten samples from each plant were collected from the vicinity of Jamshoro and Tandojam Agricultural University and drug stores. The edible parts of all three plants were digested with two known wet asking methods. It was observed that the levels of essential micronutrient Ca, Mg, Fe, Mn and Zn, in all there medicinal plants are found to be (3.491.3-3928.2), (2269.3-3617.3), (3.23-5.42), (6.13-7.33) and (4.22-6.94) mg/100g respectively on dried basis. The efficiency of digesting mineral acid mixtures was checked by certified reference sample of Spinach NBS-1570. (author)

  19. Flame atomic absorption spectrometric determination of trace quantities of cadmium in water samples after cloud point extraction in Triton X-114 without added chelating agents

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Madrakian, Tayyebeh; Siampour, Hajar

    2006-01-01

    A new micell-mediated phase separation method for preconcentration of ultra-trace quantities of cadmium as a prior step to its determination by flame atomic absorption spectrometry has been developed. The method is based on the cloud point extraction (CPE) of cadmium in iodide media with Triton X-114 in the absence of any chelating agent. The optimal extraction and reaction conditions (e.g., acid concentration, iodide concentration, effect of time) were studied, and the analytical characteristics of the method (e.g., limit of detection, linear range, preconcentration, and improvement factors) were obtained. Linearity was obeyed in the range of 3-300 ng mL -1 of cadmium. The detection limit of the method is 1.0 ng mL -1 of cadmium. The interference effect of some anions and cations was also tested. The method was applied to the determination of cadmium in tap water, waste water, and sea water samples

  20. Organic palladium and palladium-magnesium chemical modifiers in direct determination of lead in fractions from distillation of crude oil by electrothermal atomic absorption analysis

    Science.gov (United States)

    Kowalewska, Zofia; Bulska, Ewa; Hulanicki, Adam

    1999-05-01

    Platinum reforming catalysts are easily poisoned by increased levels of lead, therefore a sensitive atomic absorption spectrometric procedure for lead determination in fractions from crude oil distillation was developed. Lead was present in organic form in the samples analysed therefore the behaviour of various lead compounds (Pb-alkylarylsulphonate, Pb-4-cyclohexanobutyrate, tetraethyllead, Pb in fuel oil) was studied. The best procedure for the determination of lead in different petroleum products, including those containing asphaltenes includes a pretreatment with iodine and methyltrioctylammonium chloride, followed by the use of an organic Pd-Mg modifier. Under these conditions an effective matrix removal is possible at a pyrolysis temperature up to approximately 1100°C and the behaviour of lead present in different forms is unified. The characteristic mass is 11-12 pg Pb, corresponding to a detection limit of 0.25 ng g -1 for 20 μl sample solution. This can be lowered by multiple injection.

  1. Validation of a hydride generation atomic absorption spectrometry methodology for determination of mercury in fish designed for application in the Brazilian national residue control plan.

    Science.gov (United States)

    Damin, Isabel C F; Santo, Maria A E; Hennigen, Rosmari; Vargas, Denise M

    2013-01-01

    In the present study, a method for the determination of mercury (Hg) in fish was validated according to ISO/IEC 17025, INMETRO (Brazil), and more recent European recommendations (Commission Decision 2007/333/EC and 2002/657/EC) for implementation in the Brazilian Residue Control Plan (NRCP) in routine applications. The parameters evaluated in the validation were investigated in detail. The results obtained for limit of detection and quantification were respectively, 2.36 and 7.88 μg kg(-1) of Hg. While the recovery varies between 90-96%. The coefficient of variation was of 4.06-8.94% for the repeatability. Furthermore, a comparison using an external proficiency testing scheme was realized. The results of method validated for the determination of the mercury in fish by Hydride generation atomic absorption spectrometry were considered suitable for implementation in routine analysis.

  2. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.

    2018-02-01

    A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.

  3. Preconcentration of trace elements from high-purity thorium and uranium on Chelex-100 and determination by graphite furnace atomic absorption spectrometry with Zeeman-effect background correction

    International Nuclear Information System (INIS)

    Raje, Naina; Kayasth, Satish; Asari, T.P.S.; Gangadharan, S.

    1994-01-01

    Preconcentration of trace impurities from large-sized samples of uranium metal and thorium oxide using a small column of Chelex-100 followed by their determination using graphite furnace atomic absorption spectrometry (GFAAS) is reported. A 0.5-10-g amount of the sample (uranium metal or thorium oxide) was dissolved, complexed with ammonium carbonate and subjected to the ion-exchange procedure. The retained analytes were eluted with 2-4 M nitric acid and brought to a small volume for a final dilution to 10-25 ml for their determination using GFAAS. The validity of the separation procedure and recoveries at μg kg -1 levels was checked by standard addition; the recoveries were >95%

  4. Preconcentration, Separation and Determination of lead(II) with Methyl Thymol Blue Adsorbed on Activated Carbon Using Flame Atomic Absorption Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A.; Ghaderi, Ali R. [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2008-02-15

    An on-line system for preconcentration and separation of lead(II) is presented. The method is based on the complex formation of Pb(II) with adsorbed Methyl thymol blue on activated carbon. The conditions of preparing the solid phase reagent and of quantitative recovery of Pb(II) from diluted solutions, such as acidity of aqueous phase, solid phase capacity, and flow variables were studied as well as effect of potential interfering ions. After preconcentration step, the metal ions are eluted automatically by 5 ml of 0.5 M HNO{sub 3} solution and the lead ions content was determined by flame atomic absorption spectrometry. Under the optimum conditions, the lead ions in aqueous samples were separated and preconcentrated about 1000-fold by the column. The detection limit was 0.001 μg mL{sup -1}. Lead has been determined in river and tap water samples, with recovery of 98 to 102%.

  5. Solvent microextraction-flame atomic absorption spectrometry (SME-FAAS) for determination of ultratrace amounts of cadmium in meat and fish samples.

    Science.gov (United States)

    Goudarzi, Nasser

    2009-02-11

    A simple, low cost and highly sensitive method based on solvent microextraction (SME) for separation/preconcentration and flame atomic absorption spectrometry (FAAS) was proposed for the determination of ultratrace amounts of cadmium in meat and fish samples. The analytical procedure involved the formation of a hydrophobic complex by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution. In suitable conditions, the complex of cadmium-APDC entered the micro organic phase, and thus, separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, a detection limit (3 sigma) of 0.8 ng L(-1) and an enrichment factor of 93 were achieved. The relative standard deviation for the method was found to be 2.2% for Cd. The interference effects of some anions and cations were also investigated. The developed method has been applied to the determination of trace Cd in meat and fish samples.

  6. Determination of lead associated with airborne particulate matter by flame atomic absorption and wave-length dispersive x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Talebi, S.M.

    1997-01-01

    The lead content of airborne particulate matter was determined by flame atomic absorption spectrometry (FAAS) following digestion with a mixture of nitric acid and hydrogen peroxide and also by wave-length dispersive x-ray fluorescence (WDXRF). The extraction procedure was checked by analyzing a standard reference material of airborne particulate matter (NIST, SRM -1648). It was concluded that lead can quantitatively (98%) be extracted from airborne particulate matter by the leaching process. A five-stage sequential extraction was performed to assess the potential mobility of lead associated with airborne particulate matter. Comparison of the airborne particulate lead measured by WDXRF to that measured by FAAS showed good agreement. The WDXRF method requires no time-consuming sample preparation or use of environmentally unfriendly solvents. The technique is suggested for direct determination of lead in airborne particulate matter in air pollution studies. (author)

  7. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rennan G.O., E-mail: rgoa01@terra.com.br [Laboratorio de Quimica Analitica Ambiental, Departamento de Quimica, Universidade Federal de Sergipe, Campus Sao Cristovao, 49.100-000, Sao Cristovao, SE (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Vignola, Fabiola; Castilho, Ivan N.B. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G.; Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Smichowski, Patricia [Comision Nacional de Energia Atomica (CNEA) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, 40170-290, Salvador, BA (Brazil); Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V., Department Berlin, 12489 Berlin (Germany)

    2011-05-15

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3{sigma}), based on ten atomizations of an unexposed filter, was 40 ng g{sup -1}, corresponding to 0.12 ng m{sup -3} in the air for a typical air volume of 1440 m{sup 3} collected within 24 h. The limit of quantification was 150 ng g{sup -1}, equivalent to 0.41 ng m{sup -3} in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g{sup -1} and 381 {+-} 24 ng g{sup -1}. These values correspond to a mercury concentration in the air between < 0.12 ng m{sup -3} and 1.47 {+-} 0.09 ng m{sup -3}. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  8. Determination of total antimony and inorganic antimony species by hydride generation in situ trapping flame atomic absorption spectrometry: a new way to (ultra)trace speciation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Henryk Matusiewicz; Magdalena Krawczyk

    2008-07-01

    The analytical performance of non-chromatographic coupled hydride generation, integrated atom trap (HG-IAT) atomizer flame absorption spectrometry (FAAS) systems were evaluated for the speciation analysis of antimony in environmental samples. Antimony, using formation of stibine (SbH{sub 3}) vapors were atomized in an air-acetylene flame-heated IAT. A new design of HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements was investigated. For the estimation of Sb(III) and Sb(V) concentrations in samples, the difference between the analytical sensitivities of the absorbance signals obtained for antimony hydride without and with previous treatment of samples with L-cysteine can be used. The concentration of Sb(V) was calculated by the difference between total Sb and Sb(III). A dramatic improvement in detection limit was achieved compared with that obtained using either of the atom trapping techniques, presented above, separately. This novel approach decreases the detection limit down to low pg mL{sup -1} levels. The concentration detection limit, defined as 3 times the blank standard deviation was 0.2 ng mL{sup -1}. For a 120 s in situ pre-concentration time , sensitivity enhancement compared to flame AAS, was 550 fold for Sb, using hydride generation-atom trapping technique. The accuracy of the method was verified by the use of certified reference materials (NIST SRM 2704 Buffalo River Sediment, SRM 2710 Montana Soil, SRM 1633a Coal Fly Ash, SRM 1575 Pine Needles, SRM 1643e Trace Elements in Water) and by aqueous standard calibration technique. The measured Sb content, in reference materials, were in satisfactory agreement with the certified values. The hyphenated technique was applied for antimony determinations in soil, sediment, coal fly ash, sewage and river water.

  9. Use of cetyltrimethylammonium bromide as surfactant for the determination of copper and chromium in gasoline emulsions by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Santos, Denilson S.S. dos; Teixeira, Alete P.; Barbosa, Jose T.P.; Ferreira, Sergio L.C.; Korn, Maria das Gracas A; Teixeira, Leonardo S.G.

    2007-01-01

    In this work, the use of cetyltrimethylammonium bromide as surfactant for the preparation of oil-in-water emulsions for the determination of Cu and Cr in gasoline by electrothermal atomic absorption spectrometry (ET AAS) was evaluated. The surfactant amount was tested in the range of 25 to 300 mg, added to 2 ml of gasoline, and completed to 10 mL with 0.1% (v/v) nitric acid solution. 150 mg of surfactant was found optimum, and a sonication time of 10 min sufficient to form an oil-in-water emulsion that was stable for several hours. The ET AAS temperature program was established based on pyrolysis and atomization curves. The pyrolysis temperatures were set at 700 and 1300 deg. C for Cu and Cr, respectively and the selected atomization temperatures were 2400 and 2500 deg. C. The time and temperature of the drying stage and the atomization time were experimentally tested to provide optimum conditions. The limits of detection were found to be 5 μg L -1 and 1.5 μg L -1 for Cu and Cr, respectively in the original gasoline samples. The relative standard deviation (RSD) ranged from 4 to 9% in oil-in-water emulsions spiked with 5 μg L -1 and 15 μg L -1 of each metal, respectively. Recoveries varied from 90 to 98%. The accuracy of the proposed method was tested by an alternate procedure using complete evaporation of the gasoline sample. The method was adequate for the determination of Cu and Cr in gasoline samples collected from different gas stations in Salvador, BA, Brazil

  10. Selenium analysis by an integrated microwave digestion-needle trap device with hydride sorption on carbon nanotubes and electrothermal atomic absorption spectrometry determination

    Science.gov (United States)

    Maratta Martínez, Ariel; Vázquez, Sandra; Lara, Rodolfo; Martínez, Luis Dante; Pacheco, Pablo

    2018-02-01

    An integrated microwave assisted digestion (MW-AD) - needle trap device (NTD) for selenium determination in grape pomace samples is presented. The NTD was filled with oxidized multiwall carbon nanotubes (oxMWCNTS) where Se hydrides were preconcentrated. Determination was carried out by flow injection-electrothermal atomic absorption spectrometry (FI-ETAAS). The variables affecting the system were established by a multivariate design (Plackett Burman), indicating that the following variables significantly affect the system: sample amount, HNO3 digestion solution concentration, NaBH4 volume and elution volume. A Box-Behnken design was implemented to determine the optimized values of these variables. The system improved Se atomization in the graphite furnace, since only trapped hydrides reached the graphite furnace, and the pyrolysis stage was eliminated according to the aqueous matrix of the eluate. Under optimized conditions the system reached a limit of quantification of 0.11 μg kg- 1, a detection limit of 0.032 μg kg- 1, a relative standard deviation of 4% and a preconcentration factor (PF) of 100, reaching a throughput sample of 5 samples per hour. Sample analysis show Se concentrations between 0.34 ± 0.03 μg kg- 1 to 0.48 ± 0.03 μg kg- 1 in grape pomace. This system provides minimal reagents and sample consumption, eliminates discontinuous stages between samples processing reaching a simpler and faster Se analysis.

  11. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    Science.gov (United States)

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Atomization mechanisms for barium in furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Styris, D.L.

    1984-01-01

    Atomic absorption spectrometry and mass spectrometry are used simultaneously in order to elucidate atomization mechanisms of barium dichloride in pyrolytic graphite, vitreous carbon, and tantalum furnaces. Gas-phase barium dicarbide is observed to appear concurrently with the free barium. Barium oxide and barium dihydroxide precursors appear with the chlorides. Surface reactions involving species that are absorbed on the various furnaces are postulated to explain the appearances of the species that are observed in the gas phase. 49 references, 4 figures, 1 table

  13. A method optimization study for atomic absorption ...

    African Journals Online (AJOL)

    Sadia Ata

    2014-04-24

    Apr 24, 2014 ... Manufacturer brand Win 2.1 software was used for data inte- gration and processing. ... reagents and analyst) is suitable for the intended application. The % relative standard deviation for absorbance ... flame atomic absorption spectrometry. Table 2 Linearity data for analysis of zinc in insulin using AAS.

  14. Selective reduction of arsenic species by hydride generation - atomic absorption spectrometry. Part 2 - sample storage and arsenic determination in natural waters

    Directory of Open Access Journals (Sweden)

    Quináia Sueli P.

    2001-01-01

    Full Text Available Total arsenic, arsenite, arsinate and dimethylarsinic acid (DMA were selectively determined in natural waters by hydride generation - atomic absorption spectrometry, using sodium tetrahydroborate(III as reductant but in different reduction media. River water samples from the north region of Paraná State, Brazil, were analysed and showed arsenate as the principal arsenical form. Detection limits found for As(III (citrate buffer, As(III + DMA (acetic acid and As(III + As(V (hydrochloric acid were 0.6, 1.1 and 0.5 mg As L-1, respectively. Sample storage on the proper reaction media revealed to be a useful way to preserve the water sample.

  15. Separation/preconcentration of trace Pb(II and Cd(II with 2-mercaptobenzothiazole impregnated Amberlite XAD-1180 resin and their determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Şerife Tokalıoğlu

    2017-01-01

    Full Text Available A new chelating resin, 2-mercaptobenzothiazole loaded Amberlite XAD-1180 was prepared and used for separation and preconcentration of Cd(II and Pb(II ions prior to their determinations by flame atomic absorption spectrometry. The optimum pH for simultaneous retention of the elements and the best elution means for their simultaneous elution were 9.5 and 2 mol L−1 HNO3, respectively. The detection limits for Cd(II and Pb(II were 0.35 and 5.0 μg L−1, respectively. The accuracy of the method was confırmed both by analyzing the certified reference material (RM 8704 Buffalo river sediment and performing recovery studies.

  16. Separation of Cu, In, Fe and Sn from nuclear grade thorium by tri-n-octyl amine-5 M HCI and their determination by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Moraes, S. de; Cipriani, M.; Abrao, A.

    1976-01-01

    The results of solvent extraction separation of a group of metal traces in high pure thorium with the aid of tri-n-octyl amine-benzene from ThCL 4 HCI are summarized. ThCl 4 HCI-KI solutions Cu,In,Fe and Sn are extracted together and determined by atomic absoprtion spectrophotometry, burning directly the organic phase. The behavior of Cu,In,Fe and Sn toward direct burn of the organic phase using hydrogen-air mixture was studied, and an absorption enhancement was observed. The procedure is being used ot perform the quality control of nuclear grade thorium and its compounds. The calibration curves have provided precisions in the range 1 to 10% in analysis of thorium

  17. Determination of lead and cadmium in hen eggs by graphite france electrothermal atomic absorption spectrometry and estimation of the daily intake

    International Nuclear Information System (INIS)

    Siddiqui, I.; Nizami, S.S.

    2012-01-01

    A total of 54 hen eggs were procured from nine poultry farms of Sindh, Pakistan in different batches to determine lead and cadmium toxicity. The quantitative analysis of lead (Pb) and cadmium (Cd) in egg samples were performed on electrothermal atomic absorption spectrometer (ETAAS), with Zeeman effects background correction. Lead concentrations in hen egg samples ranged from 0.027 to 1.056 micro g/g with a mean value of 0.283 micro g/g +- 0.86, whereas cadmium concentrations ranged from 0.001 to 0.012 micro g/g with a mean value of 0.003 micro g/g +-0.002. Lead concentrations exceeded the normal levels of 0.020 but cadmium was found lower than the normal levels of 0.005 micro g/g. (author)

  18. Study to determine the content of vanadium, aluminum, nickel, sodium, iron and copper in a catalytic cracking catalyst, by using Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Gomez, J.; Alonso, A.; Tumbarell, O.; Bustanmete, E.

    2003-01-01

    Atomic Absorption Spectrometry (AAS), has the advantage of its simplicity, speed and low cost. All this, together with its high sensibility and selectivity, makes the AAS one the most widely used analytic techniques. The present work shows, the study to determine the content of vanadium, aluminum, nickel, sodium, iron and copper in a catalytic cracking catalyst of a refinery, by using this technique. The results are compared to those of two laboratories which use the ICP-AES and AAS techniques and shows the processing of the statistics with the use of the t of Student and the F of Snedecor. The results using different methods are also shown as well as the recommended application of this results in the chemical characterization of this type of catalysts

  19. Separation of Cu, In, Fe and Sn from nuclear grade thorium by tri-n-octyl amine--5 M HCI and their determination by atomic absorption spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    de Moraes, S; Cipriani, M; Abrao, A

    1976-03-01

    The results of solvent extraction separation of a group of metal traces in high pure thorium with the aid of tri-n-octyl amine-benzene from ThCl/sub 4/HCl are summarized. ThCl/sub 4/HCl-KI solutions of Cu, In, Fe and Sn are extracted together and determined by atomic absoprtion spectrophotometry and burning directly the organic phase. The behavior of Cu, In, Fe and Sn toward direct burn of the organic phase using hydrogen-air mixture was studied, and an absorption enhancement was observed. The procedure is being used to perform the quality control of nuclear grade thorium and its compounds. The calibration curves have provided precisions in the range 1 to 10% in analysis of thorium.

  20. ESTIMATION OF MEASUREMENT UNCERTAINTY IN THE DETERMINATION OF Fe CONTENT IN POWDERED TONIC FOOD DRINK USING GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Harry Budiman

    2010-06-01

    Full Text Available The evaluation of uncertainty measurement in the determination of Fe content in powdered tonic food drink using graphite furnace atomic absorption spectrometry was carried out. The specification of measurand, source of uncertainty, standard uncertainty, combined uncertainty and expanded uncertainty from this measurement were evaluated and accounted. The measurement result showed that the Fe content in powdered tonic food drink sample was 569.32 µg/5g, with the expanded uncertainty measurement ± 178.20 µg/5g (coverage factor, k = 2, at confidende level 95%. The calibration curve gave the major contribution to the uncertainty of the final results.   Keywords: uncertainty, powdered tonic food drink, iron (Fe, graphite furnace AAS

  1. [Determination of Al, Be, Cd, Co, Cr, Mn, Ni, Pb, Se and Tl in whole blood by atomic absorption spectrometry without preliminary sample digestion].

    Science.gov (United States)

    Ivanenko, N B; Ivanenko, A A; Solov'ev, N D; Navolotskiĭ, D V; Pavlova, O V; Ganeev, A A

    2014-01-01

    Methods of whole blood trace element determination by Graphite furnace atomic absorption spectrometry (in the variant of Zeeman's modulation polarization spectrometry) have been proposed. They do not require preliminary sample digestion. Furnace programs, modifiers and blood dilution factors were optimized. Seronorm™ human whole blood reference materials were used for validation. Dynamic ranges (for undiluted blood samples) were: Al 8 ¸ 210 мg/L; Be 0.3 ¸ 50 мg/L; Cd 0.2 ¸ 75 мg/L; Сo 5 ¸ 350 мg/L; Cr 10 ¸ 100 мg/L; Mn 6 ¸ 250 мg/L; Ni 10 ¸ 350 мg/L; Pb 3 ¸ 240 мg/L; Se 10 ¸ 500 мg/L; Tl 2 ¸ 600 мg/L. Precision (RSD) for the middle of dynamic range ranged from 5% for Mn to 11 for Se.

  2. An improved method for the determination of trace levels of arsenic and antimony in geological materials by automated hydride generation-atomic absorption spectroscopy

    Science.gov (United States)

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    An improved, automated method for the determination of arsenic and antimony in geological materials is described. After digestion of the material in sulfuric, nitric, hydrofluoric and perchloric acids, a hydrochloric acid solution of the sample is automatically mixed with reducing agents, acidified with additional hydrochloric acid, and treated with a sodium tetrahydroborate solution to form arsine and stibine. The hydrides are decomposed in a heated quartz tube in the optical path of an atomic absorption spectrometer. The absorbance peak height for arsenic or antimony is measured. Interferences that exist are minimized to the point where most geological materials including coals, soils, coal ashes, rocks and sediments can be analyzed directly without use of standard additions. The relative standard deviation of the digestion and the instrumental procedure is less than 2% at the 50 ??g l-1 As or Sb level. The reagent-blank detection limit is 0.2 ??g l-1 As or Sb. ?? 1982.

  3. Influence of citric acid as chemical modifier for lead determination in dietary calcium supplement samples by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Cezar Paz de Mattos, Julio; Medeiros Nunes, Adriane; Figueiredo Martins, Ayrton; Luiz Dressler, Valderi; Marlon de Moraes Flores, Erico

    2005-01-01

    Citric acid was used as a chemical modifier for Pb determination by graphite furnace atomic absorption spectrometry in dietary supplement samples (calcium carbonate, dolomite and oyster shell samples) and its efficiency was compared to the use of palladium. Pyrolysis and atomization curves were established without use of chemical modifier, with the addition of 20, 100 and 200 μg of citric acid, and with 3 μg of palladium. The citric acid modifier made possible the interference-free Pb determination in the presence of high concentrations of Ca and Mg nitrates. Acid sample digestion involving closed vessels (microwave-assisted and conventional heating) and acid attack using polypropylene vessels at room temperature were compared. All digestion procedures presented similar results for calcium carbonate and dolomite samples. However, for oyster shell samples accurate results were obtained only with the use of closed vessel systems. Analyte addition and matrix-matched standards were used for calibration. The characteristic mass for Pb using citric acid and palladium were 16 and 25 pg, respectively. The relative standard deviation (RSD) was always less than 5% when citric acid was used. The relative and absolute limits of detection were 0.02 μg g -1 and 8 pg with citric acid and 0.1 μg g -1 and 44 pg with the Pd modifier, respectively (n = 10, 3σ). The recovery of Pb in spiked calcium supplement samples (10 μg l -1 ) was between 98% and 105%. With the use of 100 μg of citric acid as chemical modifier, problems such as high background absorption and high RSD values were minimized in comparison to the addition of 3 μg of palladium

  4. Enhancement of the atomic absorbance of Cr, Zn, Cd, and Pb in metal furnace atomic absorption spectrometry using absorption tubes

    Directory of Open Access Journals (Sweden)

    Yuya Koike

    2017-03-01

    Full Text Available Trace amounts of Cr, Zn, Cd, and Pb were determined by metal furnace atomic absorption spectrometry using absorption tubes. Various absorption tubes were designed as roof- and tube-types, and fixed above the metal furnace in order to extend the light path length. Aqueous standards and samples were injected in the metal furnace and atomized in a metal atomizer with an absorption tube (6 cm length, 15.5 mm diameter. The used of an absorption tube resulted in an enhancement of the atomic absorbance. The ratios of absorbance values with and without the roof- and tube-type absorption tubes were 1.33 and 1.11 for Cr; 1.42 and 1.99 for Zn; 1.66 and 1.98 for Cd; and 1.31 and 1.16 for Pb, respectively. The use of an absorption tube was effective for Zn and Cd analysis, as the absorbance values for these low boiling point metals doubled. The proposed method was successfully applied in the determination of Zn in tap water.

  5. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. In-situ pre-concentration through repeated sampling and pyrolysis for ultrasensitive determination of thallium in drinking water by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Liu, Liwei; Zheng, Huaili; Xu, Bincheng; Xiao, Lang; Chigan, Yong; Zhangluo, Yilan

    2018-03-01

    In this paper, a procedure for in-situ pre-concentration in graphite furnace by repeated sampling and pyrolysis is proposed for the determination of ultra-trace thallium in drinking water by graphite furnace atomic absorption spectrometry (GF-AAS). Without any other laborious enrichment processes that routinely result in analyte loss and contamination, thallium was directly concentrated in the graphite furnace automatically and subsequently subject to analysis. The effects of several key factors, such as the temperature for pyrolysis and atomization, the chemical modifier, and the repeated sampling times were investigated. Under the optimized conditions, a limit of detection of 0.01µgL -1 was obtained, which fulfilled thallium determination in drinking water by GB 5749-2006 regulated by China. Successful analysis of thallium in certified water samples and drinking water samples was demonstrated, with analytical results in good agreement with the certified values and those by inductively coupled plasma mass spectrometry (ICP-MS), respectively. Routine spike-recovery tests with randomly selected drinking water samples showed satisfactory results of 80-96%. The proposed method is simple and sensitive for screening of ultra-trace thallium in drinking water samples. Copyright © 2017. Published by Elsevier B.V.

  7. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  8. The application of atomic absorption spectrometry to chemical analysis

    International Nuclear Information System (INIS)

    Walsh, A.

    1980-01-01

    YhThe history of the development of atomic absorption methods of elemental analysis is outlined. The theoretical basis of atomic absorption methods is discussed and the principle of modern methods of atomic absorption measurements is described. The advantages, scope and limations of these methods are discussed. Related methods based on the measurement of atomic fluorescence are also described

  9. Speciation and determination of ultra trace amounts of chromium by solidified floating organic drop microextraction (SFODME) and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moghadam, Masoud Rohani [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Dadfarnia, Shayessteh, E-mail: sdadfarnia@yazduni.ac.ir [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Haji Shabani, Ali Mohammad [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of)

    2011-02-15

    Solidified floating organic drop microextraction (SFODME) method in combination with graphite furnace atomic absorption spectrometry (GFAAS) has been used for the determination of chromium species in water and urine samples. 1-undecanol containing 2-thenoyltrifluoroacetone (TTA) was used as a selective chelating agent for the extraction of Cr(III). The total Cr was determined after the reduction of Cr(VI) to Cr(III) with hydroxylamine. The concentration of Cr(VI) was determined from the difference between the concentration of total chromium and the Cr(III). Several variables such as the sample pH, concentration of TTA, salt concentration, extraction time and the sample volume were investigated in detail. Under the optimum conditions, the limit of detection of the proposed method was 0.006 {mu}g l{sup -1} for Cr(III) and the relative standard deviation for six replicate determinations at 0.1 {mu}g l{sup -1} Cr(III) was 5.1%. The proposed method was successfully applied for the determination of chromium species in tap water, well water, mineral water, and urine samples.

  10. Multiwalled carbon nanotubes as a sorbent material for the solid phase extraction of lead from urine and subsequent determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Peña Crecente, Rosa M.; Lovera, Carlha Gutiérrez; García, Julia Barciela; Méndez, Jennifer Álvarez; Martín, Sagrario García; Latorre, Carlos Herrero, E-mail: carlos.herrero@usc.es

    2014-11-01

    The determination of lead in urine is a way of monitoring the chemical exposure to this metal. In the present paper, a new method for the Pb determination by electrothermal atomic absorption spectrometry (ETAAS) in urine at low levels has been developed. Lead was separated from the undesirable urine matrix by means of a solid phase extraction (SPE) procedure. Oxidized multiwalled carbon nanotubes have been used as a sorbent material. Lead from urine was retained at pH 4.0 and was quantitatively eluted using a 0.7 M nitric acid solution and was subsequently measured by ETAAS. The effects of parameters that influence the adsorption–elution process (such as pH, eluent volume and concentration, sampling and elution flow rates) and the atomic spectrometry conditions have been studied by means of different factorial design strategies. Under the optimized conditions, the detection and quantification limits obtained were 0.08 and 0.26 μg Pb L{sup −1}, respectively. The results demonstrate the absence of a urine matrix effect and this is the consequence of the SPE process carried out. Therefore, the developed method is useful for the analysis of Pb at low levels in real samples without the influence of other urine components. The proposed method was applied to the determination of lead in urine samples of unexposed healthy people and satisfactory results were obtained (in the range 3.64–22.9 μg Pb L{sup −1}). - Highlights: • Lead determination in urine using a solid phase extraction procedure followed by ETAAS • Carbon nanotubes as SPE adsorbent for Pb in urine • Matrix elimination for the Pb determination in urine by using SPE based on carbon nanotubes • The detection limit was 0.08 μg Pb L{sup −1}.

  11. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution

    International Nuclear Information System (INIS)

    Kowalewska, Zofia; Ruszczynska, Anna; Bulska, Ewa

    2005-01-01

    Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system (ii) mineralization in a closed microwave system (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g -1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g -1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g -1 in crude oil, -1 in gasoline, -1 in atmospheric oil, -1 in heavy vacuum oil and 140-300 ng g -1 in distillation residue

  12. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution

    Science.gov (United States)

    Kowalewska, Zofia; Ruszczyńska, Anna; Bulska, Ewa

    2005-03-01

    Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g - 1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g - 1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g - 1 in crude oil, oil, oil and 140-300 ng g - 1 in distillation residue.

  13. Simultaneous determination of Cr, Ni and V in urine by electrothermal atomic absorption spectrometry (ET AAS); Determinacion simultanea de Cr, Ni y V en orina mediante et aas

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Maria A.; Hermida, Jeymi [Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of). Escuela de Quimica. Centro de Quimica Analitica

    2011-07-01

    A procedure for the simultaneous determination of Cr, Ni, and V in urine by electrothermal atomic absorption spectrometry (ET AAS) was optimized by factorial design, and performed at a pyrolysis and atomization temperatures of 1300 and 2500 deg C, respectively, using 15 {mu}g de Mg(NO{sub 3}){sub 2} as chemical modifier. Characteristics mass of 14, 6 and 220 {rho}g and detection limits of the method of 0.07, 0.38 and 0.75 {mu}g L{sup -1} were obtained for Cr, Ni and V respectively. The methodology was validated using a Liphochek Urine Metals Control sample (Bio-Rad) (P=0.05). The methodology was applied to samples of voluntary Venezuelan people, not environmentally exposed to specific emissions, and results ranging from < LOD-1.1 and 1.3-3.3 {mu}g L{sup -1} was observed for Cr and V, respectively, and not detectable levels for Ni. (author)

  14. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    International Nuclear Information System (INIS)

    Virgilio, Alex; Nóbrega, Joaquim A.; Rêgo, Jardes F.; Neto, José A. Gomes

    2012-01-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 °C and 2400 °C, respectively. Slopes of calibration curves (50–750 pg Cr, R 2 > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3–17.7 μg g −1 Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 ± 2.1 μg g −1 Cr. The limit of detection was 3.3 ng g −1 Cr. - Highlights: ► Direct solid sampling is first time employed for Cr in plant materials. ► Calibration curves with liquids and solids are coincident. ► Microanalysis of plants for Cr is validated by reference materials. ► The proposed HR-CS GF AAS method is environmental friendly.

  15. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Virgilio, Alex; Nobrega, Joaquim A. [Department of Chemistry, Federal University of Sao Carlos, Post Office Box 676, 13560-970, Sao Carlos-SP (Brazil); Rego, Jardes F. [Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University-UNESP, Post Office Box 355, 14801-970, Araraquara-SP (Brazil); Neto, Jose A. Gomes, E-mail: anchieta@iq.unesp.br [Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University-UNESP, Post Office Box 355, 14801-970, Araraquara-SP (Brazil)

    2012-12-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 Degree-Sign C and 2400 Degree-Sign C, respectively. Slopes of calibration curves (50-750 pg Cr, R{sup 2} > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3-17.7 {mu}g g{sup -1} Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 {+-} 2.1 {mu}g g{sup -1} Cr. The limit of detection was 3.3 ng g{sup -1} Cr. - Highlights: Black-Right-Pointing-Pointer Direct solid sampling is first time employed for Cr in plant materials. Black-Right-Pointing-Pointer Calibration curves with liquids and solids are coincident. Black-Right-Pointing-Pointer Microanalysis of plants for Cr is validated by reference materials. Black-Right-Pointing-Pointer The proposed HR-CS GF AAS method is environmental friendly.

  16. Bovine liver sample preparation and micro-homogeneity study for Cu and Zn determination by solid sampling electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Nomura, Cassiana S.; Silva, Cintia S.; Nogueira, Ana R.A.; Oliveira, Pedro V.

    2005-01-01

    This work describes a systematic study for the bovine liver sample preparation for Cu and Zn determination by solid sampling electrothermal atomic absorption spectrometry. The main parameters investigated were sample drying, grinding process, particle size, sample size, microsample homogeneity, and their relationship with the precision and accuracy of the method. A bovine liver sample was prepared using different drying procedures: (1) freeze drying, and (2) drying in a household microwave oven followed by drying in a stove at 60 deg. C until constant mass. Ball and cryogenic mills were used for grinding. Less sensitive wavelengths for Cu (216.5 nm) and Zn (307.6 nm), and Zeeman-based three-field background correction for Cu were used to diminish the sensitivities. The pyrolysis and atomization temperatures adopted were 1000 deg. C and 2300 deg. C for Cu, and 700 deg. C and 1700 deg. C for Zn, respectively. For both elements, it was possible to calibrate the spectrometer with aqueous solutions. The use of 250 μg of W + 200 μg of Rh as permanent chemical modifier was imperative for Zn. Under these conditions, the characteristic mass and detection limit were 1.4 ng and 1.6 ng for Cu, and 2.8 ng and 1.3 ng for Zn, respectively. The results showed good agreement (95% confidence level) for homogeneity of the entire material (> 200 mg) when the sample was dried in microwave/stove and ground in a cryogenic mill. The microsample homogeneity study showed that Zn is more dependent on the sample pretreatment than Cu. The bovine liver sample prepared in microwave/stove and ground in a cryogenic mill presented results with the lowest relative standard deviation for Cu than Zn. Good accuracy and precision were observed for bovine liver masses higher than 40 μg for Cu and 30 μg for Zn. The concentrations of Cu and Zn in the prepared bovine liver sample were 223 mg kg - 1 and 128 mg kg - 1 , respectively. The relative standard deviations were lower than 6% (n = 5). The

  17. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    Science.gov (United States)

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.

  18. Combination of flame atomic absorption spectrometry with ligandless-dispersive liquid- liquid microextraction for preconcentration and determination of trace amount of lead in water samples

    Directory of Open Access Journals (Sweden)

    Y.M. Baghelani

    2013-05-01

    Full Text Available A new ligandless-dispersive liquid–liquid microextraction method has been developed for the separation and flame atomic absorption spectrometry determination of trace amount of lead(II ion. In the proposed approach 1,2-dicholorobenzene and ethanol were used as extraction and dispersive solvents. Factors influencing the extraction efficiency of lead, including the extraction and dispersive solvent type and volume, pH of sample solution, concentration of chloride and extraction time were studied. Under the optimal conditions, the calibration curve was linear in the range of 7.0–6000 ng mL−1 of lead with R2 = 0.9992 (n = 10 and detection limit based on three times the standard deviation of the blank (3Sb was 0.5 ng mL−1 in original solution. The relative standard deviation for eight replicate determinations of 1.0 mg mL-1 lead was ±1.6%. The high efficiency of dispersive liquid-liquid microextraction to carry out the determination of trace amounts of lead in complex matrices was demonstrated. The proposed method has been applied for determination of trace amounts of lead in water samples and satisfactory results were obtained. The accuracy was checked by analyzing a certified reference material from the National Institute of Standard and Technology, Trace elements in water (NIST CRM 1643e.

  19. Determination of total arsenic and arsenic(III) in phosphate fertilizers by hydride generation atomic absorption spectrometry after ultrasound-assisted extraction based on a control acid media.

    Science.gov (United States)

    Rezende, Helen Cristine; Coelho, Nivia Maria Melo

    2014-01-01

    An ultrasound-assisted extraction procedure was developed for determination of inorganic arsenic (As) in phosphate fertilizer by hydride generation atomic absorption spectrometry. The variables that affect the hydride generation step were optimized, including the reducer, acid, sample flow rate, and concentrations of the acid and reducer. The determination of As(lll) was performed through the simple control of solution pH with a 0.5 M citric acid-sodium citrate buffer solution at pH 4.5, and total As was determined after a pre-reduction reaction with 1.0% (w/v) thiourea. Ultrasound-assisted acid extraction was performed, and the parameters sonication time and acid and Triton X-114 concentrations were optimized using a 23 factorial design and central composite design. LODs for As(lll) and total As were 0.029 and 0.022 microg/L, respectively. The accuracy of the method was confirmed with certified reference materials. The method was successfully applied in the determination of inorganic As in phosphate fertilizer samples.

  20. Use of slurry sampling for the direct determination of zinc in yogurt by high resolution-continuum source flame atomic absorption spectrometry.

    Science.gov (United States)

    Brandao, Geovani C; de Jesus, Raildo M; da Silva, Erik G P; Ferreira, Sergio L C

    2010-06-15

    This paper presents an analytical procedure for the direct determination of zinc in yogurt employing sampling slurry and high resolution-continuum source flame atomic absorption spectrometry (HR-CS FAAS). The step optimization established the experimental conditions of: 2.0molL(-1) hydrochloric acid, a sonication time of 20min and a sample mass of 1.0g for a slurry volume of 25mL. This method allows the determination of zinc with a limit of quantification of 0.32microgg(-1). The precision expressed as relative standard deviation (RSD) were 0.82 and 2.08% for yogurt samples containing zinc concentrations of 4.85 and 2.49microgg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of non-fat milk powder furnished by the National Institute of Standard and Technology. The proposed method was applied for the determination of zinc in seven yogurt samples. The zinc content was varied from 2.19 to 4.85microgg(-1). These results agreed with those reported in the literature. The samples were also analyzed after acid digestion and zinc determination by FAAS. No statistical difference was observed between the results obtained by both of the procedures performed.

  1. Determination of cadmium in soil by atomic absorption spectrophotometry after extraction with 4-(4-chlorophenyl)-2-phenyl-5-thiazoleacetic acid

    International Nuclear Information System (INIS)

    Khalid, N.; Chaudhri, S.A.; Saeed, M.M.; Ahmed, J.

    1997-01-01

    Toxic elements are generally present in soil at trace levels and their uptake through food materials may induced hazardous effects to human being. The determination of toxic metal at trace levels is very essential in order to assess the extent of pollution. In the present study an effective, simple and rapid analytical method has been studied for the determination of cadmium in soil using 4-(4-chlorophenyl)-2-phenyl-5-thiazoleacetic acid (HCPTA). The cadmium was extracted with HCPTA in n-butyl acetate and cadmium was determined by atomic absorption spectrophotometric technique using air-acetylene flame. The quantitative extraction was observed at pH 8.4. The stoichiometric composition of the complex was found to be Cd(CPTA)2. The extraction constant was determined to be log K/sub ex/ = -10.44 plus minus 0.11. Under the optimal experimental conditions the influence of high concentration of various anions and cations on the extraction of cadmium has also been studied, which shows that EDTA masked the extraction completely whereas the presence of palladium decreased the extraction by 24 %. The reliability of the method was cross checked by analyzing IAEA Standard reference Material, Soil-7, for its cadmium contents. (author)

  2. Modified carbon nanotubes as a sorbent for solid-phase extraction of gold, and its determination by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Moghaddam, Firouzeh Hassani; Behzadi, Mansoureh; Naghizadeh, Matin; Taher, Mohammad Ali

    2015-01-01

    A simple, sensitive and accurate method was developed for solid-phase extraction and preconcentration of trace levels of gold in various samples. It is based on the adsorption of gold on modified oxidized multi-walled carbon nanotubes prior to its determination by graphite furnace atomic absorption spectrometry. The type and volume of eluent solution, sample pH value, flow rates of sample and eluent, sorption capacity and breakthrough volume were optimized. Under these conditions, the method showed linearity in the range of 0.2–6.0 ng L −1 with coefficients of determination of >0.99 in the sample. The relative standard deviation for seven replicate determinations of gold (at a level of 0.6 ng L −1 ) is ±3.8 %, the detection limit is 31 pg L −1 (in the initial solution and at an S/N ratio of 3; for n = 8), and the enrichment factor is 200. The sorption capacity of the modified MWCNTs for gold(III) is 4.15 mg g −1 . The procedure was successfully applied to the determination of gold in (spiked) water samples, human hair, human urine and standard reference material with recoveries ranging from 97.0 to 104.2 %. (author)

  3. RAPID AND SENSITIVE DETERMINATION OF PALLADIUM USING HOMOGENEOUS LIQUID-LIQUID MICROEXTRACTION VIA FLOTATION ASSISTANCE FOLLOWED BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaee

    2015-05-01

    Full Text Available A method for the determination of trace amounts of palladium was developed using homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA followed by graphite furnace atomic absorption spectrometry (GFAAS. Ammonium pyrrolidine dithiocarbamate (APDC was used as a complexing agent. This was applied to determine palladium in three types of water samples. In this study, a special extraction cell was designed to facilitate collection of the low-density solvent extraction. No centrifugation was required in this procedure. The water sample solution was added to the extraction cell which contained an appropriate mixture of extraction and homogeneous solvents. By using air flotation, the organic solvent was collected at the conical part of the designed cell. Parameters affecting extraction efficiency were investigated and optimized. Under the optimum conditions, the calibration graph was linear in the range of 1.0-200 µg L-1 with a limit of detection of 0.3 µg L-1. The performance of the method was evaluated for the extraction and determination of palladium in water samples and satisfactory results were obtained. In order to verify the accuracy of the approach, the standard addition method was applied for the determination of palladium in spiked synthetic samples and satisfactory results were obtained.

  4. A pre-concentration procedure using coprecipitation for determination of lead and iron in several samples using flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Saracoglu, S.; Soylak, M.; Peker, D.S. Kacar; Elci, L.; Santos, W.N.L. dos; Lemos, V.A.; Ferreira, S.L.C.

    2006-01-01

    The present paper proposes a pre-concentration procedure for determination of lead and iron in several samples by flame atomic absorption spectrometry. In it, lead(II) and iron(III) ions are coprecipitated using the violuric acid-copper(II) system as collector. Afterwards, the precipitate is dissolved with 1 M HNO 3 solution and the metal ions are determined. The optimization step was performed using factorial design involving the variables: pH, violuric acid mass (VA) and copper concentration (Cu). Using the optimized experimental conditions, the proposed procedure allows the determination these metals with detection limits of 0.18 μg L -1 for iron and 0.16 μg L -1 for lead. The effects of foreign ions on the pre-concentration procedure were also evaluated and the results demonstrated that this method could be applied for determination of iron and lead in several real samples. The proposed method was successfully applied to the analysis of seawater, urine, mineral water, soil and physiological solution samples. The concentrations of lead and iron achieved in these samples agree well with others data reported in the literature

  5. [Determination of trace lead and cadmium in transgenic rice by crosslinked carboxymethyl konjac glucomannan microcolumn preconcentration combined with graphite furnace atomic absorption spectrometry].

    Science.gov (United States)

    Liu, Hua-qing; Li, Sheng-qing; Qu, Yang; Chen, Hao

    2012-02-01

    A novel method was developed for the determination of trace lead and cadmium in transgenic brown rice based on separation and preconcentration with a micro column packed with crosslinked carboxymethyl konjac glucomannan (CCMKGM) prior to its determination by graphite furnace atomic absorption spectrometry. Variables affecting the separation and preconcentration of lead and cadmium, such as the acidity of the aqueous solution, sample flow rate and volume, and eluent concentration and volume, were optimized. Under optimized condition, detection limits of the method for the determination of trace lead and cadmium in transgenic brown rice were 0.11 and 0.002 microg x L(-1), respectively. The obtained results of lead and cadmium in the certified reference material (GBW10010, GBS1-1) were in good agreement with the certified values. The recoveries were in the range of 90%-103% and 93%-105% for detection of Pb and Cd in transgenic brown rice and the wild-type brown rice samples respectively. This study could provide technical support for determination of trace Pb and Cd in transgenic rice.

  6. Solid phase extraction of lead on octadecyl bonded silica membrane disk modified with Cyanex302 and determination by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Karve, Manjusha; Rajgor, Reeta V.

    2007-01-01

    A simple, reliable and rapid method for preconcentration and determination of lead using octadecyl bonded silica membrane disk impregnated with Cyanex302 and flame atomic absorption spectrometry is presented. The influence of aqueous phase pH, type of eluent, flow rates of sample solution and eluent, volume of eluent and amount of extractant has been investigated. The break through volume is greater than 4.0 dm 3 with an enrichment factor of more than 400 and a detection limit of 1.0 μg dm -3 . The method developed for determination of lead is good as six replicate determinations using 100 cm 3 solution containing lead in the range 1-4900 μg provides a relative standard deviation (R.S.D.) of 0.4%. The selectivity of the proposed method was confirmed from the interference studies. The developed procedure was successfully applied for the determination of lead in spiked sea water, USGS standard soil sample, sludge and industrial effluents, medicinal formulation, plant, some food products and wine

  7. Determination of mercury and selenium in herbal medicines and hair by using a nanometer TiO{sub 2}-coated quartz tube atomizer and hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shun-Xing, E-mail: lishunxing@fjzs.edu.cn [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Fujian Province University Key Laboratory of Analytical Science (Zhangzhou Normal University), Zhangzhou 363000 (China); Zheng, Feng-Ying [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Fujian Province University Key Laboratory of Analytical Science (Zhangzhou Normal University), Zhangzhou 363000 (China); Cai, Shu-Jie; Cai, Tian-Shou [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China)

    2011-05-15

    The nanometer TiO{sub 2} particle was coated onto the inner wall of a T-shaped quartz tube atomizer (QTA) and then was used as a new atomizer (NT-QTA) for the determination of Hg and Se by hydride generation atomic absorption spectrometry (HGAAS). After coating 67.4 mg TiO{sub 2} on a quartz tube, the analytical performance of NT-QTA-HGAAS was compared to conventional QTA-HGAAS and it was improved as follows: (a) the linear range of the calibration curves was expanded from 10.0-80.0 ng mL{sup -1} to 5.0-150.0 ng mL{sup -1} for Hg, and from 10.0-70.0 ng mL{sup -1} to 5.0-100.0 ng mL{sup -1} for Se; (b) the characteristic concentration of was decreased from 2.8 ng mL{sup -1}/1% to 1.1 ng mL{sup -1}/1% for Hg and from 1.2 ng mL{sup -1}/1% to 0.8 ng mL{sup -1}/1% for Se; and (c) the interference from the coexistence of As on the determination of Hg and Se could be eliminated. The achieved technique was applied for the determination of Hg and Se in herbal medicines and hair.

  8. Fast sequential multi-element determination of major and minor elements in environmental samples and drinking waters by high-resolution continuum source flame atomic absorption spectrometry.

    Science.gov (United States)

    Gómez-Nieto, Beatriz; Gismera, Ma Jesús; Sevilla, Ma Teresa; Procopio, Jesús R

    2015-01-07

    The fast sequential multi-element determination of 11 elements present at different concentration levels in environmental samples and drinking waters has been investigated using high-resolution continuum source flame atomic absorption spectrometry. The main lines for Cu (324.754 nm), Zn (213.857 nm), Cd (228.802 nm), Ni (232.003 nm) and Pb (217.001 nm), main and secondary absorption lines for Mn (279.482 and 279.827 nm), Fe (248.327, 248.514 and 302.064 nm) and Ca (422.673 and 239.856 nm), secondary lines with different sensitivities for Na (589.592 and 330.237 nm) and K (769.897 and 404.414 nm) and a secondary line for Mg (202.582 nm) have been chosen to perform the analysis. A flow injection system has been used for sample introduction so sample consumption has been reduced up to less than 1 mL per element, measured in triplicate. Furthermore, the use of multiplets for Fe and the side pixel registration approach for Mg have been studied in order to reduce sensitivity and extend the linear working range. The figures of merit have been calculated and the proposed method was applied to determine these elements in a pine needles reference material (SRM 1575a), drinking and natural waters and soil extracts. Recoveries of analytes added at different concentration levels to water samples and extracts of soils were within 88-115% interval. In this way, the fast sequential multi-element determination of major and minor elements can be carried out, in triplicate, with successful results without requiring additional dilutions of samples or several different strategies for sample preparation using about 8-9 mL of sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Hollow fiber based liquid-phase microextraction for the determination of mercury traces in water samples by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, Ignacio; Rivas, Ricardo E. [Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence ' Campus Mare Nostrum' , University of Murcia, E-30071 Murcia (Spain); Hernandez-Cordoba, Manuel, E-mail: hcordoba@um.es [Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence ' Campus Mare Nostrum' , University of Murcia, E-30071 Murcia (Spain)

    2012-09-19

    Highlight: Black-Right-Pointing-Pointer Hg (II) traces are preconcentrated by means of a three-phase liquid microextraction system. Black-Right-Pointing-Pointer PAN and ammonium iodide are used in the donor and acceptor phase, respectively. Black-Right-Pointing-Pointer Hollow-fiber pores are continuously fed with toluene placed in the lumen. Black-Right-Pointing-Pointer Mercuric ions can be measured in waters below the {mu}g L{sup -1} level. - Abstract: A three-phase liquid microextraction procedure for the determination of mercury at low concentrations is discussed. To the aqueous sample placed at pH 7 by means of a phosphate buffer, 0.002% (m/v) 1-(2-pyridylazo)-2-naphthol (PAN) is incorporated, and the mixture submitted to microextraction with a hollow-fiber impregnated with toluene and whose lumen contains a 0.05 mol L{sup -1} ammonium iodide solution. The final measurement of the extract is carried out by electrothermal atomic absorption spectrometry (300 Degree-Sign C and 1100 Degree-Sign C for the calcination and atomization temperatures, respectively). The pyrolytic graphite atomizer is coated electrolytically with palladium. An enrichment factor of 270, which results in a 0.06 {mu}g L{sup -1} mercury for the detection limit is obtained. The relative standard deviation at the 1 {mu}g L{sup -1} mercury level is 3.2% (n = 5). The reliability of the procedure is verified by analyzing waters as well as six certified reference materials.

  10. Determination of bismuth by dielectric barrier discharge atomic absorption spectrometry coupled with hydride generation: Method optimization and evaluation of analytical performance

    Czech Academy of Sciences Publication Activity Database

    Kratzer, Jan; Boušek, J.; Sturgeon, R. E.; Mester, Z.; Dědina, Jiří

    2014-01-01

    Roč. 86, č. 19 (2014), s. 9620-9625 ISSN 0003-2700 Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014

  11. In situ emulsification microextraction using a dicationic ionic liquid followed by magnetic assisted physisorption for determination of lead prior to micro-sampling flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Shokri, Masood; Beiraghi, Asadollah; Seidi, Shahram

    2015-01-01

    For the first time, a simple and efficient in situ emulsification microextraction method using a dicationic ionic liquid followed by magnetic assisted physisorption was presented to determine trace amounts of lead. In this method, 400 μL of 1.0 mol L −1 lithium bis (trifluoromethylsulfonyl) imide aqueous solution, Li[NTf 2 ], was added into the sample solution containing 100 μL of 1.0 mol L −1 1,3-(propyl-1,3-diyl) bis (3-methylimidazolium) chloride, [pbmim]Cl 2 , to form a water immiscible ionic liquid, [pbmim][NTf 2 ] 2 . This new in situ formed dicationic ionic liquid was applied as the acceptor phase to extract the lead-ammonium pyrrolidinedithiocarbamate (Pb-APDC) complexes from the sample solution. Subsequently, 30 mg of Fe 3 O 4 magnetic nanoparticles (MNPs) were added into the sample solution to collect the fine droplets of [pbmim][NTf 2 ] 2 , physisorptively. Finally, MNPs were eluted by acetonitrile, separated by an external magnetic field and the obtained eluent was subjected to micro-sampling flame atomic absorption spectrometry (FAAS) for further analysis. Comparing with other microextraction methods, no special devices and centrifugation step are required. Parameters influencing the extraction efficiency such as extraction time, pH, concentration of chelating agent, amount of MNPs and coexisting interferences were studied. Under the optimized conditions, this method showed high extraction recovery of 93% with low LOD of 0.7 μg L −1 . Good linearity was obtained in the range of 2.5–150 μg L −1 with determination coefficient (r 2 ) of 0.9921. Relative standard deviation (RSD%) for seven repeated measurements at the concentration of 10 μg L −1 was 4.1%. Finally, this method was successfully applied for determination of lead in some water and plant samples. - Highlights: • A dicationic ionic liquid was used as the extraction solvent, for the first time. • A simple and efficient in situ emulsification microextraction

  12. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.

    Science.gov (United States)

    Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh

    2013-11-15

    A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Salt-assisted liquid-liquid microextraction of Cr(VI) ion using an ionic liquid for preconcentration prior to its determination by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Majidi, B.; Shemirani, F.

    2012-01-01

    We report on the salt-assisted liquid-liquid microextraction of cationic complexes of Cr(VI) ion using the hydrophilic ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoraborate and potassium hydrogen phosphate. This is a novel, simple, non-toxic and effective technique for sample pretreatment technique that displays large extraction efficiency and represents a new platform where Cr(VI) is complexed with 1,5-diphenylcarbazide (DPC) in sulfuric acid medium. It was applied to the extraction of Cr(VI) in the form of the Cr(VI)-DPC complex prior to its determination by flame atomic absorption spectrometry. Cr(III) ion also can be determined by this procedure after oxidation to Cr(VI). Extraction is mainly affected by the amount of water-soluble IL, the kind and quantity of inorganic salts, by pH and the concentration of DPC. Calibration plots are linear in the range from 3 to 150 μg L -1 of Cr(VI), and the limit of detection is 1. 25 μg L -1 . The method was successfully applied to the speciation and determination of trace levels of Cr(III) and Cr(VI) in environmental water samples containing high levels of dissolved salts or food grade salts. (author)

  14. Speciation and determination of inorganic mercury and methylmercury by headspace single drop microextraction and electrothermal atomic absorption spectrometry in water and fish

    Energy Technology Data Exchange (ETDEWEB)

    Sarica, Deniz Yurtsever [Scientific and Technological Research Council of Turkey, Ankara Test and Analysis Laboratory, TUeBITAK/ATAL, Besevler, Ankara (Turkey); Tuerker, Ali Rehber [Science Faculty, Department of Chemistry, Gazi University, Ankara (Turkey)

    2012-05-15

    In this study, headspace single drop microextraction (HS-SDME) method in combination with electrothermal atomic absorption spectrometry (ETAAS) method was developed and validated for the speciation and determination of inorganic mercury (iHg) and methylmercury (MeHg). MeHg and iHg species were reduced to volatile methylmercury hydride (CH{sub 3}HgH) and elemental mercury, respectively, in the presence of NaBH{sub 4} and trapped onto a drop of acceptor phase in the tip of a microsyringe. Thiourea and ammonium pyrrolydinedithiocarbamate (APDC) were tested as the acceptor phase. The experimental parameters of the method such as microextraction time, temperature, NaBH{sub 4} concentration, acceptor phase concentration, and pH of the medium were investigated to obtain distinctive conditions for mercury species. Possible interference effects have also been investigated. In order to validation of the method, analytical figures of merits such as accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ), and linear working range have been evaluated. Accuracy of the method has been verified by analyzing certified reference materials (BCR 453 Tuna fish) and spiked samples. The proposed method was applied for the speciation and determination of mercury species in water and fish samples. Mercury species (MeHg and iHg) have been determined in the real samples with a relative error less than 10%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. On-line preconcentration system using a minicolumn of polyurethane foam loaded with Me-BTABr for zinc determination by Flame Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Azevedo Lemos, Valfredo; Nei Lopes dos Santos, Walter; Silva Santos, Juracir; Bezerra de Carvalho, Marcilio

    2003-01-01

    In the present paper, an on-line system for preconcentration and determination of zinc by Flame Atomic Absorption Spectrometry (FAAS) is proposed. It is based in the sorption of zinc(II) ions on a minicolumn packed with polyurethane foam loaded with 2-[2'-(6-methyl-benzothiazolylazo)]-4-bromophenol (Me-BTABr) reagent. Chemical and flow variables as pH effect, sample flow rate and eluent concentration were optimized using univariate methodology. The results demonstrated that zinc can determinate using the sample pH in the range of 6.5-9.2, sample flow rate of 6.0 ml min -1 , and the elution step using 0.10 mol l -1 hydrochloric acid solution at flow rate of 5.5 ml min -1 . In these conditions, an enrichment factor of 23 and a sampling rate of 48 samples per hour were achieved. The detection limit (DL, 3σ) as IUPAC recommendation was 0.37 μg l -1 and the precision (assessed as the relative standard deviation, R.S.D.) reached values of 5.9-1.8% in zinc solutions of 1.0-10.0 μg l -1 concentration, respectively. The method was successfully applied to the determination of trace amounts of zinc in natural water samples from Salvador (Brazil)

  16. Preconcentration and determination of iron and copper in spice samples by cloud point extraction and flow injection flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Cigdem Arpa, E-mail: carpa@hacettepe.edu.tr [Hacettepe University, Chemistry Department, 06800 Beytepe, Ankara (Turkey); Tokgoez, Ilknur; Bektas, Sema [Hacettepe University, Chemistry Department, 06800 Beytepe, Ankara (Turkey)

    2010-09-15

    A flow injection (FI) cloud point extraction (CPE) method for the determination of iron and copper by flame atomic absorption spectrometer (FAAS) has been improved. The analytes were complexed with 3-amino-7-dimethylamino-2-methylphenazine (Neutral Red, NR) and octylphenoxypolyethoxyethanol (Triton X-114) was added as a surfactant. The micellar solution was heated above 50 {sup o}C and loaded through a column packed with cotton for phase separation. Then the surfactant-rich phase was eluted using 0.05 mol L{sup -1} H{sub 2}SO{sub 4} and the analytes were determined by FAAS. Chemical and flow variables influencing the instrumental and extraction conditions were optimized. Under optimized conditions for 25 mL of preconcentrated solution, the enrichment factors were 98 and 69, the limits of detection (3s) were 0.7 and 0.3 ng mL{sup -1}, the limits of quantification (10s) were 2.2 and 1.0 ng mL{sup -1} for iron and copper, respectively. The relative standard deviation (RSD) for ten replicate measurements of 10 ng mL{sup -1} iron and copper were 2.1% and 1.8%, respectively. The proposed method was successfully applied to determination of iron and copper in spice samples.

  17. Separation and determination of copper in bottled water samples by combination of dispersive liquid--liquid microextraction and microsample introduction flame atomic absorption spectrometry.

    Science.gov (United States)

    Citak, Demirhan; Tuzen, Mustafa

    2013-01-01

    A new and simple method for the determination of trace amounts of Cu(II) was developed by combination of dispersive liquid-liquid microextraction (DLLME) preconcentration and microsample introduction flame atomic absorption spectrometry. In this method, ethanol and chloroform were chosen as disperser and extraction solvents, respectively, and 1-nitroso-2-naphthol was used as the complexing agent. The factors affecting the extraction efficiency and determination of Cu(II), including extraction and disperser solvent nature and volume, concentration of the complexing agent, pH of the solution, extraction time, and matrix ions, were investigated. Under optimal conditions, the LOD for Cu(II) was 0.95 microg/L with a preconcentration factor of 70. The RSD was 1.9%. The accuracy of the developed DLLME method was verified by determination of Cu(II) in a certified reference material (NRCC-SLRS-4 river water). The relative error was -3.31%. The developed preconcentration procedure was successfully applied to the analysis of bottled drinking water samples.

  18. Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Niknam, Khodabakhsh [Chemistry Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Shokrollahi, Ardeshir; Niknam, Ebrahim; Rajabi, Hamid Reza [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-06-30

    A sensitive and selective solid phase extraction procedure for the determination of traces of Cu(II), Zn(II), Pb(II) and Fe(III) has been developed. An alumina-sodium dodecyl sulfate (SDS) coated on with meso-phenyl bis(indolyl) methane (MPBIM) was used for preconcentration and determination of Cu(II), Zn(II), Pb(II) and Fe(III) ions by flame atomic absorption spectrometry. The analyte ions were adsorbed quantitatively on adsorbent due to their complexation with MPBIM. Adsorbed metals were quantitatively eluted using 6 mL of 4 mol L{sup -1} nitric acid. The effects of parameters such as pH, amount of alumina, amount of MBITP, flow rate, type and concentration of eluting agent were examined. The effects of interfering ions on the separation-preconcentration of analytes were also investigated. The relative standard deviation of the method was found to be less than 3.0%. The presented procedure was successfully applied for determination of analytes in real samples.

  19. On-line preconcentration of ultra-trace thallium(I in water samples with titanium dioxide nanoparticles and determination by graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Saeid Asadpour

    2016-11-01

    Full Text Available A new method has been developed for the determination of Tl(I based on simultaneous sorption and preconcentration with a microcolumn packed with TiO2 nanoparticle with a high specific surface area prepared by Sonochemical synthesis prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS. The optimum experimental parameters for preconcentration of thallium, such as elution condition, pH, and sample volume and flow rate have been investigated. Tl(I can be quantitatively retained by TiO2 nanoparticles at pH 9.0, then eluted completely with 1.0 mol L−1 HCl. The adsorption capacity of TiO2 nanoparticles for Tl(I was found to be 25 mg g−1. Also detection limit, precision (RSD, n = 8 and enrichment factor for Tl(I were 87 ng L−1, 6.4% and 100, respectively. The method has been applied for the determination of trace amounts of Tl(I in some environmental water samples with satisfactory results.

  20. A Green Preconcentration Method for Determination of Cobalt and Lead in Fresh Surface and Waste Water Samples Prior to Flame Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Naeemullah

    2012-01-01

    Full Text Available Cloud point extraction (CPE has been used for the preconcentration and simultaneous determination of cobalt (Co and lead (Pb in fresh and wastewater samples. The extraction of analytes from aqueous samples was performed in the presence of 8-hydroxyquinoline (oxine as a chelating agent and Triton X-114 as a nonionic surfactant. Experiments were conducted to assess the effect of different chemical variables such as pH, amounts of reagents (oxine and Triton X-114, temperature, incubation time, and sample volume. After phase separation, based on the cloud point, the surfactant-rich phase was diluted with acidic ethanol prior to its analysis by the flame atomic absorption spectrometry (FAAS. The enhancement factors 70 and 50 with detection limits of 0.26 μg L−1 and 0.44 μg L−1 were obtained for Co and Pb, respectively. In order to validate the developed method, a certified reference material (SRM 1643e was analyzed and the determined values obtained were in a good agreement with the certified values. The proposed method was applied successfully to the determination of Co and Pb in a fresh surface and waste water sample.

  1. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry.

    Science.gov (United States)

    Azarova, Yu A; Pestov, A V; Ustinov, A Yu; Bratskaya, S Yu

    2015-12-10

    Chitosan and its N-heterocyclic derivatives N-2-(2-pyridyl)ethylchitosan (2-PEC), N-2-(4-pyridyl) ethylchitosan (4-PEC), and N-(5-methyl-4-imidazolyl) methylchitosan (IMC) have been applied in group preconcentration of gold, platinum, and palladium for subsequent determination by atomic absorption spectroscopy (AAS) in solutions with high background concentrations of iron and sodium ions. It has been shown that the sorption mechanism, which was elucidated by XPS, significantly influences the sorption capacity of materials, the efficiency of metal ions elution after preconcentration, and, as a result, the accuracy of metal determination by AAS. We have shown that native chitosan was not suitable for preconcentration of Au(III), if the elution step was used as a part of the analysis scheme. The group preconcentration of Au(III), Pd(II), and Pt(IV) with subsequent quantitative elution using 0.1M HCl/1M thiourea solution was possible only on IMC and 4-PEC. Application of IMC for analysis of the national standard quartz ore sample proved that gold could be accurately determined after preconcentration/elution with the recovery above 80%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Application of l-cystine modified zeolite for preconcentration and determination of ultra-trace levels of cadmium by flame atomic absorption spectrometry.

    Science.gov (United States)

    Rezvani, Seyyed Ahmad; Soleymanpour, Ahmad

    2016-03-04

    A very convenient, sensitive and precise solid phase extraction (SPE) system was developed for enrichment and determination of ultra-trace of cadmium ion in water and plant samples. This method was based on the retention of cadmium(II) ions by l-cystine adsorbed in Y-zeolite and carry out in a packed mini-column. The retained cadmium ions then were eluted and determined by flame atomic absorption spectrometry. The scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy techniques were applied for the characterization of cystine modified zeolite (CMZ). Some experimental conditions affecting the analytical performance such as pH, eluent type, concentration of sample, eluent flow rate and also the presence of interfering ions were investigated. The calibration graph was linear within the range of 0.1-7.5ngmL(-1) and limit of detection was obtained 0.04ngmL(-1) with the preconcentration factor of 400. The relative standard deviation (RSD) was obtained 1.4%, indicating the excellent reproducibility of this method. The proposed method was successfully applied for the extraction and determination of cadmium(II) ion in black tea, cigarette's tobacco and also various water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Determination of cadmium and lead in urine samples after dispersive solid–liquid extraction on multiwalled carbon nanotubes by slurry sampling electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R.M.; Herrero Latorre, C., E-mail: carlos.herrero@usc.es

    2015-04-01

    A new method for the determination of Cd and Pb in urine samples has been developed. The method involves dispersive solid-phase extraction (DSPE), slurry sampling (SS), and subsequent electrothermal atomic absorption spectrometry (ETAAS). Oxidized multiwalled carbon nanotubes (MWCNTs) were used as the sorbent material. The isolated MWCNT/analyte aggregates were treated with nitric acid to form a slurry and both metals were determined directly by injecting the slurry into the ETAAS-atomizer. The parameters that influence the adsorption of the metals on MWCNTs in the DSPE process, the formation and extraction of the slurry, and the ETAAS conditions were studied by different factorial design strategies. The detection and quantification limits obtained for Cd under optimized conditions were 9.7 and 32.3 ng L{sup −1}, respectively, and for Pb these limits were 0.13 and 0.43 μg L{sup −1}. The preconcentration factors achieved were 3.9 and 5.4. The RSD values (n = 10) were less than 4.1% and 5.9% for Cd and Pb, respectively. The accuracy of the method was assessed in recovery studies, with values in the range 96–102% obtained for Cd and 97–101% for Pb. In addition, the analysis of certified reference materials gave consistent results. The DSPE–SS–ETAAS method is a novel and useful strategy for the determination of Pb and Cd at low levels in human urine samples. The method is sensitive, fast, and free of matrix interferences, and it avoids the tedious and time-consuming on-column adsorption and elution steps associated with commonly used SPE procedures. The proposed method was used to determine Cd and Pb in urine samples of unexposed healthy people and satisfactory results were obtained. - Highlights: • Cd and Pb determination based on the combination of DSP, SS and ETAAS • Urine matrix was eliminated using DSPE based on multiwalled carbon nanotubes. • Slurry sampling technique permitted the direct injection of sample into the ETAAS atomizer.

  4. Determination of Rhodium(III) Ions by Flame Atomic Absorption Spectrometry after Preconcentration with Modified Magnetic Activated Carbon

    OpenAIRE

    Maryam Fayazi; Masoud Ghanei-Motlagh; Mohammad Ali Taher; Raziyeh Fayazi

    2016-01-01

    A new method for analysis of trace amount of Rh(III) ions by magnetic activated carbon modified with 2,3,5,6-tetra(2-pyridyl)pyrazine (MAC/TPPZ) as the magnetic sorbent has been proposed. The proposed adsorbent was found to be advantageous over conventional solid phase extraction (SPE) in terms of operational simplicity and low time-consuming. The experimental parameters affecting the extraction/preconcentration and determination of the analyte were systematically examined. In order to invest...

  5. Determination of As(III) and As(V) by Flow Injection-Hydride Generation-Atomic Absorption Spectrometry via On-line Reduction of As(V) by KI

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Hansen, Elo Harald

    1997-01-01

    A volume-based flow injection (FI) procedure is described for the determination and speciation of trace inorganic arsenic, As(III) and As(V), via hydride generation-atomic absorption spectrometry (HG-AAS) of As(III). The determination of total arsenic is obtained by on-line reduction of As(V) to As...

  6. Lead determinations in human bone by particle induced x-ray emission (PIXE) and graphite furnace atomic absorption spectrometry (GFAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Deibel, M A; Savage, J M; Robertson, J D; Ehmann, W D [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry; Markesbery, W R [Kentucky Univ., Lexington, KY (United States)

    1995-08-01

    Chronic lead (Pb) intoxication has been linked to Alzheimer`s disease (AD). Lead, like many heavy elements, tends to accumulate in bone. Pixe is a powerful analytical tool which permits the determination of Pb at the {mu}g/g level without requiring sample digestion. GFAAS is one of the most sensitive methods for the determination of Pb and is capable of determining ng/g levels is solution. For bone analyses by GFAAS, sample dissolution and a matrix modifier are required. Rib bone samples were analyzed for Pb by PIXE and GFAAS. IAEA Animal Bone (H-5) was used as a secondary standard for Pb with both methods to ensure accuracy. The range of Pb concentrations in human rib bone was 1.4-11.5 {mu}/g for the trabecular surface by PIXE, 1.3-45 {mu}g/g for the cortical surface by PIXE, and 1.54-11.75 {mu}g/g for whole bone by GFAAS. No significant difference p.<0.05 was found for AD versus control for either surface or for whole bone. (author). 17 refs., 2 figs., 3 tabs.

  7. Lead determinations in human bone by particle induced x-ray emission (PIXE) and graphite furnace atomic absorption spectrometry (GFAAS)

    International Nuclear Information System (INIS)

    Deibel, M.A.; Savage, J.M.; Robertson, J.D.; Ehmann, W.D.

    1995-01-01

    Chronic lead (Pb) intoxication has been linked to Alzheimer's disease (AD). Lead, like many heavy elements, tends to accumulate in bone. Pixe is a powerful analytical tool which permits the determination of Pb at the μg/g level without requiring sample digestion. GFAAS is one of the most sensitive methods for the determination of Pb and is capable of determining ng/g levels is solution. For bone analyses by GFAAS, sample dissolution and a matrix modifier are required. Rib bone samples were analyzed for Pb by PIXE and GFAAS. IAEA Animal Bone (H-5) was used as a secondary standard for Pb with both methods to ensure accuracy. The range of Pb concentrations in human rib bone was 1.4-11.5 μ/g for the trabecular surface by PIXE, 1.3-45 μg/g for the cortical surface by PIXE, and 1.54-11.75 μg/g for whole bone by GFAAS. No significant difference (p.<0.05 was found for AD versus control for either surface or for whole bone. (author). 17 refs., 2 figs., 3 tabs

  8. Investigation of spectral interferences in the determination of lead in fertilizers and limestone samples using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Aline R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Becker, Emilene M.; François, Luciane L.; Jesus, Alexandre de [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2014-11-01

    In the present work, spectral interferences on the determination of lead in fertilizer and limestone samples were investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry at the main analytical lines: 217.001 and 283.306 nm. For these investigations, samples were introduced into the furnace as slurry together with a mixture of Pd and Mg as chemical modifier. Spectral interferences were observed for some samples at both analytical lines. In order to verify whether a wet digestion procedure would avoid these interferences, a reference method for wet digestion of fertilizers was employed as an alternative sample preparation procedure. However, the same interferences were also observed in the digested samples. In order to identify and eliminate the fine-structured background using a least-squares background correction, reference spectra were generated using the combination of different species. The use of the latter technique allowed the elimination of spectral interferences for most of the investigated samples, making possible the determination of lead in fertilizer and limestone samples free of interferences. The best results were found using a reference spectrum of NH{sub 4}H{sub 2}PO{sub 4} at 217.001 nm, and a mixture of H{sub 2}SO{sub 4} + Ca and HNO{sub 3} + Ca at the 283.306 nm line. The accuracy of the method was evaluated using a certified reference material “Trace Elements in Multi-Nutrient Fertilizer”. Similar results were obtained using line source graphite furnace atomic absorption spectrometry with Zeeman-effect background correction, indicating that the latter technique was also capable to correct the spectral interferences, at least in part. - Highlights: • Spectral interferences on the determination of lead in fertilizers and limestone. • The analytical lines at 217.001 nm and 283.306 nm using HR-CS GF AAS. • Various combinations of compounds were used to create reference spectra. • LSBC

  9. Organic and total mercury determination in sediments by cold vapor atomic absorption spectrometry: methodology validation and uncertainty measurements

    Directory of Open Access Journals (Sweden)

    Robson L. Franklin

    2012-01-01

    Full Text Available The purpose of the present study was to validate a method for organic Hg determination in sediment. The procedure for organic Hg was adapted from literature, where the organomercurial compounds were extracted with dichloromethane in acid medium and subsequent destruction of organic compounds by bromine chloride. Total Hg was performed according to 3051A USEPA methodology. Mercury quantification for both methodologies was then performed by CVAAS. Methodology validation was verified by analyzing certified reference materials for total Hg and methylmercury. The uncertainties for both methodologies were calculated. The quantification limit of 3.3 µg kg-1 was found for organic Hg by CVAAS.

  10. Electrochemical generation of arsenic volatile species using a gold/mercury amalgam cathode. Determination of arsenic by atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Andrea Caiminagua

    2015-03-01

    Full Text Available The electrochemical generation of arsenic volatile species (arsine using an Au/Hg amalgam cathode in a 0.5 M H2SO4 solution, is described. Results were compared with those obtained with other cathodes commonly used for generation of arsine. The effects of the electrolytic conditions and interferent ions have been studied. Results show that the Au/Hg cathode has better tolerance to interference and higher repeatability than cathodes made out of platinum (Pt, gold (Au, reticulated glassy carbon (RGC, lead (Pb. Under optimized conditions, a 0.027 μg L−1 (3σ detection limit for As(III in aqueous solutions and a 2.4% relative standard deviation for a 0.1 μg L−1 As(III were obtained. The accuracy of the method was verified by determination of As in a certified reference material. The proposed method was applied to the determination of As in spiked tap water samples.

  11. Biosorption of aluminum on Pseudomonas aeruginosa loaded on Chromosorb 106 prior to its graphite furnace atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Soylak, Mustafa

    2008-01-01

    A biosorption procedure for separation-enrichment of aluminum in environmental samples has been presented in this work. Pseudomonas aeruginosa loaded on Chromosorb 106 has been used as biosorbent for that purpose. P. aeruginosa is a gram-negative, aerobic rod. The influences of pH of the aqueous solution, eluent type, eluent volume, sample volume, etc. were examined on the quantitative recovery of aluminum in P. aeruginosa loaded on Chromosorb 106. The effects of concomitant ions on the recoveries of aluminum were also investigated. The detection limit based on 3 sigma for aluminum is 30 ng L -1 . Three certified reference materials (LGC 6010 Hard Drinking Water, NIST-SRM 1568a Rice Flour and NRCC-DORM-2 Dogfish Muscle) were analyzed for the validation of the presented procedure. The proposed procedure was applied to the determination of aluminum in environmental samples including natural water and food samples. The concentration of aluminum in real samples was found at ppb level

  12. Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Godlewska-Zylkiewicz, Beata E-mail: bgodlew@uwb.edu.pl

    2003-08-15

    Inexpensive baker's yeast Saccharomyces cerevisiae and green algae Chlorella vulgaris, either free or immobilized on silica gel have been shown to selectively accumulate platinum and palladium from water samples in acidic medium (pH 1.6-1.8). Optimization of conditions of metals biosorption (sample pH, algae and yeast masses, adsorption time, temperature) was performed in batch mode. The procedure of matrix separation based on biosorption of platinum and palladium on algae C. vulgaris covalently immobilized on silica gel in flow mode was developed. The use of algae in flow procedure offers several advantages compared with its use in the batch mode. The procedure shows better reproducibility (<2%), improved efficiency of platinum retention on the column (93.3{+-}1.6%), is less laborious and less time consuming. The best recovery of biosorbed metals from column (87.7{+-}3.3% for platinum and 96.8{+-}1.1 for palladium) was obtained with solution of 0.3 mol l{sup -1} thiourea in 1 mol l{sup -1} hydrochloric acid. The influence of thiourea on analytical signals of examined metals during GFAAS determination is discussed. The procedure has been applied for separation of noble metals from tap and waste water samples spiked with platinum and palladium.

  13. Determination of Rhodium(III Ions by Flame Atomic Absorption Spectrometry after Preconcentration with Modified Magnetic Activated Carbon

    Directory of Open Access Journals (Sweden)

    Maryam Fayazi

    2016-06-01

    Full Text Available A new method for analysis of trace amount of Rh(III ions by magnetic activated carbon modified with 2,3,5,6-tetra(2-pyridylpyrazine (MAC/TPPZ as the magnetic sorbent has been proposed. The proposed adsorbent was found to be advantageous over conventional solid phase extraction (SPE in terms of operational simplicity and low time-consuming. The experimental parameters affecting the extraction/preconcentration and determination of the analyte were systematically examined. In order to investigate the selectivity of this magnetic sorbent, the effect of a variety of ions on preconcentration and recovery of Rh(III ions were also investigated. Under optimum conditions, the calibration graph was linear for the concentration range of 0.8-650 µg l-1. The limit of detection (LOD, 3Sb/m and the relative standard deviation (RSD, n = 8, c = 50 µg l-1 were 0.1 µg l-1 and 3.6%, respectively. The maximum sorption capacity of the adsorbent for rhodium was found to be 21.6 mg g-1. The presented procedure was applied to monitoring rhodium in water and synthetic samples.

  14. A biosorption system for metal ions on Penicillium italicum - loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations

    International Nuclear Information System (INIS)

    Mendil, Durali; Tuzen, Mustafa; Soylak, Mustafa

    2008-01-01

    A solid phase extraction (SPE) preconcentration system, coupled to a flame atomic absorption spectrometer (FAAS), was developed for the determination of copper(II), cadmium(II), lead(II), manganese(II), iron(III), nickel(II) and cobalt(II) ions at the μg L -1 levels on Penicillium italicum - loaded on Sepabeads SP 70. The analytes were adsorbed on biosorbent at the pH range of 8.5-9.5. The adsorbed metals were eluted with 1 mol L -1 HCl. The influences of the various analytical parameters including pH of the aqueous solutions, sample volume, flow rates were investigated for the retentions of the analyte ions. The recovery values are ranged from 95-102%. The influences of alkaline, earth alkaline and some transition metal ions were also discussed. Under the optimized conditions, the detection limits (3 s, n = 21) for analytes were in the range of 0.41 μg L -1 (cadmium) and 1.60 μg L -1 (iron). The standard reference materials (IAEA 336 Lichen, NIST SRM 1573a Tomato leaves) were analyzed to verify the proposed method. The method was successfully applied for the determinations of analytes in natural water, cultivated mushroom, lichen (Bryum capilare Hedw), moss (Homalothecium sericeum) and refined table salt samples

  15. Separation and Preconcentration of Ag(1) in Aqueous Samples by Flotation as an Ion-Associate Using Iodide and Ferroin Followed the Determination by Flame Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Hosseini, M.S.; Kardan-Moghaddam, G.; Hashemi-Moghaddam, M.

    2007-01-01

    A simple method for separation/preconcentration and determination of Ag (1) in aqueous samples is described. The method is based on formation of an ion-associate between Ag (1)-iodide complex and ferroin, which can be floated at the interface of the aqueous/n-heptane phases. The flotation process was carried out using 500-ml aliquot of the aqueous solution and the floated layer was dissolved in 5 ml of 1 M HNO 3 containing methanol (50% v/v) as the solvent. The Ag (1) content was then determined by flame atomic absorption spectrometry (FAAS). The method so could be considered as an enrichment process, was achieved to a quantitative feature, when the pH of the solution was adjusted to 4 and the concentrations of iodide and ferroin were about 3.2x10 -4 M and 6.25x10 -5 M, respectively. The LOD and RSD (n=7) were obtained 1.0x10 -8 M and 2.4%, respectively. It was found that a large number of cations and anions even at high considerably foreign ion/Ag(1) ratios were not interfered. The method was applied satisfactorily to recovery of Ag(I) from different aqueous samples

  16. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  17. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Martinis, Estefania M.; Berton, Paula; Olsina, Roberto A.; Altamirano, Jorgelina C.; Wuilloud, Rodolfo G.

    2009-01-01

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 mim][PF 6 ]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 μl of 9.0 mol L -1 hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L -1 and the relative standard deviation (RSD) for 10 replicates at 1 μg L -1 Hg 2+ was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  18. Preconcentrative separation of chromium(III) species from chromium(VI) by cloud point extraction and determination by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yildiz, Z.; Arslan, G.; Tor, A.

    2011-01-01

    We describe a high-throughput technique for the determination of chromium species in water samples by flame atomic absorption spectrometry (FAAS) after preconcentrative separation of Cr(III) species from Cr(VI) by cloud point extraction (CPE) using diethyldithiocarbamate (DDTC) as the chelating agent and the nonionic surfactant Triton X-100 as the extractant. The Cr(III)-DDTC complex is extracted if the temperature is higher than the CPE temperature of Triton X-100, while Cr(VI) remains in the aqueous phase. The Cr(III) in the surfactant phase was analyzed by FAAS, and the concentration of Cr(VI) was calculated by subtraction of Cr(III) from total chromium which was directly determined by FAAS. The effect of pH, concentration of chelating agent, surfactant, and equilibration temperature were investigated. The detection limit for Cr(III) was 0. 08 μg L -1 with an enrichment factor of 98, and the relative standard deviation was 1. 2% (n = 3, c = 100 μg L -1 ). A certified reference material and several water samples were analyzed with satisfactory results. (author)

  19. On-line preconcentration system using a microcolumn packed with Alizarin Red S-modified alumina for zinc determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    A.M. Haji Shabani

    2009-01-01

    Full Text Available A simple and sensitive on-line flow injection system for determination of zinc with FAAS has been described. The method is based on the separation and preconcentration of zinc on a microcolumn of immobilized Alizarin Red S on alumina. The adsorbed analyte is then eluted with 250 µL of nitric acid (1 mol L-1 and is transported to flame atomic absorption spectrometer for quantification. The effect of pH, sample and eluent flow rates and presence of various cations and anions on the retention of zinc was investigated. The sorption of zinc was quantitative in the pH range of 5.5-8.5. For a sample volume of 25 mL an enrichment factor of 144 and a detection limit (3S of 0.2 µg L-1 was obtained. The precision (RSD, n=7 was 3.0% at the 20 µg L-1 level. The developed system was successfully applied to the determination of zinc in water samples, hair, urine and saliva.

  20. Determination of sub-microgram amounts of selenium in geological materials by atomic-absorption spectrophotometry with electrothermal atomisation after solvent extraction

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1981-01-01

    An atomic-absorption spectrophotometric method with electrothermal atomisation has been developed for the determination of selenium in geological materials. The sample is decomposed with a mixture of nitric, perchloric and hydrofluoric acids and heated with hydrochloric acid to reduce selenium to selenium (IV). Selenium is then extracted into toluene from a hydrochloric acid - hydrobromic acid medium containing iron. A few microlitres of the toluene extract are injected into a carbon rod atomiser, using a nickel solution as a matrix modifier. The limits of determination are 0.2-200 p.p.m. of selenium in a geological sample. For concentrations between 0.05 and 0.2 p.p.m., back-extraction of the selenium into dilute hydrochloric acid is employed before atomisation. Selenium values for reference samples obtained by replicate analysis are in general agreement with those reported by other workers, with relative standard deviations ranging from 4.1 to 8.8%. Recoveries of selenium spiked at two levels were 98-108%. Major and trace elements commonly encountered in geological materials do not interfere. Arsenic has a suppressing effect on the selenium signals, but only when its concentration is greater than 1000 p.p.m. Nitric acid interferes seriously with the extraction of selenium and must be removed by evaporation in the sample-digestion step.

  1. Determination of Cu, Cd, Pb and Cr in yogurt by slurry sampling electrothermal atomic absorption spectrometry: A case study for Brazilian yogurt.

    Science.gov (United States)

    de Andrade, Camila Kulek; de Brito, Patrícia Micaella Klack; Dos Anjos, Vanessa Egéa; Quináia, Sueli Pércio

    2018-02-01

    A slurry sampling electrothermal atomic absorption spectrometric method is proposed for the determination of trace elements such as Cu, Cr, Cd and Pb in yogurt. The main factors affecting the slurry preparation were optimized: nature and concentration of acid solution and sonication time. The analytical method was validated in-house by calibration, linearity, limits of detection and quantification, precision and accuracy test obtaining satisfactory results in all cases. The proposed method was applied for the determination of Cd, Cr, Cu and Pb in some Brazilian yogurt samples. For these samples, the concentrations ranged from 2.5±0.2 to 12.4±0.2ngg -1 ; 34±3 to 899±7ngg -1 ; <8.3 to 12±1ngg -1 ; and <35.4 to 210±16ngg -1 for Cd, Cu, Cr and Pb, respectively. The daily intake of Cd, Cu, Cr and Pb via consumption of these samples was estimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Determination of antimony by electrochemical hydride generation atomic absorption spectrometry in samples with high iron content using chelating resins as on-line removal system

    International Nuclear Information System (INIS)

    Bolea, E.; Arroyo, D.; Laborda, F.; Castillo, J.R.

    2006-01-01

    A method for the removal of the interference caused by iron on electrochemical generation of stibine is proposed. It consists of a chelating resin Chelex 100 column integrated into a flow injection system and coupled to the electrochemical hydride generator quartz tube atomic absorption spectrometer (EcHG-QT-AAS). Iron, as Fe(II), is retained in the column with high efficiency, close to 99.9% under optimal conditions. No significant retention was observed for Sb(III) under same conditions and a 97 ± 5% signal recovery was achieved. An electrochemical hydride generator with a concentric configuration and a reticulated vitreous carbon cathode was employed. The system is able to determine antimony concentrations in the range of ng ml -1 in presence of iron concentrations up to 400 mg l -1 . The procedure was validated by analyzing PACS-2 marine sediments reference material with a 4% (w/w) iron content and a [Fe]:[Sb] ratio of 4000:1, which caused total antimony signal suppression on the electrochemical hydride generation system. A compost sample with high iron content (0.7%, w/w), was also analyzed. A good agreement was found on both samples with the certified value and the antimony concentration determined by ICP-MS, respectively

  3. Modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction followed by atomic absorption spectrometry for trace determination of zinc in water and food samples

    International Nuclear Information System (INIS)

    Zeeb, M.; Sadeghi, M.

    2011-01-01

    We report on a new method for the microextraction and determination of zinc (II). The ion is accumulated via ionic-liquid cold-induced aggregation dispersive liquid-liquid microextraction (IL-CIA-DLLME) followed by flame atomic absorption spectrometry (FAAS). The ionic liquid (IL) 1-hexyl-3-methylimidazolium hexafluorophosphate is dispersed into a heated sample solution containing sodium hexafluorophosphate as a common ion source. The solution is then placed in an ice-water bath upon which a cloudy solution forms due to the decrease of the solubility of the IL. Zinc is complexed with 8-hydroxyquinoline and extracted into the IL. The enriched phase is dissolved in a diluting agent and introduced to the FAAS. The method is not influenced by variations in the ionic strength of the sample solution. Factors affecting the performance were evaluated and optimized. At optimum conditions, the limit of detection is 0.18 μg L -1 , and the relative standard deviation is 3.0% (at n=5). The method was validated by recovery experiments and by analyzing a certified reference material and successfully applied to the determination of Zn (II) in water and food samples. (author)

  4. Determination of calcium, magnesium, sodium, and potassium in foodstuffs by using a microsampling flame atomic absorption spectrometric method after closed-vessel microwave digestion: method validation.

    Science.gov (United States)

    Chekri, Rachida; Noël, Laurent; Vastel, Christelle; Millour, Sandrine; Kadar, Ali; Guérin, Thierry

    2010-01-01

    This paper describes a validation process in compliance with the NFIEN ISO/IEC 17025 standard for the determination of the macrominerals calcium, magnesium, sodium, and potassium in foodstuffs by microsampling with flame atomic absorption spectrometry after closed-vessel microwave digestion. The French Standards Commission (Agence Francaise de Normalisation) standards NF V03-110, NF EN V03-115, and XP T-90-210 were used to evaluate this method. The method was validated in the context of an analysis of the 1322 food samples of the second French Total Diet Study (TDS). Several performance criteria (linearity, LOQ, specificity, trueness, precision under repeatability conditions, and intermediate precision reproducibility) were evaluated. Furthermore, the method was monitored by several internal quality controls. The LOQ values obtained (25, 5, 8.3, and 8.3 mg/kg for Ca, Mg, Na, and K, respectively) were in compliance with the needs of the TDS. The method provided accurate results as demonstrated by a repeatability CV (CVr) of < 7% and a reproducibility CV (CVR) of < 12% for all the elements. Therefore, the results indicated that this method could be used in the laboratory for the routine determination of these four elements in foodstuffs with acceptable analytical performance.

  5. Immersed single-drop microextraction interfaced with sequential injection analysis for determination of Cr(VI) in natural waters by electrothermal-atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Pena, Francisco; Lavilla, Isela; Bendicho, Carlos

    2008-01-01

    Single-drop microextraction (SDME) and sequential injection analysis have been hyphenated for ultratrace metal determination by Electrothermal-Atomic Absorption Spectrometry (ETAAS). The novel method was targeted on extraction of the Cr(VI)-APDC chelate and encompasses the potential of SDME as a miniaturized and virtually solvent-free preconcentration technique, the ability of sequential injection analysis to handle samples and the versatility of furnace autosamplers for introducing microliter samples in ETAAS. The variables influencing the microextraction of Cr(VI) onto an organic solvent drop, i.e., type of organic solvent, microextraction time, stirring rate of the sample solution, drop volume, immersion depth of the drop, salting-out effect, temperature of the sample, concentration of the complexing agent and pH of the sample solution were fully investigated. For a 5 and 20 min microextraction time, the preconcentration factors were 20 and 70, respectively. The detection limit was 0.02 μg/L of Cr(VI) and the repeatability expressed as relative standard deviation was 7%. The SDME-SIA-ETAAS technique was validated against BCR CRM 544 (lyophilized solution) and applied to ultrasensitive determination of Cr(VI) in natural waters

  6. Determination of Hg(II) in waters by on-line preconcentration using Cyanex 923 as a sorbent - Cold vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Duan Taicheng; Song Xuejie; Xu Jingwei; Guo Pengran; Chen Hangting; Li Hongfei

    2006-01-01

    Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO 3 and subsequently reduced by NaBH 4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min -1 sample loading rate. The detection limit was 0.2 ng L -1 and much lower than that of conventional method (around 15.8 ng L -1 ). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L -1 of Hg and the linear working curve is from 20 to 2000 ng L -1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory

  7. Automated magnetic sorbent extraction based on octadecylsilane functionalized maghemite magnetic particles in a sequential injection system coupled with electrothermal atomic absorption spectrometry for metal determination.

    Science.gov (United States)

    Giakisikli, Georgia; Anthemidis, Aristidis N

    2013-06-15

    A new automatic sequential injection (SI) system for on-line magnetic sorbent extraction coupled with electrothermal atomic absorption spectrometry (ETAAS) has been successfully developed for metal determination. In this work, we reported effective on-line immobilization of magnetic silica particles into a microcolumn by the external force of two strong neodymium iron boron (NdFeB) magnets across it, avoiding the use of frits. Octadecylsilane functionalized maghemite magnetic particles were used as sorbent material. The potentials of the system were demonstrated for trace cadmium determination in water samples. The method was based on the on-line complex formation with diethyldithiocarbamate (DDTC), retention of Cd-DDTC on the surface of the MPs and elution with isobutyl methyl ketone (IBMK). The formation mechanism of the magnetic solid phase packed column and all critical parameters (chemical, flow, graphite furnace) influencing the performance of the system were optimized and offered good analytical characteristics. For 5 mL sample volume, a detection limit of 3 ng L(-1), a relative standard deviation of 3.9% at 50 ng L(-1) level (n=11) and a linear range of 9-350 ng L(-1) were obtained. The column remained stable for more than 600 cycles keeping the cost down in routine analysis. The proposed method was evaluated by analyzing certified reference materials and natural waters. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Separation and Enrichment of Gold in Water, Geological and Environmental Samples by Solid Phase Extraction on Multiwalled Carbon Nanotubes Prior to its Determination by Flame Atomic Absorption Spectrometry.

    Science.gov (United States)

    Duran, Ali; Tuzen, Mustafa; Soylak, Mustafa

    2015-01-01

    This study proposes the application of multi-walled carbon nanotubes as a solid sorbent for the preconcentration of gold prior to its flame atomic absorption spectrometry determination. Extraction was achieved by using a glass column (15.0 cm in length and 1.0 cm in diameter). Quantitative recoveries were obtained in the pH range of 2.5-4.0; the elution step was carried out with 5.0 ml of 1.0 mol/L HNO3 in acetone. In the ligand-free study, variables such as pH, eluent type, sample volume, flow rates, and matrix effect were examined for the optimum recovery of gold ions. The gold ions were able to be pre-concentrated by a factor of 150 and their LOD was determined to be 1.71 μg/L. In order to evaluate the accuracy of the developed method, addition-recovery tests were applied for the tap water, mineral water, and sea water samples. Gold recovery studies were implemented using a wet digestion technique for mine and soil samples taken from various media, and this method was also applied for anodic slime samples taken from the factories located in the Kayseri Industrial Zone of Turkey.

  9. A biosorption system for metal ions on Penicillium italicum - loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations

    Energy Technology Data Exchange (ETDEWEB)

    Mendil, Durali; Tuzen, Mustafa [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)], E-mail: msoylak@gmail.com

    2008-04-15

    A solid phase extraction (SPE) preconcentration system, coupled to a flame atomic absorption spectrometer (FAAS), was developed for the determination of copper(II), cadmium(II), lead(II), manganese(II), iron(III), nickel(II) and cobalt(II) ions at the {mu}g L{sup -1} levels on Penicillium italicum - loaded on Sepabeads SP 70. The analytes were adsorbed on biosorbent at the pH range of 8.5-9.5. The adsorbed metals were eluted with 1 mol L{sup -1} HCl. The influences of the various analytical parameters including pH of the aqueous solutions, sample volume, flow rates were investigated for the retentions of the analyte ions. The recovery values are ranged from 95-102%. The influences of alkaline, earth alkaline and some transition metal ions were also discussed. Under the optimized conditions, the detection limits (3 s, n = 21) for analytes were in the range of 0.41 {mu}g L{sup -1} (cadmium) and 1.60 {mu}g L{sup -1} (iron). The standard reference materials (IAEA 336 Lichen, NIST SRM 1573a Tomato leaves) were analyzed to verify the proposed method. The method was successfully applied for the determinations of analytes in natural water, cultivated mushroom, lichen (Bryum capilare Hedw), moss (Homalothecium sericeum) and refined table salt samples.

  10. Immersed single-drop microextraction interfaced with sequential injection analysis for determination of Cr(VI) in natural waters by electrothermal-atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Francisco; Lavilla, Isela [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, Campus As Lagoas-Marcosende, s/n, 36310 Vigo (Spain); Bendicho, Carlos [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, Campus As Lagoas-Marcosende, s/n, 36310 Vigo (Spain)], E-mail: bendicho@uvigo.es

    2008-04-15

    Single-drop microextraction (SDME) and sequential injection analysis have been hyphenated for ultratrace metal determination by Electrothermal-Atomic Absorption Spectrometry (ETAAS). The novel method was targeted on extraction of the Cr(VI)-APDC chelate and encompasses the potential of SDME as a miniaturized and virtually solvent-free preconcentration technique, the ability of sequential injection analysis to handle samples and the versatility of furnace autosamplers for introducing microliter samples in ETAAS. The variables influencing the microextraction of Cr(VI) onto an organic solvent drop, i.e., type of organic solvent, microextraction time, stirring rate of the sample solution, drop volume, immersion depth of the drop, salting-out effect, temperature of the sample, concentration of the complexing agent and pH of the sample solution were fully investigated. For a 5 and 20 min microextraction time, the preconcentration factors were 20 and 70, respectively. The detection limit was 0.02 {mu}g/L of Cr(VI) and the repeatability expressed as relative standard deviation was 7%. The SDME-SIA-ETAAS technique was validated against BCR CRM 544 (lyophilized solution) and applied to ultrasensitive determination of Cr(VI) in natural waters.

  11. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    Science.gov (United States)

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A new cloud point extraction procedure for determination of inorganic antimony species in beverages and biological samples by flame atomic absorption spectrometry.

    Science.gov (United States)

    Altunay, Nail; Gürkan, Ramazan

    2015-05-15

    A new cloud-point extraction (CPE) for the determination of antimony species in biological and beverages samples has been established with flame atomic absorption spectrometry (FAAS). The method is based on the fact that formation of the competitive ion-pairing complex of Sb(III) and Sb(V) with Victoria Pure Blue BO (VPB(+)) at pH 10. The antimony species were individually detected by FAAS. Under the optimized conditions, the calibration range for Sb(V) is 1-250 μg L(-1) with a detection limit of 0.25 μg L(-1) and sensitive enhancement factor of 76.3 while the calibration range for Sb(III) is 10-400 μg L(-1) with a detection limit of 5.15 μg L(-1) and sensitive enhancement factor of 48.3. The precision as a relative standard deviation is in range of 0.24-2.35%. The method was successfully applied to the speciative determination of antimony species in the samples. The validation was verified by analysis of certified reference materials (CRMs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A dispersive liquid--liquid microextraction methodology for copper (II) in environmental samples prior to determination using microsample injection flame atomic absorption spectrometry.

    Science.gov (United States)

    Alothman, Zeid A; Habila, Mohamed; Yilmaz, Erkan; Soylak, Mustafa

    2013-01-01

    A simple, environmentally friendly, and efficient dispersive liquid-liquid microextraction method combined with microsample injection flame atomic absorption spectrometry was developed for the separation and preconcentration of Cu(II). 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol (5-Br-PADAP) was used to form a hydrophobic complex of Cu(II) ions in the aqueous phase before extraction. To extract the Cu(II)-5-Br-PADAP complex from the aqueous phase to the organic phase, 2.0 mL of acetone as a disperser solvent and 200 microL of chloroform as an extraction solvent were used. The influences of important analytical parameters, such as the pH, types and volumes of the extraction and disperser solvents, amount of chelating agent, sample volume, and matrix effects, on the microextraction procedure were evaluated and optimized. Using the optimal conditions, the LOD, LOQ, preconcentration factor, and RSD were determined to be 1.4 microg/L, 4.7 microg/L, 120, and 6.5%, respectively. The accuracy of the proposed method was investigated using standard addition/recovery tests. The analysis of certified reference materials produced satisfactory analytical results. The developed method was applied for the determination of Cu in real samples.

  14. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry in water samples

    Directory of Open Access Journals (Sweden)

    Arpa Şahin Ç.

    2013-04-01

    Full Text Available A simple, rapid and inexpensive solidified floating organic drop microextraction (SFODME and flow injection flame atomic absorption spectrometric determination (FI-FAAS method for copper was developed. 3-amino-7-dimethylamino-2-methylphenazine (Neutral red, NR was used as the complexing agent. Several factors affecting the microextraction efficiency, such as, pH, NR and sodium dodecylbenzenesulfonate (SDBS concentration, extraction time, stirring rate, and temperature were investigated and optimized. Under optimized experimental conditions an enrichment factor of 541 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 0.5 – 20.0 ng mL–1 and the limit of detection (3s was 0.18 ng mL–1, the limit of quantification (10s was 0.58 ng mL–1. The relative standard deviation (RSD for 10 replicate measurements of 10 ng mL–1 copper was 2.7%. The developed method was successfully applied to the extraction and determination of copper in different certified reference materials (Estuarine water, Slew 3 and fortified water, TM 23.2 and real water samples and satisfactory results were obtained.

  15. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Abdollahi Atousa

    2014-07-01

    Full Text Available A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap. The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS. The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically investigated. The factors influencing, the complex formation and extraction of DLLME-SFO method such as type and volume of extraction and disperser solvents, pH, concentration of salt, centrifuging time and concentration of the chelating agent were optimized. The method was successfully applied to the determination of mercury in drinking and natural water and satisfactory relative recoveries (95–105% were achieved. The proposed procedure was based on very low consumption of organic solvents. The other benefits of the system were sensitive, simple, friendly to the environment, rejection of matrix constituent, low cost, the time consuming and high enrichment factor.

  16. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Asadollahi, Tahereh; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji

    2010-06-30

    A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 microL, 200 microL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3S(b)/m) of 7 ng L(-1) and a relative standard deviation of 4.6% (at 500 ng L(-1)) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L(-1) with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Cloud point extraction for the determination of lead and cadmium in urine by graphite furnace atomic absorption spectrometry with multivariate optimization using Box-Behnken design

    International Nuclear Information System (INIS)

    Maranhao, Tatiane de A; Martendal, Edmar; Borges, Daniel L.G.; Carasek, Eduardo; Welz, Bernhard; Curtius, Adilson J.

    2007-01-01

    Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Pb and Cd in undigested urine by graphite furnace atomic absorption spectrometry (GF AAS). Aliquots of 0.5 mL urine were acidified with HCl and the chelating agent ammonium O,O-diethyl dithiophosphate (DDTP) was added along with the non-ionic surfactant Triton X-114 at the optimized concentrations. Phase separation was achieved by heating the mixture to 50 deg. C for 15 min. The surfactant-rich phase was analyzed by GF AAS, employing the optimized pyrolysis temperatures of 900 deg. C for Pb and 800 deg. C for Cd, using a graphite tube with a platform treated with 500 μg Ru as permanent modifier. The reagent concentrations for CPE (HCl, DDTP and Triton X-114) were optimized using a Box-Behnken design. The response surfaces and the optimum values were very similar for aqueous solutions and for the urine samples, demonstrating that aqueous standards submitted to CPE could be used for calibration. Detection limits of 40 and 2 ng L -1 for Pb and Cd, respectively, were obtained along with an enhancement factor of 16 for both analytes. Three control urine samples were analyzed using this approach, and good agreement was obtained at a 95% statistical confidence level between the certified and determined values. Five real samples have also been analyzed before and after spiking with Pb and Cd, resulting in recoveries ranging from 97 to 118%

  18. Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2012-05-30

    Fluorine was determined via the rotational molecular absorption line of aluminum mono fluoride (AlF) generated in C(2)H(2)/N(2)O flame at 227.4613 nm using a high-resolution continuum source flame atomic absorption spectrophotometer (HR-CS-FAAS). The effects of AlF wavelength, burner height, fuel rate (C(2)H(2)/N(2)O) and amount of Al on the accuracy, precision and sensitivity were investigated and optimized. The Al-F absorption band at 227.4613 nm was found to be the most suitable analytical line with respect to sensitivity and spectral interferences. Maximum sensitivity and a good linearity were obtained in acetylene-nitrous oxide flame at a flow rate of 210 L h(-1) and a burner height of 8mm using 3000 mg L(-1) of Al for 10-1000 mg L(-1)of F. The accuracy and precision of the method were tested by analyzing spiked samples and waste water certified reference material. The results were in good agreement with the certified and spiked amounts as well as the precision of several days during this study was satisfactory (RSD<10%). The limit of detection and characteristic concentration of the method were 5.5 mg L(-1) and 72.8 mg L(-1), respectively. Finally, the fluorine concentrations in several toothpaste samples were determined. The results found and given by the producers were not significantly different. The method was simple, fast, accurate and sensitive. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A low-cost vaporization-atomization system for atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bruhn F, C.G.; Ambiado V, F.; Woerner V, R.

    1990-01-01

    A low-cost vaporization-atomization system for atomic absorption spectrometry is developed as an alternative to the use of a graphite furnace in electrothermal atomic absorption spectrometry. (Author)

  20. Investigation of chemical modifiers for the determination of lead in fertilizers and limestone using graphite furnace atomic absorption spectrometry with Zeeman-effect background correction and slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Aline R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq–INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Becker, Emilene M.; Dessuy, Morgana B. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R., E-mail: mgrvale@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq–INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq–INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil)

    2014-02-01

    In this work, chemical modifiers in solution (Pd/Mg, NH{sub 4}H{sub 2}PO{sub 4} and NH{sub 4}NO{sub 3}/Pd) were compared with permanent modifiers (Ir and Ru) for the determination of lead in fertilizer and limestone samples using slurry sampling and graphite furnace atomic absorption spectrometry with Zeeman-effect background correction. The analytical line at 283.3 nm was used due to some spectral interference observed at 217.0 nm. The NH{sub 4}H{sub 2}PO{sub 4} was abandoned due to severe spectral interference even at the 283.3-nm line. For Pd/Mg and NH{sub 4}NO{sub 3}/Pd the optimum pyrolysis and atomization temperatures were 900 °C and 1900 °C, respectively. For Ru and Ir, the integrated absorbance signal was stable up to pyrolysis temperatures of 700 °C and 900 °C, respectively, and up to atomization temperature of 1700 °C. The limit of detection (LOD) was 17 ng g{sup −1} using Pd/Mg and 29 ng g{sup −1} using NH{sub 4}NO{sub 3}/Pd. Among the permanent modifiers investigated, the LOD was 22 ng g{sup −1} Pb for Ir and 10 ng g{sup −1} Pb for Ru. The accuracy of the method was evaluated using the certified reference material NIST SRM 695. Although Ru provided lower LOD, which can be attributed to a lower blank signal, only the modifiers in solution showed concordant values of Pb concentration for the NIST SRM 695 and the most of analyzed samples. Moreover, the Pd/Mg modifier provided the highest sensitivity and for this reason it is more suitable for the determination of Pb in fertilizers samples in slurry; besides this it presented a better signal-to-noise ratio than NH{sub 4}NO{sub 3}/Pd. - Highlights: • Lead has been determined in fertilizers using slurry sampling GF AAS. • The mixture of palladium and magnesium nitrates was found to be the ideal chemical modifier. • Calibration could be carried out against aqueous standard solutions. • The proposed method is much faster than the EPA method, which includes sample digestion.

  1. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Almeida, Jorge S.; Anunciação, Taiana A.; Brandão, Geovani C.; Dantas, Alailson F.; Lemos, Valfredo A.

    2015-01-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO 3 gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box–Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L −1 HNO 3 as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg −1 . Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method. - Highlights: • The determination of cadmium in vegetable oils was developed using UA-SDME. • HR-CS ET-AAS was employed as a detection technique with direct drop sampling. • The procedure allowed for a reduction in the consumption of reagents and samples

  2. Feasibility of dispersive liquid–liquid microextraction for extraction and preconcentration of Cu and Fe in red and white wine and determination by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Seeger, Tassia S.; Rosa, Francisco C.; Bizzi, Cezar A.; Dressler, Valderi L.; Flores, Erico M.M.; Duarte, Fabio A.

    2015-01-01

    A method for extraction and preconcentration of Cu and Fe in red and white wines using dispersive liquid–liquid microextraction (DLLME) and determination by flame atomic absorption spectrometry (F AAS) was developed. Extraction was performed using sodium diethyldithiocarbamate as chelating agent and a mixture of 40 μL of 1,2-dichlorobenzene (extraction solvent) and 900 μL of methanol (dispersive solvent). Some parameters that influencing the extraction efficiency such as pH (2 to 5), concentration of chelating agent (0 to 2%), effect of salt addition (0 to 10%), number of washing steps (1 to 4) and centrifugation time (0 to 15 min) were studied. Accuracy was evaluated after microwave-assisted digestion in closed vessels and analytes were determined by inductively coupled plasma optical emission spectrometry. Agreement with the proposed method ranged from 91 to 110 and from 89 to 113% for Cu and Fe, respectively. Calibration of F AAS instrument was performed using analyte addition method and limits of detection were 6.3 and 2.4 μg L −1 for Cu and Fe, respectively. The proposed method was applied for the determination of Cu and Fe in five samples of red wine and three samples of white wine, with concentration ranging from 21 to 178 μg L −1 and from 1.38 to 3.74 mg L −1 , respectively. - Highlights: • Determination of Cu and Fe in wine using DLLME and F AAS • High preconcentration factors and low LODs were achieved. • Alternative method for the determination of Cu and Fe in wine for routine analysis

  3. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Jorge S.; Anunciação, Taiana A. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Brandão, Geovani C. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); INCT de Energia e Ambiente, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Dantas, Alailson F. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Lemos, Valfredo A. [Laboratório de Química Analítica (LQA), Universidade Estadual do Sudoeste da Bahia, Campus de Jequié, Jequié, Bahia 45506-191 (Brazil); and others

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO{sub 3} gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box–Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L{sup −1} HNO{sub 3} as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg{sup −1}. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method. - Highlights: • The determination of cadmium in vegetable oils was developed using UA-SDME. • HR-CS ET-AAS was employed as a detection technique with direct drop sampling. • The procedure allowed for a reduction in the consumption of reagents and

  4. Feasibility of dispersive liquid–liquid microextraction for extraction and preconcentration of Cu and Fe in red and white wine and determination by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Tassia S.; Rosa, Francisco C.; Bizzi, Cezar A.; Dressler, Valderi L.; Flores, Erico M.M.; Duarte, Fabio A., E-mail: fabioand@gmail.com

    2015-03-01

    A method for extraction and preconcentration of Cu and Fe in red and white wines using dispersive liquid–liquid microextraction (DLLME) and determination by flame atomic absorption spectrometry (F AAS) was developed. Extraction was performed using sodium diethyldithiocarbamate as chelating agent and a mixture of 40 μL of 1,2-dichlorobenzene (extraction solvent) and 900 μL of methanol (dispersive solvent). Some parameters that influencing the extraction efficiency such as pH (2 to 5), concentration of chelating agent (0 to 2%), effect of salt addition (0 to 10%), number of washing steps (1 to 4) and centrifugation time (0 to 15 min) were studied. Accuracy was evaluated after microwave-assisted digestion in closed vessels and analytes were determined by inductively coupled plasma optical emission spectrometry. Agreement with the proposed method ranged from 91 to 110 and from 89 to 113% for Cu and Fe, respectively. Calibration of F AAS instrument was performed using analyte addition method and limits of detection were 6.3 and 2.4 μg L{sup −1} for Cu and Fe, respectively. The proposed method was applied for the determination of Cu and Fe in five samples of red wine and three samples of white wine, with concentration ranging from 21 to 178 μg L{sup −1} and from 1.38 to 3.74 mg L{sup −1}, respectively. - Highlights: • Determination of Cu and Fe in wine using DLLME and F AAS • High preconcentration factors and low LODs were achieved. • Alternative method for the determination of Cu and Fe in wine for routine analysis.

  5. Ultratrace determination of lead by hydride generation in-atomizer trapping atomic absorption spectrometry: Optimization of plumbane generation and analyte preconcentration in a quartz trap-and-atomizer device

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz

    2012-05-15

    A compact trap-and-atomizer device and a preconcentration procedure based on hydride trapping in excess of oxygen over hydrogen in the collection step, both constructed and developed previously in our laboratory, were employed to optimize plumbane trapping in this device and to develop a routine method for ultratrace lead determination subsequently. The inherent advantage of this preconcentration approach is that 100% preconcentration efficiency for lead is reached in this device which has never been reported before using quartz or metal traps. Plumbane is completely retained in the trap-and-atomizer device at 290 Degree-Sign C in oxygen-rich atmosphere and trapped species are subsequently volatilized at 830 Degree-Sign C in hydrogen-rich atmosphere. Effect of relevant experimental parameters on plumbane trapping and lead volatilization are discussed, and possible trapping mechanisms are hypothesized. Plumbane trapping in the trap-and-atomizer device can be routinely used for lead determination at ultratrace levels reaching a detection limit of 0.21 ng ml{sup -1} Pb (30 s preconcentration, sample volume 2 ml). Further improvement of the detection limit is feasible by reducing the blank signal and increasing the trapping time. - Highlights: Black-Right-Pointing-Pointer In-atomizer trapping HG-AAS was optimized for Pb. Black-Right-Pointing-Pointer A compact quartz trap-and-atomizer device was employed. Black-Right-Pointing-Pointer Generation, preconcentration and atomization steps were investigated in detail. Black-Right-Pointing-Pointer 100% preconcentration efficiency for lead was reached. Black-Right-Pointing-Pointer Routine analytical method was developed for Pb determination (LOD of 0.2 ng ml{sup -1} Pb).

  6. Determination of trace elements of some Egyptian crops by instrumental neutron activation, inductively coupled plasma-atomic emission spectrometric and flameless atomic absorption spectrophotometric analysis

    International Nuclear Information System (INIS)

    Awadallah, R.M.; Sherif, M.K.; Amrallah, A.H.; Grass, F.

    1986-01-01

    INAA was used for the determination of Al, Br, Ca, Ce, Cl, Co, Cr, Cs, Eu, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc, Se, Ti, Th, V and Zn, ICP-AES for the determination of Al, Ag, Ba, Be, Ca, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, P, Sc, Sr, Ti, V and Zn, and flameless AAS for the determination of Cd, Hg and Pb in egg plant, potatoes, green pepper (Leguminosae), vegetable marrow (Cucurbitaceae), pears, apple (Rosaceae), castor oil plant (Euphorbiaceae), lettuce (compositae), dill, parsley, coriander (Umbelliferae), and in some soil samples collected from Aswan province. (author)

  7. Method development for the determination of fluorine in water samples via the molecular absorption of strontium monofluoride formed in an electrothermal atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Nil, E-mail: nil.ozbek@itu.edu.tr; Akman, Suleyman, E-mail: akmans@itu.edu.tr

    2012-03-15

    The presence of fluorine (F) was detected via the rotational molecular absorption line of diatomic strontium-monofluoride (SrF) generated in the gas phase at 651.187 nm using high-resolution continuum source electrothermal atomic absorption spectrometry. Upon the addition of excess strontium (Sr) as the nitrate, the fluorine in the sample was converted to SrF in the gas phase of a graphite furnace. The effects on the accuracy, precision and sensitivity of variables such as the SrF wavelength, graphite furnace program, amount of Sr, coating of the graphite tube and platform with Zr and Ir and the use of a modifier were investigated and optimized. It was determined that there was no need to use a modifier or to cover the platform/tubes with Zr or Ir. Fluorine concentrations in various water samples (certified waste water, tap water, drinking water and mineral water) were determined using 20 {mu}g of Sr as the molecule-forming reagent and applying a maximum pyrolysis temperature of 800 Degree-Sign C and a molecule-forming temperature of 2200 Degree-Sign C with a heating rate of 2000 Degree-Sign C s{sup -1}. Good linearity was maintained up to 0.1 {mu}g of F. The accuracy and precision of the method were tested by analyzing certified reference wastewater. The results were in good agreement with certified values, and the precision was satisfactory (RSD < 10%). The limit of detection and the characteristic mass for the method were 0.36 ng and 0.55 ng, respectively. Finally, the fluorine concentrations in several drinking water and mineral water samples taken from the market were determined. The results were in good agreement with the values supplied by the producers. No significant differences were found between the results from the linear calibration and standard addition techniques. The method was determined to be simple, fast, accurate and sensitive. - Highlights: Black-Right-Pointing-Pointer F is determined via MAS of SrF at 651.187 nm using HR-CS-ET AAS. Black

  8. Precision atomic beam density characterization by diode laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Oxley, Paul; Wihbey, Joseph

    2016-01-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 −5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm −3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  9. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, Paul; Wihbey, Joseph [Physics Department, The College of the Holy Cross, Worcester, Massachusetts 01610 (United States)

    2016-09-15

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  10. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  11. Preconcentration and determination of boron in milk, infant formula, and honey samples by solid phase extraction-electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, I.; Vinas, P.; Romero-Romero, R. [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Hernandez-Cordoba, M. [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain)], E-mail: hcordoba@um.es

    2009-02-15

    This work presents alternative procedures for the electrothermal atomic absorption spectrometric determination of boron in milk, infant formulas, and honey samples. Honey samples (10% m/v) were diluted in a medium containing 1% v/v HNO{sub 3} and 50% v/v H{sub 2}O{sub 2} and introduced in the atomizer. A mixture of 20 {mu}g Pd and 0.5 {mu}g Mg was used for chemical modification. Calibration was carried out using aqueous solutions prepared in the same medium, in the presence of 10% m/v sucrose. The detection limit was 2 {mu}g g{sup -1}, equivalent to three times the standard error of the estimate (s{sub y/x}) of the regression line. For both infant formulas and milk samples, due to their very low boron content, we used a procedure based on preconcentration by solid phase extraction (Amberlite IRA 743), followed by elution with 2 mol L{sup -1} hydrochloric acid. Detection limits were 0.03 {mu}g g{sup -1} for 4% m/v honey, 0.04 {mu}g g{sup -1} for 5% m/v infant formula and 0.08 {mu}g mL{sup -1} for 15% v/v cow milk. We confirmed the accuracy of the procedure by comparing the obtained results with those found via a comparable independent procedure, as well by the analysis of four certified reference materials.

  12. Determination of Lead and Cadmium in environment materials from the planned area for a nuclear power plant by atomic absorption spectrophotometry method

    International Nuclear Information System (INIS)

    Supriyanto, C; Djokowidodo; Isyuniarto; Heri-Wahyudi; Ashar-Andrianto

    1996-01-01

    The determination of Pb and Cd in environment materials (water, cassava leaves and soil) have been done by atomic absorption spectrophotometry method, The determination of Pb and Cd was done with graphite tube atomizer (GTA) method at optimum condition : wavelength for Pb and Cd 217.0 nm and 228.8 nm; temperature/time ashing 550 o C/37 sec and 350 o C/52 sec; temperature/time atomizing 2000 o C/5.1 sec and 2000 o C/5.2 sec. Modifier for Pb was 3 μL of Mg 1000 μg/ml and Cd was 2 μL of Pd 2000 μg/ml. The content Pb in Spalun river, Hulu Putih river and sea water Lemah Abang was 0.94 ± 0.03; 0.91± 0.02; 4.71 ± 0.26 ng/ml respectively; the Cd content was 1.23 ± 0.11; 0.48 ± 0.01; 0.55 ± 0.01 ng/ml respectively. The Pb dan Cd content in cassava leaves was 163.24 ± 3.72 and 18.45 ± 1.46 ng/g respectively, while the Pb content in soil at the depth variation 0 - 5, 5 - 10, 10 - 20 and 20 - 30 Cm was 2.35 ± 0.15; 2.86 ± 0.16; 1.97 ± 0.11 and 2.19 ± 0.06 μg/g respectively and the Cd content was 43.67 ± 1.52; 37.01 ± 1.01; 31.68 ± 0.17 and 36.97 ± 1.63 ng/g respectively. SRM Citrous leaves from NSB and SRM Soil 7 from the IAEA local used to control the quality of the analyzed method. The Pb, Cd content in SRM was in accordance with the value in the certified legend

  13. Applicability of cloud point extraction for the separation trace amount of lead ion in environmental and biological samples prior to determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Sayed Zia Mohammadi

    2016-09-01

    Full Text Available A sensitive cloud point extraction procedure(CPE for the preconcentration of trace lead prior to its determination by flame atomic absorption spectrometry (FAAS has been developed. The CPE method is based on the complex of Pb(II ion with 1-(2-pyridylazo-2-naphthol (PAN, and then entrapped in the non-ionic surfactant Triton X-114. The main factors affecting CPE efficiency, such as pH of sample solution, concentration of PAN and Triton X-114, equilibration temperature and time, were investigated in detail. A preconcentration factor of 30 was obtained for the preconcentration of Pb(II ion with 15.0 mL solution. Under the optimal conditions, the calibration curve was linear in the range of 7.5 ng mL−1–3.5 μg mL−1 of lead with R2 = 0.9998 (n = 10. Detection limit based on three times the standard deviation of the blank (3Sb was 5.27 ng mL−1. Eight replicate determinations of 1.0 μg mL−1 lead gave a mean absorbance of 0.275 with a relative standard deviation of 1.6%. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed method has been applied for determination of trace amounts of lead in biological and water samples with satisfactory results.

  14. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia Alba L. Roots using Flame Atomic Absorption Spectroscopy Technique.

    Science.gov (United States)

    Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana

    2016-06-01

    To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases.

  15. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Almeida, Jorge S.; Anunciação, Taiana A.; Brandão, Geovani C.; Dantas, Alailson F.; Lemos, Valfredo A.; Teixeira, Leonardo S. G.

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO3 gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box-Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L- 1 HNO3 as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg- 1. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method.

  16. Graphite furnace atomic absorption spectrometric determination of Ni and Pb in diesel and gasoline samples stabilized as microemulsion using conventional and permanent modifiers

    International Nuclear Information System (INIS)

    Matos Reyes, Mariela N.; Campos, Reinaldo C.

    2005-01-01

    A procedure for the graphite furnace atomic absorption spectrometric determination of Ni and Pb in diesel and gasoline samples was developed. Sample stabilization was necessary because of evident analyte losses that occurred immediately after sampling. Excellent long-term sample stabilization was observed by mixing different organic solvents with propan-1-ol and 50% vol/vol HNO 3 at a 3.3:6.5:1 volume ratio. For Pb, efficient thermal stabilization was obtained using aqueous Pd-Mg modifier as well as for Ir as permanent modifier. The drying temperature and ramp rate influenced the sensitivity obtained for Ni, and had to be carefully optimized. Taking this into account, the same sensitivity was attained in all investigated organic media stabilized as microemulsion. Thus, calibration with microemulsions prepared with a single organic solvent was possible, using aqueous or organic stock solutions. Commercial gasoline and diesel samples were directly analyzed after stabilization as microemulsion and by comparative UOP procedures. n-Hexane microemulsions were used for calibration, and good agreement was obtained between the results using the proposed and comparative procedures. Typical coefficients of variation (n = 6) ranged from 1% to 4%, and from 1% to 3% for Ni and Pb, respectively. Detection limits (k = 3) in the original gasoline or diesel samples, derived from 10 blank measurements, were 4.5 and 3.6 μg l -1 for Ni and Pb, respectively, comfortably below the values found in the analyzed samples

  17. Determination of arsenic concentration in tiger tooth croaker (Otolithes ruber and indian halibut (Psettodes erumei using hydride generation atomic absorption spectrophotometer

    Directory of Open Access Journals (Sweden)

    E Rahimi

    2011-11-01

    Full Text Available Heavy metal contaminants in fish are of particular interest because of their potential risk to human. This study was undertaken to determine the levels of arsenic in two fish type including tiger tooth croaker and Indian halibut  in Esfahan. A total of 42 fish samples including 28 tiger tooth croaker (Otolithes ruber and 14 Indian halibut (Psettodes erumei were collected from retails of Esfahan from May 2010 to January 2011. For detection of arsenic contamination, the edible muscles of  fish samples were analyzed by hydride generation atomic absorption spectrophotometer. The arsenic contamination in fish samples were found to be in the range of 11 to 98 µg/kg. Concentration of arsenic in tiger tooth croaker and Indian halibut was 11-56 and 32-98 µg/kg, respectively. Arsenic concentrations were below the limit was acceptable to the World Health Organization. According to the results, the concentration of arsenic did not exceed the maximum acceptable intake limit.

  18. Preconcentration, speciation and determination of ultra trace amounts of mercury by modified octadecyl silica membrane disk/electron beam irradiation and cold vapor atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ashkenani, Hamid [Department of Chemistry, Yazd University, Yazd (Iran, Islamic Republic of); Dadfarnia, Shayessteh [Department of Chemistry, Yazd University, Yazd (Iran, Islamic Republic of)], E-mail: sdadfarnia@yazduni.ac.ir; Shabani, Ali Mohammad Haji; Jaffari, Abbas Ali [Department of Chemistry, Yazd University, Yazd (Iran, Islamic Republic of); Behjat, Abbas [Department of physics, Yazd University, Yazd (Iran, Islamic Republic of)

    2009-01-15

    Mercury (II) and methyl mercury cations at the Sub-ppb level were adsorbed quantitatively from aqueous solution onto an octadecyl-bonded silica membrane disk modified by 2-[(2-mercaptophyenylimino)methyl] phenol (MPMP). The trapped mercury was then eluted with 3 ml ethanol and Hg{sup 2+} ion was directly measured by cold vapor atomic absorption spectrometry, utilizing tin (II) chloride. Total mercury (Hgt) was determined after conversion of MeHg{sup +} into Hg{sup 2+} ion by electron beam irradiation. A sample volume of 1500 ml resulted in a preconcentration factor of 500 and the precision for a sampling volume of 500 ml at a concentration of 2.5 {mu}g l{sup -1} (n = 7) was 3.1%. The limit of detection of the proposed method is 3.8 ng l{sup -1}. The method was successfully applied to analysis of water samples, and the accuracy was assessed via recovery experiment.

  19. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Shokrollahi, Ardeshir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Niknam, Khodabakhsh [Chemistry Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Niknam, Ebrahim; Najibi, Asma [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2009-09-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL{sup -1} for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +} along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +}, respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  20. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples

    International Nuclear Information System (INIS)

    Ghaedi, Mehrorang; Shokrollahi, Ardeshir; Niknam, Khodabakhsh; Niknam, Ebrahim; Najibi, Asma; Soylak, Mustafa

    2009-01-01

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1 mol L -1 HNO 3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL -1 for Cd 2+ , Pb 2+ , Pd 2+ and Ag + along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd 2+ , Pb 2+ , Pd 2+ and Ag + , respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  1. Accuracy of a method based on atomic absorption spectrometry to determine inorganic arsenic in food: Outcome of the collaborative trial IMEP-41.

    Science.gov (United States)

    Fiamegkos, I; Cordeiro, F; Robouch, P; Vélez, D; Devesa, V; Raber, G; Sloth, J J; Rasmussen, R R; Llorente-Mirandes, T; Lopez-Sanchez, J F; Rubio, R; Cubadda, F; D'Amato, M; Feldmann, J; Raab, A; Emteborg, H; de la Calle, M B

    2016-12-15

    A collaborative trial was conducted to determine the performance characteristics of an analytical method for the quantification of inorganic arsenic (iAs) in food. The method is based on (i) solubilisation of the protein matrix with concentrated hydrochloric acid to denature proteins and allow the release of all arsenic species into solution, and (ii) subsequent extraction of the inorganic arsenic present in the acid medium using chloroform followed by back-extraction to acidic medium. The final detection and quantification is done by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). The seven test items used in this exercise were reference materials covering a broad range of matrices: mussels, cabbage, seaweed (hijiki), fish protein, rice, wheat, mushrooms, with concentrations ranging from 0.074 to 7.55mgkg(-1). The relative standard deviation for repeatability (RSDr) ranged from 4.1 to 10.3%, while the relative standard deviation for reproducibility (RSDR) ranged from 6.1 to 22.8%. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. A novel separation/preconcentration technique based on ultrasonic dispersion liquid-liquid microextraction for determination of trace cobalt by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Jingci Li

    2012-12-01

    Full Text Available An improved method for the determination of trace cobalt in water samples has been developed using ultrasonic dispersion liquid-liquid microextraction (US-DLLME prior to flame atomic absorption spectrometry (FAAS analysis. In this method, cobalt was extracted into the fine droplets of carbon tetrachloride after chelate formation with the water soluble ligand, ammonium pyrrolidine dithiocarbamate (APDC. The fine droplets of carbon tetrachloride were formed and dispersed in the aqueous sample with the help of ultrasonic waves which accelerated the formation of the fine cloudy solution without using disperser solvents. Under optimum conditions, the calibration curve was linear in the range of 2.5-500 μg L-1, with a detection limit of 0.8 μg L-1. The relative standard deviation (RSD for ten replicate measurements of 20 and 500 μg L-1 of cobalt were 3.3 and 2.2%. This proposed method was successfully applied to tap water, river water, and sea water, and accuracy was assessed through the analysis of certified reference water or recovery experiments. Operation simplicity, low cost, high enrichment factor, and low consumption of the extraction solvent are the main advantages of the proposed method.DOI: http://dx.doi.org/10.4314/bcse.v26i1.2

  3. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Automatic flow-batch system for cold vapor atomic absorption spectroscopy determination of mercury in honey from Argentina using online sample treatment.

    Science.gov (United States)

    Domínguez, Marina A; Grünhut, Marcos; Pistonesi, Marcelo F; Di Nezio, María S; Centurión, María E

    2012-05-16

    An automatic flow-batch system that includes two borosilicate glass chambers to perform sample digestion and cold vapor atomic absorption spectroscopy determination of mercury in honey samples was designed. The sample digestion was performed by using a low-cost halogen lamp to obtain the optimum temperature. Optimization of the digestion procedure was done using a Box-Behnken experimental design. A linear response was observed from 2.30 to 11.20 μg Hg L(-1). The relative standard deviation was 3.20% (n = 11, 6.81 μg Hg L(-1)), the sample throughput was 4 sample h(-1), and the detection limit was 0.68 μg Hg L(-1). The obtained results with the flow-batch method are in good agreement with those obtained with the reference method. The flow-batch system is simple, allows the use of both chambers simultaneously, is seen as a promising methodology for achieving green chemistry goals, and is a good proposal to improving the quality control of honey.

  5. Photoassisted vapor generation in the presence of organic acids for ultrasensitive determination of Se by electrothermal-atomic absorption spectrometry following headspace single-drop microextraction

    International Nuclear Information System (INIS)

    Figueroa, Raul; Garcia, Monica; Lavilla, Isela; Bendicho, Carlos

    2005-01-01

    A method is described for the determination of selenium at the pg/mL level by electrothermal-atomic absorption spectrometry using in situ photogeneration of Se vapors, headspace sequestration onto an aqueous microdrop containing Pd(II) and subsequent injection in a graphite tube. Several organic acids (formic, oxalic, acetic, citric and ethylenediaminetetraacetic) have been tried for photoreduction of Se(IV) into volatile Se compounds under UV irradiation. Experimental variables such as UV irradiation time, organic acid concentration, Pd(II) concentration in the drop, sample and drop volumes, extraction time and pH were fully optimized. Low-molecular weight acids such as formic and acetic provided optimal photogeneration of volatile Se species at a 0.6 mol/L concentration. Citric and ethylenediaminetetraacetic acid allowed to use a concentration as low as 1 mmol/L, but extraction times were longer than for formic and acetic acids. Photogeneration of (CH 3 ) 2 Se from Se(IV) in the presence of acetic acid provided a detection limit of 20 pg/mL, a preconcentration factor of nearly 285 and a precision, expressed as relative standard deviation, of 4%. Analytical performance seemed to depend not only on the photogeneration efficiency obtained with each acid but also on the stability of the vapors in the headspace. The method showed a high freedom from interferences caused by saline matrices, but interferences were observed for transition metals at a relatively low concentration

  6. Feasibility of using in situ fusion for the determination of Co, Cr and Mn in Portland cement by direct solid sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Intima, Danielle Polidorio; de Oliveira, Elisabeth; Oliveira, Pedro Vitoriano

    2009-01-01

    In situ fusion on the boat-type graphite platform has been used as a sample pretreatment for the direct determination of Co, Cr and Mn in Portland cement by solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS). The 3-field Zeeman technique was adopted for background correction to decrease the sensitivity during measurements. This strategy allowed working with up to 200 μg of sample. The in situ fusion was accomplished using 10 μL of a flux mixture 4.0% m/v Na 2 CO 3 + 4.0% m/v ZnO + 0.1% m/v Triton (registered) X-100 added over the cement sample and heated at 800 deg. C for 20 s. The resulting mould was completely dissolved with 10 μL of 0.1% m/v HNO 3 . Limits of detection were 0.11 μg g - 1 for Co, 1.1 μg g - 1 for Cr and 1.9 μg g - 1 for Mn. The accuracy of the proposed method has been evaluated by the analysis of certified reference materials. The values found presented no statistically significant differences compared to the certified values (Student's t-test, p < 0.05). In general, the relative standard deviation was lower than 12% (n = 5).

  7. Silica gel modified with N-(3-propyl)-O-phenylenediamine: functionalization, metal sorption equilibrium studies and application to metal enrichment prior to determination by flame atomic absorption spectrometry.

    Science.gov (United States)

    Akl, Magda Ali Abd-elAziz; Kenawy, Ibraheim Mohamed; Lasheen, Rabab Ramadan

    2005-08-01

    The use of the chemically modified silica gel N-(3-propyl)-O-phenylenediamine (SiG-NPPDA) adsorbent, for the preconcentration and separation of trace heavy metals, was described. SiG-NPPDA sorbs quantitatively (90-100% recovery) trace amounts of nine heavy metals, viz., Cd(II), Zn(II), Fe(III), Cu(II), Pb(II), Mn(II), Cr(III), Co(II) and Ni(II) at pH 7-8. The sorption capacity varies from 350 to 450 micromol g(-1). Desorption was found to be quantitative with 1-2 M HNO3 or 0.05 M Na2EDTA. The distribution coefficient, Kd and the percentage concentration of the investigated metal ions on the adsorbent at equilibrium, C(M,eqm)% (Recovery, R%), were studied as a function of experimental parameters. The logarithmic values of the distribution coefficient, log Kd, ranges between 4.0 and 6.4. Some foreign ions caused little interference in the preconcentration and determination of the investigated nine metals by flame atomic absorption spectrometry (AAS). The adsorbent and its formed metal chelates were characterized by IR (absorbance and/or reflectance), potentiometric titrations and thermogravimetric analysis (TGA and DTG). The mode of chelation between the SiG-NPPDA adsorbent and the investigated metal ions is proposed to be due to the reaction of the investigated metal ions with the two nitrogen atoms of the SiG-NPPDA adsorbent. The present adsorbent coupled with flame AAS has been used to enrich and determine the nine metal ions in natural aqueous systems and in certified reference materials (RSD < or = 5%). The copper, iron, manganese and zinc present in some pharmaceutical vitamin samples were also preconcentrated on SiG-NPPDA adsorbent and determined by flame AAS (RSD < or = 4.2%). Nanogram concentrations (0.07-0.14 ng ml(-1)) of Cd(II), Zn(II), Fe(III), Pb(II), Cr(III), Mn(II), Cu(II), Co(II) and Ni(II) can be determined reliably with a preconcentration factor of 100.

  8. Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, Mirna, E-mail: msigrist@fiq.unl.edu.ar [Laboratorio Central, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe (Argentina); Albertengo, Antonela; Beldomenico, Horacio [Laboratorio Central, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe (Argentina); Tudino, Mabel [Laboratorio de Analisis de Trazas, Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Pabellon II, Ciudad Universitaria (1428), Buenos Aires (Argentina)

    2011-04-15

    A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH{sub 3} generation using 3.5 mol L{sup -1} HCl as carrier solution and 0.35% (m/v) NaBH{sub 4} in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl{sup -}, SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, HPO{sub 4}{sup 2-}, HCO{sub 3}{sup -} on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C{sub 6}H{sub 8}O{sub 6} solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 {mu}g L{sup -1} and 0.6 {mu}g L{sup -1} for As(III) and inorganic total As, respectively, were obtained for a 500 {mu}L sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samples h{sup -1}. The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species

  9. Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sigrist, Mirna; Albertengo, Antonela; Beldomenico, Horacio; Tudino, Mabel

    2011-01-01

    A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH 3 generation using 3.5 mol L -1 HCl as carrier solution and 0.35% (m/v) NaBH 4 in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl - , SO 4 2- , NO 3 - , HPO 4 2- , HCO 3 - on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C 6 H 8 O 6 solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 μg L -1 and 0.6 μg L -1 for As(III) and inorganic total As, respectively, were obtained for a 500 μL sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samples h -1 . The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species separation was performed through the employ of a serial connection of membrane filters and

  10. Determination of trace metal ions via on-line separation and preconcentration by means of chelating Sepharose beads in a sequential injection lab-on-valve (SI-LOV) system coupled to electrothermal atomic absorption spectrometric detection

    DEFF Research Database (Denmark)

    Long, Xiangbao; Hansen, Elo Harald; Miró, Manuel

    2005-01-01

    The analytical performance of an on-line sequential injection lab-on-valve (SI-LOV) system using chelating Sepharose beads as sorbent material for the determination of ultra trace levels of Cd(II), Pb(II) and Ni(II) by electrothermal atomic absorption spectrometry (ETAAS) is described and discussed...

  11. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri A., E-mail: katskovda@tut.ac.za [Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa); Sadagov, Yuri M. [All-Russian Scientific Research Institute of Optical and Physical Measurements (VNIIOFI), Ozernaya St. 46, Moscow 119361 (Russian Federation)

    2011-06-15

    The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a 'platform' effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 {sup o}C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element

  12. Cloud point extraction-flame atomic absorption spectrometry for pre-concentration and determination of trace amounts of silver ions in water samples

    Directory of Open Access Journals (Sweden)

    Xiupei Yang

    2017-03-01

    Full Text Available A cloud point extraction (CPE method was used as a pre-concentration strategy prior to the determination of trace levels of silver in water by flame atomic absorption spectrometry (FAAS The pre-concentration is based on the clouding phenomena of non-ionic surfactant, triton X-114, with Ag (I/diethyldithiocarbamate (DDTC complexes in which the latter is soluble in a micellar phase composed by the former. When the temperature increases above its cloud point, the Ag (I/DDTC complexes are extracted into the surfactant-rich phase. The factors affecting the extraction efficiency including pH of the aqueous solution, concentration of the DDTC, amount of the surfactant, incubation temperature and time were investigated and optimized. Under the optimal experimental conditions, no interference was observed for the determination of 100 ng·mL−1 Ag+ in the presence of various cations below their maximum concentrations allowed in this method, for instance, 50 μg·mL−1 for both Zn2+ and Cu2+, 80 μg·mL−1 for Pb2+, 1000 μg·mL−1 for Mn2+, and 100 μg·mL−1 for both Cd2+ and Ni2+. The calibration curve was linear in the range of 1–500 ng·mL−1 with a limit of detection (LOD at 0.3 ng·mL−1. The developed method was successfully applied for the determination of trace levels of silver in water samples such as river water and tap water.

  13. Iron species determination by task-specific ionic liquid-based in situ solvent formation dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry.

    Science.gov (United States)

    Sadeghi, Susan; Ashoori, Vahid

    2017-10-01

    The task-specific ionic liquid (TSIL) of 1-ethyl-3-methylimidazolium bromide functionalized with 8-hydroxyquinoline was used as a chelating agent and extracting solvent for dispersive liquid-liquid microextraction and subsequent determination of Fe(III) by flame atomic absorption spectrometry. The in situ solvent formation of TSIL using KPF 6 provided the desired water-immiscible ionic liquid. The total Fe concentration could be determined after pre-oxidation of Fe(II) to Fe(III). Various factors affecting the proposed extraction procedure were optimized. The proposed analytical conditions were: sample pH 5, TSIL amount 0.3% (w/v), KPF 6 amount 0.15% (w/v), anti-sticking 0.1% (w/v) and salt concentration 5% (w/v). Under optimal conditions, the linear dynamic ranges for Fe(III) and total Fe were 20-80 and 20-110 ng mL -1 , respectively, with a detection limit of 6.9 ng mL -1 for Fe(III) and relative standard deviation of 2.2%. The proposed method was successfully applied to the determination of trace Fe(III) in water (underground, tap, refined water and artificial sea water) and beverage (apple, tomato, and tea) samples. The developed method offers advantages such as simplicity, ease of operation, and extraction of Fe(III) from aqueous solutions without the use of organic solvent. It was successfully applied for iron speciation in different real samples. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Determination of lead and nickel in environmental samples by flame atomic absorption spectrometry after column solid-phase extraction on Ambersorb-572 with EDTA

    Energy Technology Data Exchange (ETDEWEB)

    Baytak, Sitki [Department of Chemistry, Faculty of Science and Arts, Harran University, 63100 Sanliurfa (Turkey); Tuerker, A. Rehber [Department of Chemistry, Faculty of Science and Arts, Gazi University, 06500 Ankara (Turkey)]. E-mail: aturker@gazi.edu.tr

    2006-02-28

    Lead and nickel were preconcentrated as their ethylenediaminetetraacedic acid (EDTA) complexes from aqueous sample solutions using a column containing Ambersorb-572 and determined by flame atomic absorption spectrometry (FAAS). pH values, amount of solid phase, elution solution and flow rate of sample solution have been optimized in order to obtain quantitative recovery of the analytes. The effect of interfering ions on the recovery of the analytes has also been investigated. The recoveries of Pb and Ni under the optimum conditions were 99 {+-} 2 and 97 {+-} 3%, respectively, at 95% confidence level. Seventy-five-fold (using 750 mL of sample solution and 10 mL of eluent) and 50-fold (using 500 mL of sample solution and 10 mL of eluent) preconcentration was obtained for Pb and Ni, respectively. Time of analysis is about 4.5 h (for obtaining enrichment factor of 75). By applying these enrichment factors, the analytical detection limits of Pb and Ni were found as 3.65 and 1.42 ng mL{sup -1}, respectively. The capacity of the sorbent was found as 0.17 and 0.21 mmol g{sup -1} for Pb and Ni, respectively. The interferences of some cations, such as Mn{sup 2+}, Co{sup 2+}, Fe{sup 3+}, Al{sup 3+}, Zn{sup 2+}, Cd{sup 2+}, Ca{sup 2+}, Mg{sup 2+}, K{sup +} and Na{sup +} usually present in water samples were also studied. This procedure was applied to the determination of lead and nickel in parsley, green onion, sea water and waste water samples. The accuracy of the procedure was checked by determining Pb and Ni in standard reference tea leaves sample (GBW-07605). The results demonstrated good agreement with the certified values.

  15. Validation of the methodology for the quantitative determination of lead in cosmetics dyes available in the national market by atomic absorption spectroscopy with flame

    International Nuclear Information System (INIS)

    Silva Trejos, Paulina

    2008-01-01

    The analytical methodology was validated to quantify lead in cosmetics dyes available on the national market, by the method of atomic absorption spectroscopy with flame. The samples were digested by wet digestion with HNO 3 to 65% m/m in a microwave oven, the percentage of recovery for the digestion of samples of 0,25 g and 0,45 g in 5,00 mL was of 100,5±0,5. The field of optimal linearity detection limit was 5,0 mg/L with a correlation coefficient of 0,9998. The limits of detection and quantification limits determined graphically by the method of row errors for linear regression of 0,12±0,02 mg/L and 0,21±0,02 mg/L, respectively. Precision was evaluated determining the repeatability as standard deviation of five replicas of a positive dye for lead, according to the definition of the ISO, 2√2*, and obtained a value of 2,3. The veracity was determined through percentages of recovery assessed, adding aliquots of lead patterns to dye samples and compared with the same mass to which they are not make additions. The dye samples were obtained at point of sale, such as pharmacies, beauty suppliers, supermarkets, sales of natural products and the central market of San Jose. The dyes tested contain lead acetates active ingredient, these are: Doni, Mont D'Or, Matador y Siempre Joven; they are produced locally, Youthair brand and American manufacturing. (author) [es

  16. Cloud point extraction-flame atomic absorption spectrometry for pre-concentration and determination of trace amounts of silver ions in water samples.

    Science.gov (United States)

    Yang, Xiupei; Jia, Zhihui; Yang, Xiaocui; Li, Gu; Liao, Xiangjun

    2017-03-01

    A cloud point extraction (CPE) method was used as a pre-concentration strategy prior to the determination of trace levels of silver in water by flame atomic absorption spectrometry (FAAS) The pre-concentration is based on the clouding phenomena of non-ionic surfactant, triton X-114, with Ag (I)/diethyldithiocarbamate (DDTC) complexes in which the latter is soluble in a micellar phase composed by the former. When the temperature increases above its cloud point, the Ag (I)/DDTC complexes are extracted into the surfactant-rich phase. The factors affecting the extraction efficiency including pH of the aqueous solution, concentration of the DDTC, amount of the surfactant, incubation temperature and time were investigated and optimized. Under the optimal experimental conditions, no interference was observed for the determination of 100 ng·mL -1 Ag + in the presence of various cations below their maximum concentrations allowed in this method, for instance, 50 μg·mL -1 for both Zn 2+ and Cu 2+ , 80 μg·mL -1 for Pb 2+ , 1000 μg·mL -1 for Mn 2+ , and 100 μg·mL -1 for both Cd 2+ and Ni 2+ . The calibration curve was linear in the range of 1-500 ng·mL -1 with a limit of detection (LOD) at 0.3 ng·mL -1 . The developed method was successfully applied for the determination of trace levels of silver in water samples such as river water and tap water.

  17. A new supramolecular based liquid solid microextraction method for preconcentration and determination of trace bismuth in human blood serum and hair samples by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Kahe, Hadi; Chamsaz, Mahmoud

    2016-11-01

    A simple and reliable supramolecule-aggregated liquid solid microextraction method is described for preconcentration and determination of trace amounts of bismuth in water as well as human blood serum and hair samples. Catanionic microstructures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) surfactants, dissolved in deionized water/propanol, are used as a green solvent to extract bismuth (III)-diethyldithiocarbamate complexes by dispersive microextraction methodology. The extracted solid phase is easily removed and dissolved in 50 μL propanol for subsequent measurement by electrothermal atomic absorption spectrometry (ET-AAS). The procedure benefits the merits of supramolecule aggregates' properties and dispersive microextraction technique using water as the main component of disperser solvent, leading to direct interaction with analyte. Phase separation behavior of extraction solvent and different parameters influencing the extraction efficiency of bismuth ion such as salt concentration, pH, centrifugation time, amount of chelating agent, SDS:CTAB mole ratio, and solvent amounts were thoroughly optimized. Under the optimal experimental conditions, the calibration curve was linear in the range of 0.3-6 μg L -1 Bi (III) with a limit of detection (LOD) of 0.16 μg L -1 (S/N = 3). The relative standard deviations (RSD) of determination were obtained to be 5.1 and 6.2 % for 1 and 3 μg L -1 of Bi (III), respectively. The developed method was successfully applied as a sensitive and accurate technique for determination of bismuth ion in human blood serum, hair samples, and a certified reference material.

  18. Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper(II) 8-hydroxyquinoline

    Science.gov (United States)

    Ipeaiyeda, Ayodele Rotimi; Ayoade, Abisayo Ruth

    2017-12-01

    Co-precipitation procedure has widely been employed for preconcentration and separation of metal ions from the matrices of environmental samples. This is simply due to its simplicity, low consumption of separating solvent and short duration for analysis. Various organic ligands have been used for this purpose. However, there is dearth of information on the application of 8-hydroxyquinoline (8-HQ) as ligand and Cu(II) as carrier element. The use of Cu(II) is desirable because there is no contamination and background adsorption interference. Therefore, the objective of this study was to use 8-HQ in the presence of Cu(II) for coprecipitation of Cd(II), Co(II), Cr(III), Ni(II) and Pb(II) from standard solutions and surface water prior to their determinations by flame atomic absorption spectrometry (FAAS). The effects of pH, sample volume, amount of 8-HQ and Cu(II) and interfering ions on the recoveries of metal ions from standard solutions were monitored using FAAS. The water samples were treated with 8-HQ under the optimum experimental conditions and metal concentrations were determined by FAAS. The metal concentrations in water samples not treated with 8-HQ were also determined. The optimum recovery values for metal ions were higher than 85.0%. The concentrations (mg/L) of Co(II), Ni(II), Cr(III), and Pb(II) in water samples treated with 8-HQ were 0.014 ± 0.002, 0.03 ± 0.01, 0.04 ± 0.02 and 0.05 ± 0.02, respectively. These concentrations and those obtained without coprecipitation technique were significantly different. Coprecipitation procedure using 8-HQ as ligand and Cu(II) as carrier element enhanced the preconcentration and separation of metal ions from the matrix of water sample.

  19. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sahin, Cigdem Arpa; Tokgoez, Ilknur

    2010-01-01

    A rapid, simple and cost effective solidified floating organic drop microextraction (SFODME) and flow injection flame atomic absorption spectrometric determination (FI-FAAS) method for copper was developed. In this method, a free microdrop of 1-undecanol containing 1,5-diphenyl carbazide (DPC) as the complexing agent was transferred to the surface of an aqueous sample including Cu(II) ions, while being agitated by a stirring bar in the bulk of the solution. Under the proper stirring conditions, the suspended microdrop can remain at the top-center position of the aqueous sample. After the completion of the extraction, the sample vial was cooled by placing it in a refrigerator for 10 min. The solidified microdrop was then transferred into a conical vial, where it melted immediately and diluted to 300 μL with ethanol. Finally, copper ions in 200 μL of diluted solution were determined by FI-FAAS. Several factors affecting the microextraction efficiency, such as type of extraction solvent, pH, complexing agent concentration, extraction time, stirring rate, sample volume and temperature were investigated and optimized. Under optimized conditions for 100 mL of solution, the preconcentration factor was 333 and the enrichment factor was 324. The limit of detection (3 s) was 0.4 ng mL -1 , the limit of quantification (10 s) was 1.1 ng mL -1 and the relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL -1 copper was 0.9%. The proposed method was successfully applied to the determination of copper in different water samples.

  20. Determination of tellurium in coal samples by means of graphite furnace atomic absorption spectrometry after coprecipitation with iron(III) hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Oda, S.; Arikawa, Y. [Japan Womens University, Tokyo (Japan)

    2005-11-01

    A simple and accurate method for the determination of tellurium in coal samples was investigated by the combustion of samples under a high pressure of oxygen and coprecipitation with Fe(OH){sub 3}, followed by a measurement by graphite furnace atomic absorption spectrometry (GF-AAS). About 0.5 g of an accurately weighed ground coal sample and 0.5 g of starch were combusted in an oxygen combustion bomb filled with oxygen to 3 MPa and added with 3 ml of water as an absorbing solution. The formed tellurium trioxide TeOs dissolved in water as TeO{sub 4}{sup 2-}, which was in turn reduced to TeO{sub 3}{sup 2-} by heating. After diluting the above-mentioned solution up to about 50 ml with water, Fe(OH){sub 3} is formed upon adding Fe(NO{sub 3}){sub 3} and sodium hydroxide solutions at pH 8-9 and left standing overnight. After dissolving the precipitate by HCl, the solution was diluted to 10 ml with water and the concentration of tellurium was measured by GF-AAS at a wavelength of 214.3 nm. The standard addition method was employed for the determination of tellurium in real coal samples, because those processes for the formation of tellurium(VI) oxide and coprecipitation with Fe(OH)3 were interfered by matrices. For NIST SRM 1632c, the standard coal sample tellurium content of 0.057 {+-} 0.004 mg kg{sup -1} was in good agreement with the information value of 0.05 mg kg{sup -1} with 7% of RSD in five replicate analyses. The tellurium contents in 20 real coal samples given by Center for Coal Utilization, Japan were also determined. The tellurium contents in these samples were scattered over the narrow range between 0.032 and 0.100 mg kg{sup -1}.

  1. Novel analytical reagent for the application of cloud-point preconcentration and flame atomic absorption spectrometric determination of nickel in natural water samples

    International Nuclear Information System (INIS)

    Suvardhan, K.; Rekha, D.; Kumar, K. Suresh; Prasad, P. Reddy; Kumar, J. Dilip; Jayaraj, B.; Chiranjeevi, P.

    2007-01-01

    Cloud-point extraction was applied as a preconcentration of nickel after formation of complex with newly synthesized N-quino[8,7-b]azin-5-yl-2,3,5,6,8,9,11,12octahydrobenzo[b][1,4,7,10,13] pentaoxacyclopentadecin-15-yl-methanimine, and later determined by flame atomic absorption spectrometry (FAAS) using octyl phenoxy polyethoxy ethanol (Triton X-114) as surfactant. Nickel was complexed with N-quino[8,7-b]azin-5-yl-2,3,5,6,8,9,11,12 octahydrobenzo[b][1,4,7,10,13]pentaoxacyclopentadecin-15-yl-methanimine in an aqueous phase and was kept for 15 min in a thermo-stated bath at 40 deg. C. Separation of the two phases was accomplished by centrifugation for 15 min at 4000 rpm. The chemical variables affecting the cloud-point extraction were evaluated, optimized and successfully applied to the nickel determination in various water samples. Under the optimized conditions, the preconcentration system of 100 ml sample permitted an enhancement factor of 50-fold. The detailed study of various interferences made the method more selective. The detection limits obtained under optimal condition was 0.042 ng ml -1 . The extraction efficiency was investigated at different nickel concentrations (20-80 ng ml -1 ) and good recoveries (99.05-99.93%) were obtained using present method. The proposed method has been applied successfully for the determination of nickel in various water samples and compared with reported method in terms of Student's t-test and variance ratio f-test which indicate the significance of present method over reported and spectrophotometric methods at 95% confidence level

  2. Derivative flame atomic absorption spectrometry and its application in trace analysis

    International Nuclear Information System (INIS)

    Sun, H. W.; Li, L. Q.

    2005-01-01

    Flame atomic absorption spectrometry is an accepted and widely used method for the determination of trace elements in a great variety of samples. But its sensitivity doesn't meet the demands of trace and ultra-trace analysis for some samples. The derivative signal processing technique, with a very high capability for enhancing sensitivity, was developed for flame atomic absorption spectrometry. The signal models of conventional flame atomic absorption spectrometry are described. The equations of derivative signals are established for flame atomic absorption spectrometry, flow injection atomic absorption spectrometry (FI-FAAS) and atom trapping flame atomic absorption spectrometry (AT-FAAS). The principle and performance of the derivative atomic absorption spectrometry are evaluated. The derivative technique based on determination of variation rate of signal intensity with time (dl/dt) is different from the derivative spectrophotometry based on determination of variation rate of signal intensity with wavelength (dl/dhλ). Derivative flame atomic absorption spectrometry has higher sensitivity, lower detection limits and better accuracy. It has been applied to the direct determination of trace elements without preconcentration. If the derivative technique was combined with several preconcentration techniques, the sensitivity would be enhanced further for ultra-trace analysis with good linearity. The applications of derivative flame atomic absorption spectroscopy are reviewed for trace element analysis in biological, pharmaceutical, environmental and food samples

  3. Hollow fiber liquid phase microextraction combined with graphite furnace atomic absorption spectrometry for the determination of methylmercury in human hair and sludge samples

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hongmei [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan 430072 (China)], E-mail: binhu@whu.edu.cn; Chen Beibei; Zu Wanqing [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2008-07-15

    Two methods, based on hollow fiber liquid-liquid-liquid (three phase) microextraction (HF-LLLME) and hollow fiber liquid phase (two phase) microextraction (HF-LPME), have been developed and critically compared for the determination of methylmercury content in human hair and sludge by graphite furnace atomic absorption spectrometry (GFAAS). In HF-LPME, methylmercury was extracted into the organic phase (toluene) prior to its determination by GFAAS, while inorganic mercury remained as a free species in the sample solution. In HF-LLLME, methylmercury was first extracted into the organic phase (toluene) and then into the acceptor phase (4% thiourea in 1 mol L{sup -1} HCl) prior to its determination by GFAAS, while inorganic mercury remained in the sample solution. The total mercury was determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the levels of inorganic mercury in both HF-LLLME and HF-LPME were obtained by subtracting methylmercury from total mercury. The factors affecting the microextraction of methylmercury, including organic solvent, extraction time, stirring rate and ionic strength, were investigated and the optimal extraction conditions were established for both HF-LLLPME and HF-LPME. With a consumption of 3.0 mL of the sample solution, the enrichment factors were 204 and 55 for HF-LLLPME and HF-LPME, respectively. The limits of detection (LODs) for methylmercury were 0.1 {mu}g L{sup -1} and 0.4 {mu}g L{sup -1} (as Hg) with precisions (RSDs (%), c = 5 {mu}g L{sup -1} (as Hg), n = 5) of 13% and 11% for HF-LLLPME-GFAAS and HF-LPME-GFAAS, respectively. For ICP-MS determination of total mercury, a limit of detection of 39 ng L{sup -} {sup 1} was obtained. Finally, HF-LLLME-GFAAS was applied to the determination of methylmercury content in human hair and sludge, and the recoveries for the spiked samples were in the range of 99-113%. In order to validate the method, HF-LLLME-GFAAS was also applied to the analysis of a certified reference

  4. Selective determination of inorganic cobalt in nutritional supplements by ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Berton, Paula; Martinis, Estefanía M.; Martinez, Luis D.; Wuilloud, Rodolfo G.

    2012-01-01

    Highlights: ► Synergy of ultrasound energy and TILDLME technique for improved metal extraction. ► Highly selective determination of inorganic Co species at trace levels. ► Speciation analysis of Co in several nutritional supplements with highly complex matrices. ► Development of an environmentally friendly microextraction technique with minimal waste production and sample consumption. - Abstract: In the present work, a simple and rapid analytical method based on application of ionic liquids (ILs) for inorganic Co(II) species (iCo) microextraction in a variety of nutrient supplements was developed. Inorganic Co was initially chelated with 1-nitroso-2-naphtol (1N2N) reagent followed by a modern technique named ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction (USA-TILDLME). The extraction was performed with 1-hexyl-3-methylimidazolium hexafluorophosphate [C 6 mim][PF 6 ] with the aid of ultrasound to improve iCo recovery. Finally, the iCo-enriched IL phase was solubilized in methanol and directly injected into an electrothermal atomic absorption spectrometer (ETAAS). Several parameters that could influence iCo microextraction and detection were carefully studied. Since the main difficulty in these samples is caused by high concentrations of potential interfering ions, different approaches were evaluated to eliminate interferences. The limit of detection (LOD) was 5.4 ng L −1 , while the relative standard deviation (RSD) was 4.7% (at 0.5 μg L −1 Co level and n = 10), calculated from the peak height of absorbance signals. Selective microextraction of iCo species was achieved only by controlling the pH value during the procedure. The method was thus successfully applied for determination of iCo species in nutritional supplements.

  5. A preconcentration method for indirect determination of acrylamide from chips, crackers and cereal-based baby foods using flame atomic absorption spectrometry.

    Science.gov (United States)

    Altunay, Nail; Gürkan, Ramazan; Orhan, Ulaş

    2016-12-01

    Acrylamide is a toxic species for human health, and is a Maillard reaction product which forms spontaneously in heat treatment process of foods. Therefore, a simple, fast and cost-effective method was developed for the indirect determination of acrylamide in processed foods particularly consumed by children. The method is based on ion-pairing of acrylamide with fluorescein (F 2- ) in presence of Ni(II) ions at pH 9.0, and then extraction of the formed ternary complex into micellar phase of poly(ethyleneglycol-mono-p-nonylphenylether) (PONPE 7.5) before analysis by flame atomic absorption spectrometry (FAAS). The ultrasonic-assisted cloud point extraction (UA-CPE) has been used for the preconcentration of acrylamide in the samples prior to its FAAS detection. The matrix matched calibration curve is linear in range of 0.3-150µgkg -1 under optimal reagent conditions (1.75mL of 0.1molL -1 ammonia buffer at pH 9.0, 2.2mgL -1 Ni(II), 4.0×10 -4 molL -1 F 2- , 0.4% (w/v) NH 4 Cl and 0.7% (v/v) PONPE 7.5) with sensitivity enhancement of 160-fold. The proposed method has been validated by assessment of the following parameters; the limits of detection (LOD) and quantification (LOQ) (0.08µgkg -1 and 0.28µgkg -1 , respectively) with a relative standard deviation (RSD%) lower than 6.3%, and extractive recovery higher than 95% for acrylamide spiked at levels of 5 and 25µgkg -1 . The method was successfully applied to the indirect determination of acrylamide in the processed foods and two CRMs with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mirabi, Ali; Dalirandeh, Zeinab [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Rad, Ali Shokuhi, E-mail: a.shokuhi@qaemshahriau.ac.ir [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2015-05-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe{sub 3}O{sub 4} as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L{sup −1} HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml{sup −1} and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results. - Highlights: • MNPs method is economical, simple, rapid and sensitive for trace analysis of Cd. • High preconcentration factor was obtained easily through this method. • A detection limit at ng mL{sup −1} level was achieved with 100.0 mL of sample. • This method provides good repeatability and extraction efficiency in a short time.

  7. Feasibility of internal standardization in the direct and simultaneous determination of As, Cu and Pb in sugar-cane spirits by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Caldas, Naise Mary; Ruella Oliveira, Silvana; Anchieta Gomes Neto, Jose

    2009-01-01

    Bismuth and Sb were evaluated as internal standards (IS) to minimize matrix effects on the direct and simultaneous determination of As, Cu, and Pb in cachaca by graphite furnace atomic absorption spectrometry using W-coated platform plus Pd-Mg(NO 3 ) 2 as modifier. For 20 μL injected sample, calibration within the 0.5-10 μg L -1 As, 100-1000 μg L -1 Cu and 0.5-30 μg L -1 Pb intervals were established using the ratios As absorbance to Sb absorbance, Cu absorbance to Bi absorbance and Pb absorbance to Bi absorbance versus analytes concentration, respectively. Typical linear correlations of 0.998, 0.999 and 0.999 were, respectively, obtained. The proposed method was applied for direct determination of As, Cu and Pb in 10 commercial cachaca samples and results were in agreement with those obtained by inductively coupled plasma mass spectrometry at 95% confidence level. The found characteristic masses were 30 pg As, 274 pg Cu and 39 pg Pb. The useful lifetime of the graphite tube was around 760 firings. Recoveries of As, Cu and Pb added to cachaca samples varied, respectively, from 98% to 109%, 97% to 108% and 98% to 104% with internal standards and from 48% to 54%, 53% to 92% and 62% to 97% without internal standards. The limits of detection were 0.13 μg L -1 As, 22 μg L -1 Cu and 0.05 μg L -1 Pb. The relative standard deviations (n = 12) for a spiked sample containing 20 μg L -1 As, Pb and 500 μg L -1 Cu were 1.6%, 1.0%, and 1.8% with IS and 4.3%, 5.2%, and 5.5% without IS

  8. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    International Nuclear Information System (INIS)

    Brum, Daniel M.; Lima, Claudio F.; Robaina, Nicolle F.; Fonseca, Teresa Cristina O.; Cassella, Ricardo J.

    2011-01-01

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO 3 , the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO 3 medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  9. Simultaneous determination of antimony and boron in beverage and dairy products by flame atomic absorption spectrometry after separation and pre-concentration by cloud-point extraction.

    Science.gov (United States)

    Altunay, Nail; Gürkan, Ramazan

    2016-01-01

    A new cloud-point extraction (CPE) method was developed for the pre-concentration and simultaneous determination of Sb(III) and B(III) by flame atomic absorption spectrometry (FAAS). The method was based on complexation of Sb(III) and B(III) with azomethine-H in the presence of cetylpyridinium chloride (CPC) as a signal-enhancing agent, and then extraction into the micellar phase of Triton X-114. Under optimised conditions, linear calibration was obtained for Sb(III) and B(III) in the concentration ranges of 0.5-180 and 2.5-600 μg l(-1) with LODs of 0.15 and 0.75 μg l(-1), respectively. Relative standard deviations (RSDs) (25 and 100 μg l(-1) of Sb(III) and B(III), n = 6) were in a range of 2.1-3.8% and 1.9-2.3%, respectively. Recoveries of spiked samples of Sb(III) and B(III) were in the range of 98-103% and 99-102%, respectively. Measured values for Sb and B in three standard reference materials were within the 95% confidence limit of the certified values. Also, the method was used for the speciation of inorganic antimony. Sb(III), Sb(V) and total Sb were measured in the presence of excess boron before and after pre-reduction with an acidic mixture of KI-ascorbic acid. The method was successfully applied to the simultaneous determination of total Sb and B in selected beverage and dairy products.

  10. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mirabi, Ali; Dalirandeh, Zeinab; Rad, Ali Shokuhi

    2015-01-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe 3 O 4 as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L −1 HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml −1 and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results. - Highlights: • MNPs method is economical, simple, rapid and sensitive for trace analysis of Cd. • High preconcentration factor was obtained easily through this method. • A detection limit at ng mL −1 level was achieved with 100.0 mL of sample. • This method provides good repeatability and extraction efficiency in a short time

  11. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Brum, Daniel M.; Lima, Claudio F. [Departamento de Quimica, Universidade Federal de Vicosa, A. Peter Henry Rolfs s/n, Vicosa/MG, 36570-000 (Brazil); Robaina, Nicolle F. [Departamento de Quimica Analitica, Universidade Federal Fluminense, Outeiro de S.J. Batista s/n, Centro, Niteroi/RJ, 24020-141 (Brazil); Fonseca, Teresa Cristina O. [Petrobras, Cenpes/PDEDS/QM, Av. Horacio Macedo 950, Ilha do Fundao, Rio de Janeiro/RJ, 21941-915 (Brazil); Cassella, Ricardo J., E-mail: cassella@vm.uff.br [Departamento de Quimica Analitica, Universidade Federal Fluminense, Outeiro de S.J. Batista s/n, Centro, Niteroi/RJ, 24020-141 (Brazil)

    2011-05-15

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO{sub 3}, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO{sub 3} medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  12. Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples

    International Nuclear Information System (INIS)

    Wang Yukun; Gao Shutao; Zang Xiaohuan; Li Jingci; Ma Jingjun

    2012-01-01

    Highlights: ► Graphene as a novel sorbent material in a column for solid-phase extraction (SPE). ► SPE for the determination of lead (Pb) in environment water samples and vegetable samples. ► The system can be reused for many times. ► The adsorption capacity of graphene over many other adsorbents. ► Graphene has great potentials as an excellent sorbent material. - Abstract: Graphene, a novel class of carbon nanostructures, has great promise for use as sorbent materials because of its ultrahigh specific surface area. A new method using a column packed with graphene as sorbent was developed for the preconcentration of trace amounts of lead (Pb) using dithizone as chelating reagent prior to its determination by flame atomic absorption spectrometry. Some effective parameters on the extraction and complex formation were selected and optimized. Under optimum condit