WorldWideScience

Sample records for atom vapor cells

  1. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  2. A heated vapor cell unit for DAVLL in atomic rubidium

    OpenAIRE

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm-long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field...

  3. Diffusion of Rb atoms in paraffin - coated resonant vapor cells

    CERN Document Server

    Atutov, S N; Plekhanov, A I; Sorokin, V A; Yakovlev, A V

    2016-01-01

    We present the results of a study of the diffusion of Rb atoms in paraffin - coated resonant vapor cells. We have modeled the Rb diffusion both in the cell and in the coating, assuming that the main loss of Rb atoms is due to the physical absorption of the atoms by the glass substrate. It is demonstrated that the equilibrium atomic density in the cell is a monotonic function of the thickness of the paraffin coating: the density increases with an increase in the thickness of the coating. The diffusion coefficient for rubidium in paraffin thin films has been determined to be equal to 4,7*10^-7 cm^2/s. The results of the experiment might be useful for a better understanding of the details involved in the processes of the interaction of alkali atoms with a paraffin coating.

  4. Fabrication method for microscopic vapor cells for alkali atoms.

    Science.gov (United States)

    Baluktsian, T; Urban, C; Bublat, T; Giessen, H; Löw, R; Pfau, T

    2010-06-15

    A quantum network that consists of several components should ideally work on a single physical platform. Neutral alkali atoms have the potential to be very well suited for this purpose due to their electronic structure, which involves long-lived nuclear spins and very sensitive highly excited Rydberg states. In this Letter, we describe a fabrication method based on quartz glass to structure arbitrary shapes of microscopic vapor cells. We show that the usual spectroscopic properties known from macroscopic vapor cells are almost unaffected by the strong confinement.

  5. Study of Rb - vapor coated cell; atomic diffusion and cell curing process

    CERN Document Server

    Atutov, S N; Plekhanov, A I; Sorokin, V A

    2015-01-01

    We present the results of the study of an optical resonant cell filled by a vapor of the Rb atoms and coated with a non-stick polydimethylsiloxane (PDMS) polymer. We show that it is possible to define correctly the diffusion coefficient of the atoms in the coating, using geometric parameters of the cell and the vapor density in the cell volume only. The dependence of the diffusion coefficient on the cell curing time is presented. It is shown that the mysterious cell curing process can be explained in terms of the polymerization of the polymer coating by alkali atoms. Anomalous long dwell time of the Rb atoms on the PDMS coating is discussed as well.

  6. Diffusion of Rb atoms in paraffin-coated resonant vapor cells

    Science.gov (United States)

    Atutov, Sergey N.; Benimetskiy, Fedor A.; Plekhanov, Alexander I.; Sorokin, Vladimir A.; Yakovlev, Alexander V.

    2017-01-01

    We present the results of a study of the diffusion of Rb atoms in paraffin-coated resonant vapor cells. We have modeled the Rb diffusion both in the cell and in the coating, assuming that the main loss of Rb atoms is due to the physical absorption of the atoms by the glass substrate. It is demonstrated that the equilibrium of atomic density in the cell is a monotonic function of the thickness of the paraffin coating: the density increases with an increase in the thickness of the coating. The diffusion coefficient for rubidium in paraffin thin films has been determined to be equal to 5 × 10-7 cm2/s. The results of the experiment might provide for a better understanding of the processes involved in the interaction of alkali atoms with a paraffin coating and atomic diffusion in resonant vapor cells.

  7. High quality anti-relaxation coating material for alkali atom vapor cells

    CERN Document Server

    Balabas, M V; Wasilewski, W; Krauter, H; Madsen, L S; Muller, J H; Fernholz, T; Polzik, E S

    2009-01-01

    We present an experimental investigation of alkali atom vapor cells coated with a high quality anti-relaxation coating material based on alkenes. The prepared cells with single compound alkene based coating showed the longest spin relaxation times which have been measured up to now with room temperature vapor cells. Suggestions are made that chemical binding of a cesium atom and an alkene molecule by attack to the C=C bond plays a crucial role in such improvement of anti-relaxation coating quality.

  8. Radio-frequency Electrometry Using Rydberg Atoms in Vapor Cells: Towards the Shot Noise Limit

    Science.gov (United States)

    Kumar, Santosh; Fan, Haoquan; Jahangiri, Akbar; Kuebler, Harald; Shaffer, James P.; 5. Physikalisches Institut, Universitat Stuttgart, Germany Collaboration

    2016-05-01

    Rydberg atoms are a promising candidate for radio frequency (RF) electric field sensing. Our method uses electromagnetically induced transparency with Rydberg atoms in vapor cells to read out the effect that the RF electric field has on the Rydberg atoms. The method has the potential for high sensitivity (pV cm-1 Hz- 1 / 2) and can be self-calibrated. Some of the main factors limiting the sensitivity of RF electric field sensing from reaching the shot noise limit are the residual Doppler effect and the sensitivity of the optical read-out using the probe laser. We present progress on overcoming the residual Doppler effect by using a new multi-photon scheme and reaching the shot noise detection limit using frequency modulated spectroscopy. Our experiments also show promise for studying quantum optical effects such as superradiance in vapor cells using Rydberg atoms. This work is supported by DARPA, ARO, and NRO.

  9. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    Science.gov (United States)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  10. Effect of atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell

    DEFF Research Database (Denmark)

    Hsu, M.T.L.; Hetet, G.; Peng, A.

    2006-01-01

    show results of the characterization of PSR in isotopically enhanced rubidium-87 cells, performed in two independent laboratories. We observed that, contrary to earlier work, the presence of atomic noise in the thermal vapor overwhelms the observation of squeezing. We present a theory that contains......The traversal of an elliptically polarized optical field through a thermal vapor cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic transition wavelengths. We...... atomic noise terms and show that a null result in squeezing is consistent with this theory....

  11. Frequency-Tunable Microwave Field Detection in an Atomic Vapor Cell

    CERN Document Server

    Horsley, Andrew

    2016-01-01

    We use an atomic vapor cell as a frequency tunable microwave field detector operating at frequencies from GHz to tens of GHz. We detect microwave magnetic fields from 2.3 GHz to 26.4 GHz, and measure the amplitude of the sigma+ component of an 18 GHz microwave field. Our proof-of-principle demonstration represents a four orders of magnitude extension of the frequency tunable range of atomic magnetometers from their previous dc to several MHz range. When integrated with a high resolution microwave imaging system, this will allow for the complete reconstruction of the vector components of a microwave magnetic field and the relative phase between them. Potential applications include near-field characterisation of microwave circuitry and devices, and medical microwave sensing and imaging.

  12. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    Science.gov (United States)

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  13. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock.

    Science.gov (United States)

    François, B; Calosso, C E; Danet, J M; Boudot, R

    2014-09-01

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be -42, -100, -117 dB rad(2)/Hz and -129 dB rad(2)/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10(-14) at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  14. Detection of slow atoms confined in a Cesium vapor cell by spatially separated pump and probe laser beams

    CERN Document Server

    Todorov, Petko; Maurin, Isabelle; Saltiel, Solomon; Bloch, Daniel

    2013-01-01

    The velocity distribution of atoms in a thermal gas is usually described through a Maxwell-Boltzman distribution of energy, and assumes isotropy. As a consequence, the probability for an atom to leave the surface under an azimuth angle {\\theta} should evolve as cos {\\theta}, in spite of the fact that there is no microscopic basis to justify such a law. The contribution of atoms moving at a grazing incidence towards or from the surface, i.e. atoms with a small normal velocity, here called "slow" atoms, reveals essential in the development of spectroscopic methods probing a dilute atomic vapor in the vicinity of a surface, enabling a sub-Doppler resolution under a normal incidence irradiation. The probability for such "slow" atoms may be reduced by surface roughness and atom-surface interaction. Here, we describe a method to observe and to count these slow atoms relying on a mechanical discrimination, through spatially separated pump and probe beams. We also report on our experimental progresses toward such a g...

  15. Atom Interferometry in a Warm Vapor

    CERN Document Server

    Biedermann, G W; Rakholia, A V; Jau, Y -Y; Wheeler, D R; Sterk, J D; Burns, G R

    2016-01-01

    We demonstrate matterwave interference in a warm vapor of rubidium atoms. Established approaches to light pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. This interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.

  16. Atomic vapor spectroscopy in integrated photonic structures

    CERN Document Server

    Ritter, Ralf; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert

    2015-01-01

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  17. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  18. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  19. AMTEC vapor-vapor series connected cells

    Science.gov (United States)

    Underwood, Mark L.; Williams, Roger M.; Ryan, Margaret A.; Nakamura, Barbara J.; Oconnor, Dennis E.

    1995-08-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  20. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    Energy Technology Data Exchange (ETDEWEB)

    François, B. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France); INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Calosso, C. E.; Micalizio, S. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Abdel Hafiz, M.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France)

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  1. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks.

    Science.gov (United States)

    François, B; Calosso, C E; Abdel Hafiz, M; Micalizio, S; Boudot, R

    2015-09-01

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be -109 and -141 dB rad(2)/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is -105 and -138 dB rad(2)/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10(-14) for the Cs cell clock and 2 × 10(-14) for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10(-15) level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  2. Coupling a thermal atomic vapor to an integrated ring resonator

    CERN Document Server

    Ritter, Ralf; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert

    2016-01-01

    Strongly interacting atom-cavity systems within a network with many nodes constitute a possible realization for a quantum internet which allows for quantum communication and computation on the same platform. To implement such large-scale quantum networks, nanophotonic resonators are promising candidates because they can be scalably fabricated and interconnected with waveguides and optical fibers. By integrating arrays of ring resonators into a vapor cell we show that thermal rubidium atoms above room temperature can be coupled to photonic cavities as building blocks for chip-scale hybrid circuits. Although strong coupling is not yet achieved in this first realization, our approach provides a key step towards miniaturization and scalability of atom-cavity systems.

  3. Light-induced changes in an alkali metal atomic vapor cell coating studied by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hibberd, A. M.; Bernasek, S. L. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Seltzer, S. J. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Balabas, M. V. [Department of Physics, Saint-Petersburg State University, St. Petersburg 198504 (Russian Federation); Morse, M. [Department of Materials Science Engineering, Boise State University, Boise, Idaho 83725 (United States); Budker, D. [Department of Physics, University of California, Berkeley, California 94720-7300 (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2013-09-07

    The light-induced desorption of Rb atoms from a paraffin coating is studied with depth-profiling X-ray photoelectron spectroscopy (XPS) using tunable synchrotron radiation. Following Rb exposure, shifts of the C1s signal to higher binding energies, as well as the appearance of lower binding energy components in the O1s region, were observed. These effects were diminished after irradiation with desorbing light. Additionally, following desorbing-light irradiation, changes in the depth-dependent concentration of carbon were observed. These observations offer an insight into the microscopic changes that occur during light-induced atomic desorption and demonstrate the utility of XPS in understanding atom-coating interactions.

  4. Investigation of odd-order nonlinear susceptibilities in atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yaqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Teaching and Research Section of Maths and Physics, Guangzhou Commanding Academy of Chinese People’s Armed Police Force, Guangzhou, 510440 (China); Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-06-15

    We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.

  5. Optical phase conjugation in atomic beams and vapors

    Science.gov (United States)

    Donoghue, John James

    1997-07-01

    Optical phase conjugation in atomic beams and vapors using alkali metal atoms as the nonlinear medium is examined. The significance of the sodium system is that the nonlinear gain is high due to the hyperfine system, which behaves as a Raman system. The gains observed were larger than 100 in cases involving two separate pump lasers. The gain is also seen to be more complicated than a Raman system. The frequency of the beams is examined for three separate configurations. We examine a self pumped configuration, an externally pumped configuration consisting of two pump lasers and a probe, and a ring configuration. The observed gain in a self pumped configuration is a result of a mixture of a three level Mollow type gain and a Raman gain. The initial cavity laser is a result of the Mollow gain, and the conjugate produced is seen to arise from the interaction of the cavity beams with the initial pump beam to produce the conjugate. In the externally pumped scheme, the gain is due to Coherent Population Trapping (CPT) in a double-Λ Raman system. There is an equilibrium that is obtained that is responsible for the high gains observed in this particular setup. The bandwidth of the ground state two photon induced coherence is less than the natural lifetime, indicating CPT as the gain mechanism. In the ring configuration, we observed two separate gains. There is a forward and a backward gain. These two oscillations occur together for a 430 MHZ bandwidth which coincides with the observed width of the phase conjugate oscillation. The design of our vapor cells is discussed in depth. The heat pipe configuration, necessary to successfully conduct these experiments is shown in detail. The design of our atomic beams is also discussed.

  6. Method And Apparatus For Atomizing And Vaporizing Liquid

    KAUST Repository

    Lal, Amit

    2014-09-18

    A method and apparatus for atomizing and vaporizing liquid is described. An apparatus having an ejector configured to eject one or more droplets of liquid may be inserted into a reservoir containing liquid. The ejector may have a vibrating device that vibrates the ejector and causes liquid to move from the reservoir up through the ejector and out through an orifice located on the top of the ejector. The one or more droplets of liquid ejected from the ejector may be heated and vaporized into the air.

  7. Observation of light dragging in rubidium vapor cell

    CERN Document Server

    Strekalov, D V; Yu, N; Maleki, L; Strekalov, Dmitry; Matsko, Andrey B.; Yu, Nan; Maleki, Lute

    2003-01-01

    We report on the experimental demonstration of light dragging effect due to atomic motion in a rubidium vapor cell. We found that the minimum group velocity is achieved for light red-shifted from the center of the atomic resonance, and that the value of this shift increases with decreasing group velocity, in agreement with the theoretical predictions by Kocharovskaya, Rostovtsev, and Scully [Phys. Rev. Lett. {\\bf 86}, 628 (2001)].

  8. Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating

    CERN Document Server

    Li, Wenhao; Peng, Xiang; Pustelny, Szymon; Wickenbrock, Arne; Guo, Hong; Budker, Dmitry

    2016-01-01

    Vapor cells with antirelaxation coating are widely used in modern atomic physics experiments due to the coating's ability to maintain the atoms' spin polarization during wall collisions. We characterize the performance of vapor cells with different coating materials by measuring longitudinal spin relaxation and vapor density at temperatures up to 95{\\deg}C. We found that the spin-projection-noise-limited sensitivity for atomic magnetometers with such cells improves with temperature, which demonstrates the potential of antirelaxation coated cells in applications of future high-sensitivity magnetometers.

  9. Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating

    Science.gov (United States)

    Li, Wenhao; Balabas, Mikhail; Peng, Xiang; Pustelny, Szymon; Wickenbrock, Arne; Guo, Hong; Budker, Dmitry

    2017-02-01

    Vapor cells with antirelaxation coating are widely used in modern atomic physics experiments due to the coating's ability to maintain the atoms' spin polarization during wall collisions. We characterize the performance of vapor cells with different coating materials by measuring longitudinal spin relaxation and vapor density at temperatures up to 95 °C. We infer that the spin-projection-noise-limited sensitivity for atomic magnetometers with such cells improves with temperature, which demonstrates the potential of antirelaxation coated cells in applications of future high-sensitivity magnetometers.

  10. Single Molecule DNA Detection with an Atomic Vapor Notch Filter

    CERN Document Server

    Uhland, Denis; Widmann, Matthias; Lee, Sang-Yun; Wrachtrup, Jörg; Gerhardt, Ilja

    2015-01-01

    The detection of single molecules has facilitated many advances in life- and material-sciences. Commonly, it founds on the fluorescence detection of single molecules, which are for example attached to the structures under study. For fluorescence microscopy and sensing the crucial parameters are the collection and detection efficiency, such that photons can be discriminated with low background from a labeled sample. Here we show a scheme for filtering the excitation light in the optical detection of single stranded labeled DNA molecules. We use the narrow-band filtering properties of a hot atomic vapor to filter the excitation light from the emitted fluorescence of a single emitter. The choice of atomic sodium allows for the use of fluorescent dyes, which are common in life-science. This scheme enables efficient photon detection, and a statistical analysis proves an enhancement of the optical signal of more than 15% in a confocal and in a wide-field configuration.

  11. Nonlinear optical properties of atomic vapor and semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Doseok [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    This thesis contains the study of highly forbidden resonant second harmonic generation (SHG) in atomic potassium vapor using tunable picosecond pulses. Various output characteristics of vapor SHG have been investigated including the input intensity dependence, potassium vapor density dependence, buffer gas pressure dependence, and spatial profile. Recently, the discovery of new nonlinear optical crystals such as barium borate (β-BaB2O4, BBO) and lithium borate (LiB3O5, LBO) has greatly improved the performance of a tunable coherent optical devices based on optical parametric generation and amplification. In the second part of this thesis, a homebuilt picosecond optical parametric generator/amplifier (OPG/OPA) system is described in detail, including its construction details and output characteristics. This laser device has found many useful applications in spectroscopic studies including surface nonlinear optical spectroscopy via sum-frequency generation (SFG). The last part of this thesis reports studies on multiphoton-excited photoluminescence from porous silicon and GaN. Multiphoton excitation and photoluminescence can give numerous complementary information about semiconductors not obtainable with one-photon, above-bandgap excitation.

  12. Single molecule DNA detection with an atomic vapor notch filter

    Energy Technology Data Exchange (ETDEWEB)

    Uhland, Denis; Rendler, Torsten; Widmann, Matthias; Lee, Sang-Yun [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Wrachtrup, Joerg; Gerhardt, Ilja [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2015-12-01

    The detection of single molecules has facilitated many advances in life- and material-science. Commonly the fluorescence of dye molecules is detected, which are attached to a non-fluorescent structure under study. For fluorescence microscopy one desires to maximize the detection efficiency together with an efficient suppression of undesired laser leakage. Here we present the use of the narrow-band filtering properties of hot atomic sodium vapor to selectively filter the excitation light from the red-shifted fluorescence of dye labeled single-stranded DNA molecules. A statistical analysis proves an enhancement in detection efficiency of more than 15% in a confocal and in a wide-field configuration. (orig.)

  13. Amplified light storage with high fidelity based on electromagnetically induced transparency in rubidium atomic vapor

    Science.gov (United States)

    Zhou, Wei; Wang, Gang; Tang, Guoyu; Xue, Yan

    2016-06-01

    By using slow and stored light based on electromagnetically induced transparency (EIT), we theoretically realize the storage of optical pulses with enhanced efficiency and high fidelity in ensembles of warm atoms in 85Rb vapor cells. The enhancement of storage efficiency is achieved by introducing a pump field beyond three-level configuration to form a N-type scheme, which simultaneously inhibits the undesirable four-wave mixing effect while preserves its fidelity. It is shown that the typical storage efficiency can be improved from 29% to 53% with the application of pump field. Furthermore, we demonstrate that this efficiency decreases with storage time and increases over unity with optical depth.

  14. Optical detection of potassium chloride vapor using collinear photofragmentation and atomic absorption spectroscopy.

    Science.gov (United States)

    Sorvajärvi, Tapio; Saarela, Jaakko; Toivonen, Juha

    2012-10-01

    A sensitive and selective optical technique to detect potassium chloride (KCl) vapor is introduced. The technique is based on the photofragmentation of KCl molecules, using a pulsed UV laser, and optical probing of the temporarily increased amount of potassium atoms with a near-infrared laser. The two laser beams are aligned to go through the sample volume along the same optical path. The performance of the technique is demonstrated by detecting KCl concentrations from 25 ppb to 30 ppm in a temperature-controlled cell.

  15. A HBAR-oscillator-based 4.596~GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    CERN Document Server

    Daugey, Thomas; Martin, Gilles; Boudot, Rodolphe

    2015-01-01

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596~GHz frequency source. A 2.298~GHz signal, generated by an oscillator constructed around a thermally-controlled two-port AlN-sapphire HBAR resonator with a Q-factor of 24000 at 68$^{\\circ}$C, is frequency multiplied by 2 to 4.596~GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency (TCF) of the HBAR is measured to be $-23$~ppm/$^{\\circ}$C at 2.298~GHz. The measured phase noise of the 4.596~GHz source is $-105$~dBrad$^2$/Hz at 1~kHz offset and $-150$~dBrad$^2$/Hz at 100~kHz offset. The 4.596~GHz output signal is used as a local oscillator (LO) in a laboratory-prototype Cs microcell-based coherent population trapping (CPT) atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter (VCPS) implemented in the 2.298~GHz HBAR-oscillator loop, preventing the need for a high-power-consuming...

  16. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe [FEMTO-ST, CNRS, UFC, 26 chemin de l’Epitaphe 25030 Besançon Cedex (France)

    2015-11-15

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2–4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be −23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is −105 dB rad{sup 2}/Hz at 1 kHz offset and −150 dB rad{sup 2}/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10{sup −9} at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10{sup −11} τ{sup −1/2} up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  17. Microfabrication of MEMS alkali metal vapor cells for chip-scale atomic devices%芯片级原子器件MEMS碱金属蒸气腔室制作

    Institute of Scientific and Technical Information of China (English)

    尤政; 马波; 阮勇; 陈硕; 张高飞

    2013-01-01

    提出了基于两步低温阳极键合工艺的碱金属蒸气腔室制作方法,用于实现原子钟、原子磁力计及原子陀螺仪等器件的芯片级集成.由微机电系统(MEMS)体硅工艺制备了腔室结构.首先采用标准工艺将刻蚀有腔室的硅圆片与Pyrex玻璃阳极键合成预成型腔室,然后引入氮缓冲气体和由惰性石蜡包覆的微量碱金属铷或铯.通过两步阳极键合来密封腔室,键合温度低于石蜡燃点198℃.第一步键合预封装腔室,键合电压小于缓冲气体的击穿电压.第二步键合在大气氛围中进行,电压增至1 200 V来增强封装质量.通过高功率激光器局部加热释放碱金属,同时在腔壁上形成均匀的石蜡镀层以延长极化原子寿命.本文实现了160℃的低温阳极键合封装,键合率达到95%以上.封装的碱金属铷释放后仍具有金属光泽,实现的最小双腔室体积为6.5 mm×4.5 mm×2 mm.铷的吸收光谱表明铷有效地封装在腔室中,证明两步低温阳极键合工艺制作碱金属蒸气腔室是可行的.%This paper reported on the microfabrication of alkali metal vapor cells based on the two-step low temperature anodic bonding for the chip-scale integration of atomic clock,atomic magnetometer,atomic gyroscope and other atomic devices.Cell structures were fabricated by Micro-electromechanical System (MEMS) bulk silicon process,and the etched silicon with cells was firstly bonded to Pyrex glass to fabricate preformed chambers by the standard anodic bonding process.Then,nitrogen buffer gas and micro-scale alkali metal (rubidium or cesium) were introduced into the preformed cells.The two-step anodic bonding process was used to seal the cells at a temperature lower than the paraffin flash point (198 ℃).In the first step,bonding voltage was lower than the breakdown voltage of nitrogen buffer gas to pre-seal the cells.In the second step,the bonding was in air atmosphere,and the bonding voltage increased up to 1

  18. Demonstration of a Tunable-Bandwidth White Light Interferometer using Anomalous Dispersion in Atomic Vapor

    CERN Document Server

    Pati, G S; Salit, M; Shahriar, M S

    2006-01-01

    The concept of the 'white-light cavity' has recently generated considerable research interest in the context of gravitational wave detection. Cavity designs are proposed using negative (or anomalous) dispersion in an intracavity medium to make the cavity resonate over a large range of frequencies and still maintain a high cavity build-up. This paper presents the first experimental attempt and demonstration of white-light effect in a meter long ring cavity using an intracavity atomic medium. The medium's negative dispersion is caused by bi-frequency Raman gain in an atomic vapor cell. Although the white light condition was not perfectly achieved and improvements in experimental control are still desirable, significantly broad cavity response over bandwidth greater than 20 MHz has been observed. These devices will have potential applications in new generation laser interferometer gravitational wave detectors.

  19. Radio-frequency-modulated Rydberg states in a vapor cell

    CERN Document Server

    Miller, Stephanie A; Raithel, Georg

    2016-01-01

    We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60$S_{1/2}$ and 58$D_{5/2}$ Rydberg states with 50~MHz and 100~MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of $S$ and $D$ states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.

  20. Vapor Crystal Growth (VCG) experiment Cell

    Science.gov (United States)

    1992-01-01

    The image shows a test cell of Crystal Growth experiment inside the Vapor Crystal Growth System (VCGS) furnace aboard the STS-42, International Microgravity Laboratory-1 (IML-1), mission. The goal of IML-1, a pressurized marned Spacelab module, was to explore in depth the complex effects of weightlessness of living organisms and materials processing. More than 200 scientists from 16 countires participated in the investigations.

  1. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    OpenAIRE

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M. -A.; Hexemer, A.; Hibberd, A. M.; Kimball, D. F. Jackson; C. Jaye; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the stu...

  2. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    OpenAIRE

    Seltzer, S. J.

    2011-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the stud...

  3. High-Temperature Alkali Vapor Cells with Anti-Relaxation Surface Coatings

    CERN Document Server

    Seltzer, S J

    2009-01-01

    Anti-relaxation surface coatings allow long spin relaxation times in alkali-metal cells without buffer gas, enabling free motion of the alkali atoms and giving larger signals due to narrower optical linewidths. Effective coatings were previously unavailable for operation at temperatures above 80 C. We demonstrate that octadecyltrichlorosilane (OTS) can allow potassium or rubidium atoms to experience hundreds of collisions with the cell surface before depolarizing, and that an OTS coating remains effective up to about 170 C for both potassium and rubidium. We consider the experimental concerns of operating without buffer gas at high vapor density, studying the stricter need for effective quenching of excited atoms and deriving the optical rotation signal shape for atoms with resolved hyperfine structure in the spin-temperature regime. As an example of a high-temperature application of anti-relaxation coated alkali vapor cells, we operate a spin-exchange relaxation-free (SERF) atomic magnetometer with sensitivi...

  4. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    Science.gov (United States)

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  5. Atomic mercury vapor inside a hollow-core photonic crystal fiber

    CERN Document Server

    Vogl, Ulrich; Joly, Nicolas Y; Russell, Philip St J; Marquardt, Christoph; Leuchs, Gerd

    2014-01-01

    We demonstrate high atomic mercury vapor pressure in a kagom\\'e-style hollow-core photonic crystal fiber at room temperature. After a few days of exposure to mercury vapor the fiber is homogeneously filled and the optical depth achieved remains constant. With incoherent optical pumping from the ground state we achieve an optical depth of 114 at the $6^3P_2 - 6^3D_3$ transition, corresponding to an atomic mercury number density of $6 \\times 10^{10}$ cm$^{-3}$. The use of mercury vapor in quasi one-dimensional confinement may be advantageous compared to chemically more active alkali vapor, while offering strong optical nonlinearities in the ultraviolet region of the optical spectrum.

  6. Measurement of background gas in paraffin-coated alkali vapor cells

    CERN Document Server

    Sekiguchi, Naota

    2015-01-01

    We measured the rate of velocity-changing collisions (VCCs) between alkali atoms and background gas in buffer-gas-free anti-spin-relaxation-coated cells. The average VCC rate in paraffin-coated rubidium vapor cells prepared in this work was $1 \\times 10^{6}$ s$^{-1}$, which corresponds to $\\sim$1 mm in the mean free path of rubidium atoms. This short mean free path indicates that alkali atoms do not travel freely between the cell walls. In addition, we found that a heating process known as "ripening" increases the VCC rate, and also confirmed that ripening improves the anti-relaxation performance of the coatings.

  7. Biological atomism and cell theory.

    Science.gov (United States)

    Nicholson, Daniel J

    2010-09-01

    Biological atomism postulates that all life is composed of elementary and indivisible vital units. The activity of a living organism is thus conceived as the result of the activities and interactions of its elementary constituents, each of which individually already exhibits all the attributes proper to life. This paper surveys some of the key episodes in the history of biological atomism, and situates cell theory within this tradition. The atomistic foundations of cell theory are subsequently dissected and discussed, together with the theory's conceptual development and eventual consolidation. This paper then examines the major criticisms that have been waged against cell theory, and argues that these too can be interpreted through the prism of biological atomism as attempts to relocate the true biological atom away from the cell to a level of organization above or below it. Overall, biological atomism provides a useful perspective through which to examine the history and philosophy of cell theory, and it also opens up a new way of thinking about the epistemic decomposition of living organisms that significantly departs from the physicochemical reductionism of mechanistic biology.

  8. Vapor generation – atomic spectrometric techniques. Expanding frontiers through specific-species preconcentration. A review

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Raúl A.; Pacheco, Pablo H.; Cerutti, Soledad [Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Instituto de Química de San Luis, INQUISAL, Centro Científico-Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Martinez, Luis D., E-mail: ldm@unsl.edu.ar [Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Instituto de Química de San Luis, INQUISAL, Centro Científico-Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina)

    2015-05-22

    This article reviews 120 articles found in SCOPUS and specific Journal cites corresponding to the terms ‘preconcentration’; ‘speciation’; ‘vapor generation techniques’ and ‘atomic spectrometry techniques’ in the last 5 years. - Highlights: • Recent advances in vapor generation and atomic spectrometry were reviewed. • Species-specific preconcentration strategies after and before VG were discussed. • New preconcentration and speciation analysis were evaluated within this framework. - Abstract: We review recent progress in preconcentration strategies associated to vapor generation techniques coupled to atomic spectrometric (VGT-AS) for specific chemical species detection. This discussion focuses on the central role of different preconcentration approaches, both before and after VG process. The former was based on the classical solid phase and liquid–liquid extraction procedures which, aided by automation and miniaturization strategies, have strengthened the role of VGT-AS in several research fields including environmental, clinical, and others. We then examine some of the new vapor trapping strategies (atom-trapping, hydride trapping, cryotrapping) that entail improvements in selectivity through interference elimination, but also they allow reaching ultra-low detection limits for a large number of chemical species generated in conventional VG systems, including complete separation of several species of the same element. This review covers more than 100 bibliographic references from 2009 up to date, found in SCOPUS database and in individual searches in specific journals. We finally conclude by giving some outlook on future directions of this field.

  9. A geração química de vapor em espectrometria atômica Chemical vapor generation in atomic spectrometry

    Directory of Open Access Journals (Sweden)

    Iracema Takase

    2002-12-01

    Full Text Available The historical development of atomic spectrometry techniques based on chemical vapor generation by both batch and flow injection sampling formats is presented. Detection via atomic absorption spectrometry (AAS, microwave induced plasma optical emission spectrometry (MIP-OES, inductively coupled plasma optical emission spectrometry (ICP-OES , inductively coupled plasma mass spectrometry (ICP-MS and furnace atomic nonthermal excitation spectrometry (FANES are considered. Hydride generation is separately considered in contrast to other methods of generation of volatile derivatives. Hg ¾ CVAAS (cold vapor atomic absorption spectrometry is not considered here. The current state-of-the-art, including extension, advantages and limitations of this approach is discussed.

  10. Ultrathin atomic vapor film transmission spectroscopy: analysis of Dicke narrowing structure

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Li; Yanpeng Zhang; Chenli Gan

    2005-01-01

    Transmission sub-Doppler spectroscopy with confined atomic vapor film between two dielectric walls is theoretically studied. Because of atoms flying from wall to wall, where they get de-excited, the atomfield interaction time is anisotropic so that the contribution of slow atoms is enhanced, a sub-Doppler transmission spectroscopy (Dicke narrowing effect) can be obtained when the thickness of the film is much small or comparable with the wavelength even at small angle oblique incidence. It is feasible to get a sub-Doppler structure in a new region (L <λ/4) in experiments.

  11. Cascade correlation-enhanced Raman scattering in atomic vapors

    Science.gov (United States)

    Ma, Hong-Mei; Chen, Li-Qing; Yuan, Chun-Hua

    2016-12-01

    A new Raman process can be used to realize efficient Raman frequency conversion by coherent feedback at low light intensity [Chen B, Zhang K, Bian C L, Qiu C, Yuan C H, Chen L Q, Ou Z Y, and Zhang W P 2013 Opt. Express 21, 10490]. We present a theoretical model to describe this enhanced Raman process, termed as cascade correlation-enhanced Raman scattering, which is a Raman process injected by a seeded light field. It is correlated with the initially prepared atomic spin excitation and driven by the quasi-standing-wave pump fields, and the processes are repeated until the Stokes intensities are saturated. Such an enhanced Raman scattering may find applications in quantum information, nonlinear optics, and optical metrology due to its simplicity. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474095, 11274118, and 91536114).

  12. Redistribution of light frequency by multiple scattering in a resonant atomic vapor

    CERN Document Server

    Carvalho, J C de A; Oriá, M; Chevrollier, M; de Silans, T Passerat

    2015-01-01

    The propagation of light in a resonant atomic vapor can \\textit{a priori} be thought of as a multiple scattering process, in which each scattering event redistributes both the direction and the frequency of the photons. Particularly, the frequency redistribution may result in L\\'evy flights of photons, directly affecting the transport properties of light in a resonant atomic vapor and turning this propagation into a superdifusion process. Here, we report on a Monte-Carlo simulation developed to study the evolution of the spectrum of the light in a resonant thermal vapor. We observe the gradual change of the spectrum and its convergence towards a regime of Complete Frequency Redistribution as the number of scattering events increases. We also analyse the probability density function of the step length of photons between emissions and reabsorptions in the vapor, which governs the statistics of the light diffusion. We observe two different regime in the light transport: superdiffusive when the vapor is excited n...

  13. Light scattering studies of solids and atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, T.C.

    1978-09-01

    The general technique of light scattering and luminescence was used to study the properties of a number of material systems. First, multi-phonon resonant Raman scattering up to four phonons in GaSe and one- and two-phonon resonant Raman scattering in the mixed GaS/sub x/Se/sub 1-x/ crystals with x < or = 0.23 were investigated. Second, the observation of one-phonon resonant Raman scattering in HfS/sub 2/ is reported. The result is used to determine the position of the direct gap of HfS/sub 2/. Third, the first observation of the ..pi..-polarized one-magnon luminescence sideband of the /sup 4/T/sub lg/ (/sup 4/G) ..-->.. /sup 6/A/sub lg/(/sup 6/S) excitonic transition in antiferromagnetic MnF/sub 2/ is presented. An effective temperature of the crystal is deduced from the simultaneously observed anti-Stokes sideband emission. Multi-magnon (< or = 7) excitonic luminescence sidebands were also observed in MnF/sub 2/, KMnF/sub 2/, and RbMnF/sub 3/ using pulsed excitation and detection. A simple model based on two-ion local exchange is proposed to explain the results qualitatively. Fourth, the first observation of two-magnon resonant Raman scattering in MnF/sub 2/ around the magnon sidebands is reported. A simple theoretical description explains the experimental observations. Fifth, a detailed theory of exciton-exciton interaction in MnF/sub 2/ is developed to explain and to predict the experimental results on two-exciton absorption, high level excitation, and exciton--exciton scattering. Sixth, Brillouin scattering was used to obtain the five independent elastic constants of the layered compound GaSe. The results show clear elastic anisotropy of the crystal. Resonant Brillouin scattering near the absorption edge was also studied, but no resonant enhancement was found. Seventh, two-photon parametric scattering in sodium vapor was studied. Phase matching angles and scattering cross sections are calculated for a given set of experimental conditions.

  14. Temporal intensity correlation of light scattered by a hot atomic vapor

    CERN Document Server

    Dussaux, A; Guerin, W; Alibart, O; Tanzilli, S; Vakili, F; Kaiser, R

    2016-01-01

    We present temporal intensity correlation measurements of light scattered by a hot atomic vapor. Clear evidence of photon bunching is shown at very short time-scales (ns) imposed by the Doppler broadening of the hot vapor. Moreover, we demonstrate that some relevant information about the scattering process, such as the ratio of single to multiple scattering, can be deduced from the measured intensity correlation function. These measurements confirm the interest of temporal intensity correlation measurements to access non-trivial spectral features, with potential applications in astrophysics.

  15. Characterization of Bioeffects on Endothelial Cells under Acoustic Droplet Vaporization.

    Science.gov (United States)

    Seda, Robinson; Li, David S; Fowlkes, J Brian; Bull, Joseph L

    2015-12-01

    Gas embolotherapy is achieved by locally vaporizing microdroplets through acoustic droplet vaporization, which results in bubbles that are large enough to occlude blood flow directed to tumors. Endothelial cells, lining blood vessels, can be affected by these vaporization events, resulting in cell injury and cell death. An idealized monolayer of endothelial cells was subjected to acoustic droplet vaporization using a 3.5-MHz transducer and dodecafluoropentane droplets. Treatments included insonation pressures that varied from 2 to 8 MPa (rarefactional) and pulse lengths that varied from 4 to 16 input cycles. The bubble cloud generated was directly dependent on pressure, but not on pulse length. Cellular damage increased with increasing bubble cloud size, but was limited to the bubble cloud area. These results suggest that vaporization near the endothelium may impact the vessel wall, an effect that could be either deleterious or beneficial depending on the intended overall therapeutic application.

  16. Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor

    CERN Document Server

    Jones, D E; Pittman, T B

    2015-01-01

    We demonstrate ladder-type electromagnetically induced transparency (EIT) using an optical nanofiber suspended in a warm rubidium vapor. The signal and control fields are both guided along the nanofiber, which enables strong nonlinear interactions with the surrounding atoms at relatively low powers. Transit-time broadening is found to be a significant EIT decoherence mechanism in this tightly-confined waveguiding geometry. Nonetheless, we observe significant EIT and controlled polarization rotation using control-field powers of only a few microWatts in this relatively robust warm-atom nanofiber system.

  17. Relative-intensity squeezing at audio frequencies using four-wave mixing in an atomic vapor

    CERN Document Server

    McCormick, C F; Lett, P D; Marino, A M

    2007-01-01

    We demonstrate the use of four-wave mixing in hot atomic vapor to generate up to -7.1 dB of measured relative-intensity squeezing. Due to its intrinsic simplicity, our system is strongly decoupled from environmental noise, and we observe more than -4 dB of squeezing down to frequencies as low as 5 kHz. This robust source of narrowband squeezed light may be useful for a variety of applications, such as coupling to atomic ensembles and enhancing the sensitivity of photothermal spectroscopy.

  18. Eigenmode description of Raman scattering in atomic vapors in the presence of decoherence

    OpenAIRE

    Kolodynski, Jan; Chwedenczuk, Jan; Wasilewski, Wojciech

    2012-01-01

    A theoretical model describing the Raman scattering process in atomic vapors is constructed. The treatment investigates the low-excitation regime suitable for modern experimental applications. Despite the incorporated decoherence effects (possibly mode dependent) it allows for a direct separation of the time evolution from the spatial degrees of freedom. The impact of noise on the temporal properties of the process is examined. The model is applied in two experimentally relevant situations of...

  19. Enhanced light-vapor interactions and all optical switching in a chip scale micro-ring resonator coupled with atomic vapor

    CERN Document Server

    Stern, Liron; Mazurski, Noa; Levy, Uriel

    2016-01-01

    The coupling of atomic and photonic resonances serves as an important tool for enhancing light-matter interactions and enables the observation of multitude of fascinating and fundamental phenomena. Here, by exploiting the platform of atomic-cladding wave guides, we experimentally demonstrate the resonant coupling of rubidium vapor and an atomic cladding micro ring resonator. Specifically, we observed cavity-atom coupling in the form of Fano resonances having a distinct dependency on the relative frequency detuning between the photonic and the atomic resonances. Moreover, we were able to significantly enhance the efficiency of all optical switching in the V-type pump-probe scheme. The coupled system of micro-ring resonator and atomic vapor is a promising building block for a variety of light vapor experiments, as it offers a very small footprint, high degree of integration and extremely strong confinement of light and vapor. As such it may be used for important applications, such as all optical switching, disp...

  20. Very large optical rotation generated by Rb vapor in a multi-pass cell

    CERN Document Server

    Li, S; Sheng, D; Dural, N; Romalis, M V

    2011-01-01

    Paramagnetic Faraday rotation is a powerful technique for atom sensing widely used in quantum non-demolition measurements, fundamental symmetry tests, and other precision measurements. We demonstrate the use of a multi-pass optical cell for Faraday rotation spectroscopy and observe polarization rotation in excess of 100 radians from spin-polarized Rb vapor. Unlike optical cavities, multi-pass cells have a deterministic number of light passes and can be used to measure large optical rotations. We also observe a 10-fold suppression of transverse spin relaxation when Rb atoms are placed in a coherent superposition state immune to spin-exchange collisions.

  1. Dynamics of Finite Energy Airy Beams Carrying Orbital Angular Momentum in Multilevel Atomic Vapors

    Science.gov (United States)

    Wu, Zhenkun; Wang, Shun; Hu, Weifei; Gu, Yuzong

    2016-10-01

    We numerically investigate the dynamics of inward circular finite-energy Airy beams carrying different orbital angular momentum (OAM) numbers in a close-Λ three-level atomic vapor with the electromagnetically induced transparency (EIT) window. We report that due to the EIT induced by the microwave field, the transverse intensity distribution properties of Airy beam can be feasibly manipulated and modulated through adjusting OAM numbers l and the frequency detuning, as well as the propagation distance, in the multi-level atomic systems. What's more, the rotation of the beam also can be observed with different positions in atomic ensembles. The investigation may provide a useful tool for studying particle manipulation, signal processing and propagation in graded-index (GRIN) fibers.

  2. Eigenmode description of Raman scattering in atomic vapors in the presence of decoherence

    CERN Document Server

    Chwedenczuk, Jan; Wasilewski, Wojciech

    2012-01-01

    A theoretical model describing the Raman scattering process in atomic vapors is constructed. Despite the incorporated decoherence effects, it allows for a direct separation of system's time evolution from its spatial degrees of freedom. The impact of noise on the temporal properties of the system is investigated. In particular, it is shown that even in the presence of decoherence, the estimation of the number of spin waves created in the process can reach sensitivity below the projection noise limit. The model is then applied in two experimentally relevant situations of ultra-cold and room-temperature atoms. In both cases, the spatial eigenmodes of the Stokes photon and atomic excitation fields and their coupling parameters are computed.

  3. Bose–Einstein condensation in a vapor of sodium atoms in an electric field

    Energy Technology Data Exchange (ETDEWEB)

    You, Pei-Lin, E-mail: youpeli@163.com

    2016-06-15

    Bose–Einstein condensation (BEC) at normal temperature (T=343K) has been observed because an electric field was first applied. There are two ways to achieve phase transition: lower the temperature of Bose gas or increase its density. This article provides more appropriate method: increase the voltage. In theory, 3s and 3p states of sodium are not degenerate, but Na may be polar atom doesnot conflict with quantum mechanics because it is hydrogen-like atom. Our innovation lies in we applied an electric field used for the orientation polarization. Na vapor was filled in a cylindrical capacitor. In order to determine the polarity of sodium, we measured the capacitance at different temperatures. If Na is non-polar atom, its capacitance should be independent of temperature because the nucleus of atom is located at the center of the electron cloud. But our experiment shows that its capacitance is related to temperature, so Na is polar atom. In order to achieve Na vapor phase transition, we measured the capacitance at different voltages. From the entropy of Na vapor S=0, the critical voltage V{sub c}=68volts. When Vatoms are in random orientation S>0; when V>V{sub c}, the atoms become aligned with the field S<0, phase transition occurred. When V=390 volts »V{sub c}, the capacitance decreased from C=1.9C{sub 0} to C≈C{sub 0} (C{sub 0} is the vacuum capacitance), this result implies that almost all the Na atoms (more than 98%) are aligned with the field, Na vapor entered quasi-vacuum state. We create a BEC with 2.506×10{sup 17} atoms, condensate fraction reached 98.9%. This is BEC in momentum space. Our experiment shows that if a Bose gas enters quasi-vacuum state, this also means that it underwent phase transition and generates BEC. Therefore, quasi-vacuum state of alkali gas is essentially large-scale BEC. This is an unexpected discovery. BEC and vacuum theory are two unrelated research areas, but now they are closely linked together. The maximum

  4. Synthesis of magnetic tunnel junctions with full in situ atomic layer and chemical vapor deposition processes

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Vangelista, S.; Kutrzeba-Kotowska, B.; Cocco, S.; Lamperti, A.; Tallarida, G. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Mameli, D. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienze Chimiche, Universita di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, Universita degli studi Milano-Bicocca, Via R Cozzi 53, 20125 Milano (Italy)

    2012-05-01

    Magnetic tunnel junctions, i.e. the combination of two ferromagnetic electrodes separated by an ultrathin tunnel oxide barrier, are core elements in a large variety of spin-based devices. We report on the use of combined chemical vapor and atomic layer deposition processes for the synthesis of magnetic tunnel junctions with no vacuum break. Structural, chemical and morphological characterizations of selected ferromagnetic and oxide layers are reported, together with the evidence of tunnel magnetoresistance effect in patterned Fe/MgO/Co junctions.

  5. Iodine Determination by Microwave Plasma Torch Atomic Emission Spectrometer Coupled with Online Preconcentration Vapor Generation Technique

    Institute of Scientific and Technical Information of China (English)

    FEI Yan-qun; LUO Gui-min; FENG Guo-dong; CHEN Huan-wen; FEI Qiang; HUAN Yan-fu; JIN Qin-han

    2008-01-01

    This article focuses on iodine determination by microwave plasma torch atomic emission spectrometry (MPT-AES) coupled with online preconcentration vapor generation method.A new desolvation device,multistrand Nation dryer,was used as the substitute for condenser desolvation system.Some experimental conditions,such as preconcentration time,acidity of sample solution,rinsing solution acidity and dynamic linear range were investigated and optimized.The new desolvation system eliminates the problem of decreasing emission intensity of I(I) 206.238 nm line with the increase of working time on a conventional condenser desolvation system,thus greatly improving the reproducibility.

  6. Modulation of the photonic band structure topology of a honeycomb lattice in an atomic vapor

    CERN Document Server

    Zhang, Yiqi; Belić, Milivoj R; Wu, Zhenkun; Zhang, Yanpeng

    2015-01-01

    In an atomic vapor, a honeycomb lattice can be constructed by utilizing the three-beam interference method. In the method, the interference of the three beams splits the dressed energy level periodically, forming a periodic refractive index modulation with the honeycomb profile. The energy band topology of the honeycomb lattice can be modulated by frequency detunings, thereby affecting the appearance (and disappearance) of Dirac points and cones in the momentum space. This effect can be usefully exploited for the generation and manipulation of topological insulators.

  7. Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    2016-11-01

    Full Text Available Hexagonal boron nitrite (h-BN is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.

  8. Fabrication and characterization of an electrically contacted vapor cell

    CERN Document Server

    Daschner, Renate; Kübler, Harald; Frühauf, Norbert; Kurz, Eberhard; Löw, Robert; Pfau, Tilman

    2012-01-01

    We demonstrate the use of electrically contacted vapor cells to switch the transmission of a probe laser. The excitation scheme makes use of electromagnetically induced transparency involving a Rydberg state. The cell fabrication technique involves thinfilm based electric feedthroughs which are well suited for scaling this concept to many addressable pixels like in flat panel displays.

  9. Fabrication and characterization of an electrically contacted vapor cell.

    Science.gov (United States)

    Daschner, R; Ritter, R; Kübler, H; Frühauf, N; Kurz, E; Löw, R; Pfau, T

    2012-06-15

    We demonstrate the use of electrically contacted vapor cells to switch the transmission of a probe laser. The excitation scheme makes use of electromagnetically induced transparency involving a Rydberg state. The cell fabrication technique involves thin-film-based electric feedthroughs, which are well suited for scaling this concept to many addressable pixels like in flat panel displays.

  10. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G.

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnOx-CVD layers.

  11. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers.

  12. Quantum correlations by four-wave-mixing in atomic vapor. Theory and Experiments

    CERN Document Server

    Glorieux, Quentin

    2011-01-01

    We study both theoretically and experimentally the generation of quantum correlations in the continuous variable regime by way of four-wave mixing in a hot atomic vapor. Two theoretical approaches have been developed. On one side, we study the four-wave mixing under the "classical" non-linear optics point of view. In such a way we obtain the evolution equation for an ideal linear amplifier in a {\\chi}^(3) medium. On the other side, we present a microscopic model with 4 levels in the double-{\\Lambda} configuration to calculate the {\\chi}^(3) coefficient in a atomic vapor dressed with a laser. This calculation allows us to derive the spectra of intensity noise for interesting parameters. The experimental part of this work describes the demonstration of this effect on the D1 line of rubidium 85. We present a measurement of relative intensity squeezing as high as -9.2dB below the standard quantum limit, and an original regime where quantum correlations have been measured without amplification.These results have b...

  13. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    CERN Document Server

    Seltzer, S J; Donaldson, M H; Balabas, M V; Barber, S K; Bernasek, S L; Bouchiat, M -A; Hexemer, A; Hibberd, A M; Kimball, D F Jackson; Jaye, C; Karaulanov, T; Narducci, F A; Rangwala, S A; Robinson, H G; Voronov, D L; Yashchuk, V V; Pines, A; Budker, D

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We present a survey of modern surface science techniques applied to the study of paraffin coatings, in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present with...

  14. Formation and Transport of Atomic Hydrogen in Hot-Filament Chemical Vapor Deposition Reactors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant ishydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers forheat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phaseheat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature andH concentration distributions between the filament and the substrate. Examination of the relative importance ofhomogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecularhydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociationrates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the liter-ature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociationrates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lowereffective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heattransfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination.

  15. Are endothelial cell bioeffects from acoustic droplet vaporization proximity dependent?

    Science.gov (United States)

    Seda, Robinson; Li, David; Fowlkes, J. Brian; Bull, Joseph

    2013-11-01

    Acoustic droplet vaporization (ADV) produces gas microbubbles that provide a means of selective occlusion in gas embolotherapy. Vaporization and subsequent occlusion occur inside blood vessels supplying the targeted tissue, such as tumors. Theoretical and computational studies showed that ADV within a vessel can impart high fluid mechanical stresses on the vessel wall. Previous in vitro studies have demonstrated that vaporization at an endothelial layer may affect cell attachment and viability. The current study is aimed at investigating the role of vaporization distance away from the endothelial layer. HUVECs were cultured in OptiCell™ chambers until reaching confluence. Dodecafluoropentane microdroplets were added, attaining a 10:1 droplet to cell ratio. A single ultrasound pulse (7.5 MHz) consisting of 16 cycles (~ 2 μs) and a 5 MPa peak rarefactional pressure was used to produce ADV while varying the vaporization distance from the endothelial layer (0 μm, 500 μm, 1000 μm). Results indicated that cell attachment and viability was significantly different if the distance was 0 μm (at the endothelial layer). Other distances were not significantly different from the control. ADV will significantly affect the endothelium if droplets are in direct contact with the cells. Droplet concentration and flow conditions inside blood vessels may play an important role. This work was supported by NIH grant R01EB006476.

  16. Direct atomic absorption determination of cadmium and lead in strongly interfering matrices by double vaporization with a two-step electrothermal atomizer

    Science.gov (United States)

    Grinshtein, Ilia L.; Vilpan, Yuri A.; Saraev, Alexei V.; Vasilieva, Lubov A.

    2001-03-01

    Thermal pretreatment of a sample using double vaporization in a two-step atomizer with a purged vaporizer makes possible the direct analysis of samples with strongly interfering matrices including solids. A porous-graphite capsule or a filter inserted into the vaporizer is used for solid sample analysis. The technique was used for the direct determination of Cd and Pb in human urine, potatoes, wheat, bovine liver, milk powder, grass-cereal mixtures, caprolactam, bituminous-shale and polyvinyl chloride plastic without chemical modification or any other sample pretreatment.

  17. Impurity detection in alkali-metal vapor cells via nuclear magnetic resonance

    Science.gov (United States)

    Patton, B.; Ishikawa, K.

    2016-11-01

    We use nuclear magnetic resonance spectroscopy of alkali metals sealed in glass vapor cells to perform in situ identification of chemical contaminants. The alkali Knight shift varies with the concentration of the impurity, which in turn varies with temperature as the alloy composition changes along the liquidus curve. Intentional addition of a known impurity validates this approach and reveals that sodium is often an intrinsic contaminant in cells filled with distilled, high-purity rubidium or cesium. Measurements of the Knight shift of the binary Rb-Na alloy confirm prior measurements of the shift's linear dependence on Na concentration, but similar measurements for the Cs-Na system demonstrate an unexpected nonlinear dependence of the Knight shift on the molar ratio. This non-destructive approach allows monitoring and quantification of ongoing chemical processes within the kind of vapor cells which form the basis for precise sensors and atomic frequency standards.

  18. Polarization squeezing of light by single passage through an atomic vapor

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, S.; Valente, P.; Failache, H.; Lezama, A. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, J. Herrera y Reissig 565, 11300 Montevideo (Uruguay)

    2011-09-15

    We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant {sup 87}Rb vapor cell. Significant polarization squeezing at the threshold level (-3dB) required for the implementation of several continuous-variable quantum protocols was observed. The extreme simplicity of the setup, which is based on standard polarization components, makes it particularly convenient for quantum information applications.

  19. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    Energy Technology Data Exchange (ETDEWEB)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G., E-mail: gaetano.mileti@unine.ch [Laboratoire Temps-Fréquence, University of Neuchâtel, Neuchâtel 2000 (Switzerland); Shea, H. [Microsystems for Space Technologies Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel 2002 (Switzerland)

    2014-02-03

    Miniature (vapor-cell based devices using optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  20. Atomic force microscopy in cell biology

    Institute of Scientific and Technical Information of China (English)

    LU Zhexue; ZHANG Zhiling; PANG Daiwen

    2005-01-01

    The history, characteristic, operation modes and coupling techniques of atomic force microscopy (AFM) are introduced. Then the application in cell biology is reviewed in four aspects: cell immobilization methods, cell imaging, force spectrum study and cell manipulation. And the prospect of AFM application in cell biology is discussed.

  1. Determination of mercury in phosphate fertilizers by cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    de Jesus, Robson M; Silva, Laiana O B; Castro, Jacira T; de Azevedo Neto, Andre D; de Jesus, Raildo M; Ferreira, Sergio L C

    2013-03-15

    In this paper, a method for the determination of mercury in phosphate fertilizers using slurry sampling and cold vapor atomic absorption spectrometry (CV QT AAS) is proposed. Because mercury (II) ions form strong complexes with phosphor compounds, the formation of metallic mercury vapor requires the presence of lanthanum chloride as a release agent. Thiourea increases the amount of mercury that is extracted from the solid sample to the liquid phase of the slurry. The method is established using two steps. First, the slurry is prepared using the sample, lanthanum chloride, hydrochloric acid solution and thiourea solution and is sonicated for 20 min. Afterward, mercury vapor is generated using an aliquot of the slurry in the presence of the hydrochloric acid solution and isoamylic alcohol with sodium tetrahydroborate solution as the reducing agent. The experimental conditions for slurry preparation were optimized using two-level full factorial design involving the factors: thiourea and lanthanum chloride concentrations and the duration of sonication. The method allows the determination of mercury by external calibration using aqueous standards with limits of detection and quantification of 2.4 and 8.2 μg kg(-1), respectively, and precision, expressed as relative standard deviation, of 6.36 and 5.81% for two phosphate fertilizer samples with mercury concentrations of 0.24 and 0.57 mg kg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of phosphate fertilizer that was provided by the National Institute of Standards & Technology (NIST). The method was applied to determine mercury in six commercial samples of phosphate fertilizers. The mercury content varied from 33.97 to 209.28 μg kg(-1). These samples were also analyzed employing inductively coupled plasma mass spectrometry (ICP-MS). The ICP-MS results were consistent with the results from our proposed method.

  2. Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors

    CERN Document Server

    Dąbrowski, Michał; Wasilewski, Wojciech

    2015-01-01

    Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here we report a combination of magnetically tuned absorption and Faraday filters, both light-direction-insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal to noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman-scattered photons.

  3. Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors

    Science.gov (United States)

    Dąbrowski, M.; Chrapkiewicz, R.; Wasilewski, W.

    2016-11-01

    Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here, we report a combination of magnetically tuned absorption and Faraday filters, both light-direction insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal-to-noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman scattered photons.

  4. Wet Etching of Heat Treated Atomic Layer Chemical Vapor Deposited Zirconium Oxide in HF Based Solutions

    Science.gov (United States)

    Balasubramanian, Sriram; Raghavan, Srini

    2008-06-01

    Alternative materials are being considered to replace silicon dioxide as gate dielectric material. Of these, the oxides of hafnium and zirconium show the most promise. However, integrating these new high-k materials into the existing complementary metal-oxide-semiconductor (CMOS) process remains a challenge. One particular area of concern is the wet etching of heat treated high-k dielectrics. In this paper, work done on the wet etching of heat treated atomic layer chemical vapor deposited (ALCVD) zirconium oxide in HF based solutions is presented. It was found that heat treated material, while refractory to wet etching at room temperature, is more amenable to etching at higher temperatures when methane sulfonic acid is added to dilute HF solutions. Selectivity over SiO2 is still a concern.

  5. Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors.

    Science.gov (United States)

    Dąbrowski, M; Chrapkiewicz, R; Wasilewski, W

    2016-11-12

    Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here, we report a combination of magnetically tuned absorption and Faraday filters, both light-direction insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal-to-noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman scattered photons.

  6. Determination of mercury in rice by cold vapor atomic fluorescence spectrometry after microwave-assisted digestion

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria Jose da [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain); Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Cidade Universitaria, 50740-550 Recife, PE (Brazil); Paim, Ana Paula S. [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Cidade Universitaria, 50740-550 Recife, PE (Brazil); Pimentel, Maria Fernanda [Departamento de Engenharia Quimica, Universidade Federal de Pernambuco, Recife, PE (Brazil); Cervera, M. Luisa, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain); Guardia, Miguel de la [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain)

    2010-05-14

    A cold vapor atomic fluorescence spectrometry method (CV-AFS) has been developed for the determination of Hg in rice samples at a few ng g{sup -1} concentration level. The method is based on the previous digestion of samples in a microwave oven with HNO{sub 3} and H{sub 2}O{sub 2} followed by dilution with water containing KBr/KBrO{sub 3} and hydroxylamine and reduction with SnCl{sub 2} in HCl using external calibration. The matrix interferences and the effect of nitrogen oxide vapors have been evaluated and the method validated using a certified reference material. The limit of detection of the method was 0.9 ng g{sup -1} with a recovery percentage of 95 {+-} 4% at an added concentration of 5 ng g{sup -1}. The concentration level of Hg found in 24 natural rice samples from different origin ranged between 1.3 and 7.8 ng g{sup -1}.

  7. Methylmercury determination using a hyphenated high performance liquid chromatography ultraviolet cold vapor multipath atomic absorption spectrometry system

    Science.gov (United States)

    Campos, Reinaldo C.; Gonçalves, Rodrigo A.; Brandão, Geisamanda P.; Azevedo, Marlo S.; Oliveira, Fabiana; Wasserman, Julio

    2009-06-01

    The present work investigates the use of a multipath cell atomic absorption mercury detector for mercury speciation analysis in a hyphenated high performance liquid chromatography assembly. The multipath absorption cell multiplies the optical path while energy losses are compensated by a very intense primary source. Zeeman-effect background correction compensates for non-specific absorption. For the separation step, the mobile phase consisted in a 0.010% m/v mercaptoethanol solution in 5% methanol (pH = 5), a C 18 column was used as stationary phase, and post column treatment was performed by UV irradiation (60 °C, 13 W). The eluate was then merged with 3 mol L - 1 HCl, reduction was performed by a NaBH 4 solution, and the Hg vapor formed was separated at the gas-liquid separator and carried through a desiccant membrane to the detector. The detector was easily attached to the system, since an external gas flow to the gas-liquid separator was provided. A multivariate approach was used to optimize the procedure and peak area was used for measurement. Instrumental limits of detection of 0.05 µg L - 1 were obtained for ionic (Hg 2+) and HgCH 3+, for an injection volume of 200 µL. The multipath atomic absorption spectrometer proved to be a competitive mercury detector in hyphenated systems in relation to the most commonly used atomic fluorescence and inductively coupled plasma mass spectrometric detectors. Preliminary application studies were performed for the determination of methyl mercury in sediments.

  8. Methylmercury determination using a hyphenated high performance liquid chromatography ultraviolet cold vapor multipath atomic absorption spectrometry system

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Reinaldo C. [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S Vicente 225, 22453-900 Rio de Janeiro (Brazil)], E-mail: rccampos@puc-rio.br; Goncalves, Rodrigo A.; Brandao, Geisamanda P.; Azevedo, Marlo S. [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S Vicente 225, 22453-900 Rio de Janeiro (Brazil); Oliveira, Fabiana; Wasserman, Julio [Institut of Geosciences, Fluminense Federal University, Av. Gal. Milton Tavares de Souza, s/n, 24.210-340, Niteroi, Rio de Janeiro (Brazil)

    2009-06-15

    The present work investigates the use of a multipath cell atomic absorption mercury detector for mercury speciation analysis in a hyphenated high performance liquid chromatography assembly. The multipath absorption cell multiplies the optical path while energy losses are compensated by a very intense primary source. Zeeman-effect background correction compensates for non-specific absorption. For the separation step, the mobile phase consisted in a 0.010% m/v mercaptoethanol solution in 5% methanol (pH = 5), a C{sub 18} column was used as stationary phase, and post column treatment was performed by UV irradiation (60 deg. C, 13 W). The eluate was then merged with 3 mol L{sup -1} HCl, reduction was performed by a NaBH{sub 4} solution, and the Hg vapor formed was separated at the gas-liquid separator and carried through a desiccant membrane to the detector. The detector was easily attached to the system, since an external gas flow to the gas-liquid separator was provided. A multivariate approach was used to optimize the procedure and peak area was used for measurement. Instrumental limits of detection of 0.05 {mu}g L{sup -1} were obtained for ionic (Hg{sup 2+}) and HgCH{sub 3}{sup +}, for an injection volume of 200 {mu}L. The multipath atomic absorption spectrometer proved to be a competitive mercury detector in hyphenated systems in relation to the most commonly used atomic fluorescence and inductively coupled plasma mass spectrometric detectors. Preliminary application studies were performed for the determination of methyl mercury in sedi0011men.

  9. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    Science.gov (United States)

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  10. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Chikoidze, E.; Dumont, Y. [GEMaC, Université de Versailles St. Quentin en Yvelines-CNRS, Versailles (France); Fanciulli, M. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Milano (Italy)

    2014-05-07

    R-Fe-O (R = rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er{sub 2}O{sub 3} and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO{sub 3} and ErFe{sub 2}O{sub 4} phases develop following subsequent thermal annealing processes at 850 °C in air and N{sub 2}. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  11. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    Science.gov (United States)

    Mantovan, R.; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G.; Chikoidze, E.; Dumont, Y.; Fanciulli, M.

    2014-05-01

    R-Fe-O (R = rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er2O3 and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO3 and ErFe2O4 phases develop following subsequent thermal annealing processes at 850 °C in air and N2. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  12. Electromagnetically-induced transparency in Cs and Rb in the same vapor cell

    Science.gov (United States)

    Simons, Matt; Gordon, Joshua; Holloway, Christopher

    2016-05-01

    We demonstrate simultaneous electromagnetically-induced transparency (EIT) in both cesium and rubidium in the same vapor cell with coincident optical fields. Each atomic system can detect radio frequency (RF) field strengths through modification of the EIT signal. We show that these two systems can detect the same RF field strength simultaneously. This allows us to perform the same measurement in two effective ``laboratories,'' providing an immediate independent reference, which will lead to an SI-traceable RF E-field measurement. We examine the impact of coincident, simultaneous EIT on RF field metrology and the EIT signal.

  13. Improved preparation of small biological samples for mercury analysis using cold vapor atomic absorption spectroscopy.

    Science.gov (United States)

    Adair, B M; Cobb, G P

    1999-05-01

    Concentrations of mercury in biological samples collected for environmental studies are often less than 0.1 microgram/g. Low mercury concentrations and small organ sizes in many wildlife species (approximately 0.1 g) increase the difficulty of mercury determination at environmentally relevant concentrations. We have developed a digestion technique to extract mercury from small (0.1 g), biological samples at these relevant concentrations. Mean recoveries (+/- standard error) from validation trials of mercury fortified tissue samples using cold vapor atomic absorption spectroscopy for analysis ranged from 102 +/- 4.3% (2.5 micrograms/L, n = 15) to 108 +/- 1.4% (25 micrograms/L, n = 15). Recoveries of inorganic mercury were 99 +/- 5 (n = 19) for quality assurance samples analyzed during environmental evaluations conducted during a 24 month period. This technique can be used to determine total mercury concentrations of 60 ng Hg/g sample. Samples can be analyzed in standard laboratories in a short time, at minimal cost. The technique is versatile and can be used to determine mercury concentrations in several different matrices, limiting the time and expense of method development and validation.

  14. Characterizing passive coherent population trapping resonance in a cesium vapor cell filled with neon buffer gas

    Institute of Scientific and Technical Information of China (English)

    Liu Zhi; Wang Jie-Ying; Diao Wen-Ting; He Jun; Wang Jun-Min

    2013-01-01

    We present a pair of phase-locked lasers with a 9.2-GHz frequency difference through the injection locking of a master laser to the RF-modulation sideband of a slave diode laser.Using this laser system,a coherent population trapping (CPT)signal with a typical linewidth of ~ 182 Hz is obtained in a cesium vapor cell filled with 30 Torr (4 kPa) of neon as the buffer gas.We investigate the influence of the partial pressure of the neon buffer gas on the CPT linewidth,amplitude,and frequency shift.The results may offer some references for CPT atomic clocks and CPT atomic magnetometers.

  15. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  16. A double cell for X-ray absorption spectrometry of atomic Zn

    CERN Document Server

    Mihelic, A; Arcon, I; Padeznik-Gomilsek, J; Borowski, M

    2002-01-01

    A high-temperature cell with a double wall design has been constructed for X-ray absorption spectrometry of metal vapors. The inner cell, assembled from a corundum tube and thin plates without welding or reshaping, serves as a container of the vapor sample. It is not vacuum tight: instead, the outer tube provides inert atmosphere. Several spectra of K-edge atomic absorption of Zn were obtained in the stationary working regime below the Zn boiling point. The K-edge profile shows an extremely strong resonance and, above the continuum threshold, coexcitations of the outer electrons.

  17. Sub-natural $N$-type Resonance in Cesium Atomic Vapor: splitting in magnetic fields

    CERN Document Server

    Slavov, D; Sarkisyan, D; Mirzoyan, R; Krasteva, A; Wilson-Gordon, A D; Cartaleva, S

    2013-01-01

    The sub-natural-width $N$-type resonance in {\\Lambda}-system, on the $D_2$ line of Cs atoms is studied for the first time in the presence of a buffer gas (neon) and the radiations of two continuous narrow band diode lasers. $L$ = 1 cm long cell is used to investigate $N$-type process. The $N$-type resonance in a magnetic field for $^{133}$Cs atoms is shown to split into seven or eight components, depending on the magnetic field and laser radiation directions. The results obtained indicate that levels $F_g$ = 3, 4 are initial and final in the N resonance formation. The experimental results with magnetic field agree well with the theoretical curves.

  18. Adsorption kinetics of surfactants at liquid-solid and liquid-vapor interfaces from atomic-scale simulations

    Science.gov (United States)

    Iskrenova, Eugeniya K.; Patnaik, Soumya S.

    2012-02-01

    Nucleate pool boiling of pure liquid is a complex process involving different size- and time-scale phenomena. The appearance of the first nanobubble in the liquid at the bottom of a hot pan, the detachment of the bubble from the solid surface, its subsequent coalescence with other bubbles, all represent complex multiscale phenomena. Surfactants added to water increase the complexity of the process by contributing to the dynamic surface tension at the liquid-vapor and liquid-solid interfaces and thus affecting the heat and mass transfer at those interfaces. We apply molecular dynamics simulations to study the adsorption kinetics of anionic, cationic, and non-ionic surfactants at liquid/solid and liquid/vapor interfaces. The all-atom vs. united-atom approaches for the solid and surfactants are surveyed in view of their applicability at near boiling temperatures and a range of model water potentials is assessed for reproducing the thermal properties of water at boiling conditions.

  19. Simple analysis of total mercury and methylmercury in seafood using heating vaporization atomic absorption spectrometry.

    Science.gov (United States)

    Yoshimoto, Keisuke; Anh, Hoang Thi Van; Yamamoto, Atsushi; Koriyama, Chihaya; Ishibashi, Yasuhiro; Tabata, Masaaki; Nakano, Atsuhiro; Yamamoto, Megumi

    2016-01-01

    This study aimed to develop a simpler method for determining total mercury (T-Hg) and methylmercury (MeHg) in biological samples by using methyl isobutyl ketone (MIBK) in the degreasing step. The fat in the samples was extracted by MIBK to the upper phase. T-Hg transferred into the water phase. This was followed by the extraction of MeHg from the water phase using HBr, CuCl2 and toluene. The MeHg fraction was reverse-extracted into L-cysteine-sodium acetate solution from toluene. The concentrations of T-Hg and MeHg were determined by heating vaporization atomic absorption spectrometry. Certified reference materials for T-Hg and MeHg in hair and fish were accurately measured using this method. This method was then applied to determine T-Hg and MeHg concentrations in the muscle, liver and gonads of seafood for the risk assessment of MeHg exposure. The mean T-Hg and MeHg concentrations in squid eggs were 0.023 and 0.022 µg/g, and in squid nidamental glands 0.052 and 0.049 µg/g, respectively. The MeHg/T-Hg ratios in the eggs and nidamental glands of squid were 94.4% and 96.5%, respectively. The mean T-Hg and MeHg concentrations in the gonads of sea urchins were 0.043 and 0.001 µg/g, respectively, with a MeHg/T-Hg ratio of 3.5%. We developed an efficient analytical method for T-Hg and MeHg using MIBK in the degreasing step. The new information on MeHg concentration and MeHg/T-Hg ratios in the egg or nidamental glands of squid and gonads of sea urchin will also be useful for risk assessment of mercury in seafood.

  20. Atomic layer chemical vapor deposition of ZrO2-based dielectric films: Nanostructure and nanochemistry

    Science.gov (United States)

    Dey, S. K.; Wang, C.-G.; Tang, D.; Kim, M. J.; Carpenter, R. W.; Werkhoven, C.; Shero, E.

    2003-04-01

    A 4 nm layer of ZrOx (targeted x˜2) was deposited on an interfacial layer (IL) of native oxide (SiO, t˜1.2 nm) surface on 200 mm Si wafers by a manufacturable atomic layer chemical vapor deposition technique at 300 °C. Some as-deposited layers were subjected to a postdeposition, rapid thermal annealing at 700 °C for 5 min in flowing oxygen at atmospheric pressure. The experimental x-ray diffraction, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and high-resolution parallel electron energy loss spectroscopy results showed that a multiphase and heterogeneous structure evolved, which we call the Zr-O/IL/Si stack. The as-deposited Zr-O layer was amorphous ZrO2-rich Zr silicate containing about 15% by volume of embedded ZrO2 nanocrystals, which transformed to a glass nanoceramic (with over 90% by volume of predominantly tetragonal-ZrO2 (t-ZrO2) and monoclinic-ZrO2 (m-ZrO2) nanocrystals) upon annealing. The formation of disordered amorphous regions within some of the nanocrystals, as well as crystalline regions with defects, probably gave rise to lattice strains and deformations. The interfacial layer (IL) was partitioned into an upper SiO2-rich Zr silicate and the lower SiOx. The latter was substoichiometric and the average oxidation state increased from Si0.86+ in SiO0.43 (as-deposited) to Si1.32+ in SiO0.66 (annealed). This high oxygen deficiency in SiOx was indicative of the low mobility of oxidizing specie in the Zr-O layer. The stacks were characterized for their dielectric properties in the Pt/{Zr-O/IL}/Si metal oxide-semiconductor capacitor (MOSCAP) configuration. The measured equivalent oxide thickness (EOT) was not consistent with the calculated EOT using a bilayer model of ZrO2 and SiO2, and the capacitance in accumulation (and therefore, EOT and kZr-O) was frequency dispersive, trends well documented in literature. This behavior is qualitatively explained in terms of the multilayer nanostructure and nanochemistry that

  1. Flow injection-chemical vapor generation atomic fluorescence spectrometry hyphenated system for organic mercury determination: A step forward

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, Valeria [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Biagi, Simona [National Research Council of Italy, C.N.R., Istituto per i Processi Chimico-Fisici - IPCF-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ghimenti, Silvia [University of Pisa, Department of Chemistry and Industrial Chemistry, Via Risorgimento 35, 56126 Pisa (Italy); Onor, Massimo; D' Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2011-11-15

    Monomethylmercury and ethylmercury were determined on line using flow injection-chemical vapor generation atomic fluorescence spectrometry without neither requiring a pre-treatment with chemical oxidants, nor UV/MW additional post column interface, nor organic solvents, nor complexing agents, such as cysteine. Inorganic mercury, monomethylmercury and ethylmercury were detected by atomic fluorescence spectrometry in an Ar/H{sub 2} miniaturized flame after sodium borohydride reduction to Hg{sup 0}, monomethylmercury hydride and ethylmercury hydride, respectively. The effect of mercury complexing agent such as cysteine, ethylendiaminotetracetic acid and HCl with respect to water and Ar/H{sub 2} microflame was investigated. The behavior of inorganic mercury, monomethylmercury and ethylmercury and their cysteine-complexes was also studied by continuous flow-chemical vapor generation atomic fluorescence spectrometry in order to characterize the reduction reaction with tetrahydroborate. When complexed with cysteine, inorganic mercury, monomethylmercury and ethylmercury cannot be separately quantified varying tetrahydroborate concentration due to a lack of selectivity, and their speciation requires a pre-separation stage (e.g. a chromatographic separation). If not complexed with cysteine, monomethylmercury and ethylmercury cannot be separated, as well, but their sum can be quantified separately with respect to inorganic mercury choosing a suitable concentration of tetrahydroborate (e.g. 10{sup -5} mol L{sup -1}), thus allowing the organic/inorganic mercury speciation. The detection limits of the flow injection-chemical vapor generation atomic fluorescence spectrometry method were about 45 nmol L{sup -1} (as mercury) for all the species considered, a relative standard deviation ranging between 1.8 and 2.9% and a linear dynamic range between 0.1 and 5 {mu}mol L{sup -1} were obtained. Recoveries of monomethylmercury and ethylmercury with respect to inorganic mercury were

  2. Flow injection-chemical vapor generation atomic fluorescence spectrometry hyphenated system for organic mercury determination: A step forward

    Science.gov (United States)

    Angeli, Valeria; Biagi, Simona; Ghimenti, Silvia; Onor, Massimo; D'Ulivo, Alessandro; Bramanti, Emilia

    2011-11-01

    Monomethylmercury and ethylmercury were determined on line using flow injection-chemical vapor generation atomic fluorescence spectrometry without neither requiring a pre-treatment with chemical oxidants, nor UV/MW additional post column interface, nor organic solvents, nor complexing agents, such as cysteine. Inorganic mercury, monomethylmercury and ethylmercury were detected by atomic fluorescence spectrometry in an Ar/H 2 miniaturized flame after sodium borohydride reduction to Hg 0, monomethylmercury hydride and ethylmercury hydride, respectively. The effect of mercury complexing agent such as cysteine, ethylendiaminotetracetic acid and HCl with respect to water and Ar/H 2 microflame was investigated. The behavior of inorganic mercury, monomethylmercury and ethylmercury and their cysteine-complexes was also studied by continuous flow-chemical vapor generation atomic fluorescence spectrometry in order to characterize the reduction reaction with tetrahydroborate. When complexed with cysteine, inorganic mercury, monomethylmercury and ethylmercury cannot be separately quantified varying tetrahydroborate concentration due to a lack of selectivity, and their speciation requires a pre-separation stage (e.g. a chromatographic separation). If not complexed with cysteine, monomethylmercury and ethylmercury cannot be separated, as well, but their sum can be quantified separately with respect to inorganic mercury choosing a suitable concentration of tetrahydroborate (e.g. 10 - 5 mol L - 1 ), thus allowing the organic/inorganic mercury speciation. The detection limits of the flow injection-chemical vapor generation atomic fluorescence spectrometry method were about 45 nmol L - 1 (as mercury) for all the species considered, a relative standard deviation ranging between 1.8 and 2.9% and a linear dynamic range between 0.1 and 5 μmol L - 1 were obtained. Recoveries of monomethylmercury and ethylmercury with respect to inorganic mercury were never less than 91%. Flow injection

  3. Comparison of Adsorbed Mercury Screening Method With Cold-Vapor Atomic Absorption Spectrophotometry for Determination of Mercury in Soil

    Science.gov (United States)

    Easterling, Donald F.; Hovanitz, Edward S.; Street, Kenneth W.

    2000-01-01

    A field screening method for the determination of elemental mercury in environmental soil samples involves the thermal desorption of the mercury from the sample onto gold and then the thermal desorption from the gold to a gold-film mercury vapor analyzer. This field screening method contains a large number of conditions that could be optimized for the various types of soils encountered. In this study, the conditions were optimized for the determination of mercury in silty clay materials, and the results were comparable to the cold-vapor atomic absorption spectrophotometric method of determination. This paper discusses the benefits and disadvantages of employing the field screening method and provides the sequence of conditions that must be optimized to employ this method of determination on other soil types.

  4. Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography

    Directory of Open Access Journals (Sweden)

    Yosuke Ito

    2012-09-01

    Full Text Available We have developed an optically pumped atomic magnetometer using a hybrid cell of K and Rb. The hybrid optical pumping technique can apply dense alkali-metal vapor to the sensor head and leads to high signal intensity. We use dense Rb vapor as probed atoms, and achieve a sensitivity of approximately 100 fTrms/Hz1/2 around 10 Hz. In this case, the sensitivity is limited by the system noise, and the magnetic linewidth is narrower than that for direct Rb optical pumping. We demonstrated magnetocardiography using the magnetometer and obtained clear human magnetocardiograms.

  5. Chemical Vapor Deposition of Atomically-Thin Molybdenum Disulfide (MoS2)

    Science.gov (United States)

    2015-03-01

    photoluminescence. 15. SUBJECT TERMS Chemical vapor deposition (CVD) Nanotechnology Molybdenum disulfide (MoS2) Raman spectroscopy 16...by ANSI Std. Z39.18 UNCLASSIFIED Approved for public release; distribution is unlimited. i CONTENTS Page Introduction 1...UNCLASSIFIED Approved for public release; distribution is unlimited. 1 INTRODUCTION Recently, an explosion of interest in low-dimensional

  6. Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu Qingyang, E-mail: liuqingyang0807@yahoo.com.c [Beijing Center for Physical and Chemical Analysis, Beijing 100089 (China)

    2010-07-15

    This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg{sup 0}, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL{sup -1} for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury (n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).

  7. Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection

    Science.gov (United States)

    Liu, Qingyang

    2010-07-01

    This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg 0, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL -1 for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury ( n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).

  8. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Duarte, Fábio Andrei; Bizzi, Cezar Augusto; Antes, Fabiane Goldschmidt; Dressler, Valderi Luiz; Flores, Érico Marlon de Moraes

    2009-06-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 °C and the atomization temperature was set at 650 °C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  9. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Fabio Andrei; Bizzi, Cezar Augusto; Goldschmidt Antes, Fabiane; Dressler, Valderi Luiz [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Flores, Erico Marlon de Moraes [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)], E-mail: flores@quimica.ufsm.br

    2009-06-15

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L{sup - 1} KBr in 6 mol L{sup - 1} HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L{sup - 1} HCl and 2.5% m/v NaBH{sub 4} solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 deg. C and the atomization temperature was set at 650 deg. C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g{sup - 1} for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  10. Bias-assisted atomic force microscope nanolithography on NbS2 thin films grown by chemical vapor deposition

    Science.gov (United States)

    Bark, Hunyoung; Kwon, Sanghyuk; Lee, Changgu

    2016-12-01

    Niobium disulfide, one of the metallic transition metal dichalcogenides, has a high potential as an electrode material for electronic devices made of 2D materials. Here, we investigated the bias-assisted atomic force microscope nanolithography of NbS2 thin films synthesized by chemical vapor deposition. We analyzed the lithographed pattern using Raman spectroscopy, transmission electron microscopy and friction force microscopy. These analyses showed that lines having various widths and thicknesses could be generated using the lithography technique by simply varying the scan speed and applied voltage. These analyses also revealed that the NbS2 film transformed from a layered crystalline structure into an amorphous structure upon being lithographed. By generating four line segments forming a square and measuring I/V curves inside and outside of the square, the electrical properties of the lithographed material were characterized. These analyses indicate that NbS2 became hydrogenated and an insulator upon being lithographed.

  11. Progress towards atomic vapor photonic microcells: Coherence and polarization relaxation measurements in coated and uncoated HC-PCF

    Science.gov (United States)

    Bradley, T. D.; McFerran, J. J.; Jouin, J.; Ilinova, E.; Thomas, P.; Benabid, F.

    2013-03-01

    We report a comparative study on dephasing mechanisms between inner core coated and uncoated sections of the same Kagome hypocycloid-shaped core hollow core photonic crystal fibers (HC-PCF) filled with rubidium vapor. The comparison is performed by measuring the atomic polarization relaxation and electromagnetically induced transparency (EIT) linewidth in Rb loaded polydimethylsiloxane (PDMS) inner wall coated and bare silica core Kagome HC-PCF. The measurements show a polarization relaxation time of 32μs in a PDMS coated Kagome HC-PCF and 24μs in uncoated Kagome HC-PCF. A minimum EIT linewidth of 6.2±0.8MHz is achieved in PDMS coated Kagome HC-PCF, and 8.3±0.9 MHz for the uncoated Kagome HC-PCF.

  12. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frentiu, Tiberiu, E-mail: ftibi@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Mihaltan, Alin I., E-mail: alinblaj2005@yahoo.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Ponta, Michaela, E-mail: mponta@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Darvasi, Eugen, E-mail: edarvasi@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Frentiu, Maria, E-mail: frentiu.maria@yahoo.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Cordos, Emil, E-mail: emilcordos@gmail.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania)

    2011-10-15

    Highlights: {yields} Use of a miniaturized analytical system with microtorch plasma for Hg determination. {yields} Determination of Hg in non- and biodegradable materials using cold vapor generation. {yields} Figures of merit and advantages of the miniaturized system for Hg determination. - Abstract: A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min{sup -1} Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl{sub 2} reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO{sub 3}-H{sub 2}SO{sub 4} mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml{sup -1} or 0.08 {mu}g g{sup -1} in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg{sup -1}, while recovery in two polyethylene certified reference materials in the range 98.7 {+-} 4.5% (95% confidence level).

  13. Evaluation of vapor generation for the determination of nickel by inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Julieta [Comision Nacional de Energia Atomica, Unidad de Actividad Quimica, Centro Atomico Constituyentes, Av. Gral. Paz 1499, 1650-San Martin, Pcia. de Buenos Aires (Argentina); Smichowski, Patricia [Comision Nacional de Energia Atomica, Unidad Proyectos Especiales de Suministros Nucleares, Av. Libertador 8250, 1429-Buenos Aires (Argentina)

    2002-09-01

    Volatile species of Ni were generated by merging acidified aqueous samples and sodium tetrahydroborate(III) in a continuous flow system. The gaseous analyte was subsequently introduced via a stream of Ar carrier into the inlet tube of the plasma torch. Inductively coupled plasma atomic emission spectrometry (ICP-AES) was used for detection. The operating conditions (chemical and physical parameters) and the concentrations of different acids were evaluated for the efficient generation of Ni vapor. The detection limit (3 {sigma}{sub blank}) was 1.8 ng mL{sup -1}. The precision (RSD) of the determination was 4.2% at a level of 500 ng mL{sup -1} and 7.3% for 20 ng mL{sup -1} (n=10). The efficiency of the generation process was estimated to be 51%. The possible interfering effect of transition metals (Cd, Co, Cu, Cr, Fe, Mn, Zn), hydride forming elements (As, Ge, Pb, Sb, Se, Sn, Te), and Hg on Ni signal was examined. This study has demonstrated that Ni vapor generation is markedly free of interferences. (orig.)

  14. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  15. Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Wen Xiaodong [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Wu Peng [Analytical and Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Chen Li [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Hou Xiandeng, E-mail: houxd@scu.edu.cn [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Analytical and Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China)

    2009-09-14

    In this work, the microsampling nature of tungsten coil electrothermal vaporization Ar/H{sub 2} flame atomic fluorescence spectrometry (W-coil ETV-AFS) as well as tungsten coil electrothermal atomic absorption spectrometry (W-coil ET-AAS) was used with cloud point extraction (CPE) for the ultrasensitive determination of cadmium in rice and water samples. When the temperature of the extraction system is higher than the cloud point temperature of the selected surfactant Triton X-114, the complex of cadmium with dithizone can be quantitatively extracted into the surfactant-rich phase and subsequently separated from the bulk aqueous phase by centrifugation. The main factors affecting the CPE, such as concentration of Triton X-114 and dithizone, pH, equilibration temperature and incubation time, were optimized for the best extract efficiency. Under the optimal conditions, the limits of detection for cadmium by W-coil ETV-AFS and W-coil ET-AAS were 0.01 and 0.03 {mu}g L{sup -1}, with sensitivity enhancement factors of 152 and 93, respectively. The proposed methods were applied to the determination of cadmium in certified reference rice and water samples with analytical results in good agreement with certified values.

  16. Testing the distance-dependence of the van der Waals interaction between an atom and a surface through spectroscopy in a vapor nanocell

    CERN Document Server

    Laliotis, A; Todorov, P; Hamdi, I; Dutier, G; Yarovitski, A; Saltiel, S; Gorza, M P; Fichet, M; Ducloy, M; Bloch, D; Laliotis, Athanasdios; Maurin, Isabelle; Todorov, Petko; Hamdi, Ismah\\`{e}ne; Dutier, Gabriel; Yarovitski, Alexander; Saltiel, Solomon; Gorza, Marie-Pascale; Fichet, Mich\\`{e}le; Ducloy, Martial; Bloch, Daniel

    2007-01-01

    This paper presents our current measurements in a vapor nanocell aiming at a test of the distance-dependence of the atom-surface interaction, when simple asymptotic descriptions may turn to be not valid. A state-of-the-art of atom-surface interaction measurements is provided as an introduction, along with the comparison with the theory of the van der Waals (or Casimir-Polder) interaction; it is followed by a presentation of the most salient features of nanocell spectroscopy

  17. Photonic properties of one-dimensionally-ordered cold atomic vapors under conditions of electromagnetically induced transparency

    CERN Document Server

    Schilke, Alexander; Guerin, William

    2012-01-01

    We experimentally study the photonic properties of a cold-atom sample trapped in a one-dimensional optical lattice under the conditions of electromagnetically induced transparency. We show that such a medium has two photonic band gaps. One of them is in the transparency window and gives rise to a Bragg mirror, which is spectrally very narrow and dynamically tunable. We discuss the advantages and the limitations of this system. As an illustration of a possible application we demonstrate a two-port all-optical switch.

  18. Microfabricated cells for chip-scale atomic clock based on coherent population trapping: Fabrication and investigation

    Directory of Open Access Journals (Sweden)

    S.V. Ermak

    2015-03-01

    Full Text Available A universal method for fabrication of miniature cells for frequency standards and quantum magnetometers containing 87Rb atoms in the atmosphere of inert gas neon based on integrated technologies is considered. The results of experimental studies of coherent population trapping signals observed for a series of cells which provided recovery of vapors of an alkali metal from the rubidium dichromate salt with the help of laser radiation are presented. The coherent population trapping signals with a typical linewidth of 2–3 kHz and a signal-to-noise ratio of 1500 in the 1-Hz bandwidth were observed, which allows one to provide a relative frequency stability of atomic clock of 10−11 at 100 s.

  19. Sodium vapor cell laser guide star experiments for continuous wave model validation

    Science.gov (United States)

    Pedreros Bustos, Felipe; Holzlöhner, Ronald; Budker, Dmitry; Lewis, Steffan; Rochester, Simon

    2016-07-01

    Recent numerical simulations and experiments on sodium Laser Guide Star (LGS) have shown that a continuous wave (CW) laser with circular polarization and re-pumping should maximize the fluorescent photon return flux to the wavefront sensor for adaptive optics applications. The orientation and strength of the geomagnetic field in the sodium layer also play an important role affecting the LGS return ux. Field measurements of the LGS return flux show agreement with the CW LGS model, however, fluctuations in the sodium column abundance and geomagnetic field intensity, as well as atmospheric turbulence, induce experimental uncertainties. We describe a laboratory experiment to measure the photon return flux from a sodium vapor cell illuminated with a 589 nm CW laser beam, designed to approximately emulate a LGS under controlled conditions. Return flux measurements are carried out controlling polarization, power density, re-pumping, laser linewidth, and magnetic field intensity and orientation. Comparison with the numerical CW simulation package Atomic Density Matrix are presented and discussed.

  20. Vapor-Phase Atomic Layer Deposition of Co9S8 and Its Application for Supercapacitors.

    Science.gov (United States)

    Li, Hao; Gao, Yuanhong; Shao, Youdong; Su, Yantao; Wang, Xinwei

    2015-10-14

    Atomic layer deposition (ALD) of cobalt sulfide (Co9S8) is reported. The deposition process uses bis(N,N'-diisopropylacetamidinato)cobalt(II) and H2S as the reactants and is able to produce high-quality Co9S8 films with an ideal layer-by-layer ALD growth behavior. The Co9S8 films can also be conformally deposited into deep narrow trenches with aspect ratio of 10:1, which demonstrates the high promise of this ALD process for conformally coating Co9S8 on high-aspect-ratio 3D nanostructures. As Co9S8 is a highly promising electrochemical active material for energy devices, we further explore its electrochemical performance by depositing Co9S8 on porous nickel foams for supercapacitor electrodes. Benefited from the merits of ALD for making high-quality uniform thin films, the ALD-prepared electrodes exhibit remarkable electrochemical performance, with high specific capacitance, great rate performance, and long-term cyclibility, which highlights the broad and promising applications of this ALD process for energy-related electrochemical devices, as well as for fabricating complex 3D nanodevices in general.

  1. UV-photochemical vapor generation of selenium for atomic absorption spectrometry: Optimization and 75Se radiotracer efficiency study

    Science.gov (United States)

    Rybínová, Marcela; Musil, Stanislav; Červený, Václav; Vobecký, Miloslav; Rychlovský, Petr

    2016-09-01

    Volatile selenium compounds were generated UV-photochemically in the continuous flow mode using four UV-photoreactors differing in the material of the reaction coil; Teflon tubing and quartz tubes with various inner diameters and wall thicknesses were tested. Atomic absorption spectrometry with an externally heated quartz furnace atomizer was employed as the detector. The relevant experimental generation parameters were optimized and the basic analytical characteristics were determined. Using formic acid as the photochemical agent, limits of detection achieved for selenium were in the range 46-102 ng L- 1 in dependence on the type of UV-photoreactor employed. When nitric acid was also added to the photochemical agent, the limits of detection were reduced to 27-44 ng L- 1. The repeatability did not exceed 2.4% (5 μg L- 1 Se(IV), n = 10). Experiments with 75Se radiotracer have been performed for the first time to quantify the efficiency of UV-photochemical vapor generation (UV-PVG) of selenium. The highest efficiency of 67 ± 1% was obtained for a UV-photoreactor containing a quartz reaction coil (2.0 mm i.d., 4.0 mm o.d.). The generation efficiency of 61 ± 1% was obtained for a Teflon reaction coil (1.0 mm i.d., 1.4 mm o.d.). Mapping of the radiotracer distribution in the individual parts of the apparatus did not reveal substantial transport losses of the analyte in the UV-PVG system.

  2. Immersed single-drop microextraction-electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples.

    Science.gov (United States)

    Bagheri, Habib; Naderi, Mehrnoush

    2009-06-15

    A new method based on single-drop microextraction (SDME) combined with electrothermal vaporization atomic absorption spectroscopy (ETV-AAS) was developed for the trace determination of mercury in water samples. A microdrop of m-xylene was applied as the extraction solvent. After extraction, the microdrop was introduced, directly, into a graphite furnace of AAS. Some important extraction parameters such as type of solvent, volume of solvent, sample stirring, ionic strength, sample pH, chelating agent concentration, sample temperature, and extraction time were investigated and optimized. The highest possible microdrop volume of 10 microL, a sampling temperature of 27 degrees C, and use of m-xylene containing dithizone, as complexing agent, are major parameters led to achieve a high enrichment factor of 970. Under the optimized conditions, the detection limit of the method was 0.01 microg L(-1) and the relative standard deviation was 6.1% (n=7). The proposed method has been successfully applied to the determination of Hg in two river water samples. The effects of interfering species such as Pt, Pd, Cu, Au, and Bi, having the tendency to form complexes with dithizone, at two concentration levels of 100 and 1000 microg L(-1) were also studied.

  3. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    Science.gov (United States)

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level).

  4. Atomic-layer chemical-vapor-deposition of TiN thin films on Si(100) and Si(111)

    CERN Document Server

    Kim, Y S; Kim, Y D; Kim, W M

    2000-01-01

    An atomic-layer chemical vapor deposition (AL-CVD) system was used to deposit TiN thin films on Si(100) and Si(111) substrates by cyclic exposures of TiCl sub 4 and NH sub 3. The growth rate was measured by using the number of deposition cycles, and the physical properties were compared with those of TiN films grown by using conventional deposition methods. To investigate the growth mechanism, we suggest a growth model for TiN n order to calculate the growth rate per cycle with a Cerius program. The results of the calculation with the model were compared with the experimental values for the TiN film deposited using the AL-CVD method. The stoichiometry of the TiN film was examined by using Auger electron spectroscopy, and the chlorine and the oxygen impurities were examined. The x-ray diffraction and the transmission electron microscopy results for the TiN film exhibited a strong (200) peak and a randomly oriented columnar microstructure. The electrical resistivity was found to decrease with increasing deposit...

  5. Immunogold labels: cell-surface markers in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Grooth, de Bart G.; Hansma, Paul K.; Hulst, van Niek F.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect imm

  6. Alkali-vapor cell with metal coated windows for efficient application of an electric field

    Science.gov (United States)

    Sarkisyan, D.; Sarkisyan, A. S.; Guéna, J.; Lintz, M.; Bouchiat, M.-A.

    2005-05-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no magnetic part. The use of this kind of cell has resulted in an improvement of the signal-to-noise ratio in the measurement of parity violation in cesium vapor underway at ENS, Paris. The technique can be applied to other situations where a brazed assembly would give rise to unacceptably large birefringence in the windows.

  7. Collapse and revival of a Dicke-type coherent narrowing in potassium vapor confined in a nanometric-thin cell

    CERN Document Server

    Sargsyan, A; Leroy, C; Sarkisyan, D

    2015-01-01

    A nanometer-thin-cell (in the direction of laser beam propagation) has been elaborated with the thickness of the atomic vapor column varying smoothly in the range of $L = \\unit[50-1500]{nm}$. The cell allows one to study the behavior of the resonance absorption over the $D_1$ line of potassium atoms by varying the laser intensity and the cell thickness from $L = \\lambda / 2$ to $L = 2 \\lambda$ with the step $\\lambda/2$ ($\\lambda =\\unit[770]{nm}$ is the resonant wavelength of the laser). It is shown that despite the huge Doppler broadening ($>\\unit[0.9]{GHz}$ at the cell temperature $\\unit[170]{^{\\circ}C}$), at low laser intensities a narrowing of the resonance absorption spectrum is observed for $L = \\lambda/2$ ($\\sim \\unit[120]{ MHz}$ at FWHM) and $L = 3/2 \\lambda$, whereas for $L = \\lambda$ and $L =2\\lambda$ the spectrum broadens. At moderate laser intensities narrowband velocity selective optical pumping (VSOP) resonances appear at $L = \\lambda$ and $L=2\\lambda $ with the linewidth close to the natural one...

  8. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    OpenAIRE

    Abdollahi Atousa; Amirkavehei Mooud; Gheisari Mohammad Mehdi; Tadayon Fariba

    2014-01-01

    A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap). The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS). The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically ...

  9. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  10. Probing stem cell differentiation using atomic force microscopy

    Science.gov (United States)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-03-01

    A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  11. In-situ measurements of low-level mercury vapor exposure from dental amalgam with zeeman atomic absorption spectroscopy.

    Science.gov (United States)

    Halbach, Stefan; Welzl, Gerhard

    2004-01-01

    Alongside food, emissions from amalgam fillings are an essential contribution to man's mercury burden. Previous methods for the determination of intraoral mercury vapor (Hg degrees ) release used principally some form of preconcentration of Hg on gold (film or wool), allowing relatively few measurements with unknown precision and sensitivity at selected times. Recently available computer-controlled Hg detectors operating on Zeeman atomic absorption spectroscopy (ZAAS) facilitate the direct real-time measurement of Hg degrees concentrations. It was the aim to adapt this method for a comparative investigation of emission processes from fillings in situ and from amalgam specimens in vitro. In addition to the ZAAS instrument, the apparatus consisted of a pump, magnetic valves, an electronic flow controller and a handle with a disposable mouth piece for aspiration of oral air. A programmable timer integrated the computer-controlled instrument operation and the data collection into a standard sampling protocol. A fast exponential decay of the emission was found after stimulation of amalgam specimens and of fillings in situ (halftimes 8.6 and 10.7 min). Precision was evaluated by a series of measurements on a single patient which indicated a consistently low coefficient of variation between 18% and 25%. After insertion of a few new fillings, sensitivity was high enough to detect a significant increase in emission against the background emission from the majority of old fillings. Zeeman-AAS in connection with a semi-automated sampling protocol and data storage provides precise in-situ measurements of Hg degrees emission from dental amalgam with real-time resolution. This facilitates the detailed exploration of the Hg degrees release kinetics and the applicability to large-scale studies.

  12. Selective adhesion of intestinal epithelial cells on patterned films with amine functionalities formed by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Seop; Choi, Changrok; Kim, Soo Heon; Choi, Kun oh [Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Jeong Min [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701 (Korea, Republic of); Kim, Hong Ja [Department of Internal Medicine, Dankook University College of Medicine, Cheonan 330-715 (Korea, Republic of); Yeo, Sanghak [R and D Center, ELBIO Incorporation, 426-5 Gasan-dong Geumchun-gu, Seoul (Korea, Republic of); Park, Heonyong [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701 (Korea, Republic of); Jung, Donggeun, E-mail: djung@skku.ac.kr [Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2010-11-01

    Control of cell adhesion to surfaces is important to develop analytical tools in the areas of biomedical engineering. To control cell adhesiveness of the surface, we constructed a variety of plasma polymerized hexamethyldisiloxane (PPHMDSO) thin films deposited at the plasma power range of 10-100 W by plasma enhanced chemical vapor deposition (PECVD). The PPHMDSO film that was formed at 10 W was revealed to be resistant to cell adhesion. The resistance to cell adhesion is closely related to physicochemical properties of the film. Atomic force microscopic data show an increase in surface roughness from 0.52 nm to 0.74 nm with increasing plasma power. From Fourier transform infrared (FT-IR) absorption spectroscopy data, it was also determined that the methyl (-CH{sub 3}) peak intensity increases with increasing plasma power, whereas the hydroxyl (-OH) peak decreases. X-ray photoelectron spectroscopy data reveal an increase in C-O bonding with increasing plasma power. These results suggest that C-O bonding and hydroxyl (-OH) and methyl (-CH{sub 3}) functional groups play a critical part in cell adhesion. Furthermore, to enhance a diversity of film surface, we accumulated the patterned plasma polymerized ethylenediamine (PPEDA) thin film on the top of the PPHMDSO thin film. The PPEDA film is established to be strongly cell-adherent. This patterned two-layer film stacking method can be used to form the selectively limited cell-adhesive PPEDA spots over the adhesion-resistant surface.

  13. Light shift averaging in paraffin-coated alkali vapor cells

    CERN Document Server

    Zhivun, Elena; Sudyka, Julia; Pustelny, Szymon; Patton, Brian; Budker, Dmitry

    2015-01-01

    Light shifts are an important source of noise and systematics in optically pumped magnetometers. We demonstrate that the long spin coherence time in paraffin-coated cells leads to spatial averaging of the light shifts over the entire cell volume. This renders the averaged light shift independent, under certain approximations, of the light-intensity distribution within the sensor cell. These results and the underlying mechanism can be extended to other spatially varying phenomena in anti-relaxation-coated cells with long coherence times.

  14. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    Science.gov (United States)

    Joulaei, A.; Moody, J.; Berti, N.; Kasparian, J.; Mirzanejhad, S.; Muggli, P.

    2016-09-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment.

  15. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    CERN Document Server

    Joulaei, Atefeh; Berti, Nicolas; Kasparian, Jerome; Mirzanejhad, Saeed; Muggli, Patric

    2016-01-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment.

  16. Applications of atomic layer deposition in solar cells.

    Science.gov (United States)

    Niu, Wenbin; Li, Xianglin; Karuturi, Siva Krishna; Fam, Derrick Wenhui; Fan, Hongjin; Shrestha, Santosh; Wong, Lydia Helena; Tok, Alfred Iing Yoong

    2015-02-13

    Atomic layer deposition (ALD) provides a unique tool for the growth of thin films with excellent conformity and thickness control down to atomic levels. The application of ALD in energy research has received increasing attention in recent years. In this review, the versatility of ALD in solar cells will be discussed. This is specifically focused on the fabrication of nanostructured photoelectrodes, surface passivation, surface sensitization, and band-structure engineering of solar cell materials. Challenges and future directions of ALD in the applications of solar cells are also discussed.

  17. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Joulaei, A. [Max-Planck Institute for Physics, Munich (Germany); University of Mazandaran (Iran, Islamic Republic of); Moody, J. [Max-Planck Institute for Physics, Munich (Germany); Berti, N.; Kasparian, J. [University of Geneva (Switzerland); Mirzanejhad, S. [University of Mazandaran (Iran, Islamic Republic of); Muggli, P. [Max-Planck Institute for Physics, Munich (Germany)

    2016-09-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment. - Highlights: • Discussion the AWAKE plasma source based on photoionization of rubidium vapor with a TW/cm^2 Intensity laser with a spectrum across valence ground state transition resonances. • Examines the propagation of the AWAKE ionization laser through rubidium vapor at design density on a small scale and reduced intensity with a linear numerical model compared to experimental results. • Discusses physics of pulse propagation through the vapor at high intensity regime where strong ionization occurs within the laser pulse.

  18. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  19. Slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of metal impurities in aluminium oxide ceramic powders.

    Science.gov (United States)

    Peng, T; Chang, G; Wang, L; Jiang, Z; Hu, B

    2001-03-01

    A new analytical procedure for the direct determination of metal impurities (Cr, Cu, Fe and V) in aluminium oxide ceramic powders by slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry (ETV-ICP-AES) is reported. A polytetrafluoroethylene (PTFE) emulsion was used as a fluorinating reagent to promote the vaporization of impurity elements in aluminium oxide ceramic powders from the graphite tube. A vaporization stage with a long ramp time and a short hold time provided the possibility of temporal analyte-matrix separation. The experimental results indicated that a 10 microL 1% m/v slurry of aluminium oxide could be destroyed and vaporized completely with 600 micrograms PTFE under the selected conditions. Two aluminium oxide ceramic powder samples were used without any additional pretreatment. Analytical results obtained by using standard addition method with aqueous standard solution were checked by comparison of the results with pneumatic nebulization (PN)-ICP-AES based on the wet-chemical decomposition and analyte-matrix separation. The limits of detection (LODs) between 0.30 microgram g-1 (Fe) and 0.08 microgram g-1 (Cu) were achieved, and, the repeatability of measurements was mainly better than 10%.

  20. An Alkali-Vapor Cell with Metal Coated Windows for Efficient Application of an Electric Field

    CERN Document Server

    Sarkisyan, D; Guena, J; Lintz, M; Bouchiat, M A; Sarkisyan, David; Gu\\'{e}na, Jocelyne; Lintz, Michel; Bouchiat, Marie-Anne

    2005-01-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2 kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no ...

  1. Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al{sub 2}O{sub 3} double-coating

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Vaehae-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Salomaeki, Mikko [University of Turku, Department of Chemistry, Laboratory of Materials Chemistry and Chemical Analysis, Vatselankatu 2, FI-20014 (Finland); Areva, Sami [Tampere University of Technology, Department of Biomedical Engineering, Biokatu 6, P.O. Box 692, FI-33101 Tampere (Finland); Korhonen, Juuso T. [Aalto University School of Science, Department of Applied Physics, P.O. Box 15100 FI-00076 AALTO, Espoo (Finland); Karppinen, Maarit [Aalto University School of Chemical Technology, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 AALTO, Espoo (Finland)

    2011-09-01

    Commercial polylactide (PLA) films are coated with a thin (20 nm) non-toxic polyelectrolyte multilayer (PEM) film made from sodium alginate and chitosan and additionally with a 25-nm thick atomic layer deposited (ALD) Al{sub 2}O{sub 3} layer. The double-coating of PEM + Al{sub 2}O{sub 3} is found to significantly enhance the water vapor barrier properties of the PLA film. The improvement is essentially larger compared with the case the PLA film being just coated with an ALD-grown Al{sub 2}O{sub 3} layer. The enhanced water vapor barrier characteristics of the PEM + Al{sub 2}O{sub 3} double-coated PLA films are attributed to the increased hydrophobicity of the surface of these films.

  2. Methods of Soft Tissue Emulsification Using a Mechanism of Ultrasonic Atomization Inside Gas or Vapor Cavities and Associated Systems and Devices

    Science.gov (United States)

    Sapozhnikov, Oleg A. (Inventor); Bailey, Michael R. (Inventor); Crum, Lawrence A. (Inventor); Khokhlova, Tatiana D. (Inventor); Khokhlova, Vera A. (Inventor); Simon, Julianna C. (Inventor); Wang, Yak-Nam (Inventor)

    2016-01-01

    The present technology is directed to methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities, and associated systems and devices. In several embodiments, for example, a method of non-invasively treating tissue includes pulsing ultrasound energy from the ultrasound source toward the target site in tissue. The ultrasound source is configured to emit high intensity focused ultrasound (HIFU) waves. The target site comprises a pressure-release interface of a gas or vapor cavity located within the tissue. The method continues by generating shock waves in the tissue to induce a lesion in the tissue at the target site. The method additionally includes characterizing the lesion based on a degree of at least one of a mechanical or thermal ablation of the tissue.

  3. High efficiency AIGaAs/Si monolithic tandem solar cell grown by metalorganic chemical vapor deposition

    OpenAIRE

    Tetsuo, Soga; T.", "Kato; M., Yang; Masayoshi, Umeno; Takashi, Jimbo

    1995-01-01

    The improvements of the AlGaAs solar cell grown on the Si substrate and the AlGaAs/Si tandem solar cell by metalorganic chemical vapor deposition have been investigated. The active‐area conversion efficiency of the Al0.1Ga0.9As solar cell on the Si substrate as high as 12.9% has been obtained by improving the growth sequence and adopting an Al compositionally graded band emitter layer. A high efficiency monolithic AlGaAs/Si tandem solar cell with the active‐area conversion efficiency of 19.9%...

  4. Atomic Layer Deposited Catalysts for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta

    layer deposition (ALD), on the other hand, is a highly suitable and still relatively unexplored approach for the synthesis of noble metal catalysts. It is a vapor phase growth method, primarily used to deposit thin lms. ALD is based on self-limiting chemical reactions of alternately injected precursors...... for the realization of such tiny devices. It is a mature technology, suitable for mass production, where versatile structuring is available at the micro and nano regime. Carbon black supported catalysts synthesized by wet chemistry methods are not readily applicable for standard microfabrication techniques. Atomic...... on the sample surface. Its unique growth characteristic enables conformal and uniform lms of controlled thickness and composition. In certain conditions ALD commences by island growth, resulting in discrete nanoparticle formation, which is generally preferred for catalytic applications. Pt-Ru is the best...

  5. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  6. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  7. Atomic force microscopy for the examination of single cell rheology.

    Science.gov (United States)

    Okajima, Takaharu

    2012-11-01

    Rheological properties of living cells play important roles in regulating their various biological functions. Therefore, measuring cell rheology is crucial for not only elucidating the relationship between the cell mechanics and functions, but also mechanical diagnosis of single cells. Atomic force microscopy (AFM) is becoming a useful technique for single cell diagnosis because it allows us to measure the rheological properties of adherent cells at any region on the surface without any modifications. In this review, we summarize AFM techniques for examining single cell rheology in frequency and time domains. Recent applications of AFM for investigating the statistical analysis of single cell rheology in comparison to other micro-rheological techniques are reviewed, and we discuss what specificity and universality of cell rheology are extracted using AFM.

  8. Linewidth of electromagnetically induced transparency under motional averaging in a coated vapor cell

    Institute of Scientific and Technical Information of China (English)

    Xu Zhi-Xiang; Qu Wei-Zhi; Gao Ran; Hu Xin-Hua; Xiao Yan-Hong

    2013-01-01

    The linewidth of electromagnetically induced transparency (EIT) in a coated Rb vapor cell was studied under a magnetic field gradient.The nonlinear broadening of the EIT linewidth with the magnetic field gradient was observed.It was found that the motional averaging of the field gradient was more pronounced at higher laser intensities and larger beam sizes.In the same regime,there was a small linewidth decrease with the increasing magnetic field gradient.We have established a Monte-Carlo model,which gave results in good qualitative agreement with our experiment.Physics pictures for the above phenomena were also suggested.These results provide an understanding of the EIT linewidth behavior under motional averaging,and should be useful for applications in quantum optics and metrology based on coated vapor cells.

  9. Atomic magnetometer

    Science.gov (United States)

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  10. Studies on an ultrasonic atomization feed direct methanol fuel cell.

    Science.gov (United States)

    Wu, Chaoqun; Liu, Linghao; Tang, Kai; Chen, Tao

    2017-01-01

    Direct methanol fuel cell (DMFC) is promising as an energy conversion device for the replacement of conventional chemical cell in future, owing to its convenient fuel storage, high energy density and low working temperature. The development of DMFC technology is currently limited by catalyst poison and methanol crossover. To alleviate the methanol crossover, a novel fuel supply system based on ultrasonic atomization is proposed. Experimental investigations on this fuel supply system to evaluate methanol permeation rates, open circuit voltages (OCVs) and polarization curves under a series of conditions have been carried out and reported in this paper. In comparison with the traditional liquid feed DMFC system, it can be found that the methanol crossover under the ultrasonic atomization feed system was significantly reduced because the DMFC reaches a large stable OCV value. Moreover, the polarization performance does not vary significantly with the liquid feed style. Therefore, the cell fed by ultrasonic atomization can be operated with a high concentration methanol to improve the energy density of DMFC. Under the supply condition of relatively high concentration methanol such as 4M and 8M, the maximum power density fed by ultrasonic atomization is higher than liquid by 6.05% and 12.94% respectively.

  11. Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Nielsen, Heidi Venstrup

    2012-01-01

    This paper investigates the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC). A H3PO4-doped polybenzimidazole (PBI) membrane electrode assembly (MEA), Celtec P2100 of 45 cm2 of active surface area from BASF was employed....... A long-term durability test of around 1250 h was performed, in which the concentrations of methanol-water vapor mixture in the anode feed gas were varied. The fuel cell showed a continuous performance decay in the presence of vapor mixtures of methanol and water of 5% and 8% by volume in anode feed...

  12. The Effect of Mercury Vapor and the Role of Green Tea Extract on Brain Cells

    Directory of Open Access Journals (Sweden)

    Dhona Afriza

    2013-09-01

    Full Text Available Mercury is a wellknown toxic metal that is capable to induce free radical-induced oxidative stress. It can cause human disease including brain disorders. Objective: To identify the effect of mercury vapor inhalation on brain cells and the role of green tea extract (Camellia sinensis as antioxidant on the brain cells exposed to mercury. Methods: Fourty-eight male Mus musculus were divided into 8 groups, which were given treatment for 3 and 6 weeks. Group A did not receive any treatment and served as a negative control. Group B was a positive control exposed to Mercury. Group C was exposed to Mercury and treated with 26μg/g green tea extract. Group D was exposed to mercury and treated with 52μg/g green tea extract. All animals in the Group B, C, D were exposed to mercury through inhalation for 4 hours daily. The effect of mercury on the brain cells were examined histopathologically. Results: The numbers of necrotic cells counted in the green tea-treated mice group were significantly lower than those untreated group (p<0,05. Conclusion: Mercury vapor inhalation may cause necrosis on brain cells. Administration of green tea extract as an antioxidant reduced the amount of mercury-induced necrotic brain cells in mice.DOI: 10.14693/jdi.v20i2.151

  13. The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells

    Science.gov (United States)

    Hauch, Jens A.; Schilinsky, Pavel; Choulis, Stelios A.; Rajoelson, Sambatra; Brabec, Christoph J.

    2008-09-01

    In this paper we perform accelerated lifetime testing on high efficiency flexible poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) solar cells encapsulated with food package quality barrier films with a water vapor transmission rate of 0.2 g/(m2 day) at 65 °C/85% relative humidity. We show that lifetimes exceeding 1250 h, even at high temperature/high humidity conditions, may be reached, proving that organic solar cells are significantly less sensitive against the environmental effects of water and oxygen than previously expected.

  14. Novel photochemical vapor deposition reactor for amorphous silicon solar cell deposition

    Science.gov (United States)

    Rocheleau, Richard E.; Hegedus, Steven S.; Buchanan, Wayne A.; Jackson, Scott C.

    1987-07-01

    A novel photochemical vapor deposition (photo-CVD) reactor having a flexible ultraviolet-transparent Teflon curtain and a secondary gas flow to eliminate deposition on the window has been used to deposit amorphous silicon films and p-i-n solar cells. The background levels of atmospheric contaminants (H2O, CO2, N2) depend strongly on the vacuum procedures but not on the presence of a Teflon curtain in the reactor. Intrinsic films with a midgap density of states of 3×1015 eV-1 cm-3 and all-photo-CVD pin solar cells with efficiencies of 8.5% have been deposited.

  15. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering.

    Science.gov (United States)

    Lee, Bora; Jiao, Alex; Yu, Seungjung; You, Jae Bem; Kim, Deok-Ho; Im, Sung Gap

    2013-08-01

    Poly(N-vinylcaprolactam) (PNVCL) is a thermoresponsive polymer known to be nontoxic, water soluble and biocompatible. Here, PNVCL homopolymer was successfully synthesized for the first time by use of a one-step vapor-phase process, termed initiated chemical vapor deposition (iCVD). Fourier transform infrared spectroscopy results showed that radical polymerization took place from N-vinylcaprolactam monomers without damaging the functional caprolactam ring. A sharp lower critical solution temperature transition was observed at 31°C from the iCVD poly(N-vinylcaprolactam) (PNVCL) film. The thermoresponsive PNVCL surface exhibited a hydrophilic/hydrophobic alteration with external temperature change, which enabled the thermally modulated attachment and detachment of cells. The conformal coverage of PNVCL film on various substrates with complex topography, including fabrics and nanopatterns, was successfully demonstrated, which can further be utilized to fabricate cell sheets with aligned cell morphology. The advantage of this system is that cells cultured on such thermoresponsive surfaces could be recovered as an intact cell sheet by simply lowering the temperature, eliminating the need for conventional enzymatic treatments.

  16. Morphology Evolution of High Efficiency Perovskite Solar Cells via Vapor Induced Intermediate Phases.

    Science.gov (United States)

    Zuo, Lijian; Dong, Shiqi; De Marco, Nicholas; Hsieh, Yao-Tsung; Bae, Sang-Hoon; Sun, Pengyu; Yang, Yang

    2016-12-07

    Morphology is critical component to achieve high device performance hybrid perovskite solar cells. Here, we develop a vapor induced intermediate phase (VIP) strategy to manipulate the morphology of perovskite films. By exposing the perovskite precursor films to different saturated solvent vapor atmospheres, e.g., dimethylformamide and dimethylsufoxide, dramatic film morphological evolution occurs, associated with the formation of different intermediate phases. We observe that the crystallization kinetics is significantly altered due to the formation of these intermediate phases, yielding highly crystalline perovskite films with less defect states and high carrier lifetimes. The perovskite solar cells with the reconstructed films exhibits the highest power conversion efficiency (PCE) up to 19.2% under 1 sun AM 1.5G irradiance, which is among the highest planar heterojunction perovskite solar cells. Also, the perovskite solar cells with VIP processing shows less hysteresis behavior and a stabilized power output over 18%. Our work opens up a new direction for morphology control through intermediate phase formation, and paves the way toward further enhancing the device performances of perovskite solar cells.

  17. InGaAsP Solar Cells Grown by Hydride Vapor Phase Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Nikhil; Simon, John; Schulte, Kevin L.; Dippo, Patricia; Young, Michelle; Young, David L.; Ptak, Aaron J.

    2016-11-21

    Hydride vapor phase epitaxy (HVPE) has recently reemerged as a low-cost, high-throughput alternative to metalorganic chemical vapor deposition (MOCVD) for the growth of high-efficiency III-V solar cells. Quaternary InGaAsP solar cells in the bandgap range of ~1.7-1.8 eV are promising top-cell candidates for integration in Ill-V/Si tandem cells with projected one-sun efficiencies exceeding 30%. In this work, we report on the development of lattice-matched InGaAsP solar cells grown on GaAs substrates via HVPE at very high growth rates of ~0.7 um/min. We demonstrate prototype 1.7 eV InGaAsP solar cells with an open-circuit voltage of 1.11 V. The short-circuit current is limited by the lack of a window layer in these early stage devices. The photo response of 1.7 InGaAsP solar cell with ~1.1 um thick base layer is found to be nearly insensitive to variation in p-type base doping concentration in the range from Na - 4x1016 to - 1x1017 cm-3, indicating an effective carrier collection length on the order of - 1.1 um or higher in our devices. These initial InGaAsP cell results are encouraging and highlight the viability of HVPE to produce mixed arsenide-phosphide solar cells grown lattice-matched on GaAs.

  18. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Alison J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100 degree Celsius for 90 minutes followed by 120 degree Celsius for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulkphotoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  19. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Alison [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-20

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100°C for 90 minutes followed by 120°C for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulk photoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  20. Effects of viscosity on endothelial cell damage under acoustic droplet vaporization

    Science.gov (United States)

    Seda, Robinson; Singh, Rahul; Li, David; Pitre, John; Putnam, Andrew; Fowlkes, J. Brian; Bull, Joseph

    2014-11-01

    Acoustic droplet vaporization (ADV) is a process by which stabilized superheated microdroplets are able to undergo phase transition with the aid of focused ultrasound. Gas bubbles resulting from ADV can provide local occlusion of the blood vessels supplying diseased tissue, such as tumors. The ADV process can also induce bioeffects that increase vessel permeability, which is beneficial for localized drug delivery. Previous in vitro studies have demonstrated that vaporization at the endothelial layer will affect cell attachment and viability. Several hypotheses have been proposed to elucidate the mechanism of damage including the generation of normal and shear stresses during bubble expansion. A single 3.5 MHz ultrasound pulse consisting of 8 cycles (~2.3 μs) and a 6 MPa peak rarefactional pressure was used to induce ADV on endothelial cells in media of different viscosities. Carboxylmethyl cellulose was added to the cell media to increase the viscosity up to 300 cP to and aid in the reduction of stresses during bubble expansion. The likelihood of cell damage was decreased when compared to our control (~1 cP), but it was still present in some cases indicating that the mechanism of damage does not depend entirely on viscous stresses associated with bubble expansion. This work was supported by NIH Grant R01EB006476.

  1. Bifacial solar cell with SnS absorber by vapor transport deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wangperawong, Artit [Stanford University, Stanford, California 94305 (United States); Department of Electrical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Hsu, Po-Chun; Yee, Yesheng; Herron, Steven M.; Clemens, Bruce M.; Cui, Yi; Bent, Stacey F., E-mail: sbent@stanford.edu [Stanford University, Stanford, California 94305 (United States)

    2014-10-27

    The SnS absorber layer in solar cell devices was produced by vapor transport deposition (VTD), which is a low-cost manufacturing method for solar modules. The performance of solar cells consisting of Si/Mo/SnS/ZnO/indium tin oxide (ITO) was limited by the SnS layer's surface texture and field-dependent carrier collection. For improved performance, a fluorine doped tin oxide (FTO) substrate was used in place of the Mo to smooth the topography of the VTD SnS and to make bifacial solar cells, which are potentially useful for multijunction applications. A bifacial SnS solar cell consisting of glass/FTO/SnS/CdS/ZnO/ITO demonstrated front- and back-side power conversion efficiencies of 1.2% and 0.2%, respectively.

  2. High-Rate Vapor Deposition of Cadmium Telluride Films for Solar Cells

    Science.gov (United States)

    Khan, Nasim Akhter

    1992-01-01

    High rate vapor deposition is presently used for large scale low cost deposition of thin films for packaging and other applications. The feasibility of using this technology for low cost deposition of solar cells was explored. After an exhaustive literature survey, the cadmium telluride (CdTe) solar cell was found to be most suitable candidate for high rate vapor deposition. The high rate vapor deposition was investigated by sublimation with a short distance between sublimation source and the substrate (Close-Spaced Sublimation, CSS). Cadmium telluride (CdTe) solar cells were fabricated by depositing CdTe films at different rates on cadmium sulphide (CdS) films deposited by CSS or by evaporation. The CdTe films deposited at higher deposition rates were observed to have open circuit voltages (V_{ rm oc}) comparable to those deposited at lower rates. The effect of CdS film which acts as window layer for the cells were also investigated on the V_ {rm oc} of the solar cells. The results achieved proved the fact that CdS window layer is necessary to achieve higher V_{ rm oc} from solar cells. The substrate temperature during deposition of films by close space sublimation plays a vital role in the performance of solar cell. The increase in the substrate temperature during deposition of CdTe films increased the V_{rm oc} of solar cells. The solar cells with indium tin oxide (ITO) as top conductor, i.e. ITO/CdS/CdTe configuration were fabricated at rates up to 34 mum/minute and with tin oxide (TO) i.e. TO/CdTe configuration fabricated at rates up to 79 mum/minute have shown similar V_{rm oc} compared to those produced at lower rates. Higher CdTe film deposition rates are possible with larger capacity experimental setup. The method of contacting CdTe, used in this study, results in higher series resistance. An improved method of contacting CdTe needs to be developed.

  3. Vapor of volatile oils from Litsea cubeba seed induces apoptosis and causes cell cycle arrest in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Soma Seal

    Full Text Available Non-small cell lung carcinoma (NSCLC is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser(473 and Thr(308; through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation.

  4. Widefield Microwave Imaging in Alkali Vapor Cells with sub-100 um Resolution

    CERN Document Server

    Horsley, Andrew; Treutlein, Philipp

    2015-01-01

    We report on widefield microwave vector field imaging with sub um resolution using a microfabricated alkali vapor cell. The setup can additionally image dc magnetic fields, and can be configured to image microwave electric fields. Our camera-based widefield imaging system records 2D images with a 6x6 mm2 field of view at a rate of 10 Hz. It provides up to 50 um spatial resolution, and allows imaging of fields as close as 150 um above structures, through the use of thin external cell walls. This is crucial in allowing us to take practical advantage of the high spatial resolution, as feature sizes in near-fields are on the order of the distance from their source, and represents an order of magnitude improvement in surface-feature resolution compared to previous vapor cell experiments. We present microwave and dc magnetic field images above a selection of devices, demonstrating a microwave sensitivity of 1.4 uT/sqrt-Hz per 50x50x140 um3 voxel, at present limited by the speed of our camera system. Since we image ...

  5. Direct determination of arsenic in soil samples by fast pyrolysis–chemical vapor generation using sodium formate as a reductant followed by nondispersive atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Xuchuan; Zhang, Jingya; Bu, Fanlong

    2015-09-01

    This new study shows for the first time that sodium formate can react with trace arsenic to form volatile species via fast pyrolysis – chemical vapor generation. We found that the presence of thiourea greatly enhanced the generation efficiency and eliminated the interference of copper. We studied the reaction temperature, the volume of sodium formate, the reaction acidity, and the carried argon rate using nondispersive atomic fluorescence spectrometry. Under optimal conditions of T = 500 °C, the volumes of 30% sodium formate and 10% thiourea were 0.2 ml and 0.05 ml, respectively. The carrier argon rate was 300 ml min{sup −1} and the detection limit and precision of arsenic were 0.39 ng and 3.25%, respectively. The amount of arsenic in soil can be directly determined by adding trace amount of hydrochloric acid as a decomposition reagent without any sample pretreatment. The method was successfully applied to determine trace amount of arsenic in two soil-certified reference materials (GBW07453 and GBW07450), and the results were found to be in agreement with certified reference values. - Highlights: • Sodium formate can react with trace arsenic to form volatile species via pyrolysis–chemical vapor generation. • Thiourea can enhance the generation efficiency and eliminate the interference of copper. • Arsenic in soil Sample can be directly determined without sample pretreatment.

  6. Determination of Hg(II) in waters by on-line preconcentration using Cyanex 923 as a sorbent — Cold vapor atomic absorption spectrometry

    Science.gov (United States)

    Duan, Taicheng; Song, Xuejie; Xu, Jingwei; Guo, Pengran; Chen, Hangting; Li, Hongfei

    2006-09-01

    Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO 3 and subsequently reduced by NaBH 4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min - 1 sample loading rate. The detection limit was 0.2 ng L - 1 and much lower than that of conventional method (around 15.8 ng L - 1 ). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L - 1 of Hg and the linear working curve is from 20 to 2000 ng L - 1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.

  7. Determination of Hg(II) in waters by on-line preconcentration using Cyanex 923 as a sorbent - Cold vapor atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duan Taicheng [State Key Laboratory of Electroanalytical Chemistry, National Research Center of Electroanalytical and Spectroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Song Xuejie [State Key Laboratory of Electroanalytical Chemistry, National Research Center of Electroanalytical and Spectroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Xu Jingwei [State Key Laboratory of Electroanalytical Chemistry, National Research Center of Electroanalytical and Spectroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Guo Pengran [State Key Laboratory of Electroanalytical Chemistry, National Research Center of Electroanalytical and Spectroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Chen Hangting [State Key Laboratory of Electroanalytical Chemistry, National Research Center of Electroanalytical and Spectroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)]. E-mail: htchen@ciac.jl.cn; Li Hongfei [Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2006-09-15

    Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO{sub 3} and subsequently reduced by NaBH{sub 4} to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min{sup -1} sample loading rate. The detection limit was 0.2 ng L{sup -1} and much lower than that of conventional method (around 15.8 ng L{sup -1}). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L{sup -1} of Hg and the linear working curve is from 20 to 2000 ng L{sup -1} (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.

  8. On-line continuous generation of zinc chelates in the vapor phase by reaction with sodium dithiocarbamates and determination by atomic fluorescence spectrometry

    Science.gov (United States)

    Duan, Xuchuan; Sun, Rui; Fang, Jinliang

    2017-02-01

    The present study shows for the first time that a volatile zinc chelate species can be generated by the on-line continuous merging of an acidified sample solution with an aqueous sodium diethyldithiocarbamate solution followed by rapid separation using a frit-based bubble gas-liquid separator at room temperature. The operating conditions for the generation of the vaporous zinc chelate were preliminarily investigated by non-dispersive atomic fluorescence spectrometry. The possible mechanism of zinc vapor generation is discussed. The study shows that the volatile species is an intermediate species with very similar properties to diethyldithiocarbamic acid and a very short half-life in the acidic solution. Moreover, this species can only be generated by on-line mixing and rapid separation. The efficiency of generation was 33-85% depending on acidity. Under optimal conditions, the flow rates of the sample and Na-DDTC solution were 1.3 ml min- 1, the carrier argon flow rate was 225 ml min- 1, the acid concentration of the sample solution and the concentration of Na-DDTC were 0.05 M and 0.4% (m/v), respectively, the detection limit of zinc was 0.33 (3σ) ng ml- 1, and the relative standard deviation (RSD) was 1.3%. The accuracy of the method was verified by the determination of zinc in the plant reference materials GBW10015 (spinach) and GBW10045 (rice). The results were in good agreement with the certified reference values.

  9. Poroelasticity of cell nuclei revealed through atomic force microscopy characterization

    Science.gov (United States)

    Wei, Fanan; Lan, Fei; Liu, Bin; Liu, Lianqing; Li, Guangyong

    2016-11-01

    With great potential in precision medical application, cell biomechanics is rising as a hot topic in biology. Cell nucleus, as the largest component within cell, not only contributes greatly to the cell's mechanical behavior, but also serves as the most vital component within cell. However, cell nucleus' mechanics is still far from unambiguous up to now. In this paper, we attempted to characterize and evaluate the mechanical property of isolated cell nuclei using Atomic Force Microscopy with a tipless probe. As indicated from typical indentation, changing loading rate and stress relaxation experiment results, cell nuclei showed significant dynamically mechanical property, i.e., time-dependent mechanics. Furthermore, through theoretical analysis, finite element simulation and stress relaxation experiment, the nature of nucleus' mechanics was better described by poroelasticity, rather than viscoelasticity. Therefore, the essence of nucleus' mechanics was clarified to be poroelastic through a sophisticated analysis. Finally, we estimated the poroelastic parameters for nuclei of two types of cells through a combination of experimental data and finite element simulation.

  10. Homojunction GaAs solar cells grown by close space vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, Jason W. [University of Oregon; Ritenour, Andrew J. [University of Oregon; Greenaway, Ann L. [University of Oregon; Aloni, Shaul [Lawrence Berkeley National Laboratory; Boettcher, Shannon W. [University of Oregon

    2014-06-08

    We report on the first pn junction solar cells grown by homoepitaxy of GaAs using close space vapor transport (CSVT). Cells were grown both on commercial wafer substrates and on a CSVT absorber film, and had efficiencies reaching 8.1%, open circuit voltages reaching 909 mV, and internal quantum efficiency of 90%. The performance of these cells is partly limited by the electron diffusion lengths in the wafer substrates, as evidenced by the improved peak internal quantum efficiency in devices fabricated on a CSVT absorber film. Unoptimized highly-doped n-type emitters also limit the photocurrent, indicating that thinner emitters with reduced doping, and ultimately wider band gap window or surface passivation layers, are required to increase the efficiency.

  11. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    Science.gov (United States)

    Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.

  12. Improved efficiency of a large-area Cu(In,Ga)Se₂ solar cell by a nontoxic hydrogen-assisted solid Se vapor selenization process.

    Science.gov (United States)

    Wu, Tsung-Ta; Hu, Fan; Huang, Jyun-Hong; Chang, Chia-ho; Lai, Chih-chung; Yen, Yu-Ting; Huang, Hou-Ying; Hong, Hwen-Fen; Wang, Zhiming M; Shen, Chang-Hong; Shieh, Jia-Min; Chueh, Yu-Lun

    2014-04-01

    A nontoxic hydrogen-assisted solid Se vapor selenization process (HASVS) technique to achieve a large-area (40 × 30 cm(2)) Cu(In,Ga)Se2 (CIGS) solar panel with enhanced efficiencies from 7.1 to 10.8% (12.0% for active area) was demonstrated. The remarkable improvement of efficiency and fill factor comes from improved open circuit voltage (Voc) and reduced dark current due to (1) decreased interface recombination raised from the formation of a widened buried homojunction with n-type Cd(Cu) participation and (2) enhanced separation of electron and hole carriers resulting from the accumulation of Na atoms on the surface of the CIGS film. The effects of microstructural, compositional, and electrical characteristics with hydrogen-assisted Se vapor selenization, including interdiffusion of atoms and formation of buried homojunction, were examined in detail. This methodology can be also applied to CIS (CuInSe2) thin film solar cells with enhanced efficiencies from 5.3% to 8.5% (9.4% for active area) and provides a facile approach to improve quality of CIGS and stimulate the nontoxic progress in the large scale CIGS PV industry.

  13. Slow and stored light under conditions of electromagnetically induced transparency and four wave mixing in an atomic vapor

    Science.gov (United States)

    Phillips, Nathaniel Blair

    The recent prospect of efficient, reliable, and secure quantum communication relies on the ability to coherently and reversibly map nonclassical states of light onto long-lived atomic states. A promising technique that accomplishes this employs Electromagnetically Induced Transparency (EIT), in which a strong classical control field modifies the optical properties of a weak signal field in such a way that a previously opaque medium becomes transparent to the signal field. The accompanying steep dispersion in the index of refraction allows for pulses of light to be decelerated, then stored as an atomic excitation, and later retrieved as a photonic mode. This dissertation presents the results of investigations into methods for optimizing the memory efficiency of this process in an ensemble of hot Rb atoms. We have experimentally demonstrated the effectiveness of two protocols for yielding the best memory efficiency possible at a given atomic density. Improving memory efficiency requires operation at higher optical depths, where undesired effects such as four-wave mixing (FWM) become enhanced and can spontaneously produce a new optical mode (Stokes field). We present the results of experimental and theoretical investigations of the FWM-EIT interaction under continuous-wave (cw), slow light, and stored light conditions. In particular, we provide evidence that indicates that while a Stokes field is generated upon retrieval of the signal field, any information originally encoded in a seeded Stokes field is not independently preserved during the storage process. We present a simple model that describes the propagation dynamics and provides an intuitive description of the EIT-FWM process.

  14. Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells.

    Science.gov (United States)

    Onofrio, Nicolas; Guzman, David; Strachan, Alejandro

    2015-04-01

    Nanoscale resistance-switching cells that operate via the electrochemical formation and disruption of metallic filaments that bridge two electrodes are among the most promising devices for post-CMOS electronics. Despite their importance, the mechanisms that govern their remarkable properties are not fully understood, especially for nanoscale devices operating at ultrafast rates, limiting our ability to assess the ultimate performance and scalability of this technology. We present the first atomistic simulations of the operation of conductive bridging cells using reactive molecular dynamics with a charge equilibration method extended to describe electrochemical reactions. The simulations predict the ultrafast switching observed in these devices, with timescales ranging from hundreds of picoseconds to a few nanoseconds for devices consisting of Cu active electrodes and amorphous silica dielectrics and with dimensions corresponding to their scaling limit (cross-sections below 10 nm). We find that single-atom-chain bridges often form during device operation but that they are metastable, with lifetimes below a nanosecond. The formation of stable filaments involves the aggregation of ions into small metallic clusters, followed by a progressive chemical reduction as they become connected to the cathode. Contrary to observations in larger cells, the nanoscale conductive bridges often lack crystalline order. An atomic-level mechanistic understanding of the switching process provides guidelines for materials optimization for such applications and the quantitative predictions over an ensemble of devices provide insight into their ultimate scaling and performance.

  15. Study of porogen removal by atomic hydrogen generated by hot wire chemical vapor deposition for the fabrication of advanced low-k thin films

    Energy Technology Data Exchange (ETDEWEB)

    Godavarthi, S., E-mail: srinivas@cinvestav.mx [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Fisicas, Av. Universidad, Cuernavaca, Morelos (Mexico); Wang, C.; Verdonck, P. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Matsumoto, Y.; Koudriavtsev, I. [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Dutt, A. [SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Tielens, H.; Baklanov, M.R. [imec, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-30

    In order to obtain low-k dielectric films, a subtractive technique, which removes sacrificial porogens from a hydrogenated silicon oxycarbide (SiOC:H) film, has been used successfully by different groups in the past. In this paper, we report on the porogen removal from porogenated SiOC:H films, using a hot wire chemical vapor deposition (HWCVD) equipment. Molecular hydrogen is dissociated into atomic hydrogen by the hot wires and these atoms may successfully remove the hydrocarbon groups from the porogenated SiOC:H films. The temperature of the HWCVD filaments proved to be a determining factor. By Fourier transform infrared spectroscopy, X-ray reflectivity (XRR), secondary ion mass spectrometry (SIMS), ellipsometric porosimetry and capacitance-voltage analyses, it was possible to determine that for temperatures higher than 1700 °C, efficient porogen removal occurred. For temperatures higher than 1800 °C, the presence of OH groups was detected. The dielectric constant was the lowest, 2.28, for the samples processed at a filament temperature of 1800 °C, although porosity measurements showed higher porosity for the films deposited at the higher temperatures. XRR and SIMS analyses indicated densification and Tungsten (W) incorporation at the top few nanometers of the films.

  16. Evaluation of the memory effect on gold-coated silica adsorption tubes used for the analysis of gaseous mercury by cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Rahman, Mohammad Mahmudur; Brown, Richard J C; Kim, Ki-Hyun; Yoon, Hye-On; Phan, Nhu-Thuc

    2013-01-01

    In an effort to reduce the experimental bias involved in the analysis of gaseous elemental mercury (Hg(o)), the blank response from gold-coated adsorption tubes has been investigated using cold vapor atomic absorption spectrometry (CVAAS). Our study has been compared with our recent investigation on memory effect in a cold vapour atomic fluorescence spectrometry (CVAFS). The pattern of blank responses was quantified after loading different amounts of mercury and after different time intervals of 1, 14, and 45 days. In case of the one day interval, the result of five to six instant blank heating cycles confirmed successful liberation of mercury following the second and third blank heating cycles. The results of 14 or 45 days generally suggest that liberation of excess mercury is affected by both the initial loading amount and the length of storage time prior to analysis. We have demonstrated a possibly effective way to reduce memory effects. Some similarities of these results with those from CVAFS experiment suggests that the blank response is caused by a combination of mercury absorbed within the bulk gold and micro- and nanoparticles liberated during heating and not from coabsorbing interfering gaseous species.

  17. Evaluation of the Memory Effect on Gold-Coated Silica Adsorption Tubes Used for the Analysis of Gaseous Mercury by Cold Vapor Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Mohammad Mahmudur Rahman

    2013-01-01

    Full Text Available In an effort to reduce the experimental bias involved in the analysis of gaseous elemental mercury (Hgo, the blank response from gold-coated adsorption tubes has been investigated using cold vapor atomic absorption spectrometry (CVAAS. Our study has been compared with our recent investigation on memory effect in a cold vapour atomic fluorescence spectrometry (CVAFS. The pattern of blank responses was quantified after loading different amounts of mercury and after different time intervals of 1, 14, and 45 days. In case of the one day interval, the result of five to six instant blank heating cycles confirmed successful liberation of mercury following the second and third blank heating cycles. The results of 14 or 45 days generally suggest that liberation of excess mercury is affected by both the initial loading amount and the length of storage time prior to analysis. We have demonstrated a possibly effective way to reduce memory effects. Some similarities of these results with those from CVAFS experiment suggests that the blank response is caused by a combination of mercury absorbed within the bulk gold and micro- and nanoparticles liberated during heating and not from coabsorbing interfering gaseous species.

  18. Recyclable decoration of amine-functionalized magnetic nanoparticles with Ni(2+) for determination of histidine by photochemical vapor generation atomic spectrometry.

    Science.gov (United States)

    Hu, Yuan; Wang, Qi; Zheng, Chengbin; Wu, Li; Hou, Xiandeng; Lv, Yi

    2014-01-07

    It is critically important to accurately determine histidine since it is an indicator for many diseases when at an abnormal level. Here, an inexpensive and simple method using an amine-functionalized magnetic nanoparticle-based Ni(2+)-histidine affinity pair system was developed for highly sensitive and selective detection of histidine in human urine by photochemical vapor generation atomic spectrometry. Ni(2+) was first bound to the amine groups of the amine-functionalized magnetic nanoparticles and then liberated to solution via the highly specific interaction between the histidine and Ni(2+) in the presence of histidine. The liberated histidine-Ni(2+) complex was exposed to UV irradiation in the presence of formic acid to form gaseous nickel tetracarbonyl, which was separated from the sample matrix and determined by atomic absorption/fluorescence spectrometry. Compared to other methods, this approach promises high sensitivity, simplicity in design, and convenient operation. The need for organic solvents, enzymatic reactions, separation processes, chemical modification, expensive instrumentations, and sophisticated and complicated pretreatment is minimized with this strategy. A limit of detection of 1 nM was obtained and provided tens-to-hundreds of fold improvements over that achieved with conventional methods. The protocol was evaluated by analysis of several urine samples with good recoveries and showed great potential for practical application.

  19. Fabrication of CdTe solar cells by laser-driven physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.; Bhat, A.; Tabory, C.; Liu, S.; Nguyen, M.; Aydinli, A.; Tsien, L.H.; Bohn, R.G. (Toledo Univ., OH (USA). Dept. of Physics and Astronomy)

    1991-05-01

    Polycrystalline cadmium sulfide-cadmium telluride heterojunction solar cells were fabricated for the first time using a laser-driven physical vapor deposition method. An XeCl excimer laser was used to deposit both of the II-VI semiconductor layers in a single vacuum chamber from pressed powder targets. Results are presented from optical absorption. Raman scattering, X-ray diffraction, and electrical characterization of the films. Solar cells were fabricated by deposition onto SnO{sub 2}-coated glass with top contacts produced by gold evaporation. Device performance was evaluated from the spectral quantum efficiency and current-voltage measurements in the dark and with air mass 1.5 solar illumination. (orig.).

  20. Vapor Delivery Systems for the Study of the Effects of Reformate Gas Impurities in HT-PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Kær, Søren Knudsen; Andreasen, Søren Juhl

    2011-01-01

    The reforming of methanol can be an alternative source of hydrogen for fuel cells because it has many practical advantages over hydrogen, mainly due to the technological limitations related to the storage, supply, and distribution of the latter. However, despite the ease of methanol handling......, impurities in the reformate gas produced from methanol steam reforming can affect the performance and durability of fuel cells. In this paper different vapor delivery systems, intended to assist in the study of the effects of some of the impurities, are described and compared with each other. A system based...... on a pump and electrically heated evaporator was found to be more suitable for the typical flow rates involved in the anode feed of an H3PO4/PBI based HT-PEMFC unit cell assembly. Test stations composed of vapor delivery systems and mass flow controllers for testing the effects of methanol slip, water vapor...

  1. Evaluation of E-Cigarette Liquid Vapor and Mainstream Cigarette Smoke after Direct Exposure of Primary Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Stefanie Scheffler

    2015-04-01

    Full Text Available E-cigarettes are emerging products, often described as “reduced-risk” nicotine products or alternatives to combustible cigarettes. Many smokers switch to e-cigarettes to quit or significantly reduce smoking. However, no regulations for e-cigarettes are currently into force, so that the quality and safety of e-liquids is not necessarily guaranteed. We exposed primary human bronchial epithelial cells of two different donors to vapor of e-cigarette liquid with or without nicotine, vapor of the carrier substances propylene glycol and glycerol as well as to mainstream smoke of K3R4F research cigarettes. The exposure was done in a CULTEX® RFS compact  module, allowing the exposure of the cells at the air-liquid interface. 24 h post-exposure, cell viability and oxidative stress levels in the cells were analyzed. We found toxicological effects of e-cigarette vapor and the pure carrier substances, whereas the nicotine concentration did not have an effect on the cell viability. The viability of mainstream smoke cigarette exposed cells was 4.5–8 times lower and the oxidative stress levels 4.5–5 times higher than those of e-cigarette vapor exposed cells, depending on the donor. Our experimental setup delivered reproducible data and thus provides the opportunity for routine testing of e-cigarette liquids to ensure safety and quality for the user.

  2. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.

    Science.gov (United States)

    Kilpatrick, Jason I; Revenko, Irène; Rodriguez, Brian J

    2015-11-18

    The behavior and mechanical properties of cells are strongly dependent on the biochemical and biomechanical properties of their microenvironment. Thus, understanding the mechanical properties of cells, extracellular matrices, and biomaterials is key to understanding cell function and to develop new materials with tailored mechanical properties for tissue engineering and regenerative medicine applications. Atomic force microscopy (AFM) has emerged as an indispensable technique for measuring the mechanical properties of biomaterials and cells with high spatial resolution and force sensitivity within physiologically relevant environments and timescales in the kPa to GPa elastic modulus range. The growing interest in this field of bionanomechanics has been accompanied by an expanding array of models to describe the complexity of indentation of hierarchical biological samples. Furthermore, the integration of AFM with optical microscopy techniques has further opened the door to a wide range of mechanotransduction studies. In recent years, new multidimensional and multiharmonic AFM approaches for mapping mechanical properties have been developed, which allow the rapid determination of, for example, cell elasticity. This Progress Report provides an introduction and practical guide to making AFM-based nanomechanical measurements of cells and surfaces for tissue engineering applications.

  3. Chromium vaporization from mechanically deformed pre-coated interconnects in Solid Oxide Fuel Cells

    Science.gov (United States)

    Falk-Windisch, Hannes; Sattari, Mohammad; Svensson, Jan-Erik; Froitzheim, Jan

    2015-11-01

    Cathode poisoning, associated with Cr evaporation from interconnect material, is one of the most important degradation mechanisms in Solid Oxide Fuel Cells when Cr2O3-forming steels are used as the interconnect material. Coating these steels with a thin Co layer has proven to decrease Cr vaporization. To reduce production costs, it is suggested that thin metallic PVD coatings be applied to each steel strip before pressing the material into interconnect shape. This process would enable high volume production without the need for an extra post-coating step. However, when the pre-coated material is mechanically deformed, cracks may form and lower the quality of the coating. In the present study, Chromium volatilization is measured in an air-3% H2O environment at 850 °C for 336 h. Three materials coated with 600 nm Co are investigated and compared to an uncoated material. The effect of deformation is investigated on real interconnects. Microscopy observations reveal the presence of cracks in the order of several μm on the deformed pre-coated steel. However, upon exposure, the cracks can heal and form a continuous surface oxide rich in Co and Mn. As an effect of the rapid healing, no increase in Cr vaporization is measured for the pre-coated material.

  4. Investigating the Effect of Water Vapor and Residual Methanol on the Anode of High Temperature PEM Fuel Cell

    DEFF Research Database (Denmark)

    Thomas, Sobi; Araya, Samuel Simon; Kær, Søren Knudsen

    The objective is to understand the effect of methanol and water vapor separately on a high temperature PEM fuel cell. An investigation was performed with different anode fuel compositions and results in terms of performance and impedance analyzed. During the initial 1000 h, cell was tested...... with pure hydrogen under varying current densities of 0.2 A cm-2 and 0.6 A cm-2, followed by hydrogen mixed with 15 % water vapor and then with 1 % methanol. The degradation rates at two current densities 0.2 A cm-2 and 0.6 A cm-2 were analyzed and discussed. The degradation at higher current density...... is more severe than at lower current density. However, on switching from higher to lower current density, the effect is reversible and the performance is improved. This suggests that some degradation is reversible. The addition of water vapor in the feed improves the performance at high current densities...

  5. Investigating the effect of water vapor and residual methanol on the anode of high temperature pem fuel cell

    DEFF Research Database (Denmark)

    Thomas, Sobi; Araya, Samuel Simon; Kær, Søren Knudsen

    2015-01-01

    The objective is to understand the effect of methanol and water vapor separately on a high temperature PEM fuel cell. An investigation was performed with different anode fuel compositions and results in terms of performance and impedance analyzed. During the initial 1000 h, cell was tested...... with pure hydrogen under varying current densities of 0.2 A cm-2 and 0.6 A cm-2, followed by hydrogen mixed with 15 % water vapor and then with 1 % methanol. The degradation rates at two current densities 0.2 A cm-2 and 0.6 A cm-2 were analyzed and discussed. The degradation at higher current density...... is more severe than at lower current density. However, on switching from higher to lower current density, the effect is reversible and the performance is improved. This suggests that some degradation is reversible. The addition of water vapor in the feed improves the performance at high current densities...

  6. Metallorganic chemical vapor deposition and atomic layer deposition approaches for the growth of hafnium-based thin films from dialkylamide precursors for advanced CMOS gate stack applications

    Science.gov (United States)

    Consiglio, Steven P.

    To continue the rapid progress of the semiconductor industry as described by Moore's Law, the feasibility of new material systems for front end of the line (FEOL) process technologies needs to be investigated, since the currently employed polysilicon/SiO2-based transistor system is reaching its fundamental scaling limits. Revolutionary breakthroughs in complementary-metal-oxide-semiconductor (CMOS) technology were recently announced by Intel Corporation and International Business Machines Corporation (IBM), with both organizations revealing significant progress in the implementation of hafnium-based high-k dielectrics along with metal gates. This announcement was heralded by Gordon Moore as "...the biggest change in transistor technology since the introduction of polysilicon gate MOS transistors in the late 1960s." Accordingly, the study described herein focuses on the growth of Hf-based dielectrics and Hf-based metal gates using chemical vapor-based deposition methods, specifically metallorganic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD). A family of Hf source complexes that has received much attention recently due to their desirable properties for implementation in wafer scale manufacturing is the Hf dialkylamide precursors. These precursors are room temperature liquids and possess sufficient volatility and desirable decomposition characteristics for both MOCVD and ALD processing. Another benefit of using these sources is the existence of chemically compatible Si dialkylamide sources as co-precursors for use in Hf silicate growth. The first part of this study investigates properties of MOCVD-deposited HfO2 and HfSixOy using dimethylamido Hf and Si precursor sources using a customized MOCVD reactor. The second part of this study involves a study of wet and dry surface pre-treatments for ALD growth of HfO2 using tetrakis(ethylmethylamido)hafnium in a wafer scale manufacturing environment. The third part of this study is an investigation of

  7. Suppression of vapor cell temperature error for spin-exchange-relaxation-free magnetometer.

    Science.gov (United States)

    Lu, Jixi; Qian, Zheng; Fang, Jiancheng; Quan, Wei

    2015-08-01

    This paper presents a method to reduce the vapor cell temperature error of the spin-exchange-relaxation-free (SERF) magnetometer. The fluctuation of cell temperature can induce variations of the optical rotation angle, resulting in a scale factor error of the SERF magnetometer. In order to suppress this error, we employ the variation of the probe beam absorption to offset the variation of the optical rotation angle. The theoretical discussion of our method indicates that the scale factor error introduced by the fluctuation of the cell temperature could be suppressed by setting the optical depth close to one. In our experiment, we adjust the probe frequency to obtain various optical depths and then measure the variation of scale factor with respect to the corresponding cell temperature changes. Our experimental results show a good agreement with our theoretical analysis. Under our experimental condition, the error has been reduced significantly compared with those when the probe wavelength is adjusted to maximize the probe signal. The cost of this method is the reduction of the scale factor of the magnetometer. However, according to our analysis, it only has minor effect on the sensitivity under proper operating parameters.

  8. Porphyrins as Templates for Site-Selective Atomic Layer Deposition: Vapor Metalation and in Situ Monitoring of Island Growth.

    Science.gov (United States)

    Avila, Jason R; Emery, Jonathan D; Pellin, Michael J; Martinson, Alex B F; Farha, Omar K; Hupp, Joseph T

    2016-08-10

    Examinations of enzymatic catalysts suggest one key to efficient catalytic activity is discrete size metallo clusters. Mimicking enzymatic cluster systems is synthetically challenging because conventional solution methods are prone to aggregation or require capping of the cluster, thereby limiting its catalytic activity. We introduce site-selective atomic layer deposition (ALD) on porphyrins as an alternative approach to grow isolated metal oxide islands that are spatially separated. Surface-bound tetra-acid free base porphyrins (H2TCPP) may be metalated with Mn using conventional ALD precursor exposure to induce homogeneous hydroxide synthetic handles which acts as a nucleation point for subsequent ALD MnO island growth. Analytical fitting of in situ QCM mass uptake reveals island growth to be hemispherical with a convergence radius of 1.74 nm. This growth mode is confirmed with synchrotron grazing-incidence small-angle X-ray scattering (GISAXS) measurements. Finally, we extend this approach to other ALD chemistries to demonstrate the generality of this route to discrete metallo island materials.

  9. Low-Pressure Vapor-Assisted Solution Process for Thiocyanate-Based Pseudohalide Perovskite Solar Cells.

    Science.gov (United States)

    Chiang, Yu-Hsien; Cheng, Hsin-Min; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter

    2016-09-22

    In this report, we fabricated thiocyanate-based perovskite solar cells with low-pressure vapor-assisted solution process (LP-VASP) method. Photovoltaic performances are evaluated with detailed materials characterizations. Scanning electron microscopy images show that SCN-based perovskite films fabricated using LP-VASP have long-range uniform morphology and large grain sizes up to 1 μm. The XRD and Raman spectra were employed to observe the characteristic peaks for both SCN-based and pure CH3 NH3 PbI3 perovskite. We observed that the Pb(SCN)2 film transformed to PbI2 before the formation of perovskite film. X-ray photoemission spectra (XPS) show that only a small amount of S remained in the film. Using LP-VASP method, we fabricated SCN-based perovskite solar cells and achieved a power conversion efficiency of 12.72 %. It is worth noting that the price of Pb(SCN)2 is only 4 % of PbI2 . These results demonstrate that pseudo-halide perovskites are promising materials for fabricating low-cost perovskite solar cells.

  10. Enhanced Spin Depolarization and Storage Time in a Rb Vapor

    Institute of Scientific and Technical Information of China (English)

    QI Yue-Rong; GAO Hong; ZHANG Shou-Gang

    2009-01-01

    The experiment of measuring the spin depolarized time and light storage time in a Rb vapor under different conditions is performed. Typically, these measurements are accomplished in three different containers: atoms in a bare glass ceil, atoms in a buffer gas cell, and atoms in a tetracontane (C40H82) coating cell. The increasing depolarization and storage times are observed in both the buffer gas ceil and the tetracontane coating cell. In the latter case, a storage time greater than 400 μs is obtained.

  11. Electrical properties of CdTe/CdS solar cells investigated with conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, H.R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401 (United States)]. E-mail: helio_moutinho@nrel.gov; Dhere, R.G. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401 (United States); Jiang, C.-S. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401 (United States); Al-Jassim, M.M. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401 (United States); Kazmerski, L.L. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401 (United States)

    2006-08-30

    We report on the application of conductive atomic force microscopy (C-AFM) for studying the electrical properties of CdTe/CdS solar cells, and discuss the advantages and limitations of this technique. C-AFM is a new technique that uses the tip of an AFM to apply a potential between the tip and the sample, resulting in high spatial-resolution current images, as well as current versus voltage curves. The analyses were made before and after the standard vapor CdCl{sub 2} treatment, as well as two etching processes, using solutions of bromine/methanol and nitric-phosphoric acids. The current images from the untreated and CdCl{sub 2}-treated samples showed grains with different contrasts, due to differences in electrical conductivity or a nonuniform surface. The bromine/methanol etch resulted in more conductive grain boundaries as compared to intragrain material, while the nitric/phosphoric etch increased the conductivity of the whole film close to the surface and resulted in films with significant photocurrent.

  12. Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry

    Science.gov (United States)

    Brombach, Christoph-Cornelius; Chen, Bin; Corns, Warren T.; Feldmann, Jörg; Krupp, Eva M.

    2015-03-01

    Ultra-traces of methylmercury at the sub-ppt level can be magnified in the foodweb and is of concern. In environmental monitoring a routine robust analytical method is needed to determine methylmercury in water. The development of an analytical method for ultra-trace speciation analysis of methylmercury (MeHg) in water samples is described. The approach is based on HPLC-CV-AFS with on-line preconcentration of water samples up to 200 mL, resulting in a detection limit of 40 pg/L (ppq) for MeHg, expressed as Hg. The unit consists of an optimized preconcentration column filled with a sulfur-based sorption material, on which mercury species are preconcentrated and subsequently eluted, separated and detected via HPLC-CV-AFS (high performance liquid chromatography-cold vapor atomic fluorescence spectrometry). During the method development a type of adsorbate material, the pH dependence, the sample load rate and the carry-over were investigated using breakthrough experiments. The method shows broad pH stability in the range of pH 0 to 7, without the need for buffer addition and shows limited matrix effects so that MeHg is quantitatively recovered from sewage, river and seawater directly in the acidified samples without sample preparation.

  13. Automatic flow-batch system for cold vapor atomic absorption spectroscopy determination of mercury in honey from Argentina using online sample treatment.

    Science.gov (United States)

    Domínguez, Marina A; Grünhut, Marcos; Pistonesi, Marcelo F; Di Nezio, María S; Centurión, María E

    2012-05-16

    An automatic flow-batch system that includes two borosilicate glass chambers to perform sample digestion and cold vapor atomic absorption spectroscopy determination of mercury in honey samples was designed. The sample digestion was performed by using a low-cost halogen lamp to obtain the optimum temperature. Optimization of the digestion procedure was done using a Box-Behnken experimental design. A linear response was observed from 2.30 to 11.20 μg Hg L(-1). The relative standard deviation was 3.20% (n = 11, 6.81 μg Hg L(-1)), the sample throughput was 4 sample h(-1), and the detection limit was 0.68 μg Hg L(-1). The obtained results with the flow-batch method are in good agreement with those obtained with the reference method. The flow-batch system is simple, allows the use of both chambers simultaneously, is seen as a promising methodology for achieving green chemistry goals, and is a good proposal to improving the quality control of honey.

  14. Solid Phase Extraction of Inorganic Mercury Using 5-Phenylazo-8-hydroxyquinoline and Determination by Cold Vapor Atomic Fluorescence Spectroscopy in Natural Water Samples

    Science.gov (United States)

    Daye, Mirna; Halwani, Jalal; Hamzeh, Mariam

    2013-01-01

    8-Hydroxyquinoline (8-HQ) was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ) is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II) is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II), which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II). The developed method showed quantitative recoveries of Hg(II) with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS) with a preconcentration factor greater than 250. PMID:24459417

  15. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Martinis, Estefania M.; Berton, Paula [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Olsina, Roberto A. [INQUISAL-CONICET, Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Altamirano, Jorgelina C. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@lab.cricyt.edu.ar [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 {mu}l of 9.0 mol L{sup -1} hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L{sup -1} and the relative standard deviation (RSD) for 10 replicates at 1 {mu}g L{sup -1} Hg{sup 2+} was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  16. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Abdollahi Atousa

    2014-07-01

    Full Text Available A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap. The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS. The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically investigated. The factors influencing, the complex formation and extraction of DLLME-SFO method such as type and volume of extraction and disperser solvents, pH, concentration of salt, centrifuging time and concentration of the chelating agent were optimized. The method was successfully applied to the determination of mercury in drinking and natural water and satisfactory relative recoveries (95–105% were achieved. The proposed procedure was based on very low consumption of organic solvents. The other benefits of the system were sensitive, simple, friendly to the environment, rejection of matrix constituent, low cost, the time consuming and high enrichment factor.

  17. Solid Phase Extraction of Inorganic Mercury Using 5-Phenylazo-8-hydroxyquinoline and Determination by Cold Vapor Atomic Fluorescence Spectroscopy in Natural Water Samples

    Directory of Open Access Journals (Sweden)

    Mirna Daye

    2013-01-01

    Full Text Available 8-Hydroxyquinoline (8-HQ was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II, which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II. The developed method showed quantitative recoveries of Hg(II with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS with a preconcentration factor greater than 250.

  18. Analysis of trace mercury in water by solid phase extraction using dithizone modified nanometer titanium dioxide and cold vapor atomic absorption spectrometry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new method for analysis of trace mercury in water samples was developed, based on the combination of preconcentration/separation using dithizone-modified nanometer titanium dioxide (TiO2) as a solid phase extractant and determination by cold vapor atomic adsorption spectrometry (CVAAS). Dithizone was dissolved with alcohol and loaded on the surface of nano-sized TiO2 powders by stirring. The static adsorption behavior of Hg2+ on the dithizone-modified nanoparticles was investigated in detail. It was found that excellent adsorption ratio for Hg2+ could be obtained in the pH range of 7-8 with an oscillation time of 15 min, and a 5 mL of 3.5 mol·L-1 HCl solution could quantitatively elute Hg2+ from nanometer TiO2 powder. Common coexisting ions caused no obvious influence on the determination of mercury. The mechanisms for the adsorption and desorption were discussed. The detection limit (3σ) for Hg2+ was calculated to be 5 ng·L-1. The proposed method was applied to the determination of Hg2+ in a mineral water sample and a Zhujiang River water sample. By the standard addition method, the average recoveries were found to be 94.4%-108.3% with RSD (n = 5) of 2.9%-3.5%.

  19. Direct determination of arsenic in soil samples by fast pyrolysis-chemical vapor generation using sodium formate as a reductant followed by nondispersive atomic fluorescence spectrometry

    Science.gov (United States)

    Duan, Xuchuan; Zhang, Jingya; Bu, Fanlong

    2015-09-01

    This new study shows for the first time that sodium formate can react with trace arsenic to form volatile species via fast pyrolysis - chemical vapor generation. We found that the presence of thiourea greatly enhanced the generation efficiency and eliminated the interference of copper. We studied the reaction temperature, the volume of sodium formate, the reaction acidity, and the carried argon rate using nondispersive atomic fluorescence spectrometry. Under optimal conditions of T = 500 °C, the volumes of 30% sodium formate and 10% thiourea were 0.2 ml and 0.05 ml, respectively. The carrier argon rate was 300 ml min- 1 and the detection limit and precision of arsenic were 0.39 ng and 3.25%, respectively. The amount of arsenic in soil can be directly determined by adding trace amount of hydrochloric acid as a decomposition reagent without any sample pretreatment. The method was successfully applied to determine trace amount of arsenic in two soil-certified reference materials (GBW07453 and GBW07450), and the results were found to be in agreement with certified reference values.

  20. Ultraviolet vapor generation atomic fluorescence spectrometric determination of mercury in natural water with enrichment by on-line solid phase extraction

    Science.gov (United States)

    Qin, Deyuan; Gao, Feng; Zhang, Zhaohui; Zhao, Liqian; Liu, Jixin; Ye, Jianping; Li, Junwei; Zheng, Fengxi

    2013-10-01

    A novel method, which coupled an on-line solid phase extraction (SPE) enrichment with ultraviolet vapor generation (UVG) atomic fluorescence spectrometry (AFS), was developed to improve the sensitivity of mercury determination and to remove the interference of some anion and organics to UVG of mercury. A high mercury retention efficiency and maximum exclusion of inorganic and organic matrix in water samples were achieved by using C18 SPE mini cartridge modified with sodium diethyldithiocarbamate (DDTC). Fast and efficient elution from the cartridge was found by using L-cysteine mixing solution. Furthermore, through the investigation of different UV reactor designs, the most important factor was the structure of the reactor (which corresponded roughly to the photon flux) wherein the tubing was sintered into the UV lamp to give the highest UV generation efficiency. The second factor was the materials of the tubing (which roughly corresponded to the working wavelength). Synthetic quartz, characterized by the highest transparency at 185 nm, attained the highest UVG efficiency, suggesting that the most favorable wavelength for UVG was 185 nm. Under optimum conditions, the achievable detection limit (3σ) with sample loadings of 10.0 mL was 0.03 ng L- 1 and 0.08 ng L- 1 with different manifolds, respectively. The method was successfully applied to the determination of Hg in tap water, river water and lake water samples.

  1. An analytical method for determination of mercury by cold vapor atomic absorption spectroscopy; Determinazione di mercurio. Metodo per spettrometria di assorbimento atomico a vapori freddi (CV-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, L. [Rome Univ. La Sapienza, Rome (Italy); Mastroianni, D.; Capri, S.; Pettine, M. [CNR, Rome (Italy). Ist. di Ricerca sulle Acque; Spezia, S.; Bettinelli, M. [ENEL, Unified Modelling Language, Piacenza (Italy)

    1999-09-01

    An analytical procedure for the determination of total mercury in wastewaters and natural waters is described. Aqueous samples are fast digested with nitric acid by using the microwave-oven technique; the analysis of mercury is then performed by cold vapor atomic absorption spectrometry (CV-AAS) using two possible instrumental apparatus (batch system or flow injection). Sodium borohydride is used as the reducing agent for mercury in solution (Method A). The use of amalgamation traps on gold for the preconcentration of mercury lowers the detection limit of the analyte (Method B). [Italian] Viene descritta una procedura analitica per la determinazione del mercurio totale in acque di scarico e naturali. Il campione acquoso viene sottoposto a mineralizzazione con acido nitrico in forno a microonde e analizzato mediante spettroscopia di assorbimento atomico a vapori freddi (CV-AAS) in due possibili configurazioni strumentali (sistema batch oppure flow injection), utilizzando sodio boro idruro come agente riducente del mercurio (metodo A). L'impiego della trappola di oro per la preconcentrazione del mercurio mediante amalgama consente di determinare l'analita a livelli di pochi ng/L (metodo B).

  2. High quality anti-relaxation coating material for alkali atom vapor cells

    DEFF Research Database (Denmark)

    Balabas, M.V.; Jensen, Kasper; Wasilewski, Wojciech

    2010-01-01

    Brain aging is associated with synaptic decline and synaptic function is highly dependent on mitochondria. Increased levels of oxidative DNA base damage and accumulation of mitochondrial DNA (mtDNA) mutations or deletions lead to mitochondrial dysfunction, playing an important role in the aging p...

  3. On-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the speciation of inorganic antimony in environmental and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Li Yingjie [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan 430072 (China)]. E-mail: binhu@whu.edu.cn; Jiang Zucheng [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2006-08-25

    A new method for the determination of inorganic Sb species by on-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry (ETV-ICP-AES) is presented and evaluated. The method is based on the complexation of Sb(III) with pyrrolidine dithiocarbamate (PDC) which form an hydrophobic complex at pH 5.5 and subsequently enter surfactant-rich phase at pH 5.5, whereas Sb(V) remained in aqueous solutions. The preconcentration step is mediated by micelles of the non-ionic surfactant Triton X-114 with ammonium pyrrolidine dithiocarbamate (APDC). The micellar system containing the complex was loaded into the FIA manifold at a flow rate of 2.5 mL min{sup -1}, and the surfactant-rich phase was retained in a microcolumn packed with absorbent cotton, at pH 5.5. After the surfactant-rich phase was eluted with 100 {mu}L acetonitrile, it was determined by ETV-ICP-AES. Sb(V) is reduced to Sb(III) by L-cysteine prior to determined total Sb, and its assay is based on subtracting Sb(III) from total antimony. The main factors affecting separation/preconcentration and the vaporization behavior of analyte in graphite tube were investigated in detail. Under the optimized conditions, the precision relative standard deviation (R.S.D.) for eight replicate measurements of 0.2 {mu}g mL{sup -1} Sb(III) was 4.3%. The apparent concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for ETV-ICP-AES detection and in the initial solution, was 872 for Sb(III). The limit of detection (LOD) for Sb(III) was 0.09 {mu}g L{sup -1}. The proposed method was successfully applied for the speciation of inorganic antimony in different water samples and urine sample with satisfactory results.

  4. Ionic liquid-based zinc oxide nanofluid for vortex assisted liquid liquid microextraction of inorganic mercury in environmental waters prior to cold vapor atomic fluorescence spectroscopic detection.

    Science.gov (United States)

    Amde, Meseret; Liu, Jing-Fu; Tan, Zhi-Qiang; Bekana, Deribachew

    2016-01-01

    Zinc oxide nanofluid (ZnO-NF) based vortex assisted liquid liquid microextraction (ZnO-NF VA-LLME) was developed and employed in extraction of inorganic mercury (Hg(2+)) in environmental water samples, followed by cold vapor atomic fluorescence spectrometry (CV-AFS). Unlike other dispersive liquid liquid microextraction techniques, ZnO-NF VA-LLME is free of volatile organic solvents and dispersive solvent consumption. Analytical signals were obtained without back-extraction from the ZnO-NF phase prior to CV-AFS determination. Some essential parameters of the ZnO-NF VA-LLME and cold vapor generation such as composition and volume of the nanofluid, vortexing time, pH of the sample solution, amount of the chelating agent, ionic strength and matrix interferences have been studied. Under optimal conditions, efficient extraction of 1ng/mL of Hg(2+) in 10mL of sample solution was achieved using 50μL of ZnO-NF. The enrichment factor before dilution, detection limits and limits of quantification of the method were about 190, 0.019 and 0.064ng/mL, respectively. The intra and inter days relative standard deviations (n=8) were found to be 4.6% and 7.8%, respectively, at 1ng/mL spiking level. The accuracy of the current method was also evaluated by the analysis of certified reference materials, and the measured Hg(2+) concentration of GBW08603 (9.6ng/mL) and GBW(E)080392 (8.9ng/mL) agreed well with their certified value (10ng/mL). The method was applied to the analysis of Hg(2+) in effluent, influent, lake and river water samples, with recoveries in the range of 79.8-92.8% and 83.6-106.1% at 1ng/mL and 5ng/mL spiking levels, respectively. Overall, ZnO-NF VA-LLME is fast, simple, cost-effective and environmentally friendly and it can be employed for efficient enrichment of the analyte from various water samples.

  5. Development of a Rapid Cell-free Method for Cytotoxicity Assessment of Vapor Phase of Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Cahours X

    2014-12-01

    Full Text Available Currently, several in vitro tests are widely used to measure toxicological properties of mainstream smoke (Neutral Red Uptake Assay, Micronucleus assay, Ames Test. These tests are necessary to assess cytotoxicity, genotoxicity, and mutagenicity, but are time consuming. This is essentially due to the preparation and the handling of cells. It is difficult to use these in vitro tests as screening method for product testing and development. For a better assessment of the cytotoxicity of the vapor phase, a rapid cell-free method has been developed. This paper describes a capillary electrophoresis cell-free method, based on the depletion of an anti-oxidant L-gamma-glutamyl-L-cysteinylglycine (GSH, applied to an aliquot of vapor phase phosphate buffered saline (PBS-trapped cigarette smoke (as recommended for in vitro testing. The correlation between this method and the survival/viability test (Neutral Red cytotoxicity is excellent (coefficient of correlation (r = 0.99.

  6. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ferrari, Carlo [National Research Council of Italy, C.N.R., Istituto Nazionale di Ottica, INO–UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2013-12-04

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg{sup II}. •Each measure requires less than 5 min with a LOD of 3 ng mL{sup −1} (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL{sup −1}. -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C{sub 9}H{sub 9}HgNaO{sub 2}S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH{sub 4} solution, and AFS detection in an Ar/H{sub 2} miniaturized flame. The method was linear in the 0.01–2 μg mL{sup −1} range, with a LOD of 0.003 μg mL{sup −1}. This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL{sup −1}.

  7. Development of a method for total Hg determination in oil samples by cold vapor atomic absorption spectrometry after its extraction induced by emulsion breaking.

    Science.gov (United States)

    Vicentino, Priscila de O; Brum, Daniel M; Cassella, Ricardo J

    2015-01-01

    This work reports the development of a novel extraction method for total Hg determination in oil samples. After extracting Hg from samples it was quantified in the extracts by cold vapor atomic absorption spectrometry (CV-AAS), employing a laboratory-made gas-liquid separator (GLS) and NaBH4 as reducing agent. The extraction of Hg from samples was carried out by extraction induced by emulsion breaking (EIEB), which is based on the formation and breaking of water-in-oil emulsion between the oil samples and an extractant solution containing an emulsifying agent (surfactant) and nitric acid. Operational parameters of the GLS were evaluated in order to set the best performance of the measurement system. In these studies it was proven that the volume of sample and the concentration of HCl added to the sample extracts had significant influence on Hg response. The best conditions were achieved by adding 0.5 mL of a 0.3 mol L(-1) HCl solution on 1 mL of sample extract. The extraction conditions were also optimized. The highest efficiency was observed when 4 mL of a solution containing 2.5% triton X-100 and 15% v/v HNO3 were employed for the extraction of Hg contained in 20 mL of sample. Emulsion breaking was performed by heating at 80 °C and took approximately 20 min. The limit of quantification of the method was 1.9 µg L(-1) and recovery percentages between 80% and 103% were observed when spiked samples (2 and 10 µg L(-1)) of diesel oil, biodiesel and mineral oil were analyzed.

  8. Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Brombach, Christoph-Cornelius [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Chen, Bin; Corns, Warren T. [PS Analytical, Arthur House, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3HP (United Kingdom); Feldmann, Jörg [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Krupp, Eva M., E-mail: e.krupp@abdn.ac.uk [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2015-03-01

    Ultra-traces of methylmercury at the sub-ppt level can be magnified in the foodweb and is of concern. In environmental monitoring a routine robust analytical method is needed to determine methylmercury in water. The development of an analytical method for ultra-trace speciation analysis of methylmercury (MeHg) in water samples is described. The approach is based on HPLC-CV-AFS with on-line preconcentration of water samples up to 200 mL, resulting in a detection limit of 40 pg/L (ppq) for MeHg, expressed as Hg. The unit consists of an optimized preconcentration column filled with a sulfur-based sorption material, on which mercury species are preconcentrated and subsequently eluted, separated and detected via HPLC-CV-AFS (high performance liquid chromatography–cold vapor atomic fluorescence spectrometry). During the method development a type of adsorbate material, the pH dependence, the sample load rate and the carry-over were investigated using breakthrough experiments. The method shows broad pH stability in the range of pH 0 to 7, without the need for buffer addition and shows limited matrix effects so that MeHg is quantitatively recovered from sewage, river and seawater directly in the acidified samples without sample preparation. - Highlights: • We demonstrate that a novel mixture of thiourea-thiolsilica shows an excellent trapping of MeHg between a broad pH range 1–6. • We develop the method so that it can potentially be automated for inorganic and methyl-mercury. • The method is matrix independent with highly accurate results for MeHg in hair CRM extracts and spiked water samples • The limit of detection is around 40 pg/L when just 200 mL sample is used, without any intensive preparation.

  9. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  10. Steep dispersion and coherent control of Faraday rotation in a potassium vapor cell

    CERN Document Server

    Lampis, Andreas; Megyeri, Balázs; Goldwin, Jon

    2015-01-01

    Electromagnetically induced transparency (EIT) was studied in a heated vapor cell of potassium without buffer gas or anti-relaxation coating. Transparency windows 60 times narrower than the natural line width and group indices exceeding 6000 were generated using a simple optical setup with a single free-running laser and an acousto-optic modulator. A longitudinal magnetic field was used to split the EIT feature into three components for either lin-perp-lin or lin-par-lin polarizations of probe and coupling beams. Measurements of polarization rotation revealed that only the lin-par-lin configuration leads to circular birefringence, an effect which we attribute to quantum interference between the multiple \\Lambda-type subsystems contributing to the signal. The Verdet constant of the EIT medium was measured to be (2.33+/-0.10)x10^5 rad/T/m, and a novel measurement of group index based on birefringence was demonstrated. For larger fields, where the individual peaks were well resolved, resonant polarization rotati...

  11. Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lesniewska, E.; Adrian, M.; Klinguer, A.; Pugin, A

    2004-08-15

    Despite cell wall reinforcement being a well-known defence mechanism of plants, it remains poorly characterized from a physical point of view. The objective of this work was to further describe this mechanism. Vitis vinifera cv Gamay cells were treated with UV-light (254 nm), a well-known elicitor of defence mechanisms in grapevines, and physical cell wall modifications were observed using the atomic force microscopy (AFM) under native conditions. The grapevine cell suspensions were continuously observed in their culture medium from 30 min to 24 h after elicitation. In the beginning, cellulose fibrils covered by a matrix surrounded the control and treated cells. After 3 h, the elicited cells displayed sprouted expansions around the cell wall that correspond to pectin chains. These expansions were not observed on untreated grapevine cells. The AFM tip was used to determine the average surface elastic modulus of cell wall that account for cell wall mechanical properties. The elasticity is diminished in UV-treated cells. In a comparative study, grapevine cells showed the same decrease in cell wall elasticity when treated with a fungal biotic elicitor of defence response. These results demonstrate cell wall strengthening by UV stress.

  12. A study of vapor CdCl{sub 2} treatment by CSS in CdS/CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rios-Flores, A.; Pena, J.L.; Castro-Pena, V.; Ares, O.; Castro-Rodriguez, R. [Applied Physics Department, CINVESTAV-IPN Merida, C.P. 97310 Merida, Yucatan (Mexico); Bosio, A. [University of Parma, Department of Physics, v.le G.P. Usberti 7/A, 43100 Parma (Italy)

    2010-06-15

    We report the effect of CdCl{sub 2} vapor treatment on the photovoltaic parameters of CdS/CdTe solar cells. Vapor treatment allows combining CdCl{sub 2} exposure time and annealing in one step. In this alternative treatment, the CdS/CdTe substrates were treated with CdCl{sub 2} vapor in a close spaced sublimation (CSS) configuration. The substrate temperature and CdCl{sub 2} powder source temperature were 400 C. The treatment was done by varying the treatment time (t) from 15 to 90 min. Such solar cells are examined by measuring their current density versus voltage (J-V) characteristics. The open-circuit voltage (V{sub oc}), short circuit current density (J{sub sc}) and fill factor (FF) of our best cell, fabricated and normalized to the area of 1 cm{sup 2}, were V{sub oc} = 663 mV, J{sub sc} = 18.5 mA/cm{sup 2} and FF = 40%, respectively, corresponding to a total area conversion efficiency of {eta} = 5%. In cells of minor area (0.1 cm{sup 2}) efficiencies of 8% have been obtained. (author)

  13. Vapor cell based sodium laser guide star mechanism study lab-bench

    Science.gov (United States)

    Wang, Hongyan; Li, Lihang; Luo, Ruiyao; Li, Lei; Ning, Yu; Xi, Fengjie; Xu, Xiaojun

    2016-07-01

    Sodium laser guide star (LGS) is the key for the success of modern adaptive optics (AO) supported large ground based telescopes, however, for many field applications, Sodium LGS's brightness is still a limited factor. Large amounts of theoretical efforts have been paid to optimize Sodium LGS exciting parameters, that is, to fully discover potential of harsh environment surrounding mesospheric extreme thin sodium atoms under resonant excitation, whether quantum or Monte Carlo based. But till to now, only limited proposals are demonstrated with on-sky test due to the high cost and engineering complexities. To bridge the gap between theoretical modeling and on-sky test, we built a magnetic field controllable sodium cell based lab-bench, which includes a small scale sum-frequency single mode 589nm laser, with added amplitude, polarization, and phase modulators. We could perform quantitative resonant fluorescence study under single, multi-frequency, side-band optical re-pumping exciting with different polarization, also we could perform optical field modulation to study Larmor precession which is considered as one of devils of Sodium LGS, and we have the ability to generate beams contain orbital angular moment. Our preliminary sodium cell based optical re-pumping experiments have shown excellent consistence with Bloch equation predicted results, other experimental results will also be presented in the report, and these results will give a direct support that sodium cell based lab-bench study could help a Sodium LGS scientists a lot before their on-sky test.

  14. Light-pulse atom interferometric device

    Science.gov (United States)

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash; Jau, Yuan-Yu; Schwindt, Peter; Wheeler, David R.

    2016-03-22

    An atomic interferometric device useful, e.g., for measuring acceleration or rotation is provided. The device comprises at least one vapor cell containing a Raman-active chemical species, an optical system, and at least one detector. The optical system is conformed to implement a Raman pulse interferometer in which Raman transitions are stimulated in a warm vapor of the Raman-active chemical species. The detector is conformed to detect changes in the populations of different internal states of atoms that have been irradiated by the optical system.

  15. Relationships among equivalent oxide thickness, nanochemistry, and nanostructure in atomic layer chemical-vapor-deposited Hf-O films on Si

    Science.gov (United States)

    Dey, S. K.; Das, A.; Tsai, M.; Gu, D.; Floyd, M.; Carpenter, R. W.; De Waard, H.; Werkhoven, C.; Marcus, S.

    2004-05-01

    The relationships among the equivalent oxide thickness (EOT), nanochemistry, and nanostructure of atomic layer chemical-vapor-deposited (ALCVD) Hf-O-based films, with oxide and nitrided oxide interlayers on Si substrates, were studied using x-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) in annular dark-field imaging (ADF), and parallel electron energy-loss spectroscopy (PEELS), capacitance-voltage, and leakage-current-voltage measurements. The XPS (Hf 4f binding energy shift) studies indicated the formation of Hf-O-Si bonds in as-deposited amorphous films, the amount of which was influenced by the interlayer composition and annealing conditions. After post-deposition annealing in N2 and O2, the Hf-O layers were nanocrystalline. Although HRTEM images showed a structurally sharp interface between the Hf-O layer and the interlayer, angle-resolved XPS, ADF imaging, and PEELS in the STEM revealed a chemically diffused HfSiOx region in between. This interdiffusion was observed by the detection of Si (using Si L edge) and Hf (using Hf O2,3 edge) in the Hf-O layer and the interlayer. For an annealed Hf-O/interlayer stack, with an ALCVD target thickness of 4.0 nm for the Hf-O layer on 1.2 nm of nitrided chemical oxide, the experimentally measured EOT and leakage current (at -1 V) were 1.52 nm and ˜10-8 A/cm2. A three-layer (1.2 nm interlayer of nitrided chemical oxide/compositionally graded, 2 nm region of HfSiOx/2 nm HfO2 layer) capacitor model was used to determine the respective contributions to the measured EOT, and the dielectric permittivity of the interlayer was found to be 6.06. These studies clearly indicate that a total EOT of 1 nm and below is attainable in the Hf-N-O-Si/Si-N-O system.

  16. Evaluation of the effect of 16% carbamide peroxide gel (Nite White on mercury release from Iranian and foreign spherical and admixed amalgams by cold vapor atomic absorption method

    Directory of Open Access Journals (Sweden)

    Kasraie Sh.

    2008-04-01

    Full Text Available Background and Aim: Nowadays, esthetic dentistry has become an important part of modern dentistry. Bleaching is considered as a conservative, safe and effective way for treatment of discolored teeth. Although bleaching is commonly used on anterior teeth, the bleaching gel may come into contact with patient's former amalgam restorations and result in corrosive effects, dissolution of amalgam phases and increasing release of mercury. Mercury released from dental amalgam during mouthguard bleaching can be absorbed and increase the total mercury body burden. The aim of this study was to determine the amount of mercury released from Iranian and foreign brands of amalgams with spherical and admixed particles, polished and unpolished, after 16%carbamide peroxide gel application.Materials and Methods: This experimental in vitro study was performed on 256 Iranian and foreign amalgam samples with spherical and admixed particles. The provided samples were put in distilled water and classified according to the type of amalgam, shape of particles and quality of surface polishing. The test samples were placed in Nite White 16% carbamid peroxide gel and control samples were put in phosphate buffer (Ph=6.5 for 14 and 28 hours. The amount of released mercury was calculated using AVA-440 Mercury Analysis System (Thermo Jarrell Ash model SH/229 with cold-vapor atomic absorption. Data were analyzed using t-test, four way and three way ANOVA tests with P<0.05 as the level of significance.Results: 16% Nite White carbamide peroxide gel caused a significant increase in amount of mercury released from amalgams in all groups (P<0.05. Mercury release from Iranian amalgam was higher than that from the foreign brands (P<0.05. There was no significant difference in mercury released from spherical and admixed amalgams (P>0.05. The amount of mercury released from Iranian and foreign amalgams was time dependent (P<0.05. Furthermore, the amount of mercury released from

  17. The Determination of the Water Vapor Content in the Pulkovo VKM-100 Multipass Vacuum Cell Using Polymer Sensors of Humidity

    CERN Document Server

    Galkin, V D; Nikanorova, I N; Sal'nikov, I B; Leiterer, U; Alekseeva, G A; Novikov, V V; Dauß, D

    2010-01-01

    In spectral studies of water vapor under laboratory conditions (determination of molecular constants, measurement for spectral transmission functions), the amount of water vapor in the time of the measurements is one of the most essential parameters, which should be determined accurately. We discuss the application for this purpose of polymer sensors of humidity manufactured by Praktik-NC (Moscow) and used in the Pulkovo VKM-100 multipass vacuum cell. These sensors were examined in the laboratory of Lindenberg Meteorological observatory (Germany) by comparison between their readings and those of standard measuring devices for various values of relative humidity, pressure, and temperature. We also carried out measurements of relative humidity in boxes with saline solution, in which the relative humidity that corresponds to a given solution is guaranteed with the accuracy of several tenths of percent. The analysis of the results of the laboratory examination of the sensors and extended sets of measurements made...

  18. Torque and atomic forces for Cartesian tensor atomic multipoles with an application to crystal unit cell optimization.

    Science.gov (United States)

    Elking, Dennis M

    2016-08-15

    New equations for torque and atomic force are derived for use in flexible molecule force fields with atomic multipoles. The expressions are based on Cartesian tensors with arbitrary multipole rank. The standard method for rotating Cartesian tensor multipoles and calculating torque is to first represent the tensor with n indexes and 3(n) redundant components. In this work, new expressions for directly rotating the unique (n + 1)(n + 2)/2 Cartesian tensor multipole components Θpqr are given by introducing Cartesian tensor rotation matrix elements X(R). A polynomial expression and a recursion relation for X(R) are derived. For comparison, the analogous rotation matrix for spherical tensor multipoles are the Wigner functions D(R). The expressions for X(R) are used to derive simple equations for torque and atomic force. The torque and atomic force equations are applied to the geometry optimization of small molecule crystal unit cells. In addition, a discussion of computational efficiency as a function of increasing multipole rank is given for Cartesian tensors. © 2016 Wiley Periodicals, Inc.

  19. Effects of water vapor introduction during Cu(In1-x Gax )Se2 deposition on thin film properties and solar cell performance

    Science.gov (United States)

    Ishizuka, S.; Sakurai, K.; Yamada, A.; Matsubara, K.; Shibata, H.; Yonemura, M.; Nakamura, S.; Nakanishi, H.; Kojima, T.; Niki, S.

    2006-09-01

    The effects of water vapor introduction during the growth of Cu(In1-x Gax )Se2, specifically CuInSe2 (CISe), Cu(In,Ga)Se2 (CIGSe), and CuGaSe2 (CGSe) thin films were studied. We have developed thus far a novel technique to improve CIGSe (x 0.5) cell performance by means of water vapor introduction during CIGSe deposition. In this study, we have examined the effectiveness of water vapor introduction for other x -compositions (CISe and CGSe). Variations in the electrical properties observed in CIGSe (x 0.5), that is, increasing hole density and conductivity with water vapor introduction, were also observed in CISe and CGSe. Water vapor introduction affected solar cell performance as well; open circuit voltages, short circuit current densities, and efficiencies were improved. The improvements in cell performance are thought to be related to annihilation of donor defects arising from Se-vacancies by incorporation of oxygen from the water vapor. In addition to this, the sodium content in the CIGSe layers was found to depend on the partial pressure of water vapor during deposition. This result suggests that the improvement mechanism is also related with the so-called Na-effects'.

  20. Tandem solar cells deposited using hot-wire chemical vapor deposition

    NARCIS (Netherlands)

    Veen, M.K. van

    2003-01-01

    In this thesis, the application of the hot-wire chemical vapor deposition (HWCVD) technique for the deposition of silicon thin films is described. The HWCVD technique is based on the dissociation of silicon-containing gasses at the catalytic surface of a hot filament. Advantages of this technique ar

  1. Vaporization of materials in the operation of high temperature fuel cells (SOFCs); Verdampfung von Werkstoffen beim Betrieb von Hochtemperaturbrennstoffzellen (SOFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Stanislowski, M.

    2006-07-01

    One of the main problems concerning the development of state of the art planar SOFCs are the occurrence of ageing effects in long term application. To a great deal these effects are caused by the release of volatile Cr-species from metallic interconnects which leads to an inhibition of the electrochemical processes at the cathode resulting in a rapid degradation of the cell performance. A goal in further development of SOFC-systems is the reduction of the operation temperature of the cell from currently 800 C to 700 C and below. For this purpose alternative electrolyte materials with higher oxygen ion conductivities have to be developed. Doped lanthanum gallates have been identified as promising materials. However for these materials a depletion of Ga by vaporization has been observed under anodic conditions which may lead to a destruction of their electrolyte properties. The aim of this work is the study of the vaporization processes leading to the mentioned degradation effects. For this purpose an experimental setup according to the transpiration method has been developed. Concerning the vaporization of chromium the Cr release rates of the main ferritic interconnect alloys, namely Crofer 22 APU, ZMG 232, E-Brite, IT-10, IT-11, IT-14 and Ducrolloy as well as a variety of Ni- and Co-base superalloys and stainless steels with different contents of Al, Si, Ti, Mn, W, Ni and Co were measured at 800 C in air and compared to each other. The alloys that form an upper layer of Cr-Mn-spinel on top of the grown chromia scale showed a reduction of the Cr release by 61-75 % compared to pure chromia scales whereas alloys with an outer Co3O4(s) scale had a by more than 90 % reduced Cr release. For the former alloys a significant vaporization of Mn under anodic conditions could be detected. Concerning the vaporization of doped lanthanum gallates the vaporization rates of the elements Ga, Mg, Sr and La were measured as function time, temperature, gas flow rate and stoichiometry

  2. Detecting and extracting clusters in atom probe data: A simple, automated method using Voronoi cells

    Energy Technology Data Exchange (ETDEWEB)

    Felfer, P., E-mail: peter.felfer@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Ceguerra, A.V., E-mail: anna.ceguerra@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Ringer, S.P., E-mail: simon.ringer@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Cairney, J.M., E-mail: julie.cairney@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia)

    2015-03-15

    The analysis of the formation of clusters in solid solutions is one of the most common uses of atom probe tomography. Here, we present a method where we use the Voronoi tessellation of the solute atoms and its geometric dual, the Delaunay triangulation to test for spatial/chemical randomness of the solid solution as well as extracting the clusters themselves. We show how the parameters necessary for cluster extraction can be determined automatically, i.e. without user interaction, making it an ideal tool for the screening of datasets and the pre-filtering of structures for other spatial analysis techniques. Since the Voronoi volumes are closely related to atomic concentrations, the parameters resulting from this analysis can also be used for other concentration based methods such as iso-surfaces. - Highlights: • Cluster analysis of atom probe data can be significantly simplified by using the Voronoi cell volumes of the atomic distribution. • Concentration fields are defined on a single atomic basis using Voronoi cells. • All parameters for the analysis are determined by optimizing the separation probability of bulk atoms vs clustered atoms.

  3. High-efficiency CdTe thin-film solar cells using metalorganic chemical vapor deposition techniques

    Science.gov (United States)

    Nouhi, A.; Stirn, R. J.; Meyers, P. V.; Liu, C. H.

    1989-01-01

    Energy conversion efficiency of metalorganic chemical vapor deposited CdTe as an intrinsic active layer in n-i-p solar cell structures is reported. Small-area devices with efficiencies over 9 percent have been demonstrated. I-V characteristics, photospectral response, and the results of Auger profiling of structural composition for typical devices will be presented. Also presented are preliminary results on similar photovoltaic devices having Cd(0.85)Mn(0.15)Te in place of CdTe as an i layer.

  4. Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process.

    Science.gov (United States)

    Liu, Chong; Fan, Jiandong; Zhang, Xing; Shen, Yanjiao; Yang, Lin; Mai, Yaohua

    2015-05-06

    Recently, the organic-inorganic hybrid perovskite solar cells exhibit rapidly rising efficiencies, while anomalous hysteresis in perovskite solar cells remains unsolvable. Herein, a high-quality perovskite thin film is prepared by a modified vapor-assisted solution process, which is a simple but well-controllable method proven to be capable of producing a thin film with full surface coverage and grain size up to micrometers. The as-fabricated perovskite solar cell has efficiency as high as 10.2%. The hysteresis effects of both planar and mesoscopic TiO2-based perovskite solar cells have been comprehensively studied upon illumination. The results demonstrate that mesoporous-based perovskite cells combined with remarkable grain size are subject to alleviating the hysteresis effects in comparison to the planar cells. Likewise, mesoscopic TiO2-based perovskite cells perform independently of illumination and bias conditions prior to the measurements, whereas the planar cells display a reversible behavior of illumination and applied bias-dependent I-V curves. The present study would refer strip road for the stability study of the perovskite solar cells.

  5. Atomic force microscopy as a tool for the investigation of living cells.

    Science.gov (United States)

    Morkvėnaitė-Vilkončienė, Inga; Ramanavičienė, Almira; Ramanavičius, Arūnas

    2013-01-01

    Atomic force microscopy is a valuable and useful tool for the imaging and investigation of living cells in their natural environment at high resolution. Procedures applied to living cell preparation before measurements should be adapted individually for different kinds of cells and for the desired measurement technique. Different ways of cell immobilization, such as chemical fixation on the surface, entrapment in the pores of a membrane, or growing them directly on glass cover slips or on plastic substrates, result in the distortion or appearance of artifacts in atomic force microscopy images. Cell fixation allows the multiple use of samples and storage for a prolonged period; it also increases the resolution of imaging. Different atomic force microscopy modes are used for the imaging and analysis of living cells. The contact mode is the best for cell imaging because of high resolution, but it is usually based on the following: (i) image formation at low interaction force, (ii) low scanning speed, and (iii) usage of "soft," low resolution cantilevers. The tapping mode allows a cell to behave like a very solid material, and destructive shear forces are minimized, but imaging in liquid is difficult. The force spectroscopy mode is used for measuring the mechanical properties of cells; however, obtained results strongly depend on the cell fixation method. In this paper, the application of 3 atomic force microscopy modes including (i) contact, (ii) tapping, and (iii) force spectroscopy for the investigation of cells is described. The possibilities of cell preparation for the measurements, imaging, and determination of mechanical properties of cells are provided. The applicability of atomic force microscopy to diagnostics and other biomedical purposes is discussed.

  6. Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy.

    Science.gov (United States)

    Puech, Pierre-Henri; Taubenberger, Anna; Ulrich, Florian; Krieg, Michael; Muller, Daniel J; Heisenberg, Carl-Philipp

    2005-09-15

    During vertebrate gastrulation, progenitor cells of different germ layers acquire specific adhesive properties that contribute to germ layer formation and separation. Wnt signals have been suggested to function in this process by modulating the different levels of adhesion between the germ layers, however, direct evidence for this is still lacking. Here we show that Wnt11, a key signal regulating gastrulation movements, is needed for the adhesion of zebrafish mesendodermal progenitor cells to fibronectin, an abundant extracellular matrix component during gastrulation. To measure this effect, we developed an assay to quantify the adhesion of single zebrafish primary mesendodermal progenitors using atomic-force microscopy (AFM). We observed significant differences in detachment force and work between cultured mesendodermal progenitors from wild-type embryos and from slb/wnt11 mutant embryos, which carry a loss-of-function mutation in the wnt11 gene, when tested on fibronectin-coated substrates. These differences were probably due to reduced adhesion to the fibronectin substrate as neither the overall cell morphology nor the cell elasticity grossly differed between wild-type and mutant cells. Furthermore, in the presence of inhibitors of fibronectin-integrin binding, such as RGD peptides, the adhesion force and work were strongly decreased, indicating that integrins are involved in the binding of mesendodermal progenitors in our assay. These findings demonstrate that AFM can be used to quantitatively determine the substrate-adhesion of cultured primary gastrulating cells and provide insight into the role of Wnt11 signalling in modulating cell adhesion at the single cell scale.

  7. Real-Time Monitoring of Atom Vapor Concentration With Laser Absorption Spectroscopy%激光吸收光谱法实时监测原子蒸气密度

    Institute of Scientific and Technical Information of China (English)

    范凤英; 高鹏; 江涛

    2012-01-01

    采用固体激光器泵浦环形染料激光器作为光源,通过激光吸收光谱法对钆原子蒸气密度进行实时监测.应用光纤远距离传输提高光路稳定性,采用多步吸收光程技术,并引入参考光消除激光功率不稳定因素影响.实验结果表明:采用该方法建立的原子蒸气密度实时监测系统标准误差约为4%,可为激光同位素分离过程提供可靠数据,从而提高分离效率.%The technology of laser absorption spectroscopy was used for real-time monitoring of gadolinium atom vapor concentration measurement and the solid state laser pumped ring dye laser was used as optical source. The optical fiber was taken to improve the stability of laser transmission. The multi-pass absorption technology combined with reference optical signal avoided the influence of laser power fluctuation. The experiment result shows that the system based on this detection method has a standard error of 4%. It is proved that the monitoring system provides reliable data for atom vapor laser isotope separation process and the separation efficiency can be improved.

  8. Evaluation of quartz tubes as atomization cells for gold determination by thermospray flame furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Morzan, Ezequiel; Piano, Ornela; Stripeikis, Jorge; Tudino, Mabel, E-mail: tudino@qi.fcen.uba.ar

    2012-11-15

    This work describes the development of a new analytical procedure able to determine gold by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) using nickel tubes (NiT) and quartz tubes (QT) as atomization cells. Experiments involving changes in the flow injection operational parameters, reagent concentrations and sizes of the QT were performed in order to optimize sensitivity. Under the same operational conditions, it was observed that the employment of QT increases the sensitivity of gold determination when compared to the nickel tube. Since solutions of highly concentrated hydrochloric acid showed the best performance as carriers, quartz tubes were also preferred due to its greater tolerance to corrosion by mineral acids in comparison to NiT. In addition, changes in the internal diameter of the QT revealed an important improvement in sensitivity for smaller tubes. Under optimized conditions the main figures of merit showed values close to that of graphite furnace atomic absorption spectrometry with the addition of an excellent improvement of the sample throughput. They are: LOD (3 s): 0.004 {mu}g mL{sup -1}, sensitivity: 0.306 ({mu}g mL{sup -1}){sup -1}, RSD% (n = 10, 1 {mu}g mL{sup -1}): 2.5, linear range: 0.01-4 {mu}g mL{sup -1} and sample throughput: 72 h{sup -1}. This new method was employed for the determination of gold in homeopathic medicines with no need of sample digestion. Validation of the analytical results will be shown. A full discussion of the most relevant findings regarding the role of the atomization cell as a strategic key for improving sensitivity will be also provided. - Highlights: Black-Right-Pointing-Pointer Quartz tubes as furnaces in TS-FFAAS. Black-Right-Pointing-Pointer Small tubes for controlling radial dispersion. Black-Right-Pointing-Pointer Improved figures of merit for gold determination. Black-Right-Pointing-Pointer Analysis of homeopathic medicines.

  9. Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells.

    Science.gov (United States)

    Xiong, Ranhua; Raemdonck, Koen; Peynshaert, Karen; Lentacker, Ine; De Cock, Ine; Demeester, Jo; De Smedt, Stefaan C; Skirtach, Andre G; Braeckmans, Kevin

    2014-06-24

    There is a great interest in delivering macromolecular agents into living cells for therapeutic purposes, such as siRNA for gene silencing. Although substantial effort has gone into designing nonviral nanocarriers for delivering macromolecules into cells, translocation of the therapeutic molecules from the endosomes after endocytosis into the cytoplasm remains a major bottleneck. Laser-induced photoporation, especially in combination with gold nanoparticles, is an alternative physical method that is receiving increasing attention for delivering macromolecules in cells. By allowing gold nanoparticles to bind to the cell membrane, nanosized membrane pores can be created upon pulsed laser illumination. Depending on the laser energy, pores are created through either direct heating of the AuNPs or by vapor nanobubbles (VNBs) that can emerge around the AuNPs. Macromolecules in the surrounding cell medium can then diffuse through the pores directly into the cytoplasm. Here we present a systematic evaluation of both photoporation mechanisms in terms of cytotoxicity, cell loading, and siRNA transfection efficiency. We find that the delivery of macromolecules under conditions of VNBs is much more efficient than direct photothermal disturbance of the plasma membrane without any noticeable cytotoxic effect. Interestingly, by tuning the laser energy, the pore size could be changed, allowing control of the amount and size of molecules that are delivered in the cytoplasm. As only a single nanosecond laser pulse is required, we conclude that VNBs are an interesting photoporation mechanism that may prove very useful for efficient high-throughput macromolecular delivery in live cells.

  10. Temperature and number evolution of cold cesium atoms inside a wall-coated glass cell

    Institute of Scientific and Technical Information of China (English)

    黄家强; 张建伟; 王时光; 王力军

    2015-01-01

    We report an experimental study on the temperature and number evolution of cold cesium atoms diffusively cooled inside a wall-coated glass cell by measuring the absorption profile of the 62S1/2 (F=4)→62P3/2(F0=5) transition line with a weak probe laser in the evolution process. We found that the temperature of the cold atoms first gradually decreases from 16 mK to 9 mK, and then rapidly increases. The number of cold atoms first declines slowly from 2.1 × 109 to 3.7 × 108 and then falls drastically. A theoretical model for the number evolution is built and includes the instantaneous temperature of the cold atoms and a fraction p, which represents the part of cold cesium atoms elastically reflected by the coated cell wall. The theory is overall in good agreement with the experimental result, and a nonzero value is obtained for the fraction p, which indicates that the cold cesium atoms are not all heated to the ambient temperature by a single collision with the coated cell wall. These results can provide helpful insight for precision measurements based on diffuse laser cooling.

  11. Monitoring the elasticity changes of HeLa cells during mitosis by atomic force microscopy

    Science.gov (United States)

    Jiang, Ningcheng; Wang, Yuhua; Zeng, Jinshu; Ding, Xuemei; Xie, Shusen; Yang, Hongqin

    2016-10-01

    Cell mitosis plays a crucial role in cell life activity, which is one of the important phases in cell division cycle. During the mitosis, the cytoskeleton micro-structure of the cell changed and the biomechanical properties of the cell may vary depending upon different mitosis stages. In this study, the elasticity property of HeLa cells during mitosis was monitored by atomic force microscopy. Also, the actin filaments in different mitosis stages of the cells were observed by confocal imaging. Our results show that the cell in anaphase is stiffer than that in metaphase and telophase. Furthermore, lots of actin filaments gathered in cells' center area in anaphase, which contributes to the rigidity of the cell in this phase. Our findings demonstrate that the nano-biomechanics of living cells could provide a new index for characterizing cell physiological states.

  12. Refractive Index Enhancement in Atomic Media

    Science.gov (United States)

    Proite, Nicholas; Sikes, Daniel; Yavuz, Deniz

    2010-03-01

    We experimentally demonstrate a scheme where a laser beam experiences refractive index enhancement with vanishing absorption. The essential idea is to excite two Raman resonances with appropriately chosen strong laser beams in a far-off resonant atomic system. We have performed our experiments both in vapor cells and in ultracold atomic clouds. Additionally, we discuss a new scheme that achieves giant Kerr nonlinearities using refractive index enhancement. This scheme does not require an intense coupling laser and has the potential to produce all-optical switches and distributed Bragg reflectors at a total energy requirement of tens of photons per atomic cross section.

  13. Progress in the Efficiency of Wide-Gap Cu(In1-xGax)Se2 Solar Cells Using CIGSe Layers Grown in Water Vapor

    Science.gov (United States)

    Ishizuka, Shogo; Sakurai, Keiichiro; Yamada, Akimasa; Shibata, Hajime; Matsubara, Koji; Yonemura, Minoru; Nakamura, Satoshi; Nakanishi, Hisayuki; Kojima, Takeshi; Niki, Shigeru

    2005-05-01

    Progress in the performance of wide-gap Cu(In1-xGax)Se2 (CIGSe) solar cells for x values around 0.5 has been demonstrated using CIGSe layers grown in the presence of water vapor. While CIGSe thin films deposited in the presence of water vapor showed variations in electrical properties such as increases in hole carrier density and a consequent enhancement of p-type conductivity, no significant changes in the morphology and growth orientation were observed. Both the open circuit voltages and current densities of the CIGSe solar cells were improved using CIGSe layers grown in water vapor. An 18.1%-efficient cell with an open circuit voltage of 0.744 V, a current density of 32.4 mA/cm2 and a fill factor of 0.752 was fabricated from a 1.3 eV-CIGSe (x ˜ 0.48) layer.

  14. Effect of cold plasma on glial cell morphology studied by atomic force microscopy.

    Directory of Open Access Journals (Sweden)

    Nina Recek

    Full Text Available The atomic force microscope (AFM is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation. Using AFM we imaged morphology of glial cells before and after cold atmospheric plasma treatment. To look more closely at the effect of plasma on cell membrane, high resolution imaging was used. We report the differences between normal human astrocytes and human glioblastoma cells by considering the membrane surface details. Our data, obtained for the first time on these cells using atomic force microscopy, argue for an architectural feature on the cell membrane, i.e. brush layers, different in normal human astrocytes as compared to glioblastoma cells. The brush layer disappears from the cell membrane surface of normal E6/E7 cells and is maintained in the glioblastoma U87 cells after plasma treatment.

  15. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy

    Science.gov (United States)

    Raman, A.; Trigueros, S.; Cartagena, A.; Stevenson, A. P. Z.; Susilo, M.; Nauman, E.; Contera, S. Antoranz

    2011-12-01

    The nanomechanical properties of living cells, such as their surface elastic response and adhesion, have important roles in cellular processes such as morphogenesis, mechano-transduction, focal adhesion, motility, metastasis and drug delivery. Techniques based on quasi-static atomic force microscopy techniques can map these properties, but they lack the spatial and temporal resolution that is needed to observe many of the relevant details. Here, we present a dynamic atomic force microscopy method to map quantitatively the nanomechanical properties of live cells with a throughput (measured in pixels/minute) that is ~10-1,000 times higher than that achieved with quasi-static atomic force microscopy techniques. The local properties of a cell are derived from the 0th, 1st and 2nd harmonic components of the Fourier spectrum of the AFM cantilevers interacting with the cell surface. Local stiffness, stiffness gradient and the viscoelastic dissipation of live Escherichia coli bacteria, rat fibroblasts and human red blood cells were all mapped in buffer solutions. Our method is compatible with commercial atomic force microscopes and could be used to analyse mechanical changes in tumours, cells and biofilm formation with sub-10 nm detail.

  16. Evanescent light-matter Interactions in Atomic Cladding Wave Guides

    CERN Document Server

    Stern, Liron; Goykhman, Ilya; Levy, Uriel

    2012-01-01

    Alkali vapors, and in particular rubidium, are being used extensively in several important fields of research such as slow and stored light non-linear optics3 and quantum computation. Additionally, the technology of alkali vapors plays a major role in realizing myriad industrial applications including for example atomic clocks magentometers8 and optical frequency stabilization. Lately, there is a growing effort towards miniaturizing traditional centimeter-size alkali vapor cells. Owing to the significant reduction in device dimensions, light matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for non-linear interactions. Here, taking advantage of the mature Complimentary Metal-Oxide-Semiconductor (CMOS) compatible platform of silicon photonics, we construct an efficient and flexible platform for tailored light vapor interactions on a chip. Specifically, we demonstrate light matter interactions in an atomic cladding wave guide (ACWG), consisting of CMOS ...

  17. Observation of single neutral atoms in a large-magnetic-gradient vapour-cell magneto-optical trap

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; He Jun; Qiu Ying; Yang Bao-Dong; Zhao Jiang-Yan; Zhang Tian-Cai; Wang Jun-Min

    2008-01-01

    Single caesium atoms in a large-magnetic-gradient vapour-cell magneto-optical trap have been identified. The trapping of individual atoms is marked by the steps in fluorescence signal corresponding to the capture or loss of single atoms. The typical magnetic gradient is about 29 mT/cm, which evidently reduces the capture rate of magneto-optical trap.

  18. Propagation of Gaussian Schell-model beam in electromagnetically induced transparency atomic vapor%高斯谢尔模型光束在EIT原子气体中的传输特性研究

    Institute of Scientific and Technical Information of China (English)

    许森东; 徐弼军; 陆璇辉

    2013-01-01

    为了研究高斯-谢尔模型(GSM)光束在电磁感应透明(EIT)材料中的传输特性,利用矩阵光学理论、衍射积分理论、相干偏振统一理论推导了GSM光束通过EIT材料的传输交叉谱密度方程的解析表达式。该表达式可以用于计算和研究GSM光束通过EIT原子气体的谱密度和相干度的变化。分析显示GSM光束的谱密度和相干度都可以通过控制光的拉比频率调控。此研究结果提供了一种新的调控光传输的方法和技术,同时该发现也为控制部分相干光的谱密度和相干度提供了一种新方法。%In order to study the propagation characteristics of Gaussian Schell-model (GSM) beams in electromagnetically induced transparency atomic vapor, the analytical expression was obtained for the cross-spectral density function of a Gaussian Schell-model beam passing through the electromagnetically induced transparency atomic vapor based on the matrix optics theory, diffraction integral theory and unified theory of coherence and polarization. The formula can be used in the study of the changes in the spectral density and spectral degree of coherence of the beam through the EIT atomic vapor. Numerical examples show that both the spectral density and the spectral degree of coherence of the GSM beam can be modulated by the Rabi frequency of the control light. The results have been provided a new method and technique for modulation the beam propagation. The findings indicate a new technique for controlling the spectral density and the spectral degree of coherence of the partially coherent light beam.

  19. Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing.

    Science.gov (United States)

    Li, Yanbo; Cooper, Jason K; Buonsanti, Raffaella; Giannini, Cinzia; Liu, Yi; Toma, Francesca M; Sharp, Ian D

    2015-02-05

    A new method for achieving high efficiency planar CH3NH3I3-xClx perovskite photovoltaics, based on a low pressure, reduced temperature vapor annealing is demonstrated. Heterojunction devices based on this hybrid halide perovskite exhibit a top PCE of 16.8%, reduced J-V hysteresis, and highly repeatable performance without need for a mesoporous or nanocrystalline metal oxide layer. Our findings demonstrate that large hysteresis is not an inherent feature of planar heterojunctions, and that efficient charge extraction can be achieved with uniform halide perovskite materials with desired composition. X-ray diffraction, valence band spectroscopy, and transient absorption measurements of these thin films reveal that structural modifications induced by chlorine clearly dominate over chemical and electronic doping effects, without affecting the Fermi level or photocarrier lifetime in the material.

  20. Vapor Bubbles

    Science.gov (United States)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  1. Influence of N atomic percentages on cell attachment for CN$_x$ coatings

    Indian Academy of Sciences (India)

    D J Li; L F Niu

    2003-06-01

    Carbon film is an excellent candidate for use as a biocompatible coating due to its excellent properties. However, considerable attention has just been focused on the biocompatibility of diamond-like carbon (DLC) in recent years. It is difficult to find reports on the investigations of the biocompatibility of CN$_x$ so far. It is well known that CN$_x$ has similar structural characteristics as that of DLC. Its excellent mechanical and tribological properties are comparable to that of DLC. In addition, it is probable that the presence of nitrogen leads to a positive effect on biocompatibility. So, this work focusses on cell attachment of CN$_x$ coating and the relation between nitrogen atomic percentage and cell attachment. CN$_x$ coatings were prepared using magnetron sputtering under two N2 partial pressures for the evaluation of relation between nitrogen atomic percentage and cell attachment. Cell culture tests using human endothelial cells and mouse fibroblasts were performed. Both coatings resulted in no adverse effects on the cells in culture. Compared with CN$_x$ ( = 0.088), CN$_x$ ( = 0.149) film provided a better surface for normal cellular attachment, spreading and proliferation without apparent impairment of cell physiology. At the same time, the coatings exhibited excellent tribological and corrosion performance. XPS and AES analyses showed that higher nitrogen atomic percentage might lead to a positive effect on the cell attachment.

  2. Enhanced water removal in a fuel cell stack by droplet atomization using structural and acoustic excitation

    Science.gov (United States)

    Palan, Vikrant; Shepard, W. Steve

    This work examines new methods for enhancing product water removal in fuel cell stacks. Vibration and acoustic based methods are proposed to atomize condensed water droplets in the channels of a bipolar plate or on a membrane electrode assembly (MEA). The vibration levels required to atomize water droplets of different sizes are first examined using two different approaches: (1) exciting the droplet at the same energy level required to form that droplet; and (2) by using a method called 'vibration induced droplet atomization', or VIDA. It is shown analytically that a 2 mm radius droplet resting on a bipolar-like plate can be atomized by inducing acceleration levels as low as 250 g at a certain frequency. By modeling the direct structural excitation of a simplified bipolar plate using a realistic source, the response levels that can be achieved are then compared with those required levels. Furthermore, a two-cell fuel cell finite element model and a boundary element model of the MEA were developed to demonstrate that the acceleration levels required for droplet atomization may be achieved in both the bipolar plate as well as the MEA through proper choice of excitation frequency and source strength.

  3. Enhanced water removal in a fuel cell stack by droplet atomization using structural and acoustic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Palan, Vikrant; Shepard, W. Steve [Department of Mechanical Engineering, The University of Alabama, 290 Hardaway Hall, Box 870276, Tuscaloosa, AL 35487 (United States)

    2006-09-22

    This work examines new methods for enhancing product water removal in fuel cell stacks. Vibration and acoustic based methods are proposed to atomize condensed water droplets in the channels of a bipolar plate or on a membrane electrode assembly (MEA). The vibration levels required to atomize water droplets of different sizes are first examined using two different approaches: (1) exciting the droplet at the same energy level required to form that droplet; and (2) by using a method called 'vibration induced droplet atomization', or VIDA. It is shown analytically that a 2mm radius droplet resting on a bipolar-like plate can be atomized by inducing acceleration levels as low as 250g at a certain frequency. By modeling the direct structural excitation of a simplified bipolar plate using a realistic source, the response levels that can be achieved are then compared with those required levels. Furthermore, a two-cell fuel cell finite element model and a boundary element model of the MEA were developed to demonstrate that the acceleration levels required for droplet atomization may be achieved in both the bipolar plate as well as the MEA through proper choice of excitation frequency and source strength. (author)

  4. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    Science.gov (United States)

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  5. ZnO/Cu(InGa)Se.sub.2 solar cells prepared by vapor phase Zn doping

    Science.gov (United States)

    Ramanathan, Kannan; Hasoon, Falah S.; Asher, Sarah E.; Dolan, James; Keane, James C.

    2007-02-20

    A process for making a thin film ZnO/Cu(InGa)Se.sub.2 solar cell without depositing a buffer layer and by Zn doping from a vapor phase, comprising: depositing Cu(InGa)Se.sub.2 layer on a metal back contact deposited on a glass substrate; heating the Cu(InGa)Se.sub.2 layer on the metal back contact on the glass substrate to a temperature range between about 100.degree. C. to about 250.degree. C.; subjecting the heated layer of Cu(InGa)Se.sub.2 to an evaporant species from a Zn compound; and sputter depositing ZnO on the Zn compound evaporant species treated layer of Cu(InGa)Se.sub.2.

  6. Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy.

    Science.gov (United States)

    Fukui, Takashi; Yoshimura, Masatoshi; Nakai, Eiji; Tomioka, Katsuhiro

    2012-01-01

    We demonstrate position-controlled III-V semiconductor nanowires (NWs) by using selective-area metal-organic vapor phase epitaxy and their application to solar cells. Efficiency of 4.23% is achieved for InP core-shell NW solar cells. We form a 'flexible NW array' without a substrate, which has the advantage of saving natural resources over conventional thin film photovoltaic devices. Four junction NW solar cells with over 50% efficiency are proposed and discussed.

  7. Measurement of the Absolute Photoionization Cross Section for the 5P3/2 State of 87Rb in a Vapor Cell Magneto-optic Trap

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei; RUAN Ya-Ping; JIA Feng-Dong; ZHONG Yin-Peng; LIU Long-Wei; DAI Xing-Can; XUE Ping; XU Xiang-Yuan; ZHONG Zhi-Ping

    2012-01-01

    We report the measurement of the absolute photoionization cross section for the 5P3/2 state of 87 Rb at wavelength of 473 nm,which results in the photoelectron energies of 33 meV above the ionization threshold,using cold atoms confined in a vapor-loaded magneto-optical trap.The 87Rb 5P3/2 photoionization cross section at 473nm is determined to be σPI =10.5 ± 2.2 Mb.Considering the spatial distribution of the trapped atoms,the average intensity IPI of the ionization laser seen by an atom in the MOT instead of ionizing laser intensity IPI is used in our calculations for the photoionization cross sections.The excited state fraction is also accurately estimated using the latest experimental result.%We report the measurement of the absolute photoionization cross section for the 5P3/2 state of87 Rb at wavelength of 473 nm, which results in the photoelectron energies of 33 meV above the ionization threshold, using cold atoms confined in a vapor-loaded magneto-optical trap. The 87Rb 5P3/2 photoionization cross section at 473 nm is determined to be <σPI = 10.5 ± 2.2 Mb. Considering the spatial distribution of the trapped atoms, the average intensity -IPII of the ionization laser seen by an atom in the MOT instead of ionizing laser intensity IPI is used in our calculations for the photoionization cross sections. The excited state fraction is also accurately estimated using the latest experimental result.

  8. Investigation of penetration force of living cell using an atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Eun Young; Kim, Young Tae; Kim, Dae Eun [Yonsei University, Seoul (Korea, Republic of)

    2009-07-15

    Recently, the manipulation of a single cell has been receiving much attention in transgenesis, in-vitro fertilization, individual cell based diagnosis, and pharmaceutical applications. As these techniques require precise injection and manipulation of cells, issues related to penetration force arise. In this work the penetration force of living cell was studied using an atomic force microscope (AFM). L929, HeLa, 4T1, and TA3 HA II cells were used for the experiments. The results showed that the penetration force was in the range of 2{approx}22 nN. It was also found that location of cell penetration and stiffness of the AFM cantilever affected the penetration force significantly. Furthermore, double penetration events could be detected, due to the multi-membrane layers of the cell. The findings of this work are expected to aid in the development of precision micro-medical instruments for cell manipulation and treatment

  9. Vapor and healing treatment for CH3NH3PbI(3-x)Cl(x) films toward large-area perovskite solar cells.

    Science.gov (United States)

    Gouda, Laxman; Gottesman, Ronen; Tirosh, Shay; Haltzi, Eynav; Hu, Jiangang; Ginsburg, Adam; Keller, David A; Bouhadana, Yaniv; Zaban, Arie

    2016-03-28

    Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non-uniform performance. Thus, production and characterization of the lateral uniformity of large-area films is a crucial step towards scale-up of devices. In this paper, we present a reproducible method for improving the lateral uniformity and performance of large-area perovskite solar cells (32 cm(2)). The method is based on methyl-ammonium iodide (MAI) vapor treatment as a new step in the sequential deposition of perovskite films. Following the MAI vapor treatment, we used high throughput techniques to map the photovoltaic performance throughout the large-area device. The lateral uniformity and performance of all photovoltaic parameters (V(oc), J(sc), Fill Factor, Photo-conversion efficiency) increased, with an overall improved photo-conversion efficiency of ∼100% following a vapor treatment at 140 °C. Based on XRD and photoluminescence measurements, We propose that the MAI treatment promotes a "healing effect" to the perovskite film which increases the lateral uniformity across the large-area solar cell. Thus, the straightforward MAI vapor treatment is highly beneficial for large scale commercialization of perovskite solar cells, regardless of the specific deposition method.

  10. Pore-Network Modeling of Water and Vapor Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NARCIS (Netherlands)

    Qin, C.; Hassanizadeh, S.M.; van Oosterhout, L.M.

    2016-01-01

    In the cathode side of a polymer electrolyte fuel cell (PEFC), a micro porous layer (MPL) added between the catalyst layer (CL) and the gas diffusion layer (GDL) plays an important role in water management. In this work, by using both quasi-static and dynamic pore-network models, water and vapor tra

  11. Optical atomic magnetometer

    Science.gov (United States)

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  12. Thin film solar cells with Si nanocrystallites embedded in amorphous intrinsic layers by hot-wire chemical vapor deposition.

    Science.gov (United States)

    Park, Seungil; Parida, Bhaskar; Kim, Keunjoo

    2013-05-01

    We investigated the thin film growths of hydrogenated silicon by hot-wire chemical vapor deposition with different flow rates of SiH4 and H2 mixture ambient and fabricated thin film solar cells by implementing the intrinsic layers to SiC/Si heterojunction p-i-n structures. The film samples showed the different infrared absorption spectra of 2,000 and 2,100 cm(-1), which are corresponding to the chemical bonds of SiH and SiH2, respectively. The a-Si:H sample with the relatively high silane concentration provides the absorption peak of SiH bond, but the microc-Si:H sample with the relatively low silane concentration provides the absorption peak of SiH2 bond as well as SiH bond. Furthermore, the microc-Si:H sample showed the Raman spectral shift of 520 cm(-1) for crystalline phase Si bonds as well as the 480 cm(-1) for the amorphous phase Si bonds. These bonding structures are very consistent with the further analysis of the long-wavelength photoconduction tail and the formation of nanocrystalline Si structures. The microc-Si:H thin film solar cell has the photovoltaic behavior of open circuit voltage similar to crystalline silicon thin film solar cell, indicating that microc-Si:H thin film with the mixed phase of amorphous and nanocrystalline structures show the carrier transportation through the channel of nanocrystallites.

  13. PMMA-Etching-Free Transfer of Wafer-scale Chemical Vapor Deposition Two-dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method

    Science.gov (United States)

    van Ngoc, Huynh; Qian, Yongteng; Han, Suk Kil; Kang, Dae Joon

    2016-09-01

    We have explored a facile technique to transfer large area 2-Dimensional (2D) materials grown by chemical vapor deposition method onto various substrates by adding a water-soluble Polyvinyl Alcohol (PVA) layer between the polymethyl-methacrylate (PMMA) and the 2D material film. This technique not only allows the effective transfer to an arbitrary target substrate with a high degree of freedom, but also avoids PMMA etching thereby maintaining the high quality of the transferred 2D materials with minimum contamination. We applied this method to transfer various 2D materials grown on different rigid substrates of general interest, such as graphene on copper foil, h-BN on platinum and MoS2 on SiO2/Si. This facile transfer technique has great potential for future research towards the application of 2D materials in high performance optical, mechanical and electronic devices.

  14. Detection of J-coupling using atomic magnetometer

    Science.gov (United States)

    Ledbetter, Micah P.; Crawford, Charles W.; Wemmer, David E.; Pines, Alexander; Knappe, Svenja; Kitching, John; Budker, Dmitry

    2015-09-22

    An embodiment of a method of detecting a J-coupling includes providing a polarized analyte adjacent to a vapor cell of an atomic magnetometer; and measuring one or more J-coupling parameters using the atomic magnetometer. According to an embodiment, measuring the one or more J-coupling parameters includes detecting a magnetic field created by the polarized analyte as the magnetic field evolves under a J-coupling interaction.

  15. Two-dimensional recrystallisation processes of nanometric vanadium oxide thin films grown by atomic layer chemical vapor deposition (ALCVD) evidenced by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Groult, H. [Laboratoire Liquides Ioniques et Interfaces Chargees (CNRS-UMR 7612), Universite P and M Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)]. E-mail: groult@ccr.jussieu.fr; Balnois, E. [Laboratoire Liquides Ioniques et Interfaces Chargees (CNRS-UMR 7612), Universite P and M Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Laboratoire Polymeres, Proprietes aux Interfaces et Composites, Universite de Bretagne Sud, rue de St. Maude, BP92116, 56321 Lorient Cedex (France); Mantoux, A. [Laboratoire Liquides Ioniques et Interfaces Chargees (CNRS-UMR 7612), Universite P and M Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Le Van, K. [Laboratoire Liquides Ioniques et Interfaces Chargees (CNRS-UMR 7612), Universite P and M Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Lincot, D. [Laboratoire d' Electrochimie et de Chimie Analytique (UMR CNRS 7575), ENSCP, 11 rue P and M Curie, 75231 Paris Cedex 05 (France)

    2006-06-15

    The influence of thermal annealing on the morphology and structure of nanometer range thickness vanadium oxide films deposited by ALCVD on silicon substrate was investigated by AFM. The appearance of crystalline centres with typical rectangular V{sub 2}O{sub 5} plates was clearly observed from 400 deg. C. Furthermore, spectacular 2D-reorganisation phenomenon with increasing temperature was pointed out since, initial circular particles change to elongated ones with a rectangular shape with increasing temperature. This reorganisation process results from an increase in the high surface atomic mobilities with increasing temperature. The growth of V{sub 2}O{sub 5} particles in the ab-plane occurs preferentially along the b-direction for which the atoms density is higher, in good agreement with results previously deduced from XRD analyses. The latter show limitation of the coherence domains values along the a-axis for temperatures higher than 450 deg. C.

  16. Nanomechanical analysis of insulinoma cells after glucose and capsaicin stimulation using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    Rui-guo YANG; Ning XI; King Wai-chiu LAI; Bei-hua ZHONG; Carmen Kar-man Fung; Chen-geng QU; Donna H Wang

    2011-01-01

    Aim: Glucose stimulates insulin secretion from pancreatic islet β cells by altering ion channel activity and membrane potential in the β cells. TRPV1 channel is expressed in the β cells and capsaicin induces insulin secretion similarly to glucose. This study aims to investigate the biophysical properties of the β ceils upon stimulation of membrane channels using an atomic force microscopic (AFM)nanoindentation system.Methods: ATCC insulinoma cell line was used. Cell stiffness, a marker of reorganization of cell membrane and cytoskeleton due to ion channel activation, was measured in real time using an integrated AFM nanoindentation system. Cell height that represented structural changes was simultaneously recorded along with cell stiffness.Results: After administration of glucose (16,20,and 40 mmol/L), the cell stiffness was markedly increased in a dose-dependent manner, whereas cell height was changed in an opposite way. Lower concentrations of capsaicin (1.67×10-9 and 1.67×10-8 mol/L)increased the cell stiffness without altering cell height. In contrast, higher concentrations of capsaicin (1.67×10-6 and 1.67×10-7mol/L) had no effect on the cell physical properties.Conclusion: A unique bio-nanomechanical signature was identified for characterizing biophysical properties of insulinoma cells upon general or specific activation of membrane channels. This study may deepen our understanding of stimulus-secretion coupling of pancreatic islet cells that leads to insulin secretion.

  17. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Christopher [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    The goal of this research is to determine procedures for creating ultra-high capacity supercapacitors by using nanofabrication techniques and high k-value dielectrics. One way to potentially solve the problem of climate change is to switch the source of energy to a source that doesn’t release many tons of greenhouse gases, gases which cause global warming, into the Earth’s atmosphere. These trap in more heat from the Sun’s solar energy and cause global temperatures to rise. Atomic layer deposition will be used to create a uniform thin-film of dielectric to greatly enhance the abilities of our capacitors and will build them on the nanoscale.

  18. Looking at cell mechanics with atomic force microscopy: experiment and theory.

    Science.gov (United States)

    Benitez, Rafael; Toca-Herrera, José L

    2014-11-01

    This review reports on the use of the atomic force microscopy in the investigation of the mechanical properties of cells. It is shown that the technique is able to deliver information about the cell surface properties (e.g., topography), the Young modulus, the viscosity, and the cell the relaxation times. Another aspect that this short review points out is the utilization of the atomic force microscope to investigate basic questions related to materials physics, biology, and medicine. The review is written in a chronological way to offer an overview of phenomenological facts and quantitative results to the reader. The final section discusses in detail the advantages and disadvantages of the Hertz and JKR models. A new implementation of the JKR model derived by Dufresne is presented.

  19. GaAs Solar Cells Grown by Hydride Vapor-Phase Epitaxy and the Development of GaInP Cladding Layers

    Energy Technology Data Exchange (ETDEWEB)

    Simon, John; Schulte, Kevin L.; Young, David L.; Haegel, Nancy M.; Ptak, Aaron J.

    2016-01-01

    The high cost of high-efficiency III-V photovoltaic devices currently limits them to niche markets. Hydride vapor-phase epitaxy (HVPE) growth of III-V materials recently reemerged as a low-cost, high-throughput alternative to conventional metal- organic vapor-phase epitaxy (MOVPE) growth of high-efficiency solar cells. Previously, we demonstrated unpassivated HVPEgrown GaAs p-n junctions with good quantum efficiency and high open-circuit voltage (Voc). In this work, we demonstrate the growth of GaInPby HVPE for use as a high-quality surface passivation layer to GaAs solar cells. Solar cells grown with GaInP window layers show significantly improved quantum efficiency compared with unpassivated cells, increasing the short-circuit current (JSC) of these low-cost devices. These results show the potential of low-cost HVPE for the growth of high-quality III-V devices.

  20. Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Park, Won-Kyu; Lee, Jaejin

    2017-01-01

    Radial junction solar cells with vertically aligned wire arrays have been widely studied to improve the power conversion efficiency. In this work, we report the first Ge nanopillar solar cell. Nanopillar arrays are selectively patterned on p-type Ge (100) substrates using nanosphere lithography and deep reactive ion etching processes. Nanoscale radial and planar junctions are realized by an n-type Ge emitter layer which is epitaxially grown by MOCVD using isobutylgermane. In situ epitaxial surface passivation is employed using an InGaP layer to avoid high surface recombination rates and Fermi level pinning. High quality n-ohmic contact is realized by protecting the top contact area during the nanopillar patterning. The short circuit current density and the power conversion efficiency of the Ge nanopillar solar cell are demonstrated to be improved up to 18 and 30%, respectively, compared to those of the Ge solar cell with a planar surface. PMID:28209964

  1. Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Park, Won-Kyu; Lee, Jaejin

    2017-02-01

    Radial junction solar cells with vertically aligned wire arrays have been widely studied to improve the power conversion efficiency. In this work, we report the first Ge nanopillar solar cell. Nanopillar arrays are selectively patterned on p-type Ge (100) substrates using nanosphere lithography and deep reactive ion etching processes. Nanoscale radial and planar junctions are realized by an n-type Ge emitter layer which is epitaxially grown by MOCVD using isobutylgermane. In situ epitaxial surface passivation is employed using an InGaP layer to avoid high surface recombination rates and Fermi level pinning. High quality n-ohmic contact is realized by protecting the top contact area during the nanopillar patterning. The short circuit current density and the power conversion efficiency of the Ge nanopillar solar cell are demonstrated to be improved up to 18 and 30%, respectively, compared to those of the Ge solar cell with a planar surface.

  2. Coherent Population Trapping Resonances in Buffer Gas-filled Cs Vapor Cells with Push-Pull Optical Pumping

    CERN Document Server

    Liu, Xiaochi; Guérandel, Stéphane; Gorecki, Christophe; de Clercq, Emeric; Boudot, Rodolphe

    2013-01-01

    We report on a theoretical study and experimental characterization of coherent population trapping (CPT) resonances in buffer gas-filled vapor cells with push-pull optical pumping (PPOP) on Cs D1 line. We point out that the push-pull interaction scheme is identical to the so-called lin per lin polarization scheme. Expressions of the relevant dark states, as well as of absorption, are reported. The experimental setup is based on the combination of a distributed feedback (DFB) diode laser, a pigtailed intensity Mach-Zehnder electro-optic modulator (MZ EOM) for optical sidebands generation and a Michelson-like interferometer. A microwave technique to stabilize the transfer function operating point of the MZ EOM is implemented for proper operation. A CPT resonance contrast as high as 78% is reported in a cm-scale cell for the magnetic-field insensitive clock transition. The impact of the laser intensity on the CPT clock signal key parameters (linewidth - contrast - linewidth/contrast ratio) is reported for three ...

  3. A Lithium Vapor Box similarity experiment employing water vapor

    Science.gov (United States)

    Schwartz, Ja; Jagoe, C.; Goldston, Rj; Jaworski, Ma

    2016-10-01

    Handling high power loads and heat flux in the divertor is a major challenge for fusion power plants. A detached plasma will likely be required. However, hydrogenic and impurity puffing experiments show that detached operation leads easily to X-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize the gas-phase material that absorbs the plasma heat flux, and so avoid those difficulties. In order to design such a box first the vapor without plasma must be simulated. The density of vapor required can be estimated using the SOL power, major radius, poloidal box length, and cooling energy per lithium atom. For an NSTX-U-sized machine, the Knudsen number Kn spans 0.01 to 1, the transitional flow regime. This regime cannot handled by fluid codes or collisionless Monte Carlo codes, but can be handled by Direct Simulation Monte Carlo (DSMC) codes. To validate a DSMC model, we plan to build a vapor box test stand employing more-convenient water vapor instead of lithium vapor as the working fluid. Transport of vapor between the chambers at -50C will be measured and compared to the model. This work supported by DOE Contract No. DE-AC02-09CH11466.

  4. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong

    2012-04-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  5. Binding Strength Between Cell Adhesion Proteoglycans Measured by Atomic Force Microscopy

    Science.gov (United States)

    Dammer, Ulrich; Popescu, Octavian; Wagner, Peter; Anselmetti, Dario; Guntherodt, Hans-Joachim; Misevic, Gradimir N.

    1995-02-01

    Measurement of binding forces intrinsic to adhesion molecules is necessary to assess their contribution to the maintenance of the anatomical integrity of multicellular organisms. Atomic force microscopy was used to measure the binding strength between cell adhesion proteoglycans from a marine sponge. Under physiological conditions, the adhesive force between two cell adhesion molecules was found to be up to 400 piconewtons. Thus a single pair of molecules could hold the weight of 1600 cells. High intermolecular binding forces are likely to form the basis for the integrity of the multicellular sponge organism.

  6. Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

    Directory of Open Access Journals (Sweden)

    Sanghoon Ji

    2015-08-01

    Full Text Available Solid oxide fuel cells with atomic layer-deposited thin film electrolytes supported on anodic aluminum oxide (AAO are electrochemically characterized with varying thickness of bottom electrode catalyst (BEC; BECs which are 0.5 and 4 times thicker than the size of AAO pores are tested. The thicker BEC ensures far more active mass transport on the BEC side and resultantly the thicker BEC cell generates ≈11 times higher peak power density than the thinner BEC cell at 500 °C.

  7. The influence of physical and physiological cues on atomic force microscopy-based cell stiffness assessment.

    Directory of Open Access Journals (Sweden)

    Yu-Wei Chiou

    Full Text Available Atomic force microscopy provides a novel technique for differentiating the mechanical properties of various cell types. Cell elasticity is abundantly used to represent the structural strength of cells in different conditions. In this study, we are interested in whether physical or physiological cues affect cell elasticity in Atomic force microscopy (AFM-based assessments. The physical cues include the geometry of the AFM tips, the indenting force and the operating temperature of the AFM. All of these cues show a significant influence on the cell elasticity assessment. Sharp AFM tips create a two-fold increase in the value of the effective Young's modulus (E(eff relative to that of the blunt tips. Higher indenting force at the same loading rate generates higher estimated cell elasticity. Increasing the operation temperature of the AFM leads to decreases in the cell stiffness because the structure of actin filaments becomes disorganized. The physiological cues include the presence of fetal bovine serum or extracellular matrix-coated surfaces, the culture passage number, and the culture density. Both fetal bovine serum and the extracellular matrix are critical for cells to maintain the integrity of actin filaments and consequently exhibit higher elasticity. Unlike primary cells, mouse kidney progenitor cells can be passaged and maintain their morphology and elasticity for a very long period without a senescence phenotype. Finally, cell elasticity increases with increasing culture density only in MDCK epithelial cells. In summary, for researchers who use AFM to assess cell elasticity, our results provide basic and significant information about the suitable selection of physical and physiological cues.

  8. Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies

    Science.gov (United States)

    Petkov, Valeri; Prasai, Binay; Shan, Shiyao; Ren, Yang; Wu, Jinfang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian

    2016-05-01

    Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE-XRD) we tracked the evolution of the atomic structure and activity of noble metal-transition metal (NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Experimental HE-XRD data were analysed in terms of atomic pair distribution functions (PDFs) and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation. Moreover, we demonstrate how such a control can be achieved and thereby the performance of PEMFCs improved considerably. Last but not least, we argue that the unique capabilities of in operando HE-XRD coupled to atomic PDF analysis to characterize active nanocatalysts inside operating fuel cells both in a time-resolved manner and with atomic level resolution, i.e. in 4D, can serve well the ongoing search for nanocatalysts that deliver more with less platinum.Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE

  9. Atomic force microscopy as analytical tool to study physico-mechanical properties of intestinal cells

    Directory of Open Access Journals (Sweden)

    Christa Schimpel

    2015-07-01

    Full Text Available The small intestine is a complex system that carries out various functions. The main function of enterocytes is absorption of nutrients, whereas membranous cells (M cells are responsible for delivering antigens/foreign substances to the mucosal lymphoid tissues. However, to get a fundamental understanding of how cellular structures contribute to physiological processes, precise knowledge about surface morphologies, cytoskeleton organizations and biomechanical properties is necessary. Atomic force microscopy (AFM was used here as a powerful tool to study surface topographies of Caco-2 cells and M cells. Furthermore, cell elasticity (i.e., the mechanical response of a cell on a tip indentation, was elucidated by force curve measurements. Besides elasticity, adhesion was evaluated by recording the attraction and repulsion forces between the tip and the cell surface. Organization of F-actin networks were investigated via phalloidin labeling and visualization was performed with confocal laser scanning fluorescence microscopy (CLSM and scanning electron microscopy (SEM. The results of these various experimental techniques revealed significant differences in the cytoskeleton/microvilli arrangements and F-actin organization. Caco-2 cells displayed densely packed F-actin bundles covering the entire cell surface, indicating the formation of a well-differentiated brush border. In contrast, in M cells actins were arranged as short and/or truncated thin villi, only available at the cell edge. The elasticity of M cells was 1.7-fold higher compared to Caco-2 cells and increased significantly from the cell periphery to the nuclear region. Since elasticity can be directly linked to cell adhesion, M cells showed higher adhesion forces than Caco-2 cells. The combination of distinct experimental techniques shows that morphological differences between Caco-2 cells and M cells correlate with mechanical cell properties and provide useful information to understand

  10. Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies.

    Science.gov (United States)

    Petkov, Valeri; Prasai, Binay; Shan, Shiyao; Ren, Yang; Wu, Jinfang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian

    2016-05-19

    Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE-XRD) we tracked the evolution of the atomic structure and activity of noble metal-transition metal (NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Experimental HE-XRD data were analysed in terms of atomic pair distribution functions (PDFs) and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation. Moreover, we demonstrate how such a control can be achieved and thereby the performance of PEMFCs improved considerably. Last but not least, we argue that the unique capabilities of in operando HE-XRD coupled to atomic PDF analysis to characterize active nanocatalysts inside operating fuel cells both in a time-resolved manner and with atomic level resolution, i.e. in 4D, can serve well the ongoing search for nanocatalysts that deliver more with less platinum.

  11. Calculation of Intracellular Pressure of Red Blood Cells at Jaundice According to Atomic Force Microscopy Data

    Directory of Open Access Journals (Sweden)

    Yu.S. Nagornov

    2016-03-01

    Full Text Available The present work is devoted to the analysis of three-dimensional data of atomic force microscopy for research of the morphology of red blood cells. In this paper we built a biomechanical model of the erythrocyte, which allowed calculating the intracellular pressure of erythrocyte based on data of atomic force microscopy. As a result, we obtained the dependence intracellular pressure on the morphology of red blood cell. We have proposed a method of estimating of intracellular pressure of erythrocytes based on numerical modeling and data of atomic force microscopy of erythrocytes scan, which involves a comparison of the experimental data with the results of numerical calculation. The method is applied to the data of atomic force microscopy of erythrocytes of experimental animals - dwarf domestic pigs with different degrees of obstructive jaundice and normal. It is shown that with increasing severity of the disease and the concentration of bilirubin in the blood there is an infringement erythrocyte membranes, by an average increasing their volume and intracellular pressure.

  12. A mass spectrometric study of the vaporization of boron phosphate (BPO(4))

    Science.gov (United States)

    Lopatin; Semenov

    1999-01-01

    The vaporization behavior of boron phosphate has been studied by using Knudsen effusion mass spectrometry. The vapor over BPO(4) consists of B(2)O(3), P(4)O(10), PO(2), BPO(4) (platinum cell) and B(2)O(3), PO, PO(2), BPO(3), BPO(4) (molybdenum cell). Standard enthalpies of formation and atomization (kJ/mol) were derived for BPO(4) (g) (-1000 +/- 15 and 2863 +/- 16) and for BPO(3) (g) (-731 +/- 15 and 2347 +/- 16), respectively. Copyright 1999 John Wiley & Sons, Ltd.

  13. Hot-Wire Chemical Vapor Deposition Of Polycrystalline Silicon : From Gas Molecule To Solar Cell

    NARCIS (Netherlands)

    Veenendaal, P.A.T.T. van

    2002-01-01

    Although the effort to investigate the use of renewable energy sources, such as wind and solar energy, has increased, their contribution to the total energy consumption remains insignificant. The conversion of solar energy into electricity through solar cells is one of the most promising techniques,

  14. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco

    2014-01-01

    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  15. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    Directory of Open Access Journals (Sweden)

    Laura Andolfi

    Full Text Available Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  16. Humidity-Dependent Bacterial Cells Functional Morphometry Investigations Using Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Hike Nikiyan

    2010-01-01

    Full Text Available The effect of a relative humidity (RH in a range of 93–65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH ≤ 84% RH. It is discussed the dependence of the response features on differences in cell wall structure of gram-positive and gram-negative bacterial cells.

  17. Transmission electron microscopy and atomic force microscopy characterization of nickel deposition on bacterial cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Recently bacterial cells have become attractive biological templates for the fabrication of metal nano- structures or nanomaterials due to their inherent small size, various standard geometrical shapes and abundant source. In this paper, nickel-coated bacterial cells (gram-negative bacteria of Escherichia coli) were fabricated via electroless chemical plating. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) characterization results reveal evident morphological difference between bacterial cells before and after deposition with nickel. The bare cells with smooth surface presented transverse outspreading effect at mica surface. Great changes took place in surface roughness for those bacterial cells after metallization. A large number of nickel nanoparticles were observed to be equably distributed at bacterial surface after activation and subsequent metallization. Furthermore, ultra thin section analytic results validated the presence and uniformity of thin nickel coating at bacterial surface after metallization.

  18. Passive microrheology of normal and cancer cells after ML7 treatment by atomic force microscopy

    Science.gov (United States)

    Lyapunova, Elena; Nikituk, Alexander; Bayandin, Yuriy; Naimark, Oleg; Rianna, Carmela; Radmacher, Manfred

    2016-08-01

    Mechanical properties of living cancer and normal thyroidal cells were investigated by atomic force microscopy (AFM). Cell mechanics was compared before and after treatment with ML7, which is known to reduce myosin activity and induce softening of cell structures. We recorded force curves with extended dwell time of 6 seconds in contact at maximum forces from 500 pN to 1 nN. Data were analyzed within different frameworks: Hertz fit was applied in order to evaluate differences in Young's moduli among cell types and conditions, while the fluctuations of the cantilever in contact with cells were analyzed with both conventional algorithms (probability density function and power spectral density) and multifractal detrended fluctuation analysis (MF-DFA). We found that cancer cells were softer than normal cells and ML7 had a substantial softening effect on normal cells, but only a marginal one on cancer cells. Moreover, we observed that all recorded signals for normal and cancer cells were monofractal with small differences between their scaling parameters. Finally, the applicability of wavelet-based methods of data analysis for the discrimination of different cell types is discussed.

  19. Crystal Engineering for Low Defect Density and High Efficiency Hybrid Chemical Vapor Deposition Grown Perovskite Solar Cells.

    Science.gov (United States)

    Ng, Annie; Ren, Zhiwei; Shen, Qian; Cheung, Sin Hang; Gokkaya, Huseyin Cem; So, Shu Kong; Djurišić, Aleksandra B; Wan, Yangyang; Wu, Xiaojun; Surya, Charles

    2016-12-07

    Synthesis of high quality perovskite absorber is a key factor in determining the performance of the solar cells. We demonstrate that hybrid chemical vapor deposition (HCVD) growth technique can provide high level of versatility and repeatability to ensure the optimal conditions for the growth of the perovskite films as well as potential for batch processing. It is found that the growth ambient and degree of crystallization of CH3NH3PbI3 (MAPI) have strong impact on the defect density of MAPI. We demonstrate that HCVD process with slow postdeposition cooling rate can significantly reduce the density of shallow and deep traps in the MAPI due to enhanced material crystallization, while a mixed O2/N2 carrier gas is effective in passivating both shallow and deep traps. By careful control of the perovskite growth process, a champion device with power conversion efficiency of 17.6% is achieved. Our work complements the existing theoretical studies on different types of trap states in MAPI and fills the gap on the theoretical analysis of the interaction between deep levels and oxygen. The experimental results are consistent with the theoretical predictions.

  20. Atomic Layer Deposition TiO2 Films and TiO2/SiNx Stacks Applied for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Zu-Po Yang

    2016-08-01

    Full Text Available Titanium oxide (TiO2 films and TiO2/SiNx stacks have potential in surface passivation, anti-reflection coatings and carrier-selective contact layers for crystalline Si solar cells. A Si wafer, deposited with 8-nm-thick TiO2 film by atomic layer deposition, has a surface recombination velocity as low as 14.93 cm/s at the injection level of 1.0 × 1015 cm−3. However, the performance of silicon surface passivation of the deposited TiO2 film declines as its thickness increases, probably because of the stress effects, phase transformation, atomic hydrogen and thermal stability of amorphous TiO2 films. For the characterization of 66-nm-thick TiO2 film, the results of transmission electron microscopy show that the anatase TiO2 crystallinity forms close to the surface of the Si. Secondary ion mass spectrometry shows the atomic hydrogen at the interface of TiO2 and Si which serves for chemical passivation. The crystal size of anatase TiO2 and the homogeneity of TiO2 film can be deduced by the measurements of Raman spectroscopy and spectroscopic ellipsometry, respectively. For the passivating contacts of solar cells, in addition, a stack composed of 8-nm-thick TiO2 film and a plasma-enhanced chemical-vapor-deposited 72-nm-thick SiNx layer has been investigated. From the results of the measurement of the reflectivity and effective carrier lifetime, TiO2/SiNx stacks on Si wafers perform with low reflectivity and some degree of surface passivation for the Si wafer.

  1. Vapor and healing treatment for CH3NH3PbI3-xClx films toward large-area perovskite solar cells

    Science.gov (United States)

    Gouda, Laxman; Gottesman, Ronen; Tirosh, Shay; Haltzi, Eynav; Hu, Jiangang; Ginsburg, Adam; Keller, David A.; Bouhadana, Yaniv; Zaban, Arie

    2016-03-01

    Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non-uniform performance. Thus, production and characterization of the lateral uniformity of large-area films is a crucial step towards scale-up of devices. In this paper, we present a reproducible method for improving the lateral uniformity and performance of large-area perovskite solar cells (32 cm2). The method is based on methyl-ammonium iodide (MAI) vapor treatment as a new step in the sequential deposition of perovskite films. Following the MAI vapor treatment, we used high throughput techniques to map the photovoltaic performance throughout the large-area device. The lateral uniformity and performance of all photovoltaic parameters (Voc, Jsc, Fill Factor, Photo-conversion efficiency) increased, with an overall improved photo-conversion efficiency of ~100% following a vapor treatment at 140 °C. Based on XRD and photoluminescence measurements, We propose that the MAI treatment promotes a ``healing effect'' to the perovskite film which increases the lateral uniformity across the large-area solar cell. Thus, the straightforward MAI vapor treatment is highly beneficial for large scale commercialization of perovskite solar cells, regardless of the specific deposition method.Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non

  2. Effect of “CdCl2 Treatment” on Properties of CdTe-Based Solar Cells Prepared by Physical Vapor Deposition and Close-Spaced Sublimation Methods

    Science.gov (United States)

    Hajimammadov, Rashad; Fathi, Nasser; Bayramov, Ayaz; Khrypunov, Genady; Klochko, Nataliya; Li, Tatyana

    2011-05-01

    CdTe is regarded as one of the most promising materials for fabricating CdTe/CdS thin film solar cells with efficiencies up to 16.5%. In this paper we present a comparative analysis of CdTe-based solar cells fabricated by physical vapor deposition (PVD) and close-spaced sublimation (CSS) methods. The structural properties of CdTe base layers and the output parameters of CdS/CdTe solar cells are presented, and the influence of “CdCl2-treatment” on these properties are discussed. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were used in the studies.

  3. Vapor phase heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.; Neeper, D.A.

    1985-09-01

    This report describes progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating, which could also be applied to service water heating. Refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compare the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  4. Double-resonance spectroscopy in Rubidium vapour-cells for high performance and miniature atomic clocks

    Science.gov (United States)

    Gharavipour, M.; Affolderbach, C.; Kang, S.; Mileti, G.

    2017-01-01

    We report our studies on using microwave-optical double-resonance (DR) spectroscopy for a high-performance Rb vapour-cell atomic clock in view of future industrial applications. The clock physics package is very compact with a total volume of only 0.8 dm3. It contains a recently in-house developed magnetron-type cavity and a Rb vapour cell. A homed-made frequency-stabilized laser system with an integrated acousto-optical-modulator (AOM) – for switching and controlling the light output power– is used as an optical source in a laser head (LH). The LH has the overall volume of 2.5 dm3 including the laser diode, optical elements, AOM and electronics. In our Rb atomic clock two schemes of continuous-wave DR and Ramsey-DR schemes are used, where the latter one strongly reduces the light-shift effect by separation of the interaction of light and microwave. Applications of the DR clock approach to more radically miniaturized atomic clocks are discussed.

  5. Discrimination Between Cervical Cancer Cells and Normal Cervical Cells Based on Longitudinal Elasticity Using Atomic Force Microscopy

    Science.gov (United States)

    Zhao, Xueqin; Zhong, Yunxin; Ye, Ting; Wang, Dajing; Mao, Bingwei

    2015-12-01

    The mechanical properties of cells are considered promising biomarkers for the early diagnosis of cancer. Recently, atomic force microscopy (AFM)-based nanoindentation technology has been utilized for the examination of cell cortex mechanics in order to distinguish malignant cells from normal cells. However, few attempts to evaluate the biomechanical properties of cells have focused on the quantification of the non-homogeneous longitudinal elasticity of cellular structures. In the present study, we applied a variation of the method of Carl and Schillers to investigate the differences between longitudinal elasticity of human cervical squamous carcinoma cells (CaSki) and normal cervical epithelial cells (CRL2614) using AFM. The results reveal a three-layer heterogeneous structure in the probing volume of both cell types studied. CaSki cells exhibited a lower whole-cell stiffness and a softer nuclei zone compared to the normal counterpart cells. Moreover, a better differentiated cytoskeleton was found in the inner cytoplasm/nuclei zone of the normal CRL2614 cells, whereas a deeper cytoskeletal distribution was observed in the probing volume of the cancerous counterparts. The sensitive cortical panel of CaSki cells, with a modulus of 0.35~0.47 kPa, was located at 237~225 nm; in normal cells, the elasticity was 1.20~1.32 kPa at 113~128 nm. The present improved method may be validated using the conventional Hertz-Sneddon method, which is widely reported in the literature. In conclusion, our results enable the quantification of the heterogeneous longitudinal elasticity of cancer cells, in particular the correlation with the corresponding depth. Preliminary results indicate that our method may potentially be applied to improve the detection of cancerous cells and provide insights into the pathophysiology of the disease.

  6. 硼氢化钾还原冷原子荧光测定大米中的汞%Determination of mercury in rice by potassium borohydride reduction cold vapor atomic fluorescence

    Institute of Scientific and Technical Information of China (English)

    毛荐; 刘忠胜

    2011-01-01

    本方法采用硝酸-过氧化氢微波消解,硼氢化钾还原冷原子荧光测定大米中的汞,消解液无需赶酸,直接测汞,方法简便快捷,实验检出限浓度为0.024μg/L,线性范围0~40 ng/ml,经国家一级标准物质验证,方法准确可靠。%This method uses nitric acid-hydrogen peroxide microwave digestion,potassium borohydride reduction of rice in cold vapor atomic fluorescence of mercury,acid digestion solution without the need to catch,direct measurement of mercury,the method is quick and easy experimental detection limit concentration of 0.024 μg / L,the linear range of 0 ~ 40 ng / ml,The method is accurate and reliable verified by the national standard.

  7. Use of flameless atomic absorption spectroscopy in immune cytolysis for nonradioactive determination of killer cell activity.

    Science.gov (United States)

    Borella, P; Bargellini, A; Salvioli, S; Cossarizza, A

    1996-02-01

    We describe here a novel method to evaluate natural killer (NK) cytolytic activity by use of flameless atomic absorption spectroscopy (GF-AAS). This technique may be adopted for use in laboratories equipped with electrothermal atomic absorption spectrometers. Nonradioactive Cr as Na2CrO4 was used to label target cells (K562), and cell lysis was evaluated by measuring Cr released after 4 h of incubation with the effectors. We selected 520 micrograms/L as the optimal dose for labeling targets, between 12 and 20 h as the optimal incubation time, and 10(4) cells as the optimal target size. Advantages of this method include: (a) exclusion of radioactive tracer, with no risk for workers; (b) limited costs; (c) high sensitivity and reproducibility; (d) possibility to store samples; and (e) better control of Cr used for labeling cells due to well-determined, fixed Cr concentrations in the range of nontoxic and linear cellular uptake. Comparison with data obtained by conventional 51Cr labeling of targets killed by the same effectors was excellent, yielding comparable results and corroborating the method.

  8. Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Yu Dindi; Ruangchaithaweesuk, Songtham; Yao Li; Xu Shoujun, E-mail: sxu7@uh.edu [University of Houston, Department of Chemistry (United States)

    2012-09-15

    The detection of magnetically labeled molecules and cells involves three essential parameters: sensitivity, spatial resolution, and molecular specificity. We report on the use of atomic magnetometry and its derivative techniques to achieve high performance in terms of all these parameters. With a sensitivity of 80 fT/{radical}Hz for dc magnetic fields, we show that 7,000 streptavidin-conjugated magnetic microparticles magnetized by a permanent magnet produce a magnetic field of 650 pT; this result predicts that a single such particle can be detected during one second of signal averaging. Spatial information is obtained using a scanning magnetic imaging scheme. The spatial resolution is 20 {mu}m with a detection distance of more than 1 cm; this distance is much longer than that in previous reports. The molecular specificity is achieved using force-induced remnant magnetization spectroscopy, which currently uses an atomic magnetometer for detection. As an example, we perform measurement of magnetically labeled human CD4+ T cells, whose count in the blood is the diagnostic criterion for human immunodeficiency virus infection. Magnetic particles that are specifically bound to the cells are resolved from nonspecifically bound particles and quantitatively correlate with the number of cells. The magnetic particles have an overall size of 2.8 {mu}m, with a magnetic core in nanometer regime. The combination of our techniques is predicted to be useful in molecular and cellular imaging.

  9. Atomic force microscopy observation on nuclear reassembly in a cell-free system

    Institute of Scientific and Technical Information of China (English)

    YANG Ning; CHEN Zhongcai; ZHANG Zhaohui; ZHU Xing; ZHAI Zhonghe; TANG Xiaowei

    2003-01-01

    Cell-free system is interesting and useful for studying nuclear assembly in mitosis. Atomic force micro- scopy (AFM), which is a simple way for imaging fixed reassemble nuclei with high resolution, has not been used in the cell-free system. In this paper, we put forward an air-drying sample preparation for AFM. Using AFM, we observed nuclear reassembly process within 100 nm resolution ina cell-free system. As a result, we found that the images were artifact-free, and with higher resolution compared with fluorescent optical microscope images. Furthermore, the morphology of membrane vesicles was obtained clearly, and a dynamic change of morphology during the vesicles' approaching to nuclear envelope was also observed, which is enlightened to understand the mechanism of nuclear envelope assembly.

  10. Observation on Surface and Cross Section of Thin Film Solar Cells Using Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    FENG Liang-huan; WU Li-li; CAI Wei; CAI Ya-ping; ZHENG Jia-gui; ZHANG Jing-quan; LI Bing; LI Wei

    2005-01-01

    Atomic force microscope (AFM) is able to produce three-dimensional digital data in both forcemode and height-mode and its applications are not limited to map the surfaces of conducting materials. It can use the force-mode to image the repulsive and attractive force patterns. The cross sections of polycrystalline CdS/CdTe and amorphous silicon heterojunction solar cells are observed with AFM. In case of short circuit,the microstructures of different layers in the samples are clearly displayed. When the cells are open circuit, the topographical images are altered, the potential outline due to the space charge in junction region is observed.Obviously, AFM can be employed to investigate experimentally built-in potential in junction of semiconductor devices, such as solar cells.

  11. Detecting CD20-Rituximab specific interactions on lymphoma cells using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Elucidating the underlying mechanisms of cell physiology is currently an important research topic in life sciences. Atomic force microscopy methods can be used to investigate these molecular mechanisms. In this study, single-molecule force spectroscopy was used to explore the specific recognition between the CD20 antigen and anti-CD20 antibody Rituximab on B lymphoma cells under near-physiological conditions. The CD20-Rituximab specific binding force was measured through tip functionalization. Distribution of CD20 on the B lymphoma cells was visualized three-dimensionally. In addition, the relationship between the intramolecular force and the molecular extension of the CD20-Rituximab complex was analyzed under an external force. These results facilitate further investigation of the mechanism of Rituximab’s anti-cancer effect.

  12. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation

    Science.gov (United States)

    Coceano, G.; Yousafzai, M. S.; Ma, W.; Ndoye, F.; Venturelli, L.; Hussain, I.; Bonin, S.; Niemela, J.; Scoles, G.; Cojoc, D.; Ferrari, E.

    2016-02-01

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young’s modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines’ elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.

  13. Atomically Thin-Layered Molybdenum Disulfide (MoS2) for Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Singh, Eric; Kim, Ki Seok; Yeom, Geun Young; Nalwa, Hari Singh

    2017-02-01

    Transition metal dichalcogenides (TMDs) are becoming significant because of their interesting semiconducting and photonic properties. In particular, TMDs such as molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2), tungsten disulfide (WS2), tungsten diselenide (WSe2), titanium disulfide (TiS2), tantalum sulfide (TaS2), and niobium selenide (NbSe2) are increasingly attracting attention for their applications in solar cell devices. In this review, we give a brief introduction to TMDs with a focus on MoS2; and thereafter, emphasize the role of atomically thin MoS2 layers in fabricating solar cell devices, including bulk-heterojunction, organic, and perovskites-based solar cells. Layered MoS2 has been used as the hole-transport layer (HTL), electron-transport layer (ETL), interfacial layer, and protective layer in fabricating heterojunction solar cells. The trilayer graphene/MoS2/n-Si solar cell devices exhibit a power-conversion efficiency of 11.1%. The effects of plasma and chemical doping on the photovoltaic performance of MoS2 solar cells have been analyzed. After doping and electrical gating, a power-conversion efficiency (PCE) of 9.03% has been observed for the MoS2/h-BN/GaAs heterostructure solar cells. The MoS2-containing perovskites-based solar cells show a PCE as high as 13.3%. The PCE of MoS2-based organic solar cells exceeds 8.40%. The stability of MoS2 solar cells measured under ambient conditions and light illumination has been discussed. The MoS2-based materials show a great potential for solar cell devices along with high PCE; however, in this connection, their long-term environmental stability is also of equal importance for commercial applications.

  14. (Invited) Atomic Layer Deposition for Novel Dye-Sensitized Solar Cells

    KAUST Repository

    Tétreault, Nicolas

    2011-01-01

    Herein we present the latest fabrication and characterization techniques for atomic layer deposition of Al 2O 3, ZnO, SnO 2, Nb 2O 5, HfO 2, Ga 2O 3 and TiO 2 for research on dye-sensitized solar cell. In particular, we review the fabrication of state-of-the-art 3D host-passivation-guest photoanodes and ZnO nanowires as well as characterize the deposited thin films using spectroscopic ellipsometry, X-ray diffraction, Hall effect, J-V curves and electrochemical impedance spectroscopy. ©The Electrochemical Society.

  15. A single-cell scraper based on an atomic force microscope for detaching a living cell from a substrate

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Futoshi, E-mail: iwata.futoshi@shizuoka.ac.jp [Department of Mechanical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Adachi, Makoto; Hashimoto, Shigetaka [Department of Mechanical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan)

    2015-10-07

    We describe an atomic force microscope (AFM) manipulator that can detach a single, living adhesion cell from its substrate without compromising the cell's viability. The micrometer-scale cell scraper designed for this purpose was fabricated from an AFM micro cantilever using focused ion beam milling. The homemade AFM equipped with the scraper was compact and standalone and could be mounted on a sample stage of an inverted optical microscope. It was possible to move the scraper using selectable modes of operation, either a manual mode with a haptic device or a computer-controlled mode. The viability of the scraped single cells was evaluated using a fluorescence dye of calcein-acetoxymethl ester. Single cells detached from the substrate were collected by aspiration into a micropipette capillary glass using an electro-osmotic pump. As a demonstration, single HeLa cells were selectively detached from the substrate and collected by the micropipette. It was possible to recultivate HeLa cells from the single cells collected using the system.

  16. A single-cell scraper based on an atomic force microscope for detaching a living cell from a substrate

    Science.gov (United States)

    Iwata, Futoshi; Adachi, Makoto; Hashimoto, Shigetaka

    2015-10-01

    We describe an atomic force microscope (AFM) manipulator that can detach a single, living adhesion cell from its substrate without compromising the cell's viability. The micrometer-scale cell scraper designed for this purpose was fabricated from an AFM micro cantilever using focused ion beam milling. The homemade AFM equipped with the scraper was compact and standalone and could be mounted on a sample stage of an inverted optical microscope. It was possible to move the scraper using selectable modes of operation, either a manual mode with a haptic device or a computer-controlled mode. The viability of the scraped single cells was evaluated using a fluorescence dye of calcein-acetoxymethl ester. Single cells detached from the substrate were collected by aspiration into a micropipette capillary glass using an electro-osmotic pump. As a demonstration, single HeLa cells were selectively detached from the substrate and collected by the micropipette. It was possible to recultivate HeLa cells from the single cells collected using the system.

  17. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method.

    Science.gov (United States)

    Wada, Takao; Ueda, Noriaki

    2013-04-21

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature.

  18. Electrical properties of GaAs metal–oxide–semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal–organic vapor deposition/atomic layer deposition hybrid system

    Directory of Open Access Journals (Sweden)

    Takeshi Aoki

    2015-08-01

    Full Text Available This paper presents a compressive study on the fabrication and optimization of GaAs metal–oxide–semiconductor (MOS structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD, with an AlN interfacial passivation layer prepared in situ via metal–organic chemical vapor deposition (MOCVD. The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance–voltage (C–V characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm−2 eV−1. Using a (111A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  19. Electrical properties of GaAs metal-oxide-semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal-organic vapor deposition/atomic layer deposition hybrid system

    Science.gov (United States)

    Aoki, Takeshi; Fukuhara, Noboru; Osada, Takenori; Sazawa, Hiroyuki; Hata, Masahiko; Inoue, Takayuki

    2015-08-01

    This paper presents a compressive study on the fabrication and optimization of GaAs metal-oxide-semiconductor (MOS) structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal-organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance-voltage (C-V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm-2 eV-1. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  20. Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy.

    Science.gov (United States)

    Tello, Marta; Spenlé, Caroline; Hemmerlé, Joseph; Mercier, Luc; Fabre, Roxane; Allio, Guillaume; Simon-Assmann, Patricia; Goetz, Jacky G

    2016-02-01

    Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions.

  1. Determination of the Elastic Properties of Tomato Fruit Cells with an Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Andrzej Kurenda

    2013-09-01

    Full Text Available Since the mechanical properties of single cells together with the intercellular adhesive properties determine the macro-mechanical properties of plants, a method for evaluation of the cell elastic properties is needed to help explanation of the behavior of fruits and vegetables in handling and food processing. For this purpose, indentation of tomato mesocarp cells with an atomic force microscope was used. The Young’s modulus of a cell using the Hertz and Sneddon models, and stiffness were calculated from force-indentation curves. Use of two probes of distinct radius of curvature (20 nm and 10,000 nm showed that the measured elastic properties were significantly affected by tip geometry. The Young’s modulus was about 100 kPa ± 35 kPa and 20 kPa ± 14 kPa for the sharper tip and a bead tip, respectively. Moreover, large variability regarding elastic properties (>100% among cells sampled from the same region in the fruit was observed. We showed that AFM provides the possibility of combining nano-mechanical properties with topography imaging, which could be very useful for the study of structure-related properties of fruits and vegetables at the cellular and sub-cellular scale.

  2. Atomic force microscope tracking observation of Chinese hamster ovary cell mitosis.

    Science.gov (United States)

    Wu, Yangzhe; Cai, Jiye; Cheng, Longqiu; Xu, Yanfang; Lin, Zhiyan; Wang, Chenxi; Chen, Yong

    2006-01-01

    CHO cells possess easily identifiable karyotypes, and CHO cell chromosomes are large and few in number, making these cells ideal for mutational and drug toxicity studies and suitable for investigations of animal chromosome structure. Here, we used atomic force microscopy (AFM) in the tapping mode for detailed visualizations of Chinese hamster ovary (CHO) cell chromosomes during various mitotic phases, including typical prophase, prometaphase, metaphase, anaphase and telophase. Based on our detailed observations, we were able to divide metaphase and anaphase into sub-phases: metaphase I, II and III, and anaphase I and II. Furthermore, we used the AFM error-signal mode to visualize chromosomal ultrastructures and cytokinesis. While these visualizations were all successful, we found that the image quality was affected by cellular debris, contamination. Collectively, our results show that the AFM technique has great potential for the detailed study of chromosomes and chromosomal ultrastructures during all phases of the cell cycle, but that careful standards of sample preparation must be maintained.

  3. In situ observation of surface structures of cardiovascular endothelial cells with atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    Tong Yin; Jin Luo; YaMin Ma; Xiao-Long Ji; Yu-Sheng Zhao; Shi-Wen Wang

    2009-01-01

    Objective To observe the surface structures of cardiovascular endothelial cells in situ with atomic force microscope (AFM). Methods Fresh aorta and aortic valve were dissected from 10 healthy male New Zealand white rabbits. Before fixed in 1% formaldehyde, the fresh tissues were washed in the buffer phosphate solution. Under general microscope, the fixed aorta or valve was spread on the double side stick tape which had already been stuck on the glass slide. The intima of aorta or the aorta side of valve was towards upside. Then the specimen was dried under 37 degrees centigrade in an attemperator and was washed with pure water. After dried again, the specimen was loaded on the platform ofNanoScope llla AFM and was scanned in tapping mode with the scanning speed of 0.5 HZ. Results The surface structures of endothelial cell on the fixed and dried tissue could be obsserved clearly in situ with AFM. Aortic endothclial cells were large, branched and arranged sparsely and parallel to the direction of blood flow, whereas endothelial cells on aorta valve surface were small, less branched and arranged intensively and vertical to the direction of blood flow. When the scanning range was dwindled, granular ultra-structures could be observed on the surface of endothelial cells, and, as the scanning range was dwindled further, fissure and convolution could be seen on the surface of granules from aortic endothelial cells. Centre cavity and surrounding swelling volcano-like structure could be seen on the surface of granules from endothelial cells of aortic valve. Conclusions It's feasible to observe the surface ultra-structures of cardiovascular endothelial cells in situ with AFM and morphological information provided by A FM might be of clinical value in future histopathological diagnosis.

  4. The Measuring Method of Atomic Polarization of Alkali Metal Vapor Based on Optical Rotation and the Analysis of the Influence Factors%基于光偏振旋转效应的碱金属气室原子极化率测量方法及影响因素分析

    Institute of Scientific and Technical Information of China (English)

    尚慧宁; 全伟; 陈瑶; 李洋; 李红

    2016-01-01

    利用原子自旋效应能够实现超高灵敏度的惯性和磁场测量.一类操控原子自旋处于无自旋交换弛豫态的器件可以进行物理参数测量.碱金属气室为该类器件的敏感表头.碱金属原子密度与原子极化率是碱金属气室的重要参数 ,对研究原子自旋处于无自旋交换弛豫态有着重要的作用.光的偏振效应在量子计算和原子物理研究中发挥了重要作用.利用光的偏振效应能够实现对碱金属原子密度与原子极化率的检测.提出一种基于光偏振旋转效应的碱金属原子极化率测量方法.首先对碱金属气室加恒定磁场 ,利用激光作为检测光 ,根据光偏振旋转原理 ,检测通过气室的偏振光的法拉第旋转角 ,得到碱金属气室原子密度.然后将碱金属原子抽运 ,利用激光作为检测光 ,检测通过气室的偏振光的偏转角 ,得到碱金属原子极化率.该方法在测量原子极化率的过程中也测量了碱金属原子密度 ,实现利用一套系统测量两个重要参数 ,具有快速测量和高灵敏度等特点 ,简化了实验设备及过程.对两种偏转角进行仿真分析 ,得到该方法实验时检测激光波长变化对偏转角的影响 ,根据仿真图得到检测激光波长的可取范围 ,验证了该方法的可行性.最后分析激光器波长波动与磁场波动对其测量精度的影响 ,提出实验对激光器与磁场的要求.%High sensitivity measurements of inertia and magnetic field could be achieved by utilizing a category of devices ,which manipulate the atomic spins in the spin-exchange-relaxation-free regime .The alkali cell which contains the alkali metal vapor is used to sense magnetic field and inertia .The atomic number density of alkali vapor and the polarization of alkali metal vapor are two of the most important parameters of the cell .They play an important role in the research on atomic spins in the spin-ex-change-relaxation-free regime .Besides

  5. Ultra-narrow spectroscopic cells in atomic spectroscopy: reflection, transmission, fluorescence, and nonadiabatic transitions at the walls

    Science.gov (United States)

    Pazgalev, A.; Sarkisyan, D.; Cartaleva, S.; Przhibelskii, S.; Vartanyan, T.

    2014-11-01

    Ultra-narrow cells with the thicknesses in the range from several wavelengths to the small fractions of the wavelength brought a number of new opportunities for atomic spectroscopy. Depending on the cell thickness, spectral lines recorded in ultra-narrow cells are either Doppler-free or Doppler-broadened. With careful selection of the cell thickness hyperfine structure may be easily resolved without resorting on the multibeam nonlinear optical techniques. Moreover, frequent collisions with the walls leads to the important modifications of velocity selective optical pumping resonances. Finally, ultra-narrow cells provide with the unique opportunity to study collisions of the excited atoms with the solid surfaces. In this contribution several examples of the use of the ultra-narrow spectroscopic cells filled with the alkali atomic vapour is presented. First, we discuss general aspects of the transient polarisation that defines all peculiarities of an ultra-narrow cell as a spectroscopic tool. Second, we demonstrate the resolution of the magnetic sublevels in the transition from Zeeman to Paschen-Back regime in the Cs hyperfine structure. Third, new aspects of velocity selective optical pumping resonances in reflection and transmission of resonant radiation by the 6 wavelengths thick cell filled with Cs are discussed. Forth, the experimental evidences of the nonadiabatic transitions between excited states of Rb atoms in the course of collisions with the sapphire surface are presented.

  6. Laser spectroscopy with nanometric gas cells distance dependence of atom-surface interaction and collisions under confinement

    CERN Document Server

    Hamdi, I; Yarovitski, A; Dutier, G; Maurin, I; Saltiel, S; Li, Y; Lezama, A; Vartapetyan, T; Sarkisyan, D; Gorza, M P; Fichet, M; Bloch, D; Ducloy, M; Hamdi, Ismah\\`{e}ne; Todorov, Petko; Yarovitski, Alexander; Dutier, Gabriel; Maurin, Isabelle; Saltiel, Solomon; Li, Yuanyuan; Lezama, Arturo; Varzhapetyan, Tigran; Sarkisyan, David; Gorza, Marie-Pascale; Fichet, Mich\\`{e}le; Bloch, Daniel; Ducloy, Martial

    2005-01-01

    The high sensitivity of Laser Spectroscopy has made possible the exploration of atomic resonances in newly designed "nanometric" gas cells, whose local thickness varies from 20nm to more than 1000 nm. Following the initial observation of the optical analogous of the coherent Dicke microwave narrowing, the newest prospects include the exploration of long-range atom surface van der Waals interaction with spatial resolution in an unprecedented range of distances, modification of atom dielectric resonant coupling under the influence of the coupling between the two neighbouring dielectric media, and even the possible modification of interatomic collisions processes under the effect of confinement.

  7. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes

    Energy Technology Data Exchange (ETDEWEB)

    Puricelli, Luca; Galluzzi, Massimiliano; Schulte, Carsten; Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it; Milani, Paolo [CIMaINa and Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-03-15

    Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells’ fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cellular elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here, we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitable for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured Young’s modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in Young’s modulus induced by the action of a cytoskeleton-targeting drug.

  8. Experimental validation of atomic force microscopy-based cell elasticity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Andrew R; Charras, G T, E-mail: g.charras@ucl.ac.uk [London Centre for Nanotechnology, University College London, London WC1H 0AH (United Kingdom)

    2011-08-26

    Atomic force microscopy (AFM) is widely used for measuring the elasticity of living cells yielding values ranging from 100 Pa to 100 kPa, much larger than those obtained using bead-tracking microrheology or micropipette aspiration (100-500 Pa). AFM elasticity measurements appear dependent on tip geometry with pyramidal tips yielding elasticities 2-3 fold larger than spherical tips, an effect generally attributed to the larger contact area of spherical tips. In AFM elasticity measurements, experimental force-indentation curves are analyzed using contact mechanics models that infer the tip-cell contact area from the tip geometry and indentation depth. The validity of these assumptions has never been verified. Here we utilize combined AFM-confocal microscopy of epithelial cells expressing a GFP-tagged membrane marker to directly characterize the indentation geometry and measure the indentation depth. Comparison with data derived from AFM force-indentation curves showed that the experimentally measured contact area for spherical tips agrees well with predicted values, whereas for pyramidal tips, the contact area can be grossly underestimated at forces larger than {approx} 0.2 nN leading to a greater than two-fold overestimation of elasticity. These data suggest that a re-examination of absolute cellular elasticities reported in the literature may be necessary and we suggest guidelines for avoiding elasticity measurement artefacts introduced by extraneous cantilever-cell contact.

  9. Formation of the physical vapor deposited CdS Cu In,Ga Se2 interface in highly efficient thin film solar cells

    OpenAIRE

    Rusu, M.; Glatzel, Th.; Neisser, A.; Kaufmann, C.A.; Sadewasser, S.; Lux Steiner, M. Ch.

    2006-01-01

    We report on the buffer absorber interface formation in highly efficient 14.5 , AM1.5 ZnO CdS Cu In,Ga Se2 solar cells with a physical vapor deposited CdS buffer. For Se decapped Cu In,Ga Se2 CIGSe absorbers we observe sulfur passivation of the CIGSe grain boundaries during CdS growth and at the interface a thermally stimulated formation of a region with a higher band gap than that of the absorber bulk, determining the height of the potential barrier at the CdS CIGSe interface. For air ex...

  10. A facile, solvent vapor-fumigation-induced, self-repair recrystallization of CH3NH3PbI3 films for high-performance perovskite solar cells.

    Science.gov (United States)

    Zhu, Weidong; Yu, Tao; Li, Faming; Bao, Chunxiong; Gao, Hao; Yi, Yong; Yang, Jie; Fu, Gao; Zhou, Xiaoxin; Zou, Zhigang

    2015-03-12

    A high-quality CH3NH3PbI3 film is crucial in the manufacture of a high-performance perovskite solar cell. Here, a recrystallization process via facile fumigation with DMF vapor has been successfully introduced to self-repair of CH3NH3PbI3 films with poor coverage and low crystallinity prepared by the commonly used one-step spin-coating method. We found that the CH3NH3PbI3 films with dendritic structures can spontaneously transform to the uniform ones with full coverage and high crystallinity by adjusting the cycles of the recrystallization process. The mesostructured perovskite solar cells based on these repaired CH3NH3PbI3 films showed reproducible optimal power conversion efficiency (PCE) of 11.15% and average PCE of 10.25±0.90%, which are much better than that of devices based on the non-repaired CH3NH3PbI3 films. In addition, the hysteresis phenomenon in the current-voltage test can also be effectively alleviated due to the quality of the films being improved in the optimized devices. Our work proved that the fumigation of solvent vapor can modify metal organic perovskite films such as CH3NH3PbI3. It offers a novel and attractive way to fabricate high-performance perovskite solar cells.

  11. Cell Evolutionary Algorithm: a New Optimization Method on Ground-State Energy of the Atomic

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The purpose of this paper is to present a new general approach to solve ground-state energies of the double-electron systems in a uniform magnetic field, in which the basic element of evolution is the set in the solution space, rather than the point. The paper defines the Cell Evolutionary Algorithm, which imple-ments such a view of the evolution mechanism. First, the optimal set in which the optimal solution may be ob-tained. Then this approach applies the embedded search method to get the optimal solution. We tested this approach on the atomic structure, and the results show that it can improve not only the efficiency but also the accuracy of the calculations as it relates to this specific problem.

  12. Atomic Force Microscopy Investigation of Morphological and Nanomechanical Properties of Pseudomonas aeruginosa Cells

    DEFF Research Database (Denmark)

    Mortensen, Ninell Pollas

    2008-01-01

    Atomic Force Microscopy (AFM) is unique in the aspect of studying living biological sample under physiological conditions. AFM was invented in 1986 by Binnig and Gerber and began in the early 1990’s to be implemented in life science. AFM can give a detailed three dimensional image of an intact cell...... caused by the dehydration. When visualizing bacteria in liquid the image resolution is reduced, but the bacteria are kept in the natural environment and therefore not subject to the same degree of artifact formation as observed for dehydrated bacteria. However, when imaging rode-shape Gram...... spectrum diagnostic tool originally visualized. Low antibody-antigen affinity and inefficient exposure of the antibody recognition sites could be an explanation for the lack of success. Work presented in this thesis proves what powerful tool AFM is in bacteriology. AFM of bacteria in liquid can be used...

  13. An Atomic Force Microscopy based investigation of specific biomechanical properties for various types of neuronal cells

    Science.gov (United States)

    Spedden, Elise; White, James; Kaplan, David; Staii, Cristian

    2012-02-01

    Here we describe the use of Atomic Force Microscope (AFM) based techniques to characterize and explore the influence of biochemical and biomechanical cues on the growth and interaction of neuronal cells with surrounding guidance factors. Specifically, we use AFM topography and AFM force spectroscopy measurements to systematically investigate the morphology, elasticity, and real time growth of neuronal processes in the presence of different types of extracellular matrix proteins and growth factors. We therefore create a series of systems containing specified neuron densities where the type of the underlying growth promoting protein is different from sample to sample. For each system we measure key biomechanical parameters related to neuronal growth such as height and elastic modulus at multiple growth points on several types of neurons. We show that systematic measurements of these parameters yield fundamental information about the role played by substrate-plated guidance factors in determining elastic and morphological properties of neurons during growth.

  14. Biophysical Measurements of Cells, Microtubules, and DNA with an Atomic Force Microscope

    CERN Document Server

    Devenica, Luka M; Cabrejo, Raysa; Kurek, Matthew; Deveney, Edward F; Carter, Ashley R

    2015-01-01

    Atomic force microscopes (AFMs) are ubiquitous in research laboratories and have recently been priced for use in teaching laboratories. Here we review several AFM platforms (Dimension 3000 by Digital Instruments, EasyScan2 by Nanosurf, ezAFM by Nanomagnetics, and TKAFM by Thorlabs) and describe various biophysical experiments that could be done in the teaching laboratory using these instruments. In particular, we focus on experiments that image biological materials and quantify biophysical parameters: 1) imaging cells to determine membrane tension, 2) imaging microtubules to determine their persistence length, 3) imaging the random walk of DNA molecules to determine their contour length, and 4) imaging stretched DNA molecules to measure the tensional force.

  15. Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition.

    Science.gov (United States)

    Wang, Wei-Cheng; Lin, Che-Wei; Chen, Hsin-Jui; Chang, Che-Wei; Huang, Jhih-Jie; Yang, Ming-Jui; Tjahjono, Budi; Huang, Jian-Jia; Hsu, Wen-Ching; Chen, Miin-Jang

    2013-10-09

    Efficient nanotextured black silicon solar cells passivated by an Al2O3 layer are demonstrated. The broadband antireflection of the nanotextured black silicon solar cells was provided by fabricating vertically aligned silicon nanowire (SiNW) arrays on the n(+) emitter. A highly conformal Al2O3 layer was deposited upon the SiNW arrays by the thermal atomic layer deposition (ALD) based on the multiple pulses scheme. The nanotextured black silicon wafer covered with the Al2O3 layer exhibited a low total reflectance of ∼1.5% in a broad spectrum from 400 to 800 nm. The Al2O3 passivation layer also contributes to the suppressed surface recombination, which was explored in terms of the chemical and field-effect passivation effects. An 8% increment of short-circuit current density and 10.3% enhancement of efficiency were achieved due to the ALD Al2O3 surface passivation and forming gas annealing. A high efficiency up to 18.2% was realized in the ALD Al2O3-passivated nanotextured black silicon solar cells.

  16. Charge transport in CdTe solar cells revealed by conductive tomographic atomic force microscopy

    Science.gov (United States)

    Luria, Justin; Kutes, Yasemin; Moore, Andrew; Zhang, Lihua; Stach, Eric A.; Huey, Bryan D.

    2016-11-01

    The influence of microstructural defects on the device properties in CdTe remains largely unknown. This is partly because characterization techniques have been unable to image electrical pathways throughout three-dimensional grains and grain boundaries with nanoscale resolution. Here, we employ a conductive and tomographic variation of atomic force microscopy to study charge transport at the nanoscale in a functioning thin-film solar cell with 12.3% efficiency. Images of electric current collected through the device thickness reveal spatially dependent short-circuit and open-circuit performance, and confirm that grain boundaries are preferential pathways for electron transport. Results on samples with and without cadmium chloride treatment reveal little difference in grain structure at the microscale, with samples without treatment showing almost no photocurrent either at planar defects or at grain boundaries. Our results supports an energetically orthogonal transport system of grain boundaries and interconnected planar defects as contributing to optimal solar cell performance, contrary to the conventional wisdom of the deleterious role of planar defects on polycrystalline thin-film solar cells.

  17. A review on: atomic force microscopy applied to nano-mechanics of the cell.

    Science.gov (United States)

    Ikai, Atsushi

    2010-01-01

    Since its introduction in 1986, AFM has been applied to biological studies along with its widespread use in physics, chemistry and engineering fields. Due to its dual capabilities of imaging nano-materials with an atomic level resolution and of directly manipulating samples with high precision, AFM is now considered an indispensable instrument for nano-technological researchers especially in physically oriented fields. In biology in general, however, and in biotechnology in particular, its usefulness must be critically examined and, if necessary as it certainly is, further explored from a practical point of view. In this review, a new trend of applying AFM based technology to elucidate the mechanical basis of the cellular structure and its interaction with the extracellular matrix including cell to cell interaction is reviewed. Some of the recent studies done by using other force measuring or force exerting methods are also covered in the hope that all the nano-mechanical work on the cellular level will eventually contribute to the emergence of the mechano-chemical view of the cell in a unified manner.

  18. The fabrication of a double-layer atom chip with through silicon vias for an ultra-high-vacuum cell

    Science.gov (United States)

    Chuang, Ho-Chiao; Lin, Yun-Siang; Lin, Yu-Hsin; Huang, Chi-Sheng

    2014-04-01

    This study presents a double-layer atom chip that provides users with increased diversity in the design of the wire patterns and flexibility in the design of the magnetic field. It is more convenient for use in atomic physics experiments. A negative photoresist, SU-8, was used as the insulating layer between the upper and bottom copper wires. The electrical measurement results show that the upper and bottom wires with a width of 100 µm can sustain a 6 A current without burnout. Another focus of this study is the double-layer atom chips integrated with the through silicon via (TSV) technique, and anodically bonded to a Pyrex glass cell, which makes it a desired vacuum chamber for atomic physics experiments. Thus, the bonded glass cell not only significantly reduces the overall size of the ultra-high-vacuum (UHV) chamber but also conducts the high current from the backside to the front side of the atom chip via the TSV under UHV (9.5 × 10-10 Torr). The TSVs with a diameter of 70 µm were etched through by the inductively coupled plasma ion etching and filled by the bottom-up copper electroplating method. During the anodic bonding process, the electroplated copper wires and TSVs on atom chips also need to pass the examination of the required bonding temperature of 250 °C, under an applied voltage of 1000 V. Finally, the UHV test of the double-layer atom chips with TSVs at room temperature can be reached at 9.5 × 10-10 Torr, thus satisfying the requirements of atomic physics experiments under an UHV environment.

  19. Critical points of metal vapors

    Energy Technology Data Exchange (ETDEWEB)

    Khomkin, A. L., E-mail: alhomkin@mail.ru; Shumikhin, A. S. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-09-15

    A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for most metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.

  20. Research Update: Hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction

    Science.gov (United States)

    Shen, Po-Shen; Chiang, Yu-Hsien; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter

    2016-09-01

    With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP) thin films, this new class of photovoltaic (PV) technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

  1. Research Update: Hybrid organic-inorganic perovskite (HOIP thin films and solar cells by vapor phase reaction

    Directory of Open Access Journals (Sweden)

    Po-Shen Shen

    2016-09-01

    Full Text Available With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP thin films, this new class of photovoltaic (PV technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

  2. Comparison of immature and mature bone marrow-derived dendritic cells by atomic force microscopy

    Science.gov (United States)

    Xing, Feiyue; Wang, Jiongkun; Hu, Mingqian; Yu, Yu; Chen, Guoliang; Liu, Jing

    2011-07-01

    A comparative study of immature and mature bone marrow-derived dendritic cells (BMDCs) was first performed through an atomic force microscope (AFM) to clarify differences of their nanostructure and adhesion force. AFM images revealed that the immature BMDCs treated by granulocyte macrophage-colony stimulating factor plus IL-4 mainly appeared round with smooth surface, whereas the mature BMDCs induced by lipopolysaccharide displayed an irregular shape with numerous pseudopodia or lamellapodia and ruffles on the cell membrane besides becoming larger, flatter, and longer. AFM quantitative analysis further showed that the surface roughness of the mature BMDCs greatly increased and that the adhesion force of them was fourfold more than that of the immature BMDCs. The nano-features of the mature BMDCs were supported by a high level of IL-12 produced from the mature BMDCs and high expression of MHC-II on the surface of them. These findings provide a new insight into the nanostructure of the immature and mature BMDCs.

  3. In Situ Roughness Measurements for the Solar Cell Industry Using an Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Higinio González-Jorge

    2010-04-01

    Full Text Available Areal roughness parameters always need to be under control in the thin film solar cell industry because of their close relationship with the electrical efficiency of the cells. In this work, these parameters are evaluated for measurements carried out in a typical fabrication area for this industry. Measurements are made using a portable atomic force microscope on the CNC diamond cutting machine where an initial sample of transparent conductive oxide is cut into four pieces. The method is validated by making a comparison between the parameters obtained in this process and in the laboratory under optimal conditions. Areal roughness parameters and Fourier Spectral Analysis of the data show good compatibility and open the possibility to use this type of measurement instrument to perform in situ quality control. This procedure gives a sample for evaluation without destroying any of the transparent conductive oxide; in this way 100% of the production can be tested, so improving the measurement time and rate of production.

  4. Observation of electromagnetically induced Talbot effect in an atomic system with nonlinearity

    CERN Document Server

    Zhang, Zhaoyang; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2016-01-01

    We experimentally demonstrate the Talbot effect resulting from the repeatedly self-reconstruction of a spatially intensity-modulated probe field under the Fresnel near-field regime. By launching the probe beam into an optically induced atomic lattice (established by interfering two coupling fields) inside a thermal rubidium vapor cell, we can obtain an electromagnetically induced grating (EIG) on probe beam in a coherent three-level $\\Lambda$-type Doppler-free atomic configuration with the assistance of electromagnetically induced transparency (EIT) window, which can modify and greatly enhance the Kerr nonlinearity near atomic resonance. The EIG patterns out of the cell can repeat the image at the output plane of the cell at integer multiples of Talbot length, which agree well with the theoretical prediction [Appl. Phys. Lett., 98, 081108 (2011)]. Such first demonstrated EIT Talbot effect in a coherent atomic system may pave a lensless and nondestructive way for imaging ultracold atoms or molecules.

  5. On-site monitoring of atomic density number for an all-optical atomic magnetometer based on atomic spin exchange relaxation.

    Science.gov (United States)

    Zhang, Hong; Zou, Sheng; Chen, Xiyuan; Ding, Ming; Shan, Guangcun; Hu, Zhaohui; Quan, Wei

    2016-07-25

    We present a method for monitoring the atomic density number on site based on atomic spin exchange relaxation. When the spin polarization P ≪ 1, the atomic density numbers could be estimated by measuring magnetic resonance linewidth in an applied DC magnetic field by using an all-optical atomic magnetometer. The density measurement results showed that the experimental results the theoretical predictions had a good consistency in the investigated temperature range from 413 K to 463 K, while, the experimental results were approximately 1.5 ∼ 2 times less than the theoretical predictions estimated from the saturated vapor pressure curve. These deviations were mainly induced by the radiative heat transfer efficiency, which inevitably leaded to a lower temperature in cell than the setting temperature.

  6. Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS); Validacao de metodologia analitica para determinacao de mercurio total em amostras de urina para espectrometria de absorcao atomica com geracao de vapor frio (CV-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Guilhen, Sabine Neusatz

    2009-07-01

    Mercury (Hg) is a toxic metal applied to a variety of products and processes, representing a risk to the health of occupationally or accidentally exposed subjects. Dental amalgam is a restorative material composed of metallic mercury, which use has been widely debated in the last decades. Due to the dubiety of the studies concerning dental amalgam, many efforts concerning this issue have been conducted. The Tropical Medicine Foundation (Tocantins, Brazil) has recently initiated a study to evaluate the environmental and occupational levels of exposure to mercury in dentistry attendants at public consulting rooms in the city of Araguaina (TO). In collaboration with this study, the laboratory of analysis at IPEN's Chemistry and Environment Center is undertaking the analysis of mercury levels in exposed subjects' urine samples using cold vapor atomic absorption spectrometry. This analysis requires the definition of a methodology capable of generating reliable results. Such methodology can only be implemented after a rigorous validation procedure. As part of this work, a series of tests were conducted in order to confirm the suitability of the selected methodology and to assert that the laboratory addresses all requirements needed for a successful implementation of the methodology. The following parameters were considered in order to test the method's performance: detection and quantitation limits, selectivity, sensitivity, linearity, accuracy and precision. The assays were carried out with certified reference material, which assures the traceability of the results. Taking into account the estimated parameters, the method can be considered suitable for the afore mentioned purpose. The mercury concentration found for the reference material was of (95,12 +- 11,70)mug.L{sup -1} with a recovery rate of 97%. The method was also applied to 39 urine samples, six of which (15%) showing urinary mercury levels above the normal limit of 10{mu}g.L{sup -1}. The

  7. Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS); Validacao de metodologia analitica para determinacao de mercurio total em amostras de urina por espectrometria de absorcao atomica com geracao de vapor frio (CV-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Guilhen, Sabine Neusatz

    2009-07-01

    Mercury (Hg) is a toxic metal applied to a variety of products and processes, representing a risk to the health of occupationally or accidentally exposed subjects. Dental amalgam is a restorative material composed of metallic mercury, which use has been widely debated in the last decades. Due to the dubiety of the studies concerning dental amalgam, many efforts concerning this issue have been conducted. The Tropical Medicine Foundation (Tocantins, Brazil) has recently initiated a study to evaluate the environmental and occupational levels of exposure to mercury in dentistry attendants at public consulting rooms in the city of Araguaina (TO). In collaboration with this study, the laboratory of analysis at IPEN's Chemistry and Environment Center is undertaking the analysis of mercury levels in exposed subjects' urine samples using cold vapor atomic absorption spectrometry. This analysis requires the definition of a methodology capable of generating reliable results. Such methodology can only be implemented after a rigorous validation procedure. As part of this work, a series of tests were conducted in order to confirm the suitability of the selected methodology and to assert that the laboratory addresses all requirements needed for a successful implementation of the methodology. The following parameters were considered in order to test the method’s performance: detection and quantitation limits, selectivity, sensitivity, linearity, accuracy and precision. The assays were carried out with certified reference material, which assures the traceability of the results. Taking into account the estimated parameters, the method can be considered suitable for the afore mentioned purpose. The mercury concentration found for the reference material was of (95,12 ± 11,70)μg.L{sup -1} with a recovery rate of 97%. The method was also applied to 39 urine samples, six of which (15%) showing urinary mercury levels above the normal limit of 10μg.L{sup −1}. The obtained

  8. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  9. Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips

    Science.gov (United States)

    Gavara, Núria; Chadwick, Richard S.

    2012-12-01

    The atomic force microscope can detect the mechanical fingerprints of normal and diseased cells at the single-cell level under physiological conditions. However, atomic force microscopy studies of cell mechanics are limited by the `bottom effect' artefact that arises from the stiff substrates used to culture cells. Because cells adhered to substrates are very thin, this artefact makes cells appear stiffer than they really are. Here, we show an analytical correction that accounts for this artefact when conical tips are used for atomic force microscope measurements of thin samples. Our bottom effect cone correction (BECC) corrects the Sneddon's model, which is widely used to measure Young's modulus, E. Comparing the performance of BECC and Sneddon's model on thin polyacrylamide gels, we find that although Sneddon's model overestimates E, BECC yields E values that are thickness-independent and similar to those obtained on thick regions of the gel. The application of BECC to measurements on live adherent fibroblasts demonstrates a significant improvement on the estimation of their local mechanical properties.

  10. Validação de metodologia analítica para determinação de mercúrio total em amostras de urina por espectrometria de absorção atômica com geração de vapor frio (CV-AAS: estudo de caso Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS: case study

    Directory of Open Access Journals (Sweden)

    Sabine Neusatz Guilhen

    2010-01-01

    Full Text Available Mercury is a toxic metal used in a variety of substances over the course history. One of its more dubious uses is in dental amalgam restorations. It is possible to measure very small concentrations of this metal in the urine of exposed subjects by the cold vapor atomic absorption technique. The present work features the validation as an essential tool to confirm the suitability of the analytical method chosen to accomplish such determination. An initial analysis will be carried out in order to evaluate the environmental and occupational levels of exposure to mercury in 39 members of the auxiliary dental staff at public consulting rooms in the city of Araguaína (TO.

  11. Dual-Beam Atom Laser Driven by Spinor Dynamics

    Science.gov (United States)

    Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Aveline, David

    2007-01-01

    An atom laser now undergoing development simultaneously generates two pulsed beams of correlated Rb-87 atoms. (An atom laser is a source of atoms in beams characterized by coherent matter waves, analogous to a conventional laser, which is a source of coherent light waves.) The pumping mechanism of this atom laser is based on spinor dynamics in a Bose-Einstein condensate. By virtue of the angular-momentum conserving collisions that generate the two beams, the number of atoms in one beam is correlated with the number of atoms in the other beam. Such correlations are intimately linked to entanglement and squeezing in atomic ensembles, and atom lasers like this one could be used in exploring related aspects of Bose-Einstein condensates, and as components of future sensors relying on atom interferometry. In this atom-laser apparatus, a Bose-Einstein condensate of about 2 x 10(exp 6) Rb-87 atoms at a temperature of about 120 micro-K is first formed through all-optical means in a relatively weak singlebeam running-wave dipole trap that has been formed by focusing of a CO2-laser beam. By a technique that is established in the art, the trap is loaded from an ultrahigh-vacuum magnetooptical trap that is, itself, loaded via a cold atomic beam from an upstream two-dimensional magneto-optical trap that resides in a rubidium-vapor cell that is differentially pumped from an adjoining vacuum chamber, wherein are performed scientific observations of the beams ultimately generated by the atom laser.

  12. Atomic Layer Deposited Thin Films for Dielectrics, Semiconductor Passivation, and Solid Oxide Fuel Cells

    Science.gov (United States)

    Xu, Runshen

    Atomic layer deposition (ALD) utilizes sequential precursor gas pulses to deposit one monolayer or sub-monolayer of material per cycle based on its self-limiting surface reaction, which offers advantages, such as precise thickness control, thickness uniformity, and conformality. ALD is a powerful means of fabricating nanoscale features in future nanoelectronics, such as contemporary sub-45 nm metal-oxide-semiconductor field effect transistors, photovoltaic cells, near- and far-infrared detectors, and intermediate temperature solid oxide fuel cells. High dielectric constant, kappa, materials have been recognized to be promising candidates to replace traditional SiO2 and SiON, because they enable good scalability of sub-45 nm MOSFET (metal-oxide-semiconductor field-effect transistor) without inducing additional power consumption and heat dissipation. In addition to high dielectric constant, high-kappa materials must meet a number of other requirements, such as low leakage current, high mobility, good thermal and structure stability with Si to withstand high-temperature source-drain activation annealing. In this thesis, atomic layer deposited Er2O3 doped TiO2 is studied and proposed as a thermally stable amorphous high-kappa dielectric on Si substrate. The stabilization of TiO2 in its amorphous state is found to achieve a high permittivity of 36, a hysteresis voltage of less than 10 mV, and a low leakage current density of 10-8 A/cm-2 at -1 MV/cm. In III-V semiconductors, issues including unsatisfied dangling bonds and native oxides often result in inferior surface quality that yields non-negligible leakage currents and degrades the long-term performance of devices. The traditional means for passivating the surface of III-V semiconductors are based on the use of sulfide solutions; however, that only offers good protection against oxidation for a short-term (i.e., one day). In this work, in order to improve the chemical passivation efficacy of III-V semiconductors

  13. Atomic layer deposition of NiO hole-transporting layers for polymer solar cells.

    Science.gov (United States)

    Hsu, Che-Chen; Su, Heng-Wei; Hou, Cheng-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-09-25

    NiO is an attractive hole-transporting material for polymer solar cells (PSCs) owing to its excellent stability and electrical/optical properties. This study demonstrates, for the first time, fabrication of uniform, defect-free, and conformal NiO ultra-thin films for use as hole-transporting layers (HTLs) in PSCs by atomic layer deposition (ALD) through optimization of the ALD processing parameters. The morphological, optical, and electrical properties of ALD NiO films were determined to be favorable for their HTL application. As a result, PSCs containing an ALD NiO HTL with an optimized thickness of 4 nm achieved a power conversion efficiency (PCE) of 3.4%, which was comparable to that of a control device with a poly(3,4-ethylenedioxy-thiophene):poly(styrene-sulfonate) HTL. The high quality and manufacturing scalability of ALD NiO films demonstrated here will facilitate the adoption of NiO HTLs in PSCs.

  14. Atomic layer deposition of NiO hole-transporting layers for polymer solar cells

    Science.gov (United States)

    Hsu, Che-Chen; Su, Heng-Wei; Hou, Cheng-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-09-01

    NiO is an attractive hole-transporting material for polymer solar cells (PSCs) owing to its excellent stability and electrical/optical properties. This study demonstrates, for the first time, fabrication of uniform, defect-free, and conformal NiO ultra-thin films for use as hole-transporting layers (HTLs) in PSCs by atomic layer deposition (ALD) through optimization of the ALD processing parameters. The morphological, optical, and electrical properties of ALD NiO films were determined to be favorable for their HTL application. As a result, PSCs containing an ALD NiO HTL with an optimized thickness of 4 nm achieved a power conversion efficiency (PCE) of 3.4%, which was comparable to that of a control device with a poly(3,4-ethylenedioxy-thiophene):poly(styrene-sulfonate) HTL. The high quality and manufacturing scalability of ALD NiO films demonstrated here will facilitate the adoption of NiO HTLs in PSCs.

  15. Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells

    Science.gov (United States)

    Kim, Yu Geun; Kwon, Ki Chang; Le, Quyet Van; Hong, Kootak; Jang, Ho Won; Kim, Soo Young

    2016-07-01

    Atomically thin two-dimensional materials such as MoS2, WS2, and graphene oxide (GO) are used as hole extraction layers (HEL) in organolead halide perovskites solar cells (PSCs) instead of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HEL. MoS2 and WS2 layers with a polycrystalline structure were synthesized by a chemical deposition method using a uniformly spin-coated (NH4)MoS4 and (NH4)WS4 precursor solution. GO was synthesized by the oxidation of natural graphite powder using Hummers' method. The work functions of MoS2, WS2, and GO are measured to be 5.0, 4.95, and 5.1 eV, respectively. The X-ray diffraction spectrum indicated that the synthesized perovskite material is CH3NH3PbI3-xClx. The PSCs with the p-n junction structure were fabricated based on the CH3NH3PbI3-xClx perovskite layer. The power conversion efficiencies of the MoS2, WS2, and GO-based PSCs were 9.53%, 8.02%, and 9.62%, respectively, which are comparable to those obtained from PEDOT:PSS-based devices (9.93%). These results suggest that two-dimensional materials such as MoS2, WS2, and GO can be promising candidates for the formation of HELs in the PSCs.

  16. Conductive Atomic Force Microscopy Applied to CdTe/CdS Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, H. R.; Dhere, R. G.; Jiang, C. -S.; Al-Jassim, M. M.; Kazmerski, L. L.

    2004-08-01

    In this work we describe for the first time the use of conductive atomic force microscopy (C-AFM) in the study of CdTe/CdS solar cells, before and after the etching processes used in device fabrication. C-AFM is a new technique that provides information on the electrical properties of the sample in conjunction with topographic images with high lateral resolution. At the same time, this technique allows for the generation of I-V curves at very well-defined locations. A potential is applied between the sample and a very sharp tip, which scans the sample in contact mode. The current images showed that different CdTe grains produce different contrast. Etching the CdTe with a bromine/methanol solution enhanced the current along grains boundaries when compared to the intragrain material. Etching with a solution of nitric and phosphoric acids did not show this effect. Instead, it increased the current through the whole sample surface.

  17. Low-Temperature Crystalline Titanium Dioxide by Atomic Layer Deposition for Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar

    2013-04-24

    Low-temperature processing of dye-sensitized solar cells (DSCs) is crucial to enable commercialization with low-cost, plastic substrates. Prior studies have focused on mechanical compression of premade particles on plastic or glass substrates; however, this did not yield sufficient interconnections for good carrier transport. Furthermore, such compression can lead to more heterogeneous porosity. To circumvent these problems, we have developed a low-temperature processing route for photoanodes where crystalline TiO2 is deposited onto well-defined, mesoporous templates. The TiO2 is grown by atomic layer deposition (ALD), and the crystalline films are achieved at a growth temperature of 200 C. The ALD TiO2 thickness was systematically studied in terms of charge transport and performance to lead to optimized photovoltaic performance. We found that a 15 nm TiO2 overlayer on an 8 μm thick SiO2 film leads to a high power conversion efficiency of 7.1% with the state-of-the-art zinc porphyrin sensitizer and cobalt bipyridine redox mediator. © 2013 American Chemical Society.

  18. Photoelectron spectroscopy of phthalocyanine vapors

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, J.

    1979-01-01

    The He(I) photoelectron spectra of several metal phthalocyanines and metal-free phthalocyanine vapor shows that: a sharp peak at 4.99 eV is an artifact due to ionization of atomic He by He(II) radiation; the first phthalocyanine peak (metal-containing or metal-free) occurs at 6.4 eV; and the metal-like d orbitals lie at least 1 to 2 eV deeper, except in the case of Fe. (DLC)

  19. Formation of the physical vapor deposited CdS /Cu(In,Ga)Se2 interface in highly efficient thin film solar cells

    Science.gov (United States)

    Rusu, M.; Glatzel, Th.; Neisser, A.; Kaufmann, C. A.; Sadewasser, S.; Lux-Steiner, M. Ch.

    2006-04-01

    We report on the buffer/absorber interface formation in highly efficient (14.5%, air mass 1.5) ZnO /CdS/Cu(In,Ga)Se2 solar cells with a physical vapor deposited CdS buffer. For Se-decapped Cu (In,Ga)Se2 (CIGSe) absorbers we observe sulfur passivation of the CIGSe grain boundaries during CdS growth and at the interface a thermally stimulated formation of a region with a higher band gap than that of the absorber bulk, determining the height of the potential barrier at the CdS /CIGSe interface. For air-exposed CIGSe samples the grain boundary passivation is impeded by a native oxide/adsorbate layer at the CIGSe surface determining the thermal stability of the potential barrier height.

  20. Humid environment stability of low pressure chemical vapor deposited boron doped zinc oxide used as transparent electrodes in thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Steinhauser, Jerome, E-mail: jerome.steinhauser@oerlikon.com [Institute of Microtechnology (IMT), University of Neuchatel, CH-2000 Neuchatel (Switzerland); Meyer, Stefan; Schwab, Marlene; Fay, Sylvie; Ballif, Christophe [Institute of Microtechnology (IMT), University of Neuchatel, CH-2000 Neuchatel (Switzerland); Kroll, U.; Borrello, D. [Oerlikon Solar-Lab, 2000 Neuchatel (Switzerland)

    2011-10-31

    The stability in humid environment of low pressure chemical vapor deposited boron doped zinc oxide (LPCVD ZnO:B) used as transparent conductive oxide in thin film silicon solar cells is investigated. Damp heat treatment (exposure to humid and hot atmosphere) induces a degradation of the electrical properties of unprotected LPCVD ZnO:B layers. By combining analyses of the electrical and optical properties of the films, we are able to attribute this behavior to an increase of electron grain boundary scattering. This is in contrast to the intragrain scattering mechanisms, which are not affected by damp heat exposure. The ZnO stability is enhanced for heavily doped films due to easier tunneling through potential barrier at grain boundaries.

  1. Light-Shifts of an Integrated Filter-Cell Rubidium Atomic Clock

    Science.gov (United States)

    2015-05-25

    of the upper atmosphere, remote sensing using atmospheric radiation; solar physics, infrared astronomy , infrared signature analysis; infrared... Introduction Overview The rubidium (Rb) atomic frequency standard is the workhorse of precise atomic timekeeping in space due to its low weight, small volume

  2. Atomic clock using coherent population trapping in a cesium cell: frequency stability and limitations

    Science.gov (United States)

    Mejri, Sinda; Tricot, Francois; Danet, Jean-Marie; Yun, Peter; De Clercq, Emeric; Guerandel, Stephane

    2016-06-01

    Toward the next generation of compact devices, atomic clocks based on coherent population trapping (CPT) offer a very interesting alternative. We present a review of our studies on the short and mid term stability of a compact high performance atomic clock based on CPT in view of portable applications.

  3. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung.

    Directory of Open Access Journals (Sweden)

    Chad A Lerner

    Full Text Available Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS may be inhaled directly into the lung during a "vaping" session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used, and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292 in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that

  4. Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells.

    Science.gov (United States)

    Hossain, Md Anower; Wang, Mingqing; Choy, Kwang-Leong

    2015-10-14

    Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin films have been deposited by a novel, nonvacuum, and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) method. The generation of a fine aerosol of precursor solution, and their controlled deposition onto a molybdenum substrate, results in adherent, dense, and uniform Cu(In,Ga)S2 (CIGS) films. This is an essential tool to keep the interfacial area of thin film solar cells to a minimum value for efficient charge separation as it helps to achieve the desired surface smoothness uniformity for subsequent cadmium sulfide and window layer deposition. This nonvacuum aerosol based approach for making the CIGSSe film uses environmentally benign precursor solution, and it is cheaper for producing solar cells than that of the vacuum-based thin film solar technology. An optimized CIGSSe thin film solar cell with a device configuration of molybdenum-coated soda-lime glass substrate/CIGSSe/CdS/i-ZnO/AZO shows the photovoltaic (j-V) characteristics of Voc=0.518 V, jsc=28.79 mA cm(-2), fill factor=64.02%, and a promising power conversion efficiency of η=9.55% under simulated AM 1.5 100 mW cm(-2) illuminations, without the use of an antireflection layer. This demonstrates the potential of ESAVD deposition as a promising alternative approach for making thin film CIGSSe solar cells at a lower cost.

  5. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy.

    Science.gov (United States)

    Shan, Yuping; Wang, Hongda

    2015-06-07

    The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.

  6. Multiwavelength Strontium Vapor Lasers

    Science.gov (United States)

    Soldatov, A. N.; Yudin, N. A.

    2016-08-01

    Based on an analysis of experimental and theoretical works, modern notion on conditions of forming of population density inversion on self-terminating IR transitions of alkali-earth metals is given. It is demonstrated that there is a significant difference in the inversion formation in lasers on self-terminating transitions in the visible and near-IR ranges and lasers on self-terminating transitions of alkali-earth metals lasing IR lines in the mid-IR range. It is shown that in the discharge circuit of lasers on self-terminating metal atom transitions (LSMT) there are processes strengthening the influence of the known mechanism limiting the frequency and energy characteristics (FEC) of radiation caused by the presence of prepulse electron concentration. The mechanism of influence of these processes on FEC of the LSMT and technical methods of their neutralization are considered. The possibility of obtaining average lasing power of ~200 W from one liter volume of the active medium of the strontium vapor laser is demonstrated under conditions of neutralization of these processes.

  7. Ground-state atomic polarization relaxation-time measurement of Rb filled hypocycloidal core-shaped Kagome HC-PCF

    CERN Document Server

    Bradley, T D; McFerran, J J; Jouin, J; Debord, B; Alharbi, M; Thomas, P; Gerome, F; Benabid, F

    2015-01-01

    We report on the measurement of ground state atomic polarization relaxation tile of Rb vapor confined in five different hypocycloidal core shape Kagome hollow core photonic crystal fibers made with uncoated silica glass. We are able to distinguish between wall-collision and transit-time effects in optical waveguide and deduce the contribution of the atom's dwell time at the core wall surface. In contrast with convetional macroscopic atomic cell configuration, and in agreement with Monte Carlo simulations, the measured relaxation times were found to be at least one order of magnitude longer than the limit set by the atom-wall collisional relaxation from thermal atoms. This extended relaxation time is explained by the combination of a stronger contribution of the slow atoms in the atomic polarization build-up, and of the relatively significant contribution of dwell time to the relaxation process of the ground state polarization.

  8. Performance Improvement of Microcrystalline p-SiC/i-Si/n-Si Thin Film Solar Cells by Using Laser-Assisted Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The microcrystalline p-SiC/i-Si/n-Si thin film solar cells treated with hydrogen plasma were fabricated at low temperature using a CO2 laser-assisted plasma enhanced chemical vapor deposition (LAPECVD system. According to the micro-Raman results, the i-Si films shifted from 482 cm−1 to 512 cm−1 as the assisting laser power increased from 0 W to 80 W, which indicated a gradual transformation from amorphous to crystalline Si. From X-ray diffraction (XRD results, the microcrystalline i-Si films with (111, (220, and (311 diffraction were obtained. Compared with the Si-based thin film solar cells deposited without laser assistance, the short-circuit current density and the power conversion efficiency of the solar cells with assisting laser power of 80 W were improved from 14.38 mA/cm2 to 18.16 mA/cm2 and from 6.89% to 8.58%, respectively.

  9. Development of carbon nanotubes based gas diffusion layers by in situ chemical vapor deposition process for proton exchange membrane fuel cells

    Science.gov (United States)

    Kannan, A. M.; Kanagala, P.; Veedu, V.

    A proprietary in situ chemical vapor deposition (CVD) process was developed for gas diffusion layer (GDL) by growing a micro-porous layer on the macro-porous, non-woven fibrous carbon paper. The characteristics of the GDL samples such as, surface morphology, wetting characteristics, and cross-section were characterized using electron microscopes, goniometer and focused ion beam, respectively. Fuel cell performance of the GDLs was evaluated using single cell with hydrogen/oxygen as well as hydrogen/air at ambient pressure, at elevated temperature and various RH conditions using Nafion-212 as an electrolyte. The GDLs with in situ growth of micro-porous layers containing carbon nanotubes (CNTs) without any hydrophobic agent showed significant improvement in mechanical robustness as well as fuel cell performance at elevated temperature at lower RH conditions. The micro-porous layer of the GDLs as seen under scanning electron microscope showed excellent surface morphology with surface homogeneity through reinforcement by the multi-walled CNTs.

  10. Plasma-enhanced atomic-layer-deposited MoO{sub x} emitters for silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Johannes; Schneider, Thomas; Sprafke, Alexander N. [Martin-Luther-University Halle-Wittenberg, mu-MD Group, Institute of Physics, Halle (Germany); Mews, Mathias; Korte, Lars [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institute for Silicon-Photovoltaics, Berlin (Germany); Kaufmann, Kai [Fraunhofer Center for Silicon Photovoltaics CSP, Halle (Germany); University of Applied Sciences, Hochschule Anhalt Koethen, Koethen (Germany); Wehrspohn, Ralf B. [Martin-Luther-University Halle-Wittenberg, mu-MD Group, Institute of Physics, Halle (Germany); Fraunhofer Institute for Mechanics of Materials IWM Halle, Halle (Germany)

    2015-09-15

    A method for the deposition of molybdenum oxide (MoO{sub x}) with high growth rates at temperatures below 200 C based on plasma-enhanced atomic layer deposition is presented. The stoichiometry of the over-stoichiometric MoO{sub x} films can be adjusted by the plasma parameters. First results of these layers acting as hole-selective contacts in silicon heterojunction solar cells are presented and discussed. (orig.)

  11. Investigation of quercetin-induced HepG2 cell apoptosis-associated cellular biophysical alterations by atomic force microscopy.

    Science.gov (United States)

    Pi, Jiang; Li, Baole; Tu, Lvying; Zhu, Haiyan; Jin, Hua; Yang, Fen; Bai, Haihua; Cai, Huaihong; Cai, Jiye

    2016-01-01

    Quercetin, a wildly distributed bioflavonoid, has been proved to possess excellent antitumor activity on hepatocellular carcinoma (HCC). In the present study, the biophysical properties of HepG2 cells were qualitatively and quantitatively determined using high resolution atomic force microscopy (AFM) to understand the anticancer effects of quercetin on HCC cells at nanoscale. The results showed that quercetin could induce severe apoptosis in HepG2 cells through arrest of cell cycle and disruption of mitochondria membrane potential. Additionally, the nuclei and F-actin structures of HepG2 cells were destroyed by quercetin treatment as well. AFM morphological data showed some typical apoptotic characterization of HepG2 cells with increased particle size and roughness in the ultrastructure of cell surface upon quercetin treatment. As an important biophysical property of cells, the membrane stiffness of HepG2 cells was further quantified by AFM force measurements, which indicated that HepG2 cells became much stiffer after quercetin treatment. These results collectively suggest that quercetin can be served as a potential therapeutic agent for HCC, which not only extends our understanding of the anticancer effects of quercetin against HCC cells into nanoscale, but also highlights the applications of AFM for the investigation of anticancer drugs.

  12. Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Hofstadt, M. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Hüttener, M.; Juárez, A. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain); Gomila, G., E-mail: ggomila@ibecbarcelona.eu [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament d' Electronica, Universitat de Barcelona, C/ Marti i Franqués 1, 08028 Barcelona (Spain)

    2015-07-15

    With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates. - Highlights: • Gelatine coatings used to weakly attach bacterial cells onto planar substrates. • Use of the dynamic jumping mode as a non-perturbing bacterial imaging mode. • Nanoscale resolution imaging of unperturbed single living bacterial cells. • Growth and division of single bacteria cells on planar substrates observed.

  13. Study of atomic layer deposition of indium oxy-sulfide films for Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bugot, Cathy, E-mail: cathy-externe.bugot@edf.fr [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP, UMR 7174 CNRS-EDF-Chimie Paristech), Chatou (France); Schneider, Nathanaelle [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP, UMR 7174 CNRS-EDF-Chimie Paristech), Chatou (France); Bouttemy, Muriel; Etcheberry, Arnaud [Institut Lavoisier de Versailles, UMR 8180 (CNRS-UVSQ), Versailles (France); Lincot, Daniel; Donsanti, Frédérique [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP, UMR 7174 CNRS-EDF-Chimie Paristech), Chatou (France)

    2015-05-01

    This paper explores the growth mechanism of plasma enhanced atomic layer deposition of In{sub 2}(S,O){sub 3} films. The films were deposited using indium acetylacetonate (In(acac){sub 3}), hydrogen sulfide (H{sub 2}S) and Ar/O{sub 2} plasma as oxygen precursor. The films were characterized using X-ray reflectometry, spectrophotometry, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. To understand the growth mechanism and especially the interactions between Ar/O{sub 2} plasma and In{sub 2}(S,O){sub 3} growing film, in-situ analyses were performed using quadrupole mass spectrometry. In-situ qualitative analysis revealed good correlation between the species detected in vapor phase and thin film properties. High concentrations of atomic and molecular oxygen were measured in the vapor phase during O{sub 2} plasma pulses. Significant decrease of these species could be observed by varying the plasma power from 2600 to 300 W, while the optical band gap remained at high values (> 2.6 eV). The analysis of the O{sub 2}-free/Ar plasma process showed that some of these oxygen species originate either from the indium precursor or from the substrate surface. This study explains the high oxygen content of the films, and allows us to reduce and control it. Generally, this report provides keys to understand the effect of plasma reactivity for the elaboration of oxide based materials. - Highlights: • In{sub 2}(S,O){sub 3} films were synthesized by plasma enhanced atomic layer deposition. • Growth mechanism was studied via gas phase analysis by Quadrupole Mass Spectrometry. • Good correlation between the vapor phase species and thin films properties was observed. • The film compositions and band gaps can be controlled by varying the plasma power.

  14. Structure-Property Relations of Methylamine Vapor Treated Hybrid Perovskite CH3NH3PbI3 Films and Solar Cells.

    Science.gov (United States)

    Conings, Bert; Bretschneider, Simon A; Babayigit, Aslihan; Gauquelin, Nicolas; Cardinaletti, Ilaria; Manca, Jean; Verbeeck, Jo; Snaith, Henry J; Boyen, Hans-Gerd

    2017-03-08

    The power conversion efficiency of halide perovskite solar cells is heavily dependent on the perovskite layer being sufficiently smooth and pinhole-free. It has been shown that these features can be obtained even when starting out from rough and discontinuous perovskite film by briefly exposing the film to methylamine (MA) vapor. The exact underlying physical mechanisms of this phenomenon are, however, still unclear. By investigating smooth, MA treated films based on very rough and discontinuous reference films of methylammonium triiode (MAPbI3) and considering their morphology, crystalline features, local conductive properties, and charge carrier lifetime, we unraveled the relation between their characteristic physical qualities and their performance in corresponding solar cells. We discovered that the extensive improvement in photovoltaic performance upon MA treatment is a consequence of the induced morphological enhancement of the perovskite layer together with improved electron injection into TiO2, which in fact compensates for an otherwise compromised bulk electronic quality simultaneously caused by the MA treatment.

  15. Recognizing nitrogen dopant atoms in graphene using atomic force microscopy

    DEFF Research Database (Denmark)

    van der Heijden, Nadine J.; Smith, Daniel; Calogero, Gaetano

    2016-01-01

    Doping graphene by heteroatoms such as nitrogen presents an attractive route to control the position of the Fermi level in the material. We prepared N-doped graphene on Cu(111) and Ir(111) surfaces via chemical vapor deposition of two different molecules. Using scanning tunneling microscopy images...... as a benchmark, we show that the position of the dopant atoms can be determined using atomic force microscopy. Specifically, the frequency shift-distance curves Delta f(z) acquired above a N atom are significantly different from the curves measured over a C atom. Similar behavior was found for N-doped graphene...

  16. Investigations of Biofilm-Forming Bacterial Cells by Atomic Force Microscopy Prior to and Following Treatment from Gas Discharge Plasmas

    Science.gov (United States)

    Vandervoort, K. G.; Joaquin, J. C.; Kwan, C.; Bray, J. D.; Torrico, R.; Abramzon, N.; Brelles-Marino, G.

    2007-03-01

    We present investigations of biofilm-forming bacteria before and after treatment from gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve bacteria in biofilm communities, where cooperative interactions between cells make organisms less susceptible to standard killing methods. Rhizobium gallicum and Chromobacterium violaceum were imaged before and after plasma treatment using an atomic force microscope (AFM). In addition, cell wall elasticity was studied by measuring force distance curves as the AFM tip was pressed into the cell surface. Results for cell surface morphology and micromechanical properties for plasma treatments lasting from 5 to 60 minutes were obtained and will be presented.

  17. Finite Bias Calculations to Model Interface Dipoles in Electrochemical Cells at the Atomic Scale

    DEFF Research Database (Denmark)

    Hansen, Martin Hangaard; Jin, Chengjun; Thygesen, Kristian Sommer

    2016-01-01

    The structure of an electrochemical interface is not determined by any external electrostatic field, but rather by external chemical potentials. This paper demonstrates that the electric double layer should be understood fundamentally as an internal electric field set up by the atomic structure t...... to satisfy the thermodynamic constraints imposed by the environment. This is captured by the generalized computational hydrogen electrode model, which enables us to make efficient first-principles calculations of atomic scale properties of the electrochemical interface.......The structure of an electrochemical interface is not determined by any external electrostatic field, but rather by external chemical potentials. This paper demonstrates that the electric double layer should be understood fundamentally as an internal electric field set up by the atomic structure...

  18. Quantum Zeno effect in atomic spin-exchange collisions

    OpenAIRE

    Kominis, I. K.

    2008-01-01

    The suppression of spin-exchange relaxation in dense alkali-metal vapors discovered in 1973 and governing modern atomic magnetometers is here reformulated in terms of quantum measurement theory and the quantum Zeno effect. This provides a new perspective of understanding decoherence in spin-polarized atomic vapors.

  19. Quantum Zeno effect in atomic spin-exchange collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kominis, I.K. [Department of Physics, University of Crete, Heraklion 71103 (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology, Heraklion 71110 (Greece)], E-mail: ikominis@iesl.forth.gr

    2008-07-07

    The suppression of spin-exchange relaxation in dense alkali-metal vapors discovered in 1973 and governing modern atomic magnetometers is here reformulated in terms of quantum measurement theory and the quantum Zeno effect. This provides a new perspective of understanding decoherence in spin-polarized atomic vapors.

  20. Discrimination of bladder cancer cells from normal urothelial cells with high specificity and sensitivity: combined application of atomic force microscopy and modulated Raman spectroscopy.

    Science.gov (United States)

    Canetta, Elisabetta; Riches, Andrew; Borger, Eva; Herrington, Simon; Dholakia, Kishan; Adya, Ashok K

    2014-05-01

    Atomic force microscopy (AFM) and modulated Raman spectroscopy (MRS) were used to discriminate between living normal human urothelial cells (SV-HUC-1) and bladder tumour cells (MGH-U1) with high specificity and sensitivity. MGH-U1 cells were 1.5-fold smaller, 1.7-fold thicker and 1.4-fold rougher than normal SV-HUC-1 cells. The adhesion energy was 2.6-fold higher in the MGH-U1 cells compared to normal SV-HUC-1 cells, which possibly indicates that bladder tumour cells are more deformable than normal cells. The elastic modulus of MGH-U1 cells was 12-fold lower than SV-HUC-1 cells, suggesting a higher elasticity of the bladder cancer cell membranes. The biochemical fingerprints of cancer cells displayed a higher DNA and lipid content, probably due to an increase in the nuclear to cytoplasm ratio. Normal cells were characterized by higher protein contents. AFM studies revealed a decrease in the lateral dimensions and an increase in thickness of cancer cells compared to normal cells; these studies authenticate the observations from MRS. Nanostructural, nanomechanical and biochemical profiles of bladder cells provide qualitative and quantitative markers to differentiate between normal and cancerous cells at the single cellular level. AFM and MRS allow discrimination between adhesion energy, elasticity and Raman spectra of SV-HUC-1 and MGH-U1 cells with high specificity (83, 98 and 95%) and sensitivity (97, 93 and 98%). Such single-cell-level studies could have a pivotal impact on the development of AFM-Raman combined methodologies for cancer profiling and screening with translational significance.

  1. Corollary from the Exact Expression for Enthalpy of Vaporization

    Directory of Open Access Journals (Sweden)

    A. A. Sobko

    2011-01-01

    Full Text Available A problem on determining effective volumes for atoms and molecules becomes actual due to rapidly developing nanotechnologies. In the present study an exact expression for enthalpy of vaporization is obtained, from which an exact expression is derived for effective volumes of atoms and molecules, and under certain assumptions on the form of an atom (molecule it is possible to find their linear dimensions. The accuracy is only determined by the accuracy of measurements of thermodynamic parameters at the critical point.

  2. Inverse associations between obesity indicators and thymic T-cell production levels in aging atomic-bomb survivors.

    Directory of Open Access Journals (Sweden)

    Kengo Yoshida

    Full Text Available Reduction of the naive T-cell population represents a deteriorating state in the immune system that occurs with advancing age. In animal model studies, obesity compromises the T-cell immune system as a result of enhanced adipogenesis in primary lymphoid organs and systemic inflammation. In this study, to test the hypothesis that obesity may contribute to the aging of human T-cell immunity, a thousand atomic-bomb survivors were examined for obesity status and ability to produce naive T cells, i.e., T-cell receptor excision circle (TREC numbers in CD4 and CD8 T cells. The number of TRECs showed a strong positive correlation with naive T cell numbers, and lower TREC numbers were associated with higher age. We found that the TREC number was inversely associated with levels of obesity indicators (BMI, hemoglobin A1c and serum CRP levels. Development of type-2 diabetes and fatty liver was also associated with lower TREC numbers. This population study suggests that obesity with enhanced inflammation is involved in aging of the human T-cell immune system. Given the fact that obesity increases the risk of numerous age-related diseases, attenuated immune competence is a possible mechanistic link between obesity and disease development among the elderly.

  3. Inverse associations between obesity indicators and thymic T-cell production levels in aging atomic-bomb survivors.

    Science.gov (United States)

    Yoshida, Kengo; Nakashima, Eiji; Kubo, Yoshiko; Yamaoka, Mika; Kajimura, Junko; Kyoizumi, Seishi; Hayashi, Tomonori; Ohishi, Waka; Kusunoki, Yoichiro

    2014-01-01

    Reduction of the naive T-cell population represents a deteriorating state in the immune system that occurs with advancing age. In animal model studies, obesity compromises the T-cell immune system as a result of enhanced adipogenesis in primary lymphoid organs and systemic inflammation. In this study, to test the hypothesis that obesity may contribute to the aging of human T-cell immunity, a thousand atomic-bomb survivors were examined for obesity status and ability to produce naive T cells, i.e., T-cell receptor excision circle (TREC) numbers in CD4 and CD8 T cells. The number of TRECs showed a strong positive correlation with naive T cell numbers, and lower TREC numbers were associated with higher age. We found that the TREC number was inversely associated with levels of obesity indicators (BMI, hemoglobin A1c) and serum CRP levels. Development of type-2 diabetes and fatty liver was also associated with lower TREC numbers. This population study suggests that obesity with enhanced inflammation is involved in aging of the human T-cell immune system. Given the fact that obesity increases the risk of numerous age-related diseases, attenuated immune competence is a possible mechanistic link between obesity and disease development among the elderly.

  4. Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy

    Science.gov (United States)

    Goldmann, W. H.; Galneder, R.; Ludwig, M.; Xu, W.; Adamson, E. D.; Wang, N.; Ezzell, R. M.; Ingber, D. E. (Principal Investigator)

    1998-01-01

    We have investigated a mouse F9 embryonic carcinoma cell line, in which both vinculin genes were inactivated by homologous recombination, that exhibits defective adhesion and spreading [Coll et al. (1995) Proc. Natl. Acad. Sci. USA 92, 9161-9165]. Using a magnetometer and RGD-coated magnetic microbeads, we measured the local effect of loss and replacement of vinculin on mechanical force transfer across integrins. Vinculin-deficient F9Vin(-/-) cells showed a 21% difference in relative stiffness compared to wild-type cells. This was restored to near wild-type levels after transfection and constitutive expression of increasing amounts of vinculin into F9Vin(-/-) cells. In contrast, the transfection of vinculin constructs deficient in amino acids 1-288 (containing the talin- and alpha-actinin-binding site) or substituting tyrosine for phenylalanine (phosphorylation site, amino acid 822) in F9Vin(-/-) cells resulted in partial restoration of stiffness. Using atomic force microscopy to map the relative elasticity of entire F9 cells by 128 x 128 (n = 16,384) force scans, we observed a correlation with magnetometer measurements. These findings suggest that vinculin may promote cell adhesions and spreading by stabilizing focal adhesions and transferring mechanical stresses that drive cytoskeletal remodeling, thereby affecting the elastic properties of the cell.

  5. Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mi [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Xi, Ning, E-mail: xin@egr.msu.edu [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 (United States); Wang, Yuechao; Dong, Zaili [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Tabata, Osamu [Department of Micro Engineering, Kyoto University, Kyoto 606-8501 (Japan); Xiao, Xiubin [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China); Zhang, Weijing, E-mail: zhangwj3072@163.com [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China)

    2011-01-14

    Research highlights: {yields} Single B-lymphoma living cells were imaged by AFM with the assistance of microfabricated pillars. {yields} The apoptosis of B-lymphoma cells triggered by rituximab without cross-linking was observed by AO/EB double fluorescent staining. {yields} The B-lymphoma cells became dramatically softer after adding rituximab. -- Abstract: The topography and mechanical properties of single B-lymphoma cells have been investigated by atomic force microscopy (AFM). With the assistance of microfabricated patterned pillars, the surface topography and ultrastructure of single living B-lymphoma cell were visualized by AFM. The apoptosis of B-lymphoma cells induced by rituximab alone was observed by acridine orange/ethidium bromide (AO/EB) double fluorescent staining. The rituximab-induced changes of mechanical properties in B-lymphoma cells were measured dynamically and the results showed that B-lymphoma cells became dramatically softer after incubation with rituximab. These results can improve our understanding of rituximab'effect and will facilitate the further investigation of the underlying mechanisms.

  6. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    Science.gov (United States)

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion. PMID:26813872

  7. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    Science.gov (United States)

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.

  8. The large-area CdTe thin film for CdS/CdTe solar cell prepared by physical vapor deposition in medium pressure

    Science.gov (United States)

    Luo, Run; Liu, Bo; Yang, Xiaoyan; Bao, Zheng; Li, Bing; Zhang, Jingquan; Li, Wei; Wu, Lili; Feng, Lianghuan

    2016-01-01

    The Cadmium telluride (CdTe) thin film has been prepared by physical vapor deposition (PVD), the Ar + O2 pressure is about 0.9 kPa. This method is a newer technique to deposit CdTe thin film in large area, and the size of the film is 30 × 40 cm2. This method is much different from the close-spaced sublimation (CSS), as the relevance between the source temperature and the substrate temperature is weak, and the gas phase of CdTe is transferred to the substrate by Ar + O2 flow. Through this method, the compact and uniform CdTe film (30 × 40 cm2) has been achieved, and the performances of the CdTe thin film have been determined by transmission spectrum, SEM and XRD. The film is observed to be compact with a good crystallinity, the CdTe is polycrystalline with a cubic structure and a strongly preferred (1 1 1) orientation. Using the CdTe thin film (3 × 5 cm2) which is taken from the deposited large-area film, the 14.6% efficiency CdS/CdTe thin film solar cell has been prepared successfully. The structure of the cell is glass/FTO/CdS/CdTe/graphite slurry/Au, short circuit current density (Jsc) of the cell is 26.9 mA/cm2, open circuit voltage (Voc) is 823 mV, and filling factor (FF) is 66.05%. This technique can be a quite promising method to apply in the industrial production, as it has great prospects in the fabricating of large-area CdTe film.

  9. Improving low pressure chemical vapor deposited zinc oxide contacts for thin film silicon solar cells by using rough glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Steinhauser, J., E-mail: jerome.steinhauser@oerlikon.com; Boucher, J.-F.; Omnes, E.; Borrello, D.; Vallat-Sauvain, E.; Monteduro, G.; Marmelo, M.; Orhan, J.-B.; Wolf, B.; Bailat, J.; Benagli, S.; Meier, J.; Kroll, U.

    2011-12-01

    Compared to zinc oxide grown (ZnO) on flat glass, rough etched glass substrates decrease the sheet resistance (R{sub sq}) of zinc oxide layers grown on it. We explain this R{sub sq} reduction from a higher thickness and an improved electron mobility for ZnO layers deposited on rough etched glass substrates. When using this etched glass substrate, we also obtain a large variety of surface texture by changing the thickness of the ZnO layer grown on it. This new combination of etched glass and ZnO layer shows improved light trapping potential compared to ZnO films grown on flat glass. With this new approach, Micromorph thin film silicon tandem solar cells with high total current densities (sum of the top and bottom cell current density) of up to 26.8 mA cm{sup -2} were fabricated.

  10. A Thermo-Chemical Reactor for analytical atomic spectrometry

    Science.gov (United States)

    Gilmutdinov, A. Kh.; Nagulin, K. Yu.

    2009-01-01

    A novel atomization/vaporization system for analytical atomic spectrometry is developed. It consists of two electrically and thermally separated parts that can be heated separately. Unlike conventional electrothermal atomizers in which atomization occurs immediately above the vaporization site and at the same instant of time, the proposed system allows analyte atomization via an intermediate stage of fractional condensation as a two stage process: Vaporization → Condensation → Atomization. The condensation step is selective since vaporized matrix constituents are mainly non-condensable gases and leave the system by diffusion while analyte species are trapped on the cold surface of a condenser. This kind of sample distillation keeps all the advantages of traditional electrothermal atomization and allows significant reduction of matrix interferences. Integration into one design a vaporizer, condenser and atomizer gives much more flexibility for in situ sample treatment and thus the system is called a Thermo-Chemical Reactor (TCR). Details of the design, temperature measurements, vaporization-condensation-atomization mechanisms of various elements in variety of matrices are investigated in the TCR with spectral, temporal and spatial resolution. The ability of the TCR to significantly reduce interferences and to conduct sample pyrolysis at much higher temperatures as compared to conventional electrothermal atomizers is demonstrated. The analytical potential of the system is shown when atomic absorption determination of Cd and Pb in citrus leaves and milk powder without the use of any chemical modification.

  11. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    Science.gov (United States)

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  12. Mapping power-law rheology of living cells using multi-frequency force modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp [Graduate School of Information Science and Technology, Hokkaido University, Kita-ku N14 W9, Sapporo 060-0814 (Japan)

    2015-10-26

    We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained in force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.

  13. Solar physical vapor deposition preparation and microstructural characterization of TiO2 based nanophases for dye-sensitized solar cell applications.

    Science.gov (United States)

    Negrea, Denis; Ducu, Catalin; Moga, Sorin; Malinovschi, Viorel; Monty, Claude J A; Vasile, Bogdan; Dorobantu, Dorel; Enachescu, Marian

    2012-11-01

    Titanium dioxide exists in three crystalline phases: anatase, rutile and brookite. Although rutile is thermodynamically more stable, anatase is considered as the most favorable phase for photocatalysis and solar energy conversion. Recent studies have shown a significant improvement of light harvesting and overall solar conversion efficiency of anatase nanoparticles in dye-sensitized solar cells (DSSCs) when using a mixture of anatase and rutile phases (10-15% rutile). TiO2 nanopowders have been prepared by a solar physical vapor deposition process (SPVD). This method has been developed in Odeillo-Font Romeu France using "heliotron" solar reactors working under concentrated sunlight in 2 kW solar furnaces. By controlling reactor's atmosphere type (air/argon) and gas pressure, several types of anatase/rutile nanophases have been obtained with slightly different microstructural properties and morphological characteristics. X-ray diffraction analyses (XRD) were performed on precursor and on the SPVD obtained nanopowders. Information concerning their phase composition and coherence diffraction domain (crystallites size and strain) was obtained. Nanopowders morphology has been studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  14. Hot-wire chemical vapor deposition prepared aluminum doped p-type microcrystalline silicon carbide window layers for thin film silicon solar cells

    Science.gov (United States)

    Chen, Tao; Köhler, Florian; Heidt, Anna; Carius, Reinhard; Finger, Friedhelm

    2014-01-01

    Al-doped p-type microcrystalline silicon carbide (µc-SiC:H) thin films were deposited by hot-wire chemical vapor deposition at substrate temperatures below 400 °C. Monomethylsilane (MMS) highly diluted in hydrogen was used as the SiC source in favor of SiC deposition in a stoichiometric form. Aluminum (Al) introduced from trimethylaluminum (TMAl) was used as the p-type dopant. The material property of Al-doped p-type µc-SiC:H thin films deposited with different deposition pressure and filament temperature was investigated in this work. Such µc-SiC:H material is of mainly cubic (3C) SiC polytype. For certain conditions, like high deposition pressure and high filament temperature, additional hexagonal phase and/or stacking faults can be observed. P-type µc-SiC:H thin films with optical band gap E04 ranging from 2.0 to 2.8 eV and dark conductivity ranging from 10-5 to 0.1 S/cm can be prepared. Such transparent and conductive p-type µc-SiC:H thin films were applied in thin film silicon solar cells as the window layer, resulting in an improved quantum efficiency at wavelengths below 480 nm.

  15. Effects of size-controlled TiO2 nanopowders synthesized by chemical vapor condensation process on conversion efficiency of dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Woo-Byoung; Lee, Jai-Sung

    2013-07-01

    To investigate the microstructural effects of the synthesized TiO2 nanopowders such as particle size, specific surface area, pore size and pore distributions for the application of an anode material of dye-sensitized solar cells (DSSC), size-controlled and well-dispersed TiO2 nanopowders were synthesized by chemical vapor condensation (CVC) process in the range of 800-1000 degreesC under a pressure of 50 mbar. The average particle size of synthesized TiO2 nanopowders was increased with increasing temperature from 13 nm for 800 degreesC, 15 nm for 900 degreesC and 26 nm. The specific surface area of synthesized nanoparticles were measured as 119.1 m2/g for 800 degreesC, 104.7 m2/g for 900 degreesC and 59.5 m2/g for 1000 degreesC, respectively. The conversion efficiency values (eta%) of DSSC with the synthesized TiO2 nanopowders at 800 degreesC, 900 degreesC, and 1000 degreesC were 2.59%, 5.96% and 3.66%, respectively. The highest conversion efficiency obtained in the 900 degreesC (5.96%) sample is thought to be attributable to homogeneous particle size and pore distributions, large specific surface area, and high transmittance in regions of dye absorption wavelength.

  16. Gas chromatography-tandem mass spectrometry analysis of red blood cells from Göttingen minipig following whole-body vapor exposure to VX.

    Science.gov (United States)

    Byers, C E; McGuire, J M; Hulet, S W; Burnett, D C; Gaviola, B I; Jakubowski, E M; Thomson, S A

    2008-01-01

    A method to detect fluoride ion generated O-ethyl methylphosphonofluoridate (VX-G) in Göttingen minipig red blood cells (RBC) following whole-body exposure to VX vapor utilizing a gas chromatograph-tandem mass spectrometer (GC-MS-MS) has been developed. Dose-response curves for VX exposure were generated after applying the fluoride ion reactivation assay to the RBC fraction of serially collected whole blood samples that were taken after whole-body exposures that varied in both duration and concentration. GC-MS-MS analysis of minipig RBC samples following 180-min exposures at two different concentrations was a more precise indicator for severity of exposure than the analysis of acetylcholinesterase (AChE) inhibition for the same samples. AChE enzyme activity recovered faster than indicated by the apparent elimination rate of VX-G. GC-MS-MS analyses of RBC samples following VX exposure demonstrate this technique has both adequate sensitivity and specificity to indicate the severity of exposure.

  17. Ground-state atomic polarization relaxation-time measurement of Rb filled hypocycloidal core-shaped Kagome HC-PCF

    Science.gov (United States)

    Bradley, T. D.; Ilinova, E.; McFerran, J. J.; Jouin, J.; Debord, B.; Alharbi, M.; Thomas, P.; Gérôme, F.; Benabid, F.

    2016-09-01

    We report on the measurement of ground-state atomic polarization relaxation time of Rb vapor confined in five different hypocycloidal core-shape Kagome hollow-core photonic crystal fibers made with uncoated silica glass. We are able to distinguish between wall-collision and transit-time effects in an optical waveguide and deduce the contribution of the atom’s dwell time at the core wall surface. In contrast with conventional macroscopic atomic cell configuration, and in agreement with Monte Carlo simulations, the measured relaxation times were found to be at least one order of magnitude longer than the limit set by atom-wall collisional from thermal atoms. This extended relaxation time is explained by the combination of a stronger contribution of the slow atoms in the atomic polarization build-up, and of the relatively significant contribution of dwell time to the relaxation process of the ground state polarization.

  18. Anti-Parity-Time Symmetric Optics via Flying Atoms

    CERN Document Server

    Peng, Peng; Shen, Ce; Qu, Weizhi; Wen, Jianming; Jiang, Liang; Xiao, Yanhong

    2015-01-01

    The recently-developed notion of 'parity-time (PT) symmetry' in optical systems with a controlled gain-loss interplay has spawned an intriguing way of achieving optical behaviors that are presently unattainable with standard arrangements. In most experimental studies so far, however, the implementations rely highly on the advances of nanotechnologies and sophisticated fabrication techniques to synthesize solid-state materials. Here, we report the first experimental demonstration of optical anti-PT symmetry, a counterpart of conventional PT symmetry, in a warm atomic-vapor cell. By exploiting rapid coherence transport via flying atoms, our scheme illustrates essential features of anti-PT symmetry with an unprecedented precision on phase-transition threshold, and substantially reduces experimental complexity and cost. This result represents a significant advance in non-Hermitian optics by bridging a firm connection with the field of atomic, molecular and optical physics, where novel phenomena and applications i...

  19. Hot cell renovation in the spent fuel conditioning process facility at the Korea Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Nam; Lee, Jong Kwang; Park, Byung Suk; Cho, Il Je; Kim, Ki Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The advanced spent fuel conditioning process facility (ACPF) of the irradiated materials examination facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI) has been renovated to implement a lab scale electrolytic reduction process for pyroprocessing. The interior and exterior structures of the ACPF hot cell have been modified under the current renovation project for the experimentation of the electrolytic reduction process using spent nuclear fuel. The most important aspect of this renovation was the installation of the argon compartment within the hot cell. For the design and system implementation of the argon compartment system, a full-scale mock-up test and a three-dimensional (3D) simulation test were conducted in advance. The remodeling and repairing of the process cell (M8a), the maintenance cell (M8b), the isolation room, and their utilities were also planned through this simulation to accommodate the designed argon compartment system. Based on the considered refurbishment workflow, previous equipment in the M8 cell, including vessels and pipes, were removed and disposed of successfully after a zoning smear survey and decontamination, and new equipment with advanced functions and specifications were installed in the hot cell. Finally, the operating area and isolation room were also refurbished to meet the requirements of the improved hot cell facility.

  20. Parameters affecting the adhesion strength between a living cell and a colloid probe when measured by the atomic force microscope.

    Science.gov (United States)

    McNamee, Cathy E; Pyo, Nayoung; Tanaka, Saaya; Vakarelski, Ivan U; Kanda, Yoichi; Higashitani, Ko

    2006-03-15

    In this study, we used the colloid probe atomic force microscopy (AFM) technique to investigate the adhesion force between a living cell and a silica colloid particle in a Leibovitz's L-15 medium (L-15). The L-15 liquid maintained the pharmaceutical conditions necessary to keep the cells alive in the outside environment during the AFM experiment. The force curves in such a system showed a steric repulsion in the compression force curve, due to the compression of the cells by the colloid probe, and an adhesion force in the decompression force curve, due to binding events between the cell and the probe. We also investigated for the first time how the position on the cell surface, the strength of the pushing force, and the residence time of the probe at the cell surface individually affected the adhesion force between a living cell and a 6.84 microm diameter silica colloid particle in L-15. The position of measuring the force on the cell surface was seen not to affect the value of the maximum adhesion force. The loading force was also seen not to notably affect the value of the maximum adhesion force, if it was small enough not to pierce and damage the cell. The residence time of the probe at the cell surface, however, clearly affected the adhesion force, where a longer residence time gave a larger maximum force. From these results, we could conclude that the AFM force measurements should be made using a loading force small enough not to damage the cell and a fixed residence time, when comparing results of different systems.

  1. Investigation on orientation, epitaxial growth and microstructure of a-axis-, c-axis-, (103)/(110)- and (113)-oriented YBa2Cu3O7-δ films prepared on (001), (110) and (111) SrTiO3 single crystal substrates by spray atomizing and coprecipitating laser chemical vapor deposition

    Science.gov (United States)

    Zhao, Pei; Wang, Ying; Huang, Zhi liang; Mao, Yangwu; Xu, Yuan Lai

    2015-04-01

    a-axis-, c-axis-, (103)/(110)- and (113)-oriented YBa2Cu3O7-δ (YBCO) films were pareared by spray atomizing and coprecipitating laser chemical vapor deposition. The surface of the a-axis-oriented YBCO film consisted of rectangular needle-like grains whose in-plane epitaxial growth relationship was YBCO [100] // STO [001] (YBCO [001] // STO [100]), and that of the c-axis-oriented YBCO film consisted of dense flat surface with epitaxial growth relationship of YBCO [001] // STO [001] (YBCO [100] //STO [100]). For the (103)/(110)-oriented and (113)-oriented YBCO film, they showed wedge-shaped and triangle-shaped grains, with corresponding in-plane epitaxial growth relationship of YBCO [110] // STO [110] (YBCO [010] // STO [010]) and YBCO [100] // STO [100] (YBCO [113] // STO [111], respectively.

  2. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiangbin, E-mail: eexbzeng@mail.hust.edu.cn; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-04-30

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B{sub 2}H{sub 6} flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10{sup −3} Ω cm, mobility of 16.5–25.5 cm{sup 2}/Vs, and carrier concentration of 2.2–2.7 × 10{sup 20} cm{sup −3} were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n{sup +}-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm{sup 2} and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm{sup 2} and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  3. Stimulation of vapor nucleation on perfect and imperfect hexagonal lattice surfaces

    Science.gov (United States)

    Shevkunov, S. V.

    2008-12-01

    Monte Carlo simulations of water vapor nucleation on a perfect crystal surface and on a surface with defects are performed. Mass exchange with the vapor phase is modeled by using an open ensemble. Cluster-substrate interaction is described in terms of conventional atom-atom potentials. The Hamiltonian of the system includes expressions for electrostatic, polarization, exchange, and dispersion interactions. The Gibbs free energy and work of adsorption are calculated by Monte Carlo simulation in the bicanoĭnical ensemble. The microscopic structure of nuclei is analyzed in terms of pair correlation functions. Periodic boundary conditions are used to simulate an infinite substrate surface. Molecule-substrate and molecule-molecule long-range electrostatic interactions are calculated by summing the Fourier harmonics of the electrostatic potential. Dispersion interactions are calculated by direct summation over layers of unit cells. Nucleation on a surface with matching structure follows a layer-by-layer mechanism. The work of adsorption per molecule of a monolayer on the substrate surface has a maximum as a function of nucleus size. The steady rate of nucleation of islands of supercritical size is evaluated. The work of adsorption per molecule for layer-by-layer film growth is an oscillating function of cluster size. As a function of layer number, it has a minimum depending on the vapor pressure. The electric field generated by a microscopic surface protrusion destroys the layered structure of the condensate and eliminates free-energy nucleation barriers. However, point lattice defects do not stimulate explosive nucleation.

  4. Nonclassical Photon Pairs Generated from a Room-temperature Atomic Ensemble

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei; HAN Chao; XUE Peng; DUAN L M; GUO G C

    2004-01-01

    @@ We report experimental generation of non-classically correlated photon pairs from collective emission in a room temperature atomic vapor cell.The nonclassical feature of the emission is demonstrated by observing a violation of the Cauchy-Schwarz inequality.Each pair of correlated photons are separated by a controllable time delay up to 2 microseconds.This experiment demonstrates an important step towards the realization of the Duan-Lukin-Cirac-Zoller scheme for scalable long-distance quantum communication.

  5. Cavity enhanced atomic magnetometry

    OpenAIRE

    Herbert Crepaz; Li Yuan Ley; Rainer Dumke

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage...

  6. Bioeffects due to acoustic droplet vaporization

    Science.gov (United States)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  7. Atomic force microscopy and cells: Indentation profiles around the AFM tip, cell shape changes, and other examples of experimental factors affecting modeling.

    Science.gov (United States)

    Melzak, Kathryn A; Toca-Herrera, José L

    2015-07-01

    We use atomic force microscopy in conjunction with a fluorescence microscope capable of optical sectioning to acquire images of white blood cells while force is applied with the AFM tip. The indentation profile within the cell is compared to the profile of the AFM tip: examples are shown for indentations at the center of the cell which are reasonable matches to the tip profile, and an additional example is shown for an indentation that is on the tilted side of a highly rounded cell and that differs from the tip shape. We also demonstrate that the AFM tip can interact with internal cell structures, we show that the contact area between the cell and the substrate can increase under applied pressure, that the main body of the cell can fuse with the extended lamellipodium, and that the cell can be displaced laterally by the AFM tip. The features illustrated here are relevant to the interpretation of indentation experiments that measure cell elasticity properties, as is discussed briefly.

  8. Measurement of the Kerr nonlinear refractive index of Cs vapor

    CERN Document Server

    Araújo, Michelle O; Oriá, Marcos; Chevrollier, Martine; de Silans, Thierry Passerat; Castro, Romeu; Moretti, Danieverton

    2014-01-01

    Atomic vapors are systems well suited for nonlinear optics studies but very few direct measurements of their nonlinear refractive index have been reported. Here we use the z-scan technique to measure the Kerr coefficient, $n_2$, for a Cs vapor. Our results are analyzed through a four-level model, and we show that coherence between excited levels as well as cross-population effects contribute to the Kerr-nonlinearity.

  9. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing

    Science.gov (United States)

    Piszter, Gábor; Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-01-01

    Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings. PMID:27618045

  10. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing

    Directory of Open Access Journals (Sweden)

    Gábor Piszter

    2016-09-01

    Full Text Available Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings.

  11. Portable atomic frequency standard based on coherent population trapping

    Science.gov (United States)

    Shi, Fan; Yang, Renfu; Nian, Feng; Zhang, Zhenwei; Cui, Yongshun; Zhao, Huan; Wang, Nuanrang; Feng, Keming

    2015-05-01

    In this work, a portable atomic frequency standard based on coherent population trapping is designed and demonstrated. To achieve a portable prototype, in the system, a single transverse mode 795nm VCSEL modulated by a 3.4GHz RF source is used as a pump laser which generates coherent light fields. The pump beams pass through a vapor cell containing atom gas and buffer gas. This vapor cell is surrounded by a magnetic shield and placed inside a solenoid which applies a longitudinal magnetic field to lift the Zeeman energy levels' degeneracy and to separate the resonance signal, which has no first-order magnetic field dependence, from the field-dependent resonances. The electrical control system comprises two control loops. The first one locks the laser wavelength to the minimum of the absorption spectrum; the second one locks the modulation frequency and output standard frequency. Furthermore, we designed the micro physical package and realized the locking of a coherent population trapping atomic frequency standard portable prototype successfully. The short-term frequency stability of the whole system is measured to be 6×10-11 for averaging times of 1s, and reaches 5×10-12 at an averaging time of 1000s.

  12. Nanostructure and force spectroscopy analysis of human peripheral blood CD4+ T cells using atomic force microscopy.

    Science.gov (United States)

    Hu, Mingqian; Wang, Jiongkun; Cai, Jiye; Wu, Yangzhe; Wang, Xiaoping

    2008-09-12

    To date, nanoscale imaging of the morphological changes and adhesion force of CD4(+) T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4(+) T cells. The AFM images revealed that the volume of activated CD4(+) T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times that of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4(+) T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity.

  13. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    Science.gov (United States)

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  14. Vapor Control Layer Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-08

    This information sheet describes the level of vapor control required on the interior side of framed walls with typical fibrous cavity insulation (fibreglass, rockwool, or cellulose, based on DOE climate zone of construction.

  15. Gasoline Vapor Recovery

    Science.gov (United States)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  16. Conductive Atomic Free Microscopy of CdTe/CdS Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, H. R.; Dhere, R. G.; Jiang, C. S.; Al-Jassim, M. M.; Kazmerski, L. L.

    2005-01-01

    Conductive atomic force microscopy (C-AFM) is a recently developed technique that applies an electric voltage between a very sharp tip and the sample, permitting the study of the electrical properties of the sample with very high spatial resolution. It also provides current-voltage measurements at well-defined spots. C-AFM is applied simultaneously with atomic force microscopy, providing topographic and current images of the same region. In this work, we analyze CdTe/CdS samples, before and after CdCl2 treatment, and after bromine/methanol and nitric/phosphoric etches. The as-deposited samples show grains with different contrasts, indicating that the material is not electrically uniform. The CdCl2 treatment resulted in less conductive grain boundaries, suggesting a relative decrease in the conductivity at these locations. After the bromine/methanol etch, the conductivity at grains boundaries was higher than inside the grains, whereas for the nitric/phosphoric etch the conductivity increased over the entire surface.

  17. Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Katsuhisa, E-mail: k.murakami@bk.tsukuba.ac.jp; Hiyama, Takaki; Kuwajima, Tomoya; Fujita, Jun-ichi [Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573 (Japan); Tsukuba Research Center for Interdisciplinary Materials Science, University of Tsukuba, Tsukuba 305-8573 (Japan); Tanaka, Shunsuke; Hirukawa, Ayaka [Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573 (Japan); Kano, Emi [Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573 (Japan); National Institute for Materials Science, Tsukuba 305-0047 (Japan); Takeguchi, Masaki [National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2015-03-02

    A single layer of graphene with dimensions of 20 mm × 20 mm was grown directly on an insulating substrate by chemical vapor deposition using Ga vapor catalysts. The graphene layer showed highly homogeneous crystal quality over a large area on the insulating substrate. The crystal quality of the graphene was measured by Raman spectroscopy and was found to improve with increasing Ga vapor density on the reaction area. High-resolution transmission electron microscopy observations showed that the synthesized graphene had a perfect atomic-scale crystal structure within its grains, which ranged in size from 50 nm to 200 nm.

  18. The spectroscopy in the atomic vapour

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Hyung; Chang, Joon Sung; Jhe, Won Ho [Seoul National University, Seoul (Korea)

    1998-04-01

    As spectroscopies in the atomic vapor, we perform experiments on fluorescence in dense atomic vapor, single color two-photon resonant three photon ionization, production of high temperature oven and its spectroscopic application, atomic trap and cold atomic beam. We observe lengthening of lifetime as atomic density increase and compare this result with Holstein equation. Dependence on pressure an d polarization reveals the result is due to collisions between Yb atom and Ar buffer gas. At high atomic density, self-focusing and conical emission are observed. In two-photon resonant three photon ionization scheme, ionization rate is dependent on polarization. From selection rule, we determined the energy level. At higher energy, asymmetry and broadening of ionization linewidth due to AC Stark effect are observed. As the result of numerical simulation of time evolution in the two-photon transition, distortion of time evolution of density is obtained. For spectroscopy of high-melting-point elements, we design and produce high temperature oven. We observe absorption spectra of high-melting-point elements, Er and Sm. As high temperature nonlinear spectroscopies, we perform conical emission and self-diffraction in Sm vapor. We produce magneto-optical trap system and measure fluorescence from trapped atoms and temperature. By trapping Rb isotopes simultaneously, we perform collision experiment at low temperature. Using hollow mirror system, we trap atoms and produce cold atomic beam. (author). 160 refs., 66 figs., 5 tabs.

  19. Growth and cell-division in extensive (XDR) and extremely drug resistant (XXDR) tuberculosis strains: transmission and atomic force observation.

    Science.gov (United States)

    Farnia, Parissa; Mohammad, Reza Masjedi; Merza, Muayad Aghali; Tabarsi, Payam; Zhavnerko, Gennadii Konstantinovich; Ibrahim, Tengku Azmi; Kuan, Ho Oi; Ghanavei, Jalladein; Farnia, Poopak; Ranjbar, Reza; Poleschuyk, Nikolai Nikolaevich; Titov, Leonid Petrovich; Owlia, Parviz; Kazampour, Mehadi; Setareh, Mohammad; Sheikolslami, Muaryam; Migliori, Giovanni Battista; Velayati, Ali Akbar

    2010-09-30

    The ultra-structure of Mycobacterium tuberculosis (MTB) was examined by transmission electronic (TEM)) and atomic force microscopy (AFM). The study was performed to describe the morphology of susceptible, multidrug-resistant (MDR), extensively drug-resistant (XDR) and extremely drug-resistant tuberculosis isolates (XXDR-TB) during their exponential growth phase. Four types of cell division were observed and described. While three of them (symmetrical, asymmetrical and branching type) occurred in all isolates studied, the fourth one (adapted type) was seen only in XDR and XXDR-TB bacilli. In the fourth type of cell division, a rod shaped mother cell produced a small round shape bacillus (0.3-0.5 μm). These round cells were different from buds or polar division, but similar to terminal endospores without showing the typing heat resistance. Based on the present observation, we suggest that XDR-and XXDR-TB bacilli accommodate changes helping them to overcome the hostile environment. Viewed under AFM, the other frequently detected shapes in MTB isolates were oval, V, Y and multi-branching filaments. These shape variation confirmed pleomorphic phenomena in MTB populations and the specific features of pan-resistant strains.

  20. Atomic force microscopy recognition of protein A on Staphylococcus aureus cell surfaces by labelling with IgG–Au conjugates

    Directory of Open Access Journals (Sweden)

    Elena B. Tatlybaeva

    2013-11-01

    Full Text Available The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM. The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG allowed the visualization, localization and distribution of protein A–IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG–Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations.

  1. Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies

    Energy Technology Data Exchange (ETDEWEB)

    Cazaux, Séverine; Sadoun, Anaïs; Biarnes-Pelicot, Martine; Martinez, Manuel; Obeid, Sameh [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France); Bongrand, Pierre [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France); APHM, Hôpital de la Conception, Laboratoire d’Immunologie, Marseille F-13385 (France); Limozin, Laurent [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France); Puech, Pierre-Henri, E-mail: pierre-henri.puech@inserm.fr [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France)

    2016-01-15

    A method is presented for combining atomic force microscopy (AFM) force mode and fluorescence microscopy in order to (a) mechanically stimulate immune cells while recording the subsequent activation under the form of calcium pulses, and (b) observe the mechanical response of a cell upon photoactivation of a small G protein, namely Rac. Using commercial set-ups and a robust signal coupling the fluorescence excitation light and the cantilever bending, the applied force and activation signals were very easily synchronized. This approach allows to control the entire mechanical history of a single cell up to its activation and response down to a few hundreds of milliseconds, and can be extended with very minimal adaptations to other cellular systems where mechanotransduction is studied, using either purely mechanical stimuli or via a surface bound specific ligand. - Highlights: • A signal coupling AFM and fluorescence microscopy was characterized for soft cantilevers. • It can be used as an intrinsic timer to synchronize images and forces. • Mechanical stimulation of single immune cells while recording calcium fluxes was detailed. • Light-induced mechanical modifications of lymphocytes using a PA-Rac protein were demonstrated. • The precautions and limitations of use of this effect were presented.

  2. Low Energy Atomic Photodesorption from Organic Coatings

    Directory of Open Access Journals (Sweden)

    Alessandro Lucchesini

    2016-10-01

    Full Text Available Organic coatings have been widely used in atomic physics during the last 50 years because of their mechanical properties, allowing preservation of atomic spins after collisions. Nevertheless, this did not produce detailed insight into the characteristics of the coatings and their dynamical interaction with atomic vapors. This has changed since the 1990s, when their adsorption and desorption properties triggered a renewed interest in organic coatings. In particular, a novel class of phenomena produced by non-destructive light-induced desorption of atoms embedded in the coating surface was observed and later applied in different fields. Nowadays, low energy non-resonant atomic photodesorption from organic coatings can be considered an almost standard technique whenever large densities of atomic vapors or fast modulation of their concentration are required. In this paper, we review the steps that led to this widespread diffusion, from the preliminary observations to some of the most recent applications in fundamental and applied physics.

  3. Development of the work on fuel cells in the Ministry for Atomic Energy of Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Lubovin, B.Y.; Novitski, E.Z.

    1996-04-01

    This paper describes research on fuel cells in the Russian Federation. The beginning of the practical work on fuel cells in Russia dates back to the 50`s and 60`s when the Ural Electrochemical Plant and the Ural Electromechanical Plant of the Ministry of Medium Machine-Building of the USSR, all Russian Research Institute of the power sources and many other institutes of the Ministry of Electrotechnical Industry of the USSR got to the development of the alkaline fuel cells for the spaceships according to the tasks of the SPC `Energy` and for the submarines on the tasks of the Ministry of Defense.

  4. Atomic Force Microscopy-based Cell Nanostructure for Ligand-conjugated Quantum Dot Endocytosis

    Institute of Scientific and Technical Information of China (English)

    Yun-Long PAN; Ji-Ye CAI; Li QIN; Hao WANG

    2006-01-01

    While it has been well demonstrated that quantum dots (QDs) play an important role in biological labeling both in vitro and in vivo,there is no report describing the cellular nanostructure basis of receptor-mediated endocytosis. Here, nanostructure evolution responses to the endocytosis of transferrin force microscopy (AFM). AFM-based nanostructure analysis demonstrated that the Tf-conjugated QDs were specifically and tightly bound to the cell receptors rrelated with the cell membrane receptor-mediated transduction.Consistently, confocal microscopic and flow cytometry results have demonstrated the specificity and the internalization of Tf-QD is linearly related to time. Moreover, while the nanoparticles on the cell membrane increased, the endocytosis was still nanoparticles did not interfere sterically with the binding and function of receptors. Therefore, ligand-conjugated QDs are potentially useful in biological labeling of cells at a nanometer scale.

  5. The effect of atoms excited by electron beam on metal evaporation

    CERN Document Server

    Xie Guo Feng; Ying Chun Tong

    2002-01-01

    In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases

  6. Atomic model of a cell-wall cross-linking enzyme in complex with an intact bacterial peptidoglycan.

    Science.gov (United States)

    Schanda, Paul; Triboulet, Sébastien; Laguri, Cédric; Bougault, Catherine M; Ayala, Isabel; Callon, Morgane; Arthur, Michel; Simorre, Jean-Pierre

    2014-12-24

    The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a highly cross-linked biopolymer. The transpeptidases that perform this cross-linking are important targets for antibiotics. Despite this biomedical importance, to date no structure of a protein in complex with an intact bacterial peptidoglycan has been resolved, primarily due to the large size and flexibility of peptidoglycan sacculi. Here we use solid-state NMR spectroscopy to derive for the first time an atomic model of an l,d-transpeptidase from Bacillus subtilis bound to its natural substrate, the intact B. subtilis peptidoglycan. Importantly, the model obtained from protein chemical shift perturbation data shows that both domains-the catalytic domain as well as the proposed peptidoglycan recognition domain-are important for the interaction and reveals a novel binding motif that involves residues outside of the classical enzymatic pocket. Experiments on mutants and truncated protein constructs independently confirm the binding site and the implication of both domains. Through measurements of dipolar-coupling derived order parameters of bond motion we show that protein binding reduces the flexibility of peptidoglycan. This first report of an atomic model of a protein-peptidoglycan complex paves the way for the design of new antibiotic drugs targeting l,d-transpeptidases. The strategy developed here can be extended to the study of a large variety of enzymes involved in peptidoglycan morphogenesis.

  7. Cell-matrix interactions of Entamoeba histolytica and E. dispar. A comparative study by electron-, atomic force- and confocal microscopy.

    Science.gov (United States)

    Talamás-Lara, Daniel; Talamás-Rohana, Patricia; Fragoso-Soriano, Rogelio Jaime; Espinosa-Cantellano, Martha; Chávez-Munguía, Bibiana; González-Robles, Arturo; Martínez-Palomo, Adolfo

    2015-10-01

    Invasion of tissues by Entamoeba histolytica is a multistep process that initiates with the adhesion of the parasite to target tissues. The recognition of the non-invasive Entamoeba dispar as a distinct, but closely related protozoan species raised the question as to whether the lack of its pathogenic potential could be related to a weaker adhesion due to limited cytoskeleton restructuring capacity. We here compared the adhesion process of both amebas to fibronectin through scanning, transmission, atomic force, and confocal microscopy. In addition, electrophoretic and western blot assays of actin were also compared. Adhesion of E. histolytica to fibronectin involves a dramatic reorganization of the actin network that results in a tighter contact to and the subsequent focal degradation of the fibronectin matrix. In contrast, E. dispar showed no regions of focal adhesion, the cytoskeleton was poorly reorganized and there was little fibronectin degradation. In addition, atomic force microscopy using topographic, error signal and phase modes revealed clear-cut differences at the site of contact of both amebas with the substrate. In spite of the morphological and genetic similarities between E. histolytica and E. dispar the present results demonstrate striking differences in their respective cell-to-matrix adhesion processes, which may be of relevance for understanding the invasive character of E. histolytica.

  8. The Role of Non-Conventional Supports for Single-Atom Platinum-Based Catalysts in Fuel-Cell Technology: A Theoretical Surface Science Approach

    Science.gov (United States)

    2013-02-05

    on the thermodynamic stability of platinized TiN. 15. SUBJECT TERMS fuel cells , Theoretical modeling , electrodes 16. SECURITY CLASSIFICATION OF...system are reported for various surface coverages of Pt. We find that atomic Pt does not bind preferably to the clean TiN surface, but under typical PEM ...could be a promising catalyst for PEM fuel cells. Introduction: Proton exchange membrane fuel cells (PEMFCs) have found wide potential

  9. Local Structure Analysis of Materials for Solar Cell Absorber Layer

    OpenAIRE

    Jewell, Leila Elizabeth

    2016-01-01

    This dissertation examines solar cell absorber materials that have the potential to replace silicon in solar cells, including several copper-based sulfides and perovskites. Earth-abundant absorbers such as these become even more cost-effective when used in a nanostructured solar cell. Atomic layer deposition (ALD) and chemical vapor deposition (CVD) deposit highly conformal films and hence are important tools for developing extremely thin absorber solar cells with scalability. Thus, the prima...

  10. Low-temperature atomic layer deposition of MoO{sub x} for silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Macco, B.; Vos, M.F.J.; Thissen, N.F.W.; Bol, A.A. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands); Kessels, W.M.M. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands); Solliance Solar Research, Eindhoven (Netherlands)

    2015-07-15

    The preparation of high-quality molybdenum oxide (MoO{sub x}) is demonstrated by plasma-enhanced atomic layer deposition (ALD) at substrate temperatures down to 50 C. The films are amorphous, slightly substoichiometric with respect to MoO{sub 3}, and free of other elements apart from hydrogen (<11 at%). The films have a high transparency in the visible region and their compatibility with a-Si:H passivation schemes is demonstrated. It is discussed that these aspects, in conjunction with the low processing temperature and the ability to deposit very thin conformal films, make this ALD process promising for the future application of MoO{sub x} in hole-selective contacts for silicon heterojunction solar cells. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Vapor pressures and enthalpies of vaporization of azides

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Emel' yanenko, Vladimir N. [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Algarra, Manuel [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Manuel Lopez-Romero, J. [Department of Organic Chemistry, University of Malaga. Campus de Teatinos s/n, 29071 Malaga (Spain); Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2011-11-15

    Highlights: > We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. > We examined consistency of new and available in the literature data. > Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization {Delta}{sub l}{sup g}H{sub m} of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  12. Cell-matrix interactions of Entamoeba histolytica and E. dispar. A comparative study by electron-, atomic force- and confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Talamás-Lara, Daniel, E-mail: daniel_talamas@hotmail.com [Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City (Mexico); Talamás-Rohana, Patricia, E-mail: ptr@cinvestav.mx [Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City (Mexico); Fragoso-Soriano, Rogelio Jaime, E-mail: rogelio@fis.cinvestav.mx [Department of Physics, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City (Mexico); Espinosa-Cantellano, Martha, E-mail: mespinosac@cinvestav.mx [Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City (Mexico); Chávez-Munguía, Bibiana, E-mail: bchavez@cinvestav.mx [Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City (Mexico); González-Robles, Arturo, E-mail: goroa@cinvestav.mx [Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City (Mexico); Martínez-Palomo, Adolfo, E-mail: amartine@cinvestav.mx [Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City (Mexico)

    2015-10-01

    Invasion of tissues by Entamoeba histolytica is a multistep process that initiates with the adhesion of the parasite to target tissues. The recognition of the non-invasive Entamoeba dispar as a distinct, but closely related protozoan species raised the question as to whether the lack of its pathogenic potential could be related to a weaker adhesion due to limited cytoskeleton restructuring capacity. We here compared the adhesion process of both amebas to fibronectin through scanning, transmission, atomic force, and confocal microscopy. In addition, electrophoretic and western blot assays of actin were also compared. Adhesion of E. histolytica to fibronectin involves a dramatic reorganization of the actin network that results in a tighter contact to and the subsequent focal degradation of the fibronectin matrix. In contrast, E. dispar showed no regions of focal adhesion, the cytoskeleton was poorly reorganized and there was little fibronectin degradation. In addition, atomic force microscopy using topographic, error signal and phase modes revealed clear-cut differences at the site of contact of both amebas with the substrate. In spite of the morphological and genetic similarities between E. histolytica and E. dispar the present results demonstrate striking differences in their respective cell-to-matrix adhesion processes, which may be of relevance for understanding the invasive character of E. histolytica. - Highlights: • Striking differences in adhesion to FN between E. histolytica and E. dispar. • A greater degree of cell stiffness in E. histolytica with respect to E. dispar. • E. histolytica but not E. dispar forms regions of close contact with FN. • The actin cytoskeleton is involved in the pathogenicity of E. histolytica.

  13. Atomic layer deposition precursor step repetition and surface plasma pretreatment influence on semiconductor–insulator–semiconductor heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Talkenberg, Florian, E-mail: florian.talkenberg@ipht-jena.de; Illhardt, Stefan; Schmidl, Gabriele; Schleusener, Alexander; Sivakov, Vladimir [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Radnóczi, György Zoltán; Pécz, Béla [Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege Miklós u. 29-33, H-1121 Budapest (Hungary); Dikhanbayev, Kadyrjan; Mussabek, Gauhar [Department of Physics and Engineering, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040 Almaty (Kazakhstan); Gudovskikh, Alexander [Nanotechnology Research and Education Centre, St. Petersburg Academic University, Russian Academy of Sciences, Hlopina Str. 8/3, 194021 St. Petersburg (Russian Federation)

    2015-07-15

    Semiconductor–insulator–semiconductor heterojunction solar cells were prepared using atomic layer deposition (ALD) technique. The silicon surface was treated with oxygen and hydrogen plasma in different orders before dielectric layer deposition. A plasma-enhanced ALD process was applied to deposit dielectric Al{sub 2}O{sub 3} on the plasma pretreated n-type Si(100) substrate. Aluminum doped zinc oxide (Al:ZnO or AZO) was deposited by thermal ALD and serves as transparent conductive oxide. Based on transmission electron microscopy studies the presence of thin silicon oxide (SiO{sub x}) layer was detected at the Si/Al{sub 2}O{sub 3} interface. The SiO{sub x} formation depends on the initial growth behavior of Al{sub 2}O{sub 3} and has significant influence on solar cell parameters. The authors demonstrate that a hydrogen plasma pretreatment and a precursor dose step repetition of a single precursor improve the initial growth behavior of Al{sub 2}O{sub 3} and avoid the SiO{sub x} generation. Furthermore, it improves the solar cell performance, which indicates a change of the Si/Al{sub 2}O{sub 3} interface states.

  14. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.;

    of the mechanisms of bacterial attachment. An alternative way to study the adhesion of single bacterial cells is to measure the adhesion between immobilized bacterial cells and coated AFM cantilevers. This strategy was used to investigate the adhesive properties of novel high density poly(ethylene glycol) (PEG......) coatings on titanium. We investigate the ability of a high density poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) coating to resist bacterial adhesion and biofilm formation from three clinically relevant bacteria: Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermis. The high...

  15. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.

    Science.gov (United States)

    Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J

    2016-01-01

    We used atomic force microscopy (AFM), complemented with electron microscopy, to characterize the nanoscale and mesoscale structure of the outer (periclinal) cell wall of onion scale epidermis - a model system for relating wall structure to cell wall mechanics. The epidermal wall contains ~100 lamellae, each ~40 nm thick, containing 3.5-nm wide cellulose microfibrils oriented in a common direction within a lamella but varying by ~30 to 90° between adjacent lamellae. The wall thus has a crossed polylamellate, not helicoidal, wall structure. Montages of high-resolution AFM images of the newly deposited wall surface showed that single microfibrils merge into and out of short regions of microfibril bundles, thereby forming a reticulated network. Microfibril direction within a lamella did not change gradually or abruptly across the whole face of the cell, indicating continuity of the lamella across the outer wall. A layer of pectin at the wall surface obscured the underlying cellulose microfibrils when imaged by FESEM, but not by AFM. The AFM thus preferentially detects cellulose microfibrils by probing through the soft matrix in these hydrated walls. AFM-based nanomechanical maps revealed significant heterogeneity in cell wall stiffness and adhesiveness at the nm scale. By color coding and merging these maps, the spatial distribution of soft and rigid matrix polymers could be visualized in the context of the stiffer microfibrils. Without chemical extraction and dehydration, our results provide multiscale structural details of the primary cell wall in its near-native state, with implications for microfibrils motions in different lamellae during uniaxial and biaxial extensions.

  16. Correlating Viscoelasticity with Metabolism in Single Cells using Atomic Force Microscopy

    Science.gov (United States)

    Caporizzo, Matthew; Roco, Charles; Coll-Ferrer, Carme; Eckmann, David; Composto, Russell

    2015-03-01

    Variable indentation-rate rheometric analysis by Laplace transform (VIRRAL), is developed to evaluate Dex-Gel drug carriers as biocompatible delivery agents. VIRRAL provides a general platform for the rapid characterization of the health of single cells by viscoelasticity to promote the self-consistent comparison between cells paramount to the development of early diagnosis and treatment of disease. By modelling the frequency dependence of elastic modulus, VIRRAL provides three metrics of cytoplasmic viscoelasticity: low frequency stiffness, high frequency stiffness, and a relaxation time. THP-1 cells are found to exhibit a frequency dependent elastic modulus consistent with the standard linear solid model of viscoelasticity. VIRRAL indicates that dextran-lysozyme drug carriers are biocompatible and deliver concentrated toxic material (rhodamine or silver nanoparticles) to the cytoplasm of THP-1 cells. The signature of cytotoxicity by rhodamine or silver exposure is a frequency independent 2-fold increase in elastic modulus and cytoplasmic viscosity while the cytoskeletal relaxation time remains unchanged independent of cytoplasmic stiffness. This is consistent with the known toxic mechanism of silver nanoparticles, where mitochondrial injury leads to ATP depletion and metabolic stress causes a decrease of mobility within cytoplasm. NSF DMR08-32802, NIH T32-HL007954, and ONR N000141410538.

  17. Energy gradients with respect to atomic positions and cell parameters for the Kohn-Sham density-functional theory at the Gamma point.

    Science.gov (United States)

    Weber, Valéry; Tymczak, Christopher J; Challacombe, Matt

    2006-06-14

    The application of theoretical methods based on density-functional theory is known to provide atomic and cell parameters in very good agreement with experimental values. Recently, construction of the exact Hartree-Fock exchange gradients with respect to atomic positions and cell parameters within the Gamma-point approximation has been introduced. In this article, the formalism is extended to the evaluation of analytical Gamma-point density-functional atomic and cell gradients. The infinite Coulomb summation is solved with an effective periodic summation of multipole tensors. While the evaluation of Coulomb and exchange-correlation gradients with respect to atomic positions are similar to those in the gas phase limit, the gradients with respect to cell parameters needs to be treated with some care. The derivative of the periodic multipole interaction tensor needs to be carefully handled in both direct and reciprocal space and the exchange-correlation energy derivative leads to a surface term that has its origin in derivatives of the integration limits that depend on the cell. As an illustration, the analytical gradients have been used in conjunction with the QUICCA algorithm to optimize one-dimensional and three-dimensional periodic systems at the density-functional theory and hybrid Hartree-Fock/density-functional theory levels. We also report the full relaxation of forsterite supercells at the B3LYP level of theory.

  18. Boron-doped silicon surfaces from $B_2H_6$ passivated by ALD $Al_2O_3$ for solar cells

    NARCIS (Netherlands)

    Mok, K.R.C. (Caroline); Loo, van de Bas W.H.; Vlooswijk, Ard H.G.; Kessels, W.M.M. (Erwin); Nanver, Lis K.

    2015-01-01

    A p+-doping method for silicon solar cells is presented whereby boron atoms from a pure boron (PureB) layer deposited by chemical vapor deposition using B2H6 as precursor were thermally diffused into silicon. The applicability of this doping process for the doped surfaces of silicon solar cells was

  19. Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy.

    Science.gov (United States)

    Marga, Francoise; Grandbois, Michel; Cosgrove, Daniel J; Baskin, Tobias I

    2005-07-01

    Enlargement of the cell wall requires separation of cellulose microfibrils, mediated by proteins such as expansin; according to the multi-net growth hypothesis, enlargement passively reorients microfibrils. However, at the molecular scale, little is known about the specific movement of microfibrils. To find out, we examined directly changes in microfibril orientation when walls were extended slowly in vitro under constant load (creep). Frozen-thawed cucumber hypocotyl segments were strained by 20-30% by incubation in pH 4.5 buffer or by incubation of heat-inactivated segments in alpha-expansin or a fungal endoglucanase (Cel12A). Subsequently, the innermost layer of the cell wall was imaged, with neither extraction nor homogenization, by field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). AFM images revealed that sample preparation for FESEM did not appreciably alter cell wall ultrastructure. In both FESEM and AFM, images from extended and non-extended samples appeared indistinguishable. To quantify orientational order, we used a novel algorithm to characterize the fast Fourier transform of the image as a function of spatial frequency. For both FESEM and AFM images, the transforms of non-extended samples were indistinguishable from those of samples extended by alpha-expansin or Cel12A, as were AFM images of samples extended by acidic buffer. We conclude that cell walls in vitro can extend slowly by a creep mechanism without passive reorientation of innermost microfibrils, implying that wall loosening agents act selectively on the cross-linking polymers between parallel microfibrils, rather than more generally on the wall matrix.

  20. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy.

    Science.gov (United States)

    Calzado-Martín, Alicia; Encinar, Mario; Tamayo, Javier; Calleja, Montserrat; San Paulo, Alvaro

    2016-03-22

    We study the correlation between cytoskeleton organization and stiffness of three epithelial breast cancer cells lines with different degrees of malignancy: MCF-10A (healthy), MCF-7 (tumorigenic/noninvasive), and MDA-MB-231 (tumorigenic/invasive). Peak-force modulation atomic force microscopy is used for high-resolution topography and stiffness imaging of actin filaments within living cells. In healthy cells, local stiffness is maximum where filamentous actin is organized as well-aligned stress fibers, resulting in apparent Young's modulus values up to 1 order of magnitude larger than those in regions where these structures are not observed, but these organized actin fibers are barely observed in tumorigenic cells. We further investigate cytoskeleton conformation in the three cell lines by immunofluorescence confocal microscopy. The combination of both techniques determines that actin stress fibers are present at apical regions of healthy cells, while in tumorigenic cells they appear only at basal regions, where they cannot contribute to stiffness as probed by atomic force microscopy. These results substantiate that actin stress fibers provide a dominant contribution to stiffness in healthy cells, while the elasticity of tumorigenic cells appears not predominantly determined by these structures. We also discuss the effects of the high-frequency indentations inherent to peak-force atomic force microscopy for the identification of mechanical cancer biomarkers. Whereas conventional low loading rate indentations (1 Hz) result in slightly differentiated average stiffness for each cell line, in high-frequency measurements (250 Hz) healthy cells are clearly discernible from both tumorigenic cells with an enhanced stiffness ratio; however, the two cancerous cell lines produced indistinguishable results.

  1. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tittmann, B. R. [Penn State; Xi, X. [Penn State

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property

  2. Strong relative intensity squeezing by 4-wave mixing in Rb vapor

    CERN Document Server

    McCormick, C F; Boyer, V; Lett, P D

    2006-01-01

    We have measured -3.5 dB (-8.1 dB corrected for losses) relative intensity squeezing between the probe and conjugate beams generated by stimulated, nondegenerate four-wave mixing in hot rubidium vapor. Unlike early observations of squeezing in atomic vapors based on saturation of a two-level system, our scheme uses a resonant nonlinearity based on ground-state coherences in a three-level system. Since this scheme produces narrowband, squeezed light near an atomic resonance it is of interest for experiments involving cold atoms or atomic ensembles.

  3. Atomic Layer Deposition of CdS Quantum Dots for Solid-State Quantum Dot Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.

    2011-10-04

    Functioning quantum dot (QD) sensitized solar cells have been fabricated using the vacuum deposition technique atomic layer deposition (ALD). Utilizing the incubation period of CdS growth by ALD on TiO 2, we are able to grow QDs of adjustable size which act as sensitizers for solid-state QDsensitized solar cells (ssQDSSC). The size of QDs, studied with transmission electron microscopy (TEM), varied with the number of ALD cycles from 1-10 nm. Photovoltaic devices with the QDs were fabricated and characterized using a ssQDSSC device architecture with 2,2\\',7,7\\'-tetrakis-(N,N-di-p methoxyphenylamine) 9,9\\'-spirobifluorene (spiro-OMeTAD) as the solid-state hole conductor. The ALD approach described here can be applied to fabrication of quantum-confined structures for a variety of applications, including solar electricity and solar fuels. Because ALD provides the ability to deposit many materials in very high aspect ratio substrates, this work introduces a strategy by which material and optical properties of QD sensitizers may be adjusted not only by the size of the particles but also in the future by the composition. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Quality Assessment of Stored Red Blood Cells Probed Using Atomic-Force Microscopy

    OpenAIRE

    Lamzin, I. M.; Khayrullin, R. M.

    2014-01-01

    At the moment the suitability of stored red blood cells (sRBC) for transfusion is checked by routine methods such as haemoglobin estimation and the level of haemolysis. These methods cannot characterize directly the quality of the membranes of sRBC. The aim of this work is to assess the quality of sRBC based on such criteria as the membrane’s stiffness and the size and the form of sRBC. Materials and Methods. We have investigated 5 series of dry cytosmears of the sRBC which had been kept in b...

  5. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA`s hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R&D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required.

  6. Selective addressing of high-rank atomic polarization moments

    CERN Document Server

    Yashchuk, V V; Gawlik, W; Kimball, D F; Malakyan, Y P; Rochester, S M; Malakyan, Yu. P.

    2003-01-01

    We describe a method of selective generation and study of polarization moments of up to the highest rank $\\kappa=2F$ possible for a quantum state with total angular momentum $F$. The technique is based on nonlinear magneto-optical rotation with frequency-modulated light. Various polarization moments are distinguished by the periodicity of light-polarization rotation induced by the atoms during Larmor precession and exhibit distinct light-intensity and frequency dependences. We apply the method to study polarization moments of $^{87}$Rb atoms contained in a vapor cell with antirelaxation coating. Distinct ultra-narrow (1-Hz wide) resonances, corresponding to different multipoles, appear in the magnetic-field dependence of the optical rotation. The use of the highest-multipole resonances has important applications in quantum and nonlinear optics and in magnetometry.

  7. Study on the fine control of atoms by coherent interaction

    Energy Technology Data Exchange (ETDEWEB)

    Min, Han Jae; Rho, S. P.; Park, H. M.; Lee, K. S.; Rhee, Y. J.; Yi, J. H.; Jeong, D. Y.; Jung, E. C.; Choe, A. S.; Lee, J. M

    1999-01-01

    The doppler-free saturation spectroscopy of Na atoms has been performed and the proper conditions for the frequency stabilization of narrow band cw dye lasers, which was used as laser sources for the laser cooling and trapping, have been obtained as follows : a) optimum pressure of a Na vapor cell: 10 mTorr b) intensity of a pump laser : a few {mu}W c) intensity of a probe laser : 1/10 of that of a pump laser. EIT (Electromagnetically Induced Transparency) generated by coherent laser-atom interactions was investigated experimentally and analyzed theoretically. The absorption of a probe laser could be remarkably reduced more than 90 % due to EIT effect. The EIT spectrum as narrow as 6 MHz which is even narrower than the natural linewidth of an excited state could be obtained under proper conditions.

  8. The Quality Assessment of Stored Red Blood Cells Probed Using Atomic-Force Microscopy

    Directory of Open Access Journals (Sweden)

    I. M. Lamzin

    2014-01-01

    Full Text Available At the moment the suitability of stored red blood cells (sRBC for transfusion is checked by routine methods such as haemoglobin estimation and the level of haemolysis. These methods cannot characterize directly the quality of the membranes of sRBC. The aim of this work is to assess the quality of sRBC based on such criteria as the membrane’s stiffness and the size and the form of sRBC. Materials and Methods. We have investigated 5 series of dry cytosmears of the sRBC which had been kept in blood bank in a period from 1 to 35 days. After AFM imaging, in every specimen, 5 RBC were chosen at random; the diameter, the height, and the stiffness were measured on each of them. Results. The present study shows high increase of the mean values of YM and height of RBC after 35 days of storage and decrease of the mean values of their diameter. Conclusion. Statistically significant high increase of the mean values of YM indicates the decrease of the elasticity of the cells in the course of storing of the RBC. This parameter along with the morphological characteristics can be used as criterion for assessment of applicability of the sRBC for blood transfusion.

  9. The quality assessment of stored red blood cells probed using atomic-force microscopy.

    Science.gov (United States)

    Lamzin, I M; Khayrullin, R M

    2014-01-01

    At the moment the suitability of stored red blood cells (sRBC) for transfusion is checked by routine methods such as haemoglobin estimation and the level of haemolysis. These methods cannot characterize directly the quality of the membranes of sRBC. The aim of this work is to assess the quality of sRBC based on such criteria as the membrane's stiffness and the size and the form of sRBC. Materials and Methods. We have investigated 5 series of dry cytosmears of the sRBC which had been kept in blood bank in a period from 1 to 35 days. After AFM imaging, in every specimen, 5 RBC were chosen at random; the diameter, the height, and the stiffness were measured on each of them. Results. The present study shows high increase of the mean values of YM and height of RBC after 35 days of storage and decrease of the mean values of their diameter. Conclusion. Statistically significant high increase of the mean values of YM indicates the decrease of the elasticity of the cells in the course of storing of the RBC. This parameter along with the morphological characteristics can be used as criterion for assessment of applicability of the sRBC for blood transfusion.

  10. Determinação de mercúrio total em amostras de água, sedimento e sólidos em suspensão de corpos aquáticos por espectrofotometria de absorção atômica com gerador de vapor a frio Determination of total mercury in water, sediments and solids in suspension in aquatic systems by cold vapor atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    José L. F. Vieira

    1996-06-01

    Full Text Available O emprego de mercúrio metálico nos processos de extração do ouro libera toneladas de mercúrio ao meio ambiente, provocando um aumento considerável nas concentrações presentes. Com a finalidade de prevenir a exposição humana a concentrações excessivas, o que poderá resultar em graves episódios de intoxicação mercurial, bem como avaliar a possibilidade de sedimentos tornarem-se fontes potenciais de contaminação para os seres vivos, é de fundamental importância a monitorização do mercúrio em diversos compartimentos ambientais. Efetuou-se a padronização de uma metodologia analítica para determinação de mercúrio total em amostras de água, sólidos em suspensão e sedimentos de corpos aquáticos para monitorização ambiental do xenobiótico. Posteriormente, foram analisadas amostras oriundas de regiões garimpeiras, com vistas a avaliar o desempenho do método em amostras reais e efetuar levantamento preliminar sobre a contaminação mercurial na área de estudo.The use of metallic mercury in the extraction and concentration of gold causes the discarding of tons of this metal in the environment, leading to a considerable increase in the natural levels of the same and the contamination of the surrounding areas. Thus it is extremely important to monitor the presence of this metal in various sectors of the environment with a view aiming to previnting human exposure to excessive concentrations which can result in serious episodes of mercury poisoning. It is also important to estimate the possibility of river sediments becoming potential sources of contamination of human beings. The determination of total mercury was undertaken by using cold vapor atomic absorption spectrometry. River waters, as well as sediments and suspended solids were used as samples for the standardization of the analytical procedure. Later on, this method was tested on samples originating in gold mining areas for the purpose of assessing its validity.

  11. Atmospheric spatial atomic layer deposition of Zn(O,S) buffer layer for Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Frijters, C.H.; Poodt, P.; Illeberi, A.

    2016-01-01

    Zinc oxysulfide has been grown by spatial atomic layer deposition (S-ALD) and successfully applied as buffer layer in Cu(In, Ga)Se2 (CIGS) solar cells. S-ALD combines high deposition rates (up to nm/s) with the advantages of conventional ALD, i.e. excellent control of film composition and superior u

  12. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  13. Does the position of the electron-donating nitrogen atom in the ring system influence the efficiency of a dye-sensitized solar cell? A computational study.

    Science.gov (United States)

    Biswas, Abul Kalam; Barik, Sunirmal; Das, Amitava; Ganguly, Bishwajit

    2016-06-01

    We have reported a number of new metal-free organic dyes (2-6) that have cyclic asymmetric benzotripyrrole derivatives as donor groups with peripheral nitrogen atoms in the ring, fluorine and thiophene groups as π-spacers, and a cyanoacrylic acid acceptor group. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were employed to examine the influence of the position of the donor nitrogen atom and π-conjugation on solar cell performance. The calculated electron-injection driving force (ΔG inject), electron-regeneration driving force (ΔG regen), light-harvesting efficiency (LHE), dipole moment (μ normal), and number of electrons transferred (∆q) indicate that dyes 3, 4, and 6 have significantly higher efficiencies than reference dye 1, which exhibits high efficiency. We also extended our comparison to some other reported dyes, 7-9, which have a donor nitrogen atom in the middle of the ring system. The computed results suggest that dye 6 possesses a higher incident photon to current conversion efficiency (IPCE) than reported dyes 7-9. Thus, the use of donor groups with peripheral nitrogen atoms appears to lead to more efficient dyes than those in which the nitrogen atom is present in the middle of the donor ring system. Graphical Abstract The locations of the nitrogen atoms in the donor groups in the designed dye molecules have an important influence on DSSC efficiency.

  14. Atom chips

    CERN Document Server

    Reichel, Jakob

    2010-01-01

    This book provides a stimulating and multifaceted picture of a rapidly developing field. The first part reviews fundamentals of atom chip research in tutorial style, while subsequent parts focus on the topics of atom-surface interaction, coherence on atom chips, and possible future directions of atom chip research. The articles are written by leading researchers in the field in their characteristic and individual styles.

  15. Atomic energy

    CERN Multimedia

    1996-01-01

    Interviews following the 1991 co-operation Agreement between the Department of Atomic Energy (DAE) of the Government of India and the European Organization for Nuclear Research (CERN) concerning the participation in the Large Hadron Collider Project (LHC) . With Chidambaram, R, Chairman, Atomic Energy Commission and Secretary, Department of Atomic Energy, Department of Atomic Energy (DAE) of the Government of India and Professor Llewellyn-Smith, Christopher H, Director-General, CERN.

  16. Spectroscopic detection of atom-surface interactions in an atomic vapour layer with nanoscale thickness

    CERN Document Server

    Whittaker, K A; Hughes, I G; Sargsyan, A; Sarkisyan, D; Adams, C S

    2015-01-01

    We measure the resonance line shape of atomic vapor layers with nanoscale thickness confined between two sapphire windows. The measurement is performed by scanning a probe laser through resonance and collecting the scattered light. The line shape is dominated by the effects of Dicke narrowing, self-broadening, and atom-surface interactions. By fitting the measured line shape to a simple model we discuss the possibility to extract information about the atom-surface interaction.

  17. Comparison of different sample preparation methods for platinum determination in cultured cells by graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Man Xiao

    2017-01-01

    Full Text Available Background Platinum-based agents are widely used in chemotherapy against solid tumors and insufficient intracellular drug accumulation is one of the leading causes of platinum resistance which is associated with poor survival of tumor patients. Thus, the detection of intracellular platinum is pivotal for studies aiming to overcome platinum resistance. In the present study, we aimed to establish a reliable graphite furnace atomic absorption spectrometry (GFAAS-based assay to quantify the intracellular platinum content for cultured cells. Methods Several most commonly applied cell preparation methods, including 0.2% HNO3, 0.2% Triton X-100, concentrated nitric acid, RIPA combined with concentrated nitric acid and hydroxide, followed by GFAAS for platinum detection were compared in ovarian, cervical and liver cancer cell lines to obtain the optimal one, and parameters regarding linearity, accuracy, precision and sensitivity were evaluated. Influence of other metals on platinum detection and the storage conditions of samples were also determined. Results The treatment of cells with 0.2% HNO3 was superior to other approaches with fewer platinum loss and better repeatability. The recovery rate and precision of this method were 97.3%–103.0% and 1.4%–3.8%, respectively. The average recoveries in the presence of other metals were 95.1%–103.1%. The detection limit was 13.23 ug/L. The recovery rate of platinum remained acceptable even in cell samples stored in −20 °C or −80 °C for two months. Discussion After comparison, we found that 0.2% HNO3 was optimal for intracellular platinum quantification based on GFAAS, which presented values compatible with that of inductively-coupled plasma mass-spectrometry (ICP-MS, and this is partially attributed to the simplicity of this method. Moreover, the assay was proved to be accurate, sensitive, cost-effective and suitable for the research of platinum-based antitumor therapy.

  18. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  19. Atomic layer deposition of NiS and its application as cathode material in dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mahuli, Neha [Center for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Sarkar, Shaibal K., E-mail: shaibal.sarkar@iitb.ac.in [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-01-15

    Nickel sulfide (NiS) is grown by atomic layer deposition (ALD) using sequential exposures of bis(2,2,6,6-tetramethylheptane-3,5-dionate)nickel(II) [Ni(thd){sub 2}] and hydrogen sulfide (H{sub 2}S) at 175 °C. Complementary combinations of in situ and ex situ characterization techniques are used to understand the deposition chemistry and the nature of film growth. The saturated growth rate of ca. 0.21 Å per ALD cycle is obtained, which is constant within the ALD temperature window (175–250 °C). As deposited films on glass substrates are found polycrystalline without any preferred orientation. Electrical transport measurement reveals degenerative/semimetallic characteristics with a carrier concentration of ca. 9 × 10{sup 22} cm{sup −3} at room temperature. The ALD grown NiS thin film demonstrates high catalytic activity for the reduction of I{sup −}/I{sub 3}{sup −} electrolyte that opens its usage as cost-effective counter electrode in dye sensitized solar cells, replacing Pt.

  20. Planckian Information (Ip): A New Measure of Order in Atoms, Enzymes, Cells, Brains, Human Societies, and the Cosmos

    Science.gov (United States)

    Ji, Sungchul

    A new mathematical formula referred to as the Planckian distribution equation (PDE) has been found to fit long-tailed histograms generated in various fields of studies, ranging from atomic physics to single-molecule enzymology, cell biology, brain neurobiology, glottometrics, econophysics, and to cosmology. PDE can be derived from a Gaussian-like equation (GLE) by non-linearly transforming its variable, x, while keeping the y coordinate constant. Assuming that GLE represents a random distribution (due to its symmetry), it is possible to define a binary logarithm of the ratio between the areas under the curves of PDE and GLE as a measure of the non-randomness (or order) underlying the biophysicochemical processes generating long-tailed histograms that fit PDE. This new function has been named the Planckian information, IP, which (i) may be a new measure of order that can be applied widely to both natural and human sciences and (ii) can serve as the opposite of the Boltzmann-Gibbs entropy, S, which is a measure of disorder. The possible rationales for the universality of PDE may include (i) the universality of the wave-particle duality embedded in PDE, (ii) the selection of subsets of random processes (thereby breaking the symmetry of GLE) as the basic mechanism of generating order, organization, and function, and (iii) the quantity-quality complementarity as the connection between PDE and Peircean semiotics.

  1. Water vapor distribution in protoplanetary disks

    CERN Document Server

    Du, Fujun

    2014-01-01

    Water vapor has been detected in protoplanetary disks. In this work we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyman alpha photons, since the Lyman alpha line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more ...

  2. Electrical properties of carbon nanotubes in flowing vapor

    Institute of Scientific and Technical Information of China (English)

    XIAO Peng; WANG Xin-qiang; ZHANG Yun-huai

    2006-01-01

    Electric potentials were generated from carbon nanotubes immersed in flowing vapors.The nanomaterials used in this study were multiwall carbon nanotubes(MWCNTs) and silver nanopowders.These nanomaterials were dispersed and densely packed on a substrate and immersed in flowing vapors generated from solution such as water,ethanol and KCl.The potentials generated from these samples were measured by a voltmeter.Experimental results showed that the electric potentials were produced at the surface of the MWCNT samlpes,and strongly dependent on the pretreatment of MWCNT and properties of the flowing vapors.The mechanism of vapor-flow induced potentials may be ascribed to ions in the flowing vapors.This property of MWCNTs can advantage their application to nanoscale sensors,detectors and power cells.

  3. Multi-V-type and Λ-type electromagnetically induced transparency experiments in rubidium atoms with low-power low-cost free running single mode diode lasers

    Science.gov (United States)

    Lavín Varela, S.; León Suazo, J. A.; Gutierrez González, J.; Vargas Roco, J.; Buberl, T.; Aguirre Gómez, J. G.

    2016-05-01

    In this work we present the experimental realization of electromagnetically induced transparency (EIT) in A-type and multi-V-type configurations in a sample of rubidium atoms inside a vapor cell at room temperature. Typical EIT windows are clearly visible in the Doppler- broadened absorption signal of the weak probe beam. The coherent optical pump and probe fields are produced by two tunable low-cost, low-power, continuous-wave (cw), free-running and single mode operated diode laser systems, temperature stabilized and current controlled, tuned to the D2 line of rubidium atoms at 780.2 nm wavelength. The continuum wave and single mode operation of our laser systems are confirmed by direct and saturated absorption spectroscopy techniques. Among other applications, these simple experiments can be used as a low-cost undergraduate laboratory in atomic physics, laser physics, coherent light-atom interaction, and high resolution atomic spectroscopy.

  4. Mixed-Halide CH3 NH3 PbI3-x Xx (X=Cl, Br, I) Perovskites: Vapor-Assisted Solution Deposition and Application as Solar Cell Absorbers.

    Science.gov (United States)

    Sedighi, Rahime; Tajabadi, Fariba; Shahbazi, Saeed; Gholipour, Somayeh; Taghavinia, Nima

    2016-08-01

    There have been recent reports on the formation of single-halide perovskites, CH3 NH3 PbX3 (X=Cl, Br, I), by means of vapor-assisted solution processing. Herein, the successful formation of mixed-halide perovskites (CH3 NH3 PbI3-x Xx ) by means of a vapor-assisted solution method at ambient atmosphere is reported. The perovskite films are synthesized by exposing PbI2 film to CH3 NH3 X (X=I, Br, or Cl) vapor. The prepared perovskite films have uniform surfaces with good coverage, as confirmed by SEM images. The inclusion of chlorine and bromine into the structure leads to a lower temperature and shorter reaction time for optimum perovskite film formation. In the case of CH3 NH3 PbI3-x Clx , the optimum reaction temperature is reduced to 100 °C, and the resulting phases are CH3 NH3 PbI3 (with trace Cl) and CH3 NH3 PbCl3 with a ratio of about 2:1. In the case of CH3 NH3 PbI3-x Brx , single-phase CH3 NH3 PbI2 Br is formed in a considerably shorter reaction time than that of CH3 NH3 PbI3 . The mesostructured perovskite solar cells based on CH3 NH3 PbI3 films show the best optimal power conversion efficiency of 13.5 %, whereas for CH3 NH3 PbI3-x Clx and CH3 NH3 PbI3-x Brx the best recorded efficiencies are 11.6 and 10.5 %, respectively.

  5. Cerium Tetrafluoride: Sublimation, Thermolysis, and Atomic Fluorine Migration.

    Science.gov (United States)

    Chilingarov, N S; Knot'ko, A V; Shlyapnikov, I M; Mazej, Z; Kristl, M; Sidorov, L N

    2015-08-06

    Saturated vapor pressure p° and enthalpy of sublimation (ΔsH°) of cerium tetrafluoride CeF4 were determined by means of Knudsen effusion mass spectrometry in the range of 750-920 K. It was discovered that sublimation of cerium tetrafluoride from a platinum effusion cell competes with thermal decomposition to CeF3 in the solid phase, but no accompanying release of fluorine to the gas phase occurs. Thus, fluorine atoms migrate within the surface layer of CeF4(s) to the regions of their irreversible drain. We used scanning electron microscopy to study the distribution of the residual CeF3(s) across the inner surface of the effusion cell after complete evaporation of CeF4(s). It was observed that CeF3 accumulates near the edge of the effusion orifice and near the junction of the lid and the body of the cell, that is, in those regions where the fluorine atoms can migrate to a free platinum surface and thus be depleted from the system. Distribution of CeF3(s) solid particles indicates the ways of fluorine atoms migration providing CeF3(s) formation inside the CeF4(s) surface layer.

  6. Inventing a co-axial atomic resolution patch clamp to study a single resonating protein complex and ultra-low power communication deep inside a living neuron cell.

    Science.gov (United States)

    Ghosh, Subrata; Sahu, Satyajit; Agrawal, Lokesh; Shiga, Takashi; Bandyopadhyay, Anirban

    2016-12-01

    To read the signals of single molecules in vitro on a surface, or inside a living cell or organ, we introduce a coaxial atom tip (coat) and a coaxial atomic patch clamp (COAPAP). The metal-insulator-metal cavity of these probes extends to the atomic scale (0.1[Formula: see text]nm), it eliminates the cellular or environmental noise with a S/N ratio 10(5). Five ac signals are simultaneously applied during a measurement by COAT and COAPAP to shield a true signal under environmental noise in five unique ways. The electromagnetic drive in the triaxial atomic tips is specifically designed to sense anharmonic vibrational and transmission signals for any system between 0.1[Formula: see text]nm and 50[Formula: see text]nm where the smallest nanopatch clamp cannot reach. COAT and COAPAP reliably pick up the atomic scale vibrations under the extreme noise of a living cell. Each protein's distinct electromagnetic, mechanical, electrical and ionic vibrational signature studied in vitro in a protected environment is found to match with the ones studied inside a live neuron. Thus, we could confirm that by using our probe blindly we could hold on to a single molecule or its complex in the invisible domain of a living cell. Our decade long investigations on perfecting the tools to measure bio-resonance of all forms and simultaneously in all frequency domains are summarized. It shows that the ratio of emission to absorption resonance frequencies of a biomaterial is around [Formula: see text], only a few in the entire em spectrum are active that regulates all other resonances, like mechanical, ionic, etc.

  7. Fluid metals the liquid-vapor transition of metals

    CERN Document Server

    Hensel, Friedrich

    2014-01-01

    This is a long-needed general introduction to the physics and chemistry of the liquid-vapor phase transition of metals. Physicists and physical chemists have made great strides understanding the basic principles involved, and engineers have discovered a wide variety of new uses for fluid metals. Yet there has been no book that brings together the latest ideas and findings in the field or that bridges the conceptual gap between the condensed-matter physics relevant to a dense metallic liquid and the molecular chemistry relevant to a dilute atomic vapor. Friedrich Hensel and William Warren seek

  8. Qualitative and Quantitative Analysis of ROS-Mediated Oridonin-Induced Oesophageal Cancer KYSE-150 Cell Apoptosis by Atomic Force Microscopy.

    Directory of Open Access Journals (Sweden)

    Jiang Pi

    Full Text Available High levels of intracellular reactive oxygen species (ROS in cells is recognized as one of the major causes of cancer cell apoptosis and has been developed into a promising therapeutic strategy for cancer therapy. However, whether apoptosis associated biophysical properties of cancer cells are related to intracellular ROS functions is still unclear. Here, for the first time, we determined the changes of biophysical properties associated with the ROS-mediated oesophageal cancer KYSE-150 cell apoptosis using high resolution atomic force microscopy (AFM. Oridonin was proved to induce ROS-mediated KYSE-150 cell apoptosis in a dose dependent manner, which could be reversed by N-acetylcysteine (NAC pretreatment. Based on AFM imaging, the morphological damage and ultrastructural changes of KYSE-150 cells were found to be closely associated with ROS-mediated oridonin-induced KYSE-150 cell apoptosis. The changes of cell stiffness determined by AFM force measurement also demonstrated ROS-dependent changes in oridonin induced KYSE-150 cell apoptosis. Our findings not only provided new insights into the anticancer effects of oridonin, but also highlighted the use of AFM as a qualitative and quantitative nanotool to detect ROS-mediated cancer cell apoptosis based on cell biophysical properties, providing novel information of the roles of ROS in cancer cell apoptosis at nanoscale.

  9. Coherent optical transients observed in rubidium atomic line filtered Doppler velocimetry experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Mario E., E-mail: mario.fajardo@eglin.af.mil; Molek, Christopher D.; Vesely, Annamaria L. [Air Force Research Laboratory, Munitions Directorate, Ordnance Division, Energetic Materials Branch, AFRL/RWME, 2306 Perimeter Road, Eglin AFB, Florida 32542-5910 (United States)

    2015-10-14

    We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensity transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a

  10. Light-induced atom desorption from glass surfaces characterized by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Kumagai, Ryo; Hatakeyama, Atsushi

    2016-07-01

    We analyzed the surfaces of vitreous silica (quartz) and borosilicate glass (Pyrex) substrates exposed to rubidium (Rb) vapor by X-ray photoelectron spectroscopy (XPS) to understand the surface conditions of alkali metal vapor cells. XPS spectra indicated that Rb atoms adopted different bonding states in quartz and Pyrex. Furthermore, Rb atoms in quartz remained in the near-surface region, while they diffused into the bulk in Pyrex. For these characterized surfaces, we measured light-induced atom desorption (LIAD) of Rb atoms. Clear differences in time evolution, photon energy dependence, and substrate temperature dependence were found; the decay of LIAD by continuous ultraviolet irradiation for quartz was faster than that for Pyrex, a monotonic increase in LIAD with increasing photon energy from 1.8 to 4.3 eV was more prominent for quartz, and LIAD from quartz was more efficient at higher temperatures in the range from 300 to 580 K, while that from Pyrex was almost independent of temperature.

  11. Microwave electric field sensing with Rydberg atoms

    Science.gov (United States)

    Stack, Daniel T.; Kunz, Paul D.; Meyer, David H.; Solmeyer, Neal

    2016-05-01

    Atoms form the basis of precise measurement for many quantities (time, acceleration, rotation, magnetic field, etc.). Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. Highly-excited (Rydberg) neutral atoms have very large electric-dipole moments and many dipole allowed transitions in the range of 1 - 500 GHz. It is possible to sensitively probe the electric field in this range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This technique allows for very sensitive field amplitude, polarization, and sub-wavelength imaging measurements. These quantities can be extracted by measuring properties of a probe laser beam as it passes through a warm rubidium vapor cell. Thus far, Rydberg microwave electrometry has relied upon the absorption of the probe laser. We report on our use of polarization rotation, which corresponds to the real part of the susceptibility, for measuring the properties of microwave frequency electric fields. Our simulations show that when a magnetic field is present and directed along the optical propagation direction a polarization rotation signal exists and can be used for microwave electrometry. One central advantage in using the polarization rotation signal rather than the absorption signal is that common mode laser noise is naturally eliminated leading to a potentially dramatic increase in signal-to-noise ratio.

  12. Vapor-phase heat-transport system

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.

    1983-01-01

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  13. Atomic physics

    CERN Document Server

    Born, Max

    1989-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  14. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    Science.gov (United States)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  15. Atomic evidence that modification of H-bonds established with amino acids critical for host-cell binding induces sterile immunity against malaria

    Energy Technology Data Exchange (ETDEWEB)

    Patarroyo, Manuel E., E-mail: mepatarr@mail.com [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Cifuentes, Gladys [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad del Rosario, Bogota (Colombia); Pirajan, Camilo; Moreno-Vranich, Armando [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Vanegas, Magnolia [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Universidad del Rosario, Bogota (Colombia)

    2010-04-09

    Based on the 3D X-ray crystallographic structures of relevant proteins of the malaria parasite involved in invasion to host cells and 3D NMR structures of High Activity Binding Peptides (HABPs) and their respective analogues, it was found that HABPs are rendered into highly immunogenic and sterile immunity inducers in the Aotus experimental model by modifying those amino acids that establish H-bonds with other HABPs or binding to host's cells. This finding adds striking and novel physicochemical principles, at the atomic level, for a logical and rational vaccine development methodology against infectious disease, among them malaria.

  16. Coherence Properties of Strongly Interacting Atomic Vapors in Waveguides

    Science.gov (United States)

    2011-12-31

    Molecular and Optical Physics Knoxville, TN, May 16-20, 2006 books, invited reviews, editorials , etc [10] Maxim Olshanii, Quantum Mechanics in Two...Rev. Lett. 99, 230402 (2007) [subcontracted under N00014-06-1-0455] [27] del Campo , A.Muga, J. G., Girardeau, M. D, Stability of spinor Fermi gases

  17. Sub-Shot-Noise Magnetometry with a Correlated Spin-Relaxation Dominated Alkali-Metal Vapor

    OpenAIRE

    Kominis, I. K.

    2007-01-01

    Spin noise sets fundamental limits to the precision of measurements using spin-polarized atomic vapors, such as performed with sensitive atomic magnetometers. Spin squeezing offers the possibility to extend the measurement precision beyond the standard quantum limit of uncorrelated atoms. Contrary to the current understanding, we show that even in the presence of spin relaxation, spin squeezing can lead to a significant reduction of spin noise, and hence an increase in magnetometric sensitivi...

  18. An opacity-sampled treatment of water vapor

    Science.gov (United States)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  19. Study of vaporization of LiI, LiI/C70, LiI/LiF/C70 from the Knudsen cell located into ionization chamber of the mass spectrometer

    Directory of Open Access Journals (Sweden)

    Đustebek Jasmina

    2014-01-01

    Full Text Available The vaporization of LiI, LiI/C70 and LiI/LIF/C70 were studied using a Knudsen cell located into ionization chamber of a magnetic sector mass spectrometer in a temperature range from 350 ˚C to 850 ˚C. Аs the ion species, LinI+ (n = 2, 3, 4, and 6 were identified from a mixture LiI/C70. While the clusters LinI+ and LinF+ (n = 2 - 6 were detected from a mixture LiI/LiF/C70. The intensities of LinI+ were higher than the emission of LinF+ cluster when the ratio of LiI to LiF was 2:1. By contrast, the emission of the LinF+ is favored when the ratio of LiI to LiF was 1:2. These results show that the vaporization of a mixture LiI/LIF/C70 from the Knudsen cell located into ionization chamber of the mass spectrometer represents an efficient and simple way to obtain and investigate clusters of the type LinX, X-F, I. In this work it has also been shown that the trend of the ln (Intensity, arbit. units versus temperature for all LinI+ clusters before and after the melting point of LiI was not same. It suggested that the way of the formation of these clusters can be different due to changes in temperature. [Projekat Ministarstva nauke Republike Srbije, br. 172019

  20. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  1. Solvents and vapor intrusion pathways.

    Science.gov (United States)

    Phillips, Scott D; Krieger, Gary R; Palmer, Robert B; Waksman, Javier C

    2004-08-01

    Vapor intrusion must be recognized appropriately as a separate pathway of contamination. Although many issues resemble those of other forms of contamination (particularly its entryway, which is similar to that of radon seepage), vapor intrusion stands apart as a unique risk requiring case-specific action. This article addresses these issues and the current understanding of the most appropriate and successful remedial actions.

  2. Coexistence of photonic and atomic Bose-Einstein condensates in ideal atomic gases

    Directory of Open Access Journals (Sweden)

    N. Boichenko

    2015-12-01

    Full Text Available We have studied conditions of photon Bose-Einstein condensate formation that is in thermodynamic equilibrium with ideal gas of two-level Bose atoms below the degeneracy temperature. Equations describing thermodynamic equilibrium in the system were formulated; critical temperatures and densities of photonic and atomic gas subsystems were obtained analytically. Coexistence conditions of these photonic and atomic Bose-Einstein condensates were found. There was predicted the possibility of an abrupt type of photon condensation in the presence of Bose condensate of ground-state atoms: it was shown that the slightest decrease of the temperature could cause a significant gathering of photons in the condensate. This case could be treated as a simple model of the situation known as "stopped light" in cold atomic gas. We also showed how population inversion of atomic levels can be created by lowering the temperature. The latter situation looks promising for light accumulation in atomic vapor at very low temperatures.

  3. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography–Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts

    Science.gov (United States)

    Gerloff, Janice; Sundar, Isaac K.; Freter, Robert; Sekera, Emily R.; Friedman, Alan E.; Robinson, Risa; Pagano, Todd

    2017-01-01

    Abstract Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate the release of the proinflammatory cytokine (interleukin-8 [IL-8]) and epithelial barrier function in response to different e-cig flavoring chemicals identified in various e-cig e-liquid flavorings and vapors by chemical characterization using gas chromatography–mass spectrometry analysis. Flavorings, such as acetoin (butter), diacetyl, pentanedione, maltol (malt), ortho-vanillin (vanilla), coumarin, and cinnamaldehyde in comparison with tumor necrosis factor alpha (TNFα), were used in this study. Human bronchial epithelial cells (Beas2B), human mucoepidermoid carcinoma epithelial cells (H292), and human lung fibroblasts (HFL-1) were treated with each flavoring chemical for 24 hours. The cells and conditioned media were then collected and analyzed for toxicity (viability %), lung epithelial barrier function, and proinflammatory cytokine IL-8 release. Cell viability was not significantly affected by any of the flavoring chemicals tested at a concentration of 10 μM to 1 mM. Acetoin and diacetyl treatment induced IL-8 release in Beas2B cells. Acetoin- and pentanedione-treated HFL-1 cells produced a differential, but significant response for IL-8 release compared to controls and TNFα. Flavorings, such as ortho-vanillin and maltol, induced IL-8 release in Beas2B cells, but not in H292 cells. Of all the flavoring chemicals tested, acetoin and maltol were more potent inducers of IL-8 release than TNFα in Beas2B and HFL-1 cells. Flavoring chemicals rapidly impaired epithelial barrier function in human bronchial epithelial cells (16-HBE) as measured by electric cell

  4. 33 CFR 154.828 - Vapor recovery and vapor destruction units.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor recovery and vapor... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.828 Vapor recovery and vapor destruction units. (a) The inlet to a vapor recovery unit...

  5. A compact 3.5-dB squeezed light source with atomic ensembles

    CERN Document Server

    Bao, Guzhi; Chen, Bing; Guo, Jinxian; Shen, Heng; Chen, Liqing; Zhang, Weiping

    2015-01-01

    We reported a compact squeezed light source consisting of an diode laser near resonant on 87Rb optical D1 transition and an warm Rubidium vapor cell. The -4dB vacuum squeezing at 795 nm via nonlinear magneto-optical rotation was observed when applying the magnetic field orthogonal to the propagation direction of the light beam. This compact squeezed light source can be potentially utilized in the quantum information protocols such as quantum repeater and memory, and quantum metrology such as atomic magnetometer.

  6. Water vapor: An extraordinary terahertz wave source under optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith [Massachusetts Institute of Technology, PO Box 380792, Cambridge, MA 02238-0792 (United States); HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada)], E-mail: kjohnson@mit.edu; Price-Gallagher, Matthew [HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada); Mamer, Orval; Lesimple, Alain [Mass Spectroscopy Unit, 740 Dr. Penfield, Suite 5300, McGill University, Montreal, QC, H3A 1A4 (Canada); Fletcher, Clark [HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada); Chen Yunqing; Lu Xiaofei; Yamaguchi, Masashi; Zhang, X.-C. [W.M. Keck Laboratory for Terahertz Science, Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2008-09-15

    In modern terahertz (THz) sensing and imaging spectroscopy, water is considered a nemesis to be avoided due to strong absorption in the THz frequency range. Here we report the first experimental demonstration and theoretical implications of using femtosecond laser pulses to generate intense broadband THz emission from water vapor. When we focused an intense laser pulse in water vapor contained in a gas cell or injected from a gas jet nozzle, an extraordinarily strong THz field from optically excited water vapor is observed. Water vapor has more than 50% greater THz generation efficiency than dry nitrogen. It had previously been assumed that the nonlinear generation of THz waves in this manner primarily involves a free-electron plasma, but we show that the molecular structure plays an essential role in the process. In particular, we found that THz wave generation from H{sub 2}O vapor is significantly stronger than that from D{sub 2}O vapor. Vibronic activities of water cluster ions, occurring naturally in water vapor, may possibly contribute to the observed isotope effect along with rovibrational contributions from the predominant monomers.

  7. Structural properties of In{sub 2}Se{sub 3} precursor layers deposited by spray pyrolysis and physical vapor deposition for CuInSe{sub 2} thin-film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Figueroa, P. [Department of Electrical Engineering (SEES), Cinvestav-Zacatenco, 2508 Av. IPN, 07360 Mexico City (Mexico); IMN, UMR 6502, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3 (France); Painchaud, T.; Lepetit, T.; Harel, S.; Arzel, L. [IMN, UMR 6502, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3 (France); Yi, Junsin, E-mail: yi@skku.ac.kr [School of Information and Communication Engineering, 2066 Seobu-ro, Jangan-gu, 440-746 Suwon (Korea, Republic of); Barreau, N. [IMN, UMR 6502, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3 (France); Velumani, S., E-mail: velu@cinvestav.mx [Department of Electrical Engineering (SEES), Cinvestav-Zacatenco, 2508 Av. IPN, 07360 Mexico City (Mexico); School of Information and Communication Engineering, 2066 Seobu-ro, Jangan-gu, 440-746 Suwon (Korea, Republic of)

    2015-07-31

    The structural properties of In{sub 2}Se{sub 3} precursor thin films grown by chemical spray pyrolysis (CSP) and physical vapor deposition (PVD) methods were compared. This is to investigate the feasibility to substitute PVD process of CuInSe{sub 2} (CISe) films by CSP films as precursor layer, thus decreasing the production cost by increasing material-utilization efficiency. Both films of 1 μm thickness were deposited at the same substrate temperature of 380 °C. X-ray diffraction and Raman spectra confirm the formation of γ-In{sub 2}Se{sub 3} crystalline phase for both films. The PVD and CSP films exhibited (110) and (006) preferred orientations, respectively. The PVD films showed a smaller full width at half maximum value (0.09°) compared with CSP layers (0.1°). Films with the same crystalline phase but with different orientations are normally used in the preparation of high quality CISe films by 3-stage process. Scanning electron microscope cross-section images showed an important difference in grain size with well-defined larger grains of size 1–2 μm in the PVD films as compared to CSP layers (600 nm). Another important characteristic that differentiates the two precursor films is the oxygen contamination. X-ray photoelectron spectroscopy showed the presence of oxygen in CSP films. The oxygen atoms could be bonded to indium by replacing Se vacancies, which are formed during CSP deposition. Taking account of the obtained results, such CSP films can be used as precursor layer in a PVD process in order to produce CISe absorber films. - Highlights: • To find the intricacies involved in spray pyrolysis (CSP) and physical vapor (PVD) deposition. • Comparison of CSP and PVD film formations — especially in structural properties. • Feasibility to substitute CSP (cheaper) films for PVD in the manufacturing process. • Decreasing the global production cost of Cu(In,Ga)Se{sub 2} devices in the 3-stage process.

  8. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  9. Phase matching alters spatial multiphoton processes in dense atomic ensembles

    CERN Document Server

    Leszczyński, Adam; Wasilewski, Wojciech

    2016-01-01

    Multiphoton processes in dense atomic vapors such as four-wave mixing or coherent blue light generation are typically viewed from single-atom perspective. Here we study the surprisingly important effect of phase matching near two-photon resonances that arises due to spatial extent of the atomic medium within which the multiphoton process occurs. The non-unit refractive index of the atomic vapor may inhibit generation of light in nonlinear processes, significantly shift the efficiency maxima in frequencies and redirect emitted beam. We present these effects on an example of four-wave mixing in dense rubidium vapors in a double-ladder configuration. By deriving a simple theory that takes into account essential spatial properties of the process, we give precise predictions and confirm their validity in the experiment. The model allows us to improve on the geometry of the experiment and engineer more efficient four-wave mixing.

  10. Phase matching alters spatial multiphoton processes in dense atomic ensembles.

    Science.gov (United States)

    Leszczyński, Adam; Parniak, Michał; Wasilewski, Wojciech

    2017-01-09

    Multiphoton processes in dense atomic vapors such as four-wave mixing or coherent blue light generation are typically viewed from single-atom perspective. Here we study the surprisingly important effect of phase matching near two-photon resonances that arises due to spatial extent of the atomic medium within which the multiphoton process occurs. The non-unit refractive index of the atomic vapor may inhibit generation of light in nonlinear processes, significantly shift the efficiency maxima in frequencies and redirect emitted beam. We present these effects on an example of four-wave mixing in dense rubidium vapors in a double-ladder configuration. By deriving a simple theory that takes into account essential spatial properties of the process, we give precise predictions and confirm their validity in the experiment. The model allows us to improve on the geometry of the experiment and engineer more efficient four-wave mixing.

  11. How to measure diffusional decoherence in multimode Rubidum vapor memories?

    CERN Document Server

    Chrapkiewicz, Radoslaw; Radzewicz, Czeslaw

    2013-01-01

    Diffusion is the main limitation of storage time in multispatial mode applications of warm atomic vapors. Surprisingly, there is scarce data for diffusion coefficients of Rubidium in buffer gases and available measurement methods are poorly suited to modern experiments. Here we present a simple, efficient and direct method of measuring diffusion coefficients in gases by creating, storing and retrieving spatially-varying atomic coherence. Raman scattering provides a necessary interface to the atoms that allows for probing many spatial periodicities concurrently. We single out the diffusional component of depolarization and determine the diffusion coefficient.We found the normalized diffusion coefficients for Rubidium atoms in noble gases to be as follows: Neon 0.20 cm$^{2}$/s, Krypton 0.068 cm$^{2}$/s, Xenon 0.057 cm$^{2}$/s. We are the first to give experimental results for Xenon and we recommend this gas for multimode quantum storage applications.

  12. Ultra-low background retrieval of photons stored in warm Rb vapor

    Science.gov (United States)

    Figueroa, Eden; Neuzner, Andreas; Latka, Tobias; Schupp, Josef; Noelleke, Christian; Reiserer, Andreas; Ritter, Stephan; Rempe, Gerhard

    2013-05-01

    The development of a simple and inexpensive platform for interconnecting light and matter at the quantum level has recently emerged as one of the key challenges of the rapidly evolving field of quantum engineering. Although elementary quantum memory capabilities have been already shown using ensembles of cold atoms or single-atoms in optical cavities, a scalable-friendly architecture might still require room temperature operation. Here we use an ensemble of Rb atoms in the gaseous state and store light pulses at the single-photon level to demonstrate that even in a common vapor cell it is possible to achieve quantum-level operation with ultra-low background noise. We have obtained a measured signal- to-background noise ratio of 3.5, which is the first time this figure of merit has been lifted beyond unity for experiments with room temperature operation. In addition, we also show the capabilities of the system to arbitrarily tailor the temporal properties of the retrieved single-photon-level pulses.

  13. Single longitudinal mode oscillations in the converging-straight-diverging dye cell pumped by a 9 kHz copper vapor laser

    Science.gov (United States)

    Rawat, V. S.; Kawade, Nitin; Manohar, K. G.

    2017-01-01

    To minimize the thermal and flow induced effect on the single mode dye laser at higher pulse repetition rate several dye cell flow geometries have been studied using computational fluid dynamics (CFD) model. The evolution of velocity profiles along the straight section of a converging - straight - diverging dye cell has been studied and the boundary layer thickness at different locations in the straight section of the flow channel has been captured using the CFD model. It has been observed that the boundary layer thickness reduces with increasing flow velocity in the dye cell. The boundary layer thickness is minimum at the throat of the dye cell i.e., from where the straight section commence and the velocity profile is almost flat. This dye cell provides nearly two times lesser pressure drop for higher flow velocities in comparison to the straight rectangular dye cell. These dye cells have been used for generating single mode oscillation in the short cavity grazing incidence grating (GIG) cavity. We had experimentally observed that the wavelength fluctuations around the mean value is nearly 7 times less for the converging-straight-diverging dye cell at a relatively higher flow velocities of nearly 12 m/s. For rectangular straight dye cell it is very difficult to obtain a single mode laser at this higher flow velocity.

  14. Mixed-Organic-Cation (FA)x(MA)1-xPbI3 Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process.

    Science.gov (United States)

    Chen, Jing; Xu, Jia; Xiao, Li; Zhang, Bing; Dai, Songyuan; Yao, Jianxi

    2017-01-25

    Compared to that of methylammonium lead iodide perovskite (MAPbI3), formamidinium lead iodide perovskite (FAPbI3) has a smaller energy band gap and greater potential efficiency. To prevent the transformation of α-FAPbI3 to δ-FAPbI3, preparation of (FA)x(MA)1-xPbI3 was regarded as an effective route. Usually, the planar (FA)x(MA)1-xPbI3 perovskite solar cells are fabricated by a solution process. Herein, we report a low-pressure vapor-assisted solution process (LP-VASP) for the growth of (FA)x(MA)1-xPbI3 perovskite solar cells that features improved electron transportation, uniform morphology, high power conversion efficiency (PCE), and better crystal stability. In LP-VASP, the (FA)x(MA)1-xPbI3 films were formed by the reaction between the PbI2 film with FAI and MAI vapor in a very simple vacuum oven. LP-VASP is an inexpensive way to batch-process solar cells, avoiding the repeated deposition solution process for PbI2 films, and the device had a low cost. We demonstrate that, with an increase in the MAI content, the (101) peak position of FAPbI3 shifts toward the (110) peak position of MAPbI3, the (FA)x(MA)1-xPbI3 perovskites are stable, and no decomposition or phase transition is observed after 14 days. The photovoltaic performance was effectively improved by the introduction of MA(+) with the highest efficiency being 16.48% under conditions of 40 wt % MAI. The carrier lifetime of (FA)x(MA)1-xPbI3 perovskite films is approximately three times longer than that of pure FAPbI3. Using this process, solar cells with a large area of 1.00 cm(2) were fabricated with the PCE of 8.0%.

  15. An exposure system for measuring nasal and lung uptake of vapors in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, A.R.; Brookins, L.K.; Gerde, P. [National Inst. for Working Life, Solna (Sweden)

    1995-12-01

    Inhaled gases and vapors often produce biological damage in the nasal cavity and lower respiratory tract. The specific site within the respirator tract at which a gas or vapor is absorbed strongly influences the tissues at risk to potential toxic effects; to predict or to explain tissue or cell specific toxicity of inhaled gases or vapors, the sites at which they are absorbed must be known. The purpose of the work reported here was to develop a system for determining nose and lung absorption of vapors in rats, an animal commonly used in inhalation toxicity studies. In summary, the exposure system described allows us to measure in the rate: (1) nasal absorption and desorption of vapors; (2) net lung uptake of vapors; and (3) the effects of changed breathing parameters on vapor uptake.

  16. Purge and Trap Gas Chromatography-Cold Vapor Atomic Fluorescence Spectrometry Determination of Methyl Mercury and Ethyl Mercury in Marine Animals%P & T-GC-CVAFS法测定海产动物中的甲基汞和乙基汞

    Institute of Scientific and Technical Information of China (English)

    崔颖; 肖亚兵; 王禹; 高健会

    2016-01-01

    Marine animals sample was extracted with 30%nitric acid solution , and then adjusted the pH with 2 mol/L sodium acetate-acetic acid buffer solution. The eluate obtained was determined and identified by purge and trap gas chromatography-cold vapor atomic fluorescence spectrometry (P&T-GC-CVAFS). The propylation derivatization converted Methyl mercury (MeHg) to the more volatile methyl propyl mercury (MeHgPr), Ethyl mercury(EtHg) to the more volatile ethyl propyl mercury(EtHgPr), which could be concentrated through purge and trap system with a further clean-up of matrix. Tests for recovery were made by addition of standard MeHg and EtHg solutions at 3 different concentration levels to blank marine animals sample matrixes, values of MeHg recovery found were in the range from 80.5%to 103.2%, with RSDs (n=6) in the range from 1.7%to 6.9%;values of EtHg recovery found were in the range from 84.2%to 103.7%, with RSDs(n=6) in the range from 2.3%to 7.0%.%海产动物样品经过30%硝酸溶液提取,用2 mol/L醋酸钠-醋酸缓冲溶液调节pH后,用吹扫捕集-气相色谱-冷原子荧光光谱仪联用系统测定其中的甲基汞和乙基汞的含量。使用衍生试剂,将甲基汞转化为甲基丙基汞,乙基汞转化为乙基丙基汞,吹扫捕集进行富集并进一步消除基体干扰。以空白样品为基体,添加3种浓度水平的甲基汞和乙基汞标准溶液,测得甲基汞的回收率为80.5%~103.2%,相对标准偏差(n=6)为1.7%~6.9%;乙基汞的回收率在84.2%~103.7%,相对标准偏差(n=6)为2.3%~7.0%。

  17. Cavity enhanced atomic magnetometry

    CERN Document Server

    Crepaz, Herbert; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  18. Cavity enhanced atomic magnetometry.

    Science.gov (United States)

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-10-20

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  19. Water Vapor-Mediated Volatilization of High-Temperature Materials

    Science.gov (United States)

    Meschter, Peter J.; Opila, Elizabeth J.; Jacobson, Nathan S.

    2013-07-01

    Volatilization in water vapor-containing atmospheres is an important and often unexpected mechanism of degradation of high-temperature materials during processing and in service. Thermodynamic properties data sets for key (oxy)hydroxide vapor product species that are responsible for material transport and damage are often uncertain or unavailable. Estimation, quantum chemistry calculation, and measurement methods for thermodynamic properties of these species are reviewed, and data judged to be reliable are tabulated and referenced. Applications of water vapor-mediated volatilization include component and coating recession in turbine engines, oxidation/volatilization of ferritic steels in steam boilers, chromium poisoning in solid-oxide fuel cells, vanadium transport in hot corrosion and degradation of hydrocracking catalysts, Na loss from Na β"-Al2O3 tubes, and environmental release of radioactive isotopes in a nuclear reactor accident or waste incineration. The significance of water vapor-mediated volatilization in these applications is described.

  20. Crystallization of Membrane Proteins by Vapor Diffusion

    Science.gov (United States)

    Delmar, Jared A.; Bolla, Jani Reddy; Su, Chih-Chia; Yu, Edward W.

    2016-01-01

    X-ray crystallography remains the most robust method to determine protein structure at the atomic level. However, the bottlenecks of protein expression and purification often discourage further study. In this chapter, we address the most common problems encountered at these stages. Based on our experiences in expressing and purifying antimicrobial efflux proteins, we explain how a pure and homogenous protein sample can be successfully crystallized by the vapor diffusion method. We present our current protocols and methodologies for this technique. Case studies show step-by-step how we have overcome problems related to expression and diffraction, eventually producing high quality membrane protein crystals for structural determinations. It is our hope that a rational approach can be made of the often anecdotal process of membrane protein crystallization. PMID:25950974

  1. Kinetics of wet sodium vapor complex plasma

    Science.gov (United States)

    Mishra, S. K.; Sodha, M. S.

    2014-04-01

    In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

  2. Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy.

    Science.gov (United States)

    Axpe, Eneko; Lopez-Euba, Tamara; Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro.

  3. Archimedes Mass Filter Vaporizer

    Science.gov (United States)

    Putvinski, S.; Agnew, A. F.; Cluggish, B. P.; Ohkawa, T.; Sevier, L.; Umstadter, K. R.; Dresvin, S. V.; Kuteev, B. V.; Feygenson, O. N.; Ivanov, D. V.; Zverev, S. G.; Miroshnikov, I. V.; Egorov, S. M.; Kiesewetter, D. V.; Maliugin, V. I.

    2001-10-01

    Archimedes Technology Group, Inc., is developing a plasma mass separator called the Archimedes Filter that separates waste oxide mixtures ion by ion into two mass groups: light and heavy. Since high-level waste at Hanford has 99.9its radioactivity associated with heavy elements, the Archimedes Filter can effectively decontaminate over three-quarters of that waste. The Filter process involves some preprocessing followed by volatilization and separation by the magnetic and electric fields of the main plasma. This presentation describes the approach to volatilization of the waste oxy-hydroxide mixture by means of a very high heat flux (q > 10 MW/m2). Such a high heat flux is required to ensure congruent evaporation of the complex oxy-hydroxide mixture and is achieved by injection of small droplets of molten waste into an inductively coupled plasma (ICP) torch. This presentation further addresses different issues related to evaporation of the waste including modeling of droplet evaporation, estimates of parameters of plasma torch, and 2D modeling of the plasma. The experimental test bed for oxide vaporization and results of the initial experiments on oxide evaporation in 60 kW ICP torch will also be described.

  4. The crocidolite fibres interaction with human mesothelial cells as investigated by combining electron microscopy, atomic force and scanning near-field optical microscopy.

    Science.gov (United States)

    Andolfi, Laura; Trevisan, Elisa; Zweyer, Marina; Prato, Stefano; Troian, Barbara; Vita, Francesca; Borelli, Violetta; Soranzo, Maria Rosa; Melato, Mauro; Zabucchi, Giuliano

    2013-03-01

    In this study, we have performed a morphological analysis of crocidolite fibres interaction with mesothelial cells (MET5A) by combining conventional electron microscopy with atomic force (AFM) and scanning near-field optical microscopy (SNOM). After 6-h exposure at a crocidolite dose of 5 μg cm(-2), 90% of MET5A cells interact with fibres that under these conditions have a low cytotoxic effect. SEM images point out that fibres can be either engulfed by the cells that lose their typical morphology or they can accumulate over or partially inside the cells, which preserve their typical spread morphology. By using AFM we are able to directly visualize the entry-site of nanometric-sized fibres at the plasma membrane of the spread mesothelial cells. More importantly, the crocidolite fibres that are observed to penetrate the plasma membrane in SNOM topography can be simultaneously followed beneath the cell surface in the SNOM optical images. The analysis of SNOM data demonstrates the entrance of crocidolite fibres in proximity of nuclear compartment, as observed also in the TEM images. Our findings indicate that the combination of conventional electron microscopy with novel nanoscopic techniques can be considered a promising approach to achieve a comprehensive morphological description of the interaction between asbestos fibres and mesothelial cells that represents the early event in fibre pathogenesis.

  5. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.

    Science.gov (United States)

    Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei

    2015-10-07

    Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.

  6. Dye-sensitized solar cell based on optically transparent TiO{sub 2} nanocrystalline electrode prepared by atomized spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, H.M.N., E-mail: hmnb@pdn.ac.l [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka); Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Rajapakse, R.M.G. [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka); Murakami, K. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Kumara, G.R.R.A.; Anuradha Sepalage, G. [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka)

    2011-10-30

    Highlights: > Transparent TiO{sub 2} films were prepared by the atomized spray pyrolysis method. > These films contain 3-5 nm discrete particles, interconnected to give a crack-free thin film structure. > Dye-absorption of the TiO{sub 2} film is 2.16 times higher than those used in conventional DSCs. > Conversion efficiency of 8.2% can be achieved with 1000 W m{sup -2} irradiation. - Abstract: Preparation of crack-free thin films of interconnected and non-agglomerated TiO{sub 2} nanoparticles on electronically conducting fluorine doped tin oxide surfaces is instrumental in designing and developing transparent dye-sensitized solar cells (DSCs). A novel technique called 'Atomized Spray Pyrolysis' (ASP) has been designed and developed to achieve such perfectly transparent thin films. Optical transmittance of TiO{sub 2} films produced on FTO surface by this ASP method has been compared with those obtained by doctor-blading and by hand spray methods and found that the atomized spray pyrolysis technique give films with high transparency. Dye adsorption per gram of TiO{sub 2} is 2.16 times higher in the sample produced by the ASP method when compared to the film produced by the hand spray method and is 1.60 times higher than that produced by the doctor-blading method using a commercially available TiO{sub 2} nanocrystalline paste. SEM studies show the presence of interconnected discrete particles in the film produced by the ASP method. The fill factor (ff) remains almost constant for the cells with thickness from 6 {mu}m to 13 {mu}m but the highest photovoltage and photocurrent were found in {approx}10 {mu}m film based DSC which gave 8.2% conversion efficiency at AM 1.5 irradiation for cells of 0.25 cm{sup 2} active area.

  7. Relation of lifetime to surface passivation for atomic-layer-deposited Al{sub 2}O{sub 3} on crystalline silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Joon [Graduate School of Energy Science and Technology, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Song, Hee Eun, E-mail: hsong@kier.re.kr [Photovoltaic Center, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Chang, Hyo Sik, E-mail: hschang@cnu.ac.kr [Graduate School of Energy Science and Technology, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2015-03-15

    Highlights: • We investigated the relation of potassium contamination on Si solar wafer to lifetime. • We deposited Al{sub 2}O{sub 3} layer by atomic layer deposition (ALD) on Si solar wafer after several cleaning process. • Potassium can be left on Si surface by incomplete cleaning process and degrade the Al{sub 2}O{sub 3} passivation quality. - Abstract: We investigated the relation of potassium contamination on a crystalline silicon (c-Si) surface after potassium hydroxide (KOH) etching to the lifetime of the c-Si solar cell. Alkaline solution was employed for saw damage removal (SDR), texturing, and planarization of a textured c-Si solar wafer prior to atomic layer deposition (ALD) Al{sub 2}O{sub 3} growth. In the solar-cell manufacturing process, ALD Al{sub 2}O{sub 3} passivation is utilized to obtain higher conversion efficiency. ALD Al{sub 2}O{sub 3} shows excellent surface passivation, though minority carrier lifetime varies with cleaning conditions. In the present study, we investigated the relation of potassium contamination to lifetime in solar-cell processing. The results showed that the potassium-contaminated samples, due to incomplete cleaning of KOH, had a short lifetime, thus establishing that residual potassium can degrade Al{sub 2}O{sub 3} surface passivation.

  8. Properties of nanostructured undoped ZrO{sub 2} thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho; Cha, Suk Won, E-mail: ybkim@hanyang.ac.kr, E-mail: swcha@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Ji, Sanghoon [Graduate School of Convergence Science and Technology, Seoul National University, Iui-dong, Yeongtong-gu, Suwon 443-270 (Korea, Republic of); Hong, Soon Wook; Koo, Bongjun; Kim, Young-Beom, E-mail: ybkim@hanyang.ac.kr, E-mail: swcha@snu.ac.kr [Department of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); An, Jihwan [Manufacturing Systems and Design Engineering Programme, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of)

    2016-01-15

    Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solid oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.

  9. Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Kawamura, Ryuzo [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Tamura, Masato; Matsui, Hirofumi [Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8573 (Japan); Matsusaki, Michiya; Akashi, Mitsuru [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nakamura, Chikashi, E-mail: chikashi-nakamura@aist.go.jp [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan)

    2014-08-15

    Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.

  10. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  11. Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate.

    Science.gov (United States)

    Ji, Sanghoon; Cho, Gu Young; Yu, Wonjong; Su, Pei-Chen; Lee, Min Hwan; Cha, Suk Won

    2015-02-11

    Nanoscale yttria-stabilized zirconia (YSZ) electrolyte film was deposited by plasma-enhanced atomic layer deposition (PEALD) on a porous anodic aluminum oxide supporting substrate for solid oxide fuel cells. The minimum thickness of PEALD-YSZ electrolyte required for a consistently high open circuit voltage of 1.17 V at 500 °C is 70 nm, which is much thinner than the reported thickness of 180 nm using nonplasmatic ALD and is also the thinnest attainable value reported in the literatures on a porous supporting substrate. By further reducing the electrolyte thickness, the grain size reduction resulted in high surface grain boundary density at the cathode/electrolyte interface.

  12. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  13. Simultaneous Use of Cs and Rb Rydberg Atoms for Independent RF Electric Field Measurements via Electromagnetically Induced Transparency

    CERN Document Server

    Simons, Matt T; Holloway, Christopher L

    2016-01-01

    We demonstrate simultaneous electromagnetically-induced transparency (EIT) with cesium (Cs) and rubidium (Rb) Rydberg atoms in the same vapor cell with coincident (overlapping) optical fields. Each atomic system can detect radio frequency (RF) electric (E) field strengths through modification of the EIT signal (Autler-Townes (AT) splitting), which leads to a direct SI traceable RF E-field measurement. We show that these two systems can detect the same the RF E-field strength simultaneously, which provides a direct in situ comparison of Rb and Cs RF measurements in Rydberg atoms. In effect, this allows us to perform two independent measurements of the same quantity in the same laboratory, providing two different immediate and independent measurements. This gives two measurements that helps rule out systematic effects and uncertainties in this E-field metrology approach, which are important when establishing an international measurement standard for an E-field strength and is a necessary step for this method to...

  14. Ultrasonic Atomization Amount for Different Frequencies

    Science.gov (United States)

    Yasuda, Keiji; Honma, Hiroyuki; Xu, Zheng; Asakura, Yoshiyuki; Koda, Shinobu

    2011-07-01

    The mass flow rate of ultrasonic atomization was estimated by measuring the vaporization amount from a bulk liquid with a fountain. The effects of ultrasonic frequency and intensity on the atomization characteristics were investigated when the directivities of the acoustic field from a transducer were almost the same. The sample was distillated water and the ultrasonic frequencies were 0.5, 1.0, and 2.4 MHz. The mass flow rate of ultrasonic atomization increased with increasing ultrasonic intensity and decreasing ultrasonic frequency. The fountain was formed at the liquid surface where the effective value of acoustic pressure was above atmospheric pressure. The fountain height was strongly governed by the acoustic pressure at the liquid surface of the transducer center. At the same ultrasonic intensity, the dependence of ultrasonic frequency on the number of atomized droplets was small. At the same apparent surface area of the fountain, the number of atomized droplets became larger as the ultrasonic frequency increased.

  15. Modeling vapor dominated geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Marconcini, R.; McEdwards, D.; Neri, G.; Ruffilli, C.; Schroeder, R.; Weres, O.; Witherspoon, P.

    1977-09-12

    The unresolved questions with regard to vapor-dominated reservoir production and longevity are reviewed. The simulation of reservoir behavior and the LBL computer program are discussed. The geology of Serrazzano geothermal field and its reservoir simulation are described. (MHR)

  16. Vapor Intrusion Facilities - South Bay

    Data.gov (United States)

    U.S. Environmental Protection Agency — POINT locations for the South Bay Vapor Instrusion Sites were derived from the NPL data for Region 9. One site, Philips Semiconductor, was extracted from the...

  17. In situ chemical vapor deposition growth of carbon nanotubes on hollow CoFe2O4 as an efficient and low cost counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Yuan, Hong; Jiao, Qingze; Zhang, Shenli; Zhao, Yun; Wu, Qin; Li, Hansheng

    2016-09-01

    The composites of hollow CoFe2O4 and carbon nanotubes (h-CoFe2O4@CNTs) are successfully prepared by using a simple hydrothermal process coupling with the in-situ chemical vapor deposition (CVD) as electrocatalytic materials for counter electrode of dye-sensitized solar cells. The CNTs are uniformly grown on the surface of hollow CoFe2O4 particles verified by X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) measurements. The electrochemical performances of hollow CoFe2O4@CNTs composites are evaluated by the EIS, Tafel polarization and CV measurements, and exhibiting high electrocatalytic performance for the reduction of triiodide. The presence of conductive polypyrrole nanoparticles could further improve the conductivity and catalytic performance of the resultant composites. Controlling the thickness of composites film, the optimum photovoltaic conversion efficiency of 6.55% is obtained, which is comparable to that of the cells fabricated with Pt counter electrode (6.61%). In addition, the composites exhibit a good long-term electrochemical stability in I3-/I- electrolyte.

  18. Continuous generation of Rubidium vapor in hollow-core photonic band-gap fibers

    CERN Document Server

    Donvalkar, Prathamesh S; Clemmen, Stephane; Gaeta, Alexander L

    2015-01-01

    We demonstrate high optical depths (50+/-5), lasting for hours in Rubidium-filled hollow-core photonic band-gap fibers, which represents a 1000X improvement over operation times previously reported. We investigate the vapor generation mechanism using both a continuous-wave and a pulsed light source and find that the mechanism for generating the Rubidium atoms is primarily due to thermal vaporization. Continuous generation of large vapor densities should enable measurements at the single-photon level by averaging over longer time scales.

  19. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    Science.gov (United States)

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  20. Microwave field measurement via Rabi resonances in Cs atoms

    CERN Document Server

    Sun, Fuyu; Bai, Qingsong; Huang, Xianhe; Ma, Jie; Li, Xiaofeng

    2016-01-01

    We present a technique for measuring microwave (MW) field based on Rabi resonances induced by the interaction of atoms with a phase-modulated MW field. A theoretical model of field measurement is used to calculate Rabi frequency. Single-peak feature of the measurement model makes the technique a valuable tool for simple and fast field measurement. As an example, we use the technique to determine the MW field strength inside a Cs vapor cell in the X-band rectangular cavity for applied power in the range of -21 dBm to 20 dBm. The results show that this proposed technique is capable for detecting the field over a broad dynamical range.