WorldWideScience

Sample records for atom-resolved real-time studies

  1. Time-dependent first-principles study of angle-resolved secondary electron emission from atomic sheets

    Science.gov (United States)

    Ueda, Yoshihiro; Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2018-02-01

    Angle-resolved secondary electron emission (ARSEE) spectra were analyzed for two-dimensional atomic sheets using a time-dependent first-principles simulation of electron scattering. We demonstrate that the calculated ARSEE spectra capture the unoccupied band structure of the atomic sheets. The excitation dynamics that lead to SEE have also been revealed by the time-dependent Kohn-Sham decomposition scheme. In the present study, the mechanism for the experimentally observed ARSEE from atomic sheets is elucidated with respect to both energetics and the dynamical aspects of SEE.

  2. Time-resolved and doppler-reduced laser spectroscopy on atoms

    International Nuclear Information System (INIS)

    Bergstroem, H.

    1991-10-01

    Radiative lifetimes have been studied in neutral boron, carbon, silicon and strontium, in singly ionized gadolinium and tantalum and in molecular carbon monoxide and C 2 . The time-resolved techniques were based either on pulsed lasers or pulse-modulated CW lasers. Several techniques have been utilized for the production of free atoms and ions such as evaporation into an atomic beam, sputtering in hollow cathodes and laser-produced plasmas. Hyperfine interactions in boron, copper and strontium have been examined using quantum beat spectroscopy, saturation spectroscopy and collimated atomic beam spectroscopy. Measurement techniques based on effusive hollow cathodes as well as laser produced plasmas in atomic physics have been developed. Investigations on laser produced plasmas using two colour beam deflection tomography for determination of electron densities have been performed. Finally, new possibilities for view-time-expansion in light-in-flight holography using mode-locked CW lasers have been demonstrated. (au)

  3. An improved ultrafast 2D NMR experiment: Towards atom-resolved real-time studies of protein kinetics at multi-Hz rates

    International Nuclear Information System (INIS)

    Gal, Maayan; Kern, Thomas; Schanda, Paul; Frydman, Lucio; Brutscher, Bernhard

    2009-01-01

    Multidimensional NMR spectroscopy is a well-established technique for the characterization of structure and fast-time-scale dynamics of highly populated ground states of biological macromolecules. The investigation of short-lived excited states that are important for molecular folding, misfolding and function, however, remains a challenge for modern biomolecular NMR techniques. Off-equilibrium real-time kinetic NMR methods allow direct observation of conformational or chemical changes by following peak positions and intensities in a series of spectra recorded during a kinetic event. Because standard multidimensional NMR methods required to yield sufficient atom-resolution are intrinsically time-consuming, many interesting phenomena are excluded from real-time NMR analysis. Recently, spatially encoded ultrafast 2D NMR techniques have been proposed that allow one to acquire a 2D NMR experiment within a single transient. In addition, when combined with the SOFAST technique, such ultrafast experiments can be repeated at high rates. One of the problems detected for such ultrafast protein NMR experiments is related to the heteronuclear decoupling during detection with interferences between the pulses and the oscillatory magnetic field gradients arising in this scheme. Here we present a method for improved ultrafast data acquisition yielding higher signal to noise and sharper lines in single-scan 2D NMR spectra. In combination with a fast-mixing device, the recording of 1 H- 15 N correlation spectra with repetition rates of up to a few Hertz becomes feasible, enabling real-time studies of protein kinetics occurring on time scales down to a few seconds

  4. Thin film growth studies using time-resolved x-ray scattering

    Science.gov (United States)

    Kowarik, Stefan

    2017-02-01

    Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.

  5. Time-resolved measurements with intense ultrashort laser pulses: a 'molecular movie' in real time

    International Nuclear Information System (INIS)

    Rudenko, A; Ergler, Th; Feuerstein, B; Zrost, K; Schroeter, C D; Moshammer, R; Ullrich, J

    2007-01-01

    We report on the high-resolution multidimensional real-time mapping of H 2 + and D 2 + nuclear wave packets performed employing time-resolved three-dimensional Coulomb explosion imaging with intense laser pulses. Exploiting a combination of a 'reaction microscope' spectrometer and a pump-probe setup with two intense 6-7 fs laser pulses, we simultaneously visualize both vibrational and rotational motion of the molecule, and obtain a sequence of snapshots of the squared ro-vibrational wave function with time-step resolution of ∼ 0.3 fs, allowing us to reconstruct a real-time movie of the ultrafast molecular motion. We observe fast dephasing, or 'collapse' of the vibrational wave packet and its subsequent revival, as well as signatures of rotational excitation. For D 2 + we resolve also the fractional revivals resulting from the interference between the counter-propagating parts of the wave packet

  6. Atomic Stretch: Optimally bounded real-time stretching and beyond

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Nielsen, Jannik Boll

    2016-01-01

    Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color-modification, co......Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color...

  7. Studies of the reactions of hydrogen atoms by time-resolved E. S. R. spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, R W; Verma, N C [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry

    1977-01-01

    Time-resolved e.s.r. spectroscopy has been used to follow directly the reactions of H atoms produced by pulse radiolysis of acid solutions. Detailed analysis of the time profile of the e.s.r. signal was carried out by means of modified Bloch equations. The increased signal found when a scavenger for OH such as t-butyl alcohol is present is shown to be mainly the result of slower H atom decay by radical-radical reaction. The reaction H + OH does not appear to produce any signal polarization. The decay curves observed in the presence of solute are readily accounted for by the treatment, and good plots of pseudo first-order rate constant against solute concentration are obtained. The absolute rate constants for reaction with H atoms are for methanol 2.5 x10/sup 6/, for ethanol 2.1 X 10/sup 7/, for isopropanol 6.8 x 10/sup 7/, and for succinic acid 3.0 x 10/sup 6/ dm/sup 3/ mol/sup -1/s/sup -1/. These values are in good agreement with the earlier chemical measurements.

  8. Strategies for real-time position control of a single atom in cavity QED

    International Nuclear Information System (INIS)

    Lynn, T W; Birnbaum, K; Kimble, H J

    2005-01-01

    Recent realizations of single-atom trapping and tracking in cavity QED open the door for feedback schemes which actively stabilize the motion of a single atom in real time. We present feedback algorithms for cooling the radial component of motion for a single atom trapped by strong coupling to single-photon fields in an optical cavity. Performance of various algorithms is studied through simulations of single-atom trajectories, with full dynamical and measurement noise included. Closed loop feedback algorithms compare favourably to open loop 'switching' analogues, demonstrating the importance of applying actual position information in real time. The high optical information rate in current experiments enables real-time tracking that approaches the standard quantum limit for broadband position measurements, suggesting that realistic active feedback schemes may reach a regime where measurement backaction appreciably alters the motional dynamics

  9. Resolving Peak Ground Displacements in Real-Time GNSS PPP Solutions

    Science.gov (United States)

    Hodgkinson, K. M.; Mencin, D.; Mattioli, G. S.; Sievers, C.; Fox, O.

    2017-12-01

    The goal of early earthquake warning (EEW) systems is to provide warning of impending ground shaking to the public, infrastructure managers, and emergency responders. Shaking intensity can be estimated using Ground Motion Prediction Equations (GMPEs), but only if site characteristics, hypocentral distance and event magnitude are known. In recent years work has been done analyzing the first few seconds of the seismic P wave to derive event location and magnitude. While initial rupture locations seem to be sufficiently constrained, it has been shown that P-wave magnitude estimates tend to saturate at M>7. Regions where major and great earthquakes occur may therefore be vulnerable to an underestimation of shaking intensity if only P waves magnitudes are used. Crowell et al., (2013) first demonstrated that Peak Ground Displacement (PGD) from long-period surface waves recorded by GNSS receivers could provide a source-scaling relation that does not saturate with event magnitude. GNSS PGD derived magnitudes could improve the accuracy of EEW GMPE calculations. If such a source-scaling method were to be implemented in EEW algorithms it is critical that the noise levels in real-time GNSS processed time-series are low enough to resolve long-period surface waves. UNAVCO currently operates 770 real-time GNSS sites, most of which are located along the North American-Pacific Plate Boundary. In this study, we present an analysis of noise levels observed in the GNSS Precise Point Positioning (PPP) solutions generated and distributed in real-time by UNAVCO for periods from seconds to hours. The analysis is performed using the 770 sites in the real-time network and data collected through July 2017. We compare noise levels determined from various monument types and receiver-antenna configurations. This analysis gives a robust estimation of noise levels in PPP solutions because the solutions analyzed are those that were generated in real-time and thus contain all the problems observed

  10. Local crystallography analysis for atomically resolved scanning tunneling microscopy images

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Li, Qing; Belianinov, Alexei; Gai, Zheng; Baddorf, Arthur P; Pan, Minghu; Jesse, Stephen; Kalinin, Sergei V; Sales, Brian C; Sefat, Athena

    2013-01-01

    Scanning probe microscopy has emerged as a powerful and flexible tool for atomically resolved imaging of surface structures. However, due to the amount of information extracted, in many cases the interpretation of such data is limited to being qualitative and semi-quantitative in nature. At the same time, much can be learned from local atom parameters, such as distances and angles, that can be analyzed and interpreted as variations of local chemical bonding, or order parameter fields. Here, we demonstrate an iterative algorithm for indexing and determining atomic positions that allows the analysis of inhomogeneous surfaces. This approach is further illustrated by local crystallographic analysis of several real surfaces, including highly ordered pyrolytic graphite and an Fe-based superconductor FeTe 0.55 Se 0.45 . This study provides a new pathway to extract and quantify local properties for scanning probe microscopy images. (paper)

  11. Direct observation of ultrafast atomic motion using time-resolved X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shymanovich, U.

    2007-11-13

    This thesis is dedicated to the study of the atomic motion in laser irradiated solids on a picosecond to subpicosecond time-scale using the time-resolved X-ray diffraction technique. In the second chapter, the laser system, the laser-plasma based X-ray source and the experimental setup for optical pump / X-ray probe measurements were presented. Chapter 3 is devoted to the characterization and comparison of different types of X-ray optics. Chapter 4 presented the time-resolved X-ray diffraction experiments performed for this thesis. The first two sections of this chapter discuss the measurements of initially unexpected strain-induced transient changes of the integrated reflectivity of the X-ray probe beam. The elimination of the strain-induced transient changes of the integrated reflectivity represented an important prerequisite to perform the study of lattice heating in Germanium after femtosecond optical excitation by measuring the transient Debye-Waller effect. The third section describes the investigations of acoustic waves upon ultrafast optical excitation and discusses the two different pressure contributions driving them: the thermal and the electronic ones. (orig.)

  12. Direct observation of ultrafast atomic motion using time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Shymanovich, U.

    2007-01-01

    This thesis is dedicated to the study of the atomic motion in laser irradiated solids on a picosecond to subpicosecond time-scale using the time-resolved X-ray diffraction technique. In the second chapter, the laser system, the laser-plasma based X-ray source and the experimental setup for optical pump / X-ray probe measurements were presented. Chapter 3 is devoted to the characterization and comparison of different types of X-ray optics. Chapter 4 presented the time-resolved X-ray diffraction experiments performed for this thesis. The first two sections of this chapter discuss the measurements of initially unexpected strain-induced transient changes of the integrated reflectivity of the X-ray probe beam. The elimination of the strain-induced transient changes of the integrated reflectivity represented an important prerequisite to perform the study of lattice heating in Germanium after femtosecond optical excitation by measuring the transient Debye-Waller effect. The third section describes the investigations of acoustic waves upon ultrafast optical excitation and discusses the two different pressure contributions driving them: the thermal and the electronic ones. (orig.)

  13. Challenge for real-time and real-space resolved spectroscopy of surface chemical reactions. Aiming at trace of irreversible and inhomogeneous reactions

    International Nuclear Information System (INIS)

    Amemiya, Kenta

    2015-01-01

    A novel experimental technique, time-resolved wavelength-dispersive soft X-ray imaging spectroscopy, is proposed in order to achieve real-time and real-space resolved spectroscopy for the observation of irreversible and inhomogeneous surface chemical reactions. By combining the wavelength-dispersed soft X rays, in which the X-ray wavelength (photon energy) changes as a function of position on the sample, with the photoelectron emission microscope, the soft X-ray absorption spectra are separately obtained at different positions on the sample without scanning the X-ray monochromator. Therefore, the real-time resolved measurement of site-selective soft X-ray absorption spectroscopy is realized in one event without repeating the chemical reaction. It is expected that the spatial distribution of different chemical species is traced during the surface chemical reaction, which is essential to understand the reaction mechanism. (author)

  14. Resolving amorphous solid-liquid interfaces by atomic force microscopy

    International Nuclear Information System (INIS)

    Burson, Kristen M.; Gura, Leonard; Kell, Burkhard; Büchner, Christin; Lewandowski, Adrian L.; Heyde, Markus; Freund, Hans-Joachim

    2016-01-01

    Recent advancements in liquid atomic force microscopy make it an ideal technique for probing the structure of solid-liquid interfaces. Here, we present a structural study of a two-dimensional amorphous silica bilayer immersed in an aqueous solution utilizing liquid atomic force microscopy with sub-nanometer resolution. Structures show good agreement with atomically resolved ultra-high vacuum scanning tunneling microscopy images obtained on the same sample system, owing to the structural stability of the silica bilayer and the imaging clarity from the two-dimensional sample system. Pair distance histograms of ring center positions are utilized to develop quantitative metrics for structural comparison, and the physical origin of pair distance histogram peaks is addressed by direct assessment of real space structures.

  15. Imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry for determination of mercury in seawater.

    Science.gov (United States)

    Le Bihan, Alain; Cabon, Jean-Yves; Deschamps, Laure; Giamarchi, Philippe

    2011-06-15

    In this study, direct determination of mercury at the nanogram per liter level in the complex seawater matrix by imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry (ITR-ETA-LEAFS) is described. In the case of mercury, the use of a nonresonant line for fluorescence detection with only one laser excitation is not possible. For measurements at the 253.652 nm resonant line, scattering phenomena have been minimized by eliminating the simultaneous vaporization of salts and by using temporal resolution and the imaging mode of the camera. Electrothermal conditions (0.1 M oxalic acid as matrix modifier, low atomization temperature) have been optimized in order to suppress chemical interferences and to obtain a good separation of specific signal and seawater background signal. For ETA-LEAFS, a specific response has been obtained for Hg with the use of time resolution. Moreover, an important improvement of the detection limit has been obtained by selecting, from the furnace image, pixels collecting the lowest number of scattered photons. Using optimal experimental conditions, a detection limit of 10 ng L(-1) for 10 μL of sample, close to the lowest concentration level of total Hg in the open ocean, has been obtained.

  16. Knowledge Extraction from Atomically Resolved Images.

    Science.gov (United States)

    Vlcek, Lukas; Maksov, Artem; Pan, Minghu; Vasudevan, Rama K; Kalinin, Sergei V

    2017-10-24

    Tremendous strides in experimental capabilities of scanning transmission electron microscopy and scanning tunneling microscopy (STM) over the past 30 years made atomically resolved imaging routine. However, consistent integration and use of atomically resolved data with generative models is unavailable, so information on local thermodynamics and other microscopic driving forces encoded in the observed atomic configurations remains hidden. Here, we present a framework based on statistical distance minimization to consistently utilize the information available from atomic configurations obtained from an atomically resolved image and extract meaningful physical interaction parameters. We illustrate the applicability of the framework on an STM image of a FeSe x Te 1-x superconductor, with the segregation of the chalcogen atoms investigated using a nonideal interacting solid solution model. This universal method makes full use of the microscopic degrees of freedom sampled in an atomically resolved image and can be extended via Bayesian inference toward unbiased model selection with uncertainty quantification.

  17. Time-resolved X-ray scattering by electronic wave packets: analytic solutions to the hydrogen atom

    DEFF Research Database (Denmark)

    Simmermacher, Mats; Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2017-01-01

    Modern pulsed X-ray sources permit time-dependent measurements of dynamical changes in atoms and molecules via non-resonant scattering. The planning, analysis, and interpretation of such experiments, however, require a firm and elaborated theoretical framework. This paper provides a detailed...... description of time-resolved X-ray scattering by non-stationary electronic wave packets in atomic systems. A consistent application of the Waller-Hartree approximation is discussed and different contributions to the total differential scattering signal are identified and interpreted. Moreover......, it is demonstrated how the scattering signal of wave packets in the hydrogen atom can be expressed analytically. This permits simulations without numerical integration and establishes a benchmark for both efficiency and accuracy. Based on that, scattering patterns of an exemplary wave packet in the hydrogen atom...

  18. Real-time object-oriented programming: studies and proposals

    International Nuclear Information System (INIS)

    Fouquier, Gilles

    1996-01-01

    This thesis contributes to the introduction of real-time features in object-oriented programming. Object-oriented programming favours modularity and reusability. Therefore, its application to real-time introduces many theoretical and conceptual problems. To deal with these problems, a new real-time object-oriented programming model is presented. This model is based on the active object model which allows concurrence and maintains the encapsulation property. The real-time aspect is treated by replacing the concept of task by the concept of method processing and by associating a real-time constraint to each message (priority or deadline). The set of all the running methods is scheduled. This model, called ATOME, contains several sub-models to deal with the usual concurrence control integrating their priority and deadline processing. The classical HPF and EDF scheduling avoid priority or deadline inversion. This model and its variants are new proposals to program real-time applications in the object-oriented way, therefore easing reusability and code writing. The feasibility of this approach is demonstrated by extending and existing active object-based language to real-time, in using the rules defined in the ATOME model. (author) [fr

  19. Atomic motion of resonantly vibrating quartz crystal visualized by time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Fujiwara, Akihiko; Takeda, Shoichi; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2015-01-01

    Transient atomic displacements during a resonant thickness-shear vibration of AT-cut α-quartz are revealed by time-resolved X-ray diffraction under an alternating electric field. The lattice strain resonantly amplified by the alternating electric field is ∼10 4 times larger than that induced by a static electric field. The resonantly amplified lattice strain is achieved by fast displacements of oxygen anions and collateral resilient deformation of Si−O−Si angles bridging rigid SiO 4 tetrahedra, which efficiently transduce electric energy into elastic energy

  20. Time-resolved spectroscopy in synchrotron radiation

    International Nuclear Information System (INIS)

    Rehn, V.; Stanford Univ., CA

    1980-01-01

    Synchrotron radiation (SR) from large-diameter storage rings has intrinsic time structure which facilitates time-resolved measurements form milliseconds to picoseconds and possibly below. The scientific importance of time-resolved measurements is steadily increasing as more and better techniques are discovered and applied to a wider variety of scientific problems. This paper presents a discussion of the importance of various parameters of the SR facility in providing for time-resolved spectroscopy experiments, including the role of beam-line optical design parameters. Special emphasis is placed on the requirements of extremely fast time-resolved experiments with which the effects of atomic vibrational or relaxation motion may be studied. Before discussing the state-of-the-art timing experiments, we review several types of time-resolved measurements which have now become routine: nanosecond-range fluorescence decay times, time-resolved emission and excitation spectroscopies, and various time-of-flight applications. These techniques all depend on a short SR pulse length and a long interpulse period, such as is provided by a large-diameter ring operating in a single-bunch mode. In most cases, the pulse shape and even the stability of the pulse shape is relatively unimportant as long as the pulse length is smaller than the risetime of the detection apparatus, typically 1 to 2 ns. For time resolution smaller than 1 ns, the requirements on the pulse shape become more stringent. (orig./FKS)

  1. Time-resolved studies. Ch. 9

    International Nuclear Information System (INIS)

    Mills, Dennis M.; Argonne National Lab., IL

    1991-01-01

    Synchrotron radiation, with its unique properties, offers a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Wide-bandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the 'parallel data collection' method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in data-collection time. Perhaps the most exciting advances in time-resolved X-ray studies will be made by those methods that exploit the pulsed nature of the radiation emitted from storage rings. Pulsed techniques have had an enormous impact in the study of the temporal evolution of transient phenomena. The extension from continuous to modulated sources for use in time-resolved work has been carried over in a host of fields that use both pulsed particle and pulsed electro-magnetic beams. In this chapter the new experimental techniques are reviewed and illustrated with some experiments. (author). 98 refs.; 20 figs.; 5 tabs

  2. Real-time monitoring of atom vapor concentration with laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Fan Fengying; Gao Peng; Jiang Tao

    2012-01-01

    The technology of laser absorption spectroscopy was used for real-time monitoring of gadolinium atom vapor concentration measurement and the solid state laser pumped ring dye laser was used as optical source. The optical fiber was taken to improve the stability of laser transmission. The multi-pass absorption technology combined with reference optical signal avoided the influence of laser power fluctuation. The experiment result shows that the system based on this detection method has a standard error of 4%. It is proved that the monitoring system provides reliable data for atom vapor laser isotope separation process and the separation efficiency can be improved. (authors)

  3. Time-resolved production and detection of reactive atoms

    International Nuclear Information System (INIS)

    Grossman, L.W.; Hurst, G.S.

    1977-09-01

    Cesium iodide in the presence of a buffer gas was dissociated with a pulsed ultraviolet laser, which will be referred to as the source laser. This created a population of atoms at a well defined time and in a compact, well defined volume. A second pulsed laser, with a beam that completely surrounded that of the first, photoionized the cesium after a known time delay. This laser will be referred to as the detector laser. It was determined that for short time delays, all of the cesium atoms were easily ionized. When focused, the source laser generated an extremely intense fluence. By accounting for the beam intensity profile it was shown that all of the molecules in the central portion of the beam can be dissociated and detected. Besides proving the feasibility of single-molecule detection, this enabled a determination of the absolute photodissociation cross section as a function of wavelength. Initial studies of the time decay of the cesium signal at low argon pressures indicated a non-exponential decay. This was consistent with a diffusion mechanism transporting cesium atoms out of the laser beam. Therefore, it was desired to conduct further experiments using a tightly focused source beam, passing along the axis of the detector beam. The theoretical behavior of this simple geometry accounting for diffusion and reaction is easily calculated. A diffusion coefficient can then be extracted by data fitting. If reactive decay is due to impurities constituting a fixed percentage of the buffer gas, then two-body reaction rates will scale linearly with pressure and three-body reaction rates will scale quadratically. Also, the diffusion coefficient will scale inversely with pressure. At low pressures it is conceivable that decay due to diffusion would be sufficiently rapid that all other processes can be neglected. Extraction of a diffusion coefficient would then be quite direct. Finally, study of the reaction of cesium and oxygen was undertaken

  4. Research in Distributed Real-Time Systems

    Science.gov (United States)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  5. Real-time nanofabrication with high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Vicary, J A; Miles, M J

    2009-01-01

    The ability to follow nanoscale processes in real-time has obvious benefits for the future of material science. In particular, the ability to evaluate the success of fabrication processes in situ would be an advantage for many in the semiconductor industry. We report on the application of a previously described high-speed atomic force microscope (AFM) for nanofabrication. The specific fabrication method presented here concerns the modification of a silicon surface by locally oxidizing the region in the vicinity of the AFM tip. Oxide features were fabricated during imaging, with relative tip-sample velocities of up to 10 cm s -1 , and with a data capture rate of 15 fps.

  6. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    Science.gov (United States)

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; Sato, S. A.; Rehr, J. J.; Yabana, K.; Prendergast, David

    2018-05-01

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. Potential applications of the LCAO based scheme in the context of extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.

  7. A real-time all-atom structural search engine for proteins.

    Science.gov (United States)

    Gonzalez, Gabriel; Hannigan, Brett; DeGrado, William F

    2014-07-01

    Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new "designability"-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license).

  8. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction

    DEFF Research Database (Denmark)

    Hockett, Paul; Bisgaard, Christer Z.; Clarkin, Owen J.

    2011-01-01

    Chemical reactions are manifestations of the dynamics of molecular valence electrons and their couplings to atomic motions. Emerging methods in attosecond science can probe purely electronic dynamics in atomic and molecular systems(1-6). By contrast, time-resolved structural-dynamics methods...... such as electron(7-10) or X-ray diffraction(11) and X-ray absorption(12) yield complementary information about the atomic motions. Time-resolved methods that are directly sensitive to both valence-electron dynamics and atomic motions include photoelectron spectroscopy(13-15) and high-harmonic generation(16......,17): in both cases, this sensitivity derives from the ionization-matrix element(18,19). Here we demonstrate a time-resolved molecular-frame photoelectron-angular-distribution (TRMFPAD) method for imaging the purely valence-electron dynamics during a chemical reaction. Specifically, the TRMFPADs measured during...

  9. Time-resolved brightness measurements by streaking

    Science.gov (United States)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  10. Assembly and application of an instrument for attosecond-time-resolved ionization chronoscopy

    International Nuclear Information System (INIS)

    Uphues, T.

    2006-11-01

    In the framework of this thesis a new setup for attosecond time-resolved measurements has been built and observations of ionization dynamics in rare gas atoms have been made. This new technique is entitled Ionization Chronoscopy and gives further evidence that time-resolved experiments in the attosecond regime will become a powerful tool for investigations in atomic physics. (orig.)

  11. An x-ray detector for time-resolved studies

    International Nuclear Information System (INIS)

    Rodricks, B.; Brizard, C.; Clarke, R.; Lowe, W.

    1992-01-01

    The development of ultrahigh-brightness x-ray sources makes time-resolved x-ray studies more and more feasible. Improvements in x-ray optics components are also critical for obtaining the appropriate beam for a particular type of experiment. Moreover, fast parallel detectors will be essential in order to exploit the combination of high intensity x-ray sources and novel optics for time-resolved experiments. A CCD detector with a time resolution of microseconds has been developed at the Advanced Photon Source (APS). This detector is fully programmable using CAMAC electronics and a Micro Vax computer. The techniques of time-resolved x-ray studies, which include scattering, microradiography, microtomography, stroboscopy, etc., can be applied to a range of phenomena (including rapid thermal annealing, surface ordering, crystallization, and the kinetics of phase transition) in order to understand these time-dependent microscopic processes. Some of these applications will be illustrated by recent results performed at synchrotrons. New powerful x-ray sources now under construction offer the opportunity to apply innovative approaches in time-resolved work

  12. Difference structures from time-resolved small-angle and wide-angle x-ray scattering

    Science.gov (United States)

    Nepal, Prakash; Saldin, D. K.

    2018-05-01

    Time-resolved small-angle x-ray scattering/wide-angle x-ray scattering (SAXS/WAXS) is capable of recovering difference structures directly from difference SAXS/WAXS curves. It does so by means of the theory described here because the structural changes in pump-probe detection in a typical time-resolved experiment are generally small enough to be confined to a single residue or group in close proximity which is identified by a method akin to the difference Fourier method of time-resolved crystallography. If it is assumed, as is usual with time-resolved structures, that the moved atoms lie within the residue, the 100-fold reduction in the search space (assuming a typical protein has about 100 residues) allows the exaction of the structure by a simulated annealing algorithm with a huge reduction in computing time and leads to a greater resolution by varying the positions of atoms only within that residue. This reduction in the number of potential moved atoms allows us to identify the actual motions of the individual atoms. In the case of a crystal, time-resolved calculations are normally performed using the difference Fourier method, which is, of course, not directly applicable to SAXS/WAXS. The method developed in this paper may be thought of as a substitute for that method which allows SAXS/WAXS (and hence disordered molecules) to also be used for time-resolved structural work.

  13. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback

    Science.gov (United States)

    Jesse, Stephen; Hudak, Bethany M.; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C.; Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.

    2018-06-01

    Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore’s law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

  14. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback.

    Science.gov (United States)

    Jesse, Stephen; Hudak, Bethany M; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C; Lupini, Andrew R; Borisevich, Albina Y; Kalinin, Sergei V

    2018-06-22

    Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore's law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

  15. Real-time visualization of the vibrational wavepacket dynamics in electronically excited pyrimidine via femtosecond time-resolved photoelectron imaging

    Science.gov (United States)

    Li, Shuai; Long, Jinyou; Ling, Fengzi; Wang, Yanmei; Song, Xinli; Zhang, Song; Zhang, Bing

    2017-07-01

    The vibrational wavepacket dynamics at the very early stages of the S1-T1 intersystem crossing in photoexcited pyrimidine is visualized in real time by femtosecond time-resolved photoelectron imaging and time-resolved mass spectroscopy. A coherent superposition of the vibrational states is prepared by the femtosecond pump pulse at 315.3 nm, resulting in a vibrational wavepacket. The composition of the prepared wavepacket is directly identified by a sustained quantum beat superimposed on the parent-ion transient, possessing a frequency in accord with the energy separation between the 6a1 and 6b2 states. The dephasing time of the vibrational wavepacket is determined to be 82 ps. More importantly, the variable Franck-Condon factors between the wavepacket components and the dispersed cation vibrational levels are experimentally illustrated to identify the dark state and follow the energy-flow dynamics on the femtosecond time scale. The time-dependent intensities of the photoelectron peaks originated from the 6a1 vibrational state exhibit a clear quantum beating pattern with similar periodicity but a phase shift of π rad with respect to those from the 6b2 state, offering an unambiguous picture of the restricted intramolecular vibrational energy redistribution dynamics in the 6a1/6b2 Fermi resonance.

  16. Observation of Structure of Surfaces and Interfaces by Synchrotron X-ray Diffraction: Atomic-Scale Imaging and Time-Resolved Measurements

    Science.gov (United States)

    Wakabayashi, Yusuke; Shirasawa, Tetsuroh; Voegeli, Wolfgang; Takahashi, Toshio

    2018-06-01

    The recent developments in synchrotron optics, X-ray detectors, and data analysis algorithms have enhanced the capability of the surface X-ray diffraction technique. This technique has been used to clarify the atomic arrangement around surfaces in a non-contact and nondestructive manner. An overview of surface X-ray diffraction, from the historical development to recent topics, is presented. In the early stage of this technique, surface reconstructions of simple semiconductors or metals were studied. Currently, the surface or interface structures of complicated functional materials are examined with sub-Å resolution. As examples, the surface structure determination of organic semiconductors and of a one-dimensional structure on silicon are presented. A new frontier is time-resolved interfacial structure analysis. A recent observation of the structure and dynamics of the electric double layer of ionic liquids, and an investigation of the structural evolution in the wettability transition on a TiO2 surface that utilizes a newly designed time-resolved surface diffractometer, are presented.

  17. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.

    Science.gov (United States)

    Shibata, Mikihiro; Nishimasu, Hiroshi; Kodera, Noriyuki; Hirano, Seiichi; Ando, Toshio; Uchihashi, Takayuki; Nureki, Osamu

    2017-11-10

    The CRISPR-associated endonuclease Cas9 binds to a guide RNA and cleaves double-stranded DNA with a sequence complementary to the RNA guide. The Cas9-RNA system has been harnessed for numerous applications, such as genome editing. Here we use high-speed atomic force microscopy (HS-AFM) to visualize the real-space and real-time dynamics of CRISPR-Cas9 in action. HS-AFM movies indicate that, whereas apo-Cas9 adopts unexpected flexible conformations, Cas9-RNA forms a stable bilobed structure and interrogates target sites on the DNA by three-dimensional diffusion. These movies also provide real-time visualization of the Cas9-mediated DNA cleavage process. Notably, the Cas9 HNH nuclease domain fluctuates upon DNA binding, and subsequently adopts an active conformation, where the HNH active site is docked at the cleavage site in the target DNA. Collectively, our HS-AFM data extend our understanding of the action mechanism of CRISPR-Cas9.

  18. Atomic force microscope cantilever as an encoding sensor for real-time displacement measurement

    International Nuclear Information System (INIS)

    Chen, Xiaomei; Koenders, Ludger; Wolff, Helmut; Haertig, Frank; Schilling, Meinhard

    2010-01-01

    A tuning fork-based atomic force microscope cantilever has been investigated for application as an encoding sensor for real-time displacement measurement. The algorithm used to encode the displacement is based on the direct count of the integer pitches of a known grating, and the calculation of the fractional parts of a pitch at the beginning and during displacement. A cross-correlation technique has been adopted and applied to the real-time signal filtering process for the determination of the pitch during scanning by using a half sinusoidal waveform template. For the first investigation, a 1D sinusoidal grating with the pitch of 300 nm is used. The repeatability of displacement measurements over a distance of 70 µm is better than 2.2 nm. As the first application, the real-time displacement of a scanning stage is measured by the new encoding principle as it is moved in an open-loop mode and closed-loop mode based on its built-in capacitance sensor

  19. Atomic column resolved electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Duscher, G.; Pennycook, S.J.; Browning, N.D.

    1998-01-01

    Spatially resolved electron energy-loss spectroscopy (EELS) is rapidly developing into a unique and powerful tool to characterize internal interfaces. Because atomic column resolved Z-contrast imaging can be performed simultaneously with EELS in the scanning transmission electron microscope, this combination allows the atomic structure to be correlated with the electronic structure, and thus the local properties of interfaces or defects can be determined directly. However, the ability to characterize interfaces and defects at that level requires not only high spatial resolution but also the exact knowledge of the beam location, from where the spectrum is obtained. Here we discuss several examples progressing from cases where the limitation in spatial resolution is given by the microscopes or the nature of the sample, to one example of impurity atoms at a grain boundary, which show intensity and fine structure changes from atomic column to atomic column. Such data can be interpreted as changes in valence of the impurity, depending on its exact site in the boundary plane. Analysis ofthis nature is a valuable first step in understanding the microscopic structural, optical and electronic properties of materials. (orig.)

  20. Atom-resolved AFM imaging of calcite nanoparticles in water

    Energy Technology Data Exchange (ETDEWEB)

    Imada, Hirotake; Kimura, Kenjiro [Department of Chemistry, School of Science, Kobe University, Rokko-dai, Nada, Kobe 657-8501 (Japan); Onishi, Hiroshi, E-mail: oni@kobe-u.ac.jp [Department of Chemistry, School of Science, Kobe University, Rokko-dai, Nada, Kobe 657-8501 (Japan)

    2013-06-20

    Highlights: ► An advanced frequency-modulation AFM (FM-AFM) was applied for imaging particles. ► Atom-resolved topography of nano-sized particles of calcite was observed in water. ► Locally ordered structures were found and assigned to a (104) facet of calcite. ► A promising ability of FM-AFM was demonstrated in imaging nano-sized particles. - Abstract: The atom-resolved topography of calcite nanoparticles was observed in water using a frequency-modulation atomic force microscope. Locally ordered structures were found and assigned to a (104) facet of crystalline calcite.

  1. Atom-resolved AFM imaging of calcite nanoparticles in water

    International Nuclear Information System (INIS)

    Imada, Hirotake; Kimura, Kenjiro; Onishi, Hiroshi

    2013-01-01

    Highlights: ► An advanced frequency-modulation AFM (FM-AFM) was applied for imaging particles. ► Atom-resolved topography of nano-sized particles of calcite was observed in water. ► Locally ordered structures were found and assigned to a (104) facet of calcite. ► A promising ability of FM-AFM was demonstrated in imaging nano-sized particles. - Abstract: The atom-resolved topography of calcite nanoparticles was observed in water using a frequency-modulation atomic force microscope. Locally ordered structures were found and assigned to a (104) facet of crystalline calcite

  2. Time-resolved photoelectron spectrometry of a dephasing process in pyrazine

    International Nuclear Information System (INIS)

    Pavlov, R.L.; Pavlov, L.I.; Delchev, Ya.I.; Pavlova, S.I.

    2001-01-01

    The first femtosecond time-resolved photoelectron imaging (PEI) is presented. The method is characterized by photoionization of NO and further applied to ultrafast dephasing in pyrazine. Intermediate case behaviour in radiationless transition is clearly observed in time-resolved photoelectron kinetic energy distribution. Femtosecond PEI is with much improved efficiency than conventional photoelectron spectroscopies. It is anticipated that the unifield approach of time-resolved photoelectron and photoion imaging opens the possibility of observing photon-induced dynamics in real time

  3. Time-resolved studies

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    When new or more powerful probes become available that offer both shorter data-collection times and the opportunity to apply innovative approaches to established techniques, it is natural that investigators consider the feasibility of exploring the kinetics of time-evolving systems. This stimulating area of research not only can lead to insights into the metastable or excited states that a system may populate on its way to a ground state, but can also lead to a better understanding of that final state. Synchrotron radiation, with its unique properties, offers just such a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Widebandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the open-quote parallel data collectionclose quotes method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in the data-collection time

  4. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuliang, E-mail: wangyuliang@buaa.edu.cn; Bi, Shusheng [Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Wang, Huimin [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  5. Real-time quasi-3D tomographic reconstruction

    Science.gov (United States)

    Buurlage, Jan-Willem; Kohr, Holger; Palenstijn, Willem Jan; Joost Batenburg, K.

    2018-06-01

    Developments in acquisition technology and a growing need for time-resolved experiments pose great computational challenges in tomography. In addition, access to reconstructions in real time is a highly demanded feature but has so far been out of reach. We show that by exploiting the mathematical properties of filtered backprojection-type methods, having access to real-time reconstructions of arbitrarily oriented slices becomes feasible. Furthermore, we present , software for visualization and on-demand reconstruction of slices. A user of can interactively shift and rotate slices in a GUI, while the software updates the slice in real time. For certain use cases, the possibility to study arbitrarily oriented slices in real time directly from the measured data provides sufficient visual and quantitative insight. Two such applications are discussed in this article.

  6. Spin and time-resolved magnetic resonance in radiation chemistry. Recent developments and perspectives

    International Nuclear Information System (INIS)

    Shkrob, I.A.; Trifunac, A.D.

    1997-01-01

    Time-resolved pulsed EPR and ODMR in studies on early events in radiation chemistry are examined. It is concluded that these techniques yield valuable and diverse information about chemical reactions in spurs, despite the fact that the spur reactions occur on a time scale that is much shorter than the time resolution of these methods. Several recent examples include EPR of H/D atoms in vitreous silica and cryogenic liquids and ODMR of doped alkane solids and amorphous semiconductors. It is argued that a wider use of time-resolved magnetic resonance methods would benefit the studies on radiation chemistry of disordered solids, simple liquids, and polymers. (author)

  7. Fast time-resolved aerosol collector: proof of concept

    Science.gov (United States)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-10-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  8. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    Science.gov (United States)

    Milne, Chris J.; Pham, Van-Thai; Gawelda, Wojciech; van der Veen, Renske M.; El Nahhas, Amal; Johnson, Steven L.; Beaud, Paul; Ingold, Gerhard; Lima, Frederico; Vithanage, Dimali A.; Benfatto, Maurizio; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Hauser, Andreas; Abela, Rafael; Bressler, Christian; Chergui, Majed

    2009-11-01

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [FeII(bpy)3]2+, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 Å. In addition an analysis technique using the reduced χ2 goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  9. [A new measurement method of time-resolved spectrum].

    Science.gov (United States)

    Shi, Zhi-gang; Huang, Shi-hua; Liang, Chun-jun; Lei, Quan-sheng

    2007-02-01

    A new method for measuring time-resolved spectrum (TRS) is brought forward. Programming with assemble language controlled the micro-control-processor (AT89C51), and a kind of peripheral circuit constituted the drive circuit, which drived the stepping motor to run the monochromator. So the light of different kinds of expected wavelength could be obtained. The optical signal was transformed to electrical signal by optical-to-electrical transform with the help of photomultiplier tube (Hamamatsu 1P28). The electrical signal of spectrum data was transmitted to the oscillograph. Connecting the two serial interfaces of RS232 between the oscillograph and computer, the electrical signal of spectrum data could be transmitted to computer for programming to draw the attenuation curve and time-resolved spectrum (TRS) of the swatch. The method for measuring time-resolved spectrum (TRS) features parallel measurement in time scale but serial measurement in wavelength scale. Time-resolved spectrum (TRS) and integrated emission spectrum of Tb3+ in swatch Tb(o-BBA)3 phen were measured using this method. Compared with the real time-resolved spectrum (TRS). It was validated to be feasible, credible and convenient. The 3D spectra of fluorescence intensity-wavelength-time, and the integrated spectrum of the swatch Tb(o-BBA)3 phen are given.

  10. Real and Hybrid Atomic Orbitals.

    Science.gov (United States)

    Cook, D. B.; Fowler, P. W.

    1981-01-01

    Demonstrates that the Schrodinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. (Author/SK)

  11. Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baudelet, Matthieu; Boueri, Myriam [Laboratoire de Spectrometrie Ionique et Moleculaire, Universite Claude Bernard Lyon 1, UMR CNRS 5579, 43, Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France); Yu Jin [Laboratoire de Spectrometrie Ionique et Moleculaire, Universite Claude Bernard Lyon 1, UMR CNRS 5579, 43, Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France)], E-mail: jin.yu@lasim.univ-lyon1.fr; Mao, Samuel S; Piscitelli, Vincent; Xianglei, Mao; Russo, Richard E [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2007-12-15

    Ultraviolet pulses (266 nm) delivered by a quadrupled Nd:YAG laser were used to analyze organic samples with laser-induced breakdown spectroscopy (LIBS). We present characteristics of the spectra obtained from organic samples with special attentions on the emissions of organic elements, O and N, and molecular bonds CN. The choice of these atomic or molecular species is justified on one hand, by the importance of these species to specify organic or biological materials; and on the other hand by the possible interferences with ambient air when laser ablation takes place in the atmosphere. Time-resolved LIBS was used to determine the time-evolution of line intensity emitted from these species. We demonstrate different kinetic behaviors corresponding to different origins of emitters: native atomic or molecular species directly vaporized from the sample or those generated through dissociation or recombination due to interaction between laser-induced plasma and air molecules. Our results show the ability of time-resolved UV-LIBS for detection and identification of native atomic or molecular species from an organic sample.

  12. Exploratory study on a statistical method to analyse time resolved data obtained during nanomaterial exposure measurements

    International Nuclear Information System (INIS)

    Clerc, F; Njiki-Menga, G-H; Witschger, O

    2013-01-01

    Most of the measurement strategies that are suggested at the international level to assess workplace exposure to nanomaterials rely on devices measuring, in real time, airborne particles concentrations (according different metrics). Since none of the instruments to measure aerosols can distinguish a particle of interest to the background aerosol, the statistical analysis of time resolved data requires special attention. So far, very few approaches have been used for statistical analysis in the literature. This ranges from simple qualitative analysis of graphs to the implementation of more complex statistical models. To date, there is still no consensus on a particular approach and the current period is always looking for an appropriate and robust method. In this context, this exploratory study investigates a statistical method to analyse time resolved data based on a Bayesian probabilistic approach. To investigate and illustrate the use of the this statistical method, particle number concentration data from a workplace study that investigated the potential for exposure via inhalation from cleanout operations by sandpapering of a reactor producing nanocomposite thin films have been used. In this workplace study, the background issue has been addressed through the near-field and far-field approaches and several size integrated and time resolved devices have been used. The analysis of the results presented here focuses only on data obtained with two handheld condensation particle counters. While one was measuring at the source of the released particles, the other one was measuring in parallel far-field. The Bayesian probabilistic approach allows a probabilistic modelling of data series, and the observed task is modelled in the form of probability distributions. The probability distributions issuing from time resolved data obtained at the source can be compared with the probability distributions issuing from the time resolved data obtained far-field, leading in a

  13. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  14. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra

    Energy Technology Data Exchange (ETDEWEB)

    Goings, Joshua J.; Li, Xiaosong, E-mail: xsli@uw.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)

    2016-06-21

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.

  15. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  16. Time-resolved measurements of luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Bradley B. [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); McShane, Michael J., E-mail: mcshane@tamu.edu [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Program, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States)

    2013-12-15

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described.

  17. Time-resolved measurements of luminescence

    International Nuclear Information System (INIS)

    Collier, Bradley B.; McShane, Michael J.

    2013-01-01

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described

  18. Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.; Giridharagopal, Rajiv; Ginger, David S., E-mail: ginger@chem.washington.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)

    2016-05-15

    The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is critical to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.

  19. Towards real-time non contact spatial resolved oxygenation monitoring using a multi spectral filter array camera in various light conditions

    Science.gov (United States)

    Bauer, Jacob R.; van Beekum, Karlijn; Klaessens, John; Noordmans, Herke Jan; Boer, Christa; Hardeberg, Jon Y.; Verdaasdonk, Rudolf M.

    2018-02-01

    Non contact spatial resolved oxygenation measurements remain an open challenge in the biomedical field and non contact patient monitoring. Although point measurements are the clinical standard till this day, regional differences in the oxygenation will improve the quality and safety of care. Recent developments in spectral imaging resulted in spectral filter array cameras (SFA). These provide the means to acquire spatial spectral videos in real-time and allow a spatial approach to spectroscopy. In this study, the performance of a 25 channel near infrared SFA camera was studied to obtain spatial oxygenation maps of hands during an occlusion of the left upper arm in 7 healthy volunteers. For comparison a clinical oxygenation monitoring system, INVOS, was used as a reference. In case of the NIRS SFA camera, oxygenation curves were derived from 2-3 wavelength bands with a custom made fast analysis software using a basic algorithm. Dynamic oxygenation changes were determined with the NIR SFA camera and INVOS system at different regional locations of the occluded versus non-occluded hands and showed to be in good agreement. To increase the signal to noise ratio, algorithm and image acquisition were optimised. The measurement were robust to different illumination conditions with NIR light sources. This study shows that imaging of relative oxygenation changes over larger body areas is potentially possible in real time.

  20. Capturing Chemistry in Action with Electrons: Realization of Atomically Resolved Reaction Dynamics.

    Science.gov (United States)

    Ischenko, Anatoly A; Weber, Peter M; Miller, R J Dwayne

    2017-08-23

    One of the grand challenges in chemistry has been to directly observe atomic motions during chemical processes. The depiction of the nuclear configurations in space-time to understand barrier crossing events has served as a unifying intellectual theme connecting the different disciplines of chemistry. This challenge has been cast as an imaging problem in which the technical issues reduce to achieving not only sufficient simultaneous space-time resolution but also brightness for sufficient image contrast to capture the atomic motions. This objective has been met with electrons as the imaging source. The review chronicles the first use of electron structural probes to study reactive intermediates, to the development of high bunch charge electron pulses with sufficient combined spatial-temporal resolution and intensity to literally light up atomic motions, as well as the means to characterize the electron pulses in terms of temporal brightness and image reconstruction. The use of femtosecond Rydberg spectroscopy as a novel means to use internal electron scattering within the molecular reference frame to obtain similar information on reaction dynamics is also discussed. The focus is on atomically resolved chemical reaction dynamics with pertinent references to work in other areas and forms of spectroscopy that provide additional information. Effectively, we can now directly observe the far-from-equilibrium atomic motions involved in barrier crossing and categorize chemistry in terms of a power spectrum of a few dominant reaction modes. It is this reduction in dimensionality that makes chemical reaction mechanisms transferrable to seemingly arbitrarily complex (large N) systems, up to molecules as large as biological macromolecules (N > 1000 atoms). We now have a new way to reformulate reaction mechanisms using an experimentally determined dynamic mode basis that in combination with recent theoretical advances has the potential to lead to a new conceptual basis for

  1. Development of Micron-Resolved Electron Spectroscopy to Study Organic Thin Films in Real Devices

    International Nuclear Information System (INIS)

    Wang, C.-H.; Fan, L.-J.; Yang, Y.-W.; Su, J.-W.; Chan, S.-W.; Chen, M.-C.

    2010-01-01

    A straightforward application of an electron energy analyzer equipped with an image detector to micron-resolved electron spectroscopic studies of organic thin film devices is reported. The electron spectroscopies implemented include synchrotron-based UPS, XPS, and Auger yield NEXAFS. Along the non-energy-dispersion direction of the analyzer, a spatial resolution of ∼40 μm is obtained through the employment of entrance slits, electrostatic lenses and segmented CCD detector. One significant benefit offered by the technique is that the electronic transport and electronic structure of the same micron-sized sample can be directly examined. The example illustrated is a top-contact organic field effect transistor (OFET) fabricated from semiconducting triethylsilylethynyl anthradithiophene and gold electrodes. It is found that an extensive out-diffusion of gold atoms to adjacent conduction channels takes place, presumably due to the inability of soft organic materials in dissipating the excess energy with which gaseous Au atoms possess.

  2. Subcycle interference dynamics of time-resolved photoelectron holography with midinfrared laser pulses

    International Nuclear Information System (INIS)

    Bian Xuebin; Yuan, Kai-Jun; Bandrauk, Andre D.; Huismans, Y.; Smirnova, O.; Vrakking, M. J. J.

    2011-01-01

    Time-resolved photoelectron holography from atoms using midinfrared laser pulses is investigated by solving the corresponding time-dependent Schroedinger equation (TDSE) and a classical model, respectively. The numerical simulation of the photoelectron angular distribution of Xe irradiated with a low-frequency free-electron laser source agrees well with the experimental results. Different types of subcycle interferometric structures are predicted by the classical model. Furthermore with the TDSE model it is demonstrated that the holographic pattern is sensitive to the shape of the atomic orbitals. This is a step toward imaging by means of photoelectron holography.

  3. Observation of dynamic atom-atom correlation in liquid helium in real space.

    Science.gov (United States)

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T

    2017-05-04

    Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  4. Time-resolved studies at PETRA III with a highly repetitive synchronized laser system

    Energy Technology Data Exchange (ETDEWEB)

    Schlie, Mortiz

    2013-09-15

    Atomic and molecular processes can nowadays be directly followed in the time domain. This is a core technique for a better understanding of the involved fundamental physics, thus auguring new applications in the future as well. Usually the so-called pump-probe technique making use of two synchronized ultrashort light pulses is utilized to obtain this time-resolved data. In this work, the development and characterization of a synchronization system enabling such pump-probe studies at the storage ring PETRA III in combination with an external, then synchronized fs-laser system is described. The synchronization is based on an extended PLL approach with three interconnected feedback loops allowing to monitor short-time losses of the lock and thus prevent them. This way, the jitter between the laser PHAROS and the PETRA III reference signal is reduced to {sigma} <5 ps. Thus the system allows to conduct experiments at a repetition rate of 130 kHz with a temporal resolution limited only by the X-ray pulse length. A major emphasis in the fundamental introductory chapters is an intuitive explanation of the basic principles of phase locked loops and the different aspects of phase noise to allow a deeper understanding of the synchronization. Furthermore, first pump-probe experiments conducted at different beamlines at PETRA III are presented, demonstrating the usability of the laser system in a scientific environment as well. In first characterizing experiments the pulse duration of PETRA III X-ray pulses has been measured to be 90 ps FWHM. In particular, there have been time resolved X-ray absorption spectroscopy experiments on Gaq3 and Znq2 conducted at beamline P11. First results show dynamics of the electronic excitation on the timescale of a few hundred pico seconds up to a few nano seconds and provide a basic understanding for further research on those molecules. For Gaq3 this data is analyzed in detail and compared with visible fluorescence measurements suggesting at

  5. Time-resolved studies at PETRA III with a highly repetitive synchronized laser system

    International Nuclear Information System (INIS)

    Schlie, Mortiz

    2013-09-01

    Atomic and molecular processes can nowadays be directly followed in the time domain. This is a core technique for a better understanding of the involved fundamental physics, thus auguring new applications in the future as well. Usually the so-called pump-probe technique making use of two synchronized ultrashort light pulses is utilized to obtain this time-resolved data. In this work, the development and characterization of a synchronization system enabling such pump-probe studies at the storage ring PETRA III in combination with an external, then synchronized fs-laser system is described. The synchronization is based on an extended PLL approach with three interconnected feedback loops allowing to monitor short-time losses of the lock and thus prevent them. This way, the jitter between the laser PHAROS and the PETRA III reference signal is reduced to σ <5 ps. Thus the system allows to conduct experiments at a repetition rate of 130 kHz with a temporal resolution limited only by the X-ray pulse length. A major emphasis in the fundamental introductory chapters is an intuitive explanation of the basic principles of phase locked loops and the different aspects of phase noise to allow a deeper understanding of the synchronization. Furthermore, first pump-probe experiments conducted at different beamlines at PETRA III are presented, demonstrating the usability of the laser system in a scientific environment as well. In first characterizing experiments the pulse duration of PETRA III X-ray pulses has been measured to be 90 ps FWHM. In particular, there have been time resolved X-ray absorption spectroscopy experiments on Gaq3 and Znq2 conducted at beamline P11. First results show dynamics of the electronic excitation on the timescale of a few hundred pico seconds up to a few nano seconds and provide a basic understanding for further research on those molecules. For Gaq3 this data is analyzed in detail and compared with visible fluorescence measurements suggesting at least

  6. Site-resolved imaging of a bosonic Mott insulator using ytterbium atoms

    Science.gov (United States)

    Miranda, Martin; Inoue, Ryotaro; Tambo, Naoki; Kozuma, Mikio

    2017-10-01

    We demonstrate site-resolved imaging of a strongly correlated quantum system without relying on laser cooling techniques during fluorescence imaging. We observe the formation of Mott shells in the insulating regime and realize thermometry in an atomic cloud. This work proves the feasibility of the noncooled approach and opens the door to extending the detection technology to new atomic species.

  7. Time-resolved x-ray spectra from laser-generated high-density plasmas

    Science.gov (United States)

    Andiel, U.; Eidmann, Klaus; Witte, Klaus-Juergen

    2001-04-01

    We focused frequency doubled ultra short laser pulses on solid C, F, Na and Al targets, K-shell emission was systematically investigated by time resolved spectroscopy using a sub-ps streak camera. A large number of laser shots can be accumulated when triggering the camera with an Auston switch system at very high temporal precision. The system provides an outstanding time resolution of 1.7ps accumulating thousands of laser shots. The time duration of the He-(alpha) K-shell resonance lines was observed in the range of (2-4)ps and shows a decrease with the atomic number. The experimental results are well reproduced by hydro code simulations post processed with an atomic kinetics code.

  8. Time-resolved ESR spectroscopy

    International Nuclear Information System (INIS)

    Beckert, D.

    1986-06-01

    The time-resolved ESR spectroscopy is one of the modern methods in radiospectroscopy and plays an important role in solving various problems in chemistry and biology. Proceeding from the basic ideas of time-resolved ESR spectroscopy the experimental equipment is described generally including the equipment developed at the Central Institute of Isotope and Radiation Research. The experimental methods applied to the investigation of effects of chemically induced magnetic polarization of electrons and to kinetic studies of free radicals in polymer systems are presented. The theory of radical pair mechanism is discussed and theoretical expressions are summarized in a computer code to compute the theoretical polarization for each pair of the radicals

  9. Optical atomic phase reference and timing

    Science.gov (United States)

    Hollberg, L.; Cornell, E. H.; Abdelrahmann, A.

    2017-06-01

    Atomic clocks based on laser-cooled atoms have made tremendous advances in both accuracy and stability. However, advanced clocks have not found their way into widespread use because there has been little need for such high performance in real-world/commercial applications. The drive in the commercial world favours smaller, lower-power, more robust compact atomic clocks that function well in real-world non-laboratory environments. Although the high-performance atomic frequency references are useful to test Einstein's special relativity more precisely, there are not compelling scientific arguments to expect a breakdown in special relativity. On the other hand, the dynamics of gravity, evidenced by the recent spectacular results in experimental detection of gravity waves by the LIGO Scientific Collaboration, shows dramatically that there is new physics to be seen and understood in space-time science. Those systems require strain measurements at less than or equal to 10-20. As we discuss here, cold atom optical frequency references are still many orders of magnitude away from the frequency stability that should be achievable with narrow-linewidth quantum transitions and large numbers of very cold atoms, and they may be able to achieve levels of phase stability, ΔΦ/Φtotal ≤ 10-20, that could make an important impact in gravity wave science. This article is part of the themed issue 'Quantum technology for the 21st century'.

  10. Distortion dependent intersystem crossing: A femtosecond time-resolved photoelectron spectroscopy study of benzene, toluene, and p-xylene

    Directory of Open Access Journals (Sweden)

    Anne B. Stephansen

    2017-07-01

    Full Text Available The competition between ultrafast intersystem crossing and internal conversion in benzene, toluene, and p-xylene is investigated with time-resolved photoelectron spectroscopy and quantum chemical calculations. By exciting to S2 out-of-plane symmetry breaking, distortions are activated at early times whereupon spin-forbidden intersystem crossing becomes (partly allowed. Natural bond orbital analysis suggests that the pinnacle carbon atoms distorting from the aromatic plane change hybridization between the planar Franck-Condon geometry and the deformed (boat-shaped S2 equilibrium geometry. The effect is observed to increase in the presence of methyl-groups on the pinnacle carbon-atoms, where largest extents of σ and π orbital-mixing are observed. This is fully consistent with the time-resolved spectroscopy data: Toluene and p-xylene show evidence for ultrafast triplet formation competing with internal conversion, while benzene appears to only decay via internal conversion within the singlet manifold. For toluene and p-xylene, internal conversion to S1 and intersystem crossing to T3 occur within the time-resolution of our instrument. The receiver triplet state (T3 is found to undergo internal conversion in the triplet manifold within ≈100–150 fs (toluene or ≈180–200 fs (p-xylene as demonstrated by matching rise and decay components of upper and lower triplet states. Overall, the effect of methylation is found to both increase the intersystem crossing probability and direct the molecular axis of the excited state dynamics.

  11. Observation of nuclear track in organic material by atomic force microscopy in real time during etching

    CERN Document Server

    Palmino, F; Labrune, J C

    1999-01-01

    The developments of Atomic Force Microscopy (AFM) allow to investigated solid surfaces with a nanometer scale. These techniques are useful methods allowing direct observation of surface morphologies. Particularly in the nuclear track fields, they offer a new tool to give many new informations on track formation. In this paper we present the preliminary results of a new use of this technique to characterize continuously the formation of the revealed track in a cellulose nitrate detector (LR115) after an alpha particle irradiation. For that, a specific cell has been used to observe, by nano-observations, the evolution of track shapes simultaneously with chemical treatment. Thus, the track shape evolution has been studied; visualizing the evolution of the tracks in real time, in situ during the chemical etching process.

  12. Denoising time-resolved microscopy image sequences with singular value thresholding

    Energy Technology Data Exchange (ETDEWEB)

    Furnival, Tom, E-mail: tjof2@cam.ac.uk; Leary, Rowan K., E-mail: rkl26@cam.ac.uk; Midgley, Paul A., E-mail: pam33@cam.ac.uk

    2017-07-15

    Time-resolved imaging in microscopy is important for the direct observation of a range of dynamic processes in both the physical and life sciences. However, the image sequences are often corrupted by noise, either as a result of high frame rates or a need to limit the radiation dose received by the sample. Here we exploit both spatial and temporal correlations using low-rank matrix recovery methods to denoise microscopy image sequences. We also make use of an unbiased risk estimator to address the issue of how much thresholding to apply in a robust and automated manner. The performance of the technique is demonstrated using simulated image sequences, as well as experimental scanning transmission electron microscopy data, where surface adatom motion and nanoparticle structural dynamics are recovered at rates of up to 32 frames per second. - Highlights: • Correlations in space and time are harnessed to denoise microscopy image sequences. • A robust estimator provides automated selection of the denoising parameter. • Motion tracking and automated noise estimation provides a versatile algorithm. • Application to time-resolved STEM enables study of atomic and nanoparticle dynamics.

  13. Real-time evolution of quenched quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Moeckel, Michael

    2009-06-24

    Detailed geometries in heterostructures allow for nonequilibrium transport measurements in correlated systems, pump-probe experiments for time-resolved study of many-body relaxation in molecules and solids and ultracold atom gases loaded onto optical lattices for high control of system parameters in real time. In all of these fields of research the nonequilibrium properties of a Fermi liquid can be relevant. A first approach to their understanding is the main content of this thesis. At the beginning I collect a variety of nonequilibrium phenomena and introduce to basic questions and concepts for their study. The key observation of this thesis, namely a characteristic mismatch of expectation values in equilibrium and nonequilibrium, is first illustrated for the squeezed oscillator. Afterwards, these observations are generalized to a larger class of one-particle models. Then the nonequilibrium behavior of a Fermi liquid is examined by analyzing the Fermi liquid phase of the Hubbard model in more than one dimension. After a sudden switch-on of a weak two-particle interaction to the noninteracting Fermi gas the relaxation of the many-body system is observed. For this purpose, the flow equation transformation is implemented for the Hubbard Hamiltonian. Then the discussion of the momentum distribution function and of the kinetic energy displays a three-step relaxation behavior of the Fermi liquid from the initial perturbation until thermalization is reached. In order to extend the study of sudden switching to arbitrary switching processes the calculation is repeated using the Keldysh perturbation theory. (orig.)

  14. Real-time evolution of quenched quantum systems

    International Nuclear Information System (INIS)

    Moeckel, Michael

    2009-01-01

    Detailed geometries in heterostructures allow for nonequilibrium transport measurements in correlated systems, pump-probe experiments for time-resolved study of many-body relaxation in molecules and solids and ultracold atom gases loaded onto optical lattices for high control of system parameters in real time. In all of these fields of research the nonequilibrium properties of a Fermi liquid can be relevant. A first approach to their understanding is the main content of this thesis. At the beginning I collect a variety of nonequilibrium phenomena and introduce to basic questions and concepts for their study. The key observation of this thesis, namely a characteristic mismatch of expectation values in equilibrium and nonequilibrium, is first illustrated for the squeezed oscillator. Afterwards, these observations are generalized to a larger class of one-particle models. Then the nonequilibrium behavior of a Fermi liquid is examined by analyzing the Fermi liquid phase of the Hubbard model in more than one dimension. After a sudden switch-on of a weak two-particle interaction to the noninteracting Fermi gas the relaxation of the many-body system is observed. For this purpose, the flow equation transformation is implemented for the Hubbard Hamiltonian. Then the discussion of the momentum distribution function and of the kinetic energy displays a three-step relaxation behavior of the Fermi liquid from the initial perturbation until thermalization is reached. In order to extend the study of sudden switching to arbitrary switching processes the calculation is repeated using the Keldysh perturbation theory. (orig.)

  15. Time- and energy resolved photoemission electron microscopy-imaging of photoelectron time-of-flight analysis by means of pulsed excitations

    International Nuclear Information System (INIS)

    Oelsner, Andreas; Rohmer, Martin; Schneider, Christian; Bayer, Daniela; Schoenhense, Gerd; Aeschlimann, Martin

    2010-01-01

    The present work enlightens the developments in time- and energy resolved photoemission electron microscopy over the past few years. We describe basic principles of the technique and demonstrate different applications. An energy- and time-filtering photoemission electron microscopy (PEEM) for real-time spectroscopic imaging can be realized either by a retarding field or hemispherical energy analyzer or by using time-of-flight optics with a delay line detector. The latter method has the advantage of no data loss at all as all randomly incoming particles are measured not only by position but also by time. This is of particular interest for pump-probe experiments in the femtosecond and attosecond time scale where space charge processes drastically limit the maximum number of photoemitted electrons per laser pulse. This work focuses particularly on time-of-flight analysis using a novel delay line detector. Time and energy resolved PEEM instruments with delay line detectors enable 4D imaging (x, y, Δt, E Kin ) on a true counting basis. This allows a broad range of applications from real-time observation of dynamic phenomena at surfaces to fs time-of-flight spectro-microscopy and even aberration correction. By now, these time-of-flight analysis instruments achieve intrinsic time resolutions of 108 ps absolute and 13.5 ps relative. Very high permanent measurement speeds of more than 4 million events per second in random detection regimes have been realized using a standard USB2.0 interface. By means of this performance, the time-resolved PEEM technique enables to display evolutions of spatially resolved (<25 nm) and temporal sliced images life on any modern computer. The method allows dynamics investigations of variable electrical, magnetic, and optical near fields at surfaces and great prospects in dynamical adaptive photoelectron optics. For dynamical processes in the ps time scale such as magnetic domain wall movements, the time resolution of the delay line detectors

  16. Time-resolved X-ray studies using third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Mills, D.M.

    1991-10-01

    The third generation, high-brilliance, hard x-ray, synchrotron radiation (SR) sources currently under construction (ESRF at Grenoble, France; APS at Argonne, Illinois; and SPring-8 at Harima, Japan) will usher in a new era of x-ray experimentation for both physical and biological sciences. One of the most exciting areas of experimentation will be the extension of x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high brilliance, and variable spectral bandwidth of these sources make them ideal for x-ray time-resolved studies. The temporal properties (bunch length, interpulse period, etc.) of these new sources will be summarized. Finally, the scientific potential and the technological challenges of time-resolved x-ray scattering from these new sources will be described. 13 refs., 4 figs

  17. Watching proteins function with time-resolved x-ray crystallography

    Science.gov (United States)

    Šrajer, Vukica; Schmidt, Marius

    2017-09-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115-54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201-41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651-9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237-51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242-6, Barends et al 2015 Science 350 445-50, Pande et al 2016 Science 352 725-9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline

  18. Optical atomic phase reference and timing.

    Science.gov (United States)

    Hollberg, L; Cornell, E H; Abdelrahmann, A

    2017-08-06

    Atomic clocks based on laser-cooled atoms have made tremendous advances in both accuracy and stability. However, advanced clocks have not found their way into widespread use because there has been little need for such high performance in real-world/commercial applications. The drive in the commercial world favours smaller, lower-power, more robust compact atomic clocks that function well in real-world non-laboratory environments. Although the high-performance atomic frequency references are useful to test Einstein's special relativity more precisely, there are not compelling scientific arguments to expect a breakdown in special relativity. On the other hand, the dynamics of gravity, evidenced by the recent spectacular results in experimental detection of gravity waves by the LIGO Scientific Collaboration, shows dramatically that there is new physics to be seen and understood in space-time science. Those systems require strain measurements at less than or equal to 10 -20 As we discuss here, cold atom optical frequency references are still many orders of magnitude away from the frequency stability that should be achievable with narrow-linewidth quantum transitions and large numbers of very cold atoms, and they may be able to achieve levels of phase stability, Δ Φ / Φ total  ≤ 10 -20 , that could make an important impact in gravity wave science.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).

  19. Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy

    Science.gov (United States)

    Söngen, Hagen; Reischl, Bernhard; Miyata, Kazuki; Bechstein, Ralf; Raiteri, Paolo; Rohl, Andrew L.; Gale, Julian D.; Fukuma, Takeshi; Kühnle, Angelika

    2018-03-01

    It seems natural to assume that defects at mineral surfaces critically influence interfacial processes such as the dissolution and growth of minerals in water. The experimental verification of this claim, however, is challenging and requires real-space methods with utmost spatial resolution, such as atomic force microscopy (AFM). While defects at mineral-water interfaces have been resolved in 2D AFM images before, the perturbation of the surrounding hydration structure has not yet been analyzed experimentally. In this Letter, we demonstrate that point defects on the most stable and naturally abundant calcite (10.4) surface can be resolved using high-resolution 3D AFM—even within the fifth hydration layer. Our analysis of the hydration structure surrounding the point defect shows a perturbation of the hydration with a lateral extent of approximately one unit cell. These experimental results are corroborated by molecular dynamics simulations.

  20. Determination of quenching coefficients by time resolved emission spectroscopy

    International Nuclear Information System (INIS)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F.

    2001-01-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved

  1. Determination of quenching coefficients by time resolved emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F. [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Laser- und Plasmaphysik

    2001-07-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved.

  2. An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments.

    Science.gov (United States)

    Materassi, Donatello; Baschieri, Paolo; Tiribilli, Bruno; Zuccheri, Giampaolo; Samorì, Bruno

    2009-08-01

    We describe the realization of an atomic force microscope architecture designed to perform customizable experiments in a flexible and automatic way. Novel technological contributions are given by the software implementation platform (RTAI-LINUX), which is free and open source, and from a functional point of view, by the implementation of hard real-time control algorithms. Some other technical solutions such as a new way to estimate the optical lever constant are described as well. The adoption of this architecture provides many degrees of freedom in the device behavior and, furthermore, allows one to obtain a flexible experimental instrument at a relatively low cost. In particular, we show how such a system has been employed to obtain measures in sophisticated single-molecule force spectroscopy experiments [Fernandez and Li, Science 303, 1674 (2004)]. Experimental results on proteins already studied using the same methodologies are provided in order to show the reliability of the measure system.

  3. Time-resolved quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Schwämmle, Veit; Sylvester, Marc

    2012-01-01

    proteins involved in the Ang-(1-7) signaling, we performed a mass spectrometry-based time-resolved quantitative phosphoproteome study of human aortic endothelial cells (HAEC) treated with Ang-(1-7). We identified 1288 unique phosphosites on 699 different proteins with 99% certainty of correct peptide...

  4. NSTX-U Advances in Real-Time C++11 on Linux

    Science.gov (United States)

    Erickson, Keith G.

    2015-08-01

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11 standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) will serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.

  5. NSTX-U Advances in Real-Time C++11 on Linux

    International Nuclear Information System (INIS)

    Erickson, Keith G.

    2015-01-01

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) will serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds

  6. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry. Part 2: Investigation of MO+ ions, effect of sample morphology, transport gas, and binding agents

    International Nuclear Information System (INIS)

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-01-01

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO + ions also yield signal spikes, but these MO + spikes generally occur at different times from their atomic ion counterparts.

  7. Early experience in centralized real time energy market

    International Nuclear Information System (INIS)

    Alaywan, Z.; Hernandez, L.; Martin, M.

    2005-01-01

    The current structure of the California Independent System Operator (ISO) was described. The study provided an outline of California's transition from a decentralized pool operation to a forward bilateral market through the implementation of a centralized real time market. Details of the institutional, economic and technological history of the power system were provided. Although the California real time market was implemented in order to simplify the power system, a number of operational challenges were observed. Discontinuities in the energy curve resulted in the implementation of a target price process, which aimed to resolve the overlap in energy bids. The design of the ISO's real time market did not provide a mechanism for bidders to execute real time energy trades. Regulation bidders also internalized energy in their regulation capacity bids. The real time market application (RTMA) provided the ISO with a substantial computer program to determine and account for nearly all aspects of generation unit scheduling and physical characteristics with a multiple ramp rate. The program combined optimal power flow (OPF) logic for energy flows in addition to mixed-integer nonlinear optimization of trading schedules, and system and security constraints. The RTMA used a multi-period security constrained economic dispatch (SCED) function to optimize energy dispatch schedules. Other features of the RTMA included security constrained unit commitment, security constrained economic dispatch, and dispatch schedule post processes. It was concluded that implementation of the RTMA has increased the efficiency of the ISO. A case study of the RTMA during an outage in November 2004 was provided. 5 refs., 1 tab., 2 figs

  8. Time-resolved EPR studies of the H atom: A stable heavy isotope of muonium

    International Nuclear Information System (INIS)

    Bartels, D.M.

    1994-01-01

    Muonium physicists and chemists, when they talk about ''primary processes,'' are probably concerned mostly about end-of-track phenomena in the slowing down of a many-MeV charged particle, analogous to the proton. The author's experience is with electron accelerators and radiolysis; hence, he will comment briefly on the differences and relative advantages of electron and proton radiolysis for the study of H atoms, as opposed to muonium. Then, he will take the liberty of defining primary processes to include the recombination reactions that may occur between geminate or quasi-geminate free radicals within radiolysis spurs

  9. Watching proteins function with time-resolved x-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Šrajer, Vukica; Schmidt, Marius

    2017-08-22

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We

  10. Watching proteins function with time-resolved x-ray crystallography

    International Nuclear Information System (INIS)

    Šrajer, Vukica; Schmidt, Marius

    2017-01-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol . 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol . 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs

  11. Local atomic structure of Fe/Cr multilayers: Depth-resolved method

    Science.gov (United States)

    Babanov, Yu. A.; Ponomarev, D. A.; Devyaterikov, D. I.; Salamatov, Yu. A.; Romashev, L. N.; Ustinov, V. V.; Vasin, V. V.; Ageev, A. L.

    2017-10-01

    A depth-resolved method for the investigation of the local atomic structure by combining data of X-ray reflectivity and angle-resolved EXAFS is proposed. The solution of the problem can be divided into three stages: 1) determination of the element concentration profile with the depth z from X-ray reflectivity data, 2) determination of the X-ray fluorescence emission spectrum of the element i absorption coefficient μia (z,E) as a function of depth and photon energy E using the angle-resolved EXAFS data Iif (E , ϑl) , 3) determination of partial correlation functions gij (z , r) as a function of depth from μi (z , E) . All stages of the proposed method are demonstrated on a model example of a multilayer nanoheterostructure Cr/Fe/Cr/Al2O3. Three partial pair correlation functions are obtained. A modified Levenberg-Marquardt algorithm and a regularization method are applied.

  12. Alignment of time-resolved data from high throughput experiments.

    Science.gov (United States)

    Abidi, Nada; Franke, Raimo; Findeisen, Peter; Klawonn, Frank

    2016-12-01

    provides a nonlinear alignment of two sequences that neither need to have equi-distant time points nor measurements at identical time points. The proposed method is evaluated with artificial as well as real data. The software is available as an R package tra (Time-Resolved data Alignment) which is freely available at: http://public.ostfalia.de/klawonn/tra.zip .

  13. Optical properties of organic semiconductor thin films. Static spectra and real-time growth studies

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, Ute

    2009-07-20

    The aim of this work was to establish the anisotropic dielectric function of organic thin films on silicon covered with native oxide and to study their optical properties during film growth. While the work focuses mainly on the optical properties of Diindenoperylene (DIP) films, also the optical response of Pentacene (PEN) films during growth is studied for comparison. Spectroscopic ellipsometry and differential reflectance spectroscopy are used to determine the dielectric function of the films ex-situ and in-situ, i.e. in air and in ultrahigh vacuum. Additionally, Raman- and fluorescence spectroscopy is utilized to characterize the DIP films serving also as a basis for spatially resolved optical measurements beyond the diffraction limit. Furthermore, X-ray reflectometry and atomic force microscopy are used to determine important structural and morphological film properties. The absorption spectrum of DIP in solution serves as a monomer reference. The observed vibronic progression of the HOMO-LUMO transition allows the determination of the Huang-Rhys parameter experimentally, which is a measure of the electronic vibrational coupling. The corresponding breathing modes are measured by Raman spectroscopy. The optical properties of DIP films on native oxide show significant differences compared to the monomer spectrum due to intermolecular interactions. First of all, the thin film spectra are highly anisotropic due to the structural order of the films. Furthermore the Frenkel exciton transfer is studied and the energy difference between Frenkel and charge transfer excitons is determined. Real-time measurements reveal optical differences between interfacial or surface molecules and bulk molecules that play an important role for device applications. They are not only performed for DIP films but also for PEN films. While for DIP films on glass the appearance of a new mode is visible, the spectra of PEN show a pronounced energy red-shift during growth. It is shown how the

  14. Real-time x-ray scattering study of the initial growth of organic crystals on polymer brushes

    Energy Technology Data Exchange (ETDEWEB)

    An, Sung Yup; Ahn, Kwangseok; Kim, Doris Yangsoo; Lee, Dong Ryeol, E-mail: drlee@ssu.ac.kr [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Lee, Hyun-Hwi [Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Cho, Jeong Ho, E-mail: jhcho94@skku.edu [Department of Chemical Engineering, SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-476 (Korea, Republic of)

    2014-04-21

    We studied the early-stage growth structures of pentacene organic crystals grown on polymer brushes using real-time x-ray scattering techniques. In situ x-ray reflectivity and atomic force microscopy analyses revealed that at temperatures close to the glass transition temperature of polymer brush, the pentacene overlayer on a polymer brush film showed incomplete condensation and 3D island structures from the first monolayer. A growth model based on these observations was used to quantitatively analyze the real-time anti-Bragg x-ray scattering intensities measured during pentacene growth to obtain the time-dependent layer coverage of the individual pentacene monolayers. The extracted total coverage confirmed significant desorption and incomplete condensation in the pentacene films deposited on the polymer brushes. These effects are ascribed to the change in the surface viscoelasticity of the polymer brushes around the glass transition temperature.

  15. Photolysis of Br2 in CCl4 studied by time-resolved X-ray scattering.

    Science.gov (United States)

    Kong, Qingyu; Lee, Jae Hyuk; Lo Russo, Manuela; Kim, Tae Kyu; Lorenc, Maciej; Cammarata, Marco; Bratos, Savo; Buslaps, Thomas; Honkimaki, Veijo; Ihee, Hyotcherl; Wulff, Michael

    2010-03-01

    A time-resolved X-ray solution scattering study of bromine molecules in CCl(4) is presented as an example of how to track atomic motions in a simple chemical reaction. The structures of the photoproducts are tracked during the recombination process, geminate and non-geminate, from 100 ps to 10 micros after dissociation. The relaxation of hot Br(2)(*) molecules heats the solvent. At early times, from 0.1 to 10 ns, an adiabatic temperature rise is observed, which leads to a pressure gradient that forces the sample to expand. The expansion starts after about 10 ns with the laser beam sizes used here. When thermal artefacts are removed by suitable scaling of the transient solvent response, the excited-state solute structures can be obtained with high fidelity. The analysis shows that 30% of Br(2)(*) molecules recombine directly along the X potential, 60% are trapped in the A/A' state with a lifetime of 5.5 ns, and 10% recombine non-geminately via diffusive motion in about 25 ns. The Br-Br distance distribution in the A/A' state peaks at 3.0 A.

  16. Deflection evaluation using time-resolved radiography

    International Nuclear Information System (INIS)

    Fry, D.A.; Lucero, J.P.

    1990-01-01

    Time-resolved radiography is the creation of an x-ray image for which both the start-exposure and stop-exposure times are known with respect to the event under study. The combination of image and timing are used to derive information about the event. The authors have applied time-resolved radiography to evaluate motions of explosive-driven events. In the particular application discussed in this paper, the author's intent is to measure maximum deflections of the components involved. Exposures are made during the time just before to just after the event of interest occurs. A smear or blur of motion out to its furthest extent is recorded on the image. Comparison of the dynamic images with static images allows deflection measurements to be made

  17. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    Science.gov (United States)

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. IoT real time data acquisition using MQTT protocol

    Science.gov (United States)

    Atmoko, R. A.; Riantini, R.; Hasin, M. K.

    2017-05-01

    The Internet of Things (IoT) provides ease to monitor and to gain sensor data through the Internet [1]. The need of high quality data is increasing to the extent that data monitoring and acquisition system in real time is required, such as smart city or telediagnostic in medical areas [2]. Therefore, an appropriate communication protocol is required to resolve these problems. Lately, researchers have developed a lot of communication protocols for IoT, of which each has advantages and disadvantages. This study proposes the utilization of MQTT as a communication protocol, which is one of data communication protocols for IoT. This study used temperature and humidity sensors because the physical parameters are often needed as parameters of environment condition [3]. Data acquisition was done in real-time and stored in MySQL database. This study is also completed by interface web-based and mobile for online monitoring. This result of this study is the enhancement of data quality and reliability using MQTT protocol.

  19. A Study on the Safety Evaluation of Real-Time Operating System in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Hyung Tae; Jeong, Choong Heui; Kim, Dail Il

    2008-01-01

    Along with the digitalisation of the nuclear Instrumentation and Control (I and C) system, Real-Time Operating System (RTOS) is being widely used. The RTOS used in nuclear I and C system should satisfy strict performance requirements and resolve various technical issues under complicated conditions. In this regard a careful safety evaluation of RTOS is important for the safety of Nuclear Power Plants. The objective of this study is to provide a guideline for safety evaluation of RTOS appropriate to the nuclear I and C system. In this paper, we suggest evaluation approach for the RTOS

  20. A Study on the Safety Evaluation of Real-Time Operating System in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Tae; Jeong, Choong Heui; Kim, Dail Il [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-10-15

    Along with the digitalisation of the nuclear Instrumentation and Control (I and C) system, Real-Time Operating System (RTOS) is being widely used. The RTOS used in nuclear I and C system should satisfy strict performance requirements and resolve various technical issues under complicated conditions. In this regard a careful safety evaluation of RTOS is important for the safety of Nuclear Power Plants. The objective of this study is to provide a guideline for safety evaluation of RTOS appropriate to the nuclear I and C system. In this paper, we suggest evaluation approach for the RTOS.

  1. Time-resolved FTIR emission studies of laser photofragmentation and radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Leone, S.R. [Univ. of Colorado, Boulder (United States)

    1993-12-01

    Recent studies have focused specifically on collision processes, such as single collision energy transfer, reaction dynamics, and radical reactions. The authors employ novel FTIR techniques in the study of single collision energy transfer processes using translationally fast H atom, as well as radical-radical reactions, e.g. CH{sub 3} + O, CF{sub 3} + H(D), and Cl + C{sub 2}H{sub 5}. The fast atoms permit unique high energy regions of certain transition states of combustion species to be probed for the first time.

  2. Time-resolved emission from laser-ablated uranium

    International Nuclear Information System (INIS)

    Stoffels, E.; Mullen, J. van der; Weijer, P. van de

    1991-01-01

    Time-resolved emission spectra from the plasma, induced by laser ablation of uranium samples have been studied. The dependence of the emission intensity on time is strongly affected by the nature and pressure of the buffer gas. Air and argon have been used in the pressure range 0.002 to 5 mbar. The emission intensity as a function of time displays three maxima, indicating that three different processes within the expanding plasma plume are involved. On basis of the time-resolved spectra we propose a model that explains qualitatively the phenomena that are responsible for this time behaviour. (author)

  3. Time-resolved laser-induced fluorescence system

    Science.gov (United States)

    Bautista, F. J.; De la Rosa, J.; Gallegos, F. J.

    2006-02-01

    Fluorescence methods are being used increasingly in the measurement of species concentrations in gases, liquids and solids. Laser induced fluorescence is spontaneous emission from atoms or molecules that have been excited by laser radiation. Here we present a time resolved fluorescence instrument that consists of a 5 μJ Nitrogen laser (337.1 nm), a sample holder, a quartz optical fiber, a spectrometer, a PMT and a PC that allows the measurement of visible fluorescence spectra (350-750 nm). Time response of the system is approximately 5 ns. The instrument has been used in the measurement of colored bond paper, antifreeze, diesel, cochineal pigment and malignant tissues. The data acquisition was achieved through computer control of a digital oscilloscope (using General Purpose Interface Bus GPIB) and the spectrometer via serial (RS232). The instrument software provides a graphic interface that lets make some data acquisition tasks like finding fluorescence spectra, and fluorescence lifetimes. The software was developed using the Lab-View 6i graphic programming package and can be easily managed in order to add more functions to it.

  4. A novel multiplex absorption spectrometer for time-resolved studies

    Science.gov (United States)

    Lewis, Thomas; Heard, Dwayne E.; Blitz, Mark A.

    2018-02-01

    A Time-Resolved Ultraviolet/Visible (UV/Vis) Absorption Spectrometer (TRUVAS) has been developed that can simultaneously monitor absorption at all wavelengths between 200 and 800 nm with millisecond time resolution. A pulsed photolysis laser (KrF 248 nm) is used to initiate chemical reactions that create the target species. The absorption signals from these species evolve as the composition of the gas in the photolysis region changes over time. The instrument can operate at pressures over the range ˜10-800 Torr and can measure time-resolved absorbances systems (in particular the Herriott cell), there are fundamental differences, most notably the ability to adjust each mirror to maximise the overlap between the probe beam and the photolysis laser. Another feature which aids the sensitivity and versatility of the system is the use of 2 high-throughput spectrographs coupled with sensitive line-array CCDs, which can measure absorbance from ˜200 to 800 nm simultaneously. The capability of the instrument is demonstrated via measurements of the absorption spectrum of the peroxy radical, HOCH2CH2O2, and its self-reaction kinetics.

  5. Developments in time-resolved x-ray research at APS beamline 7ID

    Energy Technology Data Exchange (ETDEWEB)

    Walko, D. A., E-mail: d-walko@anl.gov; Adams, B. W.; Doumy, G.; Dufresne, E. M.; Li, Yuelin; March, A. M.; Sandy, A. R.; Wang, Jin; Wen, Haidan; Zhu, Yi [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2016-07-27

    The 7ID beamline of the Advanced Photon Source (APS) is dedicated to time-resolved research using x-ray imaging, scattering, and spectroscopy techniques. Time resolution is achieved via gated detectors and/or mechanical choppers in conjunction with the time structure of the x-ray beam. Three experimental hutches allow for a wide variety of experimental setups. Major areas of research include atomic, molecular, and optical physics; chemistry; condensed matter physics in the bulk, thin film, and surface regimes; and fluid-spray dynamics. Recent developments in facilities at 7ID include a high-power, high-repetition-rate picosecond laser to complement the 1 kHz ultrafast laser. For the ultrafast laser, a newly commissioned optical parametric amplifier provides pump wavelength from 0.2 to 15 µm with energy per pulse up to 200 µJ. A nanodiffraction station has also been commissioned, using Fresnel zone-plate optics to achieve a focused x-ray spot of 300 nm. This nanoprobe is not only used to spatially resolve the evolution of small features in samples after optical excitation, but also has been combined with an intense THz source to study material response under ultrafast electric fields.

  6. Studying Complex Interactions in Real Time

    DEFF Research Database (Denmark)

    Mønster, Dan

    2017-01-01

    The study of human behavior must take into account the social context, and real-time, networked experiments with multiple participants is one increasingly popular way to achieve this. In this paper a framework based on Python and XMPP is presented that aims to make it easy to develop...

  7. Investigation of Co nanoparticle formation using time-dependent and spatially-resolved X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zinoveva, S

    2008-04-15

    A crucial step towards controlled synthesis of nanoparticles is the detailed understanding of the various chemical processes that take place during the synthesis. X-ray Absorption Spectroscopy (XAS) is especially suitable for elucidating the type and structure of the intermediate metal species. It is applicable to materials that have no long range order and provides information on both electronic and geometric structures. Here a comparative study is reported of the formation of cobalt nanoparticles via thermolysis of two organometallic precursors dicobalt octacarbonyl (DCO) and alkyne-bridged dicobalt hexacarbonyl (ADH) in the presence of aluminum organics. Using time-dependent XAS a reaction pathway different from both the atom based La Mer model and the Watzky and Finsky autocatalytic surface growth model is observed. Where prior to the nucleation several intermediates are formed and the initial nucleus is composed of Co atoms coordinated with ligands Co{sub n}(CO){sub m} with n=2-3, m=3-5. The formation of Co nanoparticles was also investigated using a reaction different from thermolysis of cobalt carbonyls, namely reduction of Co (II) acetate by sodium borohydrate. Here the combination of microreactor system and spatially resolved XAS allowed ''in situ'' monitoring of the wet chemical synthesis. Several steps of the reaction were spatially resolved in the microreactor. The vertical size of the X-ray beam (50 {mu}m) focused with Kirkpatrick-Baez mirror system, determines the time resolution (better than 2 ms). The results provide direct insight into rapid process of nanoparticles formation and demonstrate the potential of this new technique for the fundamental studies of such type of processes where miniaturization and timeresolution are important. Like in the carbonyls thermolysis no evidence for the reduction of the starting complex to isolated Co{sup 0} atoms followed by nucleation of Co{sup 0} atoms was observed. (orig.)

  8. Investigation of Co nanoparticle formation using time-dependent and spatially-resolved X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zinoveva, S.

    2008-04-15

    A crucial step towards controlled synthesis of nanoparticles is the detailed understanding of the various chemical processes that take place during the synthesis. X-ray Absorption Spectroscopy (XAS) is especially suitable for elucidating the type and structure of the intermediate metal species. It is applicable to materials that have no long range order and provides information on both electronic and geometric structures. Here a comparative study is reported of the formation of cobalt nanoparticles via thermolysis of two organometallic precursors dicobalt octacarbonyl (DCO) and alkyne-bridged dicobalt hexacarbonyl (ADH) in the presence of aluminum organics. Using time-dependent XAS a reaction pathway different from both the atom based La Mer model and the Watzky and Finsky autocatalytic surface growth model is observed. Where prior to the nucleation several intermediates are formed and the initial nucleus is composed of Co atoms coordinated with ligands Co{sub n}(CO){sub m} with n=2-3, m=3-5. The formation of Co nanoparticles was also investigated using a reaction different from thermolysis of cobalt carbonyls, namely reduction of Co (II) acetate by sodium borohydrate. Here the combination of microreactor system and spatially resolved XAS allowed ''in situ'' monitoring of the wet chemical synthesis. Several steps of the reaction were spatially resolved in the microreactor. The vertical size of the X-ray beam (50 {mu}m) focused with Kirkpatrick-Baez mirror system, determines the time resolution (better than 2 ms). The results provide direct insight into rapid process of nanoparticles formation and demonstrate the potential of this new technique for the fundamental studies of such type of processes where miniaturization and timeresolution are important. Like in the carbonyls thermolysis no evidence for the reduction of the starting complex to isolated Co{sup 0} atoms followed by nucleation of Co{sup 0} atoms was observed. (orig.)

  9. Time-resolved hard x-ray studies using third-generation synchrotron radiation sources (abstract)

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The third-generation, high-brilliance, synchrotron radiation sources currently under construction will usher in a new era of x-ray research in the physical, chemical, and biological sciences. One of the most exciting areas of experimentation will be the extension of static x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high-brilliance, variable spectral bandwidth, and large particle beam energies of these sources make them ideal for hard x-ray, time-resolved studies. The primary focus of this presentation will be on the novel instrumentation required for time-resolved studies such as optics which can increase the flux on the sample or disperse the x-ray beam, detectors and electronics for parallel data collection, and methods for altering the natural time structure of the radiation. This work is supported by the U.S. Department of Energy, BES-Materials Science, under Contract No. W-31-109-ENG-38

  10. Real-time Detection of Antihydrogen Annihilations and Applications to Spectroscopy

    Directory of Open Access Journals (Sweden)

    Stracka Simone

    2014-04-01

    Full Text Available A detection scheme based on real-time measurement of antihydrogen annihilations during radiation injection is presented, which allows an efficient use of the trapped atoms for laser and microwave spectroscopy. The application of real-time detection of H¯$\\bar H$ annihilations to microwave spectroscopy, which yielded the first evidence of microwave induced spin-flip transitions in trapped antihydrogen [1], is reported.

  11. Time-resolved absorption measurements on OMEGA

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; DaSilva, L.; Delettrez, J.; Gregory, G.G.; Richardson, M.C.

    1986-01-01

    Time-resolved measurements of the incident laser light that is scattered and/or refracted from targets irradiated by the 24 uv-beam OMEGA laser at LLE, have provided some interesting features related to time-resolved absorption. The decrease in laser absorption characteristic of irradiating a target that implodes during the laser pulse has been observed. The increase in absorption expected as the critical density surface moves from a low to a high Z material in the target has also been noted. The detailed interpretation of these results is made through comparisons with simulation using the code LILAC, as well as with streak data from time-resolved x-ray imaging and spectroscopy. In addition, time and space-resolved imaging of the scattered light yields information on laser irradiation uniformity conditions on the target. The report consists of viewgraphs

  12. Standing surface acoustic waves in LiNbO3 studied by time resolved X-ray diffraction at Petra III

    Directory of Open Access Journals (Sweden)

    T. Reusch

    2013-07-01

    Full Text Available We have carried out time resolved stroboscopic diffraction experiments on standing surface acoustic waves (SAWs of Rayleigh type on a LiNbO3 substrate. A novel timing system has been developed and commissioned at the storage ring Petra III of Desy, allowing for phase locked stroboscopic diffraction experiments applicable to a broad range of timescales and experimental conditions. The combination of atomic structural resolution with temporal resolution on the picosecond time scale allows for the observation of the atomistic displacements for each time (or phase point within the SAW period. A seamless transition between dynamical and kinematic scattering regimes as a function of the instantaneous surface amplitude induced by the standing SAW is observed. The interpretation and control of the experiment, in particular disentangling the diffraction effects (kinematic to dynamical diffraction regime from possible non-linear surface effects is unambiguously enabled by the precise control of phase between the standing SAW and the synchrotron bunches. The example illustrates the great flexibility and universality of the presented timing system, opening up new opportunities for a broad range of time resolved experiments.

  13. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    International Nuclear Information System (INIS)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  14. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G. [Imperial College London, London (United Kingdom); Drakopoulos, Michael [Diamond Light Source, I12 Joint Engineering, Environmental, Processing (JEEP) Beamline, Didcot, Oxfordshire (United Kingdom); Rack, Alexander [European Synchrotron Radiation Facility, Grenoble (France); Eakins, Daniel E., E-mail: d.eakins@imperial.ac.uk [Imperial College London, London (United Kingdom)

    2016-03-24

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  15. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.

    Science.gov (United States)

    Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun

    2014-07-09

    Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.

  16. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    NARCIS (Netherlands)

    Nimalasuriya, T.; Flikweert, A.J.; Stoffels, W.W.; Haverlag, M.; Mullen, van der J.J.A.M.; Pupat, N.B.M.

    2006-01-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved

  17. Time-resolved resonance Raman spectroscopy of radiation-chemical processes

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures

  18. Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media.

    Science.gov (United States)

    Nomura, Y; Hazeki, O; Tamura, M

    1997-06-01

    The time-resolved Beer-Lambert law proposed for oxygen monitoring using pulsed light was extended to the non-time-resolved case in a scattered medium such as living tissues with continuous illumination. The time-resolved Beer-Lambert law was valid for the phantom model and living tissues in the visible and near-infrared regions. The absolute concentration and oxygen saturation of haemoglobin in rat brain and thigh muscle could be determined. The temporal profile of rat brain was reproduced by Monte Carlo simulation. When the temporal profiles of rat brain under different oxygenation states were integrated with time, the absorbance difference was linearly related to changes in the absorption coefficient. When the simulated profiles were integrated, there was a linear relationship within the absorption coefficient which was predicted for fractional inspiratory oxygen concentration from 10 to 100% and, in the case beyond the range of the absorption coefficient, the deviation from linearity was slight. We concluded that an optical pathlength which is independent of changes in the absorption coefficient is a good approximation for near-infrared oxygen monitoring.

  19. Precise real-time correction of Anger camera deadtime losses

    International Nuclear Information System (INIS)

    Woldeselassie, Tilahun

    2002-01-01

    An earlier paper dealt with modeling of the camera in terms of the resolving times, τ 0 and T, of the paralyzable detector and nonparalyzable computer system, respectively, for the case of a full energy window. A second paper presented a decaying source method for the accurate real-time measurement of these resolving times. The present paper first shows that the detector system can be treated as a single device with a resolving time τ 0 dependent on source distribution. It then discusses camera operation with an energy window, window fraction being f w =R p /R d ≤1, where R d and R p are the detector and pulse-height-analyzer (PHA) outputs, respectively. The detector resolving time is shown to vary with window fraction according to τ 0p =τ 0p /f w , while T is unaffected, so that operation may be paralyzable or nonparalyzable depending on window setting and the ratio k T =T/τ 0 . Regions of interest are described in terms of the ROI fraction, f r =R r /R≤1, and resolving time, τ 0r =τ 0p /f r , where R and R r are the recorded count rates for the field-of-view and the region-of-interest, respectively. As τ 0p and τ 0r are expected to vary with input rate, it is shown that these can be measured in real-time using the decaying source method. It is then shown that camera operation both with f w ≤1 and f r ≤1 can be described by the simple paralyzable equation r=ne -n , where n=N w τ 0p =N r τ 0r and r=R p τ 0p =R r τ 0r , N w , and N r being the input rates within the energy window and the region of interest, respectively. An analytical solution to the paralyzable equation is then presented, which enables the input rates N w =n/τ 0p and N r =n/τ 0r to be obtained correct to better than 0.52% all the way up to the peak response point of the camera

  20. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse and by me......This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... and by measuring the transmission of a terahertz probe pulse, the photoconductivity of the excited sample can be obtained. By changing the relative arrival time at the sample between the pump and the probe pulse, the photoconductivity dynamics can be studied on a picosecond timescale. The rst studied semiconductor...

  1. Atomically resolved tissue integration.

    Science.gov (United States)

    Karlsson, Johan; Sundell, Gustav; Thuvander, Mattias; Andersson, Martin

    2014-08-13

    In the field of biomedical technology, a critical aspect is the ability to control and understand the integration of an implantable device in living tissue. Despite the technical advances in the development of biomaterials, the elaborate interplay encompassing materials science and biology on the atomic level is not very well understood. Within implantology, anchoring a biomaterial device into bone tissue is termed osseointegration. In the most accepted theory, osseointegration is defined as an interfacial bonding between implant and bone; however, there is lack of experimental evidence to confirm this. Here we show that atom probe tomography can be used to study the implant-tissue interaction, allowing for three-dimensional atomic mapping of the interface region. Interestingly, our analyses demonstrated that direct contact between Ca atoms and the implanted titanium oxide surface is formed without the presence of a protein interlayer, which means that a pure inorganic interface is created, hence giving experimental support to the current theory of osseointegration. We foresee that this result will be of importance in the development of future biomaterials as well as in the design of in vitro evaluation techniques.

  2. Real-time systems

    OpenAIRE

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  3. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    Science.gov (United States)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  4. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    Science.gov (United States)

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.

  5. Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Neppl, Stefan, E-mail: sneppl@lbl.gov; Gessner, Oliver

    2015-04-15

    Highlights: • Ultrafast interfacial charge transfer is probed with atomic site specificity. • Femtosecond X-ray photoelectron spectroscopy using a free electron laser. • Efficient and flexible picosecond X-ray photoelectron pump–probe scheme using synchrotron radiation. - Abstract: X-ray photoelectron spectroscopy (XPS) is one of the most powerful techniques to quantitatively analyze the chemical composition and electronic structure of surfaces and interfaces in a non-destructive fashion. Extending this technique into the time domain has the exciting potential to shed new light on electronic and chemical dynamics at surfaces by revealing transient charge configurations with element- and site-specificity. Here, we describe prospects and challenges that are associated with the implementation of picosecond and femtosecond time-resolved X-ray photoelectron spectroscopy at third-generation synchrotrons and X-ray free-electron lasers, respectively. In particular, we discuss a series of laser-pump/X-ray-probe photoemission experiments performed on semiconductor surfaces, molecule-semiconductor interfaces, and films of semiconductor nanoparticles that demonstrate the high sensitivity of time-resolved XPS to light-induced charge carrier generation, diffusion and recombination within the space charge layers of these materials. Employing the showcase example of photo-induced electronic dynamics in a dye-sensitized semiconductor system, we highlight the unique possibility to probe heterogeneous charge transfer dynamics from both sides of an interface, i.e., from the perspective of the molecular electron donor and the semiconductor acceptor, simultaneously. Such capabilities will be crucial to improve our microscopic understanding of interfacial charge redistribution and associated chemical dynamics, which are at the heart of emerging energy conversion, solar fuel generation, and energy storage technologies.

  6. Time-resolved photoelectron spectroscopy and ab initio multiple spawning studies of hexamethylcyclopentadiene

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom.......Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....

  7. In situ and real-time small-angle neutron scattering studies of living anionic polymerization process and polymerization-induced self-assembly of block copolymers

    International Nuclear Information System (INIS)

    Tanaka, H.; Yamauchi, K.; Hasegawa, H.; Miyamoto, N.; Koizumi, S.; Hashimoto, T.

    2006-01-01

    We have studied a simultaneous living anionic polymerization process of isoprene and deuterated styrene in deuterated benzene with sec-buthyl lithium as an initiator into polyisoprene-block-poly(styrene-d 8 ) and the polymerization-induced self-assembling process. This polymerization-induced self-assembling process was directly observed by an in situ and real-time small-angle neutron scattering (SANS) experiment. The time-resolved SANS studies enabled us to explore a time evolution of hierarchical structures induced by a time evolution of the primary structure (linear sequential connection of two monomers)

  8. Diffusive real-time dynamics of a particle with Berry curvature

    Science.gov (United States)

    Misaki, Kou; Miyashita, Seiji; Nagaosa, Naoto

    2018-02-01

    We study theoretically the influence of Berry phase on the real-time dynamics of the single particle focusing on the diffusive dynamics, i.e., the time dependence of the distribution function. Our model can be applied to the real-time dynamics of intraband relaxation and diffusion of optically excited excitons, trions, or particle-hole pair. We found that the dynamics at the early stage is deeply influenced by the Berry curvature in real space (B ), momentum space (Ω ), and also the crossed space between these two (C ). For example, it is found that Ω induces the rotation of the wave packet and causes the time dependence of the mean square displacement of the particle to be linear in time t at the initial stage; it is qualitatively different from the t3 dependence in the absence of the Berry curvature. It is also found that Ω and C modify the characteristic time scale of the thermal equilibration of momentum distribution. Moreover, the dynamics under various combinations of B ,Ω , and C shows singular behaviors such as the critical slowing down or speeding up of the momentum equilibration and the reversals of the direction of rotations. The relevance of our model for time-resolved experiments in transition metal dichalcogenides is also discussed.

  9. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    Science.gov (United States)

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  10. Analysis of time- and space-resolved Na-, Ne-, and F-like emission from a laser-produced bromine plasma

    International Nuclear Information System (INIS)

    Goldstein, W.H.; Young, B.K.F.; Osterheld, A.L.; Stewart, R.E.; Walling, R.S.; Bar-Shalom, A.

    1991-01-01

    Advances in the efficiency and accuracy of computational atomic physics and collisional radiative modeling promise to place the analysis and diagnostic application of L-shell emission on a par with the simpler K-shell regime. Coincident improvements in spectroscopic plasma measurements yield optically thin emission spectra from small, homogeneous regions of plasma, localized both in space and time. Together, these developments can severely test models for high-density, high-temperature plasma formation and evolution, and non-LTE atomic kinetics. In this paper we present highly resolved measurements of n=3 to n=2 X-ray line emission from a laser-produced bromine micro plasma. The emission is both space- and time-resolved, allowing us to apply simple, steady-state, 0-dimensional spectroscopic models to the analysis. These relativistic, multi-configurational, distorted wave collisional-radiative models were created using the HULLAC atomic physics package. Using these models, we have analyzed the F-like, Ne-like and Na-like (satellite) spectra with respect to temperature, density and charge-state distribution. This procedure leads to a full characterization of the plasma conditions. 9 refs., 3 figs

  11. Intra- and intercycle interference of angle-resolved electron emission in laser-assisted XUV atomic ionization

    Science.gov (United States)

    Gramajo, A. A.; Della Picca, R.; López, S. D.; Arbó, D. G.

    2018-03-01

    A theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser is presented. Well-established theories are usually used to describe the laser-assisted photoelectron effect: the well-known soft-photon approximation firstly posed by Maquet et al (2007 J. Mod. Opt. 54 1847) and Kazansky’s theory in (2010 Phys. Rev. A 82, 033420). However, these theories completely fail to predict the electron emission perpendicularly to the polarization direction. Making use of a semiclassical model (SCM), we study the angle-resolved energy distribution of PEs for the case that both fields are linearly polarized in the same direction. We thoroughly analyze and characterize two different emission regions in the angle-energy domain: (i) the parallel-like region with contribution of two classical trajectories per optical cycle and (ii) the perpendicular-like region with contribution of four classical trajectories per optical cycle. We show that our SCM is able to assess the interference patterns of the angle-resolved PE spectrum in the two different mentioned regions. Electron trajectories stemming from different optical laser cycles give rise to angle-independent intercycle interferences known as sidebands. These sidebands are modulated by an angle-dependent coarse-grained structure coming from the intracycle interference of the electron trajectories born during the same optical cycle. We show the accuracy of our SCM as a function of the time delay between the IR and the XUV pulses and also as a function of the laser intensity by comparing the semiclassical predictions of the angle-resolved PE spectrum with the continuum-distorted wave strong field approximation and the ab initio solution of the time-dependent Schrödinger equation.

  12. Seventh international conference on time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H. [comps.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  13. Time resolved laser induced fluorescence on argon intermediate pressure microwave discharges: Measuring the depopulation rates of the 4p and 5p excited levels as induced by electron and atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, J.M., E-mail: j.m.palomares-linares@tue.nl; Graef, W.A.A.D.; Hübner, S.; Mullen, J.J.A.M. van der, E-mail: jjamvandermullen@gmail.com

    2013-10-01

    The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG–Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon statistics while the low energy per pulse avoids intrusive plasma laser interactions. An analysis shows that, despite the low energy per pulse, saturation can still be achieved even when the geometrical overlap and spectral overlap are optimal. Out of the various studies that can be performed with this setup we confine the current paper to the study of the direct responses to the laser pump action of three 4p and one 5p levels of the Ar system. By changing the plasma in a controlled way one gets for these levels the rates of electron and atom quenching and therewith the total destruction rates of electron and atom collisions. Comparison with literature shows that the classical hard sphere collision rate derived for hydrogen gives a good description for the observed electron quenching (e-quenching) in Ar whereas for heavy particle quenching (a-quenching) this agreement was only found for the 5p level. An important parameter in the study of electron excitation kinetics is the location of the boundary in the atomic system for which the number of electron collisions per radiative life time equals unity. It is observed that for the Ar system this boundary is positioned lower than what is expected on grounds of H-like formulas. - Highlights: • Time resolved laser induced fluorescence at high repetition rate • Decay times as function of pressure, electron density and temperature • Measurement of total electron atom depopulation rates • Reasonable agreement of electron total rates with hard sphere approximations.

  14. Holographic method for site-resolved detection of a 2D array of ultracold atoms

    Science.gov (United States)

    Hoffmann, Daniel Kai; Deissler, Benjamin; Limmer, Wolfgang; Hecker Denschlag, Johannes

    2016-08-01

    We propose a novel approach to site-resolved detection of a 2D gas of ultracold atoms in an optical lattice. A near-resonant laser beam is coherently scattered by the atomic array, and after passing a lens its interference pattern is holographically recorded by superimposing it with a reference laser beam on a CCD chip. Fourier transformation of the recorded intensity pattern reconstructs the atomic distribution in the lattice with single-site resolution. The holographic detection method requires only about two hundred scattered photons per atom in order to achieve a high reconstruction fidelity of 99.9 %. Therefore, additional cooling during detection might not be necessary even for light atomic elements such as lithium. Furthermore, first investigations suggest that small aberrations of the lens can be post-corrected in imaging processing.

  15. Real-time personal exposure and health condition monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Saitou, Isamu; Kanda, Hiroaki; Asai, Akio; Takeishi, Naoki; Ota, Yoshito [Hitachi Aloka Medical, Ltd., Measuring Systems Engineering Dept., Tokyo (Japan); Hanawa, Nobuhiro; Ueda, Hisao; Kusunoki, Tsuyoshi; Ishitsuka, Etsuo; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    JAEA (Japan Atomic Energy Agency) and HAM (Hitachi Aloka Medical, Ltd) have proposed novel monitoring system for workers of nuclear facility. In these facilities, exposure management for workers is mainly used access control and personal exposure recordings. This system is currently only for reports management but is not confirmative for surveillance when work in progress. Therefore, JAEA and HAM integrate access control and personal exposure recordings and two real-time monitoring systems which are position sensing and vital sign monitor. Furthermore change personal exposure management to real-time management, this system integration prevents workers from risk of accidents, and makes possible take appropriate action quickly. This novel system is going to start for tentative operation, using position sensing and real-time personal dosimeter with database in Apr. 2012. (author)

  16. Alternative majority-voting methods for real-time computing systems

    Science.gov (United States)

    Shin, Kang G.; Dolter, James W.

    1989-01-01

    Two techniques that provide a compromise between the high time overhead in maintaining synchronous voting and the difficulty of combining results in asynchronous voting are proposed. These techniques are specifically suited for real-time applications with a single-source/single-sink structure that need instantaneous error masking. They provide a compromise between a tightly synchronized system in which the synchronization overhead can be quite high, and an asynchronous system which lacks suitable algorithms for combining the output data. Both quorum-majority voting (QMV) and compare-majority voting (CMV) are most applicable to distributed real-time systems with single-source/single-sink tasks. All real-time systems eventually have to resolve their outputs into a single action at some stage. The development of the advanced information processing system (AIPS) and other similar systems serve to emphasize the importance of these techniques. Time bounds suggest that it is possible to reduce the overhead for quorum-majority voting to below that for synchronous voting. All the bounds assume that the computation phase is nonpreemptive and that there is no multitasking.

  17. Development of time-resolved electron momentum spectroscopy. Toward real-time imaging of frontier electrons in molecular reactions

    International Nuclear Information System (INIS)

    Yamazaki, M.; Takahashi, M.

    2016-01-01

    This report will introduce a new experimental technique to readers, which we would like to propose towards advances in the field of molecular reaction dynamics. It is time-resolved electron momentum spectroscopy and aims to take in momentum space snapshots of the rapid change of molecular orbitals, which is the driving force behind any structural changes occurring in transient molecules. Following a description of the working principle of the technique, some preliminary result will be presented in order to illustrate the current performance of the apparatus. (author)

  18. Evolution of a Rippled Membrane during Phospholipase A2 Hydrolysis Studied by Time-Resolved AFM

    DEFF Research Database (Denmark)

    Leidy, Chad; Mouritsen, Ole G.; Jørgensen, Kent

    2004-01-01

    The sensitivity of phospholipase A2 (PLA2) for lipid membrane curvature is explored by monitoring, through time-resolved atomic force microscopy, the hydrolysis of supported double bilayers in the ripple phase. The ripple phase presents a corrugated morphology. PLA2 is shown to have higher activity...... toward the ripple phase compared to the gel phase in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes, indicating its preference for this highly curved membrane morphology. Hydrolysis of the stable and metastable ripple structures is monitored for equimolar DMPC/1,2-distearoyl- sn-glycero-3....... This is reflected in an increase in ripple spacing, followed by a sudden flattening of the lipid membrane during hydrolysis. Hydrolysis of the ripple phase results in anisotropic holes running parallel to the ripples, suggesting that the ripple phase has strip regions of higher sensitivity to enzymatic attack. Bulk...

  19. Decomposition of time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schmid, P.J.; Violato, D.; Scarano, F.

    2012-01-01

    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured threedimensional flow fields have

  20. A theoretical-electron-density databank using a model of real and virtual spherical atoms.

    Science.gov (United States)

    Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian

    2017-08-01

    A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.

  1. A time resolving data acquisition system for multiple high-resolution position sensitive detectors

    International Nuclear Information System (INIS)

    Dimmler, D.G.

    1988-01-01

    An advanced time resolving data collection system for use in neutron and x-ray spectrometry has been implemented and put into routine operation. The system collects data from high-resolution position-sensitive area detectors with a maximum cumulative rate of 10/sup 6/ events per second. The events are sorted, in real-time, into many time-slice arrays. A programmable timing control unit allows for a wide choice of time sequences and time-slice array sizes. The shortest dwell time on a slice may be below 1 ms and the delay to switch between slices is zero

  2. Rovibrationally Resolved Time-Dependent Collisional-Radiative Model of Molecular Hydrogen and Its Application to a Fusion Detached Plasma

    Directory of Open Access Journals (Sweden)

    Keiji Sawada

    2016-12-01

    Full Text Available A novel rovibrationally resolved collisional-radiative model of molecular hydrogen that includes 4,133 rovibrational levels for electronic states whose united atom principal quantum number is below six is developed. The rovibrational X 1 Σ g + population distribution in a SlimCS fusion demo detached divertor plasma is investigated by solving the model time dependently with an initial 300 K Boltzmann distribution. The effective reaction rate coefficients of molecular assisted recombination and of other processes in which atomic hydrogen is produced are calculated using the obtained time-dependent population distribution.

  3. Real-time trichromatic holographic interferometry: preliminary study

    Science.gov (United States)

    Albe, Felix; Bastide, Myriam; Desse, Jean-Michel; Tribillon, Jean-Louis H.

    1998-08-01

    In this paper we relate our preliminary experiments on real- time trichromatic holographic interferometry. For this purpose a CW `white' laser (argon and krypton of Coherent- Radiation, Spectrum model 70) is used. This laser produces about 10 wavelengths. A system consisting of birefringent plates and polarizers allows to select a trichromatic TEM00 triplet: blue line ((lambda) equals 476 nm, 100 mW), green line ((lambda) equals 514 nm, 100 mW) and red line ((lambda) equals 647 nm, 100 mW). In a first stage we recorded a trichromatic reflection hologram with a separate reference beam on a single-layer silver-halide panchromatic plate (PFG 03C). After processing, the hologram is put back into the original recording set-up, as in classical experiments on real-time monochromatic holographic interferometry. So we observe interference fringes between the 3 reconstructed waves and the 3 actual waves. The interference fringes of the phenomenon are observed on a screen and recorded by a video camera at 25 frames per second. A color video film of about 3 minutes of duration is presented. Some examples related to phase objects are presented (hot airflow from a candle, airflow from a hand). The actual results show the possibility of using this technique to study, in real time, aerodynamic wakes and mechanical deformation.

  4. Ultrafast Time-Resolved Photoluminescence Studies of Gallium-Arsenide

    Science.gov (United States)

    Johnson, Matthew Bruce

    This thesis concerns the study of ultrafast phenomena in GaAs using time-resolved photoluminescence (PL). The thesis consists of five chapters. Chapter one is an introduction, which discusses the study of ultrafast phenomena in semiconductors. Chapter two is a description of the colliding-pulse mode-locked (CPM) ring dye laser, which is at the heart of the experimental apparatus used in this thesis. Chapter three presents a detailed experimental and theoretical investigation of photoluminescence excitation correlation spectroscopy (PECS), the novel technique which is used to time-resolve ultrafast PL phenomena. Chapters 4 and 5 discuss two applications of the PECS technique. In Chapter 4 the variation of PL intensity in In-alloyed GaAs substrate material is studied, while Chapter 5 discusses the variation of carrier lifetimes in ion-damaged GaAs used in photo-conductive circuit elements (PCEs). PECS is a pulse-probe technique that measures the cross correlation of photo-excited carrier populations. The theoretical model employed in this thesis is based upon the rate equation for a simple three-level system consisting of valence and conduction bands and a single trap level. In the limit of radiative band-to-band dominated recombination, no PECS signal should be observed; while in the capture -dominated recombination limit, the PECS signal from the band-to-band PL measures the cross correlation of the excited electron and hole populations and thus, the electron and hole lifetimes. PECS is experimentally investigated using a case study of PL in semi-insulating (SI) GaAs and In -alloyed GaAs. At 77 K, the PECS signal is characteristic of a capture-dominated system, yielding an electron-hole lifetime of about 200 ps. However, at 5 K the behavior is more complicated and shows saturation effects due to the C acceptor level, which is un-ionized at 5 K. As a first application, PECS is used to investigate the large band-to-band PL contrast observed near dislocations in In

  5. Time-resolved scanning tunnelling microscopy

    NARCIS (Netherlands)

    van Houselt, Arie; Zandvliet, Henricus J.W.

    2010-01-01

    Scanning tunneling microscopy has revolutionized our ability to image, study, and manipulate solid surfaces on the size scale of atoms. One important limitation of the scanning tunneling microscope (STM) is, however, its poor time resolution. Recording a standard image with a STM typically takes

  6. Real time simulator for material testing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Ishitsuka, Tatsuo; Tamura, Kazuo [ITOCHU Techno-Solutions Corp., Tokyo (Japan)

    2012-03-15

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  7. Real time simulator for material testing reactor

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide; Ishitsuka, Tatsuo; Tamura, Kazuo

    2012-01-01

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  8. X-ray absorption in insulators with non-Hermitian real-time time-dependent density functional theory.

    Science.gov (United States)

    Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth

    2015-02-10

    Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.

  9. A study of real-time content marketing : formulating real-time content marketing based on content, search and social media

    OpenAIRE

    Nguyen, Thi Kim Duyen

    2015-01-01

    The primary objective of this research is to understand profoundly the new concept of content marketing – real-time content marketing on the aspect of the digital marketing experts. Particularly, the research will focus on the real-time content marketing theories and how to build real-time content marketing strategy based on content, search and social media. It also finds out how marketers measure and keep track of conversion rates of their real-time content marketing plan. Practically, th...

  10. Time-resolved optical studies of wide-gap II-VI semiconductor heterostructures

    Science.gov (United States)

    Wang, Hong

    ZnSe and ZnSe-based quantum well and superlattice structures are potential candidates for light emitting devices and other optical devices such as switches and modulators working in the blue-green wavelength range. Carrier dynamics studies of these structures are important in evaluating device performance as well as understanding the underlying physical processes. In this thesis, a carrier dynamics investigation is conducted for temperature from 77K to 295K on CdZnSSe/ZnSSe single quantum well structure (SQW) and ZnSe/ZnSTe superlattice fabricated by molecular beam epitaxy (MBE). Two experimental techniques with femtosecond time resolution are used in this work: up-conversion technique for time- resolved photoluminescence (PL) and pump-probe technique for time-resolved differential absorption studies. For both heterostructures, the radiative recombination is dominated by exciton transition due to the large exciton binding energy as a result of quantum confinement effect. The measured decay time of free exciton PL in CdZnSSe/ZnSSe SQW increases linearly with increasing temperature which agrees with the theoretical prediction by considering the conservation of momentum requirement for radiative recombination. However, the recombination of free carriers is also observed in CdZnSSe/ZnSSe SQW for the whole temperature range studied. On the other hand, in ZnSe/ZnSTe superlattice structures, the non- radiative recombination processes are non-negligible even at 77K and become more important in higher temperature range. The relaxation processes such as spectral hole burning, carrier thermalization and hot-carrier cooling are observed in ZnSe/ZnSTe superlattices at room temperature (295K) by the femtosecond pump-probe measurements. A rapid cooling of the thermalized hot- carrier from 763K to 450K within 4ps is deduced. A large optical nonlinearity (i.e., the induced absorption change) around the heavy-hole exciton energy is also obtained.

  11. Method for spectrochemical analysis using time-resolved laser-induced breakdown. [Patent application

    Energy Technology Data Exchange (ETDEWEB)

    Loree, T.R.; Radziemski, L.J.

    1982-01-26

    A method for real-time elemental analysis using laser-induced breakdown of the material under investigation and spectroscopic analysis of the light emitted from the plasma consequently formed is described. By delaying the observation of the emitted radiation, the unwanted background continuum and line spectra from excited ionic species can be rendered unimportant relative to the excited atomic line spectra, thereby producing sharp, well-defined characteristic identifying atomic spectral features. These features provide the indicia for detailed elemental analyses of substances. The method is quite general in that it applies to gases, surfaces, and particulates entrained in gases. It requires no electrodes and can excite atomic species like fluorine and chlorine which are difficult to observe by more conventional analytical procedures.

  12. Time-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gustavsson, Thomas; Mialocq, Jean-Claude

    2007-01-01

    This article addresses the evolution in time of light emitted by a molecular system after a brief photo-excitation. The authors first describe fluorescence from a photo-physical point of view and discuss the characterization of the excited state. Then, they explain some basic notions related to fluorescence characterization (lifetime and decays, quantum efficiency, so on). They present the different experimental methods and techniques currently used to study time-resolved fluorescence. They discuss basic notions of time resolution and spectral reconstruction. They briefly present some conventional methods: intensified Ccd cameras, photo-multipliers and photodiodes associated with a fast oscilloscope, and phase modulation. Other methods and techniques are more precisely presented: time-correlated single photon counting (principle, examples, and fluorescence lifetime imagery), streak camera (principle, examples), and optical methods like the Kerr optical effect (principle and examples) and fluorescence up-conversion (principle and theoretical considerations, examples of application)

  13. Continuous wave and time resolved spectroscopy of InAsN/GaAsN based quantum dots

    International Nuclear Information System (INIS)

    Taliercio, T.; Valvin, P.; Intartaglia, R.; Guillet, T.; Lefebvre, P.; Bretagnon, T.; Gil, B.; Sallet, V.; Harmand, J.C.

    2005-01-01

    We present a study of the optical properties of quantum dots based on a new family of semiconductors: III-V dilute nitrides such as (In,Ga)(N,As). Continuous wave and time resolved photoluminescence (PL) experiments allowed us to evaluate the impact of N incorporation during the growth of InAs/GaAs quantum dots. Previous work [V. Sallet et al., to be submitted to J. Cryst. Growth (2005); O. Schumann et al., J. Appl. Phys. 96, 2832 (2004)] showed that increasing the flux of N atoms into the growth chamber modifies drastically the size of the dots which leads to a bimodal growth. Two populations of dots with different sizes appear. The quantum dot PL line broadens and a second PL line appears at higher energy. Time resolved PL allows us to identify the nature of this second PL line: second population of quantum dots. A second decay time is observed which we interpret as being the consequence of the perturbation of the electronic states of the quantum dots. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Single-atom detection on a chip: from realization to application

    Energy Technology Data Exchange (ETDEWEB)

    Stibor, A; Bender, H; Kuehnhold, S; Fortagh, J; Zimmermann, C; Guenther, A, E-mail: aguenth@pit.physik.uni-tuebingen.d [CQ Center for Collective Quantum Phenomena and their Applications, Eberhard-Karls-Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    2010-06-15

    In this paper, we describe the preparation and detection of ultracold atoms on a microchip with single-atom sensitivity. The detection scheme is based on multi-photon ionization of atoms and the subsequent guiding of the generated ions by ion optics to a channel electron multiplier. We resolve single atoms with a detection efficiency above 60%. The detector is suitable for real-time observations of static and dynamic processes in ultracold quantum gases. Although the ionization is destructive, sampling a small subset of the atomic distribution is sufficient for the determination of the desired information. We take full high-resolution spectra of ultracold atoms by ionizing only 5% of the atoms. Using an additional microwave near 6.8 GHz, the detection scheme becomes energy, position and state selective. This can be used for in situ determination of the energy distribution and temperature of atom clouds inside the trap and applied for future correlation measurements.

  15. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al{sub 2}O{sub 3} using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chih-Yi [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Mao, Ming-Hua, E-mail: mhmao@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2016-08-28

    We report photo-stability enhancement of colloidal CdSe/ZnS quantum dots (QDs) passivated in Al{sub 2}O{sub 3} thin film using the atomic layer deposition (ALD) technique. 62% of the original peak photoluminescence (PL) intensity remained after ALD. The photo-oxidation and photo-induced fluorescence enhancement effects of both the unpassivated and passivated QDs were studied under various conditions, including different excitation sources, power densities, and environment. The unpassivated QDs showed rapid PL degradation under high excitation due to strong photo-oxidation in air while the PL intensity of Al{sub 2}O{sub 3} passivated QDs was found to remain stable. Furthermore, recombination dynamics of the unpassivated and passivated QDs were investigated by time-resolved measurements. The average lifetime of the unpassivated QDs decreases with laser irradiation time due to photo-oxidation. Photo-oxidation creates surface defects which reduces the QD emission intensity and enhances the non-radiative recombination rate. From the comparison of PL decay profiles of the unpassivated and passivated QDs, photo-oxidation-induced surface defects unexpectedly also reduce the radiative recombination rate. The ALD passivation of Al{sub 2}O{sub 3} protects QDs from photo-oxidation and therefore avoids the reduction of radiative recombination rate. Our experimental results demonstrated that passivation of colloidal QDs by ALD is a promising method to well encapsulate QDs to prevent gas permeation and to enhance photo-stability, including the PL intensity and carrier lifetime in air. This is essential for the applications of colloidal QDs in light-emitting devices.

  16. Real-time simulation of aeroelastic rotor loads for horizontal axis wind turbines

    International Nuclear Information System (INIS)

    Marnett, M; Wellenberg, S; Schröder, W

    2014-01-01

    Wind turbine drivetrain research and test facilities with hardware-in-the-loop capabilities require a robust and accurate aeroelastic real-time rotor simulation environment. Recent simulation environments do not guarantee a computational response at real-time. Which is why a novel simulation tool has been developed. It resolves the physical time domain of the turbulent wind spectra and the operational response of the turbine at real-time conditions. Therefore, there is a trade-off between accuracy of the physical models and the computational costs. However, the study shows the possibility to preserve the necessary computational accuracy while simultaneously granting dynamic interaction with the aeroelastic rotor simulation environment. The achieved computational costs allow a complete aeroelastic rotor simulation at a resolution frequency of 100 Hz on standard computer platforms. Results obtained for the 5-MW reference wind turbine by the National Renewable Energy Laboratory (NREL) are discussed and compared to NREL's fatigue, aerodynamics, structures, and turbulence (FAST)- Code. The rotor loads show a convincing match. The novel simulation tool is applied to the wind turbine drivetrain test facility at the Center for Wind Power Drives (CWD), RWTH Aachen University to show the real-time hardware-in-the-loop capabilities

  17. MO-FG-202-08: Real-Time Monte Carlo-Based Treatment Dose Reconstruction and Monitoring for Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Shi, F; Gu, X; Tan, J; Hassan-Rezaeian, N; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Graves, Y [University of California, San Diego, La Jolla, CA (United States)

    2016-06-15

    Purpose: This proof-of-concept study is to develop a real-time Monte Carlo (MC) based treatment-dose reconstruction and monitoring system for radiotherapy, especially for the treatments with complicated delivery, to catch treatment delivery errors at the earliest possible opportunity and interrupt the treatment only when an unacceptable dosimetric deviation from our expectation occurs. Methods: First an offline scheme is launched to pre-calculate the expected dose from the treatment plan, used as ground truth for real-time monitoring later. Then an online scheme with three concurrent threads is launched while treatment delivering, to reconstruct and monitor the patient dose in a temporally resolved fashion in real-time. Thread T1 acquires machine status every 20 ms to calculate and accumulate fluence map (FM). Once our accumulation threshold is reached, T1 transfers the FM to T2 for dose reconstruction ad starts to accumulate a new FM. A GPU-based MC dose calculation is performed on T2 when MC dose engine is ready and a new FM is available. The reconstructed instantaneous dose is directed to T3 for dose accumulation and real-time visualization. Multiple dose metrics (e.g. maximum and mean dose for targets and organs) are calculated from the current accumulated dose and compared with the pre-calculated expected values. Once the discrepancies go beyond our tolerance, an error message will be send to interrupt the treatment delivery. Results: A VMAT Head-and-neck patient case was used to test the performance of our system. Real-time machine status acquisition was simulated here. The differences between the actual dose metrics and the expected ones were 0.06%–0.36%, indicating an accurate delivery. ∼10Hz frequency of dose reconstruction and monitoring was achieved, with 287.94s online computation time compared to 287.84s treatment delivery time. Conclusion: Our study has demonstrated the feasibility of computing a dose distribution in a temporally resolved fashion

  18. Numerical simulations of time-resolved quantum electronics

    International Nuclear Information System (INIS)

    Gaury, Benoit; Weston, Joseph; Santin, Matthieu; Houzet, Manuel; Groth, Christoph; Waintal, Xavier

    2014-01-01

    Numerical simulation has become a major tool in quantum electronics both for fundamental and applied purposes. While for a long time those simulations focused on stationary properties (e.g. DC currents), the recent experimental trend toward GHz frequencies and beyond has triggered a new interest for handling time-dependent perturbations. As the experimental frequencies get higher, it becomes possible to conceive experiments which are both time-resolved and fast enough to probe the internal quantum dynamics of the system. This paper discusses the technical aspects–mathematical and numerical–associated with the numerical simulations of such a setup in the time domain (i.e. beyond the single-frequency AC limit). After a short review of the state of the art, we develop a theoretical framework for the calculation of time-resolved observables in a general multiterminal system subject to an arbitrary time-dependent perturbation (oscillating electrostatic gates, voltage pulses, time-varying magnetic fields, etc.) The approach is mathematically equivalent to (i) the time-dependent scattering formalism, (ii) the time-resolved non-equilibrium Green’s function (NEGF) formalism and (iii) the partition-free approach. The central object of our theory is a wave function that obeys a simple Schrödinger equation with an additional source term that accounts for the electrons injected from the electrodes. The time-resolved observables (current, density, etc.) and the (inelastic) scattering matrix are simply expressed in terms of this wave function. We use our approach to develop a numerical technique for simulating time-resolved quantum transport. We find that the use of this wave function is advantageous for numerical simulations resulting in a speed up of many orders of magnitude with respect to the direct integration of NEGF equations. Our technique allows one to simulate realistic situations beyond simple models, a subject that was until now beyond the simulation

  19. Real Time Revisited

    Science.gov (United States)

    Allen, Phillip G.

    1985-12-01

    The call for abolishing photo reconnaissance in favor of real time is once more being heard. Ten years ago the same cries were being heard with the introduction of the Charge Coupled Device (CCD). The real time system problems that existed then and stopped real time proliferation have not been solved. The lack of an organized program by either DoD or industry has hampered any efforts to solve the problems, and as such, very little has happened in real time in the last ten years. Real time is not a replacement for photo, just as photo is not a replacement for infra-red or radar. Operational real time sensors can be designed only after their role has been defined and improvements made to the weak links in the system. Plodding ahead on a real time reconnaissance suite without benefit of evaluation of utility will allow this same paper to be used ten years from now.

  20. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  1. Time-resolved soft x-ray spectra from laser-produced Cu plasma

    International Nuclear Information System (INIS)

    Cone, K.V.; Dunn, J.; Baldis, H.A.; May, M.J.; Purvis, M.A.; Scott, H.A.; Schneider, M.B.

    2012-01-01

    The volumetric heating of a thin copper target has been studied with time resolved x-ray spectroscopy. The copper target was heated from a plasma produced using the Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) laser. A variable spaced grating spectrometer coupled to an x-ray streak camera measured soft x-ray emission (800-1550 eV) from the back of the copper target to characterize the bulk heating of the target. Radiation hydrodynamic simulations were modeled in 2-dimensions using the HYDRA code. The target conditions calculated by HYDRA were post-processed with the atomic kinetics code CRETIN to generate synthetic emission spectra. A comparison between the experimental and simulated spectra indicates the presence of specific ionization states of copper and the corresponding electron temperatures and ion densities throughout the laser-heated copper target.

  2. Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study

    Science.gov (United States)

    Avila, José; Razado, Ivy; Lorcy, Stéphane; Fleurier, Romain; Pichonat, Emmanuelle; Vignaud, Dominique; Wallart, Xavier; Asensio, María C.

    2013-01-01

    The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES. PMID:23942471

  3. Two-phase fluid flow measurements in small diameter channels using real-time neutron radiography

    International Nuclear Information System (INIS)

    Carlisle, B.S.; Johns, R.C.; Hassan, Y.A.

    2004-01-01

    A series of real-time, neutron radiography, experiments are ongoing at the Texas A and M Nuclear Science Center Reactor (NSCR). These tests determine the resolving capabilities for radiographic imaging of two phase water and air flow regimes through small diameter flow channels. Though both film and video radiographic imaging is available, the real-time video imaging was selected to capture the dynamic flow patterns with results that continue to improve. (author)

  4. Time-resolved CT angiography in aortic dissection

    International Nuclear Information System (INIS)

    Meinel, Felix G.; Nikolaou, Konstantin; Weidenhagen, Rolf; Hellbach, Katharina; Helck, Andreas; Bamberg, Fabian; Reiser, Maximilian F.; Sommer, Wieland H.

    2012-01-01

    Objectives: We performed this study to assess feasibility and additional diagnostic value of time-resolved CT angiography of the entire aorta in patients with aortic dissection. Materials and methods: 14 consecutive patients with known or suspected aortic dissection (aged 60 ± 9 years) referred for aortic CT angiography were scanned on a dual-source CT scanner (Somatom Definition Flash; Siemens, Forchheim, Germany) using a shuttle mode for multiphasic image acquisition (range 48 cm, time resolution 6 s, 6 phases, 100 kV, 110 mAs/rot). Effective radiation doses were calculated from recorded dose length products. For all phases, CT densities were measured in the aortic lumen and renal parenchyma. From the multiphasic data, 3 phases corresponding to a triphasic standard CT protocol, served as a reference and were compared against findings from the time-resolved datasets. Results: Mean effective radiation dose was 27.7 ± 3.5 mSv. CT density of the true lumen peaked at 355 ± 53 HU. Compared to the simulated triphasic protocol, time-resolved CT angiography added diagnostic information regarding a number of important findings: the enhancement delay between true and false lumen (n = 14); the degree of membrane oscillation (n = 14); the perfusion delay in arteries originating from the false lumen (n = 9). Other additional information included true lumen collapse (n = 4), quantitative assessment of renal perfusion asymmetry (n = 2), and dynamic occlusion of aortic branches (n = 2). In 3/14 patients (21%), these additional findings of the multiphasic protocol altered patient management. Conclusions: Multiphasic, time-resolved CT angiography covering the entire aorta is feasible at a reasonable effective radiation dose and adds significant diagnostic information with therapeutic consequences in patients with aortic dissection.

  5. Real-Time Monitoring of Psychotherapeutic Processes: Concept and Compliance

    Directory of Open Access Journals (Sweden)

    Guenter Karl Schiepek

    2016-05-01

    Full Text Available AbstractObjective. The feasibility of a high-frequency real-time monitoring approach to psychotherapy is outlined and tested for patients’ compliance to evaluate its integration to everyday practice. Criteria concern the ecological momentary assessment, the assessment of therapy-related cognitions and emotions, equidistant time sampling, real-time nonlinear time series analysis, continuous participative process control by client and therapist, and the application of idiographic (person-specific surveys. Methods. The process-outcome monitoring is technically realized by an internet-based device for data collection and data analysis, the Synergetic Navigation System. Its feasibility is documented by a compliance study on 151 clients treated in an inpatient and a day-treatment clinic. Results. We found high compliance rates (mean: 78.3%, median: 89.4% amongst the respondents, independent of the severity of symptoms or the degree of impairment. Compared to other diagnoses, the compliance rate was lower in the group diagnosed with personality disorders. Conclusion. The results support the feasibility of high-frequency monitoring in routine psychotherapy settings. Daily collection of psychological surveys allows for assessment of highly resolved, equidistant time series data which gives insight into the nonlinear qualities of therapeutic change processes (e.g., pattern transitions, critical instabilities.

  6. Real-Time Monitoring of Psychotherapeutic Processes: Concept and Compliance

    Science.gov (United States)

    Schiepek, Günter; Aichhorn, Wolfgang; Gruber, Martin; Strunk, Guido; Bachler, Egon; Aas, Benjamin

    2016-01-01

    Objective: The feasibility of a high-frequency real-time monitoring approach to psychotherapy is outlined and tested for patients' compliance to evaluate its integration to everyday practice. Criteria concern the ecological momentary assessment, the assessment of therapy-related cognitions and emotions, equidistant time sampling, real-time nonlinear time series analysis, continuous participative process control by client and therapist, and the application of idiographic (person-specific) surveys. Methods: The process-outcome monitoring is technically realized by an internet-based device for data collection and data analysis, the Synergetic Navigation System. Its feasibility is documented by a compliance study on 151 clients treated in an inpatient and a day-treatment clinic. Results: We found high compliance rates (mean: 78.3%, median: 89.4%) amongst the respondents, independent of the severity of symptoms or the degree of impairment. Compared to other diagnoses, the compliance rate was lower in the group diagnosed with personality disorders. Conclusion: The results support the feasibility of high-frequency monitoring in routine psychotherapy settings. Daily collection of psychological surveys allows for the assessment of highly resolved, equidistant time series data which gives insight into the nonlinear qualities of therapeutic change processes (e.g., pattern transitions, critical instabilities). PMID:27199837

  7. Reduction of Guanosyl Radical by Cysteine and Cysteine-Glycine Studied by Time-Resolved CIDNP

    NARCIS (Netherlands)

    Morozova, O.B.; Kaptein, R.; Yurkovskaya, A.V.

    2012-01-01

    As a model for chemical DNA repair, reduction of guanosyl radicals in the reaction with cysteine or the dipeptide cysteine-glycine has been studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP). Radicals were generated photochemically by pulsed laser irradiation of a

  8. Real time analysis under EDS

    International Nuclear Information System (INIS)

    Schneberk, D.

    1985-07-01

    This paper describes the analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL). Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis. Each of these components are described with an emphasis upon how each contributes to overall system capability. 3 figs

  9. Time-Resolved Small-Angle X-Ray Scattering

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Besselink, R.; Stawski, Tomasz; Castricum, H.L.; Levy, D.; Zayat, M.

    2015-01-01

    This chapter focuses on time-resolved studies of nanostructure development in sol-gel liquids, that is, diluted sols, wet gels, and drying thin fffilms. The most commonly investigated classes of sol-gel materials are silica, organically modified silica, template-directed mesostructured silica,

  10. OPTIMIZED REAL-TIME CONTROL OF COMBINED SEWERAGE SYSTEMS: TWO CASE STUDIES

    Science.gov (United States)

    The paper presents results of two case studies of Real-Time Control (RTC) alternatives evaluations that were conducted on portions of sewerage systems near Paris, France and in Quebec City, Canada, respectively. The studies were performed at real-scale demonstration sites. RTC ...

  11. Angle and Spin Resolved Auger Emission Theory and Applications to Atoms and Molecules

    CERN Document Server

    Lohmann, Bernd

    2009-01-01

    The Auger effect must be interpreted as the radiationless counterpart of photoionization and is usually described within a two-step model. Angle and spin resolved Auger emission physics deals with the theoretical and numerical description, analysis and interpretation of such types of experiments on free atoms and molecules. This monograph derives the general theory applying the density matrix formalism and, in terms of irreducible tensorial sets, so called state multipoles and order parameters, for parameterizing the atomic and molecular systems, respectively. Propensity rules and non-linear dependencies between the angular distribution and spin polarization parameters are included in the discussion. The numerical approaches utilizing relativistic distorted wave (RDWA), multiconfigurational Dirac-Fock (MCDF), and Greens operator methods are described. These methods are discussed and applied to theoretical predictions, numerical results and experimental data for a variety of atomic systems, especially the rare...

  12. Atomic-resolution studies of In2O3-ZnO compounds on aberration-corrected electron microscopes

    International Nuclear Information System (INIS)

    Yu, Wentao

    2009-01-01

    In this work, the characteristic inversion domain microstructures of In 2 O 3 (ZnO) m (m=30) compounds were investigated by TEM methods. At bright-atom contrast condition, atomically resolved HR-TEM images of In 2 O 3 (ZnO) 30 were successfully acquired in [1 anti 100] zone axis of ZnO, with projected metal columns of ∝1.6 A well resolved. From contrast maxima in the TEM images, local lattice distortions at the pyramidal inversion domain boundaries were observed for the first time. Lattice displacements and the strain field in two-dimensions were visualized and measured using the 'DALI' algorithm. Atomically resolved single shot and focal series images of In 2 O 3 (ZnO) 30 were achieved in both zone axes of ZnO, [1 anti 100] and [2 anti 1 anti 10], respectively. The electron waves at the exit-plane were successfully reconstructed using the software package 'TrueImage'. Finally, a three dimensional atomic structure model for the pyramidal IDB was proposed, with an In distribution of 10%, 20%, 40%, 20% and 10% of In contents over 5 atom columns along basal planes, respectively. Through a detailed structural study of In 2 O 3 (ZnO) m compounds by using phase-contrast and Z-contrast imaging at atomic resolution, In 3+ atoms are determined with trigonal bi-pyramidal co-ordination and are distributed at the pyramidal IDBs. (orig.)

  13. Creating and probing coherent atomic states

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold, C.O.; Burgdoerfer, J. [Oak Ridge National Lab., TN (United States). Physics Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; Frey, M.T.; Dunning, F.B. [Rice Univ., Houston, TX (United States)

    1997-06-01

    The authors present a brief review of recent experimental and theoretical time resolved studies of the evolution of atomic wavepackets. In particular, wavepackets comprising a superposition of very-high-lying Rydberg states which are created either using a short half-cycle pulse (HCP) or by rapid application of a DC field. The properties of the wavepackets are probed using a second HCP that is applied following a variable time delay and ionizes a fraction of the atoms, much like a passing-by ion in atomic collisions.

  14. Sub-nanometer resolution XPS depth profiling: Sensing of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Szklarczyk, Marek, E-mail: szklarcz@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Macak, Karol; Roberts, Adam J. [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Takahashi, Kazuhiro [Kratos XPS Section, Shimadzu Corp., 380-1 Horiyamashita, Hadano, Kanagawa 259-1304 (Japan); Hutton, Simon [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Głaszczka, Rafał [Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Blomfield, Christopher [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom)

    2017-07-31

    Highlights: • Angle resolved photoelectron depth profiling of nano thin films. • Sensing atomic position in SAM films. • Detection of direction position of adsorbed molecules. - Abstract: The development of a method capable of distinguishing a single atom in a single molecule is important in many fields. The results reported herein demonstrate sub-nanometer resolution for angularly resolved X-ray photoelectron spectroscopy (ARXPS). This is made possible by the incorporation of a Maximum Entropy Method (MEM) model, which utilize density corrected electronic emission factors to the X-ray photoelectron spectroscopy (XPS) experimental results. In this paper we report on the comparison between experimental ARXPS results and reconstructed for both inorganic and organic thin film samples. Unexpected deviations between experimental data and calculated points are explained by the inaccuracy of the constants and standards used for the calculation, e.g. emission factors, scattering intensity and atomic density through the studied thickness. The positions of iron, nitrogen and fluorine atoms were determined in the molecules of the studied self-assembled monolayers. It has been shown that reconstruction of real spectroscopic data with 0.2 nm resolution is possible.

  15. Time-resolved Chemical Imaging of Molecules by High-order Harmonics and Ultrashort Rescattering Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chii Dong [Kansas State Univ., Manhattan, KS (United States)

    2016-03-21

    Directly monitoring atomic motion during a molecular transformation with atomic-scale spatio-temporal resolution is a frontier of ultrafast optical science and physical chemistry. Here we provide the foundation for a new imaging method, fixed-angle broadband laser-induced electron scattering, based on structural retrieval by direct one-dimensional Fourier transform of a photoelectron energy distribution observed along the polarization direction of an intense ultrafast light pulse. The approach exploits the scattering of a broadband wave packet created by strong-field tunnel ionization to self-interrogate the molecular structure with picometre spatial resolution and bond specificity. With its inherent femtosecond resolution, combining our technique with molecular alignment can, in principle, provide the basis for time-resolved tomography for multi-dimensional transient structural determination.

  16. Real-time monitoring of airborne beryllium, at OSHA limit levels, by time-resolved laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Radziemski, L.J.; Loree, T.R.; Cremers, D.A.

    1982-01-01

    Real-time detection of beryllium particulate is being investigated by the new technique of laser-induced breakdown spectroscopy. For beryllium detection we monitor the 313.1-nm feature of once ionized beryllium (Be II). Numerous publications describe the technique, our beryllium results, and other applications. Here we summarize the important points and describe our experiments with beryllium

  17. Time-Resolved Hard X-Ray Spectrometer

    International Nuclear Information System (INIS)

    Kenneth Moya; Ian McKennaa; Thomas Keenana; Michael Cuneob

    2007-01-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and polar views. UNSPEC1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment

  18. Unfolding of Ubiquitin Studied by Picosecond Time-Resolved Fluorescence of the Tyrosine Residue

    OpenAIRE

    Noronha, Melinda; Lima, João C.; Bastos, Margarida; Santos, Helena; Maçanita, António L.

    2004-01-01

    The photophysics of the single tyrosine in bovine ubiquitin (UBQ) was studied by picosecond time-resolved fluorescence spectroscopy, as a function of pH and along thermal and chemical unfolding, with the following results: First, at room temperature (25°C) and below pH 1.5, native UBQ shows single-exponential decays. From pH 2 to 7, triple-exponential decays were observed and the three decay times were attributed to the presence of tyrosine, a tyrosine-carboxylate hydrogen-bonded complex, and...

  19. Atomic collisions in the presence of laser radiation - Time dependence and the asymptotic wave function

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1982-01-01

    A time-dependent, wave-packet description of atomic collisions in the presence of laser radiation is extracted from the more conventional time-independent, stationary-state description. This approach resolves certain difficulties of interpretation in the time-independent approach which arise in the case of asymptotic near resonance. In the two-state model investigated, the approach predicts the existence of three spherically scattered waves in this asymptotically near-resonant case.

  20. Introduction to Time-Resolved Spectroscopy: Nanosecond Transient Absorption and Time-Resolved Fluorescence of Eosin B

    Science.gov (United States)

    Farr, Erik P.; Quintana, Jason C.; Reynoso, Vanessa; Ruberry, Josiah D.; Shin, Wook R.; Swartz, Kevin R.

    2018-01-01

    Here we present a new undergraduate laboratory that will introduce the concepts of time-resolved spectroscopy and provide insight into the natural time scales on which chemical dynamics occur through direct measurement. A quantitative treatment of the acquired data will provide a deeper understanding of the role of quantum mechanics and various…

  1. Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds

    Science.gov (United States)

    Tsai, Pei-Chang; Chen, Oliver Y.; Tzeng, Yan-Kai; Liu, Hsiou-Yuan; Hsu, Hsiang; Huang, Shaio-Chih; Chen, Jeson; Yee, Fu-Ghoul; Chang, Huan-Cheng; Chang, Ming-Shien

    2016-05-01

    Measuring thermal properties with nanoscale spatial resolution either at or far from equilibrium is gaining importance in many scientific and engineering applications. Although negatively charged nitrogen-vacancy (NV-) centers in diamond have recently emerged as promising nanometric temperature sensors, most previous measurements were performed under steady state conditions. Here we employ a three-point sampling method which not only enables real-time detection of temperature changes over +/-100 K with a sensitivity of 2 K/(Hz)1/2, but also allows the study of nanometer scale heat transfer with a temporal resolution of better than 1 μs with the use of a pump-probe-type experiment. In addition to temperature sensing, we further show that nanodiamonds conjugated with gold nanorods, as optically-activated dual-functional nanoheaters and nanothermometers, are useful for highly localized hyperthermia treatment. We experimentally demonstrated time-resolved fluorescence nanothermometry, and the validity of the measurements was verified with finite-element numerical simulations. The approaches provided here will be useful for probing dynamical thermal properties on nanodevices in operation.

  2. Time-resolved methods in biophysics. 6. Time-resolved Laue crystallography as a tool to investigate photo-activated protein dynamics.

    Science.gov (United States)

    Bourgeois, Dominique; Schotte, Friedrich; Brunori, Maurizio; Vallone, Beatrice

    2007-10-01

    When polychromatic X-rays are shined onto crystalline material, they generate a Laue diffraction pattern. At third generation synchrotron radiation sources, a single X-ray pulse of approximately 100 ps duration is enough to produce interpretable Laue data from biomolecular crystals. Thus, by initiating biological turnover in a crystalline protein, structural changes along the reaction pathway may be filmed by ultra-fast Laue diffraction. Using laser-light as a trigger, transient species in photosensitive macromolecules can be captured at near atomic resolution with sub-nanosecond time-resolution. Such pump-probe Laue experiments have now reached an outstanding level of sophistication and have found a domain of excellence in the investigation of light-sensitive proteins undergoing cyclic photo-reactions and producing stiff crystals. The main theoretical concepts of Laue diffraction and the challenges associated with time-resolved experiments on biological crystals are recalled. The recent advances in the design of experiments are presented in terms of instrumental choices, data collection strategy and data processing, and some of the inherent difficulties of the method are highlighted. The discussion is based on the example of myoglobin, a protein that has traversed the whole history of pump-probe Laue diffraction, and for which a massive amount of data have provided considerable insight into the understanding of protein dynamics.

  3. Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms

    International Nuclear Information System (INIS)

    Wang Dawei; Li Zhenghong; Zheng Hang; Zhu Shiyao

    2010-01-01

    A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state and the other in the ground state. The unitary transformation guarantees that our calculations are based on the ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift) and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift). The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift, which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the modification of the effective density of states by the interaction between two atoms can modulate the quantum Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.

  4. Real-time visualization of perforin nanopore assembly

    Science.gov (United States)

    Leung, Carl; Hodel, Adrian W.; Brennan, Amelia J.; Lukoyanova, Natalya; Tran, Sharon; House, Colin M.; Kondos, Stephanie C.; Whisstock, James C.; Dunstone, Michelle A.; Trapani, Joseph A.; Voskoboinik, Ilia; Saibil, Helen R.; Hoogenboom, Bart W.

    2017-05-01

    Perforin is a key protein of the vertebrate immune system. Secreted by cytotoxic lymphocytes as soluble monomers, perforin can self-assemble into oligomeric pores of 10-20 nm inner diameter in the membranes of virus-infected and cancerous cells. These large pores facilitate the entry of pro-apoptotic granzymes, thereby rapidly killing the target cell. To elucidate the pathways of perforin pore assembly, we carried out real-time atomic force microscopy and electron microscopy studies. Our experiments reveal that the pore assembly proceeds via a membrane-bound prepore intermediate state, typically consisting of up to approximately eight loosely but irreversibly assembled monomeric subunits. These short oligomers convert to more closely packed membrane nanopore assemblies, which can subsequently recruit additional prepore oligomers to grow the pore size.

  5. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  6. Real-time gene expression analysis in carp (Cyprinus carpio) skin: inflammatory responses to injury mimicking infection with ectoparasites

    NARCIS (Netherlands)

    Gonzalez, S.F.; Huising, M.O.; Stakauska, R.; Forlenza, M.; Verburg-van Kemenade, B.M.L.; Buchmann, K.; Nielsen, M.E.; Wiegertjes, G.F.

    2007-01-01

    We studied a predictive model of gene expression induced by mechanical injury of fish skin, to resolve the confounding effects on the immune system induced by injury and skin parasite-specific molecules. We applied real time quantitative PCR (RQ-PCR) to measure the expression of the pro-inflammatory

  7. Pulse radiolysis of alkanes: a time-resolved EPR study - Part I. Alkyl radicals

    International Nuclear Information System (INIS)

    Shkrob, I.A.; Trifunac, A.D.

    1995-01-01

    Time-resolved EPR was applied to detect short-lived alkyl radicals in pulse radiolysis of liquid alkanes. Two problems were addressed: (i) the mechanism of radical formation and (ii) the mechanism of chemically-induced spin polarization in these radicals. (i) The ratio of yields of penultimate and interior radicals in n-alkanes at the instant of their generation was found to be ≅ 1.25 times greater than the statistical quantity. This higher-than-statistical production of penultimate radicals indicates that the proton transfer reaction involving excited radical cations must be a prevailing route of radical generation. The relative yields of hydrogen abstraction and fragmentation for various branched alkanes are estimated. It is concluded that the fragmentation occurs prior to the formation of radicals in an excited precursor species. (ii) The analysis of spin-echo kinetics in n-alkanes suggests that the alkyl radicals gain the emissive polarization in spur reactions. This initial polarization increases with shortening of the aliphatic chain. We suggest that the origin of this polarization is the ST mechanism operating in the pairs of alkyl radicals and hydrogen atoms generated in dissociation of excited alkane molecules. It is also found that a long-chain structure of alkyl radicals results in much higher rate of Heisenberg spin exchange relative to the recombination rate (up to 30 times). That suggests prominent steric effects in recombination or the occurrence of through-chain electron exchange. The significance of these results in the context of cross-linking in polyethylene and higher paraffins is discussed. (Author)

  8. Time-resolved spectroscopy of the probe fluorescence in the study of human blood protein dynamic structure on SR beam

    International Nuclear Information System (INIS)

    Dobretsov, G.E.; Kurek, N.K.; Syrejshchikova, T.I.; Yakimenko, M.N.; Clarke, D.T.; Jones, G.R.; Munro, I.H.

    2000-01-01

    Time-resolved spectroscopy on the SRS of the Daresbury Laboratory was used for the study of the human serum lipoproteins and human blood albumins with fluorescent probes K-37 and K-35, developed in Russia. The probe K-37 was found sensitive to the difference in dynamic properties of the lipid objects. Two sets of the parameters were used for the description of lipid dynamic structure: (1) time-resolved fluorescence spectra and (2) time-resolved fluorescence depolarization as a function of rotational mobility of lipid molecules. Each measured dynamic parameter reflected the monotonous changes of dynamic properties in the range: lipid spheres-very low density lipoproteins-low density lipoproteins-high density lipoproteins-phospholipid liposomes. The range is characterized by the increase of the ratio polar/ nonpolar lipids. Thus, time-resolved fluorescence could be used to detect some structural modifications in lipoproteins related to atherosclerosis and subsequent cardiovascular diseases development

  9. Spatially resolved photoionization of ultracold atoms on an atom chip

    International Nuclear Information System (INIS)

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-01-01

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 μK in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 μm, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip

  10. Time-resolved diode laser infrared absorption spectroscopy of the nascent HCl in the infrared laser chemistry of 1,2-dichloro-1,1-difluoroethane

    Science.gov (United States)

    Dietrich, Peter; Quack, Martin; Seyfang, George

    1990-04-01

    The IR multiphoton excitation and the frequency, fluence and intensity dependence of the IR-laser chemical yields of CF 2ClCH 2Cl have been studied in the fluence range of 1 to 10 J cm -2 yielding a steady-state constant k(st)/ I=0.74×10 6 s -1 MW -1 cm 2 which is approximately independent of intensity. Time-resolved IR absorption spectroscopy with diode laser sources has been used to observe the nascent HCl during the first few 100 ns indicating a population inversion between the levels ν=1, J=4 and ν=2, J=5. At low reactant pressures ( p⩽10 Pa) the time-resolved measurement gives a steady-state rate constant consistent with the theoretical result adjusted to the static yield measurements. The capability of state-selective and time-resolved IR spectroscopy is thus demonstrated, giving real-time determinations of rate constants.

  11. Time- and space-resolved spectroscopic characterization of laser-induced swine muscle tissue plasma

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, J.J. [Departamento de Química-Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Diaz, L., E-mail: luis.diaz@csic.es [Instituto de Estructura de la Materia, CFMAC, CSIC, Serrano 121, 28006 Madrid (Spain); Martinez-Ramirez, S. [Instituto de Estructura de la Materia, CFMAC, CSIC, Serrano 121, 28006 Madrid (Spain); Caceres, J.O. [Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, Cuidad Universitaria, 28040 Madrid (Spain)

    2015-09-01

    The spatial-temporal evolution of muscle tissue sample plasma induced by a high-power transversely excited atmospheric (TEA) CO{sub 2} pulsed laser at vacuum conditions (0.1–0.01 Pa) has been investigated using high-resolution optical emission spectroscopy (OES) and imaging methods. The induced plasma shows mainly electronically excited neutral Na, K, C, Mg, H, Ca, N and O atoms, ionized C{sup +}, C{sup 2+}, C{sup 3+}, Mg{sup +}, Mg{sup 2+}, N{sup +}, N{sup 2+}, Ca{sup +}, O{sup +} and O{sup 2+} species and molecular band systems of CN(B{sup 2}Σ{sup +}–X{sup 2}Σ{sup +}), C{sub 2}(d{sup 3}Π{sub g}–a{sup 3}Π{sub u}), CH(B{sup 2}Σ{sup −}–X{sup 2}Π; A{sup 2}Δ–X{sup 2}Π), NH(A{sup 3}Π–X{sup 3}Σ{sup −}), OH(A{sup 2}Σ{sup +}–X{sup 2} Σ{sup +}), and CaOH(B{sup 2}Σ{sup +}–X{sup 2}Σ{sup +}; A{sup 2}Π–X{sup 2}Σ{sup +}). Time-resolved two-dimensional emission spectroscopy is used to study the expanded distribution of different species ejected during ablation. Spatial and temporal variations of different atoms and ionic excited species are reported. Plasma parameters such as electron density and temperature were measured from the spatio-temporal analysis of different species. Average velocities of some plasma species were estimated. - Highlights: • LIBS of swine muscle tissue sample generated by CO{sub 2} laser pulses has been done for the first time. • Average velocities of some plasma species have been calculated from spatial and temporally resolved 2D OES images. • Electron density (~ 9 × 10{sup 17} cm{sup -3}) has been studied with spatial and temporal resolution. • Temporal evolution of the plasma temperature has been calculated by means of Boltzmann plots.

  12. A real time monitoring system

    International Nuclear Information System (INIS)

    Fontanini, Horacio; Galdoz, Erwin

    1989-01-01

    A real time monitoring system is described. It was initially developed to be used as a man-machine interface between a basic principles simulator of the Embalse Nuclear Power Plant and the operators. This simulator is under construction at the Bariloche Atomic Center's Process Control Division. Due to great design flexibility, this system can also be used in real plants. The system is designed to be run on a PC XT or AT personal computer with high resolution graphics capabilities. Three interrelated programs compose the system: 1) Graphics Editor, to build static image to be used as a reference frame where to show dynamically updated data. 2) Data acquisition and storage module. It is a memory resident module to acquire and store data in background. Data can be acquired and stored without interference with the operating system, via serial port or through analog-to-digital converter attached to the personal computer. 3) Display module. It shows the acquired data according to commands received from configuration files prepared by the operator. (Author) [es

  13. Towards atomically resolved EELS elemental and fine structure mapping via multi-frame and energy-offset correction spectroscopy.

    Science.gov (United States)

    Wang, Yi; Huang, Michael R S; Salzberger, Ute; Hahn, Kersten; Sigle, Wilfried; van Aken, Peter A

    2018-01-01

    Electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy are two of the most common means for chemical analysis in the scanning transmission electron microscope. The marked progress of the instrumentation hardware has made chemical analysis at atomic resolution readily possible nowadays. However, the acquisition and interpretation of atomically resolved spectra can still be problematic due to image distortions and poor signal-to-noise ratio of the spectra, especially for investigation of energy-loss near-edge fine structures. By combining multi-frame spectrum imaging and automatic energy-offset correction, we developed a spectrum imaging technique implemented into customized DigitalMicrograph scripts for suppressing image distortions and improving the signal-to-noise ratio. With practical examples, i.e. SrTiO 3 bulk material and Sr-doped La 2 CuO 4 superlattices, we demonstrate the improvement of elemental mapping and the EELS spectrum quality, which opens up new possibilities for atomically resolved EELS fine structure mapping. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    Science.gov (United States)

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  15. Real-Time Wait-Free Queues using Micro-Transactions

    OpenAIRE

    Meawad, Fadi; Iyer, Karthik; Schoeberl, Martin; Vitek, Jan

    2011-01-01

    This paper evaluates the applicability of transactional mem- ory to the implementation of dierent non-blocking data structures in the context of the Real-time Specication for Java. In particular, we argue that hardware support for micro-transaction allows us to implement eciently data structures that are often dicult to realize with the atomic operations provided by stock hardware. Our main imple- mentation platform is the Java Optimized Processor sys- tem. We report on the performance of dat...

  16. Time-resolved beam energy measurements at LAMPF

    International Nuclear Information System (INIS)

    Hudgings, D.W.; Clark, D.A.; Bryant, H.C.

    1979-01-01

    A narrow atomic photodetachment resonance is used to measure the LAMPF beam energy. Energy and time resolution are adequate to permit the use of this method in studying transient changes in accelerated beam energy

  17. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    International Nuclear Information System (INIS)

    Walsh, D. A.; Snedden, E. W.; Jamison, S. P.

    2015-01-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators

  18. Understanding the time dependence of atomic level populations in evolving plasmas

    International Nuclear Information System (INIS)

    Judge, Philip G.

    2005-01-01

    The time dependence of atomic level populations in evolving plasmas is studied using an eigenfunction expansion of the non-LTE rate equations. The work aims to develop understanding without the need for, and as an aid to, numerical solutions. The discussion is mostly limited to linear systems, especially those for optically thin plasmas, but the implicitly non-linear case of non-LTE radiative transfer is briefly discussed. Eigenvalue spectra for typical atomic systems are examined using results compiled by Hearon. Diagonal dominance and sign symmetry of rate matrices show that just one eigenvalue is zero (corresponding to the equilibrium state), that the remaining eigenvalues have negative real parts, and that oscillations, if any, are necessarily damped. Gershgorin's theorems are used to show that many eigenvalues are determined by the radiative lifetimes of certain levels, because of diagonal dominance. With other properties, this demonstrates the existence of both 'slow' and 'fast' time-scales, where the 'slow' evolution is controlled by properties of meta-stable levels. It is shown that, when collisions are present, Rydberg states contribute only 'fast' eigenvalues. This justifies use of the quasi-static approximation, in which atoms containing just meta-stable levels can suffice to determine the atomic evolution on time-scales long compared with typical radiative lifetimes. Analytic solutions for two- and three-level atoms are used to examine the basis of earlier intuitive ideas, such as the 'ionizing plasma' approximation. The power and limitations of Gershgorin's theorems are examined through examples taken from the solar atmosphere. The methods should help in the planning and interpretation of both experimental and numerical experiments in which atomic evolution is important. While the examples are astrophysical, the methods and results are applicable to plasmas in general

  19. Design of real-time voice over internet protocol system under bandwidth network

    Science.gov (United States)

    Zhang, Li; Gong, Lina

    2017-04-01

    With the increasing bandwidth of the network and network convergence accelerating, VoIP means of communication across the network is becoming increasingly popular phenomenon. The real-time identification and analysis for VOIP flow over backbone network become the urgent needs and research hotspot of network operations management. Based on this, the paper proposes a VoIP business management system over backbone network. The system first filters VoIP data stream over backbone network and further resolves the call signaling information and media voice. The system can also be able to design appropriate rules to complete real-time reduction and presentation of specific categories of calls. Experimental results show that the system can parse and process real-time backbone of the VoIP call, and the results are presented accurately in the management interface, VoIP-based network traffic management and maintenance provide the necessary technical support.

  20. Real-time gene expression analysis in carp (Cyprinus carpio L.) skin: Inflammatory responses to injury mimicking infection with ectoparasites

    NARCIS (Netherlands)

    Gonzalez, S.F.; Huising, M.O.; Stakauskas, R.; Forlenza, M.; Verburg-van Kemenade, B.M.L.; Buchmann, K.; Nielsen, M.E.; Wiegertjes, G.F.

    2007-01-01

    We studied a predictive model of gene expression induced by mechanical injury of fish skin, to resolve the confounding effects on the immune system induced by injury and skin parasite-specific molecules. We applied real time quantitative PCR (RQ-PCR) to measure the expression of the pro-inflammatory

  1. The near real-time solar irradiance mapping in California based on satellite data and economic and emission benefits analysis

    OpenAIRE

    Liu, Honglei

    2008-01-01

    As the most abundant, sustainable, and green energy source on the earth, solar energy has the potential to resolve environmental problems such as climate change and air pollution caused by fossil energy. Real-time solar irradiance mapping, which gives the real-time data on local solar energy distribution, would provide valuable information and lead to more efficient use of solar energy. State of California (CA) is abundant in solar energy. However, the data of real-time direct ...

  2. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.

    1981-01-01

    Applications of synchrotron radiation to research in high-energy atomic physics are summarized. These lie in the areas of photoelectron spectrometry, photon scattering, x-ray absorption spectroscopy, time-resolved measurements, resonance spectroscopy and threshold excitation, and future, yet undefined studies

  3. Algorithm for real-time detection of signal patterns using phase synchrony: an application to an electrode array

    Science.gov (United States)

    Sadeghi, Saman; MacKay, William A.; van Dam, R. Michael; Thompson, Michael

    2011-02-01

    Real-time analysis of multi-channel spatio-temporal sensor data presents a considerable technical challenge for a number of applications. For example, in brain-computer interfaces, signal patterns originating on a time-dependent basis from an array of electrodes on the scalp (i.e. electroencephalography) must be analyzed in real time to recognize mental states and translate these to commands which control operations in a machine. In this paper we describe a new technique for recognition of spatio-temporal patterns based on performing online discrimination of time-resolved events through the use of correlation of phase dynamics between various channels in a multi-channel system. The algorithm extracts unique sensor signature patterns associated with each event during a training period and ranks importance of sensor pairs in order to distinguish between time-resolved stimuli to which the system may be exposed during real-time operation. We apply the algorithm to electroencephalographic signals obtained from subjects tested in the neurophysiology laboratories at the University of Toronto. The extension of this algorithm for rapid detection of patterns in other sensing applications, including chemical identification via chemical or bio-chemical sensor arrays, is also discussed.

  4. Expert system of real time for support of operators of atomic power plants

    International Nuclear Information System (INIS)

    Bashlykov, A.A.; Davidenko, N.N.; Dumshev, V.G.; Kislov, G.I.; Pavlova, E.V.; Prozorovskij, E.D.; Bashlykov, A.A.

    1994-01-01

    The problems of construction and introdution of an intellectual system for information support of operators at nuclear power plants are discussed. This system is used for operator assisstance during real time decision making for NPP operational regime control

  5. REAL-TIME OBJECT DETECTION IN PARALLEL THROUGH ATOMIC TRANSACTIONS

    Directory of Open Access Journals (Sweden)

    K Sivakumar

    2016-11-01

    Full Text Available Object detection and tracking is important operation involved in embedded systems like video surveillance, Traffic monitoring, campus security system, machine vision applications and other areas. Detecting and tracking multiple objects in a video or image is challenging problem in machine vision and computer vision based embedded systems. Implementation of such a object detection and tracking systems are done in sequential way of processing and also it was implemented using hardware synthesize tools like verilog HDL with FPGA, achieves considerably lesser performance in speed and it does support lesser atomic transactions. There are many object detection and tracking algorithm were proposed and implemented, among them background subtraction is one of them. This paper proposes a implementation of detecting and tracking multiple objects based on background subtraction algorithm using java and .NET and also discuss about the architecture concept for object detection through atomic transactional, modern hardware synthesizes language called Bluespec.

  6. Improvements in brain activation detection using time-resolved diffuse optical means

    Science.gov (United States)

    Montcel, Bruno; Chabrier, Renee; Poulet, Patrick

    2005-08-01

    An experimental method based on time-resolved absorbance difference is described. The absorbance difference is calculated over each temporal step of the optical signal with the time-resolved Beer-Lambert law. Finite element simulations show that each step corresponds to a different scanned zone and that cerebral contribution increases with the arrival time of photons. Experiments are conducted at 690 and 830 nm with a time-resolved system consisting of picosecond laser diodes, micro-channel plate photo-multiplier tube and photon counting modules. The hemodynamic response to a short finger tapping stimulus is measured over the motor cortex. Time-resolved absorbance difference maps show that variations in the optical signals are not localized in superficial regions of the head, which testify for their cerebral origin. Furthermore improvements in the detection of cerebral activation is achieved through the increase of variations in absorbance by a factor of almost 5 for time-resolved measurements as compared to non-time-resolved measurements.

  7. Diagnosis of laser ablated carbon particles measured by time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Ohyanagi, T.; Murakami, K.

    1995-01-01

    The time and space resolved properties of laser ablated carbon particles were measured by X-ray absorption spectroscopy using LPX as an X-ray source. The energy density of the irradiation laser on the sample was in the range of 0.5-20J/cm 2 and the time delay was varied between 0 and 120ns. The absorption spectra exhibited several peaks originated from level to level transitions and an intense broad absorption in the energy range of C-K edge. At a delay time of 120ns, the absorption peak from 1s→2p transition of neutral carbon atom (C 0 ), C - , C + and C 2+ ions were observed. The absorption peak from C 0 was stronger as the probing position was closer to the sample surface and decreased rapidly with distance from the sample surface. The absorption peak C 2+ ion was observed only at comparatively distant positions from surface. The maximum speeds of highly charged ions were faster than that of neutral atoms and negative charged ions. The neutral atom and lower charged ions were emitted from the sample even after laser irradiation. The spatial distributions of the laser ablated carbon particles in the localized helium gas environment were measured. In the helium gas environment, the ablation plume was depressed by the helium cloud generated on the top of ablation plume. (author)

  8. Emerging biomedical applications of time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.

    1994-07-01

    Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.

  9. Development of radiation hardened robot for nuclear facility - Development of real-time stereo object tracking system using the optical correlator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Soo; Lee, S. H.; Lee, J. S. [Kwangwoon University, Seoul (Korea)

    2000-03-01

    Object tracking, through Centroide method used in the KAERI-M1 Stereo Robot Vision System developed at Atomic Research Center, is too sensitive to target's light variation and because it has a fragility which can't reflect the surrounding background, the application in the actual condition is very limited. Also the correlation method can constitute a relatively stable object tracker in noise features but the digital calculation amount is too massive in image correlation so real time materialization is limited. So the development of Optical Correlation based on Stereo Object Tracking System using high speed optical information processing technique will put stable the real time stereo object tracking system and substantial atomic industrial stereo robot vision system to practical use. This research is about developing real time stereo object tracking algorithm using optical correlation system through the technique which can be applied to Atomic Research Center's KAERI-M1 Stereo Vision Robot which will be used in atomic facility remote operations. And revise the stereo disparity using real time optical correlation technique, and materializing the application of the stereo object tracking algorithm to KAERI-M1 Stereo Robot. 19 refs., 45 figs., 2 tabs. (Author)

  10. Real-time shadows

    CERN Document Server

    Eisemann, Elmar; Assarsson, Ulf; Wimmer, Michael

    2011-01-01

    Important elements of games, movies, and other computer-generated content, shadows are crucial for enhancing realism and providing important visual cues. In recent years, there have been notable improvements in visual quality and speed, making high-quality realistic real-time shadows a reachable goal. Real-Time Shadows is a comprehensive guide to the theory and practice of real-time shadow techniques. It covers a large variety of different effects, including hard, soft, volumetric, and semi-transparent shadows.The book explains the basics as well as many advanced aspects related to the domain

  11. Study of Real-Time Programming for Simulation of Nuclear Reactor Dynamics

    International Nuclear Information System (INIS)

    Aliq; Widi Setiawan; Hendro Tjahjono

    2003-01-01

    Many aspects of real-time system are reviewed including the method, programming techniques, and its possibility to be applied in research reactor. The main point of real-time system is that it must designed to have a characteristics not only fast response but the most important is on-time response. In order to cover this requirements, real-time system need also a simple operating system consist of a kernel and application software. At the level of programming, real-time system require a modular approach, hard and soft time division and interprocess communications. The implementation can include some real-time (RT) operation system such as: RT-Linux, RT-OS9 and RT-Mat lab. Because of fast and on-time response requirements, if this system is going to be applied to research reactor, the transfer function model maybe more appropriate model compared to point kinetics model for the reason of computation time. (author)

  12. Dependable Real-Time Systems

    Science.gov (United States)

    1991-09-30

    0196 or 413 545-0720 PI E-mail Address: krithi@nirvan.cs.umass.edu, stankovic(ocs.umass.edu Grant or Contract Title: Dependable Real - Time Systems Grant...Dependable Real - Time Systems " Grant or Contract Number: N00014-85-k-0398 L " Reporting Period: 1 Oct 87 - 30 Sep 91 , 2. Summary of Accomplishments ’ 2.1 Our...in developing a sound approach to scheduling tasks in complex real - time systems , (2) developed a real-time operating system kernel, a preliminary

  13. The Brooklyn traffic real-time ambient pollutant penetration and environmental dispersion (B-TRAPPED) field study methodology.

    Science.gov (United States)

    Richmond-Bryant, Jennifer; Hahn, Intaek; Fortune, Christopher R; Rodes, Charles E; Portzer, Jeffrey W; Lee, Sangdon; Wiener, Russell W; Smith, Luther A; Wheeler, Michael; Seagraves, Jeremy; Stein, Mark; Eisner, Alfred D; Brixey, Laurie A; Drake-Richman, Zora E; Brouwer, Lydia H; Ellenson, William D; Baldauf, Richard

    2009-12-01

    The Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) field study examined indoor and outdoor exposure to traffic-generated air pollution by studying the individual processes of generation of traffic emissions, transport and dispersion of air contaminants along a roadway, and infiltration of the contaminants into a residence. Real-time instrumentation was used to obtain highly resolved time-series concentration profiles for a number of air pollutants. The B-TRAPPED field study was conducted in the residential Sunset Park neighborhood of Brooklyn, NY, USA, in May 2005. The neighborhood contained the Gowanus Expressway (Interstate 278), a major arterial road (4(th) Avenue), and residential side streets running perpendicular to the Gowanus Expressway and 4(th) Avenue. Synchronized measurements were obtained inside a test house, just outside the test house façade, and along the urban residential street canyon on which the house was located. A trailer containing Federal Reference Method (FRM) and real-time monitors was located next to the Gowanus Expressway to assess the source. Ultrafine particulate matter (PM), PM(2.5), nitrogen oxides (NO(x)), sulfur dioxide (SO(2)), carbon monoxide (CO), carbon dioxide (CO(2)), temperature, relative humidity, and wind speed and direction were monitored. Different sampling schemes were devised to focus on dispersion along the street canyon or infiltration into the test house. Results were obtained for ultrafine PM, PM(2.5), criteria gases, and wind conditions from sampling schemes focused on street canyon dispersion and infiltration. For comparison, the ultrafine PM and PM(2.5) results were compared with an existing data set from the Los Angeles area, and the criteria gas data were compared with measurements from a Vancouver epidemiologic study. Measured ultrafine PM and PM(2.5) concentration levels along the residential urban street canyon and at the test house façade in Sunset Park

  14. LabVIEW Real-Time

    CERN Multimedia

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  15. Bus-stop Based Real Time Passenger Information System - Case Study Maribor

    Science.gov (United States)

    Čelan, Marko; Klemenčič, Mitja; Mrgole, Anamarija L.; Lep, Marjan

    2017-10-01

    Real time passenger information system is one of the key element of promoting public transport. For the successful implementation of real time passenger information systems, various components should be considered, such as: passenger needs and requirements, stakeholder involvement, technological solution for tracking, data transfer, etc. This article carrying out designing and evaluation of real time passenger information (RTPI) in the city of Maribor. The design phase included development of methodology for selection of appropriate macro and micro location of the real-time panel, development of a real-time passenger algorithm, definition of a technical specification, financial issues and time frame. The evaluation shows that different people have different requirements; therefore, the system should be adaptable to be used by various types of people, according to the age, the purpose of journey, experience of using public transport, etc. The average difference between perceived waiting time for a bus is 35% higher than the actual waiting time and grow with the headway increase. Experiences from Maribor have shown that the reliability of real time passenger system (from technical point of view) must be close to 100%, otherwise the system may have negative impact on passengers and may discourage the use of public transport. Among considered events of arrivals during the test period, 92% of all prediction were accurate. The cost benefit analysis has focused only on potential benefits from reduced perceived users waiting time and foreseen costs of real time information system in Maribor for 10 years’ period. Analysis shows that the optimal number for implementing real time passenger information system at the bus stops in Maribor is set on 83 bus stops (approx. 20 %) with the highest number of passenger. If we consider all entries at the chosen bus stops, the total perceived waiting time on yearly level could be decreased by about 60,000 hours.

  16. Observing electron localization in a dissociating H2+ molecule in real time.

    Science.gov (United States)

    Xu, H; Li, Zhichao; He, Feng; Wang, X; Atia-Tul-Noor, A; Kielpinski, D; Sang, R T; Litvinyuk, I V

    2017-06-16

    Dissociation of diatomic molecules with odd number of electrons always causes the unpaired electron to localize on one of the two resulting atomic fragments. In the simplest diatomic molecule H 2 + dissociation yields a hydrogen atom and a proton with the sole electron ending up on one of the two nuclei. That is equivalent to breaking of a chemical bond-the most fundamental chemical process. Here we observe such electron localization in real time by performing a pump-probe experiment. We demonstrate that in H 2 + electron localization is complete in just 15 fs when the molecule's internuclear distance reaches 8 atomic units. The measurement is supported by a theoretical simulation based on numerical solution of the time-dependent Schrödinger equation. This observation advances our understanding of detailed dynamics of molecular dissociation.

  17. Space and time resolved spectroscopy of laser-produced plasmas: A study of density-sensitive x-ray transitions in helium-like and neon-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Young, Bruce Kai Fong

    1988-09-01

    The determination of level populations and detailed population mechanisms in dense plasmas has become an increasingly important problem in atomic physics. In this work, the density variation of line intensities and level populations in aluminum K-shell and molybdenum and silver L-shell emission spectra have been measured from high-powered, laser-produced plasmas. For each case, the density dependence of the observed line emission is due to the effect of high frequency electron-ion collisions on metastable levels. The density dependent line intensities vary greatly in laser-produced plasmas and can be used to extract detailed information concerning the population kinetics and level populations of the ions. The laser-plasmas had to be fully characterized in order to clearly compare the observed density dependence with atomic theory predictions. This has been achieved through the combined use of new diagnostic instruments and microdot targets which provided simultaneously space, time, and spectrally resolved data. The plasma temperatures were determined from the slope of the hydrogen-like recombination continuum. The time resolved electron density profiles were measured using multiple frame holographic interferometry. Thus, the density dependence of K-shell spectral lines could be clearly examined, independent of assumptions concerning the dynamics of the plasma. In aluminum, the electron density dependence of various helium-like line intensity ratios were measured. Standard collisional radiative equilibrium models fail to account for the observed density dependence measured for the ''He/sub ..cap alpha..//IC'' ratio. Instead, a quasi-steady state atomic model based on a purely recombining plasma is shown to accurately predict the measured density dependence. This same recombining plasma calculation successfully models the density dependence of the high-n ''He/sub ..gamma..//He/sub ..beta../'' and ''He/sub delta

  18. Space and time resolved spectroscopy of laser-produced plasmas: A study of density-sensitive x-ray transitions in helium-like and neon-like ions

    International Nuclear Information System (INIS)

    Young, Bruce Kai Fong.

    1988-09-01

    The determination of level populations and detailed population mechanisms in dense plasmas has become an increasingly important problem in atomic physics. In this work, the density variation of line intensities and level populations in aluminum K-shell and molybdenum and silver L-shell emission spectra have been measured from high-powered, laser-produced plasmas. For each case, the density dependence of the observed line emission is due to the effect of high frequency electron-ion collisions on metastable levels. The density dependent line intensities vary greatly in laser-produced plasmas and can be used to extract detailed information concerning the population kinetics and level populations of the ions. The laser-plasmas had to be fully characterized in order to clearly compare the observed density dependence with atomic theory predictions. This has been achieved through the combined use of new diagnostic instruments and microdot targets which provided simultaneously space, time, and spectrally resolved data. The plasma temperatures were determined from the slope of the hydrogen-like recombination continuum. The time resolved electron density profiles were measured using multiple frame holographic interferometry. Thus, the density dependence of K-shell spectral lines could be clearly examined, independent of assumptions concerning the dynamics of the plasma. In aluminum, the electron density dependence of various helium-like line intensity ratios were measured. Standard collisional radiative equilibrium models fail to account for the observed density dependence measured for the ''He/sub α//IC'' ratio. Instead, a quasi-steady state atomic model based on a purely recombining plasma is shown to accurately predict the measured density dependence. This same recombining plasma calculation successfully models the density dependence of the high-n ''He/sub γ//He/sub β/'' and ''He/sub δ//He/sub β/'' helium-like resonance line intensity ratios

  19. Concepts of real time and semi-real time material control

    International Nuclear Information System (INIS)

    Lovett, J.E.

    1975-01-01

    After a brief consideration of the traditional material balance accounting on an MBA basis, this paper explores the basic concepts of real time and semi-real time material control, together with some of the major problems to be solved. Three types of short-term material control are discussed: storage, batch processing, and continuous processing. (DLC)

  20. a Time-Resolved X-Ray Scattering Study of the Ordering Kinetics in COPPER(3)-GOLD

    Science.gov (United States)

    Shannon, Robert Francis, Jr.

    Time-resolved x-ray scattering has been used to study ordering kinetics in single crystal bulk Cu _3Au, as well as in sputtered and molecular beam epitaxy grown films. After annealing at high temperatures the sample is rapidly quenched to fixed temperatures below the order-disorder transition temperature. The development of order is monitored in real time using scattering techniques. The bulk sample clearly showed three regimes: nucleation, ordering, and coarsening. The anisotropic superlattice peaks that reflect the domains structure are investigated in connection with the ordering kinetics. The line shape of the scattering function exhibits a crossover from gaussian to lorentzian-squared as the system goes from the ordering regime to the coarsening regime. Coarsening in Cu_3Au is consistent with curvature driven growth. Domain coarsening in stoichiometric sputtered films is also consistent with curvature driven growth. However, coarsening in copper rich films proceeds much more slowly. The results suggest the extra copper affects the ordering kinetics in the same way diffusive impurities would, resulting in a logarithmic like time dependence. The M.B.E. films show a slowing of the growth at late times. The 4500A film starts out with curvature driven growth but then continuously slows down as the domains grow. The 710A film shows an interesting temperature dependence for the growth, in such a way that at temperatures close to the transition, the domain growth almost freezes at late times. The dominate factor is probably strain, all of the trends for slower growth are consistent with greater strain. The dimensionality in the M.B.E. film systems is considered. The scaling in the 4500A and 710A films is clearly three dimensional. However, the dimension of the scaling in the 260A film is unclear.

  1. Real-time PCR in virology.

    Science.gov (United States)

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  2. Real Time Systems

    DEFF Research Database (Denmark)

    Christensen, Knud Smed

    2000-01-01

    Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems.......Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems....

  3. Real time expert systems

    International Nuclear Information System (INIS)

    Asami, Tohru; Hashimoto, Kazuo; Yamamoto, Seiichi

    1992-01-01

    Recently, aiming at the application to the plant control for nuclear reactors and traffic and communication control, the research and the practical use of the expert system suitable to real time processing have become conspicuous. In this report, the condition for the required function to control the object that dynamically changes within a limited time is presented, and the technical difference between the real time expert system developed so as to satisfy it and the expert system of conventional type is explained with the actual examples and from theoretical aspect. The expert system of conventional type has the technical base in the problem-solving equipment originating in STRIPS. The real time expert system is applied to the fields accompanied by surveillance and control, to which conventional expert system is hard to be applied. The requirement for the real time expert system, the example of the real time expert system, and as the techniques of realizing real time processing, the realization of interruption processing, dispersion processing, and the mechanism of maintaining the consistency of knowledge are explained. (K.I.)

  4. Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    Science.gov (United States)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani

    2009-01-01

    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.

  5. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Lastras-Martínez, A., E-mail: alm@cactus.iico.uaslp.mx, E-mail: alastras@gmail.com; Ortega-Gallegos, J.; Guevara-Macías, L. E.; Nuñez-Olvera, O.; Balderas-Navarro, R. E.; Lastras-Martínez, L. F. [Instituto de Investigación en Comunicación Optica, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, San Luis Potosí, SLP 78000 (Mexico); Lastras-Montaño, L. A. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Lastras-Montaño, M. A. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106 (United States)

    2014-03-01

    We report on real time-resolved Reflectance-difference (RD) spectroscopy of GaAs(001) grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  6. Prospective time-resolved LCA of fully electric supercap vehicles in Germany.

    Science.gov (United States)

    Zimmermann, Benedikt M; Dura, Hanna; Baumann, Manuel J; Weil, Marcel R

    2015-07-01

    The ongoing transition of the German electricity supply toward a higher share of renewable and sustainable energy sources, called Energiewende in German, has led to dynamic changes in the environmental impact of electricity over the last few years. Prominent scenario studies predict that comparable dynamics will continue in the coming decades, which will further improve the environmental performance of Germany's electricity supply. Life cycle assessment (LCA) is the methodology commonly used to evaluate environmental performance. Previous LCA studies on electric vehicles have shown that the electricity supply for the vehicles' operation is responsible for the major part of their environmental impact. The core question of this study is how the prospective dynamic development of the German electricity mix will affect the impact of electric vehicles operated in Germany and how LCA can be adapted to analyze this impact in a more robust manner. The previously suggested approach of time-resolved LCA, which is located between static and dynamic LCA, is used in this study and compared with several static approaches. Furthermore, the uncertainty issue associated with scenario studies is addressed in general and in relation to time-resolved LCA. Two scenario studies relevant to policy making have been selected, but a moderate number of modifications have been necessary to adapt the data to the requirements of a life cycle inventory. A potential, fully electric vehicle powered by a supercapacitor energy storage system is used as a generic example. The results show that substantial improvements in the environmental repercussions of the electricity supply and, consequentially, of electric vehicles will be achieved between 2020 and 2031 on the basis of the energy mixes predicted in both studies. This study concludes that although scenarios might not be able to predict the future, they should nonetheless be used as data sources in prospective LCA studies, because in many cases

  7. Quality assurance test of a real time radiography system

    International Nuclear Information System (INIS)

    Yadav, R.K.; Rama, R.; Sharma, A.; Kannan, R.

    2005-01-01

    Any radiation generating equipment can be used and marketed in India only after obtaining specific type approval certificate from the Competent Authority i.e. Chairman, Atomic Energy Regulatory Board (AERB), Mumbai. Recently AERB has enforced a directive that the Industrial X-ray machines should also be permitted to use only after getting NOC or type approval. Type approval is granted based upon the satisfactory QA test report of the radiation generating equipment. X-ray machines with Real Time Radiography (RTR) facility are used in industrial radiography for faster inspection of equipment's and products online. A standard test protocol was developed for QA tests of a real time radiography system. This will be helpful for evaluation of an industrial X-ray machine. Also above procedure can be used to check a RTR system each day or a system-qualification can be done when the image quality diminishes as recommended by American Society of Testing Material (ASTM). Various tests carried out on a constant potential 450 kV, 10 mA industrial X-ray machine having real time radiography facility to monitor the products online, is described in this paper. (author)

  8. Real-Time Dynamics in U(1 Lattice Gauge Theories with Tensor Networks

    Directory of Open Access Journals (Sweden)

    T. Pichler

    2016-03-01

    Full Text Available Tensor network algorithms provide a suitable route for tackling real-time-dependent problems in lattice gauge theories, enabling the investigation of out-of-equilibrium dynamics. We analyze a U(1 lattice gauge theory in (1+1 dimensions in the presence of dynamical matter for different mass and electric-field couplings, a theory akin to quantum electrodynamics in one dimension, which displays string breaking: The confining string between charges can spontaneously break during quench experiments, giving rise to charge-anticharge pairs according to the Schwinger mechanism. We study the real-time spreading of excitations in the system by means of electric-field and particle fluctuations. We determine a dynamical state diagram for string breaking and quantitatively evaluate the time scales for mass production. We also show that the time evolution of the quantum correlations can be detected via bipartite von Neumann entropies, thus demonstrating that the Schwinger mechanism is tightly linked to entanglement spreading. To present a variety of possible applications of this simulation platform, we show how one could follow the real-time scattering processes between mesons and the creation of entanglement during scattering processes. Finally, we test the quality of quantum simulations of these dynamics, quantifying the role of possible imperfections in cold atoms, trapped ions, and superconducting circuit systems. Our results demonstrate how entanglement properties can be used to deepen our understanding of basic phenomena in the real-time dynamics of gauge theories such as string breaking and collisions.

  9. Time-resolved Femtosecond Photon Echo Probes Bimodal Solvent Dynamics

    NARCIS (Netherlands)

    Pshenichnikov, M.S; Duppen, K.; Wiersma, D. A.

    1995-01-01

    We report on time-resolved femtosecond photon echo experiments of a dye molecule in a polar solution. The photon echo is time resolved by mixing the echo with a femtosecond gate pulse in a nonlinear crystal. It is shown that the temporal profile of the photon echo allows separation of the

  10. The analysis of time-resolved optically stimulated luminescence: I. Theoretical considerations

    International Nuclear Information System (INIS)

    Chithambo, M L

    2007-01-01

    This is the first of two linked papers on the analysis of time-resolved optically stimulated luminescence. This paper focusses on a theoretical basis of analytical methods and on methods for interpretation of time-resolved luminescence spectra and calculation of luminescence throughput. Using a comparative analysis of the principal features of time-resolved luminescence and relevant analogues from steady state optical stimulation, formulae for configuring a measurement system for optimum performance are presented. We also examine the possible use of stretched-exponential functions for analysis of time-resolved optically stimulated luminescence spectra

  11. Atomic-resolution studies of In{sub 2}O{sub 3}-ZnO compounds on aberration-corrected electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wentao

    2009-10-23

    In this work, the characteristic inversion domain microstructures of In{sub 2}O{sub 3}(ZnO){sub m} (m=30) compounds were investigated by TEM methods. At bright-atom contrast condition, atomically resolved HR-TEM images of In{sub 2}O{sub 3}(ZnO){sub 30} were successfully acquired in [1 anti 100] zone axis of ZnO, with projected metal columns of {proportional_to}1.6 A well resolved. From contrast maxima in the TEM images, local lattice distortions at the pyramidal inversion domain boundaries were observed for the first time. Lattice displacements and the strain field in two-dimensions were visualized and measured using the 'DALI' algorithm. Atomically resolved single shot and focal series images of In{sub 2}O{sub 3}(ZnO){sub 30} were achieved in both zone axes of ZnO, [1 anti 100] and [2 anti 1 anti 10], respectively. The electron waves at the exit-plane were successfully reconstructed using the software package 'TrueImage'. Finally, a three dimensional atomic structure model for the pyramidal IDB was proposed, with an In distribution of 10%, 20%, 40%, 20% and 10% of In contents over 5 atom columns along basal planes, respectively. Through a detailed structural study of In{sub 2}O{sub 3}(ZnO){sub m} compounds by using phase-contrast and Z-contrast imaging at atomic resolution, In{sup 3+} atoms are determined with trigonal bi-pyramidal co-ordination and are distributed at the pyramidal IDBs. (orig.)

  12. REAL TIME SYSTEM OPERATIONS 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  13. Surface structure investigations using noncontact atomic force microscopy

    International Nuclear Information System (INIS)

    Kolodziej, J.J.; Such, B.; Goryl, M.; Krok, F.; Piatkowski, P.; Szymonski, M.

    2006-01-01

    Surfaces of several A III B V compound semiconductors (InSb, GaAs, InP, InAs) of the (0 0 1) orientation have been studied with noncontact atomic force microscopy (NC-AFM). Obtained atomically resolved patterns have been compared with structural models available in the literature. It is shown that NC-AFM is an efficient tool for imaging complex surface structures in real space. It is also demonstrated that the recent structural models of III-V compound surfaces provide a sound base for interpretation of majority of features present in recorded patterns. However, there are also many new findings revealed by the NC-AFM method that is still new experimental technique in the context of surface structure determination

  14. Development of time-resolved optical measurement and diagnostic system for parameters of high current and pulsed electron beam

    International Nuclear Information System (INIS)

    Jiang Xiaoguo; Wang Yuan; Yang Guojun; Xia Liansheng; Li Hong; Zhang Zhuo; Liao Shuqing; Shi Jinshui

    2013-01-01

    The beam parameters measurement is the most important work for the study of linear induction accelerator(LIA). The beam parameters are important to evaluate the character of the beam. The demands of beam parameters measurement are improving while the development of accelerator is improving. The measurement difficulty feature higher time-resolved ability, higher spatial resolution, larger dynamic range and higher intuitionistic view data. The measurement technology of beam spot, beam emittance, beam energy have been developed for the past several years. Some high performance equipment such as high speed framing camera are developed recently. Under this condition, the relative integrated optical measurement and diagnostic system for the beam parameters is developed based on several principles. The system features time-resolved ability of up to 2 ns, high sensitivity and large dynamic range. The processing program is compiled for the data process and the local real-time process is reached. The measurement and diagnostic system has provided full and accurate data for the debug work and has been put into applications. (authors)

  15. Time-resolved study of the electron temperature and number density of argon metastable atoms in argon-based dielectric barrier discharges

    Science.gov (United States)

    Desjardins, E.; Laurent, M.; Durocher-Jean, A.; Laroche, G.; Gherardi, N.; Naudé, N.; Stafford, L.

    2018-01-01

    A combination of optical emission spectroscopy and collisional-radiative modelling is used to determine the time-resolved electron temperature (assuming Maxwellian electron energy distribution function) and number density of Ar 1s states in atmospheric pressure Ar-based dielectric barrier discharges in presence of either NH3 or ethyl lactate. In both cases, T e values were higher early in the discharge cycle (around 0.8 eV), decreased down to about 0.35 eV with the rise of the discharge current, and then remained fairly constant during discharge extinction. The opposite behaviour was observed for Ar 1s states, with cycle-averaged values in the 1017 m-3 range. Based on these findings, a link was established between the discharge ionization kinetics (and thus the electron temperature) and the number density of Ar 1s state.

  16. Complex analyses on clinical information systems using restricted natural language querying to resolve time-event dependencies.

    Science.gov (United States)

    Safari, Leila; Patrick, Jon D

    2018-06-01

    This paper reports on a generic framework to provide clinicians with the ability to conduct complex analyses on elaborate research topics using cascaded queries to resolve internal time-event dependencies in the research questions, as an extension to the proposed Clinical Data Analytics Language (CliniDAL). A cascaded query model is proposed to resolve internal time-event dependencies in the queries which can have up to five levels of criteria starting with a query to define subjects to be admitted into a study, followed by a query to define the time span of the experiment. Three more cascaded queries can be required to define control groups, control variables and output variables which all together simulate a real scientific experiment. According to the complexity of the research questions, the cascaded query model has the flexibility of merging some lower level queries for simple research questions or adding a nested query to each level to compose more complex queries. Three different scenarios (one of them contains two studies) are described and used for evaluation of the proposed solution. CliniDAL's complex analyses solution enables answering complex queries with time-event dependencies at most in a few hours which manually would take many days. An evaluation of results of the research studies based on the comparison between CliniDAL and SQL solutions reveals high usability and efficiency of CliniDAL's solution. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Real-Time Wait-Free Queues using Micro-Transactions

    DEFF Research Database (Denmark)

    Meawad, Fadi; Iyer, Karthik; Schoeberl, Martin

    2011-01-01

    This paper evaluates the applicability of transactional mem- ory to the implementation of dierent non-blocking data structures in the context of the Real-time Specication for Java. In particular, we argue that hardware support for micro-transaction allows us to implement eciently data structures...... that are often dicult to realize with the atomic operations provided by stock hardware. Our main imple- mentation platform is the Java Optimized Processor sys- tem. We report on the performance of data structures imple- mented with locks, compare and swap and micro-transactions. Our results conrm...

  18. Optimized Real-Time Control of Combined Sewerage Systems: Two Case Studies (Proceedings Paper)

    Science.gov (United States)

    The paper presents results of two case studies of Real-Time Control (RTC) alternatives evaluations that were conducted on portions of sewerage systems near Paris, France and in Quebec City, Canada, respectively. The studies were performed at real-scale demonstration sites. RTC al...

  19. Study Of Soot Growth And Nucleation By A Time-Resolved Synchrotron Radiation Based X-Ray Absorption Method

    National Research Council Canada - National Science Library

    Mitchell, Judith I

    2001-01-01

    This report results from a contract tasking University of Rennes I as follows: The contractor will perform a study of soot growth and nucleation by a time-resolved synchrotron radiation based x-ray absorption method...

  20. Real-time UV imaging of nicotin release from transdermal patch

    DEFF Research Database (Denmark)

    Østergaard, Jesper; Meng-Lund, Emil; Larsen, Susan Weng

    2010-01-01

    PURPOSE: This study was conducted to characterize UV imaging as a platform for performing in vitro release studies using Nicorette® nicotine patches as a model drug delivery system. METHODS: The rate of nicotine release from 2 mm diameter patch samples (Nicorette®) into 0.067 M phosphate buffer, p......H 7.40, was studied by UV imaging (Actipix SDI300 dissolution imaging system) at 254 nm. The release rates were compared to those obtained using the paddle-over-disk method. RESULTS: Calibration curves were successfully established which allowed temporally and spatially resolved quantification...... of nicotine. Release profiles obtained from UV imaging were in qualitative agreement with results from the paddle-over-disk release method. CONCLUSION: Visualization as well as quantification of nicotine concentration gradients was achieved by UV imaging in real time. UV imaging has the potential to become...

  1. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas

    International Nuclear Information System (INIS)

    Shah, M. L.; Pulhani, A. K.; Suri, B. M.; Gupta, G. P.

    2013-01-01

    Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser (532 nm wavelength) with an irradiance of ∼ 1 × 10 9 W/cm 2 on a steel sample in air at atmospheric pressure. An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions. Using time-resolved spectroscopic measurements of the plasma emissions, the temperature and electron number density of the steel plasma are determined for many times of the detector delay. The validity of the assumption by the spectroscopic methods that the laser-induced plasma (LIP) is optically thin and is also in local thermodynamic equilibrium (LTE) has been evaluated for many delay times. From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value, the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns, 900 ns and 1000 ns.

  2. Time-resolved fluorescence analysis of the mobile flavin cofactor

    Indian Academy of Sciences (India)

    Conformational heterogeneity of the FAD cofactor in -hydroxybenzoate hydroxylase (PHBH) was investigated with time-resolved polarized flavin fluorescence. For binary enzyme/substrate (analogue) complexes of wild-type PHBH and Tyr222 mutants, crystallographic studies have revealed two distinct flavin conformations ...

  3. Hole emission from Ge/Si quantum dots studied by time-resolved capacitance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kapteyn, C.M.A.; Lion, M.; Heitz, R.; Bimberg, D. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik; Miesner, C.; Asperger, T.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Emission of holes from self-organized Ge quantum dots (QDs) embedded in Si Schottky diodes is studied by time-resolved capacitance spectroscopy (DLTS). The DLTS signal is rather broad and depends strongly on the filling and detection bias conditions. The observed dependence is interpreted in terms of carrier emission from many-hole states of the QDs. The activation energies obtained from the DLTS measurements are a function of the amount of stored charge and the position of the Fermi level in the QDs. (orig.)

  4. Mixed - mode Operating System for Real - time Performance

    Directory of Open Access Journals (Sweden)

    Hasan M. M.

    2017-11-01

    Full Text Available The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface(GUIoperating system which is typicallynon-real-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time events. In this research an i8751 microcontroller-based hardware was used to measure the performance of the system in real-time-only as well as non-real-time-only configurations. The real-time portion is an 486DX-40 IBM PC system running under DOS-based real-time kernel and the non-real-time portion is a Pentium IIIbased system running under Windows NT. It was found that mixed-mode systems performed as good as a typical real-time system and in fact, gave many additional benefits such as simplified/modular programming and load tolerance.

  5. NO kinetics in pulsed low-pressure nitrogen plasmas studied by time resolved quantum cascade laser absorption spectroscopy

    NARCIS (Netherlands)

    Welzel, S.; Guaitella, O.; Lazzaroni, C.; Pintassilgo, C.; Rousseau, A.; Röpcke, J.

    2011-01-01

    Time-resolved quantum cascade laser absorption spectroscopy at 1897 cm-1 (5.27 µm) has been applied to study the NO(X) kinetics on the micro- and millisecond time scale in pulsed low-pressure N2/NO dc discharges. Experiments have been performed under flowing and static gas conditions to infer the

  6. Process algebra with timing : real time and discrete time

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.; Bergstra, J.A.; Ponse, A.J.; Smolka, S.A.

    2001-01-01

    We present real time and discrete time versions of ACP with absolute timing and relative timing. The starting-point is a new real time version with absolute timing, called ACPsat, featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete

  7. Process algebra with timing: Real time and discrete time

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.

    1999-01-01

    We present real time and discrete time versions of ACP with absolute timing and relative timing. The startingpoint is a new real time version with absolute timing, called ACPsat , featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete

  8. Mixed - mode Operating System for Real - time Performance

    OpenAIRE

    Hasan M. M.; Sultana S.; Foo C.K.

    2017-01-01

    The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface(GUI)operating system which is typicallynon-real-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time e...

  9. Time Resolved Studies of Carrier Dynamics in III -v Heterojunction Semiconductors.

    Science.gov (United States)

    Westland, Duncan James

    Available from UMI in association with The British Library. Requires signed TDF. Picosecond time-resolution photoluminescence spectroscopy has been used to study transient processes in Ga _{.47}In_{.53 }As/InP multiple quantum wells (MQWs), and in bulk Ga_{.47}In _{.53}As and GaSb. To facilitate the experimental studies, apparatus was constructed to allow the detection of transient luminescence with 3ps time resolution. A frequency upconversion technique was employed. Relaxation of energetic carriers in bulk Ga _{.47}In_{.53 }As by optic phonons has been investigated, and, at carrier densities ~3 times 10^{18}cm ^{-3} is found to be a considerably slower process than simple theory predicts. The discrepancy is resolved by the inclusion of a non-equilibrium population of longitudinal optic phonons in the theoretical description. Slow energy loss is also observed in a 154A MQW under similar conditions, but carriers are found to relax more quickly in a 14A MQW with a comparable repeat period. The theory of non-equilibrium mode occupation is modified to describe the case of a MQW and is found to agree with experiment. Carrier relaxation in GaSb is studied and the importance of occupation of the L _6 conduction band valley in this material is demonstrated. The ambipolar diffusion of a photoexcited carrier plasma through an InP capping layer was investigated using an optical time-of-flight technique. This experiment also enables the efficiency of carrier capture by a Ga _{.47}In_{.53 }As quantum well to be determined. A capture time of 4ps was found.

  10. Real-time radiography

    International Nuclear Information System (INIS)

    Bossi, R.H.; Oien, C.T.

    1981-01-01

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components

  11. Spectral and time-resolved studies on ocular structures

    Science.gov (United States)

    Schweitzer, D.; Jentsch, S.; Schenke, S.; Hammer, M.; Biskup, C.; Gaillard, E.

    2007-07-01

    Measurements of endogeous fluorophores open the possibility for evaluation of metabolic state at the eye. For interpretation of 2-dimensional measurements of time-resolved auto fluorescence in 2 separate spectral ranges at the human eye, comparing measurements were performed on porcine eyes. Determining excitation and emission spectra, attention was drawn of proof of coenzymes NADH and FAD in isolated anatomical structures cornea, aqueous humor, lens, vitreous, neuronal retina, retinal pigment epithelium (RPE), choroid, and sclera. All these structures exhibit auto fluorescence, highest in lens. Excitation at 350 nm results in local fluorescence maxima at 460 nm, corresponding to NADH, in all structures. This short-wave excitation allows metabolic studies only at the anterior eye, because of the limited transmission of the ocular media. During excitation at 446 nm the existence of FAD is expressed by local fluorescence maxima at 530 nm. The composition fluorescence spectra allow no discrimination between single ocular structures. Approximating the dynamic fluorescence by a double exponential function, the shortest lifetimes were detected in RPE and neuronal retina. The histograms of mean lifetime t M cover each other on lens with cornea and also on sclera with choroid. Despite the lifetimes are close between RPE and neuronal retina, the relative contributions Q I are wide different. The gradient of trend lines in cluster diagrams of amplitudes α II vs. α I allows a discrimination of ocular structures.

  12. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  13. Femtosecond Time-resolved Optical Polarigraphy (FTOP)

    International Nuclear Information System (INIS)

    Aoshima, S.; Fujimoto, M.; Hosoda, M.; Tsuchiya, Y.

    2000-01-01

    A novel time-resolved imaging technique named FTOP (Femtosecond Time-resolved Optical Polarigraphy) for visualizing the ultrafast propagation dynamics of intense light pulses in a medium has been proposed and demonstrated. Femtosecond snapshot images can be created with a high spatial resolution by imaging only the polarization components of the probe pulse; these polarization components change due to the instantaneous birefringence induced by the pump pulse in the medium. Ultrafast temporal changes in the two-dimensional spatial distribution of the optical pulse intensity were clearly visualized in consecutive images by changing the delay between the pump and probe. We observe that several filaments appear and then come together before the vacuum focus due to nonlinear effects in air. We also prove that filamentation dynamics such as the formation position and the propagation behavior are complex and are strongly affected by the pump energy. The results collected clearly show that this method FTOP succeeds for the first time in directly visualizing the ultrafast dynamics of the self-modulated nonlinear propagation of light. (author)

  14. Improved real-time dynamics from imaginary frequency lattice simulations

    Directory of Open Access Journals (Sweden)

    Pawlowski Jan M.

    2018-01-01

    Full Text Available The computation of real-time properties, such as transport coefficients or bound state spectra of strongly interacting quantum fields in thermal equilibrium is a pressing matter. Since the sign problem prevents a direct evaluation of these quantities, lattice data needs to be analytically continued from the Euclidean domain of the simulation to Minkowski time, in general an ill-posed inverse problem. Here we report on a novel approach to improve the determination of real-time information in the form of spectral functions by setting up a simulation prescription in imaginary frequencies. By carefully distinguishing between initial conditions and quantum dynamics one obtains access to correlation functions also outside the conventional Matsubara frequencies. In particular the range between ω0 and ω1 = 2πT, which is most relevant for the inverse problem may be more highly resolved. In combination with the fact that in imaginary frequencies the kernel of the inverse problem is not an exponential but only a rational function we observe significant improvements in the reconstruction of spectral functions, demonstrated in a simple 0+1 dimensional scalar field theory toy model.

  15. Improved real-time dynamics from imaginary frequency lattice simulations

    Science.gov (United States)

    Pawlowski, Jan M.; Rothkopf, Alexander

    2018-03-01

    The computation of real-time properties, such as transport coefficients or bound state spectra of strongly interacting quantum fields in thermal equilibrium is a pressing matter. Since the sign problem prevents a direct evaluation of these quantities, lattice data needs to be analytically continued from the Euclidean domain of the simulation to Minkowski time, in general an ill-posed inverse problem. Here we report on a novel approach to improve the determination of real-time information in the form of spectral functions by setting up a simulation prescription in imaginary frequencies. By carefully distinguishing between initial conditions and quantum dynamics one obtains access to correlation functions also outside the conventional Matsubara frequencies. In particular the range between ω0 and ω1 = 2πT, which is most relevant for the inverse problem may be more highly resolved. In combination with the fact that in imaginary frequencies the kernel of the inverse problem is not an exponential but only a rational function we observe significant improvements in the reconstruction of spectral functions, demonstrated in a simple 0+1 dimensional scalar field theory toy model.

  16. Congestion relief by travel time minimization in near real time : Detroit area I-75 corridor study.

    Science.gov (United States)

    2008-12-01

    "This document summarizes the activities concerning the project: Congestion Relief by : Travel Time Minimization in Near Real Time -- Detroit Area I-75 Corridor Study since : the inception of the project (Nov. 22, 2006 through September 30, 2008). : ...

  17. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    Directory of Open Access Journals (Sweden)

    A. Lastras-Martínez

    2014-03-01

    Full Text Available We report on real time-resolved Reflectance-difference (RD spectroscopy of GaAs(001 grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  18. Time-resolved small-angle neutron scattering study on soap-free emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Motokawa, Ryuhei [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Koizumi, Satoshi [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: koizumi@neutrons.tokai.jaeri.go.jp; Hashimoto, Takeji [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Nakahira, Takayuki [Department of Applied Chemistry and Biotechnology, Chiba University, Chiba-shi, Chiba 263-8522 (Japan); Annaka, Masahiko [Department of Chemistry, Kyushu University, Fukuoka 812-8581 (Japan)

    2006-11-15

    We investigated an aqueous soap-free emulsion polymerization process of Poly(N-isopropylacrylamide)-block-poly(ethylene glycol) by ultra-small-angle and time-resolved small-angle neutron scattering methods. The results indicate that the compartmentalization of chain end radicals into solid-like micelle cores crucially leads to the quasi-living behavior of the radical polymerization by prohibiting recombination process.

  19. Size-resolved particle number emission patterns under real-world driving conditions using positive matrix factorization

    NARCIS (Netherlands)

    Domínguez-Sáez, A.; Viana, M.; Barrios, C.C.; Rubio, J.R.; Amato, F.; Pujadas, M.; Querol, X.

    2012-01-01

    A novel on-board system was tested to characterize size-resolved particle number emission patterns under real-world driving conditions, running in a EURO4 diesel vehicle and in a typical urban circuit in Madrid (Spain). Emission profiles were determined as a function of driving conditions. Source

  20. Thermo-oxidative degradation study of melt-processed polyethylene and its blend with polyamide using time-resolved rheometry

    CSIR Research Space (South Africa)

    Salehiyan, Reza

    2017-05-01

    Full Text Available Time-resolved mechanical spectroscopy (TRMS) was conducted to study the thermo-oxidative degradation of linear low density polyethylene (LLDPE) samples with different thermal histories and their blends with a polyamide (PA6) in the melt state. Neat...

  1. Directed Atom-by-Atom Assembly of Dopants in Silicon.

    Science.gov (United States)

    Hudak, Bethany M; Song, Jiaming; Sims, Hunter; Troparevsky, M Claudia; Humble, Travis S; Pantelides, Sokrates T; Snijders, Paul C; Lupini, Andrew R

    2018-05-17

    The ability to controllably position single atoms inside materials is key for the ultimate fabrication of devices with functionalities governed by atomic-scale properties. Single bismuth dopant atoms in silicon provide an ideal case study in view of proposals for single-dopant quantum bits. However, bismuth is the least soluble pnictogen in silicon, meaning that the dopant atoms tend to migrate out of position during sample growth. Here, we demonstrate epitaxial growth of thin silicon films doped with bismuth. We use atomic-resolution aberration-corrected imaging to view the as-grown dopant distribution and then to controllably position single dopants inside the film. Atomic-scale quantum-mechanical calculations corroborate the experimental findings. These results indicate that the scanning transmission electron microscope is of particular interest for assembling functional materials atom-by-atom because it offers both real-time monitoring and atom manipulation. We envision electron-beam manipulation of atoms inside materials as an achievable route to controllable assembly of structures of individual dopants.

  2. Memory controllers for real-time embedded systems predictable and composable real-time systems

    CERN Document Server

    Akesson, Benny

    2012-01-01

      Verification of real-time requirements in systems-on-chip becomes more complex as more applications are integrated. Predictable and composable systems can manage the increasing complexity using formal verification and simulation.  This book explains the concepts of predictability and composability and shows how to apply them to the design and analysis of a memory controller, which is a key component in any real-time system. This book is generally intended for readers interested in Systems-on-Chips with real-time applications.   It is especially well-suited for readers looking to use SDRAM memories in systems with hard or firm real-time requirements. There is a strong focus on real-time concepts, such as predictability and composability, as well as a brief discussion about memory controller architectures for high-performance computing. Readers will learn step-by-step how to go from an unpredictable SDRAM memory, offering highly variable bandwidth and latency, to a predictable and composable shared memory...

  3. A time-resolved image sensor for tubeless streak cameras

    Science.gov (United States)

    Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .

  4. Time-resolved electron transport in quantum-dot systems; Zeitaufgeloester Elektronentransport in Quantendotsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Croy, Alexander

    2010-06-30

    In this thesis the time-resolved electron transport in quantum dot systems was studied. For this two different formalisms were presented: The nonequilibrium Green functions and the generalized quantum master equations. For both formalisms a propagation method for the numerical calculation of time-resolved expectation values, like the occupation and the electron current, was developed. For the demonstration of the propagation method two different question formulations were considered. On the one hand the stochastically driven resonant-level model was studied. On the other hand the pulse-induced transport through a double quantum dot was considered.

  5. Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments

    DEFF Research Database (Denmark)

    Larsen, Casper; Cooke, David G.; Jepsen, Peter Uhd

    2011-01-01

    In this paper we report on the numerical analysis of a time-resolved terahertz (THz) spectroscopy experiment using a modified finite-difference time-domain method. Using this method, we show that ultrafast carrier dynamics can be extracted with a time resolution smaller than the duration of the T...

  6. Time-resolved two million year old supernova activity discovered in the earth's microfossil record

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Shawn; Ludwig, Peter; Chernenko, Valentina; Deveva, Boyana; Faestermann, Thomas; Famulok, Nicolai; Fimiani, Leticia; Gomez, Jose; Hain, Karin; Korschinek, Gunther [Physik Department, Technische Universitaet Muenchen, Garching (Germany); Egli, Ramon [Geomagnetism and Gravimetry, Central Institute for Metrology and Geodynamics, Vienna (Austria); Hanzlik, Marianne [Chemie Department, FG Elektronmikroskopie, Technische Universitaet Muenchen, Garching (Germany); Merchel, Silke; Rugel, Georg [Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Dresden (Germany)

    2016-07-01

    Using accelerator mass spectrometry, we have conducted a search for live, supernova-produced, {sup 60}Fe atoms within biogenically produced magnetite (Fe{sub 3}O{sub 4}) crystals contained in two Pacific Ocean sediment cores. We have found a time-resolved {sup 60}Fe signal in both sediment cores, above background, centered at approximately 2.1 Myr ago and spanning approximately 800 kyr duration (full width half maximum). The onset of this signal coincides with a known marine extinction event at the Pleiocene/Pleistocene boundary, and its shape will require eventual astrophysical interpretation to understand.

  7. Charge recombination processes in minerals studied using optically stimulated luminescence and time-resolved exo-electrons

    International Nuclear Information System (INIS)

    Tsukamoto, Sumiko; Murray, Andrew; Ankjaergaard, Christina; Jain, Mayank; Lapp, Torben

    2010-01-01

    A time-resolved optically stimulated exo-electron (TR-OSE) measurement system has been developed using a Photon Timer attached to a gas-flow semi-proportional pancake electron detector within a Risoe TL/OSL reader. The decay rate of the exo-electron emission after the stimulation pulse depends on the probability of (1) escape of electrons into the detector gas from the conduction band by overcoming the work function of the material and (2) thermalization of electrons in the conduction band, and subsequent re-trapping/recombination. Thus, we expect the exo-electron signal to reflect the instantaneous electron concentration in the conduction band. In this study, TR-OSE and time-resolved optically stimulated luminescence (TR-OSL) were measured for the first time using quartz, K-feldspar and NaCl by stimulating the samples using pulsed blue LEDs at different temperatures between 50 and 250 0 C after beta irradiation and preheating to 280 0 C. The majority of TR-OSE signals from all the samples decayed much faster than TR-OSL signals irrespective of the stimulation temperatures. This suggests that the lifetime of OSL in these dosimeters arises mainly from the relaxation of an excited state of the recombination centre, rather than from residence time of an electron in the conduction band.

  8. Real-time objects development: Study and proposal for a parallel scheduling architecture

    International Nuclear Information System (INIS)

    Rioux, Laurent

    1997-01-01

    This thesis contributes to the programming and the execution control of real-time object oriented applications. Using real-time objects is very interesting for programming real- time applications, because this model can introduce the concurrence with the encapsulation properties, with modularity and reusability by taking into account the real-time constraints of the application. One essential quality of this approach is that it can directly specify the parallelism and the real-time constraints at the model level of the application. An annotation system of C++ has been defined to describe the real-time specifications in the model (or in the source code) of the application. It will supply to the execution support the different information it needs for the control. In this approach of multitasking, the control is distributed and encapsulated inside each real time object. Three complementary levels of control have been defined: the state level (defining the capability of an object to treat an operation), the concurrence level (assuring the coherence between the object attributes) and a scheduling control (allocating the processors resources to the object by taking real-time constraints into account). The proposed control architecture, named OROS, manages the attribute access of each object in an individual way, then it can parallel treatments which do not access at the same data. This architecture makes a dynamic control of an application that can take benefit from the parallelism of the new machines both for the execution parallelism and the control itself. This architecture uses only the simplest primitives of the industrial real-time operating systems which ensures its feasibility and portability. (author) [fr

  9. Time-resolved observation of thermally activated rupture of a capillary-condensed water nanobridge

    International Nuclear Information System (INIS)

    Bak, Wan; Sung, Baekman; Kim, Jongwoo; Kwon, Soyoung; Kim, Bongsu; Jhe, Wonho

    2015-01-01

    The capillary-condensed liquid bridge is one of the most ubiquitous forms of liquid in nature and contributes significantly to adhesion and friction of biological molecules as well as microscopic objects. Despite its important role in nanoscience and technology, the rupture process of the bridge is not well understood and needs more experimental works. Here, we report real-time observation of rupture of a capillary-condensed water nanobridge in ambient condition. During slow and stepwise stretch of the nanobridge, we measured the activation time for rupture, or the latency time required for the bridge breakup. By statistical analysis of the time-resolved distribution of activation time, we show that rupture is a thermally activated stochastic process and follows the Poisson statistics. In particular, from the Arrhenius law that the rupture rate satisfies, we estimate the position-dependent activation energies for the capillary-bridge rupture

  10. Mixed-mode Operating System for Real-time Performance

    OpenAIRE

    M.M. Hasan; S. Sultana; C.K. Foo

    2017-01-01

    The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface (GUI) operating system which is typically nonreal-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time...

  11. Application of the Real-Time Time-Dependent Density Functional Theory to Excited-State Dynamics of Molecules and 2D Materials

    Science.gov (United States)

    Miyamoto, Yoshiyuki; Rubio, Angel

    2018-04-01

    We review our recent developments in the ab initio simulation of excited-state dynamics within the framework of time-dependent density functional theory (TDDFT). Our targets range from molecules to 2D materials, although the methods are general and can be applied to any other finite and periodic systems. We discuss examples of excited-state dynamics obtained by real-time TDDFT coupled with molecular dynamics (MD) and the Ehrenfest approximation, including photoisomerization in molecules, photoenhancement of the weak interatomic attraction of noble gas atoms, photoenhancement of the weak interlayer interaction of 2D materials, pulse-laser-induced local bond breaking of adsorbed atoms on 2D sheets, modulation of UV light intensity by graphene nanoribbons at terahertz frequencies, and collision of high-speed ions with the 2D material to simulate the images taken by He ion microscopy. We illustrate how the real-time TDDFT approach is useful for predicting and understanding non-equilibrium dynamics in condensed matter. We also discuss recent developments that address the excited-state dynamics of systems out of equilibrium and future challenges in this fascinating field of research.

  12. Testing of real-time-software

    International Nuclear Information System (INIS)

    Friesland, G.; Ovenhausen, H.

    1975-05-01

    The situation in the area of testing real-time-software is unsatisfactory. During the first phase of the project PROMOTE (prozessorientiertes Modul- und Gesamttestsystem) an analysis of the momentary situation took place, results of which are summarized in the following study about some user interviews and an analysis of relevant literature. 22 users (industry, software-houses, hardware-manufacturers, and institutes) have been interviewed. Discussions were held about reliability of real-time software with special interest to error avoidance, testing, and debugging. Main aims of the analysis of the literature were elaboration of standard terms, comparison of existing test methods and -systems, and the definition of boundaries to related areas. During the further steps of this project some means and techniques will be worked out to systematically test real-time software. (orig.) [de

  13. Studies of nanostructures using time-resolved x-ray excited optical luminescence*

    International Nuclear Information System (INIS)

    Rosenberg, R.A.; Shenoy, G.K.; Smita, S.; Burda, C.; Sham, T.K.

    2004-01-01

    Full text:The scientific community is currently investing a great deal of effort into understanding the physics and chemistry of nanoscale structures. Synchrotron radiation techniques are being used to study the physical, electronic, and magnetic structure of nanosystems, albeit at a relatively large size (greater than 30 nm). A major challenge facing researchers is finding methods that can probe structures of the smallest scale (less than 10 nm). Optical luminescence has been shown to be directly sensitive to structures in this size range due to quantum confinement phenomena. X-ray-excited optical luminescence (XEOL) provides the capability to chemically map the sites responsible for producing low-energy (1-6 eV) fluorescence. By taking advantage of the time structure of the x-ray pulses at the Advanced Photon Source (70 ps wide, 153 ns separation), it also possible to determine the dynamic behavior of the states involved in the luminescence. In this paper we will present results of time-resolved XEOL experiments on various nanostructures including porous silicon, silicon nanowires, and CdSe nanodots

  14. Atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Science.gov (United States)

    Pabst, Stefan

    2013-04-01

    Time-resolved investigations of ultrafast electronic and molecular dynamics were not possible until recently. The typical time scale of these processes is in the picosecond to attosecond realm. The tremendous technological progress in recent years made it possible to generate ultrashort pulses, which can be used to trigger, to watch, and to control atomic and molecular motion. This tutorial focuses on experimental and theoretical advances which are used to study the dynamics of electrons and molecules in the presence of ultrashort pulses. In the first part, the rotational dynamics of molecules, which happens on picosecond and femtosecond time scales, is reviewed. Well-aligned molecules are particularly suitable for angle-dependent investigations like x-ray diffraction or strong-field ionization experiments. In the second part, the ionization dynamics of atoms is studied. The characteristic time scale lies, here, in the attosecond to few-femtosecond regime. Although a one-particle picture has been successfully applied to many processes, many-body effects do constantly occur. After a broad overview of the main mechanisms and the most common tools in attosecond physics, examples of many-body dynamics in the attosecond world (e.g., in high-harmonic generation and attosecond transient absorption spectroscopy) are discussed.

  15. IBM PC based real time photon correlator [Paper No.:D2

    International Nuclear Information System (INIS)

    Kumaravadivelu, C.; Nageswaran, A.; Weling, S. A.

    1993-01-01

    The design aspects and development of IBM PC based real time photon correlator is presented. This system computes 64 auto-correlation functions in real time. Sample data is 4-bit wide. Correlation functions are computed in hard wired logic using discrete components. A combination of parallel and pipelined architecture is adopted to compute the correlation in realtime. A high speed controller generates the required control signals for the computing hardware and also provides handshake signals to IBM PC to access the computed results. IBM PC bus is extended and interfaced to correlation computing hardware. IBM PC collects the experimental parameters through user friendly menu and initiates the correlation hardware and continues to collect the correlation build ups and displays them on the screen. Extensive test and maintenance features are incorporated into the system. This system is developed for Material Science Division in Indira Gandhi Centre for Atomic Research (IGCAR) to study static and dynamic properties of macro molecules and colloidal particles in dispersion using light scattering technique. It can also be used to study the flow characteristics of sodium in nuclear reactors. It can be used in dynamic neutron scattering experiments. (author). 3 figs., 2 tabs

  16. Real-time observation of intersystem crossing induced by charge recombination during bimolecular electron transfer reactions

    KAUST Repository

    Alsam, Amani Abdu

    2016-09-21

    Real-time probing of intersystem crossing (ISC) and triplet-state formation after photoinduced electron transfer (ET) is a particularly challenging task that can be achieved by time-resolved spectroscopy with broadband capability. Here, we examine the mechanism of charge separation (CS), charge recombination (CR) and ISC of bimolecular photoinduced electron transfer (PET) between poly[(9,9-di(3,3′-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and dicyanobenzene (DCB) using time-resolved spectroscopy. PET from PFN to DCB is confirmed by monitoring the transient absorption (TA) and infrared spectroscopic signatures for the radical ion pair (DCB─•-PFN+•). In addition, our time-resolved results clearly demonstrate that CS takes place within picoseconds followed by CR within nanoseconds. The ns-TA data exhibit the clear spectroscopic signature of PFN triplet-triplet absorption, induced by the CR of the radical ion pairs (DCB─•-PFN+•). As a result, the triplet state of PFN (3PFN*) forms and subsequently, the ground singlet state is replenished within microseconds. © 2016

  17. Real-time data collection in Linux: a case study.

    Science.gov (United States)

    Finney, S A

    2001-05-01

    Multiuser UNIX-like operating systems such as Linux are often considered unsuitable for real-time data collection because of the potential for indeterminate timing latencies resulting from preemptive scheduling. In this paper, Linux is shown to be fully adequate for precisely controlled programming with millisecond resolution or better. The Linux system calls that subserve such timing control are described and tested and then utilized in a MIDI-based program for tapping and music performance experiments. The timing of this program, including data input and output, is shown to be accurate at the millisecond level. This demonstrates that Linux, with proper programming, is suitable for real-time experiment software. In addition, the detailed description and test of both the operating system facilities and the application program itself may serve as a model for publicly documenting programming methods and software performance on other operating systems.

  18. Essays in real-time forecasting

    OpenAIRE

    Liebermann, Joelle

    2012-01-01

    This thesis contains three essays in the field of real-time econometrics, and more particularlyforecasting.The issue of using data as available in real-time to forecasters, policymakers or financialmarkets is an important one which has only recently been taken on board in the empiricalliterature. Data available and used in real-time are preliminary and differ from ex-postrevised data, and given that data revisions may be quite substantial, the use of latestavailable instead of real-time can s...

  19. Time-resolved materials science opportunities using synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by ∼tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities

  20. Managing patients' wait time in specialist out-patient clinic using real-time data from existing queue management and ADT systems.

    Science.gov (United States)

    Ju, John Chen; Gan, Soon Ann; Tan Siew Wee, Justine; Huang Yuchi, Peter; Mei Mei, Chan; Wong Mei Mei, Sharon; Fong, Kam Weng

    2013-01-01

    In major cancer centers, heavy patients load and multiple registration stations could cause significant wait time, and can be result in patient complains. Real-time patient journey data and visual display are useful tools in hospital patient queue management. This paper demonstrates how we capture patient queue data without deploying any tracing devices; and how to convert data into useful patient journey information to understand where interventions are likely to be most effective. During our system development, remarkable effort has been spent on resolving data discrepancy and balancing between accuracy and system performances. A web-based dashboard to display real-time information and a framework for data analysis were also developed to facilitate our clinics' operation. Result shows our system could eliminate more than 95% of data capturing errors and has improved patient wait time data accuracy since it was deployed.

  1. Quantum-dot-based homogeneous time-resolved fluoroimmunoassay of alpha-fetoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Chen Meijun; Wu Yingsong; Lin Guanfeng; Hou Jingyuan; Li Ming [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China); Liu Tiancai, E-mail: liutc@smu.edu.cn [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China)

    2012-09-05

    .4 ng mL{sup -1}. By assaying test samples against the standard curve, the coefficient of variations was <5%, indicating that QDs were suitable for this homogenous time-resolved fluoroimmunoassay. This work extended the potential applications of QDs in future homogeneous analytical bioassays. In the coming research, hepatitis B surface antigen, another primary marker for hepatocellular carcinoma, will be studied for practical detection using a QD-based homogenous multiplex fluoroimmunoassay.

  2. Mixed-mode Operating System for Real-time Performance

    Directory of Open Access Journals (Sweden)

    M.M. Hasan

    2017-11-01

    Full Text Available The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface (GUI operating system which is typically nonreal-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time events. In this research an i8751 microcontroller-based hardware was used to measure the performance of the system in real-time-only as well as non-real-time-only configurations. The real-time portion is an 486DX-40 IBM PC system running under DOS-based realtime kernel and the non-real-time portion is a Pentium III based system running under Windows NT. It was found that mixed-mode systems performed as good as a typical realtime system and in fact, gave many additional benefits such as simplified/modular programming and load tolerance.

  3. Ovation Prime Real-Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ovation Prime Real-Time (OPRT) product is a real-time forecast and nowcast model of auroral power and is an operational implementation of the work by Newell et...

  4. Self-Organization in Embedded Real-Time Systems

    CERN Document Server

    Brinkschulte, Uwe; Rettberg, Achim

    2013-01-01

    This book describes the emerging field of self-organizing, multicore, distributed and real-time embedded systems.  Self-organization of both hardware and software can be a key technique to handle the growing complexity of modern computing systems. Distributed systems running hundreds of tasks on dozens of processors, each equipped with multiple cores, requires self-organization principles to ensure efficient and reliable operation. This book addresses various, so-called Self-X features such as self-configuration, self-optimization, self-adaptation, self-healing and self-protection. Presents open components for embedded real-time adaptive and self-organizing applications; Describes innovative techniques in: scheduling, memory management, quality of service, communications supporting organic real-time applications; Covers multi-/many-core embedded systems supporting real-time adaptive systems and power-aware, adaptive hardware and software systems; Includes case studies of open embedded real-time self-organizi...

  5. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    Science.gov (United States)

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-03

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  6. Time-resolved spectroscopy of nonequilibrium ionization in laser-produced plasmas

    International Nuclear Information System (INIS)

    Marjoribanks, R.S.

    1988-01-01

    The highly transient ionization characteristic of laser-produced plasmas at high energy densities has been investigated experimentally, using x-ray spectroscopy with time resolution of less than 20 ps. Spectroscopic diagnostics of plasma density and temperature were used, including line ratios, line profile broadening and continuum emission, to characterize the plasma conditions without relying immediately on ionization modeling. The experimentally measured plasma parameters were used as independent variables, driving an ionization code, as a test of ionization modeling, divorced from hydrodynamic calculations. Several state-of-the-art streak spectrographs, each recording a fiducial of the laser peak along with the time-resolved spectrum, characterized the laser heating of thin signature layers of different atomic numbers imbedded in plastic targets. A novel design of crystal spectrograph, with a conically curved crystal, was developed. Coupled with a streak camera, it provided high resolution (λ/ΔΛ > 1000) and a collection efficiency roughly 20-50 times that of planar crystal spectrographs, affording improved spectra for quantitative reduction and greater sensitivity for the diagnosis of weak emitters. Experimental results were compared to hydrocode and ionization code simulations, with poor agreement. The conclusions question the appropriateness of describing electron velocity distributions by a temperature parameter during the time of laser illumination and emphasis the importance of characterizing the distribution more generally

  7. Toward real-time regional earthquake simulation of Taiwan earthquakes

    Science.gov (United States)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  8. Time-resolved fluorescence quenching studies of sodium lauryl ether sulfate micelles

    OpenAIRE

    Friedrich, Leidi C.; Silva, Volnir O.; Moreira Jr, Paulo F.; Tcacenco, Celize M.; Quina, Frank H.

    2013-01-01

    Aggregation numbers (N Ag) of micelles of the commercial anionic detergent sodium lauryl ether sulfate (SLES), with an average of two ethylene oxide subunits, were determined at 30 and 40º C by the time-resolved fluorescence quenching method with pyrene as the fluorescent probe and the N-hexadecylpyridinium ion as the quencher. The added-salt dependent growth of SLES micelles (γ = 0.11-0.15, where γ is the slope of a plot of log aggregation number vs. log [Yaq] and [Yaq] is the sodium counter...

  9. Deactivation of Zeolite Catalyst H-ZSM-5 during Conversion of Methanol to Gasoline: Operando Time- and Space-Resolved X-ray Diffraction.

    Science.gov (United States)

    Rojo-Gama, Daniel; Mentel, Lukasz; Kalantzopoulos, Georgios N; Pappas, Dimitrios K; Dovgaliuk, Iurii; Olsbye, Unni; Lillerud, Karl Petter; Beato, Pablo; Lundegaard, Lars F; Wragg, David S; Svelle, Stian

    2018-03-15

    The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.

  10. VERSE - Virtual Equivalent Real-time Simulation

    Science.gov (United States)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  11. Atom-at-a-time chemistry

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    2009-01-01

    Several techniques of the analytical chemistry in 'Atom-at-a-time chemistry' for transactinide elements have been developed. In this report a representative example in these techniques is introduced with the results. The contents are the single-atom chemistry, the chemical experiments on transactinide elements, liquid phase chemistry (the ion exchange behavior of Rutherfordium), gas phase chemistry (the chemistry of atomic No.112 element), and future development. (M.H.)

  12. Merged Real Time GNSS Solutions for the READI System

    Science.gov (United States)

    Santillan, V. M.; Geng, J.

    2014-12-01

    Real-time measurements from increasingly dense Global Navigational Satellite Systems (GNSS) networks located throughout the western US offer a substantial, albeit largely untapped, contribution towards the mitigation of seismic and other natural hazards. Analyzed continuously in real-time, currently over 600 instruments blanket the San Andreas and Cascadia fault systems of the North American plate boundary and can provide on-the-fly characterization of transient ground displacements highly complementary to traditional seismic strong-motion monitoring. However, the utility of GNSS systems depends on their resolution, and merged solutions of two or more independent estimation strategies have been shown to offer lower scatter and higher resolution. Towards this end, independent real time GNSS solutions produced by Scripps Inst. of Oceanography and Central Washington University (PANGA) are now being formally combined in pursuit of NASA's Real-Time Earthquake Analysis for Disaster Mitigation (READI) positioning goals. CWU produces precise point positioning (PPP) solutions while SIO produces ambiguity resolved PPP solutions (PPP-AR). The PPP-AR solutions have a ~5 mm RMS scatter in the horizontal and ~10mm in the vertical, however PPP-AR solutions can take tens of minutes to re-converge in case of data gaps. The PPP solutions produced by CWU use pre-cleaned data in which biases are estimated as non-integer ambiguities prior to formal positioning with GIPSY 6.2 using a real time stream editor developed at CWU. These solutions show ~20mm RMS scatter in the horizontal and ~50mm RMS scatter in the vertical but re-converge within 2 min. or less following cycle-slips or data outages. We have implemented the formal combination of the CWU and SCRIPPS ENU displacements using the independent solutions as input measurements to a simple 3-element state Kalman filter plus white noise. We are now merging solutions from 90 stations, including 30 in Cascadia, 39 in the Bay Area, and 21

  13. Single-atom-resolved fluorescence imaging of an atomic Mott insulator

    DEFF Research Database (Denmark)

    Sherson, Jacob; Weitenberg, Christof; Andres, Manuel

    2010-01-01

    in situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution...

  14. Femtosecond time-resolved two-photon photoemission study of organic semiconductor copper phthalocyanine film

    International Nuclear Information System (INIS)

    Tanaka, A.; Tohoku University; University of Rochester, NY; Yan, L.; Watkins, N.J.; Gao, Y.

    2004-01-01

    Full text: Organic semiconductors are recently attracting much interest from the viewpoints of both device and fundamental physics. These organic semiconductors are considered to be important constituents of the future devices, such as organic light-emitting diode, organic field effect transistor, and organic solid-state injection laser. In order to elucidate their detailed physical properties and to develop the future devices, it is indispensable to understand their excited-state dynamics as well as their electronic structures. The femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy is attracting much interest because of its capability to observe the energy-resolved excited electron dynamics. In this work, we have carried out a TR-2PPE study of the organic semiconductor copper phthalocyanine (CuPc) film. Furthermore, we have investigated the detailed electronic structure of CuPc film using the photoemission (PES) and inverse photoemission (IPES) spectroscopies. From the simultaneous PES and IPES measurements for CuPc film with a thickness of 100 nm, the lowest unoccupied molecular orbital (LUMO), highest occupied molecular orbital, and ionization potential of CuPc film have been directly determined. The observed two-photon photoemission (2PPE) spectrum of the present CuPc film, measured with photon energy of about hv=3.3 eV, exhibits a broad feature. From the energy diagram of CuPc film determined by the PES and IPES measurements, the intermediate state observed in the present 2PPE spectrum of CuPc film corresponds to the energy region between about 0.4 and 1.7 eV above the LUMO energy. From the time-resolved pump-probe measurements, it is found that the relaxation lifetimes of excited states in the present CuPc films are very short (all below 50 fs) and monotonously become faster with increasing excitation energy. We attribute this extremely fast relaxation process of photoexcitation to a rapid internal conversion process. From these results

  15. Time Resolved Deposition Measurements in NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Roquemore, A.L.; Hogan, J.; Wampler, W.R.

    2004-01-01

    Time-resolved measurements of deposition in current tokamaks are crucial to gain a predictive understanding of deposition with a view to mitigating tritium retention and deposition on diagnostic mirrors expected in next-step devices. Two quartz crystal microbalances have been installed on NSTX at a location 0.77m outside the last closed flux surface. This configuration mimics a typical diagnostic window or mirror. The deposits were analyzed ex-situ and found to be dominantly carbon, oxygen, and deuterium. A rear facing quartz crystal recorded deposition of lower sticking probability molecules at 10% of the rate of the front facing one. Time resolved measurements over a 4-week period with 497 discharges, recorded 29.2 (micro)g/cm 2 of deposition, however surprisingly, 15.9 (micro)g/cm 2 of material loss occurred at 7 discharges. The net deposited mass of 13.3 (micro)g/cm 2 matched the mass of 13.5 (micro)g/cm 2 measured independently by ion beam analysis. Monte Carlo modeling suggests that transient processes are likely to dominate the deposition

  16. Bandgap modulation in photoexcited topological insulator Bi{sub 2}Te{sub 3} via atomic displacements

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Masaki, E-mail: hadamasaki@okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan); Norimatsu, Katsura; Tsuruta, Tetsuya; Igarashi, Kyushiro; Kayanuma, Yosuke; Sasagawa, Takao; Nakamura, Kazutaka G. [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Tanaka, Sei' ichi; Ishikawa, Tadahiko; Koshihara, Shin-ya [Department of Chemistry and Materials Science, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Keskin, Sercan [The Max Planck Institute for the Structure and Dynamics of Matter, The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg 22761 (Germany); Miller, R. J. Dwayne [The Max Planck Institute for the Structure and Dynamics of Matter, The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg 22761 (Germany); Departments of Chemistry and Physics, University of Toronto, Toronto M5S 3H6 (Canada); Onda, Ken [PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan); Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8502 (Japan)

    2016-07-14

    The atomic and electronic dynamics in the topological insulator (TI) Bi{sub 2}Te{sub 3} under strong photoexcitation were characterized with time-resolved electron diffraction and time-resolved mid-infrared spectroscopy. Three-dimensional TIs characterized as bulk insulators with an electronic conduction surface band have shown a variety of exotic responses in terms of electronic transport when observed under conditions of applied pressure, magnetic field, or circularly polarized light. However, the atomic motions and their correlation between electronic systems in TIs under strong photoexcitation have not been explored. The artificial and transient modification of the electronic structures in TIs via photoinduced atomic motions represents a novel mechanism for providing a comparable level of bandgap control. The results of time-domain crystallography indicate that photoexcitation induces two-step atomic motions: first bismuth and then tellurium center-symmetric displacements. These atomic motions in Bi{sub 2}Te{sub 3} trigger 10% bulk bandgap narrowing, which is consistent with the time-resolved mid-infrared spectroscopy results.

  17. Real-time soft x-ray imaging on composite materials

    International Nuclear Information System (INIS)

    Polichar, R.

    1985-01-01

    The increased use of composite materials in aircraft structures has emphasized many of the unique and difficult aspects of the inspection of such components. Ultrasound has been extensively applied to certain configurations since it is relatively sensitive to laminar discontinuities in structure. Conversely, the use of conventional x-ray examination has been severely hampered by the fact that these composite materials are virtually transparent to the x-ray energies commonly encountered in industrial radiography (25 kv and above). To produce images with contrast approaching conventional radiography, one must use x-ray beams with average energies below 10 KEV where the absorption coefficients begin to rise rapidly for these low atomic number materials. This new regime of soft x-rays presents a major challenge to real-time imaging components. Special screen and window technology is required if these lower energy x-rays are to be effectively detected. Moreover, conventional x-ray tubes become very inefficient for generating the required x-ray flux at potentials much below 29 kv and the increased operating currents put significant limitations on conventional power sources. The purpose of this paper is to explore these special problems related to soft x-ray real-time imaging and to define the optimal technologies. Practical results obtained with the latest commerical and developmental instruments for real-time imaging will be shown. These instruments include recently developed imaging systems, new x-ray tubes and various approaches to generator design. The measured results convincingly demonstrate the effectiveness practicality of real-time soft x-ray imaging. They also indicate the major changes in technology and approach that must be taken for practical systems to be truly effective

  18. The Implementation of a Real-Time Polyphase Filter

    OpenAIRE

    Adámek, Karel; Novotný, Jan; Armour, Wes

    2014-01-01

    In this article we study the suitability of dierent computational accelerators for the task of real-time data processing. The algorithm used for comparison is the polyphase filter, a standard tool in signal processing and a well established algorithm. We measure performance in FLOPs and execution time, which is a critical factor for real-time systems. For our real-time studies we have chosen a data rate of 6.5GB/s, which is the estimated data rate for a single channel on the SKAs Low Frequenc...

  19. ISTTOK real-time architecture

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-03-15

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel{sup ®} Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  20. ISTTOK real-time architecture

    International Nuclear Information System (INIS)

    Carvalho, Ivo S.; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-01-01

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel ® Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  1. Time-resolved studies of ultrarapid solidification of highly undercooled molten silicon formed by pulsed laser irradiation

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Jellison, G.E. Jr.; Wood, R.F.; Carpenter, R.

    1984-01-01

    This paper reports new results of nanosecond-resolution time-resolved optical reflectivity measurements, during pulsed excimer (KrF, 248 nm) laser irradiation of Si-implanted amorphous (a) silicon layers, which, together with model calculations and post-irradiation TEM measurements, have allowed us to study both the transformation of a-Si to a highly undercooled liquid (l) phase and the subsequent ultrarapid solidification process

  2. Real-time X-ray transmission microscopy for fundamental studies solidification: Al-Al2Au eutectic

    International Nuclear Information System (INIS)

    Curreri, Peter A.; Kaukler, William F.; Sen, Subhayu

    1998-01-01

    High resolution real-time X-ray Transmission Microscopy, XTM, has been applied to obtain information fundamental to solidification of optically opaque metallic systems. We have previously reported the measurement of the solute profile in the liquid, phase growth, and detailed solid-liquid interfacial morphology of aluminum based alloys with exposure times less than 2 seconds. Recent advances in XTM furnace design have provided an increase in real-time magnification (during solidification) for the XTM from 40X to 160X. The increased magnification has enabled for the first time the XTM imaging of real-time growth of fibers and particles with diameters of 5 μm. We have previously applied this system to study the kinetics of formation and morphological evolution of secondary fibers and particles in Al-Bi monotectic alloys. In this paper we present the preliminary results of the first real-time observations of fiber morphology evolution in optically opaque bulk metal sample of Aluminum-Gold eutectic alloy. These studies show that the XTM can be applied to study the fundamentals of eutectic and monotectic solidification. We are currently attempting to apply this technology in the fundamentals of solidification in microgravity

  3. Robotic 4D ultrasound solution for real-time visualization and teleoperation

    Directory of Open Access Journals (Sweden)

    Al-Badri Mohammed

    2017-09-01

    Full Text Available Automation of the image acquisition process via robotic solutions offer a large leap towards resolving ultrasound’s user-dependency. This paper, as part of a larger project aimed to develop a multipurpose 4d-ultrasonic force-sensitive robot for medical applications, focuses on achieving real-time remote visualisation for 4d ultrasound image transfer. This was possible through implementing our software modification on a GE Vivid 7 Dimension workstation, which operates a matrix array probe controlled by a KUKA LBR iiwa 7 7-DOF robotic arm. With the help of robotic positioning and the matrix array probe, fast volumetric imaging of target regions was feasible. By testing ultrasound volumes, which were roughly 880 kB in size, while using gigabit Ethernet connection, a latency of ∼57 ms was achievable for volume transfer between the ultrasound station and a remote client application, which as a result allows a frame count of 17.4 fps. Our modification thus offers for the first time real-time remote visualization, recording and control of 4d ultrasound data, which can be implemented in teleoperation.

  4. Real-time control and data-acquisition system for high-energy neutral-beam injectors

    International Nuclear Information System (INIS)

    Glad, A.S.; Jacobson, V.

    1981-12-01

    The need for a real-time control system and a data acquisition, processing and archiving system operating in parallel on the same computer became a requirement on General Atomic's Doublet III fusion energy project with the addition of high energy neutral beam injectors. The data acquisition processing and archiving system is driven from external events and is sequenced through each experimental shot utilizing ModComp's intertask message service. This system processes, archives and displays on operator console CRTs all physics diagnostic data related to the neutral beam injectores such as temperature, beam alignment, etc. The real-time control system is data base driven and provides periodic monitoring and control of the numerous dynamic subsystems of the neutral beam injectors such as power supplies, timing, water cooling, etc

  5. Study on APD real time compensation methods of laser Detection system

    International Nuclear Information System (INIS)

    Feng Ying; Zhang He; Zhang Xiangjin; Liu Kun

    2011-01-01

    their operating principles. The constant false alarm rate compensation can't detect the pulse signal which comes randomly. Therefore real-time performance can't be realized. The noise compensation can meet the request of real-time performance. If it is used in the environment where background light is intense or changes acutely, there is a better effect. The temperature compensation can also achieve the real-time performance request. If it is used in the environment where temperature changes acutely, there is also a better effect. Aim at such problems, this paper presents that different APD real-time compensations should be adopt to adapt to different environments. The exiting temperature compensation adjusts output voltage by using variable resistance to regulate input voltage. Its structure is complex; the real-time performance is worse. In order to remedy these defects, a real-time temperature compensation which is based on switch on-off time of switching power supply is designed. Its feasibility and operating stability are confirmed by plate making and experiment. At last, the comparison experiments between the real-time noise compensation and the real-time temperature compensation is carried out in the environments where temperature is almost invariant and background light acutely changes from5lux to150lux . The result shows that the operating effect of the real-time noise compensation is better here, the noise minifies to a sixth of original noise. The comparison experiments between the real-time noise compensation and the real-time temperature compensation is carried out in darkroom where background light is 5lux and temperature almost rapidly changes from -20 deg. C to 80 deg. C. The result shows that the operating effect of the real-time temperature compensation is better here, the noise minifies to a seventh of original noise. Moreover, these methods can be applied to other type detection systems of weak photoelectric signal; they have high actual application

  6. Study on APD real time compensation methods of laser Detection system

    Energy Technology Data Exchange (ETDEWEB)

    Feng Ying; Zhang He; Zhang Xiangjin; Liu Kun, E-mail: fy_caimi@163.com [ZNDY of Ministerial Key Laboratory, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-02-01

    by analyzing their operating principles. The constant false alarm rate compensation can't detect the pulse signal which comes randomly. Therefore real-time performance can't be realized. The noise compensation can meet the request of real-time performance. If it is used in the environment where background light is intense or changes acutely, there is a better effect. The temperature compensation can also achieve the real-time performance request. If it is used in the environment where temperature changes acutely, there is also a better effect. Aim at such problems, this paper presents that different APD real-time compensations should be adopt to adapt to different environments. The exiting temperature compensation adjusts output voltage by using variable resistance to regulate input voltage. Its structure is complex; the real-time performance is worse. In order to remedy these defects, a real-time temperature compensation which is based on switch on-off time of switching power supply is designed. Its feasibility and operating stability are confirmed by plate making and experiment. At last, the comparison experiments between the real-time noise compensation and the real-time temperature compensation is carried out in the environments where temperature is almost invariant and background light acutely changes from5lux to150lux . The result shows that the operating effect of the real-time noise compensation is better here, the noise minifies to a sixth of original noise. The comparison experiments between the real-time noise compensation and the real-time temperature compensation is carried out in darkroom where background light is 5lux and temperature almost rapidly changes from -20 deg. C to 80 deg. C. The result shows that the operating effect of the real-time temperature compensation is better here, the noise minifies to a seventh of original noise. Moreover, these methods can be applied to other type detection systems of weak photoelectric signal; they

  7. Study on APD real time compensation methods of laser Detection system

    Science.gov (United States)

    Ying, Feng; He, Zhang; Xiangjin, Zhang; Kun, Liu

    2011-02-01

    their operating principles. The constant false alarm rate compensation can't detect the pulse signal which comes randomly. Therefore real-time performance can't be realized. The noise compensation can meet the request of real-time performance. If it is used in the environment where background light is intense or changes acutely, there is a better effect. The temperature compensation can also achieve the real-time performance request. If it is used in the environment where temperature changes acutely, there is also a better effect. Aim at such problems, this paper presents that different APD real-time compensations should be adopt to adapt to different environments. The exiting temperature compensation adjusts output voltage by using variable resistance to regulate input voltage. Its structure is complex; the real-time performance is worse. In order to remedy these defects, a real-time temperature compensation which is based on switch on-off time of switching power supply is designed. Its feasibility and operating stability are confirmed by plate making and experiment. At last, the comparison experiments between the real-time noise compensation and the real-time temperature compensation is carried out in the environments where temperature is almost invariant and background light acutely changes from5lux to150lux . The result shows that the operating effect of the real-time noise compensation is better here, the noise minifies to a sixth of original noise. The comparison experiments between the real-time noise compensation and the real-time temperature compensation is carried out in darkroom where background light is 5lux and temperature almost rapidly changes from -20°C to 80°C. The result shows that the operating effect of the real-time temperature compensation is better here, the noise minifies to a seventh of original noise. Moreover, these methods can be applied to other type detection systems of weak photoelectric signal; they have high actual application value.

  8. Charge recombination processes in minerals studied using optically stimulated luminescence and time-resolved exo-electrons

    DEFF Research Database (Denmark)

    Tsukamoto, Sumiko; Murray, Andrew; Ankjærgaard, Christina

    2010-01-01

    electron concentration in the conduction band. In this study, TR-OSE and time-resolved optically stimulated luminescence (TR-OSL) were measured for the first time using quartz, K-feldspar and NaCl by stimulating the samples using pulsed blue LEDs at different temperatures between 50 and 250 °C after beta...... irradiation and preheating to 280 °C. The majority of TR-OSE signals from all the samples decayed much faster than TR-OSL signals irrespective of the stimulation temperatures. This suggests that the lifetime of OSL in these dosimeters arises mainly from the relaxation of an excited state of the recombination...

  9. Time-resolved studies of direct effects of radiation on DNA

    International Nuclear Information System (INIS)

    Fielden, E.M.; O'Neill, P.; Al-Kazwini, A.

    1987-01-01

    The biological changes induced by ionising radiation are a consequence of radiation-induced chemical events taking place at times <1s. These events are strongly influenced by the presence of chemical modifiers. Since DNA is a principle target for radiation-induced cell killing, DNA-free radicals are generated by direct ionisation of DNA moieties (direct effect) and by reaction with hydroxyl radicals formed by radiolysis of the water which is in the vicinity of the DNA (indirect effect). In order to study the 'direct' effects of radiation on DNA the following model approaches are discussed:- 1) Use of the technique of pulse radiolysis to investigate in aqueous solution the interactions of deoxynucleosides with SO/sub 4//sup .-/ whereby one-electron oxidised species of the bases are generated; and 2) time resolved, radiation-induced changes to solid DNA and related macromolecules (e.g. radiation-induced luminescence) in order to obtain an understanding of charge/energy migration as a result of ionisation of DNA. The influence of chemical modifiers and of environment is discussed in terms of the properties of the radiation-induced species produced. Since the properties of base radicals produced by SO/sub 4//sup .-/ are similar to those of the base OH-adducts oxidising properties, potential similarities between the 'direct' and 'indirect' effects of radiation are presented

  10. Time resolved measurement of laser-ablated particles by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy)

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Murakami, Kouichi

    1999-01-01

    The time- and spatially-resolved properties of laser ablated carbon, boron and silicon particles were measured by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy). The maximum speed of positively charged ions is higher than those of neutral atoms and negatively charged ions. The spatial distributions of the laser-ablated particles in the localized rare gas environment were measured. In helium gas environment, by the helium cloud generated on the top of ablation plume depressed the ablation plume. There is no formation of silicon clusters till 15 μs after laser ablation in the argon gas environment. (author)

  11. Time-resolved circular dichroism: Application to the study of conformal changes in biomolecules

    Science.gov (United States)

    Hache, F.

    2010-06-01

    Circular dichroism (CD) is known to be a very sensitive probe of the conformation of molecules and biomolecules. It is therefore tempting to implement CD in a pump-probe experiment in order to measure ultrarapid conformational changes which occur in photochemical processes. We present two technical developments of such time-resolved CD experiments. The first one relies on the modulation of the probe polarization from left to right circular whereas the second one measures the pump-induced ellipticity of the probe with a Babinet-Soleil compensator. Some applications are described and extension of these techniques towards the study of elementary protein folding processes is discussed.

  12. Time-resolved circular dichroism: Application to the study of conformal changes in biomolecules

    Directory of Open Access Journals (Sweden)

    Hache F.

    2010-06-01

    Full Text Available Circular dichroism (CD is known to be a very sensitive probe of the conformation of molecules and biomolecules. It is therefore tempting to implement CD in a pump-probe experiment in order to measure ultrarapid conformational changes which occur in photochemical processes. We present two technical developments of such time-resolved CD experiments. The first one relies on the modulation of the probe polarization from left to right circular whereas the second one measures the pump-induced ellipticity of the probe with a Babinet-Soleil compensator. Some applications are described and extension of these techniques towards the study of elementary protein folding processes is discussed.

  13. Timepix3 as X-ray detector for time resolved synchrotron experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, Hazem, E-mail: hazem.yousef@diamond.ac.uk; Crevatin, Giulio; Gimenez, Eva N.; Horswell, Ian; Omar, David; Tartoni, Nicola

    2017-02-11

    The Timepix3 ASIC can be used very effectively for time resolved experiments at synchrotron facilities. We have carried out characterizations with the synchrotron beam in order to determine the time resolution and other characteristics such as the energy resolution, charge sharing and signals overlapping. The best time resolution achieved is 19 ns FWHM for 12 keV photons and 350 V bias voltage. The time resolution shows dependency on the photon energy as well as on the chip and acquisition parameters. - Highlights: • An estimate time resolution of the Timepix3 is produced based on the arrival time. • At high resolution, the time structure of the DLS synchrotron beam is resolved. • The arrival time information improves combining the charge split events. • The results enable performing a wide range of time resolved experiments.

  14. Timepix3 as X-ray detector for time resolved synchrotron experiments

    International Nuclear Information System (INIS)

    Yousef, Hazem; Crevatin, Giulio; Gimenez, Eva N.; Horswell, Ian; Omar, David; Tartoni, Nicola

    2017-01-01

    The Timepix3 ASIC can be used very effectively for time resolved experiments at synchrotron facilities. We have carried out characterizations with the synchrotron beam in order to determine the time resolution and other characteristics such as the energy resolution, charge sharing and signals overlapping. The best time resolution achieved is 19 ns FWHM for 12 keV photons and 350 V bias voltage. The time resolution shows dependency on the photon energy as well as on the chip and acquisition parameters. - Highlights: • An estimate time resolution of the Timepix3 is produced based on the arrival time. • At high resolution, the time structure of the DLS synchrotron beam is resolved. • The arrival time information improves combining the charge split events. • The results enable performing a wide range of time resolved experiments.

  15. Time-resolved tunable diode laser absorption spectroscopy of excited argon and ground-state titanium atoms in pulsed magnetron discharges

    Czech Academy of Sciences Publication Activity Database

    Sushkov, V.; Do, H.T.; Čada, Martin; Hubička, Zdeněk; Hippler, R.

    2013-01-01

    Roč. 22, č. 1 (2013), 1-10 ISSN 0963-0252 R&D Projects: GA ČR(CZ) GAP205/11/0386; GA ČR GAP108/12/2104 Institutional research plan: CEZ:AV0Z10100522 Keywords : absorption spectroscopy * diode laser * magnetron * argon metastable * HiPIMS * titanium * time-resolved Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.056, year: 2013 http://iopscience.iop.org/0963-0252/22/1/015002/

  16. The steady-state and time-resolved photophysical properties of a dimeric indium phthalocyanine complex

    International Nuclear Information System (INIS)

    Chen Yu; Araki, Yasuyuki; Dini, Danilo; Liu Ying; Ito, Osamu; Fujitsuka, Mamoru

    2006-01-01

    The steady-state and time-resolved photophysical properties and some molecular orbital calculation results of a dimeric indium phthalocyanine complex with an indium-indium bond, i.e., [tBu 4 PcIn] 2 .2tmed, have been described. The results regarding triplet excited state lifetimes can be ascribed to strong intramolecular interactions existing only in the excited state of this dimer because no significant difference in the absorption spectra of the tBu 4 PcInCl monomer and the [tBu 4 PcIn] 2 .2tmed dimer is observed, suggesting that no ground-state interaction can be assessed. The deactivation processes of the excited singlet state of [tBu 4 PcIn] 2 .2tmed are apparently faster than that of μ-oxo-bridged PcIn dimer [tBu 4 PcIn] 2 O. Molecular orbital calculation on the PcIn dimer shows no node between two indium atoms was found in the HOMO - 2 of the PcIn-InPc dimer, suggesting that bonding electrons distribute between two indium atoms

  17. Route around real time

    International Nuclear Information System (INIS)

    Terrier, Francois

    1996-01-01

    The greater and greater autonomy and complexity asked to the control and command systems lead to work on introducing techniques such as Artificial Intelligence or concurrent object programming in industrial applications. However, while the critical feature of these systems impose to control the dynamics of the proposed solutions, their complexity often imposes a high adaptability to a partially modelled environment. The studies presented start from low level control and command systems to more complex applications at higher levels, such as 'supervision systems'. Techniques such as temporal reasoning and uncertainty management are proposed for the first studies, while the second are tackled with programming techniques based on the real time object paradigm. The outcomes of this itinerary crystallize on the ACCORD project which targets to manage - on the whole life cycle of a real time application - these two problematics, sometimes antagonistic: control of the dynamics and adaptivity. (author) [fr

  18. An integrated approach using high time-resolved tools to study the origin of aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Di Gilio, A. [Chemistry Department, University of Bari, via Orabona, 4, 70126 Bari (Italy); ARPA PUGLIA, Corso Trieste, 27, 70126 Bari (Italy); Gennaro, G. de, E-mail: gianluigi.degennaro@uniba.it [Chemistry Department, University of Bari, via Orabona, 4, 70126 Bari (Italy); ARPA PUGLIA, Corso Trieste, 27, 70126 Bari (Italy); Dambruoso, P. [Chemistry Department, University of Bari, via Orabona, 4, 70126 Bari (Italy); ARPA PUGLIA, Corso Trieste, 27, 70126 Bari (Italy); Ventrella, G. [Chemistry Department, University of Bari, via Orabona, 4, 70126 Bari (Italy)

    2015-10-15

    Long-range transport of natural and/or anthropogenic particles can contribute significantly to PM10 and PM2.5 concentrations and some European cities often fail to comply with PM daily limit values due to the additional impact of particles from remote sources. For this reason, reliable methodologies to identify long-range transport (LRT) events would be useful to better understand air pollution phenomena and support proper decision-making. This study explores the potential of an integrated and high time-resolved monitoring approach for the identification and characterization of local, regional and long-range transport events of high PM. In particular, the goal of this work was also the identification of time-limited event. For this purpose, a high time-resolved monitoring campaign was carried out at an urban background site in Bari (southern Italy) for about 20 days (1st–20th October 2011). The integration of collected data as the hourly measurements of inorganic ions in PM{sub 2.5} and their gas precursors and of the natural radioactivity, in addition to the analyses of aerosol maps and hourly back trajectories (BT), provided useful information for the identification and chemical characterization of local sources and trans-boundary intrusions. Non-sea salt (nss) sulfate levels were found to increase when air masses came from northeastern Europe and higher dispersive conditions of the atmosphere were detected. Instead, higher nitrate and lower nss-sulfate concentrations were registered in correspondence with air mass stagnation and attributed to local traffic source. In some cases, combinations of local and trans-boundary sources were observed. Finally, statistical investigations such as the principal component analysis (PCA) applied on hourly ion concentrations and the cluster analyses, the Potential Source Contribution Function (PSCF) and the Concentration Weighted Trajectory (CWT) models computed on hourly back-trajectories enabled to complete a cognitive

  19. An integrated approach using high time-resolved tools to study the origin of aerosols

    International Nuclear Information System (INIS)

    Di Gilio, A.; Gennaro, G. de; Dambruoso, P.; Ventrella, G.

    2015-01-01

    Long-range transport of natural and/or anthropogenic particles can contribute significantly to PM10 and PM2.5 concentrations and some European cities often fail to comply with PM daily limit values due to the additional impact of particles from remote sources. For this reason, reliable methodologies to identify long-range transport (LRT) events would be useful to better understand air pollution phenomena and support proper decision-making. This study explores the potential of an integrated and high time-resolved monitoring approach for the identification and characterization of local, regional and long-range transport events of high PM. In particular, the goal of this work was also the identification of time-limited event. For this purpose, a high time-resolved monitoring campaign was carried out at an urban background site in Bari (southern Italy) for about 20 days (1st–20th October 2011). The integration of collected data as the hourly measurements of inorganic ions in PM 2.5 and their gas precursors and of the natural radioactivity, in addition to the analyses of aerosol maps and hourly back trajectories (BT), provided useful information for the identification and chemical characterization of local sources and trans-boundary intrusions. Non-sea salt (nss) sulfate levels were found to increase when air masses came from northeastern Europe and higher dispersive conditions of the atmosphere were detected. Instead, higher nitrate and lower nss-sulfate concentrations were registered in correspondence with air mass stagnation and attributed to local traffic source. In some cases, combinations of local and trans-boundary sources were observed. Finally, statistical investigations such as the principal component analysis (PCA) applied on hourly ion concentrations and the cluster analyses, the Potential Source Contribution Function (PSCF) and the Concentration Weighted Trajectory (CWT) models computed on hourly back-trajectories enabled to complete a cognitive framework

  20. GSM based real time remote radiation monitoring and mapping system

    International Nuclear Information System (INIS)

    Dodiya, Kamal; Gupta, Ashutosh; Padmanabhan, N.; Chaudhury, Probal; Pradeepkumar, K.S.

    2014-01-01

    Mobile Radiological Impact Assessment Laboratory (M-RIAL) has been developed in Radiation Safety Systems Division, Bhabha Atomic Research Centre for carrying out assessment of radioactive contamination following a nuclear or radiological emergency in a nuclear facility or in public domain. During such situations a large area is to be monitored for radiological impact assessment and availability of the monitored data in real-time to a control centre is a great advantage for the decision makers. Development and application of such a system has been described in this paper. The system can transmit real-time radiological data, acquired by the universal counting system of M-RIAL and tagged with positional information, wirelessly to an Emergency Response Centre (ERC) using Global System for Mobile (GSM) communication. The radiological profile of the affected area is then superimposed on Geographical Information System (GIS) at the ERC and which can be used for the generation of radiological impact maps for use as decision support

  1. Validation of RNAi by real time PCR

    DEFF Research Database (Denmark)

    Josefsen, Knud; Lee, Ying Chiu

    2011-01-01

    Real time PCR is the analytic tool of choice for quantification of gene expression, while RNAi is concerned with downregulation of gene expression. Together, they constitute a powerful approach in any loss of function studies of selective genes. We illustrate here the use of real time PCR to verify...

  2. Multi-frame pyramid correlation for time-resolved PIV

    NARCIS (Netherlands)

    Sciacchitano, A.; Scarano, F.; Wieneke, B.

    2012-01-01

    A novel technique is introduced to increase the precision and robustness of time-resolved particle image velocimetry (TR-PIV) measurements. The innovative element of the technique is the linear combination of the correlation signal computed at different separation time intervals. The domain of the

  3. COLD START CHARACTERISTICS STUDY BASED ON REAL TIME NO EMISSIONS IN AN LPG SI ENGINE

    Directory of Open Access Journals (Sweden)

    Yingli Zu

    2010-01-01

    Full Text Available Normally, cylinder pressure was used as a criterion of combustion occurrence, while in some conditions, it may be unreliable when identifying lean mixture combustion. This is particularly important for fuels like liquefied petroleum gas, which has good capacity for lean combustion. In this study, a fast response NO detector, based on the chemiluminescence method, was used to measure real time NO emissions in order to evaluate the technique as a criterion for establishing combustion occurrence. Test results show that real time NO emissions can be used to identify the cylinder combustion and misfire occurrence during engine cranking, and real time NO emissions can be used to understand the combustion and misfire occurrence. Real time NO emissions mostly happened in first several cycles during cold start, and NO emissions increased with the spark timing advancing.

  4. Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRS-ESR facility

    Energy Technology Data Exchange (ETDEWEB)

    Litvinov, Yu.A.; Geissel, H. [Giessen Univ. (Germany); Radon, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (DE)] [and others

    2005-06-01

    Masses of 582 neutron-deficient nuclides (30{<=}Z{<=}85) were measured with time-resolved Schottky mass spectrometry at the FRS-ESR facility at GSI, 117 were used for calibration. The masses of 71 nuclides were obtained for the first time. A typical mass accuracy of 30 {mu}u was achieved. These data have entered the latest atomic mass evaluation. The mass determination of about 140 additional nuclides was possible via known energies (Q-values) of {alpha}-, {beta}-, or proton decays. The obtained results are compared with the results of other measurements. (orig.)

  5. Failure analysis of real-time systems

    International Nuclear Information System (INIS)

    Jalashgar, A.; Stoelen, K.

    1998-01-01

    This paper highlights essential aspects of real-time software systems that are strongly related to the failures and their course of propagation. The significant influence of means-oriented and goal-oriented system views in the description, understanding and analysing of those aspects is elaborated. The importance of performing failure analysis prior to reliability analysis of real-time systems is equally addressed. Problems of software reliability growth models taking the properties of such systems into account are discussed. Finally, the paper presents a preliminary study of a goal-oriented approach to model the static and dynamic characteristics of real-time systems, so that the corresponding analysis can be based on a more descriptive and informative picture of failures, their effects and the possibility of their occurrence. (author)

  6. Atom optics in the time domain

    Science.gov (United States)

    Arndt, M.; Szriftgiser, P.; Dalibard, J.; Steane, A. M.

    1996-05-01

    Atom-optics experiments are presented using a time-modulated evanescent light wave as an atomic mirror in the trampoline configuration, i.e., perpendicular to the direction of the atomic free fall. This modulated mirror is used to accelerate cesium atoms, to focus their trajectories, and to apply a ``multiple lens'' to separately focus different velocity classes of atoms originating from a point source. We form images of a simple two-slit object to show the resolution of the device. The experiments are modelled by a general treatment analogous to classical ray optics.

  7. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    Science.gov (United States)

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Two-dimensional time-resolved x-ray diffraction study of dual phase rapid solidification in steels

    Science.gov (United States)

    Yonemura, Mitsuharu; Osuki, Takahiro; Terasaki, Hidenori; Komizo, Yuichi; Sato, Masugu; Toyokawa, Hidenori; Nozaki, Akiko

    2010-01-01

    The high intensity heat source used for fusion welding creates steep thermal gradients of 100 °C/s from 1800 °C. Further, the influence of preferred orientation is important for the observation of a directional solidification that follows the dendrite growth along the ⟨100⟩ direction toward the moving heat source. In the present study, we observed the rapid solidification of weld metal at a time resolution of 0.01-0.1 s by a two-dimensional time-resolved x-ray diffraction (2DTRXRD) system for real welding. The diffraction rings were dynamically observed by 2DTRXRD with synchrotron energy of 18 keV while the arc passes over the irradiation area of the x-rays. The arc power output was 10 V-150 A, and the scan speed of the arc was 1.0 mm/s. The temperature rise in instruments was suppressed by a water-cooled copper plate under the specimen. Further, the temperature distribution of the weld metal was measured by a thermocouple and correlated with the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low carbon steel, the microstructure is formed in a two step process, (i) formation of crystallites and (ii) increase of crystallinity. In stainless steel, the irregular interface layer of δ/γ in the quenched metal after solidification is expected to show the easy movement of dendrites at a lower temperature. In carbide precipitation stainless steel, it is easy for NbC to grow on δ phase with a little undercooling. Further, a mistlike pattern, which differs from the halo pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD.

  9. A real-time architecture for time-aware agents.

    Science.gov (United States)

    Prouskas, Konstantinos-Vassileios; Pitt, Jeremy V

    2004-06-01

    This paper describes the specification and implementation of a new three-layer time-aware agent architecture. This architecture is designed for applications and environments where societies of humans and agents play equally active roles, but interact and operate in completely different time frames. The architecture consists of three layers: the April real-time run-time (ART) layer, the time aware layer (TAL), and the application agents layer (AAL). The ART layer forms the underlying real-time agent platform. An original online, real-time, dynamic priority-based scheduling algorithm is described for scheduling the computation time of agent processes, and it is shown that the algorithm's O(n) complexity and scalable performance are sufficient for application in real-time domains. The TAL layer forms an abstraction layer through which human and agent interactions are temporally unified, that is, handled in a common way irrespective of their temporal representation and scale. A novel O(n2) interaction scheduling algorithm is described for predicting and guaranteeing interactions' initiation and completion times. The time-aware predicting component of a workflow management system is also presented as an instance of the AAL layer. The described time-aware architecture addresses two key challenges in enabling agents to be effectively configured and applied in environments where humans and agents play equally active roles. It provides flexibility and adaptability in its real-time mechanisms while placing them under direct agent control, and it temporally unifies human and agent interactions.

  10. Real-time MRI of the temporomandibular joint at 15 frames per second—A feasibility study

    International Nuclear Information System (INIS)

    Krohn, Sebastian; Gersdorff, Nikolaus; Wassmann, Torsten; Merboldt, Klaus-Dietmar; Joseph, Arun A.; Buergers, Ralf; Frahm, Jens

    2016-01-01

    The purpose of this study was to develop and evaluate a novel method for real-time MRI of TMJ function at high temporal resolution and with two different contrasts. Real-time MRI was based on undersampled radial fast low angle shot (FLASH) acquisitions with iterative image reconstruction by regularized nonlinear inversion. Real-time MRI movies with T1 contrast were obtained with use of a radiofrequency-spoiled FLASH sequence, while movies with T2/T1 contrast employed a gradient-refocused FLASH version. TMJ function was characterized in 40 randomly selected volunteers by sequential 20 s acquisitions of both the right and left joint during voluntary opening and closing of the mouth (in a medial, central and lateral oblique sagittal section perpendicular to the long axis of the condylar head). All studies were performed on a commercial MRI system at 3 T using the standard head coil, while online reconstruction was achieved with a bypass computer fully integrated into the MRI system. As a first result, real-time MRI studies of the right and left TMJ were successfully performed in all 40 subjects (80 joints) within a total examination time per subject of only 15 min. Secondly, at an in-plane resolution of 0.75 mm and 5 mm section thickness, the achieved temporal resolution was 66.7 ms per image or 15 frames per second. Thirdly, both T1-weighted and T2/T1-weighted real-time MRI movies provided information about TMJ function such as disc position, condyle mobility and disc-condyle relationship. While T1 contrast offers a better delineation of structures during rapid jaw movements, T2/T1 contrast was rated superior for characterizing the articular disc. In conclusion, the proposed real-time MRI method may become a robust and efficient tool for the clinical assessment of TMJ function.

  11. Real-time MRI of the temporomandibular joint at 15 frames per second—A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Krohn, Sebastian; Gersdorff, Nikolaus; Wassmann, Torsten [Department of Prosthodontics, University Medical Center, Göttingen (Germany); Merboldt, Klaus-Dietmar [Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen (Germany); Joseph, Arun A., E-mail: ajoseph@mpibpc.mpg.de [Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen (Germany); Buergers, Ralf [Department of Prosthodontics, University Medical Center, Göttingen (Germany); Frahm, Jens [Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen (Germany)

    2016-12-15

    The purpose of this study was to develop and evaluate a novel method for real-time MRI of TMJ function at high temporal resolution and with two different contrasts. Real-time MRI was based on undersampled radial fast low angle shot (FLASH) acquisitions with iterative image reconstruction by regularized nonlinear inversion. Real-time MRI movies with T1 contrast were obtained with use of a radiofrequency-spoiled FLASH sequence, while movies with T2/T1 contrast employed a gradient-refocused FLASH version. TMJ function was characterized in 40 randomly selected volunteers by sequential 20 s acquisitions of both the right and left joint during voluntary opening and closing of the mouth (in a medial, central and lateral oblique sagittal section perpendicular to the long axis of the condylar head). All studies were performed on a commercial MRI system at 3 T using the standard head coil, while online reconstruction was achieved with a bypass computer fully integrated into the MRI system. As a first result, real-time MRI studies of the right and left TMJ were successfully performed in all 40 subjects (80 joints) within a total examination time per subject of only 15 min. Secondly, at an in-plane resolution of 0.75 mm and 5 mm section thickness, the achieved temporal resolution was 66.7 ms per image or 15 frames per second. Thirdly, both T1-weighted and T2/T1-weighted real-time MRI movies provided information about TMJ function such as disc position, condyle mobility and disc-condyle relationship. While T1 contrast offers a better delineation of structures during rapid jaw movements, T2/T1 contrast was rated superior for characterizing the articular disc. In conclusion, the proposed real-time MRI method may become a robust and efficient tool for the clinical assessment of TMJ function.

  12. An approach to spin-resolved molecular gas microscopy

    Science.gov (United States)

    Covey, Jacob P.; De Marco, Luigi; Acevedo, Óscar L.; Rey, Ana Maria; Ye, Jun

    2018-04-01

    Ultracold polar molecules are an ideal platform for studying many-body physics with long-range dipolar interactions. Experiments in this field have progressed enormously, and several groups are pursuing advanced apparatus for manipulation of molecules with electric fields as well as single-atom-resolved in situ detection. Such detection has become ubiquitous for atoms in optical lattices and tweezer arrays, but has yet to be demonstrated for ultracold polar molecules. Here we present a proposal for the implementation of site-resolved microscopy for polar molecules, and specifically discuss a technique for spin-resolved molecular detection. We use numerical simulation of spin dynamics of lattice-confined polar molecules to show how such a scheme would be of utility in a spin-diffusion experiment.

  13. Study of the feasibility of a compact gamma camera for real-time cancer assessment

    CERN Document Server

    Caballero Ontanaya, Luis

    2017-01-01

    Results from the simulations of a Compton gamma camera based on compact configuration of detectors consisting in two detection modules, each of them having two stages of high-resolution position- and energy sensitive radiation detectors operated in time-coincidence are presented. Monolithic scintillation crystals instead of pixelated crystals in order to reduce dead areas have been simulated. In order to study the system feasibility to produce real-time images, different setups are considered. Performance in terms of acquisition times have been calculated to determine the real-time capabilities and limitations of such a system.

  14. Two-dimensional time-resolved X-ray diffraction study of directional solidification in steels

    International Nuclear Information System (INIS)

    Yonemura, Mitsuharu

    2009-01-01

    Full text: The high intensity heat source used for fusion welding creates steep thermal gradients of 100 degree C/s from 1800 degree Celsius. Further, the influence of a preferred orientation is serious for observation of a directional solidification that follows the dendrite growth along the direction toward the moving heat source. Therefore, we observed the rapid solidification of weld metal at a time resolution of 0.01∼0.1seconds by the Two-Dimensional Time-Resolved X-ray Diffraction (2DTRXRD) system for real welding. The diffraction ring was dynamically observed by 2DTRXRD during arc-passing over the irradiation area of X-ray with synchrotron energy of 18 KeV. The arc power output was 10 V - 150 A, and a scan speed of the arc was 1.0 mm/s. The temperature rise of instruments was suppressed by the water-cooled copper plate under the sample. Further, the temperature distribution of the weld metal was measured by the thermocouple and related to the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low-carbon steel, the microstructure is formed in the 2 step process; (i) formation of crystallites and (ii) increase of crystallinity. In the stainless steel, the irregular interface layer of σ/y in the quenched metal after solidification is expected that it is easy for dendrites to move at the lower temperature. In the carbide precipitation stainless steel, it is easy for NbC to grow on σ phase with a little under cooling. Further, a mist-like pattern, which differs from the halo-pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD. (author)

  15. Core-electron binding energies from self-consistent field molecular orbital theory using a mixture of all-electron real atoms and valence-electron model atoms

    International Nuclear Information System (INIS)

    Quinn, C.M.; Schwartz, M.E.

    1981-01-01

    The chemistry of large systems such as clusters may be readily investigated by valence-electron theories based on model potentials, but such an approach does not allow for the examination of core-electron binding energies which are commonly measured experimentally for such systems. Here we merge our previously developed Gaussian based valence-electron model potential theory with all-electron ab initio theory to allow for the calculation of core orbital binding energies when desired. For the atoms whose cores are to be examined, we use the real nuclear changes, all of the electrons, and the appropriate many-electron basis sets. For the rest of the system we use reduced nuclear charges, the Gaussian based model potentials, only the valence electrons, and appropriate valence-electron basis sets. Detailed results for neutral Al 2 are presented for the cases of all-electron, mixed real--model, and model--model SCF--MO calculations. Several different all-electron and valence electron calculations have been done to test the use of the model potential per se, as well as the effect of basis set choice. The results are in all cases in excellent agreement with one another. Based on these studies, a set of ''double-zeta'' valence and all-electron basis functions have been used for further SCF--MO studies on Al 3 , Al 4 , AlNO, and OAl 3 . For a variety of difference combinations of real and model atoms we find excellent agreement for relative total energies, orbital energies (both core and valence), and Mulliken atomic populations. Finally, direct core-hole-state ionic calculations are reported in detail for Al 2 and AlNO, and noted for Al 3 and Al 4 . Results for corresponding frozen-orbital energy differences, relaxed SCF--MO energy differences, and relaxation energies are in all cases in excellent agreement (never differing by more than 0.07 eV, usually by somewhat less). The study clearly demonstrates the accuracy of the mixed real--model theory

  16. Towards Real-Time Argumentation

    Directory of Open Access Journals (Sweden)

    Vicente JULIÁN

    2016-07-01

    Full Text Available In this paper, we deal with the problem of real-time coordination with the more general approach of reaching real-time agreements in MAS. Concretely, this work proposes a real-time argumentation framework in an attempt to provide agents with the ability of engaging in argumentative dialogues and come with a solution for their underlying agreement process within a bounded period of time. The framework has been implemented and evaluated in the domain of a customer support application. Concretely, we consider a society of agents that act on behalf of a group of technicians that must solve problems in a Technology Management Centre (TMC within a bounded time. This centre controls every process implicated in the provision of technological and customer support services to private or public organisations by means of a call centre. The contract signed between the TCM and the customer establishes penalties if the specified time is exceeded.

  17. Time-resolved X-ray scattering program at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Rodricks, B.

    1994-01-01

    The Time-Resolved Scattering Program's goal is the development of instruments and techniques for time-resolved studies. This entails the development of wide bandpass and focusing optics, high-speed detectors, mechanical choppers, and components for the measurement and creation of changes in samples. Techniques being developed are pump-probe experiments, single-bunch scattering experiments, high-speed white and pink beam Laue scattering, and nanosecond to microsecond synchronization of instruments. This program will be carried out primarily from a white-beam, bend-magnet source, experimental station, 1-BM-B, that immediately follows the first optics enclosure (1-BM-A). This paper will describe the experimental station and instruments under development to carry out the program

  18. Femtosecond time-resolved transient absorption spectroscopy of xanthophylls.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Sullivan, James O; Polívka, Tomás; Birge, Robert R; Frank, Harry A

    2006-11-16

    Xanthophylls are a major class of photosynthetic pigments that participate in an adaptation mechanism by which higher plants protect themselves from high light stress. In the present work, an ultrafast time-resolved spectroscopic investigation of all the major xanthophyll pigments from spinach has been performed. The molecules are zeaxanthin, lutein, violaxanthin, and neoxanthin. beta-Carotene was also studied. The experimental data reveal the inherent spectral properties and ultrafast dynamics including the S(1) state lifetimes of each of the pigments. In conjunction with quantum mechanical computations the results address the molecular features of xanthophylls that control the formation and decay of the S* state in solution. The findings provide compelling evidence that S* is an excited state with a conformational geometry twisted relative to the ground state. The data indicate that S* is formed via a branched pathway from higher excited singlet states and that its yield depends critically on the presence of beta-ionylidene rings in the polyene system of pi-electron conjugated double bonds. The data are expected to be beneficial to researchers employing ultrafast time-resolved spectroscopic methods to investigate the mechanisms of both energy transfer and nonphotochemical quenching in higher plant preparations.

  19. Time-resolved pump-probe experiments at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Glownia, James; /SLAC /Stanford U., Appl. Phys. Dept.; Cryan, J.; /SLAC /Stanford U., Phys. Dept.; Andreasson, J.; /Uppsala U.; Belkacem, A.; /LBNL, Berkeley; Berrah, N.; /Western Michigan U.; Blaga, C.L.; /Ohio State U.; Bostedt, C.; Bozek, J.; /SLAC; DiMauro, L.F.; /Ohio State U.; Fang, L.; /Western Michigan U.; Frisch, J.; /SLAC; Gessner, O.; /LBNL; Guhr, M.; /SLAC; Hajdu, J.; /Uppsala U.; Hertlein, M.P.; /LBNL; Hoener, M.; /Western Michigan U. /LBNL; Huang, G.; Kornilov, O.; /LBNL; Marangos, J.P.; /Imperial Coll., London; March, A.M.; /Argonne; McFarland, B.K.; /SLAC /Stanford U., Phys. Dept. /SLAC /IRAMIS, Saclay /Stanford U., Phys. Dept. /Georgia Tech /Argonne /Kansas State U. /SLAC /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC /LBNL /Argonne /SLAC /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept.

    2011-08-12

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  20. Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Mikhailik, V.B.

    2003-01-01

    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be thinner region. about 6 nm from the extrapolation of themeasuring the time-resolved luminescence spectrum

  1. Picosecond Time-Resolved Temperature and Density Measurements with K-Shell Spectroscopy

    Science.gov (United States)

    Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; Mileham, C.; Froula, D. H.; Golovkin, I. E.

    2017-10-01

    The thermal x-ray emission from rapidly heated solid targets containing a buried-aluminum layer was measured to track the evolution of the bulk plasma conditions. The targets were driven by high-contrast 1 ω laser pulses at focused intensities up to 1 × 1019 W/cm2. A streaked x-ray spectrometer recorded the AlHeα and lithium-like satellite lines with 2-ps temporal resolution and moderate resolving power (E E ΔE 1000 ΔE 1000) . Time-integrated measurements over the same spectral range were used to correct the streaked data for variations in photocathode sensitivity. Linewidths and intensity ratios from the streaked data were interpreted using a collisional radiative atomic kinetics model to provide the average plasma conditions in the buried layer as a function of time. Experimental uncertainties in the measured plasma conditions are quantified within a consistent model-dependent framework. The data demonstrate the production of a 330 +/-56 eV, 0.9 +/-0.3 g/cm3 plasma that evolves slowly during peak Heα emission. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Compact cryogenic Kerr microscope for time-resolved studies of electron spin transport in microstructures

    NARCIS (Netherlands)

    Rizo, P. J.; Pugzlys, A.; Liu, J.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.; van Loosdrecht, P. H. M.; Pugžlys, A.

    2008-01-01

    A compact cryogenic Kerr microscope for operation in the small volume of high-field magnets is described. It is suited for measurements both in Voigt and Faraday configurations. Coupled with a pulsed laser source, the microscope is used to measure the time-resolved Kerr rotation response of

  3. Real time programming environment for Windows

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, D.R. [LaBelle (Dennis R.), Clifton Park, NY (United States)

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  4. Real-time dynamics of dissipative quantum systems

    International Nuclear Information System (INIS)

    Chow, K.S.

    1988-01-01

    The first part of this thesis motivates a real time approach to the dynamics of dissipative quantum systems. We review previous imaginary time methods for calculating escape rates and discuss their applications to the analysis of data in macroscopic quantum tunneling experiments. In tunneling experiments on heavily damped Superconducting Quantum Interference Devices, the instanton method gave results that compare reasonably well with data. In tunneling experiments on weakly damped Current Biased Josephson Junctions, two problems arise. First, the classical limit of the instanton result disagrees with the classical rate of thermal activation. Second, the instanton method cannot predict the microwave enhancement of escape rates. In the third chapter, we discuss our real time approach to the dynamics of dissipative systems in terms of a kinetic equation for the reduced density matrix. We demonstrate some known equilibrium properties of dissipative systems through the kinetic equation and derived the bath induced widths and energy shifts. In the low damping limit, the kinetic equation reduces to a much simpler master equation. The classical limit of the master equation is completely equivalent to the Fokker-Planck equation that describes thermal activation. In the fourth chapter, we apply the master equation to the problem of tunneling and resonance enhancement of tunneling in weakly damped current biased Josephson junctions. In the classical regime, microwaves of the appropriate frequency induce resonances between many neighboring levels and an asymmetrical resonance peak is measured. We can calibrate the junction parameters by fitting the stationary solution of the master equation to the classical resonance data. In the quantum regime, the stationary solution of the master equation, predicts well-resolved resonance peaks which agree very well with the observed data

  5. Real-time multi-function entry / exit management system

    International Nuclear Information System (INIS)

    Hiyama, Kazuhisa; Kurosawa, Akihiko; Asano, Norikazu; Onoue, Ryuji; Eguchi, Shohei; Hanawa, Nobuhiro; Hori, Naohiko; Ueda, Hisao; Kanda, Hiroaki

    2012-01-01

    In order to prevent radiation accident and its expansion, more integrated management system is required to safety management for radiation workers in the nuclear facilities. Therefore, JAEA (Japan Atomic Energy Agency) and HAM (Hitachi Aloka Medical, Ltd) have developed innovative real-time multi-function entry/exit management system which managed worker's exposed dose and position under the joint developed patent. This system is sharing worker's data among workers and server manager who is inside of or outside of building, such as worker's positing, health condition and exposed dose. It consists of mobile equipments, receivers, LAN, and servers system. This report summarizes the system to be installed in the JMTR. (author)

  6. An In-Home Digital Network Architecture for Real-Time and Non-Real-Time Communication

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.; Hanssen, F.T.Y.; Hattink, Tjalling

    2002-01-01

    This paper describes an in-home digital network architecture that supports both real-time and non-real-time communication. The architecture deploys a distributed token mechanism to schedule communication streams and to offer guaranteed quality-ofservice. Essentially, the token mechanism prevents

  7. MARTe: A Multiplatform Real-Time Framework

    Science.gov (United States)

    Neto, André C.; Sartori, Filippo; Piccolo, Fabio; Vitelli, Riccardo; De Tommasi, Gianmaria; Zabeo, Luca; Barbalace, Antonio; Fernandes, Horacio; Valcarcel, Daniel F.; Batista, Antonio J. N.

    2010-04-01

    Development of real-time applications is usually associated with nonportable code targeted at specific real-time operating systems. The boundary between hardware drivers, system services, and user code is commonly not well defined, making the development in the target host significantly difficult. The Multithreaded Application Real-Time executor (MARTe) is a framework built over a multiplatform library that allows the execution of the same code in different operating systems. The framework provides the high-level interfaces with hardware, external configuration programs, and user interfaces, assuring at the same time hard real-time performances. End-users of the framework are required to define and implement algorithms inside a well-defined block of software, named Generic Application Module (GAM), that is executed by the real-time scheduler. Each GAM is reconfigurable with a set of predefined configuration meta-parameters and interchanges information using a set of data pipes that are provided as inputs and required as output. Using these connections, different GAMs can be chained either in series or parallel. GAMs can be developed and debugged in a non-real-time system and, only once the robustness of the code and correctness of the algorithm are verified, deployed to the real-time system. The software also supplies a large set of utilities that greatly ease the interaction and debugging of a running system. Among the most useful are a highly efficient real-time logger, HTTP introspection of real-time objects, and HTTP remote configuration. MARTe is currently being used to successfully drive the plasma vertical stabilization controller on the largest magnetic confinement fusion device in the world, with a control loop cycle of 50 ?s and a jitter under 1 ?s. In this particular project, MARTe is used with the Real-Time Application Interface (RTAI)/Linux operating system exploiting the new ?86 multicore processors technology.

  8. A study of internet of things real-time data updating based on WebSocket

    Science.gov (United States)

    Wei, Shoulin; Yu, Konglin; Dai, Wei; Liang, Bo; Zhang, Xiaoli

    2015-12-01

    The Internet of Things (IoT) is gradually entering the industrial stage. Web applications in IoT such as monitoring, instant messaging, real-time quote system changes need to be transmitted in real-time mode to client without client constantly refreshing and sending the request. These applications often need to be as fast as possible and provide nearly real-time components. Real-time data updating is becoming the core part of application layer visualization technology in IoT. With support of data push in server-side, running state of "Things" in IoT could be displayed in real-time mode. This paper discusses several current real-time data updating method and explores the advantages and disadvantages of each method. We explore the use of WebSocket in a new approach for real-time data updating in IoT, since WebSocket provides low delay, low network throughput solutions for full-duplex communication.

  9. Coherent optical effect on time-resolved vibrational SFG spectrum of adsorbates

    Science.gov (United States)

    Ueba, H.; Sawabu, T.; Mii, T.

    2002-04-01

    We present a theory to study the influence of the coherent mixing between pump-infrared and probe-visible pulse on a time-resolved sum-frequency generation (TR-SFG) spectrum for vibrations at surfaces. The general formula of the time-dependent and its Fourier transform of the SFG polarization and its Fourier transform allows us to calculate the time-resolved vibrational SFG spectrum and the transient characteristics of the SFG intensity as a function of the delay time td between the pump-infrared and probe-visible pulse. It is found the coherent optical effect manifests itself in the broadening and narrowing of the SFG spectrum with the intrinsic width of T2 at negative and positive td, respectively, being in qualitative agreement with recent experimental results. The influence of the coherent mixing on the transient behavior of the SFG intensity is also discussed in conjunction to the T2 determination.

  10. Evaluation of a real-time PCR assay for malaria diagnosis in patients from Vietnam and in returned travellers.

    Science.gov (United States)

    Vo, Thi Kim Duy; Bigot, Patricia; Gazin, Pierre; Sinou, Veronique; De Pina, Jean Jacques; Huynh, Dinh Chien; Fumoux, Francis; Parzy, Daniel

    2007-05-01

    Real-time PCR diagnosis of malaria has advantages over traditional microscopic methods, especially when parasitaemia is low and when dealing with mixed infections. We have developed a new real-time PCR with specific genes in each Plasmodium species present only in one copy to identify the four pathogenic Plasmodium spp. for humans. The sensitivity was less than 25 parasites/microl. No cross-hybridisation was observed with human DNA or among the four Plasmodium spp. Using LightCycler PCR and conventional microscopy, we compared the diagnosis of malaria in patients from Vietnam and in returned European travellers with suspicion of malaria. In patients from Vietnam with suspicion of malaria, one mixed infection was observed by PCR only; the remaining data (54 of 55 patients) correlated with microscopy. In 79 patients without symptoms, low parasitaemia was detected in 7 samples by microscopy and in 16 samples by PCR. In returned travellers, PCR results were correlated with microscopy for all four species in 48 of 56 samples. The eight discrepant results were resolved in favour of real-time PCR diagnosis. This new real-time PCR is a rapid, accurate and efficient method for malaria diagnosis in returned travellers as well as for epidemiological studies or antimalarial efficiency trials in the field.

  11. Real-Time and Real-Fast Performance of General-Purpose and Real-Time Operating Systems in Multithreaded Physical Simulation of Complex Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Carlos Garre

    2014-01-01

    Full Text Available Physical simulation is a valuable tool in many fields of engineering for the tasks of design, prototyping, and testing. General-purpose operating systems (GPOS are designed for real-fast tasks, such as offline simulation of complex physical models that should finish as soon as possible. Interfacing hardware at a given rate (as in a hardware-in-the-loop test requires instead maximizing time determinism, for which real-time operating systems (RTOS are designed. In this paper, real-fast and real-time performance of RTOS and GPOS are compared when simulating models of high complexity with large time steps. This type of applications is usually present in the automotive industry and requires a good trade-off between real-fast and real-time performance. The performance of an RTOS and a GPOS is compared by running a tire model scalable on the number of degrees-of-freedom and parallel threads. The benchmark shows that the GPOS present better performance in real-fast runs but worse in real-time due to nonexplicit task switches and to the latency associated with interprocess communication (IPC and task switch.

  12. Real time neutron transmission investigation of the austenite-bainite transformation in grey iron

    International Nuclear Information System (INIS)

    Meggers, Kay; Priesmeyer, Hans G.; Trela, Walter J.; Bowman, Charles D.; Dahms, Michael

    1994-01-01

    The first successful application of a new method to investigate phase transformations in real time, like the decomposition of austenite into bainite in grey iron, is described. During the ongoing transformation, transmission spectra of thermal neutrons, which contain Bragg edges corresponding to the crystal structure of the transforming phases, are recorded. By evaluating the height of these Bragg edges, which is a measure of the volume fraction of the phase, at different transformation times, the transformation can be followed in-situ in a time resolved manner. The method is compared to other previously used methods (micrographs, dilatometry, diffraction techniques); also a summary and an outlook are given. ((orig.))

  13. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    Science.gov (United States)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  14. Commissioning and quality assurance for VMAT delivery systems: An efficient time-resolved system using real-time EPID imaging.

    Science.gov (United States)

    Zwan, Benjamin J; Barnes, Michael P; Hindmarsh, Jonathan; Lim, Seng B; Lovelock, Dale M; Fuangrod, Todsaporn; O'Connor, Daryl J; Keall, Paul J; Greer, Peter B

    2017-08-01

    An ideal commissioning and quality assurance (QA) program for Volumetric Modulated Arc Therapy (VMAT) delivery systems should assess the performance of each individual dynamic component as a function of gantry angle. Procedures within such a program should also be time-efficient, independent of the delivery system and be sensitive to all types of errors. The purpose of this work is to develop a system for automated time-resolved commissioning and QA of VMAT control systems which meets these criteria. The procedures developed within this work rely solely on images obtained, using an electronic portal imaging device (EPID) without the presence of a phantom. During the delivery of specially designed VMAT test plans, EPID frames were acquired at 9.5 Hz, using a frame grabber. The set of test plans was developed to individually assess the performance of the dose delivery and multileaf collimator (MLC) control systems under varying levels of delivery complexities. An in-house software tool was developed to automatically extract features from the EPID images and evaluate the following characteristics as a function of gantry angle: dose delivery accuracy, dose rate constancy, beam profile constancy, gantry speed constancy, dynamic MLC positioning accuracy, MLC speed and acceleration constancy, and synchronization between gantry angle, MLC positioning and dose rate. Machine log files were also acquired during each delivery and subsequently compared to information extracted from EPID image frames. The largest difference between measured and planned dose at any gantry angle was 0.8% which correlated with rapid changes in dose rate and gantry speed. For all other test plans, the dose delivered was within 0.25% of the planned dose for all gantry angles. Profile constancy was not found to vary with gantry angle for tests where gantry speed and dose rate were constant, however, for tests with varying dose rate and gantry speed, segments with lower dose rate and higher gantry

  15. Case studies in atomic collision physics

    CERN Document Server

    McDaniel, E W

    1974-01-01

    Case Studies in Atomic Physics III focuses on case studies on atomic and molecular physics, including atomic collisions, transport properties of electrons, ions, molecules, and photons, interaction potentials, spectroscopy, and surface phenomena. The selection first discusses detailed balancing in the time-dependent impact parameter method, as well as time-reversal in the impact parameter method and coupled state approximation. The text also examines the mechanisms of electron production in ion. Topics include measurement of doubly differential cross sections and electron spectra, direct Coul

  16. Time-resolved luminescence studies in hydrogen uranyl phosphate intercalated with amines

    Energy Technology Data Exchange (ETDEWEB)

    Novo, Joao Batista Marques [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil)]. E-mail: jbmnovo@quimica.ufpr.br; Batista, Fabio Roberto [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil); Cunha, Carlos Jorge da [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil); Dias, Lauro Camargo Jr. [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil); Teixeira Pessine, Francisco Benedito [Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13084-971 Campinas-SP (Brazil)

    2007-05-15

    Time-resolved luminescence decays of intercalated compounds of hydrogen uranyl phosphate (HUP) with p-toluidinium (HUPPT), benzylaminium (HUPBZ), {alpha}-methylbenzylaminium (HUPMBZ) and hydroxylaminium (HUPHAM) were studied. The prepared compounds belong to the tetragonal P4/ncc space group and showed 00 l reflections shifted to lower angles relative to HUP, indicating that the intercalation increases the c parameter of the unit cell. The luminescence decays of the compounds with 100% of intercalation ratio (HUPHAM and HUPBZ) were analyzed by Global Analysis, assuming Lianos' stretched exponential as the model function, which can be applied to compounds with restricted geometry and mobile donor and quencher molecules. It was remarkable that the luminescence decays showed that the quenching of the emission of the uranyl ions by the intercalated protonated amines is not restricted by low dimensionality of the host uranyl phosphate, and that a diffusion mechanism occurs. Benzylaminium cation efficiently quenches the excited energy of the uranyl ions at close distance, but the long-range and long-lifetime quenching is hindered. A different situation is found in the case of the small hydroxylaminium cation, where the long distance diffusion of the species is fast, playing an important role in the quenching of the excited uranyl ions at longer times.

  17. Time-resolved luminescence studies in hydrogen uranyl phosphate intercalated with amines

    International Nuclear Information System (INIS)

    Novo, Joao Batista Marques; Batista, Fabio Roberto; Cunha, Carlos Jorge da; Dias, Lauro Camargo Jr.; Teixeira Pessine, Francisco Benedito

    2007-01-01

    Time-resolved luminescence decays of intercalated compounds of hydrogen uranyl phosphate (HUP) with p-toluidinium (HUPPT), benzylaminium (HUPBZ), α-methylbenzylaminium (HUPMBZ) and hydroxylaminium (HUPHAM) were studied. The prepared compounds belong to the tetragonal P4/ncc space group and showed 00 l reflections shifted to lower angles relative to HUP, indicating that the intercalation increases the c parameter of the unit cell. The luminescence decays of the compounds with 100% of intercalation ratio (HUPHAM and HUPBZ) were analyzed by Global Analysis, assuming Lianos' stretched exponential as the model function, which can be applied to compounds with restricted geometry and mobile donor and quencher molecules. It was remarkable that the luminescence decays showed that the quenching of the emission of the uranyl ions by the intercalated protonated amines is not restricted by low dimensionality of the host uranyl phosphate, and that a diffusion mechanism occurs. Benzylaminium cation efficiently quenches the excited energy of the uranyl ions at close distance, but the long-range and long-lifetime quenching is hindered. A different situation is found in the case of the small hydroxylaminium cation, where the long distance diffusion of the species is fast, playing an important role in the quenching of the excited uranyl ions at longer times

  18. Real-time earthquake data feasible

    Science.gov (United States)

    Bush, Susan

    Scientists agree that early warning devices and monitoring of both Hurricane Hugo and the Mt. Pinatubo volcanic eruption saved thousands of lives. What would it take to develop this sort of early warning and monitoring system for earthquake activity?Not all that much, claims a panel assigned to study the feasibility, costs, and technology needed to establish a real-time earthquake monitoring (RTEM) system. The panel, drafted by the National Academy of Science's Committee on Seismology, has presented its findings in Real-Time Earthquake Monitoring. The recently released report states that “present technology is entirely capable of recording and processing data so as to provide real-time information, enabling people to mitigate somewhat the earthquake disaster.” RTEM systems would consist of two parts—an early warning system that would give a few seconds warning before severe shaking, and immediate postquake information within minutes of the quake that would give actual measurements of the magnitude. At this time, however, this type of warning system has not been addressed at the national level for the United States and is not included in the National Earthquake Hazard Reduction Program, according to the report.

  19. Scalable Real-Time Negotiation Toolkit

    National Research Council Canada - National Science Library

    Lesser, Victor

    2004-01-01

    ... to implement an adaptive distributed sensor network. These activities involved the development of a distributed soft, real-time heuristic resource allocation protocol, the development of a domain-independent soft, real time agent architecture...

  20. Programming for time resolved spectrum in pulse radiolysis experiments

    International Nuclear Information System (INIS)

    Betty, C.A.; Panajkar, M.S.; Shirke, N.D.

    1993-01-01

    A user friendly program in Pascal has been developed for data acquisition and subsequent processing of time resolved spectra of transient species produced in pulse radiolysis experiments. The salient features of the program are (i) thiocyanate dosimetry and (ii) spectrum acquisition. The thiocyanate dosimetry is carried out to normalize experimental conditions to a standard value as determined by computing absorbance of the transient signal CNS -2 that is produced from thiocyanate solution by a 7 MeV electron pulse. Spectrum acquisition allows the acquisition of the time resolved data at 20 different times points and subsequent display of the plots of absorbance vs. wavelength for the desired time points during the experiment. It is also possible to plot single time point spectrum as well as superimposed spectra for different time points. Printing, editing and merging facilities are also provided. (author). 2 refs., 7 figs

  1. Real-time radiography at the NECTAR facility

    International Nuclear Information System (INIS)

    Buecherl, T.; Lierse von Gostomski, Ch.

    2011-01-01

    A feasibility study has shown that real-time radiography using fission neutrons is possible at the NECTAR facility, when using an improved detection system for fast variations (Buecherl et al., 2009 ). Continuing this study, real-time measurements of slowly varying processes like the water uptake in medium sized trunks (diameter about 12 cm) and of slow periodic processes (e.g. a slowly rotating iron disk) are investigated successfully using the existing detection system.

  2. Real-time radiography at the NECTAR facility

    Science.gov (United States)

    Bücherl, T.; Lierse von Gostomski, Ch.

    2011-09-01

    A feasibility study has shown that real-time radiography using fission neutrons is possible at the NECTAR facility, when using an improved detection system for fast variations (Bücherl et al., 2009 [1]). Continuing this study, real-time measurements of slowly varying processes like the water uptake in medium sized trunks (diameter about 12 cm) and of slow periodic processes (e.g. a slowly rotating iron disk) are investigated successfully using the existing detection system.

  3. Real-time radiography at the NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T., E-mail: thomas.buecherl@radiochemie.de [Lehrstuhl fuer Radiochemie (RCM), Technische Universitaet Muenchen (TUM), Walther-Meissner-Str. 3, 85748 Garching (Germany); Lierse von Gostomski, Ch. [Lehrstuhl fuer Radiochemie (RCM), Technische Universitaet Muenchen (TUM), Walther-Meissner-Str. 3, 85748 Garching (Germany)

    2011-09-21

    A feasibility study has shown that real-time radiography using fission neutrons is possible at the NECTAR facility, when using an improved detection system for fast variations (Buecherl et al., 2009 ). Continuing this study, real-time measurements of slowly varying processes like the water uptake in medium sized trunks (diameter about 12 cm) and of slow periodic processes (e.g. a slowly rotating iron disk) are investigated successfully using the existing detection system.

  4. Resolving dynamics of cell signaling via real-time imaging of the immunological synapse.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Mark A.; Pfeiffer, Janet R. (University of New Mexico, Albuquerque, NM); Wilson, Bridget S. (University of New Mexico, Albuquerque, NM); Timlin, Jerilyn Ann; Thomas, James L. (University of New Mexico, Albuquerque, NM); Lidke, Keith A. (University of New Mexico, Albuquerque, NM); Spendier, Kathrin (University of New Mexico, Albuquerque, NM); Oliver, Janet M. (University of New Mexico, Albuquerque, NM); Carroll-Portillo, Amanda (University of New Mexico, Albuquerque, NM); Aaron, Jesse S.; Mirijanian, Dina T.; Carson, Bryan D.; Burns, Alan Richard; Rebeil, Roberto

    2009-10-01

    This highly interdisciplinary team has developed dual-color, total internal reflection microscopy (TIRF-M) methods that enable us to optically detect and track in real time protein migration and clustering at membrane interfaces. By coupling TIRF-M with advanced analysis techniques (image correlation spectroscopy, single particle tracking) we have captured subtle changes in membrane organization that characterize immune responses. We have used this approach to elucidate the initial stages of cell activation in the IgE signaling network of mast cells and the Toll-like receptor (TLR-4) response in macrophages stimulated by bacteria. To help interpret these measurements, we have undertaken a computational modeling effort to connect the protein motion and lipid interactions. This work provides a deeper understanding of the initial stages of cellular response to external agents, including dynamics of interaction of key components in the signaling network at the 'immunological synapse,' the contact region of the cell and its adversary.

  5. A Study on Evaluation Issues of Real-Time Operating System in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S.

    2006-01-01

    Control applications such as aircraft, robotics and nuclear power plant have to maintain a very high level of safety, typically defined as the avoidance of unplanned events resulting in hazard. These applications usually operate with hard real-time operating system (RTOS). In this case, hard RTOS software should be reliable and safe. RTOS used in safety-critical I and C system is the base software for the purpose of satisfying the real-time constraints. So, careful evaluation of its safety and functionality is very important. In this paper, we present the case study for RTOSs used in real nuclear power plants (NPP), and suggest the evaluation approach for the RTOS

  6. A Study on Evaluation Issues of Real-Time Operating System in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2006-07-01

    Control applications such as aircraft, robotics and nuclear power plant have to maintain a very high level of safety, typically defined as the avoidance of unplanned events resulting in hazard. These applications usually operate with hard real-time operating system (RTOS). In this case, hard RTOS software should be reliable and safe. RTOS used in safety-critical I and C system is the base software for the purpose of satisfying the real-time constraints. So, careful evaluation of its safety and functionality is very important. In this paper, we present the case study for RTOSs used in real nuclear power plants (NPP), and suggest the evaluation approach for the RTOS.

  7. Atomic-scale observation of structural and electronic orders in the layered compound ?-RuCl3

    OpenAIRE

    Ziatdinov, M.; Banerjee, A.; Maksov, A.; Berlijn, T.; Zhou, W.; Cao, H. B.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Baddorf, A. P.; Kalinin, S. V.

    2016-01-01

    A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, ?-RuCl3. Our local crystal...

  8. Contrast in atomically resolved EF-SCEM imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); D’Alfonso, Adrian J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Morgan, Andrew J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Takeguchi, Masaki [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-ku, Tokyo, 135-8548 (Japan); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2013-11-15

    Energy-filtered scanning confocal electron microscopy (EF-SCEM) is a technique that uses the reduced depth of field of an aberration-corrected transmission electron microscope to provide three-dimensional (3D) compositional information. Using a silicon sample in the <110> orientation, we show that EF-SCEM image data can be recorded that shows lattice resolution in the plane perpendicular to the incident beam direction. The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane, unlike optical sectioning in high-angle annular dark-field scanning transmission electron microscopy (STEM). Simulations of the EF-SCEM data show agreement with the experimental data, and allow the interpretability of the data to be explored. The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data, highlighting the need for matching to simulations. Finally the effects of the finite detector pin-hole aperture size are explored, and we show that the EF-SCEM contrast in the plane perpendicular to the beam direction starts to resemble that of a STEM spectrum imaging experiment as the aperture size increases. - Highlights: • Atomically resolved energy-filtered scanning confocal electron microscopy (EF-SCEM) is demonstrated. • The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane. • Simulations show agreement with the experimental data. • The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data. • The effects of the finite detector pin-hole aperture size are explored.

  9. Contrast in atomically resolved EF-SCEM imaging

    International Nuclear Information System (INIS)

    Wang, Peng; D’Alfonso, Adrian J.; Hashimoto, Ayako; Morgan, Andrew J.; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki; Kirkland, Angus I.; Allen, Leslie J.; Nellist, Peter D.

    2013-01-01

    Energy-filtered scanning confocal electron microscopy (EF-SCEM) is a technique that uses the reduced depth of field of an aberration-corrected transmission electron microscope to provide three-dimensional (3D) compositional information. Using a silicon sample in the orientation, we show that EF-SCEM image data can be recorded that shows lattice resolution in the plane perpendicular to the incident beam direction. The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane, unlike optical sectioning in high-angle annular dark-field scanning transmission electron microscopy (STEM). Simulations of the EF-SCEM data show agreement with the experimental data, and allow the interpretability of the data to be explored. The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data, highlighting the need for matching to simulations. Finally the effects of the finite detector pin-hole aperture size are explored, and we show that the EF-SCEM contrast in the plane perpendicular to the beam direction starts to resemble that of a STEM spectrum imaging experiment as the aperture size increases. - Highlights: • Atomically resolved energy-filtered scanning confocal electron microscopy (EF-SCEM) is demonstrated. • The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane. • Simulations show agreement with the experimental data. • The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data. • The effects of the finite detector pin-hole aperture size are explored

  10. Model Checking Real-Time Systems

    DEFF Research Database (Denmark)

    Bouyer, Patricia; Fahrenberg, Uli; Larsen, Kim Guldstrand

    2018-01-01

    This chapter surveys timed automata as a formalism for model checking real-time systems. We begin with introducing the model, as an extension of finite-state automata with real-valued variables for measuring time. We then present the main model-checking results in this framework, and give a hint...

  11. Modular specification of real-time systems

    DEFF Research Database (Denmark)

    Inal, Recep

    1994-01-01

    Duration Calculus, a real-time interval logic, has been embedded in the Z specification language to provide a notation for real-time systems that combines the modularisation and abstraction facilities of Z with a logic suitable for reasoning about real-time properties. In this article the notation...

  12. Hard Real-Time Networking on Firewire

    NARCIS (Netherlands)

    Zhang, Yuchen; Orlic, Bojan; Visser, Peter; Broenink, Jan

    2005-01-01

    This paper investigates the possibility of using standard, low-cost, widely used FireWire as a new generation fieldbus medium for real-time distributed control applications. A real-time software subsys- tem, RT-FireWire was designed that can, in combination with Linux-based real-time operating

  13. Time-resolved crystallography using the Hadamard Transform

    Science.gov (United States)

    Yorke, Briony A.; Beddard, Godfrey S.; Owen, Robin L.; Pearson, Arwen R.

    2014-01-01

    A new method for performing time-resolved X-ray crystallographic experiments based on the Hadamard Transform is proposed and demonstrated. The time-resolution is defined by the underlying periodicity of the probe pulse sequence and the signal to noise is greatly improved compared to the fastest experiments depending on a single pulse. This approach is general and equally applicable to any spectroscopic or imaging measurement where the probe can be encoded. PMID:25282611

  14. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    International Nuclear Information System (INIS)

    Barty, C.P.J.

    2000-01-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  15. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C.P.J. [University of California, Department of Applied Mechanics and Engineering Science, Urey Hall, Mali Code 0339, San Diego, La Jolla, CA (United States)

    2000-03-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  16. Multiprocessor scheduling for real-time systems

    CERN Document Server

    Baruah, Sanjoy; Buttazzo, Giorgio

    2015-01-01

    This book provides a comprehensive overview of both theoretical and pragmatic aspects of resource-allocation and scheduling in multiprocessor and multicore hard-real-time systems.  The authors derive new, abstract models of real-time tasks that capture accurately the salient features of real application systems that are to be implemented on multiprocessor platforms, and identify rules for mapping application systems onto the most appropriate models.  New run-time multiprocessor scheduling algorithms are presented, which are demonstrably better than those currently used, both in terms of run-time efficiency and tractability of off-line analysis.  Readers will benefit from a new design and analysis framework for multiprocessor real-time systems, which will translate into a significantly enhanced ability to provide formally verified, safety-critical real-time systems at a significantly lower cost.

  17. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  18. Time resolved resonant inelastic X-ray scattering: A supreme tool to understand dynamics in solids and molecules

    International Nuclear Information System (INIS)

    Beye, M.; Wernet, Ph.; Schüßler-Langeheine, C.; Föhlisch, A.

    2013-01-01

    Highlights: •The high specificity of RIXS ideally suits time-resolved measurements. •Methods relating to the core hole lifetime cover the low femtosecond regime. •Pump-probe methods are used starting at sub-ps time scales. •FELs and synchrotrons are useful for pump-probe studies. •Examples from solid state dynamics and molecules are discussed. -- Abstract: Dynamics in materials typically involve different degrees of freedom, like charge, lattice, orbital and spin in a complex interplay. Time-resolved resonant inelastic X-ray scattering (RIXS) as a highly selective tool can provide unique insight and follow the details of dynamical processes while resolving symmetries, chemical and charge states, momenta, spin configurations, etc. In this paper, we review examples where the intrinsic scattering duration time is used to study femtosecond phenomena. Free-electron lasers access timescales starting in the sub-ps range through pump-probe methods and synchrotrons study the time scales longer than tens of ps. In these examples, time-resolved resonant inelastic X-ray scattering is applied to solids as well as molecular systems

  19. A Practical Framework to Study Low-Power Scheduling Algorithms on Real-Time and Embedded Systems

    Directory of Open Access Journals (Sweden)

    Jian (Denny Lin

    2014-05-01

    Full Text Available With the advanced technology used to design VLSI (Very Large Scale Integration circuits, low-power and energy-efficiency have played important roles for hardware and software implementation. Real-time scheduling is one of the fields that has attracted extensive attention to design low-power, embedded/real-time systems. The dynamic voltage scaling (DVS and CPU shut-down are the two most popular techniques used to design the algorithms. In this paper, we firstly review the fundamental advances in the research of energy-efficient, real-time scheduling. Then, a unified framework with a real Intel PXA255 Xscale processor, namely real-energy, is designed, which can be used to measure the real performance of the algorithms. We conduct a case study to evaluate several classical algorithms by using the framework. The energy efficiency and the quantitative difference in their performance, as well as the practical issues found in the implementation of these algorithms are discussed. Our experiments show a gap between the theoretical and real results. Our framework not only gives researchers a tool to evaluate their system designs, but also helps them to bridge this gap in their future works.

  20. Time-resolved homo-FRET studies of biotin-streptavidin complexes.

    Science.gov (United States)

    Andreoni, Alessandra; Nardo, Luca; Rigler, Rudolf

    2016-09-01

    Förster resonance energy transfer is a mechanism of fluorescence quenching that is notably useful for characterizing properties of biomolecules and/or their interactions. Here we study water-solutions of Biotin-Streptavidin complexes, in which Biotin is labeled with a rigidly-bound fluorophore that can interact by Förster resonance energy transfer with the fluorophores labeling the other, up to three, Biotins of the same complex. The fluorophore, Atto550, is a Rhodamine analogue. We detect the time-resolved fluorescence decay of the fluorophores with an apparatus endowed with single-photon sensitivity and temporal resolution of ~30ps. The decay profiles we observe for samples containing constant Biotin-Atto550 conjugates and varying Streptavidin concentrations are multi-exponential. Each decay component can be associated with the rate of quenching exerted on each donor by each of the acceptors that label the other Biotin molecules, depending on the binding site they occupy. The main features that lead to this result are that (i) the transition dipole moments of the up-to-four Atto550 fluorophores that label the complexes are fixed as to both relative positions and mutual orientations; (ii) the fluorophores are identical and the role of donor in each Biotin-Streptavidin complex is randomly attributed to the one that has absorbed the excitation light (homo-FRET). Obviously the high-temporal resolution of the excitation-detection apparatus is necessary to discriminate among the fluorescence decay components. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Legal Time of the Republic of Colombia and its international traceability using the Cesium Atomic Clock - Time and Frequency National Standard

    Science.gov (United States)

    Hernández Forero, Liz Catherine; Bahamón Cortés, Nelson

    2017-06-01

    Around the world, there are different providers of timestamp (mobile, radio or television operators, satellites of the GPS network, astronomical measurements, etc.), however, the source of the legal time for a country is either the national metrology institute or another designated laboratory. This activity requires a time standard based on an atomic time scale. The International Bureau of Weights and Measures (BIPM) calculates a weighted average of the time kept in more than 60 nations and produces a single international time scale, called Coordinated Universal Time (UTC). This article presents the current time scale that generates Legal Time for the Republic of Colombia produced by the Instituto Nacional de Metrología (INM) using the time and frequency national standard, a cesium atomic oscillator. It also illustrates how important it is for the academic, scientific and industrial communities, as well as the general public, to be synchronized with this time scale, which is traceable to the International System (SI) of units, through international comparisons that are made in real time.

  2. Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene

    Science.gov (United States)

    Hao, Qiaoli; Deng, Xulan; Long, Jinyou; Wang, Yanmei; Abulimiti, Bumaliya; Zhang, Bing

    2017-08-01

    Ultrafast electronic relaxation processes following two photoexcitation of 400 nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of 85 ± 10 fs and 2.4 ± 0.3 ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.

  3. Broad-band time-resolved near infrared spectroscopy in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.C.; Pastor, I.; Cal, E. de la; McCarthy, K.J. [Laboratorio Nacional de Fusion, CIEMAT, Madrid (Spain); Diaz, D. [Universidad Autonoma de Madrid, Dept Quimica Fisica Aplicada, Madrid (Spain)

    2014-11-15

    First experimental results on broad-band, time-resolved Near Infrared (NIR;here loosely defined as covering from 750 to 1650 nm) passive spectroscopy using a high sensitivity InGaAs detector are reported for the TJ-II Stellarator. Experimental set-up is described together with its main characteristics, the most remarkable ones being its enhanced NIR response, broadband spectrum acquisition in a single shot, and time-resolved measurements with up to 1.8 kHz spectral rate. Prospects for future work and more extended physics studies in this newly open spectral region in TJ-II are discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. In-pile Thermal Conductivity Characterization with Time Resolved Raman

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinwei [Iowa State Univ., Ames, IA (United States). Dept. of Mechanical Engineering; Hurley, David H. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-03-19

    The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heating of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.

  5. An atomic model of brome mosaic virus using direct electron detection and real-space optimization

    Science.gov (United States)

    Wang, Zhao; Hryc, Corey F.; Bammes, Benjamin; Afonine, Pavel V.; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L.; Kao, Cheng; Ludtke, Steven J.; Schmid, Michael F.; Adams, Paul D.; Chiu, Wah

    2014-09-01

    Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.

  6. Hard Real-Time Linux for Off-The-Shelf Multicore Architectures

    OpenAIRE

    Radder, Dirk

    2015-01-01

    This document describes the research results that were obtained from the development of a real-time extension for the Linux operating system. The paper describes a full extension of the kernel, which enables hard real-time performance on a 64-bit x86 architecture. In the first part of this study, real-time systems are categorized and concepts of real-time operating systems are introduced to the reader. In addition, numerous well-known real-time operating systems are considered. QNX Neutrino, ...

  7. Prototyping real-time systems

    OpenAIRE

    Clynch, Gary

    1994-01-01

    The traditional software development paradigm, the waterfall life cycle model, is defective when used for developing real-time systems. This thesis puts forward an executable prototyping approach for the development of real-time systems. A prototyping system is proposed which uses ESML (Extended Systems Modelling Language) as a prototype specification language. The prototyping system advocates the translation of non-executable ESML specifications into executable LOOPN (Language of Object ...

  8. Multi-Channel Amplifier-Discriminator for Highly Time-Resolved Detection

    CERN Document Server

    Despeisse, M; Lapington, J; Jarron, P

    2011-01-01

    A low-power multi-channel amplifier-discriminator was developed for application in highly time-resolved detection systems. The proposed circuit architecture, so-called Nino, is based on a time-over-threshold approach and shows a high potential for time-resolved readout of solid-state photo-detectors and of detectors based on vacuum technologies. The Irpics circuit was designed in a 250 nm CMOS technology, implementing 32 channels of a Nino version optimized to achieve high-time resolution on the output low-voltage differential signals (LVDS) while keeping a low power consumption of 10 mW per channel. Electrical characterizations of the circuit demonstrate a very low intrinsic time jitter on the output pulse leading edge, measured below 10 ps rms for each channel for high input signal charges (100 fC) and below 25 ps rms for low input signal charges (20-100 fC). The read-out architecture moreover permits to retrieve the input signal charge from the timing measurements, while a calibration procedure was develop...

  9. Software Design Methods for Real-Time Systems

    Science.gov (United States)

    1989-12-01

    This module describes the concepts and methods used in the software design of real time systems . It outlines the characteristics of real time systems , describes...the role of software design in real time system development, surveys and compares some software design methods for real - time systems , and

  10. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare e ects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  11. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  12. Distributed, Embedded and Real-time Java Systems

    CERN Document Server

    Wellings, Andy

    2012-01-01

    Research on real-time Java technology has been prolific over the past decade, leading to a large number of corresponding hardware and software solutions, and frameworks for distributed and embedded real-time Java systems.  This book is aimed primarily at researchers in real-time embedded systems, particularly those who wish to understand the current state of the art in using Java in this domain.  Much of the work in real-time distributed, embedded and real-time Java has focused on the Real-time Specification for Java (RTSJ) as the underlying base technology, and consequently many of the Chapters in this book address issues with, or solve problems using, this framework. Describes innovative techniques in: scheduling, memory management, quality of service and communication systems supporting real-time Java applications; Includes coverage of multiprocessor embedded systems and parallel programming; Discusses state-of-the-art resource management for embedded systems, including Java’s real-time garbage collect...

  13. Research of real-time communication software

    Science.gov (United States)

    Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong

    2003-11-01

    Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.

  14. Real-time sonography in obstetrics.

    Science.gov (United States)

    Anderson, S G

    1978-03-01

    Three hundred fifty real-time scans were performed on pregnant women for various indications. Placental localization was satisfactorily obtained in 173 of 174 studies. Estimates of fetal gestation from directly measured biparietal diameter were +/-2 weeks of actual gestation in 153 of 172 (88.9%) measurements. The presence or absence of fetal motion and cardiac activity established a diagnosis of fetal viability or fetal death in 32 patients after the first trimester. Accurate diagnosis was made in 52 of 57 patients with threatened abortions, and two of these errors occurred in scans performed before completion of the eighth postmenstrual week. Because of the ability to demonstrate fetal motion, real-time sonography should have many applications in obstetrics.

  15. Real-time geometric scene estimation for RGBD images using a 3D box shape grammar

    Science.gov (United States)

    Willis, Andrew R.; Brink, Kevin M.

    2016-06-01

    This article describes a novel real-time algorithm for the purpose of extracting box-like structures from RGBD image data. In contrast to conventional approaches, the proposed algorithm includes two novel attributes: (1) it divides the geometric estimation procedure into subroutines having atomic incremental computational costs, and (2) it uses a generative "Block World" perceptual model that infers both concave and convex box elements from detection of primitive box substructures. The end result is an efficient geometry processing engine suitable for use in real-time embedded systems such as those on an UAVs where it is intended to be an integral component for robotic navigation and mapping applications.

  16. Real-time safety risk assessment based on a real-time location system for hydropower construction sites.

    Science.gov (United States)

    Jiang, Hanchen; Lin, Peng; Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns.

  17. Explaining How to Play Real-Time Strategy Games

    Science.gov (United States)

    Metoyer, Ronald; Stumpf, Simone; Neumann, Christoph; Dodge, Jonathan; Cao, Jill; Schnabel, Aaron

    Real-time strategy games share many aspects with real situations in domains such as battle planning, air traffic control, and emergency response team management which makes them appealing test-beds for Artificial Intelligence (AI) and machine learning. End user annotations could help to provide supplemental information for learning algorithms, especially when training data is sparse. This paper presents a formative study to uncover how experienced users explain game play in real-time strategy games. We report the results of our analysis of explanations and discuss their characteristics that could support the design of systems for use by experienced real-time strategy game users in specifying or annotating strategy-oriented behavior.

  18. The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction

    Science.gov (United States)

    Moorhouse, Saul J.; Vranješ, Nenad; Jupe, Andrew; Drakopoulos, Michael; O'Hare, Dermot

    2012-08-01

    A versatile, infrared-heated, chemical reaction cell has been assembled and commissioned for the in situ study of a range of chemical syntheses using time-resolved energy-dispersive X-ray diffraction (EDXRD) on Beamline I12 at the Diamond Light Source. Specialized reactor configurations have been constructed to enable in situ EDXRD investigation of samples under non-ambient conditions. Chemical reactions can be studied using a range of sample vessels such as alumina crucibles, steel hydrothermal autoclaves, and glassy carbon tubes, at temperatures up to 1200 °C.

  19. Geomagnetic Observatory Data for Real-Time Applications

    Science.gov (United States)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  20. Time-resolved fluorescence study of exciplex formation in diastereomeric naproxen-pyrrolidine dyads.

    Science.gov (United States)

    Khramtsova, Ekaterina A; Plyusnin, Viktor F; Magin, Ilya M; Kruppa, Alexander I; Polyakov, Nikolay E; Leshina, Tatyana V; Nuin, Edurne; Marin, M Luisa; Miranda, Miguel A

    2013-12-19

    The influence of chirality on the elementary processes triggered by excitation of the (S,S)- and (R,S)- diastereoisomers of naproxen-pyrrolidine (NPX-Pyr) dyads has been studied by time-resolved fluorescence in acetonitrile-benzene mixtures. In these systems, the quenching of the (1)NPX*-Pyr singlet excited state occurs through electron transfer and exciplex formation. Fluorescence lifetimes and quantum yields revealed a significant difference (around 20%) between the (S,S)- and (R,S)- diastereomers. In addition, the quantum yields of exciplexes differed by a factor of 2 regardless of solvent polarity. This allows us to suggest a similar influence of the chiral centers on the local charge transfer resulting in exciplex and full charge separation that leads to ion-biradicals. A simplified scheme is proposed to estimate a set of rate constant values (k1-k5) for the elementary stages in each solvent system.

  1. Probing Photoinduced Structural Phase Transitions by Fast or Ultra-Fast Time-Resolved X-Ray Diffraction

    Science.gov (United States)

    Cailleau, Hervé Collet, Eric; Buron-Le Cointe, Marylise; Lemée-Cailleau, Marie-Hélène Koshihara, Shin-Ya

    A new frontier in the field of structural science is the emergence of the fast and ultra-fast X-ray science. Recent developments in time-resolved X-ray diffraction promise direct access to the dynamics of electronic, atomic and molecular motions in condensed matter triggered by a pulsed laser irradiation, i.e. to record "molecular movies" during the transformation of matter initiated by light pulse. These laser pump and X-ray probe techniques now provide an outstanding opportunity for the direct observation of a photoinduced structural phase transition as it takes place. The use of X-ray short-pulse of about 100ps around third-generation synchrotron sources allows structural investigations of fast photoinduced processes. Other new X-ray sources, such as laser-produced plasma ones, generate ultra-short pulses down to 100 fs. This opens the way to femtosecond X-ray crystallography, but with rather low X-ray intensities and more limited experimental possibilities at present. However this new ultra-fast science rapidly progresses around these sources and new large-scale projects exist. It is the aim of this contribution to overview the state of art and the perspectives of fast and ultra-fast X-ray scattering techniques to study photoinduced phase transitions (here, the word ultra-fast is used for sub-picosecond time resolution). In particular we would like to largely present the contribution of crystallographic methods in comparison with optical methods, such as pump-probe reflectivity measurements, the reader being not necessary familiar with X-ray scattering. Thus we want to present which type of physical information can be obtained from the positions of the Bragg peaks, their intensity and their shape, as well as from the diffuse scattering beyond Bragg peaks. An important physical feature is to take into consideration the difference in nature between a photoinduced phase transition and conventional homogeneous photoinduced chemical or biochemical processes where

  2. Integration of MDSplus in real-time systems

    International Nuclear Information System (INIS)

    Luchetta, A.; Manduchi, G.; Taliercio, C.

    2006-01-01

    RFX-mod makes extensive usage of real-time systems for feedback control and uses MDSplus to interface them to the main Data Acquisition system. For this purpose, the core of MDSplus has been ported to VxWorks, the operating system used for real-time control in RFX. Using this approach, it is possible to integrate real-time systems, but MDSplus is used only for non-real-time tasks, i.e. those tasks which are executed before and after the pulse and whose performance does not affect the system time constraints. More extensive use of MDSplus in real-time systems is foreseen, and a real-time layer for MDSplus is under development, which will provide access to memory-mapped pulse files, shared by the tasks running on the same CPU. Real-time communication will also be integrated in the MDSplus core to provide support for distributed memory-mapped pulse files

  3. Medical work Assessment in German hospitals: a Real-time Observation study (MAGRO – the study protocol

    Directory of Open Access Journals (Sweden)

    Mache Stefanie

    2009-06-01

    Full Text Available Abstract Background The increasing economic pressure characterizes the current situation in health care and the need to justify medical decisions and organizational processes due to limited financial resources is omnipresent. Physicians tend to interpret this development as a decimation of their own medical influence. This becomes even more obvious after a change in hospital ownership i.e. from a public to a private profit oriented organization. In this case each work procedure is revised. To date, most research studies have focused mainly on differences between hospitals of different ownership regarding financial outcomes and quality of care, leaving important organizational issues unexplored. Little attention has been devoted to the effects of hospital ownership on physicians' working routines. The aim of this observational real time study is to deliver exact data about physicians' work at hospitals of different ownership. Methods The consequences of different management types on the organizational structures of the physicians' work situation and on job satisfaction in the ward situation are monitored by objective real time studies and multi-level psycho diagnostic measurements. Discussion This study is unique in its focus. To date no results have been found for computer-based real time studies on work activity in the clinical field in order to objectively evaluate a physician's work-related stress. After a complete documentation of the physicians' work processes the daily work flow can be estimated and systematically optimized. This can stimulate an overall improvement of health care services in Germany.

  4. Dense time discretization technique for verification of real time systems

    International Nuclear Information System (INIS)

    Makackas, Dalius; Miseviciene, Regina

    2016-01-01

    Verifying the real-time system there are two different models to control the time: discrete and dense time based models. This paper argues a novel verification technique, which calculates discrete time intervals from dense time in order to create all the system states that can be reached from the initial system state. The technique is designed for real-time systems specified by a piece-linear aggregate approach. Key words: real-time system, dense time, verification, model checking, piece-linear aggregate

  5. Forecasting surface water flooding hazard and impact in real-time

    Science.gov (United States)

    Cole, Steven J.; Moore, Robert J.; Wells, Steven C.

    2016-04-01

    Across the world, there is increasing demand for more robust and timely forecast and alert information on Surface Water Flooding (SWF). Within a UK context, the government Pitt Review into the Summer 2007 floods provided recommendations and impetus to improve the understanding of SWF risk for both off-line design and real-time forecasting and warning. Ongoing development and trial of an end-to-end real-time SWF system is being progressed through the recently formed Natural Hazards Partnership (NHP) with delivery to the Flood Forecasting Centre (FFC) providing coverage over England & Wales. The NHP is a unique forum that aims to deliver coordinated assessments, research and advice on natural hazards for governments and resilience communities across the UK. Within the NHP, a real-time Hazard Impact Model (HIM) framework has been developed that includes SWF as one of three hazards chosen for initial trialling. The trial SWF HIM system uses dynamic gridded surface-runoff estimates from the Grid-to-Grid (G2G) hydrological model to estimate the SWF hazard. National datasets on population, infrastructure, property and transport are available to assess impact severity for a given rarity of SWF hazard. Whilst the SWF hazard footprint is calculated in real-time using 1, 3 and 6 hour accumulations of G2G surface runoff on a 1 km grid, it has been possible to associate these with the effective rainfall design profiles (at 250m resolution) used as input to a detailed flood inundation model (JFlow+) run offline to produce hazard information resolved to 2m resolution. This information is contained in the updated Flood Map for Surface Water (uFMfSW) held by the Environment Agency. The national impact datasets can then be used with the uFMfSW SWF hazard dataset to assess impacts at this scale and severity levels of potential impact assigned at 1km and for aggregated county areas in real-time. The impact component is being led by the Health and Safety Laboratory (HSL) within the NHP

  6. Real Time Grid Reliability Management 2005

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  7. "Internet of Things" Real-Time Free Flap Monitoring.

    Science.gov (United States)

    Kim, Sang Hun; Shin, Ho Seong; Lee, Sang Hwan

    2018-01-01

    Free flaps are a common treatment option for head and neck reconstruction in plastic reconstructive surgery, and monitoring of the free flap is the most important factor for flap survival. In this study, the authors performed real-time free flap monitoring based on an implanted Doppler system and "internet of things" (IoT)/wireless Wi-Fi, which is a convenient, accurate, and efficient approach for surgeons to monitor a free flap. Implanted Doppler signals were checked continuously until the patient was discharged by the surgeon and residents using their own cellular phone or personal computer. If the surgeon decided that a revision procedure or exploration was required, the authors checked the consumed time (positive signal-to-operating room time) from the first notification when the flap's status was questioned to the determination for revision surgery according to a chart review. To compare the efficacy of real-time monitoring, the authors paired the same number of free flaps performed by the same surgeon and monitored the flaps using conventional methods such as a physical examination. The total survival rate was greater in the real-time monitoring group (94.7% versus 89.5%). The average time for the real-time monitoring group was shorter than that for the conventional group (65 minutes versus 86 minutes). Based on this study, real-time free flap monitoring using IoT technology is a method that surgeon and reconstruction team can monitor simultaneously at any time in any situation.

  8. KERMA-based radiation dose management system for real-time patient dose measurement

    Science.gov (United States)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  9. Feasibility study of the real-time IMRT dosimetry using a scintillation screen

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Wook; Yi, Byong Yong; Ko, Young Eun [Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of)] (and others)

    2004-03-15

    To study the feasibility of verifying real-time 2-D dose distribution measurement system with the scintillation screen for the quality assurance. The water phantom consisted of a scintillation screen (LANEX fast screen, Kodak, USA) that was axially located in the middle of an acrylic cylinder with a diameter of 25 cm. The charge-coupled device (CCD) camera was attached to the phantom in order to capture the visible light from the scintillation screen. To observe the dose distribution in real time, the intensity of the light from the scintillator was converted to a dosage. The isodose contours of the calculations from RTP and those of the measurements using the scintillation screen were compared for the arc therapy and the intensity modulated radiation therapy (IMRT). The kernel, expressed as a multiplication of two error functions, was obtained in order to correct the sensitivity of the CCD of the camera and the scintillation screen. When comparing the calculated isodose and measured isodose, a discrepancy of less than 8 mm in the high dose region was observed. Using the 2-D dosimetry system, the relationship between the light and the dosage could be found, and real-time verification of the dose distribution was feasible.

  10. Feasibility study of the real-time IMRT dosimetry using a scintillation screen

    International Nuclear Information System (INIS)

    Lim, Sang Wook; Yi, Byong Yong; Ko, Young Eun

    2004-01-01

    To study the feasibility of verifying real-time 2-D dose distribution measurement system with the scintillation screen for the quality assurance. The water phantom consisted of a scintillation screen (LANEX fast screen, Kodak, USA) that was axially located in the middle of an acrylic cylinder with a diameter of 25 cm. The charge-coupled device (CCD) camera was attached to the phantom in order to capture the visible light from the scintillation screen. To observe the dose distribution in real time, the intensity of the light from the scintillator was converted to a dosage. The isodose contours of the calculations from RTP and those of the measurements using the scintillation screen were compared for the arc therapy and the intensity modulated radiation therapy (IMRT). The kernel, expressed as a multiplication of two error functions, was obtained in order to correct the sensitivity of the CCD of the camera and the scintillation screen. When comparing the calculated isodose and measured isodose, a discrepancy of less than 8 mm in the high dose region was observed. Using the 2-D dosimetry system, the relationship between the light and the dosage could be found, and real-time verification of the dose distribution was feasible

  11. A cross-language study of compensation in response to real-time formant perturbation

    DEFF Research Database (Denmark)

    Mitsuya, Takashi; MacDonald, Ewen; Purcell, David W.

    2011-01-01

    error operates at a purely acoustic level. This hypothesis was tested by comparing the response of three language groups to real-time formant perturbations, (1) native English speakers producing an English vowel /e/, (2) native Japanese speakers producing a Japanese vowel (=e...Past studies have shown that when formants are perturbed in real time, speakers spontaneously compensate for the perturbation by changing their formant frequencies in the opposite direction to the perturbation. Further, the pattern of these results suggests that the processing of auditory feedback...... for formant perturbation operates at a purely acoustic level was rejected. Rather, some level of phonological processing influences the feedback processing behavior....

  12. FRIEND Engine Framework: a real time neurofeedback client-server system for neuroimaging studies

    Science.gov (United States)

    Basilio, Rodrigo; Garrido, Griselda J.; Sato, João R.; Hoefle, Sebastian; Melo, Bruno R. P.; Pamplona, Fabricio A.; Zahn, Roland; Moll, Jorge

    2015-01-01

    In this methods article, we present a new implementation of a recently reported FSL-integrated neurofeedback tool, the standalone version of “Functional Real-time Interactive Endogenous Neuromodulation and Decoding” (FRIEND). We will refer to this new implementation as the FRIEND Engine Framework. The framework comprises a client-server cross-platform solution for real time fMRI and fMRI/EEG neurofeedback studies, enabling flexible customization or integration of graphical interfaces, devices, and data processing. This implementation allows a fast setup of novel plug-ins and frontends, which can be shared with the user community at large. The FRIEND Engine Framework is freely distributed for non-commercial, research purposes. PMID:25688193

  13. FRIEND Engine Framework: A real time neurofeedback client-server system for neuroimaging studies

    Directory of Open Access Journals (Sweden)

    Rodrigo eBasilio

    2015-01-01

    Full Text Available In this methods article, we present a new implementation of a recently reported FSL-integrated neurofeedback tool, the standalone version of Functional Real-time Interactive Endogenous Modulation and Decoding (FRIEND. We will refer to this new implementation as the FRIEND Engine Framework. The framework comprises a client-server cross-platform solution for real time fMRI and fMRI/EEG neurofeedback studies, enabling flexible customization or integration of graphical interfaces, devices and data processing. This implementation allows a fast setup of novel plug-ins and frontends, which can be shared with the user community at large. The FRIEND Engine Framework is freely distributed for non-commercial, research purposes.

  14. Time-resolved study of formate on Ni( 1 1 1 ) by picosecond SFG spectroscopy

    Science.gov (United States)

    Kusafuka, K.; Noguchi, H.; Onda, K.; Kubota, J.; Domen, K.; Hirose, C.; Wada, A.

    2002-04-01

    Time-resolved vibrational measurements were carried out on formate (HCOO) adsorbed on Ni(1 1 1) surface by combining the sum-frequency generation method and picosecond laser system (time resolution of 6 ps). Rapid intensity decrease (within the time resolution) followed by intensity recovery (time constant of several tens of ps) of CH stretching signal was observed when picosecond 800 nm pulse was irradiated on the sample surface. From the results of temperature and pump fluence dependences of temporal behaviour of signal intensity, we concluded that the observed intensity change was induced by non-thermal process. Mechanism of the temporal intensity change was discussed.

  15. Storm real-time processing cookbook

    CERN Document Server

    Anderson, Quinton

    2013-01-01

    A Cookbook with plenty of practical recipes for different uses of Storm.If you are a Java developer with basic knowledge of real-time processing and would like to learn Storm to process unbounded streams of data in real time, then this book is for you.

  16. Facial Expression Emotion Detection for Real-Time Embedded Systems

    Directory of Open Access Journals (Sweden)

    Saeed Turabzadeh

    2018-01-01

    Full Text Available Recently, real-time facial expression recognition has attracted more and more research. In this study, an automatic facial expression real-time system was built and tested. Firstly, the system and model were designed and tested on a MATLAB environment followed by a MATLAB Simulink environment that is capable of recognizing continuous facial expressions in real-time with a rate of 1 frame per second and that is implemented on a desktop PC. They have been evaluated in a public dataset, and the experimental results were promising. The dataset and labels used in this study were made from videos, which were recorded twice from five participants while watching a video. Secondly, in order to implement in real-time at a faster frame rate, the facial expression recognition system was built on the field-programmable gate array (FPGA. The camera sensor used in this work was a Digilent VmodCAM — stereo camera module. The model was built on the Atlys™ Spartan-6 FPGA development board. It can continuously perform emotional state recognition in real-time at a frame rate of 30. A graphical user interface was designed to display the participant’s video in real-time and two-dimensional predict labels of the emotion at the same time.

  17. Studying the potential of point detectors in time-resolved dose verification of dynamic radiotherapy

    International Nuclear Information System (INIS)

    Beierholm, A.R.; Behrens, C.F.; Andersen, C.E.

    2015-01-01

    Modern megavoltage x-ray radiotherapy with high spatial and temporal dose gradients puts high demands on the entire delivery system, including not just the linear accelerator and the multi-leaf collimator, but also algorithms used for optimization and dose calculations, and detectors used for quality assurance and dose verification. In this context, traceable in-phantom dosimetry using a well-characterized point detector is often an important supplement to 2D-based quality assurance methods based on radiochromic film or detector arrays. In this study, an in-house developed dosimetry system based on fiber-coupled plastic scintillator detectors was evaluated and compared with a Farmer-type ionization chamber and a small-volume ionization chamber. An important feature of scintillator detectors is that the sensitive volume of the detector can easily be scaled, and five scintillator detectors of different scintillator length were thus employed to quantify volume averaging effects by direct measurement. The dosimetric evaluation comprised several complex-shape static fields as well as simplified dynamic deliveries using RapidArc, a volumetric-modulated arc therapy modality often used at the participating clinic. The static field experiments showed that the smallest scintillator detectors were in the best agreement with dose calculations, while needing the smallest volume averaging corrections. Concerning total dose measured during RapidArc, all detectors agreed with dose calculations within 1.1 ± 0.7% when positioned in regions of high homogenous dose. Larger differences were observed for high dose gradient and organ at risk locations, were differences between measured and calculated dose were as large as 8.0 ± 5.5%. The smallest differences were generally seen for the small-volume ionization chamber and the smallest scintillators. The time-resolved RapidArc dose profiles revealed volume-dependent discrepancies between scintillator and ionization chamber response

  18. Time-resolved spectroscopy using a chopper wheel as a fast shutter

    International Nuclear Information System (INIS)

    Wang, Shicong; Wendt, Amy E.; Boffard, John B.; Lin, Chun C.

    2015-01-01

    Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a “fast” electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a “fast” mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsed light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas

  19. Alternative fiducial markers for Vero real-time tumor tracking radiotherapy: A phantom study

    Science.gov (United States)

    Park, Shin-Hyung; Kim, Jae-Chul; Kim, Sung Joon

    2016-12-01

    The objective of this study was to investigate the feasibility of potential fiducial markers consisting of various materials in a Vero real-time tumor-tracking (RTTT) system. In order to determine the applicability of fiducial markers for the Vero RTTT system, we tested various markers consisting of 8 kinds of material (titanium, stainless steel, high-carbon steel, pure steel, copper, silver, tantalum, and gold) with various diameters ranging from 0.3 mm to 1.6 mm and a length of 5 mm. Additionally, a commercial gold coil marker (Visicoil™, IBA dosimetry, Schwarzenbruck, Germany) of diameter 0.5 mm and length 1 cm was included for evaluation. The radiologic visibility on kV fluoroscopy/kV CT scan images of the fiducial markers was evaluated. The detectability on the RTTT system was tested using a two-dimensional moving phantom (Brainlab AG, Feldkirchen, Germany), producing sinusoidal motion. The target center's accuracy was evaluated by calculating the deviation of the position of a metal sphere from the center on the dose profile. Dose profiles were measured using Gafchromic EBT2 films (International Specialty Products, NJ, USA). All markers were visible on kV fluoroscopy/kV CT while markers with atomic number ≥ 25.7 were detectable on the Vero RTTT system. All the detected markers showed excellent geometric accuracy.

  20. Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets

    International Nuclear Information System (INIS)

    Murphy, J. R.; Delikanli, S.; Demir, H. V.; Scrace, T.; Zhang, P.; Norden, T.; Petrou, A.; Thomay, T.; Cartwright, A. N.

    2016-01-01

    We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated with these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.

  1. Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. R. [Department of Electrical Engineering, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Department of Physics, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Delikanli, S.; Demir, H. V., E-mail: volkan@bilkent.edu.tr [LUMINOUS Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, Nanyang Technological University, Singapore 639798 (Singapore); Department of Electrical and Electronics Engineering, Department of Physics, UNAM−Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Scrace, T.; Zhang, P.; Norden, T.; Petrou, A., E-mail: petrou@buffalo.edu [Department of Physics, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Thomay, T.; Cartwright, A. N. [Department of Electrical Engineering, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States)

    2016-06-13

    We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated with these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.

  2. Atomically-resolved mapping of polarization and electric fields across ferroelectric-oxide interfaces by Z-contrast imaging

    Science.gov (United States)

    Borisevich, Albina; Chang, Hye Jung; Kalinin, Sergei; Morozovska, Anna; Chu, Ying-Hao; Yu, Pu; Ramesh, Ramamoorthy; Pennycook, Stephen

    2011-03-01

    Polarization, electric field, charge and potential across ferroelectric-oxide interfaces are obtained from direct atomic position mapping by aberration corrected scanning transmission electron microscopy combined with Ginsburg-Landau-Devonshire theory. We compare two antiparallel polarization orientations, which allows separation of the polarization and intrinsic interface charge contributions. Using the Born effective charges, the complete interface electrostatics is obtained in real space, providing an alternative method to holography. The results provide new microscopic insight into the thermodynamics of polarization distribution at the atomic level. Research is sponsored by the of Materials Sciences and Engineering Division, U.S. DOE.

  3. Time-resolved x-ray diagnostics

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1981-01-01

    Techniques for time-resolved x-ray diagnostics will be reviewed with emphasis on systems utilizing x-ray diodes or scintillators. System design concerns for high-bandwidth (> 1 GHz) diagnostics will be emphasized. The limitations of a coaxial cable system and a technique for equalizing to improve bandwidth of such a system will be reviewed. Characteristics of new multi-GHz amplifiers will be presented. An example of a complete operational system on the Los Alamos Helios laser will be presented which has a bandwidth near 3 GHz over 38 m of coax. The system includes the cable, an amplifier, an oscilloscope, and a digital camera readout

  4. Real-time data access layer for MDSplus

    International Nuclear Information System (INIS)

    Manduchi, G.; Luchetta, A.; Taliercio, C.; Fredian, T.; Stillerman, J.

    2008-01-01

    Recent extensions to MDSplus allow data handling in long discharges and provide a real-time data access and communication layer. The real-time data access layer is an additional component of MDSplus: it is possible to use the traditional MDSplus API during normal operation, and to select a subset of data items to be used in real time. Real-time notification is provided by a communication layer using a publish-subscribe pattern. The notification covers processes sharing the same data items even running on different machines, thus allowing the implementation of distributed control systems. The real-time data access layer has been developed for Windows, Linux, and VxWorks; it is currently being ported to Linux RTAI. In order to quantify the fingerprint of the presented system, the performance of the real-time access layer approach is compared with that of an ad hoc, manually optimized program in a sample real-time application

  5. A Real-Time Systems Symposium Preprint.

    Science.gov (United States)

    1983-09-01

    Real - Time Systems Symposium Preprint Interim Tech...estimate of the occurence of the error. Unclassii ledSECUqITY CLASSIF’ICA T" NO MI*IA If’ inDI /’rrd erter for~~ble. ’Corrputnqg A REAL - TIME SYSTEMS SYMPOSIUM...ABSTRACT This technical report contains a preprint of a paper accepted for presentation at the REAL - TIME SYSTEMS SYMPOSIUM, Arlington,

  6. Benefits of real-time gas management

    International Nuclear Information System (INIS)

    Nolty, R.; Dolezalek, D. Jr.

    1994-01-01

    In today's competitive gas gathering, processing, storage and transportation business environment, the requirements to do business are continually changing. These changes arise from government regulations such as the amendments to the Clean Air Act concerning the environment and FERC Order 636 concerning business practices. Other changes are due to advances in technology such as electronic flow measurement (EFM) and real-time communications capabilities within the gas industry. Gas gathering, processing, storage and transportation companies must be flexible in adapting to these changes to remain competitive. These dynamic requirements can be met with an open, real-time gas management computer information system. Such a system provides flexible services with a variety of software applications. Allocations, nominations management and gas dispatching are examples of applications that are provided on a real-time basis. By providing real-time services, the gas management system enables operations personnel to make timely adjustments within the current accounting period. Benefits realized from implementing a real-time gas management system include reduced unaccountable gas, reduced imbalance penalties, reduced regulatory violations, improved facility operations and better service to customers. These benefits give a company the competitive edge. This article discusses the applications provided, the benefits from implementing a real-time gas management system, and the definition of such a system

  7. Study on a High-frequency Multi-GNSS Real-time Precise Clock Estimation Algorithm and Application in GNSS Augment System

    Directory of Open Access Journals (Sweden)

    CHEN Liang

    2017-05-01

    Full Text Available GNSS satellite-based differential augment system is based on real-time orbit and clock augment message. The multi-GNSS real-time precise clock error estimation model is studied, and then the parameters estimated in traditional un-difference model are optimized and a high-efficient real-time clock simplified model is proposed and realized. The real-time orbit data processing based on PANDA is also analyzed. The results indicate that the real-time orbit radial accuracy of GPS, BeiDou MEO and Galileo is 1~5 cm, and the radial accuracy of the BeiDou GEO/IGSO satellite is about 10 cm. It is found that the optimized real-time clock simplified model is more efficient in one epoch than un-difference model and can be applied to high-frequency (such as 1 Hz updating of real-time clock augment message. The results show that the real-time clock error obtained by this model is absolute value and there is no constant bias. Based on the real-time orbit, the GPS real-time clock precision of the simplified model is about 0.24 ns, BeiDou GEO is about 0.50 ns, IGSO/MEO is about 0.22 ns and Galileo is about 0.32 ns. Using the multi-GNSS real-time data stream in GFZ, a multi-GNSS real-time augment prototype system is built and the real-time augment message is being broadcasted on the Internet. The real-time PPP centimeter-level service and meter-level navigation service based on pseudorange are realized based on this prototype system.

  8. Real-Time Business Intelligence for the Utilities Industry

    Directory of Open Access Journals (Sweden)

    Janina POPEANGA

    2012-12-01

    Full Text Available In today’s competitive environment with rapid innovation in smart metering and smart grids, there is an increased need for real-time business intelligence (RTBI in the utilities industry. Giving the fact that this industry is an environment where decisions are time sensitive, RTBI solutions will help utilities improve customer experiences and operational efficiencies. The focus of this paper is on the importance of real-time business intelligence (RTBI in the utilities industry, outlining our vision of real-time business intelligence for this industry. Besides the analysis in this area, the article presents as a case study the Oracle Business Intelligence solution for utilities.

  9. Splitting the second the story of atomic time

    CERN Document Server

    Jones, Tony

    2000-01-01

    Until the 1950s timekeeping was based on the apparent motion of the Sun that in turn reflected the rotation of the Earth on its axis. But the Earth does not turn smoothly. By the 1940s it was clear that the length of the day fluctuated unpredictably and with it the length of the second. Astronomers wanted to redefine the second in terms of the motions of the Moon and the planets. Physicists wanted to dispense with astronomical time altogether and define the second in terms of the fundamental properties of atoms. The physicists won. The revolution began in June 1955 with the operation of the first successful atomic clock and was complete by October 1967 when the atomic second ousted the astronomical second as the international unit of time. Splitting the Second: The Story of Atomic Time presents the story of this revolution, explaining how atomic clocks work, how more than 200 of them are used to form the world's time, and why we need leap seconds. The book illustrates how accurate time is distributed around...

  10. Making real-time reactive systems reliable

    Science.gov (United States)

    Marzullo, Keith; Wood, Mark

    1990-01-01

    A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.

  11. A revealed-preference study of behavioural impacts of real-time traffic information

    NARCIS (Netherlands)

    Knockaert, J.S.A.; Tseng, Y.; Verhoef, E.T.

    2013-01-01

    In the present study, we investigate the impact of real-time traffic information on traveller behaviour by using repeated day-to-day revealed-preference (RP) observations from a reward experiment. We estimate a trip scheduling model of morning peak behaviour that allows us to determine the impact of

  12. Time-resolved spectral measurements above 80 A

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Ceglio, N.; Medecki, H.

    1983-01-01

    We have made time-resolved spectral measurements above 80 A from laser-produced plasmas. These are made using a transmission grating spectrograph whose primary components are a cylindrically-curved x-ray mirror for light collection, a transmission grating for spectral dispersions, and an x-ray streak camera for temporal resolution. A description of the instrument and an example of the data are given

  13. Real-time Energy Resource Scheduling considering a Real Portuguese Scenario

    DEFF Research Database (Denmark)

    Silva, Marco; Sousa, Tiago; Morais, Hugo

    2014-01-01

    The development in power systems and the introduction of decentralized gen eration and Electric Vehicles (EVs), both connected to distribution networks, represents a major challenge in the planning and operation issues. This new paradigm requires a new energy resources management approach which...... scheduling in smart grids, considering day - ahead, hour - ahead and real - time scheduling. The case study considers a 33 - bus distribution network with high penetration of distributed energy resources . The wind generation profile is base d o n a rea l Portuguese wind farm . Four scenarios are presented...... taking into account 0, 1, 2 and 5 periods (hours or minutes) ahead of the scheduling period in the hour - ahead and real - time scheduling...

  14. First-principles real-space tight-binding LMTO calculation of electronic structures for atomic clusters

    International Nuclear Information System (INIS)

    Xie, Z.L.; Dy, K.S.; Wu, S.Y.

    1997-01-01

    A real-space scheme has been developed for a first-principles calculation of electronic structures and total energies of atomic clusters. The scheme is based on the combination of the tight-binding linear muffin-tin orbital (TBLMTO) method and the method of real-space Green close-quote s function. With this approach, the local electronic density of states can be conveniently determined from the real-space Green close-quote s function. Furthermore, the full electron density of a cluster can be directly calculated in real space. The scheme has been shown to be very efficient due to the incorporation of the method of real-space Green close-quote s function and Delley close-quote s method of evaluating multicenter integrals. copyright 1996 The American Physical Society

  15. REAL TIME MICRODISPLACEMENTS TESTING BY OPTO-DIGITAL HOLOGRAPHIC INTERFEROMETRY TECHNIQUE

    Directory of Open Access Journals (Sweden)

    L BOUAMAMA

    2007-12-01

    Since all the process is controlled numerically, it is possible to follow in real time using the holographic interferometry techniques, double exposure, real time or time average, any changes in the object under study and to start and stop the process at any time by adequate software. This can be done by subtracting a reference image by suitable software directly on the CCD camera. We show also, the ability of the technique to study in real time all evolutional phenomena.

  16. Friction coefficient of skin in real-time.

    Science.gov (United States)

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Friction studies are useful in quantitatively investigating the skin surface. Previous studies utilized different apparatuses and materials for these investigations but there was no real-time test parameter control or monitoring. Our studies incorporated the commercially available UMT Series Micro-Tribometer, a tribology instrument that permits real-time monitoring and calculation of the important parameters in friction studies, increasing the accuracy over previous tribology and friction measurement devices used on skin. Our friction tests were performed on four healthy volunteers and on abdominal skin samples. A stainless steel ball was pressed on to the skin with at a pre-set load and then moved across the skin at a constant velocity of 5 mm/min. The UMT continuously monitored the friction force of the skin and the normal force of the ball to calculate the friction coefficient in real-time. Tests investigated the applicability of Amonton's law, the impact of increased and decreased hydration, and the effect of the application of moisturizers. The friction coefficient depends on the normal load applied, and Amonton's law does not provide an accurate description for the skin surface. Application of water to the skin increased the friction coefficient and application of isopropyl alcohol decreased it. Fast acting moisturizers immediately increased the friction coefficient, but did not have the prolonged effect of the slow, long lasting moisturizers. The UMT is capable of making real-time measurements on the skin and can be used as an effective tool to study friction properties. Results from the UMT measurements agree closely with theory regarding the skin surface.

  17. Time resolved fluorescence of cow and goat milk powder

    Science.gov (United States)

    Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.

    2017-01-01

    Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.

  18. Attosecond time delays in the photoionization of noble gas atoms studied in TDLDA

    International Nuclear Information System (INIS)

    Magrakvelidze, Maia; Chakraborty, Himadri; Madjet, Mohamed

    2015-01-01

    We perform time-dependent local density functional calculations of the quantum phase and time delays of valence photoionization of noble gas atoms. Results may be accessed by XUV-IR interferometric metrology. (paper)

  19. An improved grey model for the prediction of real-time GPS satellite clock bias

    Science.gov (United States)

    Zheng, Z. Y.; Chen, Y. Q.; Lu, X. S.

    2008-07-01

    In real-time GPS precise point positioning (PPP), real-time and reliable satellite clock bias (SCB) prediction is a key to implement real-time GPS PPP. It is difficult to hold the nuisance and inenarrable performance of space-borne GPS satellite atomic clock because of its high-frequency, sensitivity and impressionable, it accords with the property of grey model (GM) theory, i. e. we can look on the variable process of SCB as grey system. Firstly, based on limits of quadratic polynomial (QP) and traditional GM to predict SCB, a modified GM (1,1) is put forward to predict GPS SCB in this paper; and then, taking GPS SCB data for example, we analyzed clock bias prediction with different sample interval, the relationship between GM exponent and prediction accuracy, precision comparison of GM to QP, and concluded the general rule of different type SCB and GM exponent; finally, to test the reliability and validation of the modified GM what we put forward, taking IGS clock bias ephemeris product as reference, we analyzed the prediction precision with the modified GM, It is showed that the modified GM is reliable and validation to predict GPS SCB and can offer high precise SCB prediction for real-time GPS PPP.

  20. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  1. Research Directions in Real-Time Systems.

    Science.gov (United States)

    1996-09-01

    This report summarizes a survey of published research in real time systems . Material is presented that provides an overview of the topic, focusing on...communications protocols and scheduling techniques. It is noted that real - time systems deserve special attention separate from other areas because of...formal tools for design and analysis of real - time systems . The early work on applications as well as notable theoretical advances are summarized

  2. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Manami; Yamamoto, Susumu; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kakizaki, Akito; Matsuda, Iwao [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8581 (Japan); Kousa, Yuka; Kondoh, Hiroshi [Department of Chemistry, Keio University, Yokohama 223-8522 (Japan); Tanaka, Yoshihito [RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2012-02-15

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  3. Study on real-time elevator brake failure predictive system

    Science.gov (United States)

    Guo, Jun; Fan, Jinwei

    2013-10-01

    This paper presented a real-time failure predictive system of the elevator brake. Through inspecting the running state of the coil by a high precision long range laser triangulation non-contact measurement sensor, the displacement curve of the coil is gathered without interfering the original system. By analyzing the displacement data using the diagnostic algorithm, the hidden danger of the brake system can be discovered in time and thus avoid the according accident.

  4. Real-time statistical quality control and ARM

    International Nuclear Information System (INIS)

    Blough, D.K.

    1992-05-01

    An important component of the Atmospheric Radiation Measurement (ARM) Program is real-time quality control of data obtained from meteorological instruments. It is the goal of the ARM program to enhance the predictive capabilities of global circulation models by incorporating in them more detailed information on the radiative characteristics of the earth's atmosphere. To this end, a number of Cloud and Radiation Testbeds (CART's) will be built at various locations worldwide. Each CART will consist of an array of instruments designed to collect radiative data. The large amount of data obtained from these instruments necessitates real-time processing in order to flag outliers and possible instrument malfunction. The Bayesian dynamic linear model (DLM) proves to be an effective way of monitoring the time series data which each instrument generates. It provides a flexible yet powerful approach to detecting in real-time sudden shifts in a non-stationary multivariate time series. An application of these techniques to data arising from a remote sensing instrument to be used in the CART is provided. Using real data from a wind profiler, the ability of the DLM to detect outliers is studied. 5 refs

  5. A hybrid breath hold and continued respiration-triggered technique for time-resolved 3D MRI perfusion studies in lung cancer

    International Nuclear Information System (INIS)

    Hintze, C.; Stemmer, A.; Bock, M.

    2010-01-01

    Assessment of lung cancer perfusion is impaired by respiratory motion. Imaging times for contrast agent wash-out studies often exceed breath hold capabilities, and respiration triggering reduces temporal resolution. Temporally resolved volume acquisition of entire tumors is required to assess heterogeneity. Therefore, we developed and evaluated an MR measurement technique that exceeds a single breath hold, and provides a variable temporal resolution during acquisition while suspending breath-dependent motion. 20 patients with suspected lung cancer were subjected to perfusion studies using a spoiled 3D gradient echo sequence after bolus injection of 0.07 mmol/kg body weight of Gd-DTPA. 10 acquisitions in expiratory breath hold were followed by 50 navigator-triggered acquisitions under free breathing. Post-processing allowed for co-registration of the 3D data sets. An ROI-based visualization of the signal-time curves was performed. In all cases motion-suspended, time-resolved volume data sets (40 x 33 x 10 cm 3 , voxel size: 2.1 x 2.1 x 5.0 mm 3 ) were generated with a variable, initially high temporal resolution (2.25 sec) that was synchronized with the breath pattern and covered up to 8(1)/(2) min. In 7 / 20 cases a remaining offset could be reduced by rigid co-registration. The tumors showed fast wash-in, followed by rapid signal decay (8 / 20) or a plateau. The feasibility of a perfusion study with hybrid breath hold and navigator-triggered time-resolved 3D MRI which combines high initial temporal resolution during breath hold with a long wash-out period under free breathing was demonstrated. (orig.)

  6. Ubiquitous health monitoring and real-time cardiac arrhythmias detection: a case study.

    Science.gov (United States)

    Li, Jian; Zhou, Haiying; Zuo, Decheng; Hou, Kun-Mean; De Vaulx, Christophe

    2014-01-01

    As the symptoms and signs of heart diseases that cause sudden cardiac death, cardiac arrhythmia has attracted great attention. Due to limitations in time and space, traditional approaches to cardiac arrhythmias detection fail to provide a real-time continuous monitoring and testing service applicable in different environmental conditions. Integrated with the latest technologies in ECG (electrocardiograph) analysis and medical care, the pervasive computing technology makes possible the ubiquitous cardiac care services, and thus brings about new technical challenges, especially in the formation of cardiac care architecture and realization of the real-time automatic ECG detection algorithm dedicated to care devices. In this paper, a ubiquitous cardiac care prototype system is presented with its architecture framework well elaborated. This prototype system has been tested and evaluated in all the clinical-/home-/outdoor-care modes with a satisfactory performance in providing real-time continuous cardiac arrhythmias monitoring service unlimitedly adaptable in time and space.

  7. Generation of pulsed far-infrared radiation and its application for far-infrared time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Yasuhiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1996-07-01

    So-called time-resolved spectroscopy technique has been used from old time as the means for studying the dynamic optical property, light-induced reaction and so on of matters. As an example, there is the method called pump and probe, and here, the wavelength of this probe light is the problem. If the object energy region is limited to about 0.1 eV, fast time-resolved spectroscopy is feasible relatively easily. However, energy region is extended to low energy region, the light source which is available as the pulsed probe light having sufficient intensity is limited. In this paper, the attempt of time-resolved spectroscopy utilizing coherent radiation, which has ended in failure, and the laser pulse-induced far-infrared radiation which can be utilized as new far-infrared probe light are reported. The reason why far-infrared radiation is used is explained. The attempt of time-resolved spectroscopy using NaCl crystals is reported on the equipment, the method of measuring absorption spectra and the results. Laser pulse-induced far-infrared radiation and the method of generating it are described. The multi-channel detector for far-infrared radiation which was made for trial is shown. (K.I.)

  8. Time-resolved magnetic field effects in exciplex systems under X-irradiation

    International Nuclear Information System (INIS)

    Anishchik, S.V.; Lavrik, N.L.

    1988-01-01

    The presence of exciplex systems after X-irradiation of pyrene and N,N-diethylaniline in methanol as well as the influence of the applied magnetic field on exciplex fluorescence was registered using a time-resolving method. The experimental results confirmed the hypothesis on exciplex emergence in the system under study. (author)

  9. Quantum optical arbitrary waveform manipulation and measurement in real time.

    Science.gov (United States)

    Kowligy, Abijith S; Manurkar, Paritosh; Corzo, Neil V; Velev, Vesselin G; Silver, Michael; Scott, Ryan P; Yoo, S J B; Kumar, Prem; Kanter, Gregory S; Huang, Yu-Ping

    2014-11-17

    We describe a technique for dynamic quantum optical arbitrary-waveform generation and manipulation, which is capable of mode selectively operating on quantum signals without inducing significant loss or decoherence. It is built upon combining the developed tools of quantum frequency conversion and optical arbitrary waveform generation. Considering realistic parameters, we propose and analyze applications such as programmable reshaping of picosecond-scale temporal modes, selective frequency conversion of any one or superposition of those modes, and mode-resolved photon counting. We also report on experimental progress to distinguish two overlapping, orthogonal temporal modes, demonstrating over 8 dB extinction between picosecond-scale time-frequency modes, which agrees well with our theory. Our theoretical and experimental progress, as a whole, points to an enabling optical technique for various applications such as ultradense quantum coding, unity-efficiency cavity-atom quantum memories, and high-speed quantum computing.

  10. Fifty years of atomic time-keeping at VNIIFTRI

    Science.gov (United States)

    Domnin, Yu; Gaigerov, B.; Koshelyaevsky, N.; Poushkin, S.; Rusin, F.; Tatarenkov, V.; Yolkin, G.

    2005-06-01

    Time metrology in Russia in the second half of the twentieth century has been marked, as in other advanced countries, by the rapid development of time and frequency quantum standards and the beginning of atomic time-keeping. This brief review presents the main developments and studies in time and frequency measurement, and the improvement of accuracy and atomic time-keeping at the VNIIFTRI—the National Metrology Institute keeping primary time and frequency standards and ensuring unification of measurement. The milestones along the way have been the ammonia and hydrogen masers, primary caesium beam and fountain standards and laser frequency standards. For many years, VNIIFTRI was the only world laboratory that applied hydrogen-maser clock ensembles for time-keeping. VNIIFTRI's work on international laser standard frequency comparisons and absolute frequency measurements contributed greatly to the adoption by the CIPM of a highly accurate value for the He-Ne/CH4 laser frequency. VNIIFTRI and the VNIIM were the first to establish a united time, frequency and length standard.

  11. Usefulness of time-resolved projection MRA on evaluation of hemodynamics in cerebral occlusive diseases

    International Nuclear Information System (INIS)

    Oka, Yoshihisa; Kusunoki, Katsusuke; Nochide, Ichiro; Igase, Keiji; Harada, Hironobu; Sadamoto, Kazuhiko; Nagasawa, Kiyoshi

    2001-01-01

    The usefulness for evaluation of cerebral hemodynamics using time-resolved projection MRA was studied in normal volunteers and patients of cerebrovascular diseases. Six normal volunteers and ten patients with cerebrovascular occlusive diseases including 6 of IC occlusion and 4 of post EC/IC bypass surgery underwent time-resolved projection MRA on a 1.5 T clinical MRI system. Projection angiograms are acquired with 2D-fast SPGR sequence with a time resolution of approximately one image per second, 40 images being acquired consecutively before and after bolus injection Gd-DTPA. And all images were calculated by complex subtraction from the background mask in a work station. In normal volunteers, the quality of images of time-resolved projection MRA was satisfactory. The arteries from internal carotid artery through M2 segment of middle cerebral artery and all major venous systems were well portrayed. In 4 cases of IC occlusion who were assessed the collateral flow through the anterior communicating artery and posterior communicating artery, there were delayed to demonstrate the ipsilateral MCA. However, in 2 cases of IC occlusion that were assessed the collateral flow through leptomeningeal anastomosis, ipsilateral MCA and collateral circulation were not demonstrated. In all patients of post EC/IC bypass surgery, the patency of EC/IC bypass could be evaluated as properly with time-resolved projection MRA as 3D-TOF MRA. Although the temporal and spatial resolutions are insufficient, time-resolved projection MRA was power-full non-invasive method to evaluate the cerebral hemodynamics vis the basal communicating arteries in IC occlusion and identify the patency of EC/IC bypass. (author)

  12. Optimization of Partitioned Architectures to Support Soft Real-Time Applications

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Pop, Paul

    2014-01-01

    In this paper we propose a new Tabu Search-based design optimization strategy for mixed-criticality systems implementing hard and soft real-time applications on the same platform. Our proposed strategy determined an implementation such that all hard real-time applications are schedulable and the ......In this paper we propose a new Tabu Search-based design optimization strategy for mixed-criticality systems implementing hard and soft real-time applications on the same platform. Our proposed strategy determined an implementation such that all hard real-time applications are schedulable...... and the quality of service of the soft real-time tasks is maximized. We have evaluated our strategy using an aerospace case study....

  13. Real-Time MENTAT programming language and architecture

    Science.gov (United States)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  14. The TimBel synchronization board for time resolved experiments at synchrotron SOLEIL

    International Nuclear Information System (INIS)

    Ricaud, J.P.; Betinelli-Deck, P.; Bisou, J.; Elattaoui, X.; Laulhe, C.; Monteiro, P.; Nadolski, L.S.; Renaud, G.; Ravy, S.; Silly, M.; Sirotti, F.

    2012-01-01

    Time resolved experiments are one of the major services that synchrotrons can provide to scientists. The short, high frequency and regular flashes of synchrotron light are a fantastic tool to study the evolution of phenomena over time. To carry out time resolved experiments, beamlines need to synchronize their devices with these flashes of light with a jitter shorter than the pulse duration. For that purpose, Synchrotron SOLEIL has developed the TimBeL (Timing Beamlines) board fully interfaced to TANGO framework. The TimBeL system is a compact PCI board. It is made of a mother with one daughter board. All functions are performed inside a FPGA (Field Programmable Gate Array) implemented on the mother board. A PLX Technology chip is used to communicate with the compact PCI crate. To enable experiments to remain always synchronous with the same bunch of electrons, the storage ring clock (CLK-SR) and the radio frequency clock (CLK-RF) are provided by the machine to beamlines. These clocks are used inside the FPGA as main clocks for state machines. Because the jitter is too large on the FPGA outputs, a daughter board with a jitter cleaner has been added to the system. This board also provides delay lines for compensating time offsets by 10 ps steps. This paper presents the main features required by time resolved experiments and how we achieved our goals with the TimBeL board

  15. Real Time Conference 2016 Overview

    Science.gov (United States)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  16. Run-time middleware to support real-time system scenarios

    NARCIS (Netherlands)

    Goossens, K.; Koedam, M.; Sinha, S.; Nelson, A.; Geilen, M.

    2015-01-01

    Systems on Chip (SOC) are powerful multiprocessor systems capable of running multiple independent applications, often with both real-time and non-real-time requirements. Scenarios exist at two levels: first, combinations of independent applications, and second, different states of a single

  17. Advanced real-time manipulation of video streams

    CERN Document Server

    Herling, Jan

    2014-01-01

    Diminished Reality is a new fascinating technology that removes real-world content from live video streams. This sensational live video manipulation actually removes real objects and generates a coherent video stream in real-time. Viewers cannot detect modified content. Existing approaches are restricted to moving objects and static or almost static cameras and do not allow real-time manipulation of video content. Jan Herling presents a new and innovative approach for real-time object removal with arbitrary camera movements.

  18. Time resolved x-ray photography of a dense plasma focus

    International Nuclear Information System (INIS)

    Burnett, J.C.; Meyer, J.; Rankin, G.

    1977-01-01

    The temporal development of the hot plasma in a dense plasma focus is studied by x-ray streak photography of approximately 2 ns resolution time. It is shown that initially a uniform x-ray emitting pinch plasma is formed which subsequently cools down until x-ray emission stops after approximately 50 ns. At a time of around 100 ns after initial x-ray emission coinciding with the break-up time of the pinch a second burst of x-rays is observed coming from small localized regions. The observations are compared with results obtained from time-resolved shadow and schlieren photography of a similar dense focus discharge. (author)

  19. Time-resolved FTIR [Fourier transform infrared] emission studies of laser photofragmentation and chain reactions

    International Nuclear Information System (INIS)

    Leone, S.R.

    1990-01-01

    Recent progress is described resulting from the past three years of DOE support for studies of combustion-related photofragmentation dynamics, energy transfer, and reaction processes using a time-resolved Fourier transform infrared (FTIR) emission technique. The FTIR is coupled to a high repetition rate excimer laser which produces radicals by photolysis to obtain novel, high resolution measurements on vibrational and rotational state dynamics. The results are important for the study of numerous radical species relevant to combustion processes. The method has been applied to the detailed study of photofragmentation dynamics in systems such as acetylene, which produces C 2 H; chlorofluoroethylene to study the HF product channel; vinyl chloride and dichloroethylene, which produce HCl; acetone, which produces CO and CH 3 ; and ammonia, which produces NH 2 . In addition, we have recently demonstrated use of the FTIR technique for preliminary studies of energy transfer events under near single collision conditions, radical-radical reactions, and laser-initiated chain reaction processes

  20. A synchrotron radiation camera and data acquisition system for time resolved x-ray scattering studies

    International Nuclear Information System (INIS)

    Bordas, J.; Koch, M.H.J.; Clout, P.N.; Dorrington, E.; Boulin, C.; Gabriel, A.

    1980-01-01

    Until recently, time resolved measurements of x-ray scattering patterns have not been feasible because laboratory x-ray sources were too weak and detectors unavailable. Recent developments in both these fields have changed the situation, and it is now possible to follow changes in x-ray scattering patterns with a time resolution of a few ms. The apparatus used to achieve this is described and some examples from recent biological experiments are given. (author)

  1. Wireless Sensor Network Metrics for Real-Time Systems

    Science.gov (United States)

    2009-05-20

    Wireless Sensor Network Metrics for Real-Time Systems Phoebus Wei-Chih Chen Electrical Engineering and Computer Sciences University of California at...3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Wireless Sensor Network Metrics for Real-Time Systems 5a. CONTRACT NUMBER 5b... wireless sensor networks (WSNs) is moving from studies of WSNs in isolation toward studies where the WSN is treated as a component of a larger system

  2. Time- and Site-Resolved Dynamics in a Topological Circuit

    Directory of Open Access Journals (Sweden)

    Jia Ningyuan

    2015-06-01

    Full Text Available From studies of exotic quantum many-body phenomena to applications in spintronics and quantum information processing, topological materials are poised to revolutionize the condensed-matter frontier and the landscape of modern materials science. Accordingly, there is a broad effort to realize topologically nontrivial electronic and photonic materials for fundamental science as well as practical applications. In this work, we demonstrate the first simultaneous site- and time-resolved measurements of a time-reversal-invariant topological band structure, which we realize in a radio-frequency photonic circuit. We control band-structure topology via local permutation of a traveling-wave capacitor-inductor network, increasing robustness by going beyond the tight-binding limit. We observe a gapped density of states consistent with a modified Hofstadter spectrum at a flux per plaquette of ϕ=π/2. In situ probes of the band gaps reveal spatially localized bulk states and delocalized edge states. Time-resolved measurements reveal dynamical separation of localized edge excitations into spin-polarized currents. The radio-frequency circuit paradigm is naturally compatible with nonlocal coupling schemes, allowing us to implement a Möbius strip topology inaccessible in conventional systems. This room-temperature experiment illuminates the origins of topology in band structure, and when combined with circuit quantum electrodynamics techniques, it provides a direct path to topologically ordered quantum matter.

  3. Time-resolved suprathermal x-rays

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Rosen, M.D.

    1978-01-01

    Temporally resolved x-ray spectra in the range of 1 to 20 keV have been obtained from gold disk targets irradiated by 1.06 μm laser pulses from the Argus facility. The x-ray streak camera used for the measurement has been calibrated for streak speed and dynamic range by using an air-gap Fabry-Perot etalon, and the instrument response has been calibrated using a multi-range monoenergetic x-ray source. The experimental results indicate that we are able to observe the ''hot'' x-ray temperature evolve in time and that the experimentally observed values can be qualitatively predicted by LASNEX code computations when the inhibited transport model is used

  4. Opto-galvanic effect on degenerate magnetic states of sputtered atoms in a glow discharge

    International Nuclear Information System (INIS)

    Zhechev, D; Steflekova, V

    2014-01-01

    The opto-galvanic response of some degenerate states of sputtered atoms to linearly- and circularly polarize light is studied. On the same optical transition both time-resolved- and amplitude opto-galvanic signals are found depending on the polarizations of light absorbed. The latter induces galvanic responses differing in opto-galvanic efficiency, time-evolution and sensitivity to discharge current and laser power. The differences are ascribed to the rate constants of the decay processes, characterizing aligned and oriented atoms

  5. Archtecture of distributed real-time systems

    OpenAIRE

    Wing Leung, Cheuk

    2013-01-01

    CRAFTERS (Constraint and Application Driven Framework for Tailoring Embedded Real-time System) project aims to address the problem of uncertainty and heterogeneity in a distributed system by providing seamless, portable connectivity and middleware. This thesis contributes to the project by investigating the techniques that can be used in a distributed real-time embedded system. The conclusion is that, there is a list of specifications to be meet in order to provide a transparent and real-time...

  6. One-atom detection and statistical studies with resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Payne, M.G.; Hurst, G.S.

    1982-01-01

    To learn how to take matter apart atom-by-atom and to count each atom according to its type, regardless of its initial chemical or physical state, is presumably a worthy goal in scientific research. The advent of the laser created real hope that these aspirations will be realized. The counting of atoms is not merely an intellectual exercise set apart from real-world applications. On the contrary, even though the capability is scarcely more than five years old, practical applications have been made in many fields of chemistry, physics, the environment, and industry. In this lecture we wish to review how the laser made possible the counting of atoms and how this capability has been put to use in situations where atoms are free to react chemically as they diffuse through a medium. Fluctuation phenomena and statistical mechanics can also be examined in these situations

  7. Simultaneous real-time monitoring of multiple cortical systems.

    Science.gov (United States)

    Gupta, Disha; Jeremy Hill, N; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L; Schalk, Gerwin

    2014-10-01

    Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main Results: Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple independent brain systems. Our

  8. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Ken R. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Applied Physics, Stanford University, 348 Via Pueblo, Stanford, CA 94305 (United States); Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Coffee, Ryan [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; Minitti, Michael; Mitra, Ankush; Moeller, Stefan; Noonan, Peter; Osipov, Timur; Schorb, Sebastian; Swiggers, Michele; Wallace, Alexander; Yin, Jing [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bostedt, Christoph, E-mail: bostedt@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-17

    A description of the Atomic, Molecular and Optical Sciences (AMO) instrument at the Linac Coherent Light Source is presented. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument. The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  9. Size-resolved particle number emission patterns under real-world driving conditions using positive matrix factorization.

    Science.gov (United States)

    Domínguez-Sáez, Aida; Viana, Mar; Barrios, Carmen C; Rubio, Jose R; Amato, Fulvio; Pujadas, Manuel; Querol, Xavier

    2012-10-16

    A novel on-board system was tested to characterize size-resolved particle number emission patterns under real-world driving conditions, running in a EURO4 diesel vehicle and in a typical urban circuit in Madrid (Spain). Emission profiles were determined as a function of driving conditions. Source apportionment by Positive Matrix Factorization (PMF) was carried out to interpret the real-world driving conditions. Three emission patterns were identified: (F1) cruise conditions, with medium-high speeds, contributing in this circuit with 60% of total particle number and a particle size distribution dominated by particles >52 nm and around 60 nm; (F2) transient conditions, stop-and-go conditions at medium-high speed, contributing with 25% of the particle number and mainly emitting particles in the nucleation mode; and (F3) creep-idle conditions, representing traffic congestion and frequent idling periods, contributing with 14% to the total particle number and with particles in the nucleation mode (emissions depending on particle size and driving conditions. Differences between real-world emission patterns and regulatory cycles (NEDC) are also presented, which evidence that detecting particle number emissions real-world driving conditions.

  10. Time-resolved measurements of supersonic fuel sprays using synchrotron X-rays.

    Science.gov (United States)

    Powell, C F; Yue, Y; Poola, R; Wang, J

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 micros. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date.

  11. The real-time price elasticity of electricity

    NARCIS (Netherlands)

    Lijesen, M.G.

    2007-01-01

    The real-time price elasticity of electricity contains important information on the demand response of consumers to the volatility of peak prices. Despite the importance, empirical estimates of the real-time elasticity are hardly available. This paper provides a quantification of the real-time

  12. Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Mawet, Dimitri [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91106 (United States); Prato, Lisa, E-mail: ji.wang@caltech.edu [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2017-03-20

    Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution ( R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of high spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.

  13. Highly-resolving Rutherford-scattering spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Klein, C.

    2003-10-01

    in the present thesis for the first time the Browne-Buechner spectrometer for the highly resolving ion-beam analysis in the ion beam center Rossendorf is completely presented. A main topic of this theis lied in the apparative construction and the taking-into-operation of the spectrometer and the scattering chamber including the facilities for the sample treatment and characterization. In the framework of this thesis for the chosen measurement arrangement the experimental conditions were elaborated, which allow the routine-like application of the spectrometer for analyses of thin-film systems. for C and Li ions as incident particles especially the straggling was more precisely determined in a large range of materials. By means of the spectrometer also the interaction of the ion with the solid respectively single atoms on its surface could be studied. For the first time the mean charge-state after the single collision on a gold atom was determined for differently heavy ions in a wide energy range

  14. The fission time scale measured with an atomic clock

    NARCIS (Netherlands)

    Kravchuk, VL; Wilschut, HW; Hunyadi, M; Kopecky, S; Lohner, H; Rogachevskiy, A; Siemssen, RH; Krasznahorkay, A; Hamilton, JH; Ramayya, AV; Carter, HK

    2003-01-01

    We present a new direct method of measuring the fission absolute time scale using an atomic clock based on the lifetime of a vacancy in the atomic K-shell. We studied the reaction Ne-20 + Th-232 -> O-16 + U-236* at 30 MeV/u. The excitation energy of about 115 MeV in such a reaction is in the range

  15. Accessing photon number via an atomic time interval

    International Nuclear Information System (INIS)

    Camparo, J.C.; Coffer, J.G.

    2002-01-01

    We show that Rabi resonances can be used to assess field strength in terms of time at the atomic level. Rabi resonances are enhancements in the amplitude of atomic population oscillations when the Rabi frequency, Ω, 'matches' a field-modulation frequency, ω m . We demonstrate that Ω=2κω m and find that κ=1.03±0.05. Since Ω is defined by field strength (i.e., photon number) through atomic constants, and ω m may be referenced to an atomic clock, our work shows that Rabi resonances provide a connection between time and photon number

  16. Time-resolved entanglement of bound and dissociative atoms and molecules

    International Nuclear Information System (INIS)

    Mishima, K.; Hayashi, M.; Lin, S.H.

    2004-01-01

    In this paper, we theoretically examine the time-independent and -dependent degrees of entanglement fidelities of bi-partite systems consisting of various bound two particles and of those of dissociative ones. The target maximally entangled state is defined as the non-interacting two particles: they are assumed to be infinitely far away from each other in the distant future. In this case, the potential energy functions which are non-local in nature can be regarded as entangling source. We investigate, how much we can make the target maximally entangled state from the initial (probably somewhat entangled) state without using any non-local external unitary transformation. Specifically, we investigate the cases where the two particles interact by attractive and repulsive Coulomb, harmonic, and Morse potentials which are ubiquitous in physics and chemistry. All of these omnipresent potentials exert non-local unitary transformations of multi-partite systems, which gives rise to the time-dependent entanglement according to the time-dependent Schroedinger equation. In the time-independent case, the bound state with identical mass or different mass shows a definite time-independent entanglement fidelity for each eigenstate. In the time-dependent case, time-dependence manifests itself both in the bound and the dissociative systems. In the former case, the entanglement shows regular oscillatory patterns in harmony with the wave packet revival in the harmonic potential and a prominent enhancement in the anharmonic potential while in the latter case the entanglement diminishes very quickly. From these results, we point out that the time-evolution of the entanglement is much more sensitive to the interaction (potential) of two particles and to the initial wavepacket than that of the autocorrelation function

  17. Implementing Run-Time Evaluation of Distributed Timing Constraints in a Real-Time Environment

    DEFF Research Database (Denmark)

    Kristensen, C. H.; Drejer, N.

    1994-01-01

    In this paper we describe a solution to the problem of implementing run-time evaluation of timing constraints in distributed real-time environments......In this paper we describe a solution to the problem of implementing run-time evaluation of timing constraints in distributed real-time environments...

  18. 3D-SURFER 2.0: web platform for real-time search and characterization of protein surfaces.

    Science.gov (United States)

    Xiong, Yi; Esquivel-Rodriguez, Juan; Sael, Lee; Kihara, Daisuke

    2014-01-01

    The increasing number of uncharacterized protein structures necessitates the development of computational approaches for function annotation using the protein tertiary structures. Protein structure database search is the basis of any structure-based functional elucidation of proteins. 3D-SURFER is a web platform for real-time protein surface comparison of a given protein structure against the entire PDB using 3D Zernike descriptors. It can smoothly navigate the protein structure space in real-time from one query structure to another. A major new feature of Release 2.0 is the ability to compare the protein surface of a single chain, a single domain, or a single complex against databases of protein chains, domains, complexes, or a combination of all three in the latest PDB. Additionally, two types of protein structures can now be compared: all-atom-surface and backbone-atom-surface. The server can also accept a batch job for a large number of database searches. Pockets in protein surfaces can be identified by VisGrid and LIGSITE (csc) . The server is available at http://kiharalab.org/3d-surfer/.

  19. Advances in high-order harmonic generation sources for time-resolved investigations

    Energy Technology Data Exchange (ETDEWEB)

    Reduzzi, Maurizio [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Carpeggiani, Paolo [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Kühn, Sergei [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Calegari, Francesca [Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Nisoli, Mauro; Stagira, Salvatore [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Vozzi, Caterina [Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Dombi, Peter [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, 1121 Budapest (Hungary); Kahaly, Subhendu [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Tzallas, Paris; Charalambidis, Dimitris [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Foundation for Research and Technology – Hellas, Institute of Electronic Structure and Lasers, P.O. Box 1527, GR-711 10 Heraklion, Crete (Greece); Varju, Katalin [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged (Hungary); Osvay, Karoly [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); and others

    2015-10-15

    We review the main research directions ongoing in the development of extreme ultraviolet sources based on high-harmonic generation for the synthesization and application of trains and isolated attosecond pulses to time-resolved spectroscopy. A few experimental and theoretical works will be discussed in connection to well-established attosecond techniques. In this context, we present the unique possibilities offered for time-resolved investigations on the attosecond timescale by the new Extreme Light Infrastructure Attosecond Light Pulse Source, which is currently under construction.

  20. Advances in high-order harmonic generation sources for time-resolved investigations

    International Nuclear Information System (INIS)

    Reduzzi, Maurizio; Carpeggiani, Paolo; Kühn, Sergei; Calegari, Francesca; Nisoli, Mauro; Stagira, Salvatore; Vozzi, Caterina; Dombi, Peter; Kahaly, Subhendu; Tzallas, Paris; Charalambidis, Dimitris; Varju, Katalin; Osvay, Karoly

    2015-01-01

    We review the main research directions ongoing in the development of extreme ultraviolet sources based on high-harmonic generation for the synthesization and application of trains and isolated attosecond pulses to time-resolved spectroscopy. A few experimental and theoretical works will be discussed in connection to well-established attosecond techniques. In this context, we present the unique possibilities offered for time-resolved investigations on the attosecond timescale by the new Extreme Light Infrastructure Attosecond Light Pulse Source, which is currently under construction.

  1. The time resolved SBS and SRS research in heavy water and its application in CARS

    Science.gov (United States)

    Liu, Jinbo; Gai, Baodong; Yuan, Hong; Sun, Jianfeng; Zhou, Xin; Liu, Di; Xia, Xusheng; Wang, Pengyuan; Hu, Shu; Chen, Ying; Guo, Jingwei; Jin, Yuqi; Sang, Fengting

    2018-05-01

    We present the time-resolved character of stimulated Brillouin scattering (SBS) and backward stimulated Raman scattering (BSRS) in heavy water and its application in Coherent Anti-Stokes Raman Scattering (CARS) technique. A nanosecond laser from a frequency-doubled Nd: YAG laser is introduced into a heavy water cell, to generate SBS and BSRS beams. The SBS and BSRS beams are collinear, and their time resolved characters are studied by a streak camera, experiment show that they are ideal source for an alignment-free CARS system, and the time resolved property of SBS and BSRS beams could affect the CARS efficiency significantly. By inserting a Dye cuvette to the collinear beams, the time-overlapping of SBS and BSRS could be improved, and finally the CARS efficiency is increased, even though the SBS energy is decreased. Possible methods to improve the efficiency of this CARS system are discussed too.

  2. Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature

    International Nuclear Information System (INIS)

    He Ping; Fan Rong-Wei; Xia Yuan-Qin; Yu Xin; Chen De-Ying; Yao Yong

    2011-01-01

    Time-resolved resonance-enhanced coherent anti-Stokes Raman scattering (CARS) is applied to investigate molecular dynamics in gaseous iodine. 40 fs laser pulses are applied to create and monitor the high vibrational states of iodine at room temperature (corresponding to a vapor pressure as low as about 35 Pa) by femtosecond time-resolved CARS. Depending on the time delay between the probe pulse and the pump/Stokes pulse pairs, the high vibrational states both on the electronically ground states and the excited states can be detected as oscillations in the CARS transient signal. It is proved that the femtosecond time-resolved CARS technique is a promising candidate for investigating the molecular dynamics of a low concentration system and can be applied to environmental and atmospheric monitoring measurements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. An Automatic and Real-time Restoration of Gamma Dose Data by Radio Telemetry

    International Nuclear Information System (INIS)

    Lee, Wan No; Kim, Hee Reyoung; Chung, Kun Ho; Cho, Young Hyun; Choi, Geun Sik; Lee, Chang Woo; Kim, Young Soo

    2006-01-01

    On-line gamma monitoring system based on a high pressurized ionization chamber has been used for determining airborne doses surrounding HANARO research reactor at KAERI (Korea Atomic Energy Research Institute). It is composed of a network of six monitoring stations and an on-line computer system. It has been operated by radio telemetry with a radio frequency of 468.8 MHz, which is able to transmit the real-time dose data measured from a remote ion chamber to the central computer for ten seconds-to seconds. Although radio telemetry has several advantages such as an effective and economical transmission, there is one main problem that data loss happen because each monitoring post only stores 300 radiation data points, which covers the previous sequential data of 50 minutes from the present in the case of a recording interval time of 10 seconds It is possible to restore the lost data by an off-line process such as a floppy disk or portable memory disk but it is ineffective method at the real-time monitoring system. Restoration, storage, and display of the current data as well as the lost data are also difficult in the present system. In this paper, an automatic and real-time restoration method by radio telemetry will be introduced

  4. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    International Nuclear Information System (INIS)

    Marczynski-Buehlow, Martin

    2012-01-01

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of FEL pulse

  5. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski-Buehlow, Martin

    2012-01-30

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of

  6. Mobile instrumentation platform and robotic accessory for real-time screening of hazardous waste

    International Nuclear Information System (INIS)

    Anderson, M.S.; Jaselskis, E.J.

    1992-01-01

    An innovative mobile laboratory for real-time field screening of soils for inorganic hazardous waste using laser ablation-inductively coupled plasma-atomic emission spectrometry sampling and analysis technique is being developed at Ames Laboratory. This sampling technique as well as the concept for installing, monitoring, and controlling the instrumentation and utilities in the mobile laboratory, the robotic sampling accessory, and manual sampling method are discussed. Benefits of this mobile configuration and future development plans also are described

  7. Lifetime measurements of odd-parity high-excitation levels of Sn I by time-resolved laser spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Wei; Feng, Yanyan; Xu, Jiaxin; Dai, Zhenwen; Palmeri, Patrick; Quinet, Pascal; Biemont, Emile

    2010-01-01

    Natural radiative lifetimes of 38 odd-parity highly excited levels in neutral tin in the energy range from 43 682.737 to 56 838.68 cm -1 have been measured by a time-resolved laser-induced fluorescence technique in an atomic beam produced by laser ablation on a solid tin sample. All the levels were excited from the metastable 3 P 1, 2 and 1 D 2 levels in the ground configuration. The second and third harmonics of a dye laser were adopted as the tunable exciting source (207-250 nm). The lifetime results obtained in this paper are in the range from 4.6 to 292 ns and will be useful in extending the set of oscillator strengths available in Sn I.

  8. Application of XML in real-time data warehouse

    Science.gov (United States)

    Zhao, Yanhong; Wang, Beizhan; Liu, Lizhao; Ye, Su

    2009-07-01

    At present, XML is one of the most widely-used technologies of data-describing and data-exchanging, and the needs for real-time data make real-time data warehouse a popular area in the research of data warehouse. What effects can we have if we apply XML technology to the research of real-time data warehouse? XML technology solves many technologic problems which are impossible to be addressed in traditional real-time data warehouse, and realize the integration of OLAP (On-line Analytical Processing) and OLTP (Online transaction processing) environment. Then real-time data warehouse can truly be called "real time".

  9. Time resolved spectroscopy of GRB 030501 using INTEGRAL

    DEFF Research Database (Denmark)

    Beckmann, V.; Borkowski, J.; Courvoisier, T.J.L.

    2003-01-01

    The gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst...... the Ulysses and RHESSI experiments....

  10. Time-resolved wave profile measurements in copper to Megabar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, L C; Asay, J R

    1981-01-01

    Many time-resolved techniques have been developed which have greatly aided in the understanding of dynamic material behavior such as the high pressure-dynamic strength of materials. In the paper, time-resolved measurements of copper (at shock-induced high pressures and temperatures) are used to illustrate the capability of using such techniques to investigate high pressure strength. Continuous shock loading and release wave profiles have been made in copper to 93 GPa using velocity interferometric techniques. Fine structure in the release wave profiles from the shocked state indicates an increase in shear strength of copper to 1.5 GPa at 93 GPa from its ambient value of 0.08 GPa.

  11. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    Science.gov (United States)

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-05

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  12. Usefulness of real-time three-dimensional ultrasonography in percutaneous nephrostomy: an animal study.

    Science.gov (United States)

    Hongzhang, Hong; Xiaojuan, Qin; Shengwei, Zhang; Feixiang, Xiang; Yujie, Xu; Haibing, Xiao; Gallina, Kazobinka; Wen, Ju; Fuqing, Zeng; Xiaoping, Zhang; Mingyue, Ding; Huageng, Liang; Xuming, Zhang

    2018-05-17

    To evaluate the effect of real-time three-dimensional (3D) ultrasonography (US) in guiding percutaneous nephrostomy (PCN). A hydronephrosis model was devised in which the ureters of 16 beagles were obstructed. The beagles were divided equally into groups 1 and 2. In group 1, the PCN was performed using real-time 3D US guidance, while in group 2 the PCN was guided using two-dimensional (2D) US. Visualization of the needle tract, length of puncture time and number of puncture times were recorded for the two groups. In group 1, score for visualization of the needle tract, length of puncture time and number of puncture times were 3, 7.3 ± 3.1 s and one time, respectively. In group 2, the respective results were 1.4 ± 0.5, 21.4 ± 5.8 s and 2.1 ± 0.6 times. The visualization of needle tract in group 1 was superior to that in group 2, and length of puncture time and number of puncture times were both lower in group 1 than in group 2. Real-time 3D US-guided PCN is superior to 2D US-guided PCN in terms of visualization of needle tract and the targeted pelvicalyceal system, leading to quick puncture. Real-time 3D US-guided puncture of the kidney holds great promise for clinical implementation in PCN. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.

  13. Time-resolved MR angiography of the renal artery: morphology and perfusion

    International Nuclear Information System (INIS)

    Krause, U.J.; Pabst, T.; Koestler, H.; Helbig, C.; Kenn, W.; Hahn, D.

    2002-01-01

    Purpose: To prove the hypothesis that renal artery stenosis and changes in renal perfusion can be detected with contrast-enhanced time-resolved MR angiography in a single examination. Material and Methods: In 71 patients, 137 renal arteries and 14 accessory renal arteries were studied. The examinations were performed on a 1.5 T system. A T 1 -weighted gradient echo sequence with a temporal resolution of 7 s was used. Single dose of contrast material (0.1 mmol/kg Gd-DTPA) was injected with a power injector with a flow rate of 2 ml/s. Criterion for the assessment of renal perfusion was the slope ratio of the signal intensity time curve in both kidneys. Results: Forty renal artery stenoses and one occlusion of a renal artery were detected. In 48 kidneys (35%) segmental arteries were evaluated. The accuracy of the slope ratio (limit value 0.75) concerning the detection of unilateral renal artery stenosis was 92.6% (sensitivity 75%, specificity 95.7%). Conclusion: Time-resolved MR angiography can detect changes in renal perfusion in patients with unilateral renal artery stenosis. (orig.) [de

  14. Atomic frequency-time-length standards

    International Nuclear Information System (INIS)

    Gheorghiu, O.C.; Mandache, C.

    1987-01-01

    The principles of operative of atomic frequency-time-length standards and their principle characteristics are described. The role of quartz crystal oscillators which are sloved to active or passive standards is presented. (authors)

  15. Study of the Bulk Charge Carrier Dynamics in Anatase and Rutile TiO2 Single Crystals by Femtosecond Time Resolved Spectroscopy

    KAUST Repository

    Maity, Partha; Mohammed, Omar F.; Katsiev, Khabiboulakh; Idriss, Hicham

    2018-01-01

    as the best model for fundamental studies. Their ultrafast charge carrier dynamics especially on TiO2 anatase single crystal (the most active phase) are unresolved. Here femtosecond time resolved spectroscopy (TRS) was carried out to explore the dynamics

  16. Real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1993-01-01

    The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication

  17. Time-resolved far-infrared experiments at the National Synchrotron Light Source. Final report

    International Nuclear Information System (INIS)

    Tanner, D.B.; Reitze, D.H.; Carr, G.L.

    1999-01-01

    A facility for time-resolved infrared and far-infrared spectroscopy has been built and commissioned at the National Synchrotron Light Source. This facility permits the study of time dependent phenomena over a frequency range from 2-8000cm -1 (0.25 meV-1 eV). Temporal resolution is approximately 200 psec and time dependent phenomena in the time range out to 100 nsec can be investigated

  18. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    Science.gov (United States)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  19. Broadband time-resolved elliptical crystal spectrometer for X-ray spectroscopic measurements in laser-produced plasmas

    International Nuclear Information System (INIS)

    Wang Rui-Rong; Jia Guo; Fang Zhi-Heng; Wang Wei; Meng Xiang-Fu; Xie Zhi-Yong; Zhang Fan

    2014-01-01

    The X-ray spectrometer used in high-energy-density plasma experiments generally requires both broad X-ray energy coverage and high temporal, spatial, and spectral resolutions for overcoming the difficulties imposed by the X-ray background, debris, and mechanical shocks. By using an elliptical crystal together with a streak camera, we resolve this issue at the SG-II laser facility. The carefully designed elliptical crystal has a broad spectral coverage with high resolution, strong rejection of the diffuse and/or fluorescent background radiation, and negligible source broadening for extended sources. The spectra that are Bragg reflected (23° < θ < 38°) from the crystal are focused onto a streak camera slit 18 mm long and about 80 μm wide, to obtain a time-resolved spectrum. With experimental measurements, we demonstrate that the quartz(1011) elliptical analyzer at the SG-II laser facility has a single-shot spectral range of (4.64–6.45) keV, a typical spectral resolution of E/ΔE = 560, and an enhanced focusing power in the spectral dimension. For titanium (Ti) data, the lines of interest show a distribution as a function of time and the temporal variations of the He-α and Li-like Ti satellite lines and their spatial profiles show intensity peak red shifts. The spectrometer sensitivity is illustrated with a temporal resolution of better than 25 ps, which satisfies the near-term requirements of high-energy-density physics experiments. (atomic and molecular physics)

  20. Time-resolved diffraction studies of muscle using synchrotron radiation

    International Nuclear Information System (INIS)

    Harford, Jeffrey; Squire, John

    1997-01-01

    details the practical methods involved in recording time-resolved x-ray diffraction patterns from active muscles and the theoretical approaches that are being used to interpret the diffraction patterns that are obtained. The ultimate aim is to produce a series of time-sliced images of the changing molecular arrangements and shapes in the muscle as force is produced; together these images will form 'Muscle - The Movie'. (author)