WorldWideScience

Sample records for atom probe methods

  1. Encapsulation method for atom probe tomography analysis of nanoparticles

    NARCIS (Netherlands)

    Larson, D.J.; Giddings, A.D.; Wub, Y.; Verheijen, M.A.; Prosa, T.J.; Roozeboom, F.; Rice, K.P.; Kessels, W.M.M.; Geiser, B.P.; Kelly, T.F.

    2015-01-01

    Open-space nanomaterials are a widespread class of technologically important materials that are generally incompatible with analysis by atom probe tomography (APT) due to issues with specimen preparation, field evaporation and data reconstruction. The feasibility of encapsulating such non-compact ma

  2. Encapsulation method for atom probe tomography analysis of nanoparticles.

    Science.gov (United States)

    Larson, D J; Giddings, A D; Wu, Y; Verheijen, M A; Prosa, T J; Roozeboom, F; Rice, K P; Kessels, W M M; Geiser, B P; Kelly, T F

    2015-12-01

    Open-space nanomaterials are a widespread class of technologically important materials that are generally incompatible with analysis by atom probe tomography (APT) due to issues with specimen preparation, field evaporation and data reconstruction. The feasibility of encapsulating such non-compact matter in a matrix to enable APT measurements is investigated using nanoparticles as an example. Simulations of field evaporation of a void, and the resulting artifacts in ion trajectory, underpin the requirement that no voids remain after encapsulation. The approach is demonstrated by encapsulating Pt nanoparticles in an ZnO:Al matrix created by atomic layer deposition, a growth technique which offers very high surface coverage and conformality. APT measurements of the Pt nanoparticles are correlated with transmission electron microscopy images and numerical simulations in order to evaluate the accuracy of the APT reconstruction.

  3. IMPROVED FABRICATION METHOD FOR CARBON NANOTUBE PROBE OF ATOMIC FORCE MICROSCOPY(AFM)

    Institute of Scientific and Technical Information of China (English)

    XU Zongwei; DONG Shen; GUO Liqiu; ZHAO Qingliang

    2006-01-01

    An improved arc discharge method is developed to fabricate carbon nanotube probe of atomic force microscopy (AFM) here. First, silicon probe and carbon nanotube are manipulated under an optical microscope by two high precision microtranslators. When silicon probe and carbon nanotube are very close, several tens voltage is applied between them. And carbon nanotube is divided and attached to the end of silicon probe, which mainly due to the arc welding function.Comparing with the arc discharge method before, the new method here needs no coat silicon probe with metal film in advance, which can greatly reduce the fabrication's difficulty. The fabricated carbon nanotube probe shows good property of higher aspect ratio and can more accurately reflect the true topography of silicon grating than silicon probe. Under the same image drive force, carbon nanotube probe had less indentation depth on soft triblock copolymer sample than silicon probe. This showed that carbon nanotube probe has lower spring constant and less damage to the scan sample than silicon probe.

  4. Detecting and extracting clusters in atom probe data: A simple, automated method using Voronoi cells

    Energy Technology Data Exchange (ETDEWEB)

    Felfer, P., E-mail: peter.felfer@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Ceguerra, A.V., E-mail: anna.ceguerra@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Ringer, S.P., E-mail: simon.ringer@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Cairney, J.M., E-mail: julie.cairney@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia)

    2015-03-15

    The analysis of the formation of clusters in solid solutions is one of the most common uses of atom probe tomography. Here, we present a method where we use the Voronoi tessellation of the solute atoms and its geometric dual, the Delaunay triangulation to test for spatial/chemical randomness of the solid solution as well as extracting the clusters themselves. We show how the parameters necessary for cluster extraction can be determined automatically, i.e. without user interaction, making it an ideal tool for the screening of datasets and the pre-filtering of structures for other spatial analysis techniques. Since the Voronoi volumes are closely related to atomic concentrations, the parameters resulting from this analysis can also be used for other concentration based methods such as iso-surfaces. - Highlights: • Cluster analysis of atom probe data can be significantly simplified by using the Voronoi cell volumes of the atomic distribution. • Concentration fields are defined on a single atomic basis using Voronoi cells. • All parameters for the analysis are determined by optimizing the separation probability of bulk atoms vs clustered atoms.

  5. A filtering method to reveal crystalline patterns from atom probe microscopy desorption maps.

    Science.gov (United States)

    Yao, Lan

    2016-01-01

    A filtering method to reveal the crystallographic information present in Atom Probe Microscopy (APM) data is presented. The method filters atoms based on the time difference between their evaporation and the evaporation of the previous atom. Since this time difference correlates with the location and the local structure of the evaporating atoms on the surface, it can be used to reveal any crystallographic information contained within APM data. The demonstration of this method is illustrated on: •A pure Al specimen for which crystallographic poles are clearly visible on the desorption patterns easily indexed.•Three Fe-15at.% Cr datasets where crystallographic patterns are less obvious and require this filtering method.

  6. Atom probe tomography today

    Directory of Open Access Journals (Sweden)

    Alfred Cerezo

    2007-12-01

    Full Text Available This review aims to describe and illustrate the advances in the application of atom probe tomography that have been made possible by recent developments, particularly in specimen preparation techniques (using dual-beam focused-ion beam instruments but also of the more routine use of laser pulsing. The combination of these two developments now permits atomic-scale investigation of site-specific regions within engineering alloys (e.g. at grain boundaries and in the vicinity of cracks and also the atomic-level characterization of interfaces in multilayers, oxide films, and semiconductor materials and devices.

  7. Atom Probe Tomography 2012

    Science.gov (United States)

    Kelly, Thomas F.; Larson, David J.

    2012-08-01

    In the world of tomographic imaging, atom probe tomography (APT) occupies the high-spatial-resolution end of the spectrum. It is highly complementary to electron tomography and is applicable to a wide range of materials. The current state of APT is reviewed. Emphasis is placed on applications and data analysis as they apply to many fields of research and development including metals, semiconductors, ceramics, and organic materials. We also provide a brief review of the history and the instrumentation associated with APT and an assessment of the existing challenges in the field.

  8. Analysis of Radiation Damage in Light Water Reactors: Comparison of Cluster Analysis Methods for the Analysis of Atom Probe Data.

    Science.gov (United States)

    Hyde, Jonathan M; DaCosta, Gérald; Hatzoglou, Constantinos; Weekes, Hannah; Radiguet, Bertrand; Styman, Paul D; Vurpillot, Francois; Pareige, Cristelle; Etienne, Auriane; Bonny, Giovanni; Castin, Nicolas; Malerba, Lorenzo; Pareige, Philippe

    2017-01-30

    Irradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the ability to identify different chemical species in three dimensions. Microstructural observations using APT can underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses there are currently multiple methods for analyzing the data. This can result in inconsistencies between results obtained from different researchers and unnecessary scatter when combining data from multiple sources. This makes interpretation of results more complex and calibration of radiation damage models challenging. In this work simulations of a range of different microstructures are used to directly compare different cluster analysis algorithms and identify their strengths and weaknesses.

  9. A Filtering Method to Reveal Crystalline Patterns from Atom Probe Microscopy Desorption Maps

    Science.gov (United States)

    2016-03-26

    between their evaporation and the evaporation of the previous atom . Since this time difference correlates with the location and the local structure of...APM is the only technique providing 3D atomic -scale composition information. However the amount of structural information can often be limited by...shape, the actual apex surface is not continuously smooth and presents some roughness due to the atomic nature of the surface structures . This results

  10. Atom probe analysis of titanium hydride precipitates.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Otsuka, H; Fujii, H

    2009-04-01

    It is expected that the three-dimensional atom probe (3DAP) will be used as a tool to visualize the atomic scale of hydrogen atoms in steel is expected, due to its high spatial resolution and very low detection limit. In this paper, the first 3DAP analysis of titanium hydride precipitates in metal titanium is reported in terms of the quantitative detection of hydrogen. FIB fabrication techniques using the lift-out method have enabled the production of needle tips of hydride precipitates, of several tens of microns in size, within a titanium matrix. The hydrogen concentration estimated from 3DAP analysis was slightly smaller than that of the hydride phase predicted from the phase diagram. We discuss the origin of the difference between the experimental and predicted values and the performance of 3DAP for the quantitative detection of hydrogen.

  11. Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ageev, O. A., E-mail: ageev@sfedu.ru [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation); Bykov, Al. V. [NT-MDT (Russian Federation); Kolomiitsev, A. S.; Konoplev, B. G.; Rubashkina, M. V.; Smirnov, V. A.; Tsukanova, O. G. [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation)

    2015-12-15

    The results of an experimental study of the modification of probes for critical-dimension atomicforce microscopy (CD-AFM) by the deposition of carbon nanotubes (CNTs) to improve the accuracy with which the surface roughness of vertical walls is determined in submicrometer structures are presented. Methods of the deposition of an individual CNT onto the tip of an AFM probe via mechanical and electrostatic interaction between the probe and an array of vertically aligned carbon nanotubes (VACNTs) are studied. It is shown that, when the distance between the AFM tip and a VACNT array is 1 nm and the applied voltage is within the range 20–30 V, an individual carbon nanotube is deposited onto the tip. On the basis of the results obtained in the study, a probe with a carbon nanotube on its tip (CNT probe) with a radius of 7 nm and an aspect ratio of 1:15 is formed. Analysis of the CNT probe demonstrates that its use improves the resolution and accuracy of AFM measurements, compared with the commercial probe, and also makes it possible to determine the roughness of the vertical walls of high-aspect structures by CD-AFM. The results obtained can be used to develop technological processes for the fabrication and reconditioning of special AFM probes, including those for CD-AFM, and procedures for the interoperational express monitoring of technological process parameters in the manufacturing of elements for micro- and nanoelectronics and micro- and nanosystem engineering.

  12. The future of atom probe tomography

    Directory of Open Access Journals (Sweden)

    Michael K. Miller

    2012-04-01

    Full Text Available The dream of the microscopy and materials science communities is to see, identify, accurately locate, and determine the fundamental physical properties of every atom in a specimen. With this knowledge together with modern computer models and simulations, a full understanding of the properties of a material can be determined. This fundamental knowledge leads to the design and development of more advanced materials for solving the needs of society. The technique of atom probe tomography is the closest to fulfilling this dream but is still significantly short of the goal. The future of atom probe tomography, and the prospects for achieving this ultimate goal are outlined.

  13. Fabrication of an all-metal atomic force microscope probe

    DEFF Research Database (Denmark)

    Rasmussen, Jan Pihl; Tang, Peter Torben; Hansen, Ole

    1997-01-01

    This paper presents a method for fabrication of an all-metal atomic force microscope probe (tip, cantilever and support) for optical read-out, using a combination of silicon micro-machining and electroforming. The paper describes the entire fabrication process for a nickel AFM-probe. In addition...

  14. Atom Probe Tomography of Nanoscale Electronic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Larson, David J.; Prosa, Ty J.; Perea, Daniel E.; Inoue, Hidekazu; Mangelinck, D.

    2016-01-01

    Atom probe tomography (APT) is a mass spectrometry based on time-of-flight measurements which also concurrently produces 3D spatial information. The reader is referred to any of the other papers in this volume or to the following references for further information 4–8. The current capabilities of APT, such as detecting a low number of dopant atoms in nanoscale devices or segregation at a nanoparticle interface, make this technique an important component in the nanoscale metrology toolbox. In this manuscript, we review some of the applications of APT to nanoscale electronic materials, including transistors and finFETs, silicide contact microstructures, nanowires, and nanoparticles.

  15. Toward atom probe tomography of microelectronic devices

    Science.gov (United States)

    Larson, D. J.; Lawrence, D.; Lefebvre, W.; Olson, D.; Prosa, T. J.; Reinhard, D. A.; Ulfig, R. M.; Clifton, P. H.; Bunton, J. H.; Lenz, D.; Olson, J. D.; Renaud, L.; Martin, I.; Kelly, T. F.

    2011-11-01

    Atom probe tomography and scanning transmission electron microscopy has been used to analyze a commercial microelectronics device prepared by depackaging and focused ion beam milling. Chemical and morphological data are presented from the source, drain and channel regions, and part of the gate oxide region of an Intel® i5-650 p-FET device demonstrating feasibility in using these techniques to investigate commercial chips.

  16. Mining information from atom probe data.

    Science.gov (United States)

    Cairney, Julie M; Rajan, Krishna; Haley, Daniel; Gault, Baptiste; Bagot, Paul A J; Choi, Pyuck-Pa; Felfer, Peter J; Ringer, Simon P; Marceau, Ross K W; Moody, Michael P

    2015-12-01

    Whilst atom probe tomography (APT) is a powerful technique with the capacity to gather information containing hundreds of millions of atoms from a single specimen, the ability to effectively use this information creates significant challenges. The main technological bottleneck lies in handling the extremely large amounts of data on spatial-chemical correlations, as well as developing new quantitative computational foundations for image reconstruction that target critical and transformative problems in materials science. The power to explore materials at the atomic scale with the extraordinary level of sensitivity of detection offered by atom probe tomography has not been not fully harnessed due to the challenges of dealing with missing, sparse and often noisy data. Hence there is a profound need to couple the analytical tools to deal with the data challenges with the experimental issues associated with this instrument. In this paper we provide a summary of some key issues associated with the challenges, and solutions to extract or "mine" fundamental materials science information from that data.

  17. Spatial resolution in atom probe tomography

    CERN Document Server

    Gault, Baptiste; de Geuser, Frederic; La Fontaine, Alex; Stephenson, Leigh T; Haley, Daniel; Ringer, Simon P

    2015-01-01

    This article addresses gaps in definitions and a lack of standard measurement techniques to assess the spatial resolution in atom probe tomography. This resolution is known to be anisotropic, being better in the depth than laterally. Generally the presence of atomic planes in the tomographic reconstruction is considered as being a sufficient proof of the quality of the spatial resolution of the instrument. Based on advanced spatial distribution maps, an analysis methodology that interrogates the local neighborhood of the atoms within the tomographic reconstruction, it is shown how both the in-depth and the lateral resolution can be quantified. The influences of the crystallography and the temperature are investigated, and models are proposed to explain the observed results. We demonstrate that the absolute value of resolution is specimenspecific.

  18. Mapping interfacial excess in atom probe data

    Energy Technology Data Exchange (ETDEWEB)

    Felfer, Peter, E-mail: peter.felfer@sydney.edu.au [School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney (Australia); Scherrer, Barbara [Australian Centre for Microscopy and Microanalysis, The University of Sydney (Australia); Eidgenossische Technische Hochschule Zürich (Switzerland); Demeulemeester, Jelle [Imec vzw, Kapeldreef 75, Heverlee 3001 (Belgium); Vandervorst, Wilfried [Imec vzw, Kapeldreef 75, Heverlee 3001 (Belgium); Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Cairney, Julie M. [School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney (Australia)

    2015-12-15

    Using modern wide-angle atom probes, it is possible to acquire atomic scale 3D data containing 1000 s of nm{sup 2} of interfaces. It is therefore possible to probe the distribution of segregated species across these interfaces. Here, we present techniques that allow the production of models for interfacial excess (IE) mapping and discuss the underlying considerations and sampling statistics. We also show, how the same principles can be used to achieve thickness mapping of thin films. We demonstrate the effectiveness on example applications, including the analysis of segregation to a phase boundary in stainless steel, segregation to a metal–ceramic interface and the assessment of thickness variations of the gate oxide in a fin-FET. - Highlights: • Using computational geometry, interfacial excess can be mapped for various features in APT. • Suitable analysis models can be created by combining manual modelling and mesh generation algorithms. • Thin film thickness can be mapped with high accuracy using this technique.

  19. In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.

    Science.gov (United States)

    Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten

    2017-01-30

    Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.

  20. Probing stem cell differentiation using atomic force microscopy

    Science.gov (United States)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-03-01

    A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  1. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography.

  2. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Raabe, D

    2017-01-31

    The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions.

  3. New atom probe approaches to studying segregation in nanocrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Cao, Y.; Liao, X.Z. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); Cairney, J.M., E-mail: julie.cairney@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2013-09-15

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess.

  4. Contact resonances of U-shaped atomic force microscope probes

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, E.; Turner, J. A., E-mail: jaturner@unl.edu [Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, Nebraska 68588 (United States)

    2016-01-21

    Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFM research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes.

  5. Characterization of Akiyama probe applied to dual-probes atomic force microscope

    Science.gov (United States)

    Wang, Hequn; Gao, Sitian; Li, Wei; Shi, Yushu; Li, Qi; Li, Shi; Zhu, Zhendong

    2016-10-01

    The measurement of nano-scale line-width has always been important and difficult in the field of nanometer measurements, while the rapid development of integrated circuit greatly raises the demand again. As one kind of scanning probe microscope (SPM), atomic force microscope (AFM) can realize quasi three-dimensional measurement, which is widely used in nanometer scale line-width measurement. Our team researched a dual-probes atomic force microscope, which can eliminate the prevalent effect of probe width on measurement results. In dual-probes AFM system, a novel head are newly designed. A kind of self-sensing and self-exciting probes which is Nanosensors cooperation's patented probe—Akiyama probe, is used in this novel head. The Akiyama probe applied to dual-probe atomic force microscope is one of the most important issues. The characterization of Akiyama probe would affect performance and accuracy of the whole system. The fundamental features of the Akiyama probe are electrically and optically characterized in "approach-withdraw" experiments. Further investigations include the frequency response of an Akiyama probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. We hope that the characterization of the Akiyama probe described in this paper will guide application for dual-probe atomic force microscope.

  6. Clustered field evaporation of metallic glasses in atom probe tomography.

    Science.gov (United States)

    Zemp, J; Gerstl, S S A; Löffler, J F; Schönfeld, B

    2016-03-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different - as yet unknown - physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses.

  7. New atom probe approaches to studying segregation in nanocrystalline materials.

    Science.gov (United States)

    Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M

    2013-09-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping.

  8. Towards an accurate volume reconstruction in atom probe tomography.

    Science.gov (United States)

    Beinke, Daniel; Oberdorfer, Christian; Schmitz, Guido

    2016-06-01

    An alternative concept for the reconstruction of atom probe data is outlined. It is based on the calculation of realistic trajectories of the evaporated ions in a recursive refinement process. To this end, the electrostatic problem is solved on a Delaunay tessellation. To enable the trajectory calculation, the order of reconstruction is inverted with respect to previous reconstruction schemes: the last atom detected is reconstructed first. In this way, the emitter shape, which controls the trajectory, can be defined throughout the duration of the reconstruction. A proof of concept is presented for 3D model tips, containing spherical precipitates or embedded layers of strongly contrasting evaporation thresholds. While the traditional method following Bas et al. generates serious distortions in these cases, a reconstruction with the proposed electrostatically informed approach improves the geometry of layers and particles significantly.

  9. C12/C13-ratio determination in nanodiamonds by atom-probe tomography.

    Science.gov (United States)

    Lewis, Josiah B; Isheim, Dieter; Floss, Christine; Seidman, David N

    2015-12-01

    The astrophysical origins of ∼ 3 nm-diameter meteoritic nanodiamonds can be inferred from the ratio of C12/C13. It is essential to achieve high spatial and mass resolving power and minimize all sources of signal loss in order to obtain statistically significant measurements. We conducted atom-probe tomography on meteoritic nanodiamonds embedded between layers of Pt. We describe sample preparation, atom-probe tomography analysis, 3D reconstruction, and bias correction. We present new data from meteoritic nanodiamonds and terrestrial standards and discuss methods to correct isotopic measurements made with the atom-probe tomograph.

  10. Two-dimensional atom localization via probe absorption in a four-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Ping; Ge Qiang; Ruan Yu-Hua; Yu Ben-Li

    2013-01-01

    We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven fourlevel atomic system by means of a radio-frequency field driving a hyperfine transition.It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters.As a result,our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization.

  11. Atom probe tomography of a commercial light emitting diode

    Science.gov (United States)

    Larson, D. J.; Prosa, T. J.; Olson, D.; Lefebvre, W.; Lawrence, D.; Clifton, P. H.; Kelly, T. F.

    2013-11-01

    The atomic-scale analysis of a commercial light emitting diode device purchased at retail is demonstrated using a local electrode atom probe. Some of the features are correlated with transmission electron microscopy imaging. Subtle details of the structure that are revealed have potential significance for the design and performance of this device.

  12. Probing modified gravity with atom-interferometry: A numerical approach

    Science.gov (United States)

    Schlögel, Sandrine; Clesse, Sébastien; Füzfa, André

    2016-05-01

    Refined constraints on chameleon theories are calculated for atom-interferometry experiments, using a numerical approach consisting in solving for a four-region model the static and spherically symmetric Klein-Gordon equation for the chameleon field. By modeling not only the test mass and the vacuum chamber but also its walls and the exterior environment, the method allows one to probe new effects on the scalar field profile and the induced acceleration of atoms. In the case of a weakly perturbing test mass, the effect of the wall is to enhance the field profile and to lower the acceleration inside the chamber by up to 1 order of magnitude. In the thin-shell regime, results are found to be in good agreement with the analytical estimations, when measurements are realized in the immediate vicinity of the test mass. Close to the vacuum chamber wall, the acceleration becomes negative and potentially measurable. This prediction could be used to discriminate between fifth-force effects and systematic experimental uncertainties, by doing the experiment at several key positions inside the vacuum chamber. For the chameleon potential V (ϕ )=Λ4 +α/ϕα and a coupling function A (ϕ )=exp (ϕ /M ), one finds M ≳7 ×1016 GeV , independently of the power-law index. For V (ϕ )=Λ4(1 +Λ /ϕ ), one finds M ≳1014 GeV . A sensitivity of a ˜10-11 m /s2 would probe the model up to the Planck scale. Finally, a proposal for a second experimental setup, in a vacuum room, is presented. In this case, Planckian values of M could be probed provided that a ˜10-10 m /s2 , a limit reachable by future experiments. Our method can easily be extended to constrain other models with a screening mechanism, such as symmetron, dilaton and f(R) theories.

  13. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    Science.gov (United States)

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-07-01

    Energy technologies of the 21st century require an understanding and precise control over ion transport and electrochemistry at all length scales - from single atoms to macroscopic devices. This short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. The discussion presents the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.

  14. Probing Dark Energy with Atom Interferometry

    CERN Document Server

    Burrage, Clare; Hinds, E A

    2015-01-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  15. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.

    Science.gov (United States)

    Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P

    2017-03-14

    Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

  16. Hollow-atom probing of surfaces

    NARCIS (Netherlands)

    Limburg, J.

    1997-01-01

    This paper discusses the mechanisms governing the formation and decay of hollow atoms in front of (semi) conducting and insulating surfaces. First, the primary neutralization of the highly charged ions is treated in terms of the classical overbarrier model. Different views are presented. Then the mo

  17. Atom probe tomography of lithium-doped network glasses

    Energy Technology Data Exchange (ETDEWEB)

    Greiwe, Gerd-Hendrik, E-mail: g_grei01@uni-muenster.de [Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster (Germany); Balogh, Zoltan; Schmitz, Guido [Institute of Material Science, University of Stuttgart, Heisenberg Straße 3, D-70569 Stuttgart (Germany)

    2014-06-01

    Li-doped silicate and borate glasses are electronically insulating, but provide considerable ionic conductivity. Under measurement conditions of laser-assisted atom probe tomography, mobile Li ions are redistributed in response to high electric fields. In consequence, the direct interpretation of measured composition profiles is prevented. It is demonstrated that composition profiles are nevertheless well understood by a complex model taking into account the electronic structure of dielectric materials, ionic mobility and field screening. Quantitative data on band bending and field penetration during measurement are derived which are important in understanding laser-assisted atom probe tomography of dielectric materials. - Highlights: • Atom probe tomography is performed on ion conducting glasses. • Redistribution of ions during the measurement is observed. • An electrostatic model is applied to describe the electric field and ion diffusion. • Measurement is conducted of the absolute temperature during laser pulses.

  18. Probing atomic and molecular dynamics from within

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, N. E-mail: berrah@wmich.edu; Bilodeau, R.C.; Ackerman, G.; Bozek, J.D.; Turri, G.; Kukk, E.; Cheng, W.T.; Snell, G

    2004-08-01

    We have investigated with unprecedented levels of detail photodetachment of negative ions and photoionization of molecules using the brightness, spectral resolution, and tunability of the Advanced Light Source at Lawrence Berkeley National Laboratory. In particular, we report here on investigations carried out in K-shell photodetachment of atomic Li{sup -} and He{sup -}. We also report on angular distribution of core-level iodine 4d photoelectrons from the HI molecule. In both cases comparison with calculations is discussed.

  19. Estimation of the reconstruction parameters for Atom Probe Tomography

    CERN Document Server

    Gault, Baptiste; Stephenson, Leigh T; Moody, Michael P; Muddle, Barry C; Ringer, Simon P

    2015-01-01

    The application of wide field-of-view detection systems to atom probe experiments emphasizes the importance of careful parameter selection in the tomographic reconstruction of the analysed volume, as the sensitivity to errors rises steeply with increases in analysis dimensions. In this paper, a self-consistent method is presented for the systematic determination of the main reconstruction parameters. In the proposed approach, the compression factor and the field factor are determined using geometrical projections from the desorption images. A 3D Fourier transform is then applied to a series of reconstructions and, comparing to the known material crystallography, the efficiency of the detector is estimated. The final results demonstrate a significant improvement in the accuracy of the reconstructed volumes.

  20. Nanoscale Probe of Magnetism Based on Artificial Atoms in Diamond

    Science.gov (United States)

    2014-07-18

    AFRL-OSR-VA-TR-2014-0165 ( YIP 11) Nanoscale probe of magnetism based on artificial atoms in diamond Ania Bleszynski Jayich UNIVERSITY OF CALIFORNIA...center Ania Bleszynski Jayihc (805) 893 8089 AFOSR   YIP  Report     Ania  Bleszynski  Jayich   Nanoscale probe of magnetism based on...dramatically affected by proximal Gd ions. Gd ions are commonly used spin labels for biological imaging. AFOSR   YIP  Report     Ania

  1. Reflections on the projection of ions in atom probe tomography

    OpenAIRE

    De Geuser, Frédéric; Gault, Baptiste

    2016-01-01

    There are two main projections used to transform, and reconstruct, field ion micrographs or atom probe tomography data into atomic coordinates at the specimen surface and, subsequently, in three-dimensions. In this article, we present a perspective on the strength of the azimuthal equidistant projection in comparison to the more widely used and well-established point-projection(or pseudo-stereographic projection), which underpins data reconstruction in most software packages currently in use ...

  2. Probing Modified Gravity with Atom-Interferometry: a Numerical Approach

    CERN Document Server

    Schlogel, Sandrine; Fuzfa, Andre

    2015-01-01

    Refined constraints on chameleon theories are calculated for atom-interferometry experiments, using a numerical approach consisting in solving for a four-region model the static and spherically symmetric Klein-Gordon equation for the chameleon field. By modeling not only the test mass and the vacuum chamber but also its walls and the exterior environment, the method allows to probe new effects on the scalar field profile and the induced acceleration of atoms. In the case of a weakly perturbing test mass, the effect of the wall is to enhance the field profile and to lower the acceleration inside the chamber by up to one order of magnitude. In the thin-shell regime, significant deviations from the analytical estimations are found, even when measurements are realized in the immediate vicinity of the test mass. Close to the vacuum chamber wall, the acceleration becomes negative and potentially measurable. This prediction could be used to discriminate between fifth-force effects and systematic experimental uncerta...

  3. Manipulating collective quantum states of ultracold atoms by probing

    DEFF Research Database (Denmark)

    Wade, Andrew Christopher James

    2015-01-01

    nature of the measurement interaction and backaction is yet to be realised. This dissertation is concerned with ultracold atoms and their control via fully quantum mechanical probes. Nonclassical, squeezed and entangled states of matter and single photon sources are important for fundamental studies...

  4. Atom-Probe Measurements of Meteoritic Nanodiamonds and Terrestrial Standards

    Science.gov (United States)

    Lewis, J. B.; Isheim, D.; Floss, C.; Daulton, T. L.; Seidman, D. N.; Heck, P. R.; Davis, A. M.; Pellin, M. J.; Savina, M. R.; Hiller, J.; Mane, A.; Elam, J. W.; Stephan, T.

    2013-09-01

    We present new data from the novel application of atom-probe tomography to the study of nanodiamonds from the meteorite Allende. The mean meteoritic ^12C/^13C peak ratio is higher than that of our standards, but there are instrumental artifacts.

  5. A new systematic framework for crystallographic analysis of atom probe data

    Energy Technology Data Exchange (ETDEWEB)

    Araullo-Peters, Vicente J., E-mail: vicente.araullopeters@gmail.com [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia); Breen, Andrew; Ceguerra, Anna V. [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia); Gault, Baptiste [Department of Materials, University of Oxford, Parks Road, Oxford (United Kingdom); Ringer, Simon P.; Cairney, Julie M. [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia)

    2015-07-15

    In this article, after a brief introduction to the principles behind atom probe crystallography, we introduce methods for unambiguously determining the presence of crystal planes within atom probe datasets, as well as their characteristics: location; orientation and interplanar spacing. These methods, which we refer to as plane orientation extraction (POE) and local crystallography mapping (LCM) make use of real-space data and allow for systematic analyses. We present here application of POE and LCM to datasets of pure Al, industrial aluminium alloys and doped-silicon. Data was collected both in DC voltage mode and laser-assisted mode (in the latter of which extracting crystallographic information is known to be more difficult due to distortions). The nature of the atomic planes in both datasets was extracted and analysed. - Highlights: • A new analysis method was designed that determines if reconstructed planes are present in atom probe data. • The location, orientation, and planar spacing of these planes are obtained. • This method was applied to simulated, aluminium alloy and silicon data where the extent of planes was shown to vary considerably. • This method can be used to examine atom probe reconstruction quality.

  6. Development of atomic beam probe for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Berta, M., E-mail: bertam@sze.hu [Széchenyi István University, EURATOM Association, Győr (Hungary); Institute of Plasma Physics AS CR, v.v.i., Prague (Czech Republic); Anda, G.; Aradi, M.; Bencze, A.; Buday, Cs.; Kiss, I.G.; Tulipán, Sz.; Veres, G.; Zoletnik, S. [Wigner – RCP, HAS, EURATOM Association, Budapest (Hungary); Havlícek, J.; Háček, P. [Institute of Plasma Physics AS CR, v.v.i., Prague (Czech Republic); Charles University in Prague, Faculty of Mathematics and Physics (Czech Republic)

    2013-11-15

    Highlights: • ABP is newly developed diagnostic. • Unique measurement method for the determination of plasma edge current variations caused by different transient events such as ELMs. • The design process has been fruitfully supported by the physically motivated computer simulations. • Li-BES system has been modified accordingly to the needs of the ABP. -- Abstract: The concept and development of a new detection method for light alkali ions stemming from diagnostic beams installed on medium size tokamak is described. The method allows us the simultaneous measurement of plasma density fluctuations and fast variations in poloidal magnetic field, therefore one can infer the fast changes in edge plasma current. The concept has been worked out and the whole design process has been done at Wigner RCP. The test detector with appropriate mechanics and electronics is already installed on COMPASS tokamak. General ion trajectory calculation code (ABPIons) has also been developed. Detailed calculations show the possibility of reconstruction of edge plasma current density profile changes with high temporal resolution, and the possibility of density profile reconstruction with better spatial resolution compared to standard Li-BES measurement, this is important for pedestal studies.

  7. New approaches to nanoparticle sample fabrication for atom probe tomography.

    Science.gov (United States)

    Felfer, P; Li, T; Eder, K; Galinski, H; Magyar, A P; Bell, D C; Smith, G D W; Kruse, N; Ringer, S P; Cairney, J M

    2015-12-01

    Due to their unique properties, nano-sized materials such as nanoparticles and nanowires are receiving considerable attention. However, little data is available about their chemical makeup at the atomic scale, especially in three dimensions (3D). Atom probe tomography is able to answer many important questions about these materials if the challenge of producing a suitable sample can be overcome. In order to achieve this, the nanomaterial needs to be positioned within the end of a tip and fixed there so the sample possesses sufficient structural integrity for analysis. Here we provide a detailed description of various techniques that have been used to position nanoparticles on substrates for atom probe analysis. In some of the approaches, this is combined with deposition techniques to incorporate the particles into a solid matrix, and focused ion beam processing is then used to fabricate atom probe samples from this composite. Using these approaches, data has been achieved from 10-20 nm core-shell nanoparticles that were extracted directly from suspension (i.e. with no chemical modification) with a resolution of better than ± 1 nm.

  8. Atom-probe investigations of TiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Menand, A.; Zapolsky-Tatarenko, H.; Nerac-Partaix, A. [Rouen Univ., Mont-Saint-Aignan (France). Fac. des Sci.

    1998-07-15

    Atom probe field ion microscopy (APFIM) and tomographic atom probe (TAP) have been used to study TiAl-based alloys. The element concentrations, the influence of additional elements such as Cr or Nb as well as the solubility of oxygen in {alpha}{sub 2} (Ti{sub 3}Al) and {gamma} (TiAl) phases in compounds with nominal concentration Ti{sub 54}Al{sub 46} and Ti{sub 58}Al{sub 42} have been determined. By using the detection of oxygen atoms as a very local probe, the present investigation revealed the existence of some intermediate phases during the phase transformation {alpha}{yields}{gamma}. The presence of the oxygen atoms during this transformation gives some peculiarities on the transformation path. The appearance of some metastable phases may be explained by the existence of the homologous series Ti{sub 2n-1}Al{sub n} where n is an integer varying from 1 (stoichiometry TiAl) to {infinity} (phase {alpha}{sub 3} Ti{sub 2}Al). (orig.) 35 refs.

  9. Visualization of deuterium dead layer by atom probe tomography

    KAUST Repository

    Gemma, Ryota

    2012-12-01

    The first direct observation, by atom probe tomography, of a deuterium dead layer is reported for Fe/V multilayered film loaded with D solute atoms. The thickness of the dead layers was measured to be 0.4-0.5 nm. The dead layers could be distinguished from chemically intermixed layers. The results suggest that the dead layer effect occurs even near the interface of the mixing layers, supporting an interpretation that the dead layer effect cannot be explained solely by electronic charge transfer but also involves a modulation of rigidity. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    Science.gov (United States)

    Nishikawa, Osamu; Taniguchi, Masahiro

    2016-12-22

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  11. Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography.

    Science.gov (United States)

    Prosa, Ty J; Larson, David J

    2017-02-06

    Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.

  12. High sensitivity probe absorption technique for time-of-flight measurements on cold atoms

    Indian Academy of Sciences (India)

    A K Mohapatra; C S Unnikrishnan

    2006-06-01

    We report on a phase-sensitive probe absorption technique with high sensitivity, capable of detecting a few hundred ultra-cold atoms in flight in an observation time of a few milliseconds. The large signal-to-noise ratio achieved is sufficient for reliable measurements on low intensity beams of cold atoms. We demonstrate the high sensitivity and figure of merit of the simple method by measuring the time-of-flight of atoms moving upwards from a magneto-optical trap released in the gravitational field.

  13. Multifunctional hydrogel nano-probes for atomic force microscopy

    Science.gov (United States)

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-05-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe--the key actuating element--has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.

  14. Atom probe field ion microscopy of high resistivity materials

    Energy Technology Data Exchange (ETDEWEB)

    Sibrandij, S.J.; Larson, D.J.; Miller, M.K.

    1998-02-01

    Over the last 30 years the atom probe has proved to be a powerful tool for studying nanometer-sized compositional fluctuations in a wide range of metallic alloys but has had only limited applications to semiconductors and ceramics. One of the primary reasons for this difference is the higher resistivity of semiconducting and ceramic specimens. Because of this high resistivity, the high voltage field evaporation pulse is attenuated before it reaches the apex of the specimen thereby making the pulse ineffective for field evaporation. Experiments have demonstrated that both variants of the voltage-pulsed atom probe (i.e., those instruments in which the field evaporation pulse is applied directly to the specimen and those in which the negative pulse is applied to a counter electrode in front of the specimen) are equally affected. In this overview, the limits of applicability of the voltage-pulsed atom probe to high resistivity materials are examined. In this study, a wide range of materials have been examined to determine whether field ion microscopy and voltage-pulsed field evaporation can be achieved and the results are summarized in the report. Field ion microscopy including dc field evaporation was possible for all materials except bulk ceramic insulators and glasses. Field ion microscopy requires some conductivity both to achieve a high electric field at the apex of the specimen, and also to support the field ion current. In contrast, voltage-pulsed field evaporation requires transmission of the pulse to the apex of the specimen. All metallic alloys including high resistance alloys and metallic glasses were successfully field evaporated with a voltage pulse. Specimens that were produced from bulk material of several conducting ceramics including MoSi, TiB and TiC were also successfully field evaporated with a voltage pulse.

  15. Design of cantilever probes for Atomic Force Microscopy (AFM)

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2000-01-01

    A cantilever beam used in an Atomic Force Microscope is optimized with respect to two different objectives. The first goal is to maximize the first eigenfrequency while keeping the stiffness of the probe constant. The second goal is to maximize the tip angle of the first eigenmode while again...... keeping the stiffness constant. The resulting design of the beam from the latter optimization gives almost the same result as when maximizing the first eigenfrequency. Adding a restriction on the second eigenfrequency result in a significant change of the optimal design. The beam is modelled with 12 DOF...

  16. Reflections on the projection of ions in atom probe tomography

    CERN Document Server

    De Geuser, Frédéric

    2016-01-01

    There are two main projections used to transform, and reconstruct, field ion micrographs or atom probe tomography data into atomic coordinates at the specimen surface and, subsequently, in three-dimensions. In this article, we present a perspective on the strength of the azimuthal equidistant projection in comparison to the more widely used and well-established point-projection, which underpins data reconstruction in the only commercial software package available currently. After an overview of the reconstruction methodology, we demonstrate that the azimuthal equidistant is not only more accurate, but also more robust with regards to errors on the parameters used to perform the reconstruction and is therefore more likely to yield more accurate tomographic reconstructions.

  17. Materials applications of an advanced 3-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Cerezo, A. [Oxford Univ. (United Kingdom). Dept. of Materials; Gibuoin, D. [Oxford Univ. (United Kingdom). Dept. of Materials; Kim, S. [Oxford Univ. (United Kingdom). Dept. of Materials; Sijbrandij, S.J. [Oxford Univ. (United Kingdom). Dept. of Materials; Venker, F.M. [Oxford Univ. (United Kingdom). Dept. of Materials]|[Rijksuniversiteit Groningen (Netherlands). Dept. of Applied Physics; Warren, P.J. [Oxford Univ. (United Kingdom). Dept. of Materials; Wilde, J. [Oxford Univ. (United Kingdom). Dept. of Materials; Smith, G.D.W. [Oxford Univ. (United Kingdom). Dept. of Materials

    1996-09-01

    An advanced 3-dimensional atom probe system has been constructed, based on an optical position-sensitive atom probe (OPoSAP) detector with energy compensation using a reflectron lens. The multi-hit detection capability of the OPoSAP leads to significant improvements in the efficiency of the instrument over the earlier serial position-sensing system. Further gains in efficiency are obtained by using a biassed grid in front of the detector to collect secondary electrons generated when ions strike the interchannel area. The improvement in detection efficiency gives enhanced performance in the studies of ordered materials and the determination of site occupation. Energy compensation leads to a much improved mass resolution (m/{Delta}m=500 full width at half maximum) making it possible to map out the 3-dimensional spatial distributions of all the elements in complex engineering alloys, even when elements lie close together in the mass spectrum. For example, in the analysis of a maraging steel, this allows separation between the {sup 61}Ni{sup 2+} and {sup 92}Mo{sup 3+} peaks, which are only 1/6 of a mass unit apart. (orig.).

  18. Atom-probe for FinFET dopant characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kambham, A.K., E-mail: kambham@imec.be [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Mody, J.; Gilbert, M.; Koelling, S.; Vandervorst, W. [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2011-05-15

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10{sup o} and 45{sup o}) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. -- Research highlights: {yields} This paper provides the information on how to characterize the FinFET devices using atom probe tomography (APT). {yields} Importance of this work is to assess the performance of these devices at different processing conditions by extracting the compositional profiles. {yields} The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions

  19. Atom-probe for FinFET dopant characterization.

    Science.gov (United States)

    Kambham, A K; Mody, J; Gilbert, M; Koelling, S; Vandervorst, W

    2011-05-01

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10° and 45°) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values.

  20. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy

    Science.gov (United States)

    Balke, Nina; Jesse, Stephen; Carmichael, Ben; Baris Okatan, M.; Kravchenko, Ivan I.; Kalinin, Sergei V.; Tselev, Alexander

    2017-02-01

    Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm-1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.

  1. Train of high-power femtosecond pulses: Probe wave in a gas of prepared atoms

    Science.gov (United States)

    Muradyan, Gevorg; Muradyan, Atom Zh.

    2009-09-01

    We present a method for generating a regular train of ultrashort optical pulses in a prepared two-level medium. The train develops from incident monochromatic probe radiation traveling in a medium of atoms, which are in a quantum mechanical superposition of dressed internal states. In the frame of linear theory for the probe radiation, the energy of individual pulses is an exponentially growing function of atom density and of interaction cross section. Pulse repetition rate is determined by the pump field’s generalized Rabi frequency and can be around 1 THz and greater. We also show that the terms, extra to the dipole approximation, endow the gas by a new property: nonsaturating dependence of refractive index on dressing monochromatic field intensity. Contribution of these nonsaturating terms can be compatible with the main dipole approximation term contribution in the wavelength region of about ten micrometers (the range of CO2 laser) or larger.

  2. A computational geometry framework for the optimisation of atom probe reconstructions.

    Science.gov (United States)

    Felfer, Peter; Cairney, Julie

    2016-10-01

    In this paper, we present pathways for improving the reconstruction of atom probe data on a coarse (>10nm) scale, based on computational geometry. We introduce a way to iteratively improve an atom probe reconstruction by adjusting it, so that certain known shape criteria are fulfilled. This is achieved by creating an implicit approximation of the reconstruction through a barycentric coordinate transform. We demonstrate the application of these techniques to the compensation of trajectory aberrations and the iterative improvement of the reconstruction of a dataset containing a grain boundary. We also present a method for obtaining a hull of the dataset in both detector and reconstruction space. This maximises data utilisation, and can be used to compensate for ion trajectory aberrations caused by residual fields in the ion flight path through a 'master curve' and correct for overall shape deviations in the data.

  3. Understanding proton-conducting perovskite interfaces using atom probe tomography

    Science.gov (United States)

    Clark, Daniel R.

    Proton-conducting ceramics are under intense scientific investigation for a number of exciting applications, including fuel cells, electrolyzers, hydrogen separation membranes, membrane reactors, and sensors. However, commercial application requires deeper understanding and improvement of proton conductivity in these materials. It is well-known that proton conductivity in these materials is often limited by highly resistive grain boundaries (GBs). While these conductivity-limiting GBs are still not well understood, it is hypothesized that their blocking nature stems from the formation of a positive (proton-repelling) space-charge zone. Furthermore, it has been observed that the strength of the blocking behavior can change dramatically depending on the fabrication process used to make the ceramic. This thesis applies laser-assisted atom probe tomography (LAAPT) to provide new insights into the GB chemistry and resulting space-charge behavior of BaZr0.9Y0.1O 3--delta (BZY10), a prototypical proton-conducting ceramic. LAAPT is an exciting characterization technique that allows for three-dimensional nm-scale spatial resolution and very high chemical resolution (up to parts-per-million). While it is challenging to quantitatively apply LAAPT to complex, multi-cation oxide materials, this thesis successfully develops a method to accurately quantify the stoichiometry of BZY10 and maintain minimal quantitative cationic deviation at a laser energies of approximately 10--20 pJ. With the analysis technique specifically optimized for BZY10, GB chemistry is then examined for BZY10 samples prepared using four differing processing methods: (1) spark plasma sintering (SPS), (2) conventional sintering using powder prepared by solid-state reaction followed by high-temperature annealing (HT), (3) conventional sintering using powder prepared by solid-state reaction with NiO used as a sintering aid (SSR-Ni), and (4) solid-state reactive sintering directly from BaCO3, ZrO2, and Y2O3

  4. Atomic quantum superposition state generation via optical probing

    DEFF Research Database (Denmark)

    Nielsen, Anne Ersbak Bang; Poulsen, Uffe Vestergaard; Negretti, Antonio;

    2009-01-01

    investigate cavity enhanced probing with continuous beams of both coherent and squeezed light. The stochastic master equations used in the analysis are expressed in terms of the Hamiltonian of the probed system and the interaction between the probed system and the probe field and are thus quite generally...

  5. Probing the energy flow in Bessel light beams using atomic photoionization

    Science.gov (United States)

    Surzhykov, A.; Seipt, D.; Fritzsche, S.

    2016-09-01

    The growing interest in twisted light beams also requires a better understanding of their complex internal structure. Particular attention is currently being given to the energy circulation in these beams as usually described by the Poynting vector field. In the present study we propose to use the photoionization of alkali-metal atoms as a probe process to measure (and visualize) the energy flow in twisted light fields. Such measurements are possible since the angular distribution of photoelectrons, emitted from a small atomic target, appears sensitive to and is determined by the local direction of the Poynting vector. To illustrate the feasibility of the proposed method, detailed calculations were performed for the ionization of sodium atoms by nondiffractive Bessel beams.

  6. Atomic resolution in noncontact AFM by probing cantilever frequency shifts

    Institute of Scientific and Technical Information of China (English)

    Hong Yong Xie

    2007-01-01

    Rutile TiO2(001) quantum dots (or nano-marks) in different shapes were used to imitate uncleaved material surfaces or materials with rough surfaces. By numerical integration of the equation of motion of cantilever for silicon tip scanning along the [110] direction over the rutile TiO2 (001) quantum dots in ultra high vacuum (UHV), scanning routes were explored to achieve atomic resolution from frequency shift image. The tip-surface interaction forces were calculated from Lennard-Jones (12-6) potential by the Hamaker summation method. The calculated results showed that atomic resolution could be achieved by frequency shift image for TiO2 (001) surfaces of rhombohedral quantum dot scanning in a vertical route, and spherical cap quantum dot scanning in a superposition route.

  7. Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

    Directory of Open Access Journals (Sweden)

    Mehmet Z. Baykara

    2012-09-01

    Full Text Available Noncontact atomic force microscopy (NC-AFM is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation.In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface.

  8. Multiple membrane tethers probed by atomic force microscopy.

    Science.gov (United States)

    Sun, Mingzhai; Graham, John S; Hegedüs, Balazs; Marga, Françoise; Zhang, Ying; Forgacs, Gabor; Grandbois, Michel

    2005-12-01

    Using the atomic force microscope to locally probe the cell membrane, we observed the formation of multiple tethers (thin nanotubes, each requiring a similar pulling force) as reproducible features within force profiles recorded on individual cells. Forces obtained with Chinese hamster ovary cells, a malignant human brain tumor cell line, and human endothelial cells (EA hy926) were found to be 28 +/- 10 pN, 29 +/- 9 pN, and 29 +/- 10 pN, respectively, independent of the nature of attachment to the cantilever. The rather large variation of the tether pulling forces measured at several locations on individual cells points to the existence of heterogeneity in the membrane properties of a morphologically homogeneous cell. Measurement of the summary lengths of the simultaneously extracted tethers provides a measure of the size of the available membrane reservoir through which co-existing tethers are associated. As expected, partial disruption of the actin cytoskeleton and removal of the hyaluronan backbone of the glycocalyx were observed to result in a marked decrease (30-50%) in the magnitude and a significant sharpening of the force distribution indicating reduced heterogeneity of membrane properties. Taken together, our results demonstrate the ability of the plasma membrane to locally produce multiple interdependent tethers-a process that could play an important role in the mechanical association of cells with their environment.

  9. Nanometer-scale isotope analysis of bulk diamond by atom probe tomography

    NARCIS (Netherlands)

    Schirhagl, R.; Raatz, N.; Meijer, J.; Markham, M.; Gerstl, S. S. A.; Degen, C. L.

    2015-01-01

    Atom-probe tomography (APT) combines field emission of atoms with mass spectrometry to reconstruct three-dimensional tomograms of materials with atomic resolution and isotope specificity. Despite significant recent progress in APT technology, application to wide-bandgap materials with strong covalen

  10. Detection of slow atoms confined in a Cesium vapor cell by spatially separated pump and probe laser beams

    CERN Document Server

    Todorov, Petko; Maurin, Isabelle; Saltiel, Solomon; Bloch, Daniel

    2013-01-01

    The velocity distribution of atoms in a thermal gas is usually described through a Maxwell-Boltzman distribution of energy, and assumes isotropy. As a consequence, the probability for an atom to leave the surface under an azimuth angle {\\theta} should evolve as cos {\\theta}, in spite of the fact that there is no microscopic basis to justify such a law. The contribution of atoms moving at a grazing incidence towards or from the surface, i.e. atoms with a small normal velocity, here called "slow" atoms, reveals essential in the development of spectroscopic methods probing a dilute atomic vapor in the vicinity of a surface, enabling a sub-Doppler resolution under a normal incidence irradiation. The probability for such "slow" atoms may be reduced by surface roughness and atom-surface interaction. Here, we describe a method to observe and to count these slow atoms relying on a mechanical discrimination, through spatially separated pump and probe beams. We also report on our experimental progresses toward such a g...

  11. A theoretical study of dopant atom detection and probe behavior in STEM

    Science.gov (United States)

    Mittal, Anudha

    functional-based tight-binding model revealed that a stress-free single-walled (14,6) MoS2 nanotube has a torsional deformation of 0.87 °/nm. Comparison between simulated electron diffraction patterns and atomic-resolution ADF-STEM images of nanotubes with and without the small twist suggested that these experimental techniques are viable routes for detecting presence of the torsional deformation. 2. Development of theory to cast light on aspects of scattering behavior that affect STEM data.. STEM probe intensity oscillates as the probe transmits through a crystalline sample. The oscillatory behavior of the probe is extremely similar during transmission through 3-D crystals and the hypothetical structure of an isolated column of atoms, a 1-D crystal. This indicates that the physical origin of oscillation in intensity is not due to scattering of electrons away from one atomic column and subsequent scattering back from neighboring columns. It leaves in question what the physical origin or intensity oscillation is. This question was answered here by analysis of electron beam behavior in isolated atomic columns, examined via multislice-based simulations. Two physical origins, changes in angular distribution of the probe and phase shift between the angular components, were shown to cause oscillation in beam intensity. Sensitivity of frequency of oscillation to different probe and sample parameters was used to better understand the influence of the two physical origins on probe oscillation. 3. Acquisition of atomic-scale STEM data to answer specific questions about a material.. Graphene, due to its 2-Dimensionality, and due to its thermal, optical, electrical, and mechanical properties, which are conducive to providing a unique material for incorporation in devices, has gained a lot of interest in the research world and even spurred start-ups. There are several feasible routes of graphene synthesis, among which chemical exfoliation of graphite is a promising method for mass

  12. Innovation and optimization of a method of pump-probe polarimetry with pulsed laser beams in view of a precise measurement of parity violation in atomic cesium; Innovation et optimisation d'une methode de polarimetrie pompe-sonde avec des faisceaux laser impulsionnels en vue d'une mesure precise de violation de la parite dans l'atome de cesium

    Energy Technology Data Exchange (ETDEWEB)

    Chauvat, D

    1997-10-15

    While Parity Violation (PV) experiments on highly forbidden transitions have been using detection of fluorescence signals; our experiment uses a pump-probe scheme to detect the PV signal directly on a transmitted probe beam. A pulsed laser beam of linear polarisation {epsilon}{sub 1} excites the atoms on the 6S-7S cesium transition in a colinear electric field E || k(ex). The probe beam (k(pr) || k(ex)) of linear polarisation {epsilon}{sub 2} tuned to the transition 7S-6P(3/2) is amplified. The small asymmetry ({approx} 10{sup -6}) in the gain that depends on the handedness of the tri-hedron (E, {epsilon}{sub 1}, {epsilon}{sub 2}) is the manifestation of the PV effect. This is measured as an E-odd apparent rotation of the plane of polarization of the probe beam; using balanced mode polarimetry. New criteria of selection have been devised, that allow us to distinguish the true PV-signal against fake rotations due to electromagnetic interferences, geometrical effects, polarization imperfections, or stray transverse electric and magnetic fields. These selection criteria exploit the symmetry of the PV-rotation - linear dichroism - and the revolution symmetry of the experiment. Using these criteria it is not only possible to reject fake signals, but also to elucidate the underlying physical mechanisms and to measure the relevant defects of the apparatus. The present signal-to-noise ratio allows embarking in PV measurements to reach the 10% statistical accuracy. A 1% measurement still requires improvements. Two methods have been demonstrated. The first one exploits the amplification of the asymmetry at high gain - one major advantage provided by our detection method based on stimulated emission. The second method uses both a much higher incident intensity and a special dichroic component which magnifies tiny polarization rotations. (author)

  13. Atom Probe Insights into U-Pb Age Resetting in Baddeleyite

    Science.gov (United States)

    White, L. F.; Reinhard, D.; Moser, D.; Darling, J. R.; Bullen, D.; Prosa, T. J.; Olson, D.; Larson, D. J.; Clifton, P. H.; Lawrence, D.; Martin, I.

    2016-08-01

    Atom probe analysis of highly shocked baddeleyite suggests that igneous crystallisation ages can be isolated from 'partially reset' grains through careful segregation and rejection of planar features known to induce post-impact Pb-diffusion.

  14. Probe spectrum of a four-level atom in a double-band photonic crystal

    Institute of Scientific and Technical Information of China (English)

    Wen Qing-Bo; Wang Jian; Zhang Han-Zhuang

    2004-01-01

    In this paper, the probe absorption spectrum of an atom in a double-band photonic crystal have been studied. In the modes, we assume that one of the two atomic transitions in a A-type atomic system is interacting with free vacuum modes, and another transition is interacting with free vacuum modes, isotropic photonic band gap (PBG) modes and anisotropic PBG modes, separately. The effects of the fine structure of the atomic lower levels on the probe absorption spectrum are investigated in detail in the three cases. The most interesting thing is that the two (four) transparencies at one (two) probe absorption peak(s), caused by the fine structure of the lower levels of an atom, are predicted in the case of isotropic PBG modes.

  15. Preparation of nanowire specimens for laser-assisted atom probe tomography.

    Science.gov (United States)

    Blumtritt, H; Isheim, D; Senz, S; Seidman, D N; Moutanabbir, O

    2014-10-31

    The availability of reliable and well-engineered commercial instruments and data analysis software has led to development in recent years of robust and ergonomic atom-probe tomographs. Indeed, atom-probe tomography (APT) is now being applied to a broader range of materials classes that involve highly important scientific and technological problems in materials science and engineering. Dual-beam focused-ion beam microscopy and its application to the fabrication of APT microtip specimens have dramatically improved the ability to probe a variety of systems. However, the sample preparation is still challenging especially for emerging nanomaterials such as epitaxial nanowires which typically grow vertically on a substrate through metal-catalyzed vapor phase epitaxy. The size, morphology, density, and sensitivity to radiation damage are the most influential parameters in the preparation of nanowire specimens for APT. In this paper, we describe a step-by-step process methodology to allow a precisely controlled, damage-free transfer of individual, short silicon nanowires onto atom probe microposts. Starting with a dense array of tiny nanowires and using focused ion beam, we employed a sequence of protective layers and markers to identify the nanowire to be transferred and probed while protecting it against Ga ions during lift-off processing and tip sharpening. Based on this approach, high-quality three-dimensional atom-by-atom maps of single aluminum-catalyzed silicon nanowires are obtained using a highly focused ultraviolet laser-assisted local electrode atom probe tomograph.

  16. Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.

    Science.gov (United States)

    La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M

    2017-01-30

    The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.

  17. Method for nanoscale spatial registration of scanning probes with substrates and surfaces

    Science.gov (United States)

    Wade, Lawrence A. (Inventor)

    2010-01-01

    Embodiments in accordance with the present invention relate to methods and apparatuses for aligning a scanning probe used to pattern a substrate, by comparing the position of the probe to a reference location or spot on the substrate. A first light beam is focused on a surface of the substrate as a spatial reference point. A second light beam then illuminates the scanning probe being used for patterning. An optical microscope images both the focused light beam, and a diffraction pattern, shadow, or light backscattered by the illuminated scanning probe tip of a scanning probe microscope (SPM), which is typically the tip of the scanning probe on an atomic force microscope (AFM). Alignment of the scanning probe tip relative to the mark is then determined by visual observation of the microscope image. This alignment process may be repeated to allow for modification or changing of the scanning probe microscope tip.

  18. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    Science.gov (United States)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  19. Probing angular momentum coherence in a twin-atom interferometer

    CERN Document Server

    de Carvalho, Carlos R; Impens, François; Robert, J; Medina, Aline; Zappa, F; Faria, N V de Castro

    2014-01-01

    We propose to use a double longitudinal Stern-Gerlach atom interferometer in order to investigate quantitatively the angular momentum coherence of molecular fragments. Assuming that the dissociated molecule has a null total angular momentum, we investigate the propagation of the corresponding atomic fragments in the apparatus. We show that the envisioned interferometer enables one to distinguish unambiguously a spin-coherent from a spin-incoherent dissociation, as well as to estimate the purity of the angular momentum density matrix associated with the fragments. This setup, which may be seen as an atomic analogue of a twin-photon interferometer, can be used to investigate the suitability of molecule dissociation processes -- such as the metastable hydrogen atoms H($2^2 S$)-H($2^2 S$) dissociation - for coherent twin-atom optics.

  20. Probing Structure and Composition of Nickel/Titanium Carbide Hybrid Interfaces at the Atomic Scale (Preprint)

    Science.gov (United States)

    2010-01-01

    The transition in structure and composition across the titanium carbide /nickel hybrid interface has been determined at near atomic resolution by...coupling high-resolution transmission electron microscopy with three-dimensional atom probe tomography. The titanium carbide phase adopts a rocksalt-type

  1. Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

    Directory of Open Access Journals (Sweden)

    Gemma Rius

    2015-01-01

    Full Text Available Many nanofabrication methods based on scanning probe microscopy have been developed during the last decades. Local anodic oxidation (LAO is one of such methods: Upon application of an electric field between tip and surface under ambient conditions, oxide patterning with nanometer-scale resolution can be performed with good control of dimensions and placement. LAO through the non-contact mode of atomic force microscopy (AFM has proven to yield a better resolution and tip preservation than the contact mode and it can be effectively performed in the dynamic mode of AFM. The tip plays a crucial role for the LAO-AFM, because it regulates the minimum feature size and the electric field. For instance, the feasibility of carbon nanotube (CNT-functionalized tips showed great promise for LAO-AFM, yet, the fabrication of CNT tips presents difficulties. Here, we explore the use of a carbon nanofiber (CNF as the tip apex of AFM probes for the application of LAO on silicon substrates in the AFM amplitude modulation dynamic mode of operation. We show the good performance of CNF-AFM probes in terms of resolution and reproducibility, as well as demonstration that the CNF apex provides enhanced conditions in terms of field-induced, chemical process efficiency.

  2. Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes.

    Science.gov (United States)

    Rius, Gemma; Lorenzoni, Matteo; Matsui, Soichiro; Tanemura, Masaki; Perez-Murano, Francesc

    2015-01-01

    Many nanofabrication methods based on scanning probe microscopy have been developed during the last decades. Local anodic oxidation (LAO) is one of such methods: Upon application of an electric field between tip and surface under ambient conditions, oxide patterning with nanometer-scale resolution can be performed with good control of dimensions and placement. LAO through the non-contact mode of atomic force microscopy (AFM) has proven to yield a better resolution and tip preservation than the contact mode and it can be effectively performed in the dynamic mode of AFM. The tip plays a crucial role for the LAO-AFM, because it regulates the minimum feature size and the electric field. For instance, the feasibility of carbon nanotube (CNT)-functionalized tips showed great promise for LAO-AFM, yet, the fabrication of CNT tips presents difficulties. Here, we explore the use of a carbon nanofiber (CNF) as the tip apex of AFM probes for the application of LAO on silicon substrates in the AFM amplitude modulation dynamic mode of operation. We show the good performance of CNF-AFM probes in terms of resolution and reproducibility, as well as demonstration that the CNF apex provides enhanced conditions in terms of field-induced, chemical process efficiency.

  3. Probing the conformal Calabrese-Cardy scaling with cold atoms

    CERN Document Server

    Unmuth-Yockey, J; Preiss, P M; Yang, Li-Ping; Tsai, S -W; Meurice, Y

    2016-01-01

    We demonstrate that current experiments using cold bosonic atoms trapped in one-dimensional optical lattices and designed to measure the second-order Renyi entanglement entropy S_2, can be used to verify detailed predictions of conformal field theory (CFT) and estimate the central charge c. We discuss the adiabatic preparation of the ground state at half-filling where we expect a CFT with c=1. This can be accomplished with a very small hoping parameter J, in contrast to existing studies with density one where a much larger J is needed. We provide two complementary methods to estimate and subtract the classical entropy generated by the experimental preparation and imaging processes. We compare numerical calculations for the classical O(2) model with a chemical potential on a 1+1 dimensional lattice, and the quantum Bose-Hubbard Hamiltonian implemented in the experiments. S_2 is very similar for the two models and follows closely the Calabrese-Cardy scaling, (c/8)\\ln(N_s), for N_s sites with open boundary condi...

  4. Scanning probe methods applied to molecular electronics

    OpenAIRE

    Pavliček, Niko

    2013-01-01

    Scanning probe methods on insulating films offer a rich toolbox to study electronic, structural and spin properties of individual molecules. This work discusses three issues in the field of molecular and organic electronics. A scanning tunneling microscopy (STM) head to be operated in high magnetic fields has been designed and built up. The STM head is very compact and rigid relying on a robust coarse approach mechanism. This will facilitate investigations of the spin properties of individ...

  5. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuliang, E-mail: wangyuliang@buaa.edu.cn; Bi, Shusheng [Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Wang, Huimin [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  6. Quantitative analysis of carbon in cementite using pulsed laser atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Kitaguchi, H.S., E-mail: hiroto.kitaguchi@twi.co.uk; Lozano-Perez, S.; Moody, M.P.

    2014-12-15

    Carbon quantification and the standardisation in a pure cementite were conducted using pulsed-laser atom probe tomography (APT). The results were analysed to investigate a dependence on three distinct experimental parameters; the laser pulse energy, the cryogenic specimen temperature and the laser pulse frequency. All the measurements returned an apparent carbon content of 25.0±1.0 at%. Carbon content measurements showed no clear dependence on the cryogenic temperature or the laser pulse frequency. However, the results did demonstrate a strong correlation with the laser pulse energy. For lower laser pulse energies, the analysis returned carbon contents higher than the stoichiometric ratio. It was suggested that this effect is due to pile up of {sup 56}Fe{sup ++} at the detector and as a consequence there is a systematic preferential loss of these ions throughout the course of the experiment. Conversely, in experiments utilising higher laser pulse energies, it was found that the carbon contents were smaller than the stoichiometric ratio. In these experiments an increasing fraction of the larger carbon molecular ions (e.g., C{sub 5} ions) were detected as part of a multiple detection events, which could affect the quantification measurements. - Highlights: • This paper describes carbon quantifications in cementite. • Laser pulsed atom probe tomography successfully quantified the carbon content. • A unique background subtraction method was applied. • Deviations from the stoichiometry were discussed.

  7. Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning.

    Science.gov (United States)

    Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P

    2015-12-01

    The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data.

  8. Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.

    Science.gov (United States)

    Haley, Daniel; Bagot, Paul A J; Moody, Michael P

    2017-01-30

    In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

  9. Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data.

    Science.gov (United States)

    Moody, Michael P; Stephenson, Leigh T; Ceguerra, Anna V; Ringer, Simon P

    2008-07-01

    The applicability of the binomial frequency distribution is outlined for the analysis of the evolution nanoscale atomic clustering of dilute solute in an alloy subject to thermal ageing in 3D atom probe data. The conventional chi(2) statistics and significance testing are demonstrated to be inappropriate for comparison of quantity of solute segregation present in two or more different sized system. Pearson coefficient, mu, is shown to normalize chi(2) with respect to sample size over an order of magnitude. A simple computer simulation is implemented to investigate the binomial analysis and infer meaning in the measured value of mu over a series of systems at different solute concentrations and degree of clustering. The simulations replicate the form of experimental data and demonstrate the effect of detector efficiency to significantly underestimate the measured segregation. The binomial analysis is applied to experimental atom probe data sets and complementary simulations are used to interpret the results.

  10. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu [Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University, Stanford, California 94305 (United States)

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  11. State Feedback Control for Adjusting the Dynamic Behavior of a Piezoactuated Bimorph Atomic Force Microscopy Probe

    CERN Document Server

    Orun, Bilal; Basdogan, Cagatay; Guvenc, Levent

    2012-01-01

    We adjust the transient dynamics of a piezo-actuated bimorph Atomic Force Microscopy (AFM) probe using a state feedback controller. This approach enables us to adjust the quality factor and the resonance frequency of the probe simultaneously. First, we first investigate the effect of feedback gains on dynamic response of the probe and then show that the time constant of the probe can be reduced by reducing its quality factor and/or increasing its resonance frequency to reduce the scan error in tapping mode AFM.

  12. Generating and probing entangled states for optical atomic clocks

    Science.gov (United States)

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan

    2016-05-01

    The precision of quantum measurements is inherently limited by projection noise caused by the measurement process itself. Spin squeezing and more complex forms of entanglement have been proposed as ways of surpassing this limitation. In our system, a high-finesse asymmetric micromirror-based optical cavity can mediate the atom-atom interaction necessary for generating entanglement in an 171 Yb optical lattice clock. I will discuss approaches for creating, characterizing, and optimally utilizing these nonclassical states for precision measurement, as well as recent progress toward their realization. This research is supported by DARPA QuASAR, NSF, and NSERC.

  13. Cyanine-based probe\\tag-peptide pair fluorescence protein imaging and fluorescence protein imaging methods

    Science.gov (United States)

    Mayer-Cumblidge, M. Uljana; Cao, Haishi

    2013-01-15

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  14. Quantitative chemical-structure evaluation using atom probe tomography: Short-range order analysis of Fe–Al

    Energy Technology Data Exchange (ETDEWEB)

    Marceau, R.K.W., E-mail: r.marceau@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Ceguerra, A.V.; Breen, A.J. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Raabe, D. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Ringer, S.P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia)

    2015-10-15

    Short-range-order (SRO) has been quantitatively evaluated in an Fe–18Al (at%) alloy using atom probe tomography (APT) data and by calculation of the generalised multicomponent short-range order (GM-SRO) parameters, which have been determined by shell-based analysis of the three-dimensional atomic positions. The accuracy of this method with respect to limited detector efficiency and spatial resolution is tested against simulated D0{sub 3} ordered data. Whilst there is minimal adverse effect from limited atom probe instrument detector efficiency, the combination of this with imperfect spatial resolution has the effect of making the data appear more randomised. The value of lattice rectification of the experimental APT data prior to GM-SRO analysis is demonstrated through improved information sensitivity. - Highlights: • Short-range-order (SRO) is quantitatively evaluated using atom probe tomography data. • Chemical species-specific SRO parameters have been calculated. • The accuracy of this method is tested against simulated D0{sub 3} ordered data. • Imperfect spatial resolution combined with finite detector efficiency causes a randomising effect. • Lattice rectification of the data prior to GM-SRO analysis is demonstrated to improve information sensitivity.

  15. Fast and reliable method of conductive carbon nanotube-probe fabrication for scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dremov, Vyacheslav, E-mail: dremov@issp.ac.ru; Fedorov, Pavel; Grebenko, Artem [Institute of Solid State Physics, RAS, 142432 Chernogolovka (Russian Federation); Interdisciplinary Center for Basic Research, Moscow Institute of Physics and Technology, 141700 Dolgoprudniy (Russian Federation); Fedoseev, Vitaly [Institute of Solid State Physics, RAS, 142432 Chernogolovka (Russian Federation)

    2015-05-15

    We demonstrate the procedure of scanning probe microscopy (SPM) conductive probe fabrication with a single multi-walled carbon nanotube (MWNT) on a silicon cantilever pyramid. The nanotube bundle reliably attached to the metal-covered pyramid is formed using dielectrophoresis technique from the MWNT suspension. It is shown that the dimpled aluminum sample can be used both for shortening/modification of the nanotube bundle by applying pulse voltage between the probe and the sample and for controlling the probe shape via atomic force microscopy imaging the sample. Carbon nanotube attached to cantilever covered with noble metal is suitable for SPM imaging in such modulation regimes as capacitance contrast microscopy, Kelvin probe microscopy, and scanning gate microscopy. The majority of such probes are conductive with conductivity not degrading within hours of SPM imaging.

  16. Preparation and Analysis of Atom Probe Tips by Xenon Focused Ion Beam Milling.

    Science.gov (United States)

    Estivill, Robert; Audoit, Guillaume; Barnes, Jean-Paul; Grenier, Adeline; Blavette, Didier

    2016-06-01

    The damage and ion distribution induced in Si by an inductively coupled plasma Xe focused ion beam was investigated by atom probe tomography. By using predefined patterns it was possible to prepare the atom probe tips with a sub 50 nm end radius in the ion beam microscope. The atom probe reconstruction shows good agreement with simulated implantation profiles and interplanar distances extracted from spatial distribution maps. The elemental profiles of O and C indicate co-implantation during the milling process. The presence of small disc-shaped Xe clusters are also found in the three-dimensional reconstruction. These are attributed to the presence of Xe nanocrystals or bubbles that open during the evaporation process. The expected accumulated dose points to a loss of >95% of the Xe during analysis, which escapes undetected.

  17. Atom probe tomography study of GaMnN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Robert; Kane, Matthew [School of Electrical and Computer Engineering, University of Oklahoma, 110 W Boyd St Rm 150, Norman, OK 73019 (United States); Diercks, David [Center for Advanced Research and Technology, University of North Texas, Denton, TX 76203 (United States)

    2012-03-15

    Determining the nanoscale atomic distribution of transition metals is essential for understanding the magnetic behavior of III-nitride semiconductors. Atom probe tomography is a characterization technique that can provide direct physical detection of the location of atoms and thus is ideal for investigating nanoscale atomic ordering in these materials. This work presents a study of GaMnN thin films grown bymetalorganic chemical vapor deposition that are characterized utilizing the state of the art local electrode atom probe (LEAP trademark) to determine the atomic ordering of Mn in an effort to help understand the nanoclustering behaviour which leads to observed room-temperature ferromagnetic behaviour in GaMnN. The distribution of Mn on the atomic scale was found to be random in nature in the bulk of the thin film where the analysis was performed with no evidence for the predisposition of Mn to form dimers, trimers or clusters. Other sources of clustering must lead to the room-temperature ferromagnetic behaviour that has been observed in these samples, such as surface segregation of Mn during the growth process. This work proves consistent with prior magnetic analysis in that most atoms in the crystal are isolated Mn atoms which result in a paramagnetic signal. This work is a first step towards the ultimate goal of understanding the structure-property-growth condition relationships for the tailoring of specific MOCVD processes in nitride semiconductors. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Simulating compact quantum electrodynamics with ultracold atoms: probing confinement and nonperturbative effects.

    Science.gov (United States)

    Zohar, Erez; Cirac, J Ignacio; Reznik, Benni

    2012-09-21

    Recently, there has been much interest in simulating quantum field theory effects of matter and gauge fields. In a recent work, a method for simulating compact quantum electrodynamics (CQED) using Bose-Einstein condensates has been suggested. We suggest an alternative approach, which relies on single atoms in an optical lattice, carrying 2l + 1 internal levels, which converges rapidly to CQED as l increases. That enables the simulation of CQED in 2 + 1 dimensions in both the weak and the strong coupling regimes, hence, allowing us to probe confinement as well as other nonperturbative effects of the theory. We provide an explicit construction for the case l = 1 which is sufficient for simulating the effect of confinement between two external static charges.

  19. Specimen preparation and atom probe field ion microscopy of BSCCO-2212 superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.J. [Wisconsin Univ., Madison, WI (United States). Mater. Sci. Program]|[Applied Superconductivity Center, Univ. of Wisconsin, Madison, WI (United States); Camus, P.P. [Applied Superconductivity Center, Univ. of Wisconsin, Madison, WI (United States)]|[Wisconsin Univ., Madison, WI (United States). Dept. of Materials Sciences and Engineering; Vargas, J.L. [Applied Superconductivity Center, Univ. of Wisconsin, Madison, WI (United States); Kelly, T.F. [Wisconsin Univ., Madison, WI (United States). Mater. Sci. Program]|[Applied Superconductivity Center, Univ. of Wisconsin, Madison, WI (United States)]|[Wisconsin Univ., Madison, WI (United States). Dept. of Materials Sciences and Engineering; Miller, M.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1996-09-01

    Field ion specimens of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} (BSCCO) high temperature superconductor (HTS) materials have been prepared using a combination of three different preparation techniques: the method of sharp shards, electropolishing and ion milling. Field ion microscopy (FIM) has demonstrated that samples which exhibit the ``striped``-image contrast characteristic of HTS materials can be successfully fabricated using this combination. FIM images have been obtained which show the striped-image contrast much clearer than any previously published images of Pb-free BSCCO. Preliminary atom probe (AP) chemical analysis of the material was also performed. Analytical electron microscopy was used to confirm the existence of both the correct crystallographic structure and nominal composition in the near-apex region of the specimen after preparation and FIM. (orig.).

  20. Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe

    DEFF Research Database (Denmark)

    Kageshima, M.; Jensenius, Henriette; Dienwiebel, M.

    2002-01-01

    A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane surface were detected both in the frequency shift and dissipation. Due...... to the high aspect ratio of the CNT probe, the long-range background force was barely detectable in the solvation region. (C) 2002 Elsevier Science B.V. All rights reserved....

  1. Tailored probes for atomic force microscopy fabricated by two-photon polymerization

    Science.gov (United States)

    Göring, Gerald; Dietrich, Philipp-Immanuel; Blaicher, Matthias; Sharma, Swati; Korvink, Jan G.; Schimmel, Thomas; Koos, Christian; Hölscher, Hendrik

    2016-08-01

    3D direct laser writing based on two-photon polymerization is considered as a tool to fabricate tailored probes for atomic force microscopy. Tips with radii of 25 nm and arbitrary shape are attached to conventionally shaped micro-machined cantilevers. Long-term scanning measurements reveal low wear rates and demonstrate the reliability of such tips. Furthermore, we show that the resonance spectrum of the probe can be tuned for multi-frequency applications by adding rebar structures to the cantilever.

  2. Atomic-scale investigations of grain boundary segregation in astrology with a three dimensional atom-probe

    Energy Technology Data Exchange (ETDEWEB)

    Blavette, D. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut Universitaire de France (France); Letellier, L. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Duval, P. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Guttmann, M. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut de Recherches de la Siderurgie Francaise (IRSID), 57 - Maizieres-les-Metz (France)

    1996-08-01

    Both conventional and 3D atom-probes were applied to the investigation of grain-boundary (GB) segregation phenomena in two-phase nickel base superalloys Astroloy. 3D images as provided by the tomographic atom-probe reveal the presence of a strong segregation of both boron and molybdenum at grain-boundaries. Slight carbon enrichment is also detected. Considerable chromium segregation is exhibited at {gamma}`-{gamma}` grain-boundaries. All these segregants are distributed in a continuous manner along the boundary over a width close to 0.5 nm. Experiments show that segregation occurs during cooling and more probably between 1000 C and 800 C. Boron and molybdenum GB enrichments are interpreted as due to an equilibrium type-segregation while chromium segregation is thought to be induced by {gamma}` precipitation at GB`s and stabilised by the presence of boron. No segregation of zirconium is detected. (orig.)

  3. Atomic parity violation as a probe of new physics

    Science.gov (United States)

    Marciano, William J.; Rosner, Jonathan L.

    1990-12-01

    Effects of physics beyond the standard model on electroweak observables ares studied using the Peskin-Takeuchi isospin-conserving, S, and -breaking, T, parametrization of ``new'' quantum loop corrections. Experimental constraints on S and T are presented. Atomic parity-violating experiments are shown to be particularly sensitive to S with existing data giving S=-2.7+/-2.0+/-1.1. That constraint has important implications for generic technicolor models which predict S~=0.1NTND (NT is the number of technicolors, ND is the number of technidoublets).

  4. Magnetoencephalography with a two-color pump probe atomic magnetometer.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Cort N.

    2010-07-01

    The authors have detected magnetic fields from the human brain with a compact, fiber-coupled rubidium spin-exchange-relaxation-free magnetometer. Optical pumping is performed on the D1 transition and Faraday rotation is measured on the D2 transition. The beams share an optical axis, with dichroic optics preparing beam polarizations appropriately. A sensitivity of <5 fT/{radical}Hz is achieved. Evoked responses resulting from median nerve and auditory stimulation were recorded with the atomic magnetometer. Recordings were validated by comparison with those taken by a commercial magnetoencephalography system. The design is amenable to arraying sensors around the head, providing a framework for noncryogenic, whole-head magnetoencephalography.

  5. Optical method of atomic ordering estimation

    Energy Technology Data Exchange (ETDEWEB)

    Prutskij, T. [Instituto de Ciencias, BUAP, Privada 17 Norte, No 3417, col. San Miguel Huyeotlipan, Puebla, Pue. (Mexico); Attolini, G. [IMEM/CNR, Parco Area delle Scienze 37/A - 43010, Parma (Italy); Lantratov, V.; Kalyuzhnyy, N. [Ioffe Physico-Technical Institute, 26 Polytekhnicheskaya, St Petersburg 194021, Russian Federation (Russian Federation)

    2013-12-04

    It is well known that within metal-organic vapor-phase epitaxy (MOVPE) grown semiconductor III-V ternary alloys atomically ordered regions are spontaneously formed during the epitaxial growth. This ordering leads to bandgap reduction and to valence bands splitting, and therefore to anisotropy of the photoluminescence (PL) emission polarization. The same phenomenon occurs within quaternary semiconductor alloys. While the ordering in ternary alloys is widely studied, for quaternaries there have been only a few detailed experimental studies of it, probably because of the absence of appropriate methods of its detection. Here we propose an optical method to reveal atomic ordering within quaternary alloys by measuring the PL emission polarization.

  6. Probing non-Hermitian physics with flying atoms

    Science.gov (United States)

    Wen, Jianming; Xiao, Yanhong; Peng, Peng; Cao, Wanxia; Shen, Ce; Qu, Weizhi; Jiang, Liang

    2016-05-01

    Non-Hermtian optical systems with parity-time (PT) symmetry provide new means for light manipulation and control. To date, most of experimental demonstrations on PT symmetry rely on advanced nanotechnologies and sophisticated fabrication techniques to manmade solid-state materials. Here, we report the first experimental realization of optical anti-PT symmetry, a counterpart of conventional PT symmetry, in a warm atomic-vapor cell. By exploiting rapid coherence transport via flying atoms, we observe essential features of anti-PT symmetry with an unprecedented precision on phase-transition threshold. Moreover, our system allows nonlocal interference of two spatially-separated fields as well as anti-PT assisted four-wave mixing. Besides, another intriguing feature offered by the system is refractionless (or unit-refraction) light propagation. Our results thus represent a significant advance in non-Hermitian physics by bridging a firm connection with the AMO field, where novel phenomena and applications in quantum and nonlinear optics aided by (anti-)PT symmetry can be anticipated.

  7. Standardless quantification methods in electron probe microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Trincavelli, Jorge, E-mail: trincavelli@famaf.unc.edu.ar [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina); Limandri, Silvina, E-mail: s.limandri@conicet.gov.ar [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina); Bonetto, Rita, E-mail: bonetto@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas Dr. Jorge Ronco, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Facultad de Ciencias Exactas, de la Universidad Nacional de La Plata, Calle 47 N° 257, 1900 La Plata (Argentina)

    2014-11-01

    The elemental composition of a solid sample can be determined by electron probe microanalysis with or without the use of standards. The standardless algorithms are quite faster than the methods that require standards; they are useful when a suitable set of standards is not available or for rough samples, and also they help to solve the problem of current variation, for example, in equipments with cold field emission gun. Due to significant advances in the accuracy achieved during the last years, product of the successive efforts made to improve the description of generation, absorption and detection of X-rays, the standardless methods have increasingly become an interesting option for the user. Nevertheless, up to now, algorithms that use standards are still more precise than standardless methods. It is important to remark, that care must be taken with results provided by standardless methods that normalize the calculated concentration values to 100%, unless an estimate of the errors is reported. In this work, a comprehensive discussion of the key features of the main standardless quantification methods, as well as the level of accuracy achieved by them is presented. - Highlights: • Standardless methods are a good alternative when no suitable standards are available. • Their accuracy reaches 10% for 95% of the analyses when traces are excluded. • Some of them are suitable for the analysis of rough samples.

  8. Probing Andreev bound states in one-atom superconducting contacts

    Energy Technology Data Exchange (ETDEWEB)

    Pothier, Hugues; Janvier, Camille; Tosi, Leandro; Girit, Caglar; Goffman, Marcelo; Esteve, Daniel; Urbina, Cristian [Quantronics Group, SPEC, CEA-Saclay (France)

    2015-07-01

    Superconductors are characterized by a dissipationless current. Since the work of Josephson 50 years ago, it is known that a supercurrent can even flow through tunnel junctions between superconductors. This Josephson effect also occurs through any type of ''weak links'' between superconductors: non-superconducting materials, constrictions,.. A unified understanding of the Josephson effect has emerged from a mesoscopic description of weak links. It relies on the existence of doublets of localized states that have energies below the superconducting gap: the Andreev bound states. I will present experiments performed on the simplest conductor possible, a single-atom contact between superconductors, that illustrate these concepts. The most recent work demonstrates time-domain manipulation of quantum superpositions of Andreev bound states.

  9. Voltage-pulsed and laser-pulsed atom probe tomography of a multiphase high-strength low-carbon steel.

    Science.gov (United States)

    Mulholland, Michael D; Seidman, David N

    2011-12-01

    The differences in artifacts associated with voltage-pulsed and laser-pulsed (wavelength = 532 or 355 nm) atom-probe tomographic (APT) analyses of nanoscale precipitation in a high-strength low-carbon steel are assessed using a local-electrode atom-probe tomograph. It is found that the interfacial width of nanoscale Cu precipitates increases with increasing specimen apex temperatures induced by higher laser pulse energies (0.6-2 nJ pulse(-1) at a wavelength of 532 nm). This effect is probably due to surface diffusion of Cu atoms. Increasing the specimen apex temperature by using pulse energies up to 2 nJ pulse(-1) at a wavelength of 532 nm is also found to increase the severity of the local magnification effect for nanoscale M2C metal carbide precipitates, which is indicated by a decrease of the local atomic density inside the carbides from 68 ± 6 nm(-3) (voltage pulsing) to as small as 3.5 ± 0.8 nm(-3). Methods are proposed to solve these problems based on comparisons with the results obtained from voltage-pulsed APT experiments. Essentially, application of the Cu precipitate compositions and local atomic density of M2C metal carbide precipitates measured by voltage-pulsed APT to 532 or 355 nm wavelength laser-pulsed data permits correct quantification of precipitation.

  10. Atomic resolution probe for allostery in the regulatory thin filament

    Science.gov (United States)

    Williams, Michael R.; Lehman, Sarah J.; Tardiff, Jil C.; Schwartz, Steven D.

    2016-01-01

    Calcium binding and dissociation within the cardiac thin filament (CTF) is a fundamental regulator of normal contraction and relaxation. Although the disruption of this complex, allosterically mediated process has long been implicated in human disease, the precise atomic-level mechanisms remain opaque, greatly hampering the development of novel targeted therapies. To address this question, we used a fully atomistic CTF model to test both Ca2+ binding strength and the energy required to remove Ca2+ from the N-lobe binding site in WT and mutant troponin complexes that have been linked to genetic cardiomyopathies. This computational approach is combined with measurements of in vitro Ca2+ dissociation rates in fully reconstituted WT and cardiac troponin T R92L and R92W thin filaments. These human disease mutations represent known substitutions at the same residue, reside at a significant distance from the calcium binding site in cardiac troponin C, and do not affect either the binding pocket affinity or EF-hand structure of the binding domain. Both have been shown to have significantly different effects on cardiac function in vivo. We now show that these mutations independently alter the interaction between the Ca2+ ion and cardiac troponin I subunit. This interaction is a previously unidentified mechanism, in which mutations in one protein of a complex indirectly affect a third via structural and dynamic changes in a second to yield a pathogenic change in thin filament function that results in mutation-specific disease states. We can now provide atom-level insight that is potentially highly actionable in drug design. PMID:26957598

  11. Single Cs Atoms as Collisional Probes in a large Rb Magneto-Optical Trap

    CERN Document Server

    Weber, Claudia; Spethmann, Nicolas; Meschede, Dieter; Widera, Artur

    2010-01-01

    We study cold inter-species collisions of Caesium and Rubidium in a strongly imbalanced system with single and few Cs atoms. Observation of the single atom fuorescence dynamics yields insight into light-induced loss mechanisms, while both subsystems can remain in steady-state. This significantly simplifies the analysis of the dynamics, as Cs-Cs collisions are effectively absent and the majority component remains unaffected, allowing us to extract a precise value of the Rb-Cs collision parameter. Extending our results to ground state collisions would allow to use single neutral atoms as coherent probes for larger quantum systems.

  12. Atom probe field ion microscopy and related topics: A bibliography 1992

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.F.; Godfrey, R.D.; Miller, M.K.

    1993-12-01

    This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

  13. A Study of the Probe Effect on the Apparent Image of Biological Atomic Force Microscopy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The probe effect on the apparent image of biological atomic force microscopy was explored in this study, and the potential of AFM in conformational study of gene related biological processes was illustrated by the specific nanostructural information of a new antitumor drug binding to DNA.

  14. Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface

    Science.gov (United States)

    Pawlak, Rémy; Kisiel, Marcin; Klinovaja, Jelena; Meier, Tobias; Kawai, Shigeki; Glatzel, Thilo; Loss, Daniel; Meyer, Ernst

    2016-11-01

    Motivated by the striking promise of quantum computation, Majorana bound states (MBSs) in solid-state systems have attracted wide attention in recent years. In particular, the wavefunction localisation of MBSs is a key feature and is crucial for their future implementation as qubits. Here we investigate the spatial and electronic characteristics of topological superconducting chains of iron atoms on the surface of Pb(110) by combining scanning tunnelling microscopy and atomic force microscopy. We demonstrate that the Fe chains are mono-atomic, structured in a linear manner and exhibit zero-bias conductance peaks at their ends, which we interpret as signature for a MBS. Spatially resolved conductance maps of the atomic chains reveal that the MBSs are well localised at the chain ends (≲25 nm), with two localisation lengths as predicted by theory. Our observation lends strong support to use MBSs in Fe chains as qubits for quantum-computing devices.

  15. Advanced fabrication process for combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes.

    Science.gov (United States)

    Eifert, Alexander; Mizaikoff, Boris; Kranz, Christine

    2015-01-01

    An advanced software-controlled focused ion beam (FIB) patterning process for the fabrication of combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes is reported. FIB milling is a standard process in scanning probe microscopy (SPM) for specialized SPM probe fabrication. For AFM-SECM, milling of bifunctional probes usually requires several milling steps. Milling such complex multi-layer/multi-material structures using a single milling routine leads to significantly reduced fabrication times and costs. Based on an advanced patterning routine, a semi-automated FIB milling routine for fabricating combined AFM-SECM probes with high reproducibility is presented with future potential for processing at a wafer level. The fabricated bifunctional probes were electrochemically characterized using cyclic voltammetry, and their performance for AFM-SECM imaging experiments was tested. Different insulation materials (Parylene-C and SixNy) have been evaluated with respect to facilitating the overall milling process, the influence on the electrochemical behavior and the long-term stability of the obtained probes. Furthermore, the influence of material composition and layer sequence to the overall shape and properties of the combined probes were evaluated.

  16. Band excitation method applicable to scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, Stephen; Kalinin, Sergei V.

    2017-01-03

    Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.

  17. An improved fabrication method for carbon nanotube probe

    Institute of Scientific and Technical Information of China (English)

    XU Zong-wei; GUO Li-qiu; DONG Shen; ZHAO Qing-liang

    2008-01-01

    An improved arc discharge method is developed to fabricate the carbon nanotube probe.In this method,the silicon probe and the carbon nanotube were manipulated under an optical microscope.When the silicon probe and the carbon nanotube were very close,30-60 V dc or ac was applied between them,and the carbon nanotube was divided and attached to the end of the silicon probe.Comparing with the arc discharge method,the new method need not coat the silicon probe with metal in advance,which Can greatly reduce the fabrication difficulty and cost.The fabricated carbon nanotube probe exhibits the good property of hish aspect ratio and can reflect the true topography more accurately than the silicon probe.

  18. Design and optimization of a harmonic probe with step cross section in multifrequency atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jiandong; Zhang, Li [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT (Hong Kong); Wang, Michael Yu, E-mail: michael.wang@nus.edu.sg [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT (Hong Kong); Department of Mechanical Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-12-15

    In multifrequency atomic force microscopy (AFM), probe’s characteristic of assigning resonance frequencies to integer harmonics results in a remarkable improvement of detection sensitivity at specific harmonic components. The selection criterion of harmonic order is based on its amplitude’s sensitivity on material properties, e.g., elasticity. Previous studies on designing harmonic probe are unable to provide a large design capability along with maintaining the structural integrity. Herein, we propose a harmonic probe with step cross section, in which it has variable width in top and bottom steps, while the middle step in cross section is kept constant. Higher order resonance frequencies are tailored to be integer times of fundamental resonance frequency. The probe design is implemented within a structural optimization framework. The optimally designed probe is micromachined using focused ion beam milling technique, and then measured with an AFM. The measurement results agree well with our resonance frequency assignment requirement.

  19. Probing the Physical Conditions of Atomic Gas at High Redshift

    CERN Document Server

    Neeleman, Marcel; Wolfe, Arthur M

    2014-01-01

    A new method is used to measure the physical conditions of the gas in damped Lyman-alpha systems (DLAs). Using high resolution absorption spectra of a sample of 80 DLAs, we are able to measure the ratio of the upper to lower fine-structure levels of the ground state of C II and Si II. These ratios are determined solely by the physical conditions of the gas. We explore the allowed physical parameter space using a Monte Carlo Markov Chain method to constrain simultaneously the temperature, neutral hydrogen density, and electron density of each DLA. The results indicate that at least 5 % of all DLAs have the bulk of their gas in a dense, cold phase with typical densities of ~100 cm-3 and temperatures below 500 K. We further find that the typical pressure of DLAs in our sample is log(P/k) = 3.4 [K cm-3], which is comparable to the pressure of the local interstellar medium (ISM), and that the components containing the bulk of the neutral gas can be quite small with absorption sizes as small as a few parsec. We sho...

  20. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben

    2012-10-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations are based on the Müller-Schottky equation, which is modified to include different atomic neighborhoods and their characteristic bonds. The local environment is considered up to the fifth next nearest neighbors. To compare the experimental with simulated APT data, the AtomVicinity algorithm, which provides statistical information about the positions of the neighboring atoms, is applied. The quality of this information is influenced by the field evaporation behavior of the different species, which is connected to the bonding energies. © Microscopy Society of America 2012.

  1. PROBING THE PHYSICAL CONDITIONS OF ATOMIC GAS AT HIGH REDSHIFT

    Energy Technology Data Exchange (ETDEWEB)

    Neeleman, Marcel; Wolfe, Arthur M. [Department of Physics and Center for Astrophysics and Space Sciences, UCSD, La Jolla, CA 92093 (United States); Prochaska, J. Xavier, E-mail: mneeleman@physics.ucsd.edu [Department of Astronomy and Astrophysics, UCO/Lick Observatory, 1156 High Street, University of California, Santa Cruz, CA 95064 (United States)

    2015-02-10

    A new method is used to measure the physical conditions of the gas in damped Lyα systems (DLAs). Using high-resolution absorption spectra of a sample of 80 DLAs, we are able to measure the ratio of the upper and lower fine-structure levels of the ground state of C{sup +} and Si{sup +}. These ratios are determined solely by the physical conditions of the gas. We explore the allowed physical parameter space using a Monte Carlo Markov chain method to constrain simultaneously the temperature, neutral hydrogen density, and electron density of each DLA. The results indicate that at least 5% of all DLAs have the bulk of their gas in a dense, cold phase with typical densities of ∼100 cm{sup –3} and temperatures below 500 K. We further find that the typical pressure of DLAs in our sample is log (P/k{sub B} ) = 3.4 (K cm{sup –3}), which is comparable to the pressure of the local interstellar medium (ISM), and that the components containing the bulk of the neutral gas can be quite small with absorption sizes as small as a few parsecs. We show that the majority of the systems are consistent with having densities significantly higher than expected for a purely canonical warm neutral medium, indicating that significant quantities of dense gas (i.e., n {sub H} > 0.1 cm{sup –3}) are required to match observations. Finally, we identify eight systems with positive detections of Si II*. These systems have pressures (P/k{sub B} ) in excess of 20,000 K cm{sup –3}, which suggest that these systems tag a highly turbulent ISM in young, star-forming galaxies.

  2. Variational methods in electron-atom scattering theory

    CERN Document Server

    Nesbet, Robert K

    1980-01-01

    The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low­ energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Cha...

  3. Digital atomic force microscope Moire method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.-M. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Chen, L.-W. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)]. E-mail: chenlw@mail.ncku.edu.tw

    2004-11-15

    In this study, a novel digital atomic force microscope (AFM) moire method is established to measure the displacement and strain fields. The moire pattern is generated by the interference between the specimen grating and the virtual reference grating formed by digital image processes. The overlapped image is filtered by the 2-D wavelet transformation to obtain clear interference moire patterns. From moire patterns, the displacement and strain fields can be analyzed. The experimental results show that the digital AFM moire method is very sensitive and easy to realize in nanoscale measurements.

  4. Generating Entanglement between Atomic Spins with Low-Noise Probing of an Optical Cavity

    CERN Document Server

    Cox, Kevin C; Greve, Graham P; Thompson, James K

    2015-01-01

    Atomic projection noise limits the ultimate precision of all atomic sensors, including clocks, inertial sensors, magnetometers, etc. The independent quantum collapse of $N$ atoms into a definite state (for example spin up or down) leads to an uncertainty $\\Delta \\theta_{SQL}=1/\\sqrt{N}$ in the estimate of the quantum phase accumulated during a Ramsey sequence or its many generalizations. This phase uncertainty is referred to as the standard quantum limit. Creating quantum entanglement between the $N$ atoms can allow the atoms to partially cancel each other's quantum noise, leading to reduced noise in the phase estimate below the standard quantum limit. Recent experiments have demonstrated up to $10$~dB of phase noise reduction relative to the SQL by making collective spin measurements. This is achieved by trapping laser-cooled Rb atoms in an optical cavity and precisely measuring the shift of the cavity resonance frequency by an amount that depends on the number of atoms in spin up. Detecting the probe light ...

  5. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography

    KAUST Repository

    Al-Kassab, Talaat

    2014-09-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3at.% Ti were investigated, the states selected from the decomposition path were the metastable γ″ and γ\\' states introduced on the basis of small-angle neutron scattering (SANS) and the two-phase model for evaluation. The composition values of the precipitates in these states could not be confirmed by APT data as the interface of the ordered precipitates may not be neglected. The present results rather suggest to apply a three-phase model for the interpretation of SANS measurements, in which the width of the interface remains nearly unchanged and the L12 structure close to 3:1 stoichiometry is maintained in the core of the precipitates from the γ″ to the γ\\' state. © 2014 Elsevier Ltd.

  6. Pulsed-laser atom probe studies of a precipitation hardened maraging TRIP steel.

    Science.gov (United States)

    Dmitrieva, O; Choi, P; Gerstl, S S A; Ponge, D; Raabe, D

    2011-05-01

    A precipitation hardened maraging TRIP steel was analyzed using a pulsed laser atom probe. The laser pulse energy was varied from 0.3 to 1.9 nJ to study its effect on the measured chemical compositions and spatial resolution. Compositional analyses using proximity histograms did not show any significant variations in the average matrix and precipitate compositions. The only remarkable change in the atom probe data was a decrease in the ++/+ charge state ratios of the elements. The values of the evaporation field used for the reconstructions exhibit a linear dependence on the laser pulse energy. The adjustment of the evaporation fields used in the reconstructions for different laser pulse energies was based on the correlation of the obtained cluster shapes to the TEM observations. No influence of laser pulse energy on chemical composition of the precipitates and on the chemical sharpness of their interfaces was detected.

  7. An atom probe perspective on phase separation and precipitation in duplex stainless steels

    Science.gov (United States)

    Guo, Wei; Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel; Young, George A.; Poplawsky, Jonathan D.

    2016-06-01

    Three-dimensional chemical imaging of Fe-Cr alloys showing Fe-rich (α)/Cr-rich (α‧) phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe-Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100-10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni-Mn-Si-Cu-rich G-phase precipitates form at the α/α‧ interfaces in both alloys. For the 2101 alloy, Cu clusters act to form a nucleus, around which a Ni-Mn-Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core-shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby-Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30-36). ).

  8. Interface study of FeMgOFe magnetic tunnel junctions using 3D Atom Probe

    CERN Document Server

    Mazumder, B; Vella, A; Vurpillot, F; Deconihout, B

    2011-01-01

    A detailed interface study was conducted on a Fe/MgO/Fe system using laser assisted 3D atom probe. It exhibits an additional oxide formation at the second interface of the multilayer structure independent of laser wavelength, laser fluence and the thickness of the tunnel barrier. We have shown with the help of simulation that this phenomena is caused by the field evaporation of two layers having two different evaporation

  9. Atom probe field ion microscopy and related topics: A bibliography 1989

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K.; Hawkins, A.R.; Russell, K.F.

    1990-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications.

  10. Atom-probe tomography of tribological boundary films resulting from boron-based oil additives

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon-Jun; Baik, Sung-Il; Bertolucci-Coelho, Leonardo; Mazzaferro, Lucca; Ramirez, Giovanni; Erdemir, Ali; Seidman, D K

    2016-01-15

    Correlative characterization using atom-probe tomography (APT) and transmission electron microscopy (TEM) was performed on a tribofilm formed during sliding frictional testing with a fully formulated engine oil, which also contains a boron-based additive. The tribofilm formed is ~15 nm thick and consists of oxides of iron and compounds of B, Ca, P, and S, which are present in the additive. This study provides strong evidence for boron being embedded in the tribofilm, which effectively reduces friction and wear losses.

  11. Influence of atomic force microscope (AFM) probe shape on adhesion force measured in humidity environment

    Institute of Scientific and Technical Information of China (English)

    阳丽; 涂育松; 谭惠丽

    2014-01-01

    In micro-manipulation, the adhesion force has very important influence on behaviors of micro-objects. Here, a theoretical study on the effects of humidity on the adhesion force is presented between atomic force microscope (AFM) tips and substrate. The analysis shows that the precise tip geometry plays a critical role on humidity depen-dence of the adhesion force, which is the dominant factor in manipulating micro-objects in AFM experiments. For a blunt (paraboloid) tip, the adhesion force versus humidity curves tends to the apparent contrast (peak-to-valley corrugation) with a broad range. This paper demonstrates that the abrupt change of the adhesion force has high correla-tion with probe curvatures, which is mediated by coordinates of solid-liquid-vapor contact lines (triple point) on the probe profiles. The study provides insights for further under-standing nanoscale adhesion forces and the way to choose probe shapes in manipulating micro-objects in AFM experiments.

  12. Pulsed-laser atom probe studies of a precipitation hardened maraging TRIP steel

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrieva, O., E-mail: o.dmitrieva@mpie.de [Max-Planck-Institute for Iron Research, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Choi, P., E-mail: p.choi@mpie.de [Max-Planck-Institute for Iron Research, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Gerstl, S.S.A. [Imago Scientific Instruments, Madison, WI 53711 (United States); Ponge, D.; Raabe, D. [Max-Planck-Institute for Iron Research, Max-Planck-Str. 1, 40237 Duesseldorf (Germany)

    2011-05-15

    A precipitation hardened maraging TRIP steel was analyzed using a pulsed laser atom probe. The laser pulse energy was varied from 0.3 to 1.9 nJ to study its effect on the measured chemical compositions and spatial resolution. Compositional analyses using proximity histograms did not show any significant variations in the average matrix and precipitate compositions. The only remarkable change in the atom probe data was a decrease in the ++/+ charge state ratios of the elements. The values of the evaporation field used for the reconstructions exhibit a linear dependence on the laser pulse energy. The adjustment of the evaporation fields used in the reconstructions for different laser pulse energies was based on the correlation of the obtained cluster shapes to the TEM observations. No influence of laser pulse energy on chemical composition of the precipitates and on the chemical sharpness of their interfaces was detected. -- Research highlights: {yields} Changing the laser pulse energy in pulsed-laser atom probe could induce some changes in the analysis results of complex steels. {yields} Decreases in the evaporation fields and the ++/+ charge state ratios were detected with raising laser energy. {yields} Chemical composition of the intermetallic precipitates and the interface sharpness were not influenced by changing the laser energy.

  13. Controlling residual hydrogen gas in mass spectra during pulsed laser atom probe tomography.

    Science.gov (United States)

    Kolli, R Prakash

    2017-01-01

    Residual hydrogen (H2) gas in the analysis chamber of an atom probe instrument limits the ability to measure H concentration in metals and alloys. Measuring H concentration would permit quantification of important physical phenomena, such as hydrogen embrittlement, corrosion, hydrogen trapping, and grain boundary segregation. Increased insight into the behavior of residual H2 gas on the specimen tip surface in atom probe instruments could help reduce these limitations. The influence of user-selected experimental parameters on the field adsorption and desorption of residual H2 gas on nominally pure copper (Cu) was studied during ultraviolet pulsed laser atom probe tomography. The results indicate that the total residual hydrogen concentration, HTOT, in the mass spectra exhibits a generally decreasing trend with increasing laser pulse energy and increasing laser pulse frequency. Second-order interaction effects are also important. The pulse energy has the greatest influence on the quantity HTOT, which is consistently less than 0.1 at.% at a value of 80 pJ.

  14. Microstructural characterization of an Al-li-mg-cu alloy by correlative electron tomography and atom probe tomography.

    Science.gov (United States)

    Xiong, Xiangyuan; Weyland, Matthew

    2014-08-01

    Correlative electron tomography and atom probe tomography have been carried out successfully on the same region of a commercial 8090 aluminum alloy (Al-Li-Mg-Cu). The combination of the two techniques allows accurate geometric reconstruction of the atom probe tomography data verified by crystallographic information retrieved from the reconstruction. Quantitative analysis of the precipitate phase compositions and volume fractions of each phase have been obtained from the atom probe tomography and electron tomography at various scales, showing strong agreement between both techniques.

  15. Probe and method for DNA detection

    Science.gov (United States)

    Yeh, Hsin-Chih; Werner, James Henry; Sharma, Jaswinder Kumar; Martinez, Jennifer Suzanne

    2013-07-02

    A hybridization probe containing two linear strands of DNA lights up upon hybridization to a target DNA using silver nanoclusters that have been templated onto one of the DNA strands. Hybridization induces proximity between the nanoclusters on one strand and an overhang on the other strand, which results in enhanced fluorescence emission from the nanoclusters.

  16. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Directory of Open Access Journals (Sweden)

    Thomas Klein

    2016-09-01

    Full Text Available Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys.

  17. Atomic species recognition on oxide surfaces using low temperature scanning probe microscopy

    Science.gov (United States)

    Ma, Zong Min; Shi, Yun Bo; Mu, Ji Liang; Qu, Zhang; Zhang, Xiao Ming; Qin, Li; Liu, Jun

    2017-02-01

    In scanning probe microscopy (SPM), the chemical properties and sharpness of the tips of the cantilever greatly influence the scanning of a sample surface. Variation in the chemical properties of the sharp tip apex can induce transformation of the SPM images. In this research, we explore the relationship between the tip and the structure of a sample surface using dynamic atomic force microscopy (AFM) on a Cu(110)-O surface under ultra-high vacuum (UHV) at low temperature (78 K). We observed two different c(6 × 2) phase types in which super-Cu atoms show as a bright spot when the tip apex is of O atoms and O atoms show as a bright spot when the tip apex is of Cu atoms. We also found that the electronic state of the tip has a serious effect on the resolution and stability of the sample surface, and provide an explanation for these phenomena. This technique can be used to identify atom species on sample surfaces, and represents an important development in the SPM technique.

  18. Atom-column distinction by Kikuchi pattern observed by an aberration-corrected convergent electron probe.

    Science.gov (United States)

    Saitoh, Koh; Tatara, Yoshihide; Tanaka, Nobuo

    2010-01-01

    Kikuchi patterns of an MgO crystal at the [110] incidence have been taken by a sub-angstrom electron beam focused on the single atom-column. A significant change in intensity has been observed in the 111 band; that is, the contrast in the central and side bands is reversed depending on the illuminated atom-column. The contrast reversal in the 111 band has been reproduced by multislice simulation using the frozen-phonon approach. The beam-position dependence of the 111 band intensity can be interpreted by electron channelling and the reciprocity theorem. The anomalous Kikuchi pattern can be a probe for identifying the illuminated atom-column, which is useful for column-by-column electron energy-loss spectroscopy and X-ray emission spectroscopy.

  19. Atom-probe tomography analyses of niobium superconducting RF cavity materials

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, J.T. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States); Seidman, D.N. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States); Yoon, K.E. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States)]. E-mail: megabass@northwestern.edu; Bauer, P. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Reid, T. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Boffo, C. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Norem, J. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2006-07-15

    We present the first atom-probe tomographic (APT) measurements of niobium superconducting RF (SCRF) cavity materials. APT involves the atom-by-atom dissection of sharply pointed niobium tips, along with their niobium oxide coatings, via the application of a high-pulsed electric field and the measurement of each ion's mass-to-charge state ratio (m/n) with time-of-flight (TOF) mass spectrometry. The resulting atomic reconstructions, typically containing at least 10{sup 5} atoms and with typical dimensions of 10{sup 5} nm{sup 3} (or less), show the detailed, nanoscale chemistry of the niobium oxide coatings, and of the underlying high-purity niobium metal. Our initial results show a nanochemically smooth transition through the oxide layer from near-stoichiometric Nb{sub 2}O{sub 5} at the surface to near-stoichiometric Nb{sub 2}O as the underlying metal is approached (after {approx}10 nm of surface oxide). The underlying metal, in the near-oxide region, contains a significant amount of interstitially dissolved oxygen ({approx}5-10 at.%), as well as a considerable amount of dissolved hydrogen. The experimental results are interpreted in light of current models of oxide and sub-oxide formation in the Nb-O system.

  20. Atomic force microscope controlled topographical imaging and proximal probe thermal desorption/ionization mass spectrometry imaging.

    Science.gov (United States)

    Ovchinnikova, Olga S; Kjoller, Kevin; Hurst, Gregory B; Pelletier, Dale A; Van Berkel, Gary J

    2014-01-21

    This paper reports on the development of a hybrid atmospheric pressure atomic force microscopy/mass spectrometry imaging system utilizing nanothermal analysis probes for thermal desorption surface sampling with subsequent atmospheric pressure chemical ionization and mass analysis. The basic instrumental setup and the general operation of the system were discussed, and optimized performance metrics were presented. The ability to correlate topographic images of a surface with atomic force microscopy and a mass spectral chemical image of the same surface, utilizing the same probe without moving the sample from the system, was demonstrated. Co-registered mass spectral chemical images and atomic force microscopy topographical images were obtained from inked patterns on paper as well as from a living bacterial colony on an agar gel. Spatial resolution of the topography images based on pixel size (0.2 μm × 0.8 μm) was better than the resolution of the mass spectral images (2.5 μm × 2.0 μm), which were limited by current mass spectral data acquisition rate and system detection levels.

  1. Cyanine-based probe\\tag-peptide pair for fluorescence protein imaging and fluorescence protein imaging methods

    Science.gov (United States)

    Mayer-Cumblidge, M. Uljana; Cao, Haishi

    2010-08-17

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  2. Modified embedded atom method calculations of interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baskes, M.I.

    1996-05-01

    The Embedded Atom Method (EAM) is a semi-empirical calculational method developed a decade ago to calculate the properties of metallic systems. By including many-body effects this method has proven to be quite accurate in predicting bulk and surface properties of metals and alloys. Recent modifications have extended this applicability to a large number of elements in the periodic table. For example the modified EAM (MEAM) is able to include the bond-bending forces necessary to explain the elastic properties of semiconductors. This manuscript will briefly review the MEAM and its application to the binary systems discussed below. Two specific examples of interface behavior will be highlighted to show the wide applicability of the method. In the first example a thin overlayer of nickel on silicon will be studied. Note that this example is representative of an important technological class of materials, a metal on a semiconductor. Both the structure of the Ni/Si interface and its mechanical properties will be presented. In the second example the system aluminum on sapphire will be examined. Again the class of materials is quite different, a metal on an ionic material. The calculated structure and energetics of a number of (111) Al layers on the (0001) surface of sapphire will be compared to recent experiments.

  3. Method of performing MRI with an atomic magnetometer

    Science.gov (United States)

    Savukov, Igor Mykhaylovich; Matlashov, Andrei Nikolaevich; Espy, Michelle A; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry; Zotev, Vadim Sergeyevich

    2013-08-27

    A method and apparatus are provided for performing an in-situ magnetic resonance imaging of an object. The method includes the steps of providing an atomic magnetometer, coupling a magnetic field generated by magnetically resonating samples of the object through a flux transformer to the atomic magnetometer and measuring a magnetic resonance of the atomic magnetometer.

  4. Atomic hydrogen storage method and apparatus

    Science.gov (United States)

    Woollam, J. A. (Inventor)

    1980-01-01

    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compounds maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  5. Atom probe tomography characterisation of a laser diode structure grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Samantha E.; Humphreys, Colin J.; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Smeeton, Tim M.; Hooper, Stewart E.; Heffernan, Jonathan [Sharp Laboratories of Europe Limited, Edmund Halley Road, Oxford Science Park, Oxford, OX4 4GB (United Kingdom); Saxey, David W.; Smith, George D. W. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom)

    2012-03-01

    Atom probe tomography (APT) has been used to achieve three-dimensional characterization of a III-nitride laser diode (LD) structure grown by molecular beam epitaxy (MBE). Four APT data sets have been obtained, with fields of view up to 400 nm in depth and 120 nm in diameter. These data sets contain material from the InGaN quantum well (QW) active region, as well as the surrounding p- and n-doped waveguide and cladding layers, enabling comprehensive study of the structure and composition of the LD structure. Two regions of the same sample, with different average indium contents (18% and 16%) in the QW region, were studied. The APT data are shown to provide easy access to the p-type dopant levels, and the composition of a thin AlGaN barrier layer. Next, the distribution of indium within the InGaN QW was analyzed, to assess any possible inhomogeneity of the distribution of indium (''indium clustering''). No evidence for a statistically significant deviation from a random distribution was found, indicating that these MBE-grown InGaN QWs do not require indium clusters for carrier localization. However, the APT data show steps in the QW interfaces, leading to well-width fluctuations, which may act to localize carriers. Additionally, the unexpected presence of a small amount (x = 0.005) of indium in a layer grown intentionally as GaN was revealed. Finally, the same statistical method applied to the QW was used to show that the indium distribution within a thick InGaN waveguide layer in the n-doped region did not show any deviation from randomness.

  6. Correlation and contingency analysis of atom probe data: Diffusion-controlled dissolution of precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Camus, E. (Hahn-Meitner-Institut Berlin GmbH (Germany)); Abromeit, C. (Hahn-Meitner-Institut Berlin GmbH (Germany))

    1994-05-01

    A statistical analysis of atom probe data is developed for evaluating the evolution of local composition fluctuations in concentrated alloys. The model allows the calculation of theoretical correlation and contingency coefficients for a presumed alloy microstructure taking into account the instrumental parameters, i.e. aperture size, block size and detector efficiency. A comparison of theoretical coefficients with those obtained from measured concentration profiles gives access to physically relevant parameters. The analysis is applied to the diffusion-controlled dissolution of spherical precipitates in the technical alloy Nimonic PE16 under ion irradiation. (orig.)

  7. Atomic parity violation in one single trapped radium ion as a probe of electroweak running

    Energy Technology Data Exchange (ETDEWEB)

    Wansbeek, Lotje; Versolato, Oscar; Willmann, Lorenz; Timmermans, Rob; Jungmann, Klaus [KVI, University of Groningen (Netherlands)

    2008-07-01

    In a single trapped and laser cooled radium ion we investigate atomic parity violation by probing the differential splitting (*light shifts*) of the 7S and 6D Zeeman levels, which is caused by the interaction of the ion with an off-resonant laser light field. This experiment serves as a low-energy test of the electroweak Standard Model of particle physics. With precision RF spectroscopy and subsequent monitoring of quantum jumps, this splitting can be determined to sub-Hertz accuracy. A proof-of-principle has recently been given for the barium ion, and crucial ideas are being extended to Ra{sup +} which is a superior candidate.

  8. Practical Issues for Atom Probe Tomography Analysis of III-Nitride Semiconductor Materials

    OpenAIRE

    2015-01-01

    This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/S1431927615000422 Various practical issues affecting atom probe tomography (APT) analysis of III-nitride semiconductors have been studied as part of an investigation using a c-plane InAlN/GaN heterostructure. Specimen preparation was undertaken using a focused ion beam microscope with a mono-isotopic Ga source. This enabled the unambiguous observation of impl...

  9. Atom probe field ion microscopy and related topics: A bibliography 1990

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.F.; Miller, M.K.

    1991-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion microscopy (FIM), field emission (FE), ion sources, and field desorption mass microscopy (FDMM). Technique-orientated studies and applications are included. The bibliography covers the period 1990. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references, listed alphabetically by authors, are subdivided into the categories listed in paragraph one above. An Addendum of references missed in previous bibliographies is included.

  10. Atom probe field ion microscopy and related topics: A bibliography 1993

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included.

  11. Initial study on Z-phase strengthened 9-12% Cr steels by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; Andren, Hans-Olof [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Physics

    2010-07-01

    The microstructure of two different types of Z-phase strengthened experimental steels, CrNbN-based or CrTaN-based, was investigated. Both steels underwent aging at 650 C for relatively short period of time, 24 hours or 1005 hours. Atom probe tomography was used to study the chemical composition of the matrix and precipitates, and the size and number density of the small precipitates. Both steels contain Laves phase at prior austenite grain boundaries and martensitic lath boundaries. The CrTaN-based steel was found more promising due to its finer and more densely distributed precipitates after 1005 hour aging. (orig.)

  12. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    KAUST Repository

    Kresse, T.

    2013-09-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Probing spin-orbit-interaction-induced electron dynamics in the carbon atom by multiphoton ionization

    Science.gov (United States)

    Rey, H. F.; van der Hart, H. W.

    2014-09-01

    We use R-matrix theory with time dependence (RMT) to investigate multiphoton ionization of ground-state atomic carbon with initial orbital magnetic quantum number ML=0 and ML=1 at a laser wavelength of 390 nm and peak intensity of 1014W/cm2. Significant differences in ionization yield and ejected-electron momentum distribution are observed between the two values for ML. We use our theoretical results to model how the spin-orbit interaction affects electron emission along the laser polarization axis. Under the assumption that an initial C atom is prepared at zero time delay with ML=0, the dynamics with respect to time delay of an ionizing probe pulse modeled by using RMT theory is found to be in good agreement with available experimental data.

  14. Atom probe, AFM, and STM studies on vacuum-fired stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Stupnik, A. [ACC Austria GmbH, 8280 Fuerstenfeld (Austria); Frank, P. [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Leisch, M., E-mail: m.leisch@tugraz.at [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)

    2009-04-15

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced.

  15. Atom probe, AFM, and STM studies on vacuum-fired stainless steels.

    Science.gov (United States)

    Stupnik, A; Frank, P; Leisch, M

    2009-04-01

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced.

  16. Extracting features buried within high density atom probe point cloud data through simplicial homology.

    Science.gov (United States)

    Srinivasan, Srikant; Kaluskar, Kaustubh; Broderick, Scott; Rajan, Krishna

    2015-12-01

    Feature extraction from Atom Probe Tomography (APT) data is usually performed by repeatedly delineating iso-concentration surfaces of a chemical component of the sample material at different values of concentration threshold, until the user visually determines a satisfactory result in line with prior knowledge. However, this approach allows for important features, buried within the sample, to be visually obscured by the high density and volume (~10(7) atoms) of APT data. This work provides a data driven methodology to objectively determine the appropriate concentration threshold for classifying different phases, such as precipitates, by mapping the topology of the APT data set using a concept from algebraic topology termed persistent simplicial homology. A case study of Sc precipitates in an Al-Mg-Sc alloy is presented demonstrating the power of this technique to capture features, such as precise demarcation of Sc clusters and Al segregation at the cluster boundaries, not easily available by routine visual adjustment.

  17. Probing the dark energy methods and strategies

    CERN Document Server

    Huterer, D; Huterer, Dragan; Turner, Michael S.

    2001-01-01

    The presence of dark energy in the Universe is inferred directly from the accelerated expansion of the Universe, and indirectly, from measurements of cosmic microwave background (CMB) anisotropy. Dark energy contributes about 2/3 of the critical density, is very smoothly distributed, and has large negative pressure. Its nature is very much unknown. Most of its discernible consequences follow from its effect on evolution of the expansion rate of the Universe, which in turn affects the growth of density perturbations and the age of the Universe, and can be probed by the classical kinematic cosmological tests. Absent a compelling theoretical model (or even a class of models), we describe the dark energy by an effective equation-of-state w=p_X/\\rho_X which is allowed to vary with time. We describe and compare different approaches for determining w(t), including magnitude-redshift (Hubble) diagram, number counts of galaxies and clusters, and CMB anisotropy, focusing particular attention on the use of a sample of s...

  18. Attosecond probing of state-resolved ionization and superpositions of atoms and molecules

    Science.gov (United States)

    Leone, Stephen

    2016-05-01

    Isolated attosecond pulses in the extreme ultraviolet are used to probe strong field ionization and to initiate electronic and vibrational superpositions in atoms and small molecules. Few-cycle 800 nm pulses produce strong-field ionization of Xe atoms, and the attosecond probe is used to measure the risetimes of the two spin orbit states of the ion on the 4d inner shell transitions to the 5p vacancies in the valence shell. Step-like features in the risetimes due to the subcycles of the 800 nm pulse are observed and compared with theory to elucidate the instantaneous and effective hole dynamics. Isolated attosecond pulses create massive superpositions of electronic states in Ar and nitrogen as well as vibrational superpositions among electronic states in nitrogen. An 800 nm pulse manipulates the superpositions, and specific subcycle interferences, level shifting, and quantum beats are imprinted onto the attosecond pulse as a function of time delay. Detailed outcomes are compared to theory for measurements of time-dynamic superpositions by attosecond transient absorption. Supported by DOE, NSF, ARO, AFOSR, and DARPA.

  19. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A.

    1978-08-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min/sup -1/ can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected.

  20. Laser-assisted atom probe tomography investigation of magnetic FePt nanoclusters: First experiments

    Energy Technology Data Exchange (ETDEWEB)

    Folcke, E.; Larde, R. [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Le Breton, J.M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Gruber, M.; Vurpillot, F. [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Shield, J.E.; Rui, X. [Department of Mechanical and Materials Engineering, Nebraska Center for Materials and Nanoscience, University of Nebraska, N104 WSEC, Lincoln, NE 68588 (United States); Patterson, M.M. [Department of Physics, University of Wisconsin-Stout, Menomonie, WI 54751 (United States)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FePt nanoclusters dispersed in a Cr matrix were studied by atom probe tomography. Black-Right-Pointing-Pointer Simulated experiments were conducted to study the artefacts of the analysis. Black-Right-Pointing-Pointer In FePt nanoclusters, Fe and Pt are present in equiatomic proportions. Black-Right-Pointing-Pointer FePt nanoclusters are homogeneous, no core-shell structure is observed. - Abstract: FePt nanoclusters dispersed in a Cr matrix have been investigated by laser-assisted atom probe tomography. The results were analysed according to simulated evaporation experiments. Three-dimensional (3D) reconstructions reveal the presence of nanoclusters roughly spherical in shape, with a size in good agreement with previous transmission electron microscopy observations. Some clusters appear to be broken up after the evaporation process due to the fact that the Cr matrix has a lower evaporation field than Fe and Pt. It is thus shown that the observed FePt nanoclusters are chemically homogeneous. They contain Fe and Pt in equiatomic proportions, with no core-shell structure observed.

  1. Scanned Probe Oxidation onp-GaAs(100 Surface with an Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Juang Jenh-Yih

    2008-01-01

    Full Text Available AbstractLocally anodic oxidation has been performed to fabricate the nanoscale oxide structures onp-GaAs(100 surface, by using an atomic force microscopy (AFM with the conventional and carbon nanotube (CNT-attached probes. The results can be utilized to fabricate the oxide nanodots under ambient conditions in noncontact mode. To investigate the conversion of GaAs to oxides, micro-Auger analysis was employed to analyze the chemical compositions. The growth kinetics and the associated mechanism of the oxide nanodots were studied under DC voltages. With the CNT-attached probe the initial growth rate of oxide nanodots is in the order of ~300 nm/s, which is ~15 times larger than that obtained by using the conventional one. The oxide nanodots cease to grow practically as the electric field strength is reduced to the threshold value of ~2 × 107 V cm−1. In addition, results indicate that the height of oxide nanodots is significantly enhanced with an AC voltage for both types of probes. The influence of the AC voltages on controlling the dynamics of the AFM-induced nanooxidation is discussed.

  2. Data analysis and other considerations concerning the study of precipitation in Al–Mg–Si alloys by Atom Probe Tomography

    Directory of Open Access Journals (Sweden)

    M.W. Zandbergen

    2015-12-01

    Full Text Available Atom Probe Tomography (APT analysis and hardness measurements were used to characterize the early stages of precipitation in an Al–0.51 at%Mg–0.94 at%Si alloy as reported in the accompanying Acta Materialia paper [1]. The changes in microstructure were investigated after single-stage or multi-stage heat treatments including natural ageing at 298 K (NA, pre-ageing at 353 K (PA, and automotive paint-bake ageing conditions at 453 K (PB. This article provides Supporting information and a detailed report on the experimental conditions and the data analysis methods used for this investigation. Careful design of experimental conditions and analysis methods was carried out to obtain consistent and reliable results. Detailed data on clustering for prolonged NA and PA treatments have been reported.

  3. A dual-cable noise reduction method for Langmuir probes

    Science.gov (United States)

    Yang, T. F.; Zu, Q. X.; Liu, Ping

    1995-07-01

    To obtain fast time response plasma properties, electron density and electron temperature, with a Langmuir probe, the applied probe voltage has to be swept at high frequency. Due to the RC characteristics of coaxial cables, an induced noise of a square-wave form will appear when a sawtooth voltage is applied to the probe. Such a noise is very annoying and difficult to remove, particularly when the probe signal is weak. This paper discusses a noise reduction method using a dual-cable circuit. One of the cables is active and the other is a dummy. Both of them are of equal length and are laid parallel to each other. The active cable carries the applied probe voltage and the probe current signal. The dummy one is not connected to the probe. After being carefully tuned, the induced noises from both cables are nearly identical and therefore can be effectively eliminated with the use of a differential amplifier. A clean I-V characteristic curve can thus be obtained. This greatly improves the accuracy and the time resolution of the values of ne and Te.

  4. Characterization of grain boundaries in Cu(In,Ga)Se{sub 2} by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Torsten; Cojocaru-Miredin, Oana; Choi, Pyuck-Pa; Raabe, Dierk [Max-Planck Institute for Iron Research GmbH, Duesseldorf (Germany); Wuerz, Roland [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2012-07-01

    Solar cells based on the compound semiconductor Cu(In,Ga)Se{sub 2} (CIGS) as absorber material exhibit the highest efficiency among all thin-film solar cells. This is surprising high in view of the polycrystalline defect-rich structure of the CIGS absorber films. The high efficiency has been commonly ascribed to the diffusion of alkali metal atoms from the soda-lime glass substrate into the CIGS layer, which can render the grain boundaries (GB) electrically inactive. However, the exact mechanisms of how these impurities enhance the cell efficiency are yet to be clarified. As a step towards a better understanding of CIGS solar cells, we have analyzed the composition of solar-grade CIGS layers at the atomic-scale by using pulsed laser Atom Probe Tomography (APT). To perform APT analyses on selected GBs site-specific sample preparation was carried out using the Focused Ion Beam lift-out technique. In addition, Electron Back Scattered Diffraction was performed to characterize the structure and misorientation of selected GBs. Using APT, segregation of impurities at the GBs was directly observed. APT data of various types of GBs are presented and discussed with respect to the possible effects on the cell efficiency.

  5. Atom probe study of Cu-poor to Cu-rich transition during Cu(In,Ga)Se2 growth

    Science.gov (United States)

    Couzinie-Devy, F.; Cadel, E.; Barreau, N.; Arzel, L.; Pareige, P.

    2011-12-01

    Atomic scale chemistry of polycrystalline Cu(In,Ga)Se2 (CIGSe) thin film has been characterized at key points of the 3-stage process using atom probe tomography. 3D atom distributions have been reconstructed when the layer is Cu-poor ([Cu]/([Ga] + [In]) 1), and at the end of the process. Particular attention has been devoted to grain boundary composition and Na atomic distribution within the CIGSe layer. Significant variation of composition is highlighted during the growing process, providing fundamental information helping the understanding of high efficiency CIGSe formation.

  6. Gold-decorated highly ordered self-organized grating-like nanostructures on Ge surface: Kelvin probe force microscopy and conductive atomic force microscopy studies

    Science.gov (United States)

    Alam Mollick, Safiul; Kumar, Mohit; Singh, Ranveer; Satpati, Biswarup; Ghose, Debabrata; Som, Tapobrata

    2016-10-01

    Nanoarchitecture by atomic manipulation is considered to be one of the emerging trends in advanced functional materials. It has a gamut of applications to offer in nanoelectronics, chemical sensing, and nanobiological science. In particular, highly ordered one-dimensional semiconductor nanostructures fabricated by self-organization methods are in high demand for their high aspect ratios and large number of applications. An efficient way of fabricating semiconductor nanostructures is by molecular beam epitaxy, where atoms are added to a crystalline surface at an elevated temperature during growth, yielding the desired structures in a self-assembled manner. In this article, we offer a room temperature process, in which atoms are sputtered away by ion impacts. Using gold ion implantation, the present study reports on the formation of highly ordered self-organized long grating-like nanostructures, with grooves between them, on a germanium surface. The ridges of the patterns are shown to have flower-like protruding nanostructures, which are mostly decorated by gold atoms. By employing local probe microscopic techniques like Kelvin probe force microscopy and conductive atomic force microscopy, we observe a spatial variation in the work function and different nanoscale electrical conductivity on the ridges of the patterns and the grooves between them, which can be attributed to gold atom decorated ridges. Thus, the architecture presented offers the advantage of using the patterned germanium substrates as periodic arrays of conducting ridges and poorly conducting grooves between them.

  7. Band excitation method applicable to scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  8. Methods for making nucleotide probes for sequencing and synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Church, George M; Zhang, Kun; Chou, Joseph

    2014-07-08

    Compositions and methods for making a plurality of probes for analyzing a plurality of nucleic acid samples are provided. Compositions and methods for analyzing a plurality of nucleic acid samples to obtain sequence information in each nucleic acid sample are also provided.

  9. Role of strongly modulated coherence in transient evolution dynamics of probe absorption in a three-level atomic system

    Science.gov (United States)

    Panchadhyayee, Pradipta

    2013-11-01

    We investigate the dynamical behaviour of atomic response in a closed three-level V-type atomic system with the variation of different relevant parameters to exhibit transient evolution of absorption, gain and transparency in the probe response. The oscillations in probe absorption and gain can be efficiently modulated by changing the values of the Rabi frequency, detuning and the collective phase involved in the system. The interesting outcome of the work is the generation of coherence controlled loop-structure with varying amplitudes in the oscillatory probe response of the probe field at various parameter conditions. The prominence of these structures is observed when the coherence induced in a one-photon excitation path is strongly modified by two-step excitations driven by the coherent fields operating in closed interaction contour. In contrast to purely resonant case, the time interval between two successive loops gets significantly reduced with the application of non-zero detuning in the coherent fields.

  10. Probing 2D Quantum Turbulence in Atomic Superfluid Gas using Bragg Scattering

    CERN Document Server

    Seo, Sang Won; Kim, Joon Hyun; Shin, Yong-il

    2016-01-01

    We demonstrate the use of spatially resolved Bragg spectroscopy for detection of the quantum vortex circulation signs in an atomic Bose-Einstein condensate (BEC). High-velocity atoms near the vortex cores are resonantly scattered from the BEC, and the vortex signs are determined from the scattered atom positions relative to the corresponding vortex cores. Using this method, we investigate decaying 2D quantum turbulence in a highly oblate BEC at temperatures of $\\sim 0.5 T_c$, where $T_c$ is the critical temperature of the trapped sample. Clustering of like-sign vortices is not observed; rather, the measured vortex configurations reveal weak pair correlations between the vortices and antivortices in the turbulent BEC. Our Bragg scattering method enables a direct experimental study of 2D quantum turbulence in BECs.

  11. Probe Amplification with or without Population Inversion in a Five-Level Atomic System with Double-Dark Resonances

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Hua; XIE Xiao-Tao; LUO Jin-Ming; LIU Ji-Bing

    2006-01-01

    @@ We theoretically investigate the response of the probe amplification in a five-level atomic system in the presence of interacting double-dark resonances disturbed by introducing an additional signal field. It is found that a large enhancement of the probe amplification with or without population inversion can be achieved by properly adjusting the strengths of the microwave driving field and the signal laser field. From viewpoint of physics, we qualitatively explain these results in terms of quantum interference and dressed states.

  12. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi

    2011-05-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  13. Atomic scale properties of magnetic Mn-based alloys probed by emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys on the atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  14. Three-dimensional Chemical Imaging of Embedded Nanoparticles using Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuchibhatla, Satyanarayana V N T; Shutthanandan, V.; Prosa, Ty J.; Adusumilli, Praneet; Arey, Bruce W.; Buxbaum, Alex; Wang, Y. C.; Tessner, Ted; Ulfig, Robert M.; Wang, Chong M.; Thevuthasan, Suntharampillai

    2012-05-03

    Analysis of nanoparticles is often challenging especially when they are embedded in a matrix. Hence, we have used laser-assisted atom probe tomography (APT) to analyze the Au-nanoclusters synthesized in situ using ion beam implantation in single crystal MgO matrix. APT analysis along with scanning transmission electron microscopy and energy dispersive spectroscopy (STEM-EDS) indicated that the nanoparticles have an average size ~ 8 - 12 nm. While it is difficult to analyze the composition of individual nanoparticles using STEM, APT analysis can give three dimensional compositions of the same. It was shown that the maximum Au-concentration in the nanoparticles increases with increasing particle size, with a maximum Au-concentration of up to 50%.

  15. Analysis of deuterium in V-Fe5at.% film by atom probe tomography (APT)

    KAUST Repository

    Gemma, Ryota

    2011-09-01

    V-Fe5at.% 2 and 10-nm thick single layered films were prepared by ion beam sputtering on W substrate. They were loaded with D from gas phase at 0.2 Pa and at 1 Pa, respectively. Both lateral and depth D distribution of these films was investigated in detail by atom probe tomography. The results of analysis are in good agreement between the average deuterium concentration and the value, expected from electromotive force measurement on a similar flat film. An enrichment of deuterium at the V/W interface was observed for both films. The origin of this D-accumulation was discussed in respect to electron transfer, mechanical stress and misfit dislocations. © 2010 Elsevier B.V. All rights reserved.

  16. Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles

    Science.gov (United States)

    Shinde, D.; Arnoldi, L.; Devaraj, A.; Vella, A.

    2016-10-01

    Oxide-supported metal nano-particles are of great interest in catalysis but also in the development of new large-spectrum-absorption materials. The design of such nano materials requires three-dimensional characterization with a high spatial resolution and elemental selectivity. The laser assisted Atom Probe Tomography (La-APT) presents both these capacities if an accurate understanding of laser-material interaction is developed. In this paper, we focus on the fundamental physics of field evaporation as a function of sample geometry, laser power, and DC electric field for Au nanoparticles embedded in MgO. By understanding the laser-material interaction through experiments and a theoretical model of heat diffusion inside the sample after the interaction with laser pulse, we point out the physical origin of the noise and determine the conditions to reduce it by more than one order of magnitude, improving the sensitivity of the La-APT for metal-dielectric composites.

  17. Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops.

    Science.gov (United States)

    Peterman, Emily M; Reddy, Steven M; Saxey, David W; Snoeyenbos, David R; Rickard, William D A; Fougerouse, Denis; Kylander-Clark, Andrew R C

    2016-09-01

    Isotopic discordance is a common feature in zircon that can lead to an erroneous age determination, and it is attributed to the mobilization and escape of radiogenic Pb during its post-crystallization geological evolution. The degree of isotopic discordance measured at analytical scales of ~10 μm often differs among adjacent analysis locations, indicating heterogeneous distributions of Pb at shorter length scales. We use atom probe microscopy to establish the nature of these sites and the mechanisms by which they form. We show that the nanoscale distribution of Pb in a ~2.1 billion year old discordant zircon that was metamorphosed c. 150 million years ago is defined by two distinct Pb reservoirs. Despite overall Pb loss during peak metamorphic conditions, the atom probe data indicate that a component of radiogenic Pb was trapped in 10-nm dislocation loops that formed during the annealing of radiation damage associated with the metamorphic event. A second Pb component, found outside the dislocation loops, represents homogeneous accumulation of radiogenic Pb in the zircon matrix after metamorphism. The (207)Pb/(206)Pb ratios measured from eight dislocation loops are equivalent within uncertainty and yield an age consistent with the original crystallization age of the zircon, as determined by laser ablation spot analysis. Our results provide a specific mechanism for the trapping and retention of radiogenic Pb during metamorphism and confirm that isotopic discordance in this zircon is characterized by discrete nanoscale reservoirs of Pb that record different isotopic compositions and yield age data consistent with distinct geological events. These data may provide a framework for interpreting discordance in zircon as the heterogeneous distribution of discrete radiogenic Pb populations, each yielding geologically meaningful ages.

  18. Determination of solute site occupancies within γ' precipitates in nickel-base superalloys via orientation-specific atom probe tomography.

    Science.gov (United States)

    Meher, S; Rojhirunsakool, T; Nandwana, P; Tiley, J; Banerjee, R

    2015-12-01

    The analytical limitations in atom probe tomography such as resolving a desired set of atomic planes, for solving complex materials science problems, have been overcome by employing a well-developed unique and reproducible crystallographic technique, involving synergetic coupling of orientation microscopy with atom probe tomography. The crystallographic information in atom probe reconstructions has been utilized to determine the solute site occupancies in Ni-Al-Cr based superalloys accurately. The structural information in atom probe reveals that both Al and Cr occupy the same sub-lattice within the L12-ordered γ' precipitates to form Ni3(Al,Cr) precipitates in a Ni-14Al-7Cr (at%) alloy. Interestingly, the addition of Co, which is a solid solution strengthener, to a Ni-14Al-7Cr alloy results in the partial reversal of Al site occupancy within γ' precipitates to form (Ni,Al)3(Al,Cr,Co) precipitates. This unique evidence of reversal of Al site occupancy, resulting from the introduction of other solutes within the ordered structures, gives insights into the relative energetics of different sub-lattice sites when occupied by different solutes.

  19. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes

    Energy Technology Data Exchange (ETDEWEB)

    Puricelli, Luca; Galluzzi, Massimiliano; Schulte, Carsten; Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it; Milani, Paolo [CIMaINa and Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-03-15

    Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells’ fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cellular elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here, we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitable for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured Young’s modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in Young’s modulus induced by the action of a cytoskeleton-targeting drug.

  20. Experimental facility and void fraction calibration methods for impedance probes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando L. de; Rocha, Marcelo S., E-mail: floliveira@ipen.br, E-mail: msrocha@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  1. Atom probe tomography of Ni-base superalloys Allvac 718Plus and Alloy 718.

    Science.gov (United States)

    Viskari, L; Stiller, K

    2011-05-01

    Atom probe tomography (APT) allows near atomic scale compositional- and morphological studies of, e.g. matrix, precipitates and interfaces in a wide range of materials. In this work two Ni-base superalloys with similar compositions, Alloy 718 and its derivative Allvac 718Plus, are subject for investigation with special emphasis on the latter alloy. The structural and chemical nuances of these alloys are important for their properties. Of special interest are grain boundaries as their structure and chemistry are important for the materials' ability to resist rapid environmentally induced crack propagation. APT has proved to be suitable for analyses of these types of alloys using voltage pulsed APT. However, for investigations of specimens containing grain boundaries and other interfaces the risk for early specimen fracture is high. Analyses using laser pulsing impose lower electrical field on the specimen thereby significantly increasing the success rate of investigations. Here, the effect of laser pulsing was studied and the derived appropriate acquisition parameters were then applied for microstructural studies, from which initial results are shown. Furthermore, the influence of the higher evaporation field experienced by the hardening γ' Ni(3)(Al,Nb) precipitates on the obtained results is discussed.

  2. Mapping energetics of atom probe evaporation events through first principles calculations.

    Science.gov (United States)

    Peralta, Joaquín; Broderick, Scott R; Rajan, Krishna

    2013-09-01

    The purpose of this work is to use atomistic modeling to determine accurate inputs into the atom probe tomography (APT) reconstruction process. One of these inputs is evaporation field; however, a challenge occurs because single ions and dimers have different evaporation fields. We have calculated the evaporation field of Al and Sc ions and Al-Al and Al-Sc dimers from an L1₂-Al₃Sc surface using ab initio calculations and with a high electric field applied to the surface. The evaporation field is defined as the electric field at which the energy barrier size is calculated as zero, corresponding to the minimum field that atoms from the surface can break their bonds and evaporate from the surface. The evaporation field of the surface atoms are ranked from least to greatest as: Al-Al dimer, Al ion, Sc ion, and Al-Sc dimer. The first principles results were compared with experimental data in the form of an ion evaporation map, which maps multi-ion evaporations. From the ion evaporation map of L1₂-Al₃Sc, we extract relative evaporation fields and identify that an Al-Al dimer has a lower evaporation field than an Al-Sc dimer. Additionally, comparatively an Al-Al surface dimer is more likely to evaporate as a dimer, while an Al-Sc surface dimer is more likely to evaporate as single ions. These conclusions from the experiment agree with the ab initio calculations, validating the use of this approach for modeling APT energetics.

  3. Surface matching method for profile inspection with touch probe

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper presents an efficient method for rigid registration of 3-D point sets,which intends to match the feature points inspected using touch probe with the points on designed CAD surface.The alignment error is defined as the least square problem,and the sphere radius of the inspection probe is considered.In this framework,the matching problem is converted into acquiring six Euler variables problem by solving nonlinear equations.Thus,a matrix transformation of parameter separation is presented to get the...

  4. A novel colloid probe preparation method based on chemical etching technique

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Several fundamental problems in hydrophobic force measurements using atomic force microscope (AFM) are discussed in this paper. A novel method for colloid probe preparation based on chemical etching technology is proposed, which is specially fit for the unique demands of hydrophobic force measurements by AFM. The features of three different approaches for determining spring constants of rectangular cantilevers, including geometric dimension, Cleveland and Sader methods are compared. The influences of the sizes of the colloids on the measurements of the hydrophobic force curves are investigated. Our experimental results showed that by selecting colloid probe with proper spring constant and tip size, the hydrophobic force and the complete hydrophobic interaction force curve can be measured by using AFM.

  5. New Atomic Methods for Dark Matter Detection

    Science.gov (United States)

    Roberts, Benjamin; Stadnik, Yevgeny; Dzuba, Vladimir; Flambaum, Victor; Leefer, Nathan; Budker, Dmitry

    2015-05-01

    We propose to exploit P and T violating effects in atoms, nuclei, and molecules to search for dark matter (eg axions) and various other cosmic fields. We perform calculations of electric dipole moments (EDMs) that a dark matter field would induce in atoms. Crucially, the effects we consider here are linear in the small parameter that quantifies the dark matter interaction strength; most current searches rely on effects that are at least quadratic in this parameter. The induced oscillating EDMs have the potential to be measured with very high accuracy, and experimental techniques in this field are evolving fast. Pairs of closely spaced opposite parity levels that are found in diatomic molecules will also lead to a significant enhancement in these effects. We are also interested in a possible explanation for the anomalous DAMA dark matter detection results based on DM-electron scattering. Our calculations may provide a possible mechanism for dark matter induced ionisation modulations that are not ruled out by other experiments. Alternatively, they could further reduce the available parameter space for certain dark matter models.

  6. A Method for Finding Metabolic Pathways Using Atomic Group Tracking

    Science.gov (United States)

    Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi

    2017-01-01

    A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways. PMID:28068354

  7. Micro-four-point Probe Hall effect Measurement method

    DEFF Research Database (Denmark)

    Petersen, Dirch Hjorth; Hansen, Ole; Lin, Rong

    2008-01-01

    barriers and with a magnetic field applied normal to the plane of the sheet. Based on this potential, analytical expressions for the measured four-point resistance in presence of a magnetic field are derived for several simple sample geometries. We show how the sheet resistance and Hall effect......We report a new microscale Hall effect measurement method for characterization of semiconductor thin films without need for conventional Hall effect geometries and metal contact pads. We derive the electrostatic potential resulting from current flow in a conductive filamentary sheet with insulating...... contributions may be separated using dual configuration measurements. The method differs from conventional van der Pauw measurements since the probe pins are placed in the interior of the sample region, not just on the perimeter. We experimentally verify the method by micro-four-point probe measurements...

  8. Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences

    Science.gov (United States)

    Miller, M. K.; Powers, K. A.; Nanstad, R. K.; Efsing, P.

    2013-06-01

    The Ringhals Units 3 and 4 reactors in Sweden are pressurized water reactors (PWRs) designed and supplied by Westinghouse Electric Company, with commercial operation in 1981 and 1983, respectively. The reactor pressure vessels (RPVs) for both reactors were fabricated with ring forgings of SA 508 class 2 steel. Surveillance blocks for both units were fabricated using the same weld wire heat, welding procedures, and base metals used for the RPVs. The primary interest in these weld metals is because they have very high nickel contents, with 1.58 and 1.66 wt.% for Unit 3 and Unit 4, respectively. The nickel content in Unit 4 is the highest reported nickel content for any Westinghouse PWR. Although both welds contain less than 0.10 wt.% copper, the weld metals have exhibited high irradiation-induced Charpy 41-J transition temperature shifts in surveillance testing. The Charpy impact 41-J shifts and corresponding fluences are 192 °C at 5.0 × 1023 n/m2 (>1 MeV) for Unit 3 and 162 °C at 6.0 × 1023 n/m2 (>1 MeV) for Unit 4. These relatively low-copper, high-nickel, radiation-sensitive welds relate to the issue of so-called late-blooming nickel-manganese-silicon phases. Atom probe tomography measurements have revealed ˜2 nm-diameter irradiation-induced precipitates containing manganese, nickel, and silicon, with phosphorus evident in some of the precipitates. However, only a relatively few number of copper atoms are contained within the precipitates. The larger increase in the transition temperature shift in the higher copper weld metal from the Ringhals R3 Unit is associated with copper-enriched regions within the manganese-nickel-silicon-enriched precipitates rather than changes in their size or number density.

  9. Ordering and site occupancy of D03 ordered Fe3Al-5 at%Cr evaluated by means of atom probe tomography

    KAUST Repository

    Rademacher, Thomas W.

    2011-05-01

    Addition of ternary elements to the D03 ordered Fe3Al intermetallic phase is a general approach to optimise its mechanical properties. To understand the physical influences of such additions the determination of the probability of site occupancies of these additions on the lattice site and ordering parameters is of high interest. Some common experimental techniques such as X-ray diffraction or Atom Location by Channelling Enhanced Microanalysis (ALCHEMI) are usually applied to explore this interplay. Unfortunately, certain published results are partly inconsistent, imprecise or even contradictory. In this study, these aspects are evaluated systematically by atom probe tomography (APT) and a special data analysis method. Additionally, to account for possible field evaporation effects that can falsify the estimation of site occupancy and induce misinterpretations, APT evaporation sequences were also simulated. As a result, chromium occupies most frequently the next nearest neighbour sites of Al atoms and local ordering parameters could be achieved. © 2010 Elsevier B.V.

  10. Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, D.; Arnoldi, L.; Devaraj, A.; Vella, A.

    2016-10-28

    Oxide-supported metal nano-particles are of great interest in catalysis but also in the development of new large-spectrum-absorption materials. The design of such nano materials requires three-dimensional characterization with a high spatial resolution and elemental selectivity. The laser assisted Atom Probe Tomography (La-APT) presents both these capacities if an accurate understanding of laser-material interaction is developed. In this paper, we focus on the fundamental physics of field evaporation as a function of sample geometry, laser power, and DC electric field for Au nanoparticles embedded in MgO. By understanding the laser-material interaction through experiments and a theoretical model of heat diffusion inside the sample after the interaction with laser pulse, we point out the physical origin of the noise and determine the conditions to reduce it by more than one order of magnitude, improving the sensitivity of the La-APT for metal-dielectric composites. Published by AIP Publishing.

  11. Nanoscale Stoichiometric Analysis of a High-Temperature Superconductor by Atom Probe Tomography.

    Science.gov (United States)

    Pedrazzini, Stella; London, Andrew J; Gault, Baptiste; Saxey, David; Speller, Susannah; Grovenor, Chris R M; Danaie, Mohsen; Moody, Michael P; Edmondson, Philip D; Bagot, Paul A J

    2017-01-31

    The functional properties of the high-temperature superconductor Y1Ba2Cu3O7-δ (Y-123) are closely correlated to the exact stoichiometry and oxygen content. Exceeding the critical value of 1 oxygen vacancy for every five unit cells (δ>0.2, which translates to a 1.5 at% deviation from the nominal oxygen stoichiometry of Y7.7Ba15.3Cu23O54-δ ) is sufficient to alter the superconducting properties. Stoichiometry at the nanometer scale, particularly of oxygen and other lighter elements, is extremely difficult to quantify in complex functional ceramics by most currently available analytical techniques. The present study is an analysis and optimization of the experimental conditions required to quantify the local nanoscale stoichiometry of single crystal yttrium barium copper oxide (YBCO) samples in three dimensions by atom probe tomography (APT). APT analysis required systematic exploration of a wide range of data acquisition and processing conditions to calibrate the measurements. Laser pulse energy, ion identification, and the choice of range widths were all found to influence composition measurements. The final composition obtained from melt-grown crystals with optimized superconducting properties was Y7.9Ba10.4Cu24.4O57.2.

  12. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms.

    Science.gov (United States)

    Christensen, Thomas; Yan, Wei; Raza, Søren; Jauho, Antti-Pekka; Mortensen, N Asger; Wubs, Martijn

    2014-02-25

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss spectroscopy, and light scattering. These constitute two near-field and one far-field measurements, with zero-, one-, and two-dimensional excitation sources, respectively. We search for the clearest signatures of hydrodynamic pressure waves in nanospheres. We employ a linearized hydrodynamic model, and Mie-Lorenz theory is applied for each case. Nonlocal response shows its mark in all three configurations, but for the two near-field measurements, we predict especially pronounced nonlocal effects that are not exhibited in far-field measurements. Associated with every multipole order is not only a single blueshifted surface plasmon but also an infinite series of bulk plasmons that have no counterpart in a local-response approximation. We show that these increasingly blueshifted multipole plasmons become spectrally more prominent at shorter probe-to-surface separations and for decreasing nanosphere radii. For selected metals, we predict hydrodynamic multipolar plasmons to be measurable on single nanospheres.

  13. Atom probe tomography investigation of lath boundary segregation and precipitation in a maraging stainless steel.

    Science.gov (United States)

    Thuvander, Mattias; Andersson, Marcus; Stiller, Krystyna

    2013-09-01

    Lath boundaries in a maraging stainless steel of composition 13Cr-8Ni-2Mo-2Cu-1Ti-0.7Al-0.3Mn-0.2Si-0.03C (at%) have been investigated using atom probe tomography following aging at 475 °C for up to 100 h. Segregation of Mo, Si and P to the lath boundaries was observed already after 5 min of aging, and the amount of segregation increases with aging time. At lath boundaries also precipitation of η-Ni₃(Ti, Al) and Cu-rich 9R, in contact with each other, takes place. These co-precipitates grow with time and because of coarsening the area number density decreases. After 100 h of aging a ∼5 nm thick film-like precipitation of a Mo-rich phase was observed at the lath boundaries. From the composition of the film it is suggested that the phase in question is the quasicrystalline R' phase. The film is perforated with Cu-rich 9R and η-Ni₃(Ti, Al) co-precipitates. Not all precipitate types present in the matrix do precipitate at the lath boundaries; the Si-containing G phase and γ'-Ni₃(Ti, Al, Si) and the Cr-rich α' phase were not observed at the lath boundaries.

  14. Three-dimensional atom probe study of Fe-B-based nanocrystalline soft magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.M. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Ohkubo, T. [Magnetic Materials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)] [CREST, Japan Science and Technology Agency (Japan); Ohta, M.; Yoshizawa, Y. [Materials Development Laboratory, New Business Development Center, Hitachi Metals, Ltd., Kumagaya 360-0843 (Japan); Hono, K., E-mail: kazuhiro.hono@nims.go.jp [Magnetic Materials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)] [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan)] [CREST, Japan Science and Technology Agency (Japan)

    2009-09-15

    Solute clustering and partitioning in new Fe-B-based soft magnetic materials with high saturation magnetic flux density (B{sub s}), (Fe{sub 0.85}B{sub 0.15}){sub 100-x}Cu{sub x} (x = 0.0, 1.0, and 1.5) and Fe{sub 82.65}Cu{sub 1.35}Si{sub y}B{sub 16-y} (y = 0.0, 2.0, and 5.0) melt-spun alloys, were investigated by three-dimensional atom probe and transmission electron microscopy. Although Cu clusters form after annealing in all the samples, it was found that only the clusters of 4-6 nm can serve as heterogeneous nucleation sites for {alpha}-Fe. While annealing the Si-free alloys at 410 deg. C led to the precipitation of Fe{sub 3}B, only {alpha}-Fe nanocrystals were observed in the Si-containing alloys. Lorenz TEM observation indicated the Fe{sub 3}B particles pin magnetic domain walls. The Fe{sub 82.65}Cu{sub 1.35}Si{sub y}B{sub 16-y} alloy with y = 2.0 crystallized by annealing at 400 deg. C exhibited optimal nanocrsytal/amorphous microstructure without the precipitation of Fe{sub 3}B, which led to the lowest coercivity while keeping a high B{sub s} {approx}1.85 T.

  15. Development of Two-Photon Pump Polarization Spectroscopy Probe Technique Tpp-Psp for Measurements of Atomic Hydrogen .

    Science.gov (United States)

    Satija, Aman; Lucht, Robert P.

    2015-06-01

    Atomic hydrogen (H) is a key radical in combustion and plasmas. Accurate knowledge of its concentration can be used to better understand transient phenomenon such as ignition and extinction in combustion environments. Laser induced polarization spectroscopy is a spatially resolved absorption technique which we have adapted for quantitative measurements of H atom. This adaptation is called two-photon pump, polarization spectroscopy probe technique (TPP-PSP) and it has been implemented using two different laser excitation schemes. The first scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-3P levels using a circularly polarized 656-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 656 nm. As a result, the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. The laser beams were created by optical parametric generation followed by multiple pulse dye amplification stages. This resulted in narrow linewidth beams which could be scanned in frequency domain and varied in energy. This allowed us to systematically investigate saturation and Stark effect in 2S-3P transitions with the goal of developing a quantitative H atom measurement technique. The second scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-4P transitions using a circularly polarized 486-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 486 nm. As a result the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. A dye laser was pumped by third harmonic of a Nd:YAG laser to create a laser beam

  16. Interpretation of atom probe tomography data for the intermetallic TiAl+Nb by means of field evaporation simulation

    KAUST Repository

    Boll, Torben

    2013-01-01

    In this paper simulations of the field evaporation process during field ion microscopy (FIM) and atom probe tomography (APT) are presented and compared with experimental data. The Müller-Schottky-model [1] was extended to include the local atomic arrangement on the evaporation process of atoms. This arrangement was described by the sum of the next-neighbor-binding-energies, which differ for an atom of type A, depending on how many A-A, B-B or A-B bonds are present. Thus simulations of APT-data of intermetallic phases become feasible. In this study simulations of L10-TiAl with additions of Nb are compared with experimental data. Certain artifacts, which appear for experimental data are treated as well. © 2012 Elsevier B.V.

  17. Atomic structure and surface defects at mineral-water interfaces probed by in situ atomic force microscopy

    Science.gov (United States)

    Siretanu, Igor; van den Ende, Dirk; Mugele, Frieder

    2016-04-01

    Atomic scale details of surface structure play a crucial role for solid-liquid interfaces. While macroscopic characterization techniques provide averaged information about bulk and interfaces, high resolution real space imaging reveals unique insights into the role of defects that are believed to dominate many aspects of surface chemistry and physics. Here, we use high resolution dynamic Atomic Force Microscopy (AFM) to visualize and characterize in ambient water the morphology and atomic scale structure of a variety of nanoparticles of common clay minerals adsorbed to flat solid surfaces. Atomically resolved images of the (001) basal planes are obtained on all materials investigated, namely gibbsite, kaolinite, illite, and Na-montmorillonite of both natural and synthetic origin. Next to regions of perfect crystallinity, we routinely observe extended regions of various types of defects on the surfaces, including vacancies of one or few atoms, vacancy islands, atomic steps, apparently disordered regions, as well as strongly adsorbed seemingly organic and inorganic species. While their exact nature is frequently difficult to identify, our observations clearly highlight the ubiquity of such defects and their relevance for the overall physical and chemical properties of clay nanoparticle-water interfaces.Atomic scale details of surface structure play a crucial role for solid-liquid interfaces. While macroscopic characterization techniques provide averaged information about bulk and interfaces, high resolution real space imaging reveals unique insights into the role of defects that are believed to dominate many aspects of surface chemistry and physics. Here, we use high resolution dynamic Atomic Force Microscopy (AFM) to visualize and characterize in ambient water the morphology and atomic scale structure of a variety of nanoparticles of common clay minerals adsorbed to flat solid surfaces. Atomically resolved images of the (001) basal planes are obtained on all

  18. Method for determining a spring constant for a deformable scanning probe microscope element, and scanning probe microscope and calibration device arranged for determining a spring constant for a probe element

    NARCIS (Netherlands)

    Sadeghian, H.; Yang, C.K.; Bossche, A.; French, P.J.; Goosen, J.F.L.; Van Keulen, A.

    2012-01-01

    A method for determining a spring constant k for a deformable probe element (102) of a scanning probe microscope SPM (100). The probe (102) has an outer surface area consisting of a tip area (112) on a first probe side (108) and a tip-less area (113). The probe (102) also has a probe electrode (114)

  19. Probing Atomic Structure and Majorana Wavefunctions in Mono-Atomic Fe-chains on Superconducting Pb-Surface

    CERN Document Server

    Pawlak, Remy; Klinovaja, Jelena; Meier, Tobias; Kawai, Shigeki; Glatzel, Thilo; Loss, Daniel; Meyer, Ernst

    2015-01-01

    Motivated by the striking promise of quantum computation, Majorana bound states (MBSs) in solid-state systems have attracted wide attention in recent years. In particular, the wavefunction localization of MBSs is a key feature and crucial for their future implementation as qubits. Here, we investigate the spatial and electronic characteristics of topological superconducting chains of iron atoms on the surface of Pb(110) by combining scanning tunneling microscopy (STM) and atomic force microscopy (AFM). We demonstrate that the Fe chains are mono-atomic, structured in a linear fashion, and exhibit zero-bias conductance peaks at their ends which we interprete as signature for a Majorana bound state. Spatially resolved conductance maps of the atomic chains reveal that the MBSs are well localized at the chain ends (below 25 nm), with two localization lengths as predicted by theory. Our observation lends strong support to use MBSs in Fe chains as qubits for quantum computing devices.

  20. Method for laser spectroscopy of metastable pionic helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M., E-mail: Masaki.Hori@mpq.mpg.de; Sótér, A.; Aghai-Khozani, H. [Max-Planck-Institut für Quantenoptik (Germany); Barna, D. [CERN (Switzerland); Dax, A. [Paul Scherrer Institut (Switzerland); Hayano, R. S.; Murakami, Y.; Yamada, H. [University of Tokyo, Department of Physics (Japan)

    2015-08-15

    The PiHe collaboration is currently attempting to carry out laser spectroscopy of metastable pionic helium atoms using the high-intensity π{sup −} beam of the ring cyclotron facility of the Paul Scherrer Institute. These atoms are heretofore hypothetical three-body Coulomb systems each composed of a helium nucleus, a π{sup −} occupying a Rydberg state, and an electron occupying the 1s ground state. We briefly review the proposed method by which we intend to detect the laser spectroscopic signal. This complements our experiments on metastable antiprotonic helium atoms at CERN.

  1. A liquid drop model for embedded atom method cluster energies

    Science.gov (United States)

    Finley, C. W.; Abel, P. B.; Ferrante, J.

    1996-01-01

    Minimum energy configurations for homonuclear clusters containing from two to twenty-two atoms of six metals, Ag, Au, Cu, Ni, Pd, and Pt have been calculated using the Embedded Atom Method (EAM). The average energy per atom as a function of cluster size has been fit to a liquid drop model, giving estimates of the surface and curvature energies. The liquid drop model gives a good representation of the relationship between average energy and cluster size. As a test the resulting surface energies are compared to EAM surface energy calculations for various low-index crystal faces with reasonable agreement.

  2. Method and apparatus for depositing atomic layers on a substrate

    NARCIS (Netherlands)

    Vermeer, A.J.P.M.; Roozeboom, F.; Deelen, J. van

    2016-01-01

    Method of depositing an atomic layer on a substrate. The method comprises supplying a precursor gas from a precursor-gas supply of a deposition head that may be part of a rotatable drum. The precursor gas is provided from the precursor-gas supply towards the substrate. The method further comprises m

  3. Atomic structure and surface defects at mineral-water interfaces probed by in situ atomic force microscopy.

    Science.gov (United States)

    Siretanu, Igor; van den Ende, Dirk; Mugele, Frieder

    2016-04-21

    Atomic scale details of surface structure play a crucial role for solid-liquid interfaces. While macroscopic characterization techniques provide averaged information about bulk and interfaces, high resolution real space imaging reveals unique insights into the role of defects that are believed to dominate many aspects of surface chemistry and physics. Here, we use high resolution dynamic Atomic Force Microscopy (AFM) to visualize and characterize in ambient water the morphology and atomic scale structure of a variety of nanoparticles of common clay minerals adsorbed to flat solid surfaces. Atomically resolved images of the (001) basal planes are obtained on all materials investigated, namely gibbsite, kaolinite, illite, and Na-montmorillonite of both natural and synthetic origin. Next to regions of perfect crystallinity, we routinely observe extended regions of various types of defects on the surfaces, including vacancies of one or few atoms, vacancy islands, atomic steps, apparently disordered regions, as well as strongly adsorbed seemingly organic and inorganic species. While their exact nature is frequently difficult to identify, our observations clearly highlight the ubiquity of such defects and their relevance for the overall physical and chemical properties of clay nanoparticle-water interfaces.

  4. Atom probe study of sodium distribution in polycrystalline Cu(In,Ga)Se{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Cadel, E. [Groupe de Physique des Materiaux (GPM), UMR 6634 CNRS, Avenue de l' Universite BP 12, 76801 Saint Etienne de Rouvray (France); Barreau, N., E-mail: nicolas.barreau@univ-nantes.fr [Institut des Materiaux Jean Rouxel (IMN), UMR 6502 CNRS, 2 rue de la Houssiniere BP 32229, 44322 Nantes cedex 3 (France); Kessler, J. [Institut des Materiaux Jean Rouxel (IMN), UMR 6502 CNRS, 2 rue de la Houssiniere BP 32229, 44322 Nantes cedex 3 (France); Pareige, P. [Groupe de Physique des Materiaux (GPM), UMR 6634 CNRS, Avenue de l' Universite BP 12, 76801 Saint Etienne de Rouvray (France)

    2010-04-15

    This article reports the first investigations of CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGSe) polycrystalline thin films by means of atom probe tomography. Attention is focused on the distribution of Na atoms within the films. Both Na-containing and Na-free CIGSe thin films have been investigated. When Na is available during the CIGSe coevaporation, it is observed to be mainly segregated at the grain boundaries of the films; however, it is also detected within the grains of CIGSe at very low concentration.

  5. Pulsed EPR in the method of spin labels and probes

    Energy Technology Data Exchange (ETDEWEB)

    Dzuba, Sergei A [Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2007-08-31

    Various pulsed EPR in the method of spin labels and probes based on electron spin echo spectroscopy (spin echo envelope modulation through electron-nuclear interactions, electron-electron double resonance, echo detected EPR, etc.) are considered. These methods provide information on the conformations of complex biomolecules, nanostructure of matter, depth of water penetration into biological membranes, supramolecular structure of multicomponent systems (membrane-peptide, etc.), co-operative orientational dynamics of molecules and dynamic low-temperature transitions in disordered molecular media and biosystems.

  6. Investigation of material property influenced stoichiometric deviations as evidenced during UV laser-assisted atom probe tomography in fluorite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Valderrama, Billy; Henderson, Hunter B. [Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611 (United States); Yablinsky, Clarissa A. [Department of Nuclear Engineering, University of Wisconsin-Madison, 921 ERB, 1500 Engineering Drive, Madison, WI 53706 (United States); Gan, Jian [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Allen, Todd R. [Department of Nuclear Engineering, University of Wisconsin-Madison, 921 ERB, 1500 Engineering Drive, Madison, WI 53706 (United States); Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Manuel, Michele V., E-mail: mmanuel@mse.ufl.edu [Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611 (United States)

    2015-09-15

    Oxide materials are used in numerous applications such as thermal barrier coatings, nuclear fuels, and electrical conductors and sensors, all applications where nanometer-scale stoichiometric changes can affect functional properties. Atom probe tomography can be used to characterize the precise chemical distribution of individual species and spatially quantify the oxygen to metal ratio at the nanometer scale. However, atom probe analysis of oxides can be accompanied by measurement artifacts caused by laser-material interactions. In this investigation, two technologically relevant oxide materials with the same crystal structure and an anion to cation ratio of 2.00, pure cerium oxide (CeO{sub 2}) and uranium oxide (UO{sub 2}) are studied. It was determined that electronic structure, optical properties, heat transfer properties, and oxide stability strongly affect their evaporation behavior, thus altering their measured stoichiometry, with thermal conductance and thermodynamic stability being strong factors.

  7. Using Atom-Probe Tomography to Understand Zn O ∶Al /SiO 2/Si Schottky Diodes

    Science.gov (United States)

    Jaramillo, R.; Youssef, Amanda; Akey, Austin; Schoofs, Frank; Ramanathan, Shriram; Buonassisi, Tonio

    2016-09-01

    We use electronic transport and atom-probe tomography to study Zn O ∶Al /SiO 2/Si Schottky diodes on lightly doped n - and p -type Si. We vary the carrier concentration in the ZnO ∶Al films by 2 orders of magnitude, but the Schottky barrier height remains nearly constant. Atom-probe tomography shows that Al segregates to the interface, so that the ZnO ∶Al at the junction is likely to be metallic even when the bulk of the ZnO ∶Al film is semiconducting. We hypothesize that the observed Fermi-level pinning is connected to the insulator-metal transition in doped ZnO. This implies that tuning the band alignment at oxide/Si interfaces may be achieved by controlling the transition between localized and extended states in the oxide, thereby changing the orbital hybridization across the interface.

  8. Characterization of nano-sized precipitates in a Mn-based lean maraging steel by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Millan, J.; Ponge, D.; Raabe, D.; Choi, P.; Dmitrieva, O. [Max-Planck-Institut fuer Eisenforschung, Duesseldorf (Germany)

    2011-02-15

    We present atom probe tomography results of a precipitation-hardened Mn-based maraging steel (9 Mn, 1.9 Ni, 0.6 Mo, 1.1 Ti, 0.33 Al; in at.%). The alloy is characterized by the surprising effect that both, strength and total elongation increase upon aging. The material reveals a high ultimate tensile strength (UTS) up to 1 GPa and good ductility (total elongation (TE) of up to 15% in a tensile test) depending on aging conditions. We map the evolution of the precipitates after 450 C aging treatment using atom probe tomography in terms of chemical composition and size distribution. (Copyright copyright 2011 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity

    DEFF Research Database (Denmark)

    Gammelmark, S.; Molmer, K.; Alt, W.

    2014-01-01

    We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian......, the atomic state is determined in a Bayesian manner from the measurement data, and we present an iterative protocol, which determines both the atomic state and the model parameters. As a new element in the treatment of observed quantum systems, we employ a Bayesian approach that conditions the atomic state...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...

  10. A Novel Method of Atomization with Potential Gas Turbine Applications

    Directory of Open Access Journals (Sweden)

    Arthur H. Lefebvre

    1988-10-01

    Full Text Available In conventional airblast or air-assist nozzles the bulk liquid to be atomized is first transformed into a jet or sheet before being exposed to the atomizing air. In the method of atomization dcscribed in this paper, the air is introduced into the bulk liquid at somc point upstream of the nozzle discharge orifice. This injectcd air forms bubbles which'explode' downstream of the injection orifice thereby shattering the liquid into small drops.Experiments carrried out on this atomizer, using water as the working fluid and nitrogen as the driving gas, show that good atomization can be achieved using only small amounts of atomizing gas at injection pressures as low as 173 kPa (25psi. It is found that atomization quality is largely independent of the size of the nozzle discharge orifice. Thus the system appears to have good potential for applications where small holes and passages cannot be employed due to the risk of blockage by contaminants in the fuel.

  11. Laser-assisted atom probe tomography of Ti/TiN films deposited on Si.

    Science.gov (United States)

    Sanford, N A; Blanchard, P T; White, R; Vissers, M R; Diercks, D R; Davydov, A V; Pappas, D P

    2017-03-01

    Laser-assisted atom probe tomography (L-APT) was used to examine superconducting TiN/Ti/TiN trilayer films with nominal respective thicknesses of 5/5/5 (nm). Such materials are of interest for applications that require large arrays of microwave kinetic inductance detectors. The trilayers were deposited on Si substrates by reactive sputtering. Electron energy loss microscopy performed in a scanning transmission electron microscope (STEM/EELS) was used to corroborate the L-APT results and establish the overall thicknesses of the trilayers. Three separate batches were studied where the first (bottom) TiN layer was deposited at 500°C (for all batches) and the subsequent TiN/Ti bilayer was deposited at ambient temperature, 250°C, and 500°C, respectively. L-APT rendered an approximately planar TiN/Si interface by making use of plausible mass-spectral assignments to N3(1+), SiN(1+), and SiO(1+). This was necessary since ambiguities associated with the likely simultaneous occurrence of Si(1+) and N2(1+) prevented their use in rendering the TiN/Si interface upon reconstruction. The non-superconducting Ti2N phase was also revealed by L-APT. Neither L-APT nor STEM/EELS rendered sharp Ti/TiN interfaces and the contrast between these layers diminished with increased film deposition temperature. L-APT also revealed that hydrogen was present in varying degrees in all samples including control samples that were composed of single layers of Ti or TiN.

  12. Atom probe tomography investigation of lath boundary segregation and precipitation in a maraging stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Thuvander, Mattias, E-mail: mattias.thuvander@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Andersson, Marcus [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); R and D Centre, Sandvik Materials Technology, SE-811 81 Sandviken (Sweden); Stiller, Krystyna [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2013-09-15

    Lath boundaries in a maraging stainless steel of composition 13Cr–8Ni–2Mo–2Cu–1Ti–0.7Al–0.3Mn–0.2Si–0.03C (at%) have been investigated using atom probe tomography following aging at 475 °C for up to 100 h. Segregation of Mo, Si and P to the lath boundaries was observed already after 5 min of aging, and the amount of segregation increases with aging time. At lath boundaries also precipitation of η-Ni{sub 3}(Ti, Al) and Cu-rich 9R, in contact with each other, takes place. These co-precipitates grow with time and because of coarsening the area number density decreases. After 100 h of aging a ∼5 nm thick film-like precipitation of a Mo-rich phase was observed at the lath boundaries. From the composition of the film it is suggested that the phase in question is the quasicrystalline R′ phase. The film is perforated with Cu-rich 9R and η-Ni{sub 3}(Ti, Al) co-precipitates. Not all precipitate types present in the matrix do precipitate at the lath boundaries; the Si-containing G phase and γ′-Ni{sub 3}(Ti, Al, Si) and the Cr-rich α′ phase were not observed at the lath boundaries. - Highlights: ► Lath boundaries in a maraging steel were analyzed by APT. ► Segregation of Mo, Si and P was measured. ► Precipitation of η-Ni{sub 3}(Ti, Al) and Cu-rich 9R was observed. ► After 100 h of aging a quasicrystalline Mo-rich film was observed.

  13. A four-probe thermal transport measurement method for nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-04-15

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models.

  14. A four-probe thermal transport measurement method for nanostructures.

    Science.gov (United States)

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P; Shi, Li

    2015-04-01

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models.

  15. A Feasibility Study of UV Laser Assisted 3D-Atom Probe Analysis of AlGaN/GaN HEMTs

    Science.gov (United States)

    2013-03-05

    Final Report for AOARD Grant-FA2386-11-1-4031 “A feasibility study of UV laser assisted 3D-atom probe analysis of AlGaN/ GaN HEMTs ” March 5...20-06-2011 to 19-06-2012 4. TITLE AND SUBTITLE A feasibility study of UV laser assisted 3D-atom probe analysis of AlGaN/ GaN HEMTs 5a. CONTRACT...gate region (gate metal, interfacial layer and defects, and AlGaN/ GaN epilayers) of an AFRL HEMT using laser assisted 3-D atom probe (3DAP

  16. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.

    Science.gov (United States)

    Smirnov, Waldemar; Kriele, Armin; Hoffmann, René; Sillero, Eugenio; Hees, Jakob; Williams, Oliver A; Yang, Nianjun; Kranz, Christine; Nebel, Christoph E

    2011-06-15

    In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are

  17. Method and system for continuous atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Yanguas-Gil, Angel; Libera, Joseph A.

    2017-03-21

    A system and method for continuous atomic layer deposition. The system and method includes a housing, a moving bed which passes through the housing, a plurality of precursor gases and associated input ports and the amount of precursor gases, position of the input ports, and relative velocity of the moving bed and carrier gases enabling exhaustion of the precursor gases at available reaction sites.

  18. Atom probe tomography and transmission electron microscopy of a Mg-doped AlGaN/GaN superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, S.E., E-mail: sb534@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Ulfig, R.M.; Clifton, P.H. [Imago Scientific Instruments Corporation, 5500 Nobel Drive, Madison, WI 53711 (United States); Kappers, M.J.; Barnard, J.S.; Humphreys, C.J.; Oliver, R.A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2011-02-15

    The electronic characteristics of semiconductor-based devices are greatly affected by the local dopant atom distribution. In Mg-doped GaN, the clustering of dopants at structural defects has been widely reported, and can significantly affect p-type conductivity. We have studied a Mg-doped AlGaN/GaN superlattice using transmission electron microscopy (TEM) and atom probe tomography (APT). Pyramidal inversion domains were observed in the TEM and the compositional variations of the dopant atoms associated with those defects have been studied using APT. Rarely has APT been used to assess the compositional variations present due to structural defects in semiconductors. Here, TEM and APT are used in a complementary fashion, and the strengths and weaknesses of the two techniques are compared. -- Research Highlights: {yields} Mg-rich regions of approximately 5 nm in size were revealed in Mg-doped AlGaN/GaN superlattices using atom probe tomography (APT). {yields} Transmission electron microscopy (TEM) of the superlattice sample showed pyramidal inversion domains, concluded to be the same Mg-rich features observed by APT. {yields} The information gained from both the 3D APT study and the 2D TEM characterisation was then compared to determine the strengths and weaknesses of each technique in analysing nanoscale features in nitride materials.

  19. Probing the properties of quantum matter; an experimental study in three parts using ultracold atoms

    NARCIS (Netherlands)

    Bons, P.C.

    2015-01-01

    The three experiments described in this thesis investigate fundamental properties of ultracold atoms. Using laser cooling and evaporative cooling, a dilute gas of sodium atoms is cooled to ~100 nK. Under these circumstances a Bose-Einstein condensate (BEC) forms, where millions of atoms collapse int

  20. Coke Formation in a Zeolite Crystal During the Methanol-to-Hydrocarbons Reaction as Studied with Atom Probe Tomography.

    Science.gov (United States)

    Schmidt, Joel E; Poplawsky, Jonathan D; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D A Matthijs; Meirer, Florian; Bare, Simon R; Weckhuysen, Bert M

    2016-09-01

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using (13) C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30-60 (13) C atoms. These clusters correlate with local increases in Brønsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. This nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.

  1. The effect orientation of features in reconstructed atom probe data on the resolution and measured composition of T1 plates in an A2198 aluminium alloy.

    Science.gov (United States)

    Mullin, Maria A; Araullo-Peters, Vicente J; Gault, Baptiste; Cairney, Julie M

    2015-12-01

    Artefacts in atom probe tomography can impact the compositional analysis of microstructure in atom probe studies. To determine the integrity of information obtained, it is essential to understand how the positioning of features influences compositional analysis. By investigating the influence of feature orientation within atom probe data on measured composition in microstructural features within an AA2198 Al alloy, this study shows differences in the composition of T1 (Al2CuLi) plates that indicates imperfections in atom probe reconstructions. The data fits a model of an exponentially-modified Gaussian that scales with the difference in evaporation field between solutes and matrix. This information provides a guide for obtaining the most accurate information possible.

  2. THEORETICAL ANALYSIS AND EXPERIMENTAL STUDY OF CARBON NANOTUBE PROBE AND CONVENTIONAL ATOMIC FORCE MICROSCOPY PROBE ON SURFACE ROUGHNESS

    Institute of Scientific and Technical Information of China (English)

    WANG Jinghe; WANG Hongxiang; XU Zongwei; DONG Shen; WANG Shiqian; ZHANG Huali

    2008-01-01

    In this paper, three different tips are employed, i.e., the carbon nanotube tip, monocrystalline silicon tip and silicon nitride tip. Resorting to atomic force microscope (AFM), they are used for measuring the surface roughness of indium tin oxide (ITO) film and the immunoglobulin G (IgG) proteins within the scanning area of 10 μm×10 μm and 0.5 μm×0.5 μm, respectively. Subsequently, the scanned surface of the ITO film and IgG proteins are analyzed by using fractal dimension. The results show that the fractal dimension measured by carbon nanotube tip is biggest with the highest frequency components and the most microscopic information. Therefore, the carbon nanotube tip is the ideal measuring tool for measuring super-smooth surface, which will play a more and more important role in the high-resolution imaging field.

  3. Methods to probe protein transitions with ATR infrared spectroscopy.

    Science.gov (United States)

    Rich, Peter R; Iwaki, Masayo

    2007-06-01

    We describe techniques that can be used in conjunction with modern attenuated total reflection (ATR) infrared micro-prisms to allow proteins to be manipulated cyclically between different states whilst simultaneously monitoring both mid-IR and UV/visible/near IR changes. These methods provide increased flexibility of the types of changes that can be induced in proteins in comparison to transmission methods. Quantitative measurements can be made of vibrational changes associated with conversion between stable catalytic reaction intermediates, ligand binding and oxidation-reduction. Both hydrophobic and soluble proteins can be analysed and the ability to induce transitions repetitively allows IR difference spectra to be acquired at a signal/noise sufficient to resolve changes due to specific cofactors or amino acids. Such spectra can often be interpreted at the atomic level by standard IR methods of comparisons with model compounds, by isotope and mutation effects and, increasingly, by ab initio simulations. Combination of such analyses with atomic 3D structural models derived from X-ray and NMR studies can lead to a deeper understanding of molecular mechanisms of enzymatic reactions.

  4. Atomic and magnetic configurational energetics by the generalized perturbation method

    DEFF Research Database (Denmark)

    Ruban, Andrei V.; Shallcross, Sam; Simak, S.I.;

    2004-01-01

    in the framework of the Korringa-Kohn-Rostoker method within the atomic sphere and coherent potential approximations. This is demonstrated with calculations of ordering energies, short-range order parameters, and transition temperatures in the CuZn, CuAu, CuPd, and PtCo systems. Furthermore, we show that the GPM...

  5. Probing bulk defect energy bands using generalized charge pumping method

    Science.gov (United States)

    Masuduzzaman, Muhammad; Weir, Bonnie; Alam, Muhammad Ashraful

    2012-04-01

    The multifrequency charge pumping (CP) technique has long been used to probe the density of defects at the substrate-oxide interface, as well as in the bulk of the oxide of MOS transistors. However, profiling the energy levels of the defects has been more difficult due to the narrow scanning range of the voltage of a typical CP signal, and the uncertainty associated with the defect capture cross-section. In this paper, we discuss a generalized CP method that can identify defect energy bands within a bulk oxide, without requiring separate characterization of the defect capture cross-section. We use the new technique to characterize defects in both fresh and stressed samples of various dielectric compositions. By quantifying the way defects are generated as a function of time, we gain insight into the nature of defect generation in a particular gate dielectric. We also discuss the relative merits of voltage, time, and other variables of CP to probe bulk defect density, and compare the technique with related characterization approaches.

  6. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  7. A simple and rapid method for the preparation of homologous DNA oligonucleotide hybridization probes from heterologous gene sequences and probes.

    Science.gov (United States)

    Maxwell, E S; Sarge, K D

    1988-11-30

    We describe a simple and rapid method for the preparation of homologous DNA oligonucleotide probes for hybridization analysis and/or cDNA/genomic library screening. With this method, a synthetic DNA oligonucleotide derived from a known heterologous DNA/RNA/protein sequence is annealed to an RNA preparation containing the gene transcript of interest. Any unpaired 3'-terminal oligonucleotides of the heterologous DNA primer are then removed using the 3' exonuclease activity of the DNA Polymerase I Klenow fragment before primer extension/dideoxynucleotide sequencing of the annealed RNA species with AMV reverse transcriptase. From the determined RNA sequence, a completely homologous DNA oligonucleotide probe is then prepared. This approach has been used to prepare a homologous DNA oligonucleotide probe for the successful library screening of the yeast hybRNA gene starting with a heterologous mouse hybRNA DNA oligonucleotide probe.

  8. Measuring the homogeneity of Bi(2223)/Ag tapes by four-probe method and a Hall probe array

    Energy Technology Data Exchange (ETDEWEB)

    Kovac, P. [Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava (Slovakia). E-mail: elekkova at savba.sk; Cambel, V.; Bukva, P. [Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava (Slovakia)

    1999-07-01

    The nature of the BSCCO compound and application of the powder-in-tube technique usually lead to non-uniform quality across and/or along the ceramic fibres and finally to variations in the critical current and its irregular distribution in the Bi(2223)/Ag tape. Therefore, the gliding four-probe method and contactless field monitoring measurements have been used for homogeneity studies. The gliding potential contacts moved along the tape surface and a sensitive system based on an integrated Hall probe array containing 16 or 19 in-line probes supported by PC-compatible electronics with software allowed us to make a comparison of contact and contactless measurements at any elements of Bi(2223)/Ag sample. The results of both methods show very good correlation and the possibility of using a sensitive Hall probe array for monitoring the final quality of Bi(2223)/Ag tapes. (author)

  9. Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100 at 5 K: Probing the probe

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2012-01-01

    Full Text Available Background: Noncontact atomic force microscopy (NC-AFM now regularly produces atomic-resolution images on a wide range of surfaces, and has demonstrated the capability for atomic manipulation solely using chemical forces. Nonetheless, the role of the tip apex in both imaging and manipulation remains poorly understood and is an active area of research both experimentally and theoretically. Recent work employing specially functionalised tips has provided additional impetus to elucidating the role of the tip apex in the observed contrast.Results: We present an analysis of the influence of the tip apex during imaging of the Si(100 substrate in ultra-high vacuum (UHV at 5 K using a qPlus sensor for noncontact atomic force microscopy (NC-AFM. Data demonstrating stable imaging with a range of tip apexes, each with a characteristic imaging signature, have been acquired. By imaging at close to zero applied bias we eliminate the influence of tunnel current on the force between tip and surface, and also the tunnel-current-induced excitation of silicon dimers, which is a key issue in scanning probe studies of Si(100.Conclusion: A wide range of novel imaging mechanisms are demonstrated on the Si(100 surface, which can only be explained by variations in the precise structural configuration at the apex of the tip. Such images provide a valuable resource for theoreticians working on the development of realistic tip structures for NC-AFM simulations. Force spectroscopy measurements show that the tip termination critically affects both the short-range force and dissipated energy.

  10. Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC-coated Si probe

    Directory of Open Access Journals (Sweden)

    Zhou Jingfang

    2011-01-01

    Full Text Available Abstract Atomic force microscope (AFM equipped with diamond-like carbon (DLC-coated Si probe has been used for scratch nanolithography on Si surfaces. The effect of scratch direction, applied tip force, scratch speed, and number of scratches on the size of the scratched geometry has been investigated. The size of the groove differs with scratch direction, which increases with the applied tip force and number of scratches but decreases slightly with scratch speed. Complex nanostructures of arrays of parallel lines and square arrays are further fabricated uniformly and precisely on Si substrates at relatively high scratch speed. DLC-coated Si probe has the potential to be an alternative in AFM-based scratch nanofabrication on hard surfaces.

  11. Atom probe tomography study on Ge{sub 1−x−y}Sn{sub x}C{sub y} hetero-epitaxial film on Ge substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji, E-mail: ejkamiyama@aol.com [Technology, GlobalWafers Japan Corp. Ltd., 6-861-5 Higashiko, Seiro, Niigata 957-0197 (Japan); Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama-ken 719-1197 (Japan); Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama-ken 719-1197 (Japan); Terasawa, Kengo; Yamaha, Takashi; Nakatsuka, Osamu [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Izunome, Koji; Kashima, Kazuhiko [Technology, GlobalWafers Japan Corp. Ltd., 6-861-5 Higashiko, Seiro, Niigata 957-0197 (Japan); Uchida, Hiroshi [Physical Analysis Technology Center, Toshiba Nanoanalysis Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan)

    2015-10-01

    We analyzed the incorporation of C atoms into a ternary alloy Ge{sub 1−x−y}Sn{sub x}C{sub y} epitaxial film on Ge substrates on a sub-nanometer scale by using atom probe tomography. Periodic atom distributions from individual (111) atomic planes were observed both in the Ge{sub 1−x−y}Sn{sub x}C{sub y} film and at the Ge substrates. Sn/C atoms had non-uniform distributions in the film. They also demonstrated a clear positive correlation in their distributions. Substitutional C atoms were only incorporated into the film when an Sn atom beam was applied onto the substrates under film growth conditions. - Highlights: • Incorporation of C atoms into epitaxial Ge{sub 1−x−y}Sn{sub x}C{sub y} film was studied. • Individual (111) atomic planes were observed by atom probe tomography. • Sn/C atoms had non-uniform distributions in the film. • Clear positive correlation in Sn/C atoms distributions was obtained.

  12. Predoping effects of boron and phosphorous on arsenic diffusion along grain boundaries in polycrystalline silicon investigated by atom probe tomography

    Science.gov (United States)

    Takamizawa, Hisashi; Shimizu, Yasuo; Inoue, Koji; Nozawa, Yasuko; Toyama, Takeshi; Yano, Fumiko; Inoue, Masao; Nishida, Akio; Nagai, Yasuyoshi

    2016-10-01

    The effect of P or B predoping on As diffusion in polycrystalline Si was investigated by atom probe tomography. In all samples, a high concentration of As was found at grain boundaries, indicating that such boundaries are the main diffusion path. However, As grain-boundary diffusion was suppressed in the B-doped sample and enhanced in the P-doped sample. In a sample codoped with both P and B, As diffusion was somewhat enhanced, indicating competition between the effects of the two dopants. The results suggest that As grain-boundary diffusion can be controlled by varying the local concentration of P or B.

  13. Construction of a New Atom-Probe and its Application to Study of Solute Behavior in Dilute Iron Base Alloys.

    Science.gov (United States)

    Al-Saleh, Kamal Amein

    An ultra-high-vacuum (UHC) time-of-flight atom -probe field ion microscope (ToF atom-probe) has been designed, constructed and operated successfully. The new ToF atom -probe is equipped with the following: (1) A poschenrieder electrostatic focusing lens for high mass resolution and noise-free performance, (2) a second chevron-channel plate -phosphor screen assembly in front of the Poschenrieder lens to be used for precise determination of the probing area and detection efficiency, (3) a quick-sample change chamber with a vacuum lock which is also used as a reaction chamber, (4) a closed-cycle liquid He refrigeration unit to cool a specimen tip down to 25 K for a better quality image, and (5) an automated data acquisition system which consists of an 8-channel digital timer with a 200 MHz internal clock and a DEC MINCII minicomputer which is capable of performing data collection at a pulse repetition rate up to 100/sec, with a mass resolution m/(DELTA)m of (TURN)1200. Using this instrument, the following alloys have been investigated: (1) Fe-0.29; 0.64; and 1.46 wt % Ti alloys. It was found that Ti segregates to the surface upon annealing the tip in vacuum at and above 650(DEGREES)C and its concentration is approximately 90% at the first layer, 20% at the second layer, 10% at the third layer and the bulk value thereafter. CO and H(,2) alone appear to have no effect at all on the segregation of Ti. However, oxygen has had profound effect on the behavior of Ti, demonstrating the initial stages of both oxidation (TiO scale formation) and internal oxidation (TiO, FeO clusters in Fe matrix) for the first time on an atomic scale. (2) Fe-0.17 wt % P alloy: P segregation to the interface was studied at the temperatures of 300 to 600(DEGREES)C. In one of the samples a carbide precipitate was found with an approximate composition of M(,5)C, where phosphorus was rejected by the M(,5)C precipitate and upon annealing the tip in vacuum P segregated at the interface.

  14. Variation of local atomic structure due to devitrification of Ni-Zr alloy thin films probed by EXAFS measurements

    Science.gov (United States)

    Bhattacharya, Debarati; Tiwari, Nidhi; Bhattacharyya, Dibyendu; Jha, S. N.; Basu, S.

    2016-05-01

    Thin film metallic glasses (TFMGs) exhibit properties superior to their bulk counterparts allowing them to be potentially useful in many practical applications. Apart from their technological interest, when converted to crystallized state (devitrification) TFMGs can also act as precursors for partially crystallized or fully crystallized forms. Such devitrified forms are attractive due to their novel structural and magnetic properties. The amorphous-to-crystalline transformation of co-sputtered Ni-Zr alloy thin films through annealing was studied using EXAFS (Extended X-ray Absorption Fine Structure) measurements. Investigation through an atomic probe gives a better insight into the local environment of the atomic species, rendering a deeper understanding of thermal evolution of such materials.

  15. Probing the dynamic structure factor of a neutral Fermi superfluid along the BCS-BEC crossover using atomic impurity qubits

    Science.gov (United States)

    Mitchison, Mark T.; Johnson, Tomi H.; Jaksch, Dieter

    2016-12-01

    We study an impurity atom trapped by an anharmonic potential, immersed within a cold atomic Fermi gas with attractive interactions that realizes the crossover from a Bardeen-Cooper-Schrieffer superfluid to a Bose-Einstein condensate. Considering the qubit comprising the lowest two vibrational energy eigenstates of the impurity, we demonstrate that its dynamics probes the equilibrium density fluctuations encoded in the dynamic structure factor of the superfluid. Observing the impurity's evolution is thus shown to facilitate nondestructive measurements of the superfluid order parameter and the contact between collective and single-particle excitation spectra. Our setup constitutes a model of an open quantum system interacting with a thermal reservoir, the latter supporting both bosonic and fermionic excitations that are also coupled to each other.

  16. Mg I as a probe of the solar chromosphere - The atomic model

    Science.gov (United States)

    Mauas, Pablo J.; Avrett, Eugene H.; Loeser, Rudolf

    1988-01-01

    This paper presents a complete atomic model for Mg I line synthesis, where all the atomic parameters are based on recent experimental and theoretical data. It is shown how the computed profiles at 4571 A and 5173 A are influenced by the choice of these parameters and the number of levels included in the model atom. In addition, observed profiles of the 5173 A b2 line and theoretical profiles for comparison (based on a recent atmospheric model for the average quiet sun) are presented.

  17. A rapid and automated relocation method of an AFM probe for high-resolution imaging

    Science.gov (United States)

    Zhou, Peilin; Yu, Haibo; Shi, Jialin; Jiao, Niandong; Wang, Zhidong; Wang, Yuechao; Liu, Lianqing

    2016-09-01

    The atomic force microscope (AFM) is one of the most powerful tools for high-resolution imaging and high-precision positioning for nanomanipulation. The selection of the scanning area of the AFM depends on the use of the optical microscope. However, the resolution of an optical microscope is generally no larger than 200 nm owing to wavelength limitations of visible light. Taking into consideration the two determinants of relocation—relative angular rotation and positional offset between the AFM probe and nano target—it is therefore extremely challenging to precisely relocate the AFM probe to the initial scan/manipulation area for the same nano target after the AFM probe has been replaced, or after the sample has been moved. In this paper, we investigate a rapid automated relocation method for the nano target of an AFM using a coordinate transformation. The relocation process is both simple and rapid; moreover, multiple nano targets can be relocated by only identifying a pair of reference points. It possesses a centimeter-scale location range and nano-scale precision. The main advantages of this method are that it overcomes the limitations associated with the resolution of optical microscopes, and that it is label-free on the target areas, which means that it does not require the use of special artificial markers on the target sample areas. Relocation experiments using nanospheres, DNA, SWCNTs, and nano patterns amply demonstrate the practicality and efficiency of the proposed method, which provides technical support for mass nanomanipulation and detection based on AFM for multiple nano targets that are widely distributed in a large area.

  18. A rapid and automated relocation method of an AFM probe for high-resolution imaging.

    Science.gov (United States)

    Zhou, Peilin; Yu, Haibo; Shi, Jialin; Jiao, Niandong; Wang, Zhidong; Wang, Yuechao; Liu, Lianqing

    2016-09-30

    The atomic force microscope (AFM) is one of the most powerful tools for high-resolution imaging and high-precision positioning for nanomanipulation. The selection of the scanning area of the AFM depends on the use of the optical microscope. However, the resolution of an optical microscope is generally no larger than 200 nm owing to wavelength limitations of visible light. Taking into consideration the two determinants of relocation-relative angular rotation and positional offset between the AFM probe and nano target-it is therefore extremely challenging to precisely relocate the AFM probe to the initial scan/manipulation area for the same nano target after the AFM probe has been replaced, or after the sample has been moved. In this paper, we investigate a rapid automated relocation method for the nano target of an AFM using a coordinate transformation. The relocation process is both simple and rapid; moreover, multiple nano targets can be relocated by only identifying a pair of reference points. It possesses a centimeter-scale location range and nano-scale precision. The main advantages of this method are that it overcomes the limitations associated with the resolution of optical microscopes, and that it is label-free on the target areas, which means that it does not require the use of special artificial markers on the target sample areas. Relocation experiments using nanospheres, DNA, SWCNTs, and nano patterns amply demonstrate the practicality and efficiency of the proposed method, which provides technical support for mass nanomanipulation and detection based on AFM for multiple nano targets that are widely distributed in a large area.

  19. Probing the resonance potential in the F atom reaction with hydrogen deuteride with spectroscopic accuracy

    Science.gov (United States)

    Ren, Zefeng; Che, Li; Qiu, Minghui; Wang, Xingan; Dong, Wenrui; Dai, Dongxu; Wang, Xiuyan; Yang, Xueming; Sun, Zhigang; Fu, Bina; Lee, Soo-Y.; Xu, Xin; Zhang, Dong H.

    2008-01-01

    Reaction resonances are transiently trapped quantum states along the reaction coordinate in the transition state region of a chemical reaction that could have profound effects on the dynamics of the reaction. Obtaining an accurate reaction potential that holds these reaction resonance states and eventually modeling quantitatively the reaction resonance dynamics is still a great challenge. Up to now, the only viable way to obtain a resonance potential is through high-level ab initio calculations. Through highly accurate crossed-beam reactive scattering studies on isotope-substituted reactions, the accuracy of the resonance potential could be rigorously tested. Here we report a combined experimental and theoretical study on the resonance-mediated F + HD → HF + D reaction at the full quantum state resolved level, to probe the resonance potential in this benchmark system. The experimental result shows that isotope substitution has a dramatic effect on the resonance picture of this important system. Theoretical analyses suggest that the full-dimensional FH2 ground potential surface, which was believed to be accurate in describing the resonance picture of the F + H2 reaction, is found to be insufficiently accurate in predicting quantitatively the resonance picture for the F + HD → HF + D reaction. We constructed a global potential energy surface by using the CCSD(T) method that could predict the correct resonance peak positions as well as the dynamics for both F + H2 → HF + H and F + HD → HF + D, providing an accurate resonance potential for this benchmark system with spectroscopic accuracy. PMID:18687888

  20. A constructive model potential method for atomic interactions

    Science.gov (United States)

    Bottcher, C.; Dalgarno, A.

    1974-01-01

    A model potential method is presented that can be applied to many electron single centre and two centre systems. The development leads to a Hamiltonian with terms arising from core polarization that depend parametrically upon the positions of the valence electrons. Some of the terms have been introduced empirically in previous studies. Their significance is clarified by an analysis of a similar model in classical electrostatics. The explicit forms of the expectation values of operators at large separations of two atoms given by the model potential method are shown to be equivalent to the exact forms when the assumption is made that the energy level differences of one atom are negligible compared to those of the other.

  1. Quantitative analysis of doped/undoped ZnO nanomaterials using laser assisted atom probe tomography: Influence of the analysis parameters

    Energy Technology Data Exchange (ETDEWEB)

    Amirifar, Nooshin; Lardé, Rodrigue, E-mail: rodrigue.larde@univ-rouen.fr; Talbot, Etienne; Pareige, Philippe; Rigutti, Lorenzo; Mancini, Lorenzo; Houard, Jonathan; Castro, Celia [Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, Avenue de l' Université, BP 12, 76801 Saint Etienne du Rouvray (France); Sallet, Vincent; Zehani, Emir; Hassani, Said; Sartel, Corine [Groupe d' étude de la Matière Condensée (GEMAC), CNRS Université de Versailles St Quentin, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France); Ziani, Ahmed; Portier, Xavier [Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen, 14050 Caen (France)

    2015-12-07

    In the last decade, atom probe tomography has become a powerful tool to investigate semiconductor and insulator nanomaterials in microelectronics, spintronics, and optoelectronics. In this paper, we report an investigation of zinc oxide nanostructures using atom probe tomography. We observed that the chemical composition of zinc oxide is strongly dependent on the analysis parameters used for atom probe experiments. It was observed that at high laser pulse energies, the electric field at the specimen surface is strongly dependent on the crystallographic directions. This dependence leads to an inhomogeneous field evaporation of the surface atoms, resulting in unreliable measurements. We show that the laser pulse energy has to be well tuned to obtain reliable quantitative chemical composition measurements of undoped and doped ZnO nanomaterials.

  2. Parameters affecting the adhesion strength between a living cell and a colloid probe when measured by the atomic force microscope.

    Science.gov (United States)

    McNamee, Cathy E; Pyo, Nayoung; Tanaka, Saaya; Vakarelski, Ivan U; Kanda, Yoichi; Higashitani, Ko

    2006-03-15

    In this study, we used the colloid probe atomic force microscopy (AFM) technique to investigate the adhesion force between a living cell and a silica colloid particle in a Leibovitz's L-15 medium (L-15). The L-15 liquid maintained the pharmaceutical conditions necessary to keep the cells alive in the outside environment during the AFM experiment. The force curves in such a system showed a steric repulsion in the compression force curve, due to the compression of the cells by the colloid probe, and an adhesion force in the decompression force curve, due to binding events between the cell and the probe. We also investigated for the first time how the position on the cell surface, the strength of the pushing force, and the residence time of the probe at the cell surface individually affected the adhesion force between a living cell and a 6.84 microm diameter silica colloid particle in L-15. The position of measuring the force on the cell surface was seen not to affect the value of the maximum adhesion force. The loading force was also seen not to notably affect the value of the maximum adhesion force, if it was small enough not to pierce and damage the cell. The residence time of the probe at the cell surface, however, clearly affected the adhesion force, where a longer residence time gave a larger maximum force. From these results, we could conclude that the AFM force measurements should be made using a loading force small enough not to damage the cell and a fixed residence time, when comparing results of different systems.

  3. Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions

    Science.gov (United States)

    Tao, Yinglei; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.

  4. Atom Probe Tomography Characterization of the Solute Distributions in a Neutron-Irradiated and Annealed Pressure Vessel Steel Weld

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K.

    2001-01-30

    A combined atom probe tomography and atom probe field ion microscopy study has been performed on a submerged arc weld irradiated to high fluence in the Heavy-Section Steel irradiation (HSSI) fifth irradiation series (Weld 73W). The composition of this weld is Fe - 0.27 at. % Cu, 1.58% Mn, 0.57% Ni, 0.34% MO, 0.27% Cr, 0.58% Si, 0.003% V, 0.45% C, 0.009% P, and 0.009% S. The material was examined after five conditions: after a typical stress relief treatment of 40 h at 607 C, after neutron irradiation to a fluence of 2 x 10{sup 23} n m{sup {minus}2} (E > 1 MeV), and after irradiation and isothermal anneals of 0.5, 1, and 168 h at 454 C. This report describes the matrix composition and the size, composition, and number density of the ultrafine copper-enriched precipitates that formed under neutron irradiation and the change in these parameters with post-irradiation annealing treatments.

  5. Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy.

    Science.gov (United States)

    Razvag, Yair; Gutkin, Vitaly; Reches, Meital

    2013-08-13

    This article describes single-molecule force spectroscopy measurements of the interaction between individual amino acid residues and inorganic surfaces in an aqueous solution. In each measurement, there is an amino acid residue, lysine, glutamate, phenylalanine, leucine, or glutamine, and each represents a class of amino acids (positively or negatively charged, aromatic, nonpolar, and polar). Force-distance curves measured the interaction of the individual amino acid bound to a silicon atomic force microscope (AFM) tip with a silcon substrate, cut from a single-crystal wafer, or mica. Using this method, we were able to measure low adhesion forces (below 300 pN) and could clearly determine the strength of interactions between the individual amino acid residues and the inorganic substrate. In addition, we observed how changes in the pH and ionic strength of the solution affected the adsorption of the residues to the substrates. Our results pinpoint the important role of hydrophobic interactions among the amino acids and the substrate, where hydrophobic phenylalanine exhibited the strongest adhesion to a silicon substrate. Additionally, electrostatic interactions also contributed to the adsorption of amino acid residues to inorganic substrates. A change in the pH or ionic strength values of the buffer altered the strength of interactions among the amino acids and the substrate. We concluded that the interplay between the hydrophobic forces and electrostatic interactions will determine the strength of adsorption among the amino acids and the surface. Overall, these results contribute to our understanding of the interaction at the organic-inorganic interface. These results may have implications for our perception of the specificity of peptide binding to inorganic surfaces. Consequently, it would possibly lead to a better design of composite materials and devices.

  6. The Muonium Atom as a Probe of Physics beyond the Standard Model

    NARCIS (Netherlands)

    Willmann, L.; Jungmann, K.

    1998-01-01

    The observed interactions between particles are not fully explained in the successful theoretical description of the standard model to date. Due to the close confinement of the bound state muonium ($M = \\mu^+ e^-$) can be used as an ideal probe of quantum electrodynamics and weak interaction and als

  7. Probing Magnetism in 2D Molecular Networks after in Situ Metalation by Transition Metal Atoms.

    Science.gov (United States)

    Schouteden, K; Ivanova, Ts; Li, Z; Iancu, V; Janssens, E; Van Haesendonck, C

    2015-03-19

    Metalated molecules are the ideal building blocks for the bottom-up fabrication of, e.g., two-dimensional arrays of magnetic particles for spintronics applications. Compared to chemical synthesis, metalation after network formation by an atom beam can yield a higher degree of control and flexibility and allows for mixing of different types of magnetic atoms. We report on successful metalation of tetrapyridyl-porphyrins (TPyP) by Co and Cr atoms, as demonstrated by scanning tunneling microscopy experiments. For the metalation, large periodic networks formed by the TPyP molecules on a Ag(111) substrate are exposed in situ to an atom beam. Voltage-induced dehydrogenation experiments support the conclusion that the porphyrin macrocycle of the TPyP molecule incorporates one transition metal atom. The newly synthesized Co-TPyP and Cr-TPyP complexes exhibit striking differences in their electronic behavior, leading to a magnetic character for Cr-TPyP only as evidenced by Kondo resonance measurements.

  8. Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies.

    Science.gov (United States)

    Tettamanzi, Giuseppe Carlo; Hile, Samuel James; House, Matthew Gregory; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y

    2017-03-28

    The ability to apply gigahertz frequencies to control the quantum state of a single P atom is an essential requirement for the fast gate pulsing needed for qubit control in donor-based silicon quantum computation. Here, we demonstrate this with nanosecond accuracy in an all epitaxial single atom transistor by applying excitation signals at frequencies up to ≈13 GHz to heavily phosphorus-doped silicon leads. These measurements allow the differentiation between the excited states of the single atom and the density of states in the one-dimensional leads. Our pulse spectroscopy experiments confirm the presence of an excited state at an energy ≈9 meV, consistent with the first excited state of a single P donor in silicon. The relaxation rate of this first excited state to the ground state is estimated to be larger than 2.5 GHz, consistent with theoretical predictions. These results represent a systematic investigation of how an atomically precise single atom transistor device behaves under radio frequency excitations.

  9. Feasibility of probing solid state nuclear tracks by thermal analysis method

    Institute of Scientific and Technical Information of China (English)

    YANG TongSuo; ZHOU Bing; YANG XinXin; HE ShaoRong; HENG ShuYun; YUAN SunSheng

    2007-01-01

    The feasibility of probing solid state nuclear tracks by thermal analysis method is discussed both theoretically and experimentally. Comparison is made between the thermal analysis method and the optical microscope method, and it is demonstrated that this thermal analysis method is applicable to probing solid state nuclear tracks.

  10. Characterization of local hydrophobicity on sapphire (0001) surfaces in aqueous environment by colloidal probe atomic force microscopy

    Science.gov (United States)

    Wada, Tomoya; Yamazaki, Kenji; Isono, Toshinari; Ogino, Toshio

    2017-02-01

    Sapphire (0001) surfaces exhibit a phase-separation into hydrophobic and hydrophilic domains upon high-temperature annealing, which were previously distinguished by the thickness of adsorbed water layers in air using atomic force microscopy (AFM). To characterize their local surface hydrophobicity in aqueous environment, we used AFM equipped with a colloidal probe and measured the local adhesive force between each sapphire domain and a hydrophilic SiO2 probe surface, or a hydrophobic polystyrene one. Two data acquisition modes for statistical analyses were used: one is force measurements at different positions of the surface and the other repeated measurement at a fixed position. We found that adhesive force measurements using the polystyrene probe allow us to distinctly separate the hydrophilic and hydrophobic domains. The dispersion in the force measurement data at different positions of the surface is larger than that in the repeated measurements at a fixed position. It indicates that the adhesive force measurement is repeatable although their data dispersion for the measurement positions is relatively large. From these results, we can conclude that the hydrophilic and hydrophobic domains on the sapphire (0001) surfaces are distinguished by a difference in their hydration degrees.

  11. The response of a neutral atom to a strong laser field probed by transient absorption near the ionisation threshold

    CERN Document Server

    Simpson, E R; Austin, D R; Diveki, Z; Hutchinson, S E E; Siegel, T; Ruberti, M; Averbukh, V; Miseikis, L; Strüber, C; Chipperfield, L; Marangos, J P

    2015-01-01

    We present transient absorption spectra of an extreme ultraviolet attosecond pulse train in helium dressed by an 800 nm laser field with intensity ranging from $2\\times10^{12}$ W/cm$^2$ to $2\\times10^{14}$ W/cm$^2$. The energy range probed spans 16-42 eV, straddling the first ionisation energy of helium (24.59 eV). By changing the relative polarisation of the dressing field with respect to the attosecond pulse train polarisation we observe a large change in the modulation of the absorption reflecting the vectorial response to the dressing field. With parallel polarized dressing and probing fields, we observe significant modulations with periods of one half and one quarter of the dressing field period. With perpendicularly polarized dressing and probing fields, the modulations of the harmonics above the ionisation threshold are significantly suppressed. A full-dimensionality solution of the single-atom time-dependent Schr\\"odinger equation obtained using the recently developed ab-initio time-dependent B-spline...

  12. Volatile organic compound ratios as probes of halogen atom chemistry in the Arctic

    Directory of Open Access Journals (Sweden)

    P. B. Shepson

    2008-03-01

    Full Text Available Volatile organic compound concentration ratios can be used as indicators of halogen chemistry that occurs during ozone depletion events in the Arctic during spring. Here we use a combination of modeling and measurements of [acetone]/[propanal] as an indicator of bromine chemistry, and [isobutane]/[n-butane] and [methyl ethyl ketone]/[n-butane] are used to study the extent of chlorine chemistry during four ozone depletion events during the Polar Sunrise Experiment of 1995. Using a 0-D photochemistry model in which the input of halogen atoms is controlled and varied, the approximate ratio of [Br]/[Cl] can be estimated for each ozone depletion event. It is concluded that there must be an additional source of propanal (likely from the snowpack to correctly simulate the VOC chemistry of the Arctic, and further evidence that the ratio of Br atoms to Cl atoms can vary greatly during ozone depletion events is presented.

  13. Volatile organic compound ratios as probes of halogen atom chemistry in the Arctic

    Directory of Open Access Journals (Sweden)

    A. E. Cavender

    2007-08-01

    Full Text Available Volatile organic compound concentration ratios can be used as indicators of halogen chemistry that occurs during ozone depletion events in the Arctic during spring. Here we use a combination of modeling and measurements of [acetone]/[propanal] as an indicator of bromine chemistry, and [isobutane]/[n-butane] and [methyl ethyl ketone]/[n-butane] are used to study the extent of chlorine chemistry during four ozone depletion events during the Polar Sunrise Experiment of 1995. Using a 0-D photochemistry model in which the input of halogen atoms is controlled and varied, the approximate ratio of [Br]/[Cl] can be estimated for each ozone depletion event. It is concluded that there must be an additional source of propanal (likely from the snowpack to correctly simulate the VOC chemistry of the Arctic, and that the ratio of Br atoms to Cl atoms can vary greatly during ozone depletion events.

  14. Atomic force microscopy in biomedical research - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available Pier Carlo Braga and Davide Ricci are old friends not only for those researchers familiar with Atomic force microscopy (AFM but also for those beginners (like the undersigned that already enthusiastically welcomed their 2004 edition (for the same Humana press printing types of Atomic force microscopy: Biomedical methods and applications, eventhough I never had used the AFM. That book was much intended to overview the possible AFM applications for a wide range of readers so that they can be in some way stimulated toward the AFM use. In fact, the great majority of scientists is afraid both of the technology behind AFM (that is naturally thought highly demanding in term of concepts not so familiar to biologists and physicians and of the financial costs: both these two factors are conceived unapproachable by the medium range granted scientist usually not educated in terms of biophysics and electronic background....

  15. Study of nanoscale damage evolution using embedded atom method potentials

    Science.gov (United States)

    Potirniche, Gabriel; Horstemeyer, Mark; Gullet, Phillip

    2004-03-01

    Damage evolution at nanoscale has been studied using embedded atom method (EAM) potentials based on molecular dynamics principles. The simulations were performed using WARP, a parallel computing atomistic stress simulator based on Lennard-Jones (LJ) potentials for Aluminum. By varying the number of atoms from a few hundred to a few hundred thousands, we analyzed void nucleation, growth and coalescence at increasing material length scale. Rectangular specimens with and without voids were subjected to uniaxial tension up to a total strain of 50rates. Uniaxial stress-strain curves, void-volume fraction evolution and stress triaxiality were monitored. The results indicated that nucleation process is highly dependent on the material length scale, while the void growth and void coalescence mechanisms were almost indifferent to the increasing length scale. Material length scale mostly affects dislocation nucleation mechanisms that lead to void formation. Strain rate also significantly influences the stress-strain response during plastic deformation at various length scales.

  16. Magic frequencies in atom-light interaction for precision probing of the density matrix

    CERN Document Server

    Givon, Menachem; Waxman, Amir; David, Tal; Groswasser, David; Japha, Yonathan; Folman, Ron

    2013-01-01

    We analyze theoretically and experimentally the existence of a {\\it magic frequency} for which the absorption of a linearly polarized light beam by vapor alkali atoms is independent of the population distribution among the Zeeman sub-levels and the angle between the beam and a magnetic field. The phenomenon originates from a peculiar cancelation of the contributions of higher moments of the atomic density matrix, and is described using the Wigner-Eckart theorem and inherent properties of Clebsch-Gordan coefficients. One important application is the robust measurement of the hyperfine population.

  17. Atomic and Electronic Structure of Quantum Dots Measured with Scanning Probe Techniques

    NARCIS (Netherlands)

    Sun, Z.

    2012-01-01

    This thesis deals with low temperature scanning tunneling microscopy/spectroscopy and atomic force microscopy (LT-STM/STS and AFM) studies on colloidal semiconductor and graphene quantum dots (g-QDs). These nanostructures are interesting because they show tunable electrical and optical properties du

  18. Quantitative analysis of hydrogen in SiO2/SiN/SiO2 stacks using atom probe tomography

    Directory of Open Access Journals (Sweden)

    Yorinobu Kunimune

    2016-04-01

    Full Text Available We have demonstrated that it is possible to reproducibly quantify hydrogen concentration in the SiN layer of a SiO2/SiN/SiO2 (ONO stack structure using ultraviolet laser-assisted atom probe tomography (APT. The concentration of hydrogen atoms detected using APT increased gradually during the analysis, which could be explained by the effect of hydrogen adsorption from residual gas in the vacuum chamber onto the specimen surface. The amount of adsorbed hydrogen in the SiN layer was estimated by analyzing another SiN layer with an extremely low hydrogen concentration (<0.2 at. %. Thus, by subtracting the concentration of adsorbed hydrogen, the actual hydrogen concentration in the SiN layer was quantified as approximately 1.0 at. %. This result was consistent with that obtained by elastic recoil detection analysis (ERDA, which confirmed the accuracy of the APT quantification. The present results indicate that APT enables the imaging of the three-dimensional distribution of hydrogen atoms in actual devices at a sub-nanometer scale.

  19. Probing Matter-Field and Atom-Number Correlations in Optical Lattices by Global Nondestructive Addressing

    CERN Document Server

    Kozlowski, Wojciech; Mekhov, Igor B

    2014-01-01

    We show that light scattering from an ultracold gas reveals not only density correlations, but also matter-field interference at its shortest possible distance in an optical lattice, which defines key properties such as tunneling and matter-field phase gradients. This signal can be enhanced by concentrating probe light between lattice sites rather than at density maxima. As addressing between two single sites is challenging, we focus on global nondestructive scattering, allowing probing order parameters, matter-field quadratures and their squeezing. The scattering angular distribution displays peaks even if classical diffraction is forbidden and we derive generalized Bragg conditions. Light scattering distinguishes all phases in the Mott insulator - superfluid - Bose glass phase transition.

  20. The Muonium Atom as a Probe of Physics beyond the Standard Model

    CERN Document Server

    Willmann, L

    1998-01-01

    The observed interactions between particles are not fully explained in the successful theoretical description of the standard model to date. Due to the close confinement of the bound state muonium ($M = \\mu^+ e^-$) can be used as an ideal probe of quantum electrodynamics and weak interaction and also for a search for additional interactions between leptons. Of special interest is the lepton number violating process of sponteanous conversion of muonium to antimuonium.

  1. [Connection of magnetic antisense probe with SK-Br-3 oncocyte mRNA nucleotide detected by high resolution atomic force microscope].

    Science.gov (United States)

    Tan, Shude; Ouyang, Yu; Li, Xinyou; Wen, Ming; Li, Shaolin

    2011-06-01

    The present paper is aimed to detect superparamagnetic iron oxide labeled c-erbB2 oncogene antisense oligonucleotide probe (magnetic antisense probe) connected with SK-Br-3 oncocyte mRNA nucleotide by high resolution atomic force microscope (AFM). We transfected SK-Br-3 oncocyte with magnetic antisense probe, then observed the cells by AFM with high resolution and detected protein expression and magnetic resonance imagine (MRI). The high resolution AFM clearly showed the connection of the oligonucleotide remote end of magnetic antisense probe with the mRNA nucleotide of oncocyte. The expression of e-erbB2 protein in SK-Br3 cells were highly inhibited by using magnetic antisense probe. We then obtained the lowest signal to noise ratio (SNR) of SK-Br-3 oncocyte transfected with magnetic antisense probe by MRI (PSK-Br-3 mRNA of tumor cell nuclear.

  2. Atom probe study of Cu-poor to Cu-rich transition during Cu(In,Ga)Se{sub 2} growth

    Energy Technology Data Exchange (ETDEWEB)

    Couzinie-Devy, F.; Cadel, E.; Pareige, P. [Groupe de Physique des Materiaux (GPM), UMR 6634 CNRS, Universite et INSA de Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Barreau, N.; Arzel, L. [Institut des Materiaux Jean Rouxel (IMN), UMR 6502 CNRS, 2 rue de la Houssiniere BP 32229, 44322 Nantes cedex 3 (France)

    2011-12-05

    Atomic scale chemistry of polycrystalline Cu(In,Ga)Se{sub 2} (CIGSe) thin film has been characterized at key points of the 3-stage process using atom probe tomography. 3D atom distributions have been reconstructed when the layer is Cu-poor ([Cu]/([Ga] + [In]) < 1), Cu-rich ([Cu]/([Ga] + [In]) > 1), and at the end of the process. Particular attention has been devoted to grain boundary composition and Na atomic distribution within the CIGSe layer. Significant variation of composition is highlighted during the growing process, providing fundamental information helping the understanding of high efficiency CIGSe formation.

  3. Four-probe scanning tunnelling microscope with atomic resolution for electrical and electro-optical property measurements of nanosystems

    Institute of Scientific and Technical Information of China (English)

    Lin Xiao; He Xiao-Bo; Lu Jun-Ling; Gao Li; Huan Qing; Shi Dong-Xia; Gao Hong-Jun

    2005-01-01

    We demonstrate a special four-probe scanning tunnelling microscope (STM) system in ultrahigh vacuum (UHV),which can provide coarse positioning for every probe independently with the help of scanning electron microscope (SEM)and fine positioning down to nanometre using the STM technology. The system allows conductivity measurement by means of a four-point probe method, which can draw out more accurate electron transport characteristics in nanostructures, and provides easy manipulation of low dimension materials. All measurements can be performed in variable temperature (from 30K to 500K), magnetic field (from 0 to 0.1T), and different gas environments. Simultaneously, the cathodoluminescence (CL) spectrum can be achieved through an optical subsystem. Test measurements using some nanowire samples show that this system is a powerful tool in exploring electron transport characteristics and spectra in nanoscale physics.

  4. Digital phase-shifting atomic force microscope Moire method

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chiaming; Chen Lienwen [Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 70101 (China)

    2005-04-21

    In this study, the digital atomic force microscope (AFM) Moire method with phase-shifting technology is established to measure the in-plane displacement and strain fields. The Moire pattern is generated by the interference between the specimen grating and the virtual reference grating formed by digital image processes. The overlapped image is filtered by two-dimensional wavelet transformation to obtain the clear interference Moire patterns. The four-step phase-shifting method is realized by translating the phase of the virtual reference grating from 0 to 2{pi}. The principle of the digital AFM Moire method and the phase-shifting technology are described in detail. Experimental results show that this method is convenient to use and efficient in realizing the microscale measurement.

  5. Probing the short range spin dependent interactions by polarized {sup 3}He atom beams

    Energy Technology Data Exchange (ETDEWEB)

    Yan, H. [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan (China); Indiana University, Center for Exploration of Energy and Matter, Bloomington, IN (United States); Sun, G.A.; Gong, J.; Pang, B.B.; Wang, Y.; Yang, Y.W.; Zhang, J.; Zhang, Y. [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan (China)

    2014-10-15

    Experiments using polarized {sup 3}He atom beams to search for short range spin dependent forces are proposed. High intensity, high polarization, small beam size {sup 3}He atom beams have been successfully produced and used in surface science researches. By incorporating background reduction designs as combination shielding by μ-metal and superconductor and double beam paths, the precision of spin rotation angle per unit length could be improved by a factor of ∝ 10{sup 4}. By this precision, in combination with a high density and low magnetic susceptibility sample source mass, and reversing one beam path if necessary, sensitivities on three different types of spin dependent interactions could be improved by as much as ∝ 10{sup 2} to ∝ 10{sup 8} over the current experiments at the millimeter range. (orig.)

  6. Laser spectroscopic probing of coexisting superfluid and insulating states of an atomic Bose-Hubbard system

    Science.gov (United States)

    Kato, Shinya; Inaba, Kensuke; Sugawa, Seiji; Shibata, Kosuke; Yamamoto, Ryuta; Yamashita, Makoto; Takahashi, Yoshiro

    2016-04-01

    A system of ultracold atoms in an optical lattice has been regarded as an ideal quantum simulator for a Hubbard model with extremely high controllability of the system parameters. While making use of the controllability, a comprehensive measurement across the weakly to strongly interacting regimes in the Hubbard model to discuss the quantum many-body state is still limited. Here we observe a great change in the excitation energy spectra across the two regimes in an atomic Bose-Hubbard system by using a spectroscopic technique, which can resolve the site occupancy in the lattice. By quantitatively comparing the observed spectra and numerical simulations based on sum rule relations and a binary fluid treatment under a finite temperature Gutzwiller approximation, we show that the spectra reflect the coexistence of a delocalized superfluid state and a localized insulating state across the two regimes.

  7. Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy.

    Science.gov (United States)

    Sun, Zhiyuan; Hazut, Ori; Huang, Bo-Chao; Chiu, Ya-Ping; Chang, Chia-Seng; Yerushalmi, Roie; Lauhon, Lincoln J; Seidman, David N

    2016-07-13

    Dopants play a critical role in modulating the electric properties of semiconducting materials, ranging from bulk to nanoscale semiconductors, nanowires, and quantum dots. The application of traditional doping methods developed for bulk materials involves additional considerations for nanoscale semiconductors because of the influence of surfaces and stochastic fluctuations, which may become significant at the nanometer-scale level. Monolayer doping is an ex situ doping method that permits the post growth doping of nanowires. Herein, using atom-probe tomography (APT) with subnanometer spatial resolution and atomic-ppm detection limit, we study the distributions of boron and phosphorus in ex situ doped silicon nanowires with accurate control. A highly phosphorus doped outer region and a uniformly boron doped interior are observed, which are not predicted by criteria based on bulk silicon. These phenomena are explained by fast interfacial diffusion of phosphorus and enhanced bulk diffusion of boron, respectively. The APT results are compared with scanning tunneling spectroscopy data, which yields information concerning the electrically active dopants. Overall, comparing the information obtained by the two methods permits us to evaluate the diffusivities of each different dopant type at the nanowire oxide, interface, and core regions. The combined data sets permit us to evaluate the electrical activation and compensation of the dopants in different regions of the nanowires and understand the details that lead to the sharp p-i-n junctions formed across the nanowire for the ex situ doping process.

  8. Probing Electronic States of Magnetic Semiconductors Using Atomic Scale Microscopy & Spectroscopy

    Science.gov (United States)

    2013-12-01

    N000140710348 Final Report as of December 2013 Objective: This project was focused on the application of the scanning tunneling microscopy (STM...magnetic atoms on the surface of a superconductor can be used as a versatile platform for creating a topological superconductor . These initial...the application of the scanning tunneling microscopy (STM) to understand the electronic structure of magnetically doped semiconductors and to develop

  9. Fabrication method for microscopic vapor cells for alkali atoms.

    Science.gov (United States)

    Baluktsian, T; Urban, C; Bublat, T; Giessen, H; Löw, R; Pfau, T

    2010-06-15

    A quantum network that consists of several components should ideally work on a single physical platform. Neutral alkali atoms have the potential to be very well suited for this purpose due to their electronic structure, which involves long-lived nuclear spins and very sensitive highly excited Rydberg states. In this Letter, we describe a fabrication method based on quartz glass to structure arbitrary shapes of microscopic vapor cells. We show that the usual spectroscopic properties known from macroscopic vapor cells are almost unaffected by the strong confinement.

  10. Method And Apparatus For Atomizing And Vaporizing Liquid

    KAUST Repository

    Lal, Amit

    2014-09-18

    A method and apparatus for atomizing and vaporizing liquid is described. An apparatus having an ejector configured to eject one or more droplets of liquid may be inserted into a reservoir containing liquid. The ejector may have a vibrating device that vibrates the ejector and causes liquid to move from the reservoir up through the ejector and out through an orifice located on the top of the ejector. The one or more droplets of liquid ejected from the ejector may be heated and vaporized into the air.

  11. Method and apparatus for differential spectroscopic atomic-imaging using scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L.

    1990-07-17

    This patent describes a spectroscopic scanning tunneling microscope (SSTM) apparatus for differential atomic imaging the surface of a material sample. It comprises: a mounting stage for mounting the sample; a fine-point electrode probe positioned adjacent the mounting stage and being positionable very closely adjacent a sample that is mounted on the stage to accommodate a tunneling current between the sample and the probe; tunable electronic surface bias means connected to the surface of the sample and to the probe for electronically biasing the surface of the sample in relation to the probe with a surface voltage bias; photon bias means adjacent the stage for providing photon biasing of selected wavelengths and frequencies on the surface of the sample adjacent the probe; instrumentation means for measuring tunneling current through the probe and electronic voltage bias; data processing means; and display means.

  12. Graphene Coatings: Probing the Limits of the One Atom Thick Protection Layer

    DEFF Research Database (Denmark)

    Nilsson, Louis; Andersen, Mie; Balog, Richard

    2012-01-01

    The limitations of graphene as an effective corrosion-inhibiting coating on metal surfaces, here exemplified by the hex-reconstructed Pt(100) surface, are probed by scanning tunneling microscopy measurements and density functional theory calculations. While exposure of small molecules directly onto...... the Pt(100) surface will lift the reconstruction, a single graphene layer is observed to act as an effective coating, protecting the reactive surface from O2 exposure and thus preserving the reconstruction underneath the graphene layer in O2 pressures as high as 104 mbar. A similar protective effect...

  13. Characterization of electrical properties in axial Si-Ge nanowire heterojunctions using off-axis electron holography and atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Zhaofeng [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA; Perea, Daniel E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Yoo, Jinkyoung [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; He, Yang [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pennsylvania 15261, USA; Colby, Robert J. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Barker, Josh E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Gu, Meng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Mao, Scott X. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pennsylvania 15261, USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Picraux, S. T. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Smith, David J. [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA; McCartney, Martha R. [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

    2016-09-13

    Doped Si-Ge nanowire (NW) heterojunctions were grown using the vapor-liquid-solid method with AuGa and Au catalyst particles. Transmission electron microscopy and off-axis electron holography (EH) were used to characterize the nanostructure and to measure the electrostatic potential profile across the junction resulting from electrically active dopants, while atom-probe tomography (APT) was used to determine the Si, Ge and total (active and inactive) dopant concentration profiles. A comparison of the measured potential profile with simulations indicated that Ga dopants unintentionally introduced during AuGa catalyst growth were electronically inactive despite APT results that showed considerable amounts of Ga in the Si region. 10% P in Ge and 100% B in Si were estimated to be activated, which was corroborated by in situ electron-holography biasing experiments. This combination of EH, APT, in situ biasing and simulations allows a better knowledge and understanding of the electrically active dopant distributions in NWs.

  14. Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrieva, O.; Ponge, D.; Inden, G.; Millan, J.; Choi, P. [Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Sietsma, J. [Delft University of Technology, Faculty 3mE, Dept. MSE, 2628 CD Delft (Netherlands); Raabe, D., E-mail: d.raabe@mpie.de [Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, 40237 Duesseldorf (Germany)

    2011-01-15

    Partitioning at phase boundaries of complex steels is important for their properties. We present atom probe tomography results across martensite/austenite interfaces in a precipitation-hardened maraging-TRIP steel (12.2 Mn, 1.9 Ni, 0.6 Mo, 1.2 Ti, 0.3 Al; at.%). The system reveals compositional changes at the phase boundaries: Mn and Ni are enriched while Ti, Al, Mo and Fe are depleted. More specific, we observe up to 27 at.% Mn in a 20 nm layer at the phase boundary. This is explained by the large difference in diffusivity between martensite and austenite. The high diffusivity in martensite leads to a Mn flux towards the retained austenite. The low diffusivity in the austenite does not allow accommodation of this flux. Consequently, the austenite grows with a Mn composition given by local equilibrium. The interpretation is based on DICTRA and mixed-mode diffusion calculations (using a finite interface mobility).

  15. Design and implementation of precise position controller of active probe of atomic force microscopy for nanomanipulation

    Institute of Scientific and Technical Information of China (English)

    HAO LiNa; ZHANG JiangBo; XI Ning

    2008-01-01

    Efficiency and accuracy of AFM-based nanomanipulation are still major problems to be solved,due to the nonlinearities and uncertainties,such as drift,creep,hysteresis,etc.The deformation of cantilevers caused by manipulation force is also one of the most major factors of nonlinearities and uncertainties.It causes difficulties in precise control of the tip position and causes the tip to miss the position of the object.In order to solve this problem,the traditional approach is to use a rigid cantilever.However,this will significantly reduce the sensitivity of force sensing during manipulation,which is essential for achieving an efficient and reliable nanomanipulation.In this paper,a kind of active AFM probe has been used to solve this problem by directly controlling the cantilever's flexibility or rigidity during manipu- lation.Based on Euller-Bernoulli Model,a kind of controller of the active probe employing Peri- odic-Output-Feedback (POF) law is implemented.The results of simulation and experiments have demonstrated that this theoretical model and POF controller are suitable for precise position control of nanomanipulation.

  16. Investigation of the self tempering effect of martensite by means of atom probe tomography; Untersuchung des Selbstanlasseffektes von Martensit mit Hilfe von Atomsondentomographie

    Energy Technology Data Exchange (ETDEWEB)

    Sackl, Stephanie [Montanuniv. Leoben (Austria). Christian Doppler Labor ' ' Early Stages of Precipitation' ' ; Clemens, Helmut; Primig, Sophie [Montanuniv. Leoben (Austria). Dept. of Physical Metallurgy and Materials Testing

    2015-10-01

    Self-tempering effects can be observed in steels with relatively high martensite start temperatures. After the formation of the first martensitic laths, carbon is able to diffuse in these laths during cooling, which can be attributed to sufficiently high temperatures. This effect cannot be observed in laths formed at lower temperatures. In steels containing up to 0.2 m.-% carbon, up to 90 % of the carbon atoms in the martensite segregate to dislocations during quenching. Due to its atomic resolution and sensitivity with respect to light elements, atom probe tomography is very well suited for the investigation of this phenomenon. In this study, the self-tempering effect in a quenched and tempered steel 42CrMo4 with a martensite start temperature of 310 C is investigated by means of atom probe tomography.

  17. A New Method for Calibrating the Time Delay of a Piezoelectric Probe

    DEFF Research Database (Denmark)

    Hansen, Bengt Hurup

    1974-01-01

    A simple method for calibrating the time delay of a piezoelectric probe of the type often used in plasma physics is described.......A simple method for calibrating the time delay of a piezoelectric probe of the type often used in plasma physics is described....

  18. Probing characteristics of collagen molecules on various surfaces via atomic force microscopy

    Science.gov (United States)

    Su, Hao-Wei; Ho, Mon-Shu; Cheng, Chao-Min

    2012-06-01

    We examine, herein, specific dynamic responses of collagen molecules (i.e., observations of self-assembly and nanometric adhesion force measurements of type-I collagen molecules) as they interact with either a hydrophobic or a hydrophilic surface at two distinct temperatures, using a liquid-type atomic force microscope. We conclude that, regardless of surface hydrophobicity/hydrophilicity, assembled microfibrils eventually distribute homogeneously in accordance with changes in surface-related mechanical properties of collagen molecules at different self-assembly stages.

  19. Probing molecular interaction between transferrin and anti-transferrin by atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The interaction between transferrin (Tf) and its antibody was investigated by atomic force microscope. Tf-antibody was immobilized on the Au-coated glass slide, and the specific combination between antibody and antigen was also characterized by AFM. The results showed that holo-transferrin was jogged with anti-transferrin, and binded anti-tran- sferrin more tightly than apo-transferrin. The force- distance curves revealed that the affinity of anti-trans- ferrin and holo-transferrin was much stronger than that of apo-transferrin.

  20. DNA flexibility on short length scales probed by atomic force microscopy.

    Science.gov (United States)

    Mazur, Alexey K; Maaloum, Mounir

    2014-02-14

    Unusually high bending flexibility has been recently reported for DNA on short length scales. We use atomic force microscopy (AFM) in solution to obtain a direct estimate of DNA bending statistics for scales down to one helical turn. It appears that DNA behaves as a Gaussian chain and is well described by the wormlike chain model at length scales beyond 3 helical turns (10.5 nm). Below this threshold, the AFM data exhibit growing noise because of experimental limitations. This noise may hide small deviations from the Gaussian behavior, but they can hardly be significant.

  1. Ultrafast atomic process in X-ray emission by using inner-shell ionization method for sodium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-07-01

    An ultrafast inner-shell ionization process with X-ray emission stimulated by high-intensity short-pulse X-ray is studied. Carbon and sodium atoms are treated as target matter. It is shown that atomic processes of the target determine the necessary X-ray intensity for X-ray laser emission as well as the features of X-ray laser such as wavelength and duration time. The intensity also depends on the density of initial atoms. Furthermore, we show that as the intensity of X-ray source becomes high, the multi-inner-shell ionization predominates, leading to the formation of hollow atoms. As the density of hollow atoms is increased by the pumping X-ray power, the emission of X-rays is not only of significance for high brightness X-ray measurement but also is good for X-ray lasing. New classes of experiments of pump X-ray probe and X-ray laser are suggested. (author)

  2. Atomic parity violation in one single trapped and laser cooled radium ion: a probe of electroweak running

    Energy Technology Data Exchange (ETDEWEB)

    Giri, G.S.; Boell, O.; Jungmann, K.; Sahoo, B.K.; Timmermans, R.G.E.; Versolato, O.O.; Wansbeek, L.W.; Willmann, L. [KVI, University of Groningen (Netherlands)

    2009-07-01

    One single-trapped and laser cooled radium ion is an ideal candidate to investigate atomic parity non-conservation (APNC). APNC can serve as a low energy test of the Standard Model of particle physics. We aim for a precision measurement of the electroweak mixing angle, by probing the differential light shift of the 7S and 6D Zeeman sublevels. This shift is caused by the interaction of the ion with an off-resonant laser light field. With precision RF spectroscopy and subsequent electron shelving, the differential splitting can be determined to sub-Hertz accuracy. Recent calculations show that Ra{sup +} is a superior candidate for probing APNC. With an almost identical set-up and using the electron shelving technique, ultra-narrow transitions in this ion can be exploited for an all optical, high stability frequency standard clock. We have succeeded in the production and subsequent slowing down of radium isotopes around {sup 213}Ra. Further progress has been made in the development of ion traps and the necessary high precision optical laboratory. Laser spectroscopy of Ra{sup +} and the first ever trapping of this particle are being prepared.

  3. Atom probe analysis on interaction between Cr and N in bake-hardening steels with anti-aging properties at RT

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Jun, E-mail: takahashi.3ct.jun@jp.nssmc.com [Advanced Technology Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 20-1, Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Maruyama, Naoki; Kawakami, Kazuto; Yoshinaga, Naoki; Sugiyama, Masaaki [Advanced Technology Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 20-1, Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Ohkubo, Tadakatsu; Ping, De-hai; Hono, Kazuhiro [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2013-11-15

    One-dimensional atom probe (1DAP) analysis was performed on chromium and nitrogen added bake hardening steel sheets that have both high bake-hardenability and anti-aging properties at room temperature (RT). The atomic data of more than 2 million atoms were collected for sample steels with and without low-temperature aging after recrystallization annealing and quenching. The correlation in atomic position between chromium and nitrogen atoms in a solid solution was investigated by a statistical analysis using the binomial distribution function. In the samples with low-temperature aging, the probability that a chromium atom was observed near a nitrogen atom was significantly higher than that estimated from the null hypothesis that there was no attractive atomic interaction. This suggests that there is an attractive interaction between a nitrogen atom and a chromium atom in bcc iron, which led to the anti-aging properties at RT. In contrast, such correlation was not observed definitely in the samples without low-temperature aging, which implied that the atomic pair formation is a thermal activation process.

  4. Probing deviations from traditional colloid filtration theory by atomic forces microscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Marissa Devan

    2005-12-01

    Colloid transport through saturated media is an integral component of predicting the fate and transport of groundwater contaminants. Developing sound predictive capabilities and establishing effective methodologies for remediation relies heavily on our ability to understand the pertinent physical and chemical mechanisms. Traditionally, colloid transport through saturated media has been described by classical colloid filtration theory (CFT), which predicts an exponential decrease in colloid concentration with travel distance. Furthermore, colloid stability as determined by Derjaguin-Landau-Veney-Overbeek (DLVO) theory predicts permanent attachment of unstable particles in a primary energy minimum. However, recent studies show significant deviations from these traditional theories. Deposition in the secondary energy minimum has been suggested as a mechanism by which observed deviations can occur. This work investigates the existence of the secondary energy minimum as predicted by DLVO theory using direct force measurements obtained by Atomic Forces Microscopy. Interaction energy as a function of separation distance between a colloid and a quartz surface in electrolyte solutions of varying ionic strength are obtained. Preliminary force measurements show promise and necessary modifications to the current experimental methodology have been identified. Stringent surface cleaning procedures and the use of high-purity water for all injectant solutions is necessary for the most accurate and precise measurements. Comparisons between direct physical measurements by Atomic Forces Microscopy with theoretical calculations and existing experimental findings will allow the evaluation of the existence or absence of a secondary energy minimum.

  5. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A., E-mail: rao28@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P., E-mail: michael.moody@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-02-16

    Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering.

  6. Atoms in Valence Bond. Method, implementation and application

    NARCIS (Netherlands)

    Zielinski, M.L.

    2012-01-01

    The Atoms in Valence Bond (AiVB) approach is presented. The main goal was to develop a new and innovative approach, within the existing Valence Bond framework, to build and analyze the molecular VB wave function in terms of atoms and their atomic states, in a very user-friendly environment. The nece

  7. Determination of absolute configuration using heavy atom based co-crystallization method: Halogen atom effects

    Science.gov (United States)

    Wang, Jian-Rong; Fan, Xiaowu; Ding, Qiaoce; Mei, Xuefeng

    2016-09-01

    Heavy atom (chloride, bromide, and iodide) based co-crystals for determination of absolute configuration (AC) for chiral molecules were synthesized and evaluated. Co-crystals of cholestanol and L-ascorbic acid were analysed and the effects and potential benefits of varying the heavy atom are discussed. Changing the halogen atoms (chloride, bromide, or iodide) affects the co-crystal formation, X-ray absorption, and anomalous dispersion, and hence the ability to determine AC.

  8. Embedded-atom-method interatomic potentials from lattice inversion.

    Science.gov (United States)

    Yuan, Xiao-Jian; Chen, Nan-Xian; Shen, Jiang; Hu, Wangyu

    2010-09-22

    The present work develops a physically reliable procedure for building the embedded-atom-method (EAM) interatomic potentials for the metals with fcc, bcc and hcp structures. This is mainly based on Chen-Möbius lattice inversion (Chen et al 1997 Phys. Rev. E 55 R5) and first-principles calculations. Following Baskes (Baskes et al 2007 Phys. Rev. B 75 094113), this new version of the EAM eliminates all of the prior arbitrary choices in the determination of the atomic electron density and pair potential functions. Parameterizing the universal form deduced from the calculations within the density-functional scheme for homogeneous electron gas as the embedding function, the new-type EAM potentials for Cu, Fe and Ti metals have successfully been constructed by considering interatomic interactions up to the fifth neighbor, the third neighbor and the seventh neighbor, respectively. The predictions of elastic constants, structural energy difference, vacancy formation energy and migration energy, activation energy of vacancy diffusion, latent heat of melting and relative volume change on melting all satisfactorily agree with the experimental results available or first-principles calculations. The predicted surface energies for low-index crystal faces and the melting point are in agreement with the experimental data to the same extent as those calculated by other EAM-type potentials such as the FBD-EAM, 2NN MEAM and MS-EAM. In addition, the order among the predicted low-index surface energies is also consistent with the experimental information.

  9. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic-Resolution Electron Microscopy and Field Evaporation Simulation.

    Science.gov (United States)

    Devaraj, Arun; Colby, Robert; Vurpillot, François; Thevuthasan, Suntharampillai

    2014-04-17

    Oxide-supported metal nanoparticles are widely used in heterogeneous catalysis. The increasingly detailed design of such catalysts necessitates three-dimensional characterization with high spatial resolution and elemental selectivity. Laser-assisted atom probe tomography (APT) is uniquely suited to the task but faces challenges with the evaporation of metal/insulator systems. Correlation of APT with aberration-corrected scanning transmission electron microscopy (STEM), for Au nanoparticles embedded in MgO, reveals preferential evaporation of the MgO and an inaccurate assessment of nanoparticle composition. Finite element field evaporation modeling is used to illustrate the evolution of the evaporation front. Nanoparticle composition is most accurately predicted when the MgO is treated as having a locally variable evaporation field, indicating the importance of considering laser-oxide interactions and the evaporation of various molecular oxide ions. These results demonstrate the viability of APT for analysis of oxide-supported metal nanoparticles, highlighting the need for developing a theoretical framework for the evaporation of heterogeneous materials.

  10. Probing the interactions between lignin and inorganic oxides using atomic force microscopy

    Science.gov (United States)

    Wang, Jingyu; Qian, Yong; Deng, Yonghong; Liu, Di; Li, Hao; Qiu, Xueqing

    2016-12-01

    Understanding the interactions between lignin and inorganic oxides has both fundamental and practical importance in industrial and energy fields. In this work, the specific interactions between alkali lignin (AL) and three inorganic oxide substrates in aqueous environment are quantitatively measured using atomic force microscopy (AFM). The results show that the average adhesion force between AL and metal oxide such as Al2O3 or MgO is nearly two times bigger than that between AL and nonmetal oxide such as SiO2 due to the electrostatic difference and cation-π interaction. When 83% hydroxyl groups of AL is blocked by acetylation, the adhesion forces between AL and Al2O3, MgO and SiO2 decrease 43, 35 and 75% respectively, which indicate hydrogen bonds play an important role between AL and inorganic oxides, especially in AL-silica system.

  11. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.

    Science.gov (United States)

    Sapra, K Tanuj

    2013-01-01

    The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.

  12. Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms

    DEFF Research Database (Denmark)

    Christensen, Thomas; Yan, Wei; Raza, Søren

    2014-01-01

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss...... spectroscopy, and light scattering. These constitute two near-field and one far-field measurements, with zero-, one-, and two-dimensional excitation sources, respectively. We search for the clearest signatures of hydrodynamic pressure waves in nanospheres. We employ a linearized hydrodynamic model, and Mie......–Lorenz theory is applied for each case. Nonlocal response shows its mark in all three configurations, but for the two near-field measurements, we predict especially pronounced nonlocal effects that are not exhibited in far-field measurements. Associated with every multipole order is not only a single...

  13. Direct probe of anisotropy in atom-molecule collisions via quantum scattering resonances

    CERN Document Server

    Klein, Ayelet; Skomorowski, Wojciech; Żuchowski, Piotr S; Pawlak, Mariusz; Janssen, Liesbeth M C; Moiseyev, Nimrod; van de Meerakker, Sebastiaan Y T; van der Avoird, Ad; Koch, Christiane P; Narevicius, Edvardas

    2016-01-01

    Anisotropy is a fundamental property of particle interactions. It occupies a central role in cold and ultra-cold molecular processes, where long range forces have been found to significantly depend on orientation in ultra-cold polar molecule collisions. Recent experiments have demonstrated the emergence of quantum phenomena such as scattering resonances in the cold collisions regime due to quantization of the intermolecular degrees of freedom. Although these states have been shown to be sensitive to interaction details, the effect of anisotropy on quantum resonances has eluded experimental observation so far. Here, we directly measure the anisotropy in atom-molecule interactions via quantum resonances by changing the quantum state of the internal molecular rotor. We observe that a quantum scattering resonance at a collision energy of $k_B$ x 270 mK appears in the Penning ionization of molecular hydrogen with metastable helium only if the molecule is rotationally excited. We use state of the art ab initio and ...

  14. Quantum Monte Carlo methods and lithium cluster properties. [Atomic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Owen, R.K.

    1990-12-01

    Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) (0.1981), 0.1895(9) (0.1874(4)), 0.1530(34) (0.1599(73)), 0.1664(37) (0.1724(110)), 0.1613(43) (0.1675(110)) Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) (0.0203(12)), 0.0188(10) (0.0220(21)), 0.0247(8) (0.0310(12)), 0.0253(8) (0.0351(8)) Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.

  15. New possible properties of atomic nuclei investigated by non linear methods: Fractal and recurrence quantification analysis

    OpenAIRE

    Conte, Elio,; Khrennikov, Andrei Yu.; Zbilut, Joseph P.

    2007-01-01

    For the first time we apply the methodologies of nonlinear analysis to investigate atomic matter. We use these methods in the analysis of Atomic Weights and of Mass Number of atomic nuclei. Using the AutoCorrelation Function and Mutual Information we establish the presence of nonlinear effects in the mechanism of increasing mass of atomic nuclei considered as a function of the atomic number. We find that increasing mass is divergent, possibly chaotic. We also investigate the possible existenc...

  16. Iterative methods for obtaining solvation structures on a solid plate: The methods for Surface Force Apparatus and Atomic Force Microscopy in Liquids

    CERN Document Server

    Amano, Ken-ich

    2013-01-01

    We propose iterative methods for obtaining solvation structures on a solid plate which use force distributions measured by surface force apparatus (SFA) and atomic force microscopy (AFM) as input data. Two model systems are considered here. In the model system for SFA, the same two solid plates are immersed in a solvent, and a probe tip and a solid plate are immersed in a solvent in the model system for AFM. Advantages of the iterative methods are as follows: The iterative method for SFA can obtain the solvation structure, for example, in a Lennard-Jones liquid; The iterative method for AFM can obtain the solvation structure without an input datum of solvation structure around the probe tip.

  17. Field enhancement analysis of an apertureless near field scanning optical microscope probe with finite element method

    Institute of Scientific and Technical Information of China (English)

    Weibin Chen; Qiwen Zhan

    2007-01-01

    Plasmonic field enhancement in a fully coated dielectric near field scanning optical microscope (NSOM)probe under radial polarization illumination is analyzed using an axially symmetric three-dimensional (3D)finite element method (FEM) model. The enhancement factor strongly depends on the illumination spot size, taper angle of the probe, and the metal film thickness. The tolerance of the alignment angle is investigated. Probe designs with different metal coatings and their enhancement performance are studied as well. The nanometric spot size at the tip apex and high field enhancement of the apertureless NSOM probe have important potential application in semiconductor metrology.

  18. Nanostructural evolution of Cr-rich precipitates in a Cu-Cr-Zr alloy during heat treatment studied by 3 dimensional atom probe

    DEFF Research Database (Denmark)

    Hatakeyama, Masahiko; Toyama, Takeshi; Nagai, Yasuyoshi;

    2008-01-01

    Nanostructural evolution of Cr (Cr-rich) precipitates in a Cu-0.78%Cr-0.13%Zr alloy has been studied after aging and overaging (reaging) by laser assisted local electrode 3 dimensional atom probe (Laser-LEAP). This material is a candidate for the first wall and divertor components of future fusion...

  19. Topographic and electronic contrast of the graphene moir´e on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy

    NARCIS (Netherlands)

    Sun, Z.; Hämäläinen, K.; Sainio, K.; Lahtinen, J.; Vanmaekelbergh, D.A.M.; Liljeroth, P.

    2011-01-01

    Epitaxial graphene grown on transition-metal surfaces typically exhibits a moir´e pattern due to the lattice mismatch between graphene and the underlying metal surface. We use both scanning tunneling microscopy (STM) and atomic force microscopy (AFM) to probe the electronic and topographic contrast

  20. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    Science.gov (United States)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  1. Perfect/complete scattering experiments probing quantum mechanics on atomic and molecular collisions and coincidences

    CERN Document Server

    Kleinpoppen, Hans; Grum-Grzhimailo, Alexei N

    2013-01-01

    The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter.  The feasibility of such perfect' and-or `complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory.  It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment `complete'.  The language of the related theory is the language of quantum mechanical amplitudes and their relative phases.  This book captures the spi...

  2. Morphology and current-voltage characteristics of nanostructured pentacene thin films probed by atomic force microscopy.

    Science.gov (United States)

    Zorba, S; Le, Q T; Watkins, N J; Yan, L; Gao, Y

    2001-09-01

    Atomic force microscopy was used to study the growth modes (on SiO2, MoS2, and Au substrates) and the current-voltage (I-V) characteristics of organic semiconductor pentacene. Pentacene films grow on SiO2 substrate in a layer-by-layer manner with full coverage at an average thickness of 20 A and have the highest degree of molecular ordering with large dendritic grains among the pentacene films deposited on the three different substrates. Films grown on MoS2 substrate reveal two different growth modes, snowflake-like growth and granular growth, both of which seem to compete with each other. On the other hand, films deposited on Au substrate show granular structure for thinner coverages (no crystal structure) and dendritic growth for higher coverages (crystal structure). I-V measurements were performed with a platinum tip on a pentacene film deposited on a Au substrate. The I-V curves on pentacene film reveal symmetric tunneling type character. The field dependence of the current indicates that the main transport mechanism at high field intensities is hopping (Poole-Frenkel effect). From these measurements, we have estimated a field lowering coefficient of 9.77 x 10(-6) V-1/2 m1/2 and an ideality factor of 18 for pentacene.

  3. A rate adaptive control method for Improving the imaging speed of atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanyan [State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 300072 Tianjin (China); Tianjin Key Laboratory of Information Sensing and Intelligent Control, Tianjin University of Technology and Education, 300222 Tianjin (China); Wan, Jiahuan [State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 300072 Tianjin (China); Hu, Xiaodong, E-mail: xdhu@tju.edu.cn [State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 300072 Tianjin (China); Xu, Linyan; Wu, Sen; Hu, Xiaotang [State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 300072 Tianjin (China)

    2015-08-15

    A simple rate adaptive control method is proposed to improve the imaging speed of the atomic force microscope (AFM) in the paper. Conventionally, the probe implemented on the AFM scans the sample surface at a constant rate, resulting in low time efficiency. Numerous attempts have been made to realize high-speed AFMs, while little efforts are put into changing the constant-rate scanning. Here we report a rate adaptive control method based on variable-rate scanning. The method automatically sets the imaging speed for the x scanner through the analysis of the tracking errors in the z direction at each scanning point, thus improving the dynamic tracking performance of the z scanner. The development and functioning of the rate adaptive method are demonstrated, as well as how the approach significantly achieves faster scans and a higher resolution AFM imaging. - Highlights: • A rate adaptive control method is proposed to improve the imaging speed ofAFM. • The new method automatically selects appropriate scanning speed in the x direction through the analysis of the tracking errors in the z direction. • The system identification is carried out to obtain the mathematical model of thevertical feedback system of AFM.

  4. Comparison and evaluation of immobilization methods for preparing bacterial probes using acidophilic bioleaching bacteria Acidithiobacillus thiooxidans for AFM studies.

    Science.gov (United States)

    Diao, Mengxue; Taran, Elena; Mahler, Stephen M; Nguyen, Anh V

    2014-07-01

    We evaluated different strategies for constructing bacterial probes for atomic force microscopy studies of bioleaching Acidithiobacillus thiooxidans interacting with pyrite mineral surfaces. Of three available techniques, the bacterial colloidal probe technique is the most reliable and provides a versatile platform for quantifying true interactive forces between bioleaching microorganisms and mineral surfaces.

  5. Probing anisotropic surface properties and interaction forces of chrysotile rods by atomic force microscopy and rheology.

    Science.gov (United States)

    Yang, Dingzheng; Xie, Lei; Bobicki, Erin; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2014-09-16

    Understanding the surface properties and interactions of nonspherical particles is of both fundamental and practical importance in the rheology of complex fluids in various engineering applications. In this work, natural chrysotile, a phyllosilicate composed of 1:1 stacked silica and brucite layers which coil into cylindrical structure, was chosen as a model rod-shaped particle. The interactions of chrysotile brucite-like basal or bilayered edge planes and a silicon nitride tip were measured using an atomic force microscope (AFM). The force-distance profiles were fitted using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which demonstrates anisotropic and pH-dependent surface charge properties of brucite-like basal plane and bilayered edge surface. The points of zero charge (PZC) of the basal and edge planes were estimated to be around pH 10-11 and 6-7, respectively. Rheology measurements of 7 vol % chrysotile (with an aspect ratio of 14.5) in 10 mM NaCl solution showed pH-dependent yield stress with a local maximum around pH 7-9, which falls between the two PZC values of the edge and basal planes of the rod particles. On the basis of the surface potentials of the edge and basal planes obtained from AFM measurements, theoretical analysis of the surface interactions of edge-edge, basal-edge, and basal-basal planes of the chrysotile rods suggests the yield stress maximum observed could be mainly attributed to the basal-edge attractions. Our results indicate that the anisotropic surface properties (e.g., charges) of chrysotile rods play an important role in the particle-particle interaction and rheological behavior, which also provides insight into the basic understanding of the colloidal interactions and rheology of nonspherical particles.

  6. Evaluation of carbon nanotube probes in critical dimension atomic force microscopes.

    Science.gov (United States)

    Choi, Jinho; Park, Byong Chon; Ahn, Sang Jung; Kim, Dal-Hyun; Lyou, Joon; Dixson, Ronald G; Orji, Ndubuisi G; Fu, Joseph; Vorburger, Theodore V

    2016-07-01

    The decreasing size of semiconductor features and the increasing structural complexity of advanced devices have placed continuously greater demands on manufacturing metrology, arising both from the measurement challenges of smaller feature sizes and the growing requirement to characterize structures in more than just a single critical dimension. For scanning electron microscopy, this has resulted in increasing sophistication of imaging models. For critical dimension atomic force microscopes (CD-AFMs), this has resulted in the need for smaller and more complex tips. Carbon nanotube (CNT) tips have thus been the focus of much interest and effort by a number of researchers. However, there have been significant issues surrounding both the manufacture and use of CNT tips. Specifically, the growth or attachment of CNTs to AFM cantilevers has been a challenge to the fabrication of CNT tips, and the flexibility and resultant bending artifacts have presented challenges to using CNT tips. The Korea Research Institute for Standards and Science (KRISS) has invested considerable effort in the controlled fabrication of CNT tips and is collaborating with the National Institute of Standards and Technology on the application of CNT tips for CD-AFM. Progress by KRISS on the precise control of CNT orientation, length, and end modification, using manipulation and focused ion beam processes, has allowed us to implement ball-capped CNT tips and bent CNT tips for CD-AFM. Using two different generations of CD-AFM instruments, we have evaluated these tip types by imaging a line/space grating and a programmed line edge roughness specimen. We concluded that these CNTs are capable of scanning the profiles of these structures, including re-entrant sidewalls, but there remain important challenges to address. These challenges include tighter control of tip geometry and careful optimization of scan parameters and algorithms for using CNT tips.

  7. The Quality Assessment of Stored Red Blood Cells Probed Using Atomic-Force Microscopy

    OpenAIRE

    Lamzin, I. M.; Khayrullin, R. M.

    2014-01-01

    At the moment the suitability of stored red blood cells (sRBC) for transfusion is checked by routine methods such as haemoglobin estimation and the level of haemolysis. These methods cannot characterize directly the quality of the membranes of sRBC. The aim of this work is to assess the quality of sRBC based on such criteria as the membrane’s stiffness and the size and the form of sRBC. Materials and Methods. We have investigated 5 series of dry cytosmears of the sRBC which had been kept in b...

  8. Study of borehole probing methods to improve the ground characterization

    Science.gov (United States)

    Naeimipour, Ali

    Collecting geological information allows for optimizing ground control measures in underground structures. This includes understanding of the joints and discontinuities and rock strength to develop rock mass classifications. An ideal approach to collect such information is through correlating the drilling data from the roofbolters to assess rock strength and void location and properties. The current instrumented roofbolters are capable of providing some information on these properties but not fully developed for accurate ground characterization. To enhance existing systems additional instrumentation and testing was conducted in laboratory and field conditions. However, to define the geology along the boreholes, the use of probing was deemed to be most efficient approach for locating joints and structures in the ground and evaluation of rock strength. Therefore, this research focuses on selection and evaluation of proper borehole probes that can offer a reliable assessment of rock mass structure and rock strength. In particular, attention was paid to borehole televiewer to characterize rock mass structures and joints and development of mechanical rock scratcher for determination of rock strength. Rock bolt boreholes are commonly drilled in the ribs and the roof of underground environments. They are often small (about 1.5 inches) and short (mostly 2-3 meter). Most of them are oriented upward and thus, mostly dry or perhaps wet but not filled with water. No suitable system is available for probing in such conditions to identify the voids/joints and specifically to measure rock strength for evaluation of rock mass and related optimization of ground support design. A preliminary scan of available borehole probes proved that the best options for evaluation of rock structure is through analysis of borehole images, captured by optical televiewers. Laboratory and field trials with showed that these systems can be used to facilitate measurement of the location, frequency and

  9. Atomic-level imaging, processing and characterization of semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L.

    1995-08-22

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.

  10. Atomic-level imaging, processing and characterization of semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, Lawrence L. (Lakewood, CO)

    1995-01-01

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.

  11. Methods of correlating electropenetrography waveform data to Hemipteran probing behavior and pathogen transmission

    Science.gov (United States)

    Hemipteran feeding behavior cannot be visualized within plant tissues by researchers studying probing and/or transmission attributes of some economically important plant pathogens transmitted by these piercing sucking insects. Electropenetrography (EPG) is currently the most precise method for study...

  12. LD-RTPCR:\tA NEW METHOD FOR LABELLING TRACE cDNA MICROARRAY PROBE

    Institute of Scientific and Technical Information of China (English)

    范保星; 孙敬芬; 梁好; 王升启; 周平坤; 吴德昌

    2002-01-01

    Objective: To explore the usefulness of long distance reverse transcript combining linear amplification (LD-RTPCR) in labeling slight trace probe used for cDNA microarray. Methods: Total RNA from BEP2D cells was extracted and labeled by two different methods, LD-RTPCR with Cy3-dCTP as fluorescent dye and traditionally used RNA reverse transcript (RT) with Cy5-dCTP as fluorescent dye. Then, the probes labeled by two methods were mixed equally and hybridized with the cDNA microarray. Results: Scan and analysis of the microarray showed that the two methods labeled probes had consistent results. Conclusion: LD-RTPCR was proved useful for labeling cDNA microarray probe, especially for limited RNA material.

  13. Methods of staining target chromosomal DNA employing high complexity nucleic acid probes

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol' li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2006-10-03

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  14. Atomic force microscopy probing of receptor-nanoparticle interactions for riboflavin receptor targeted gold-dendrimer nanocomposites.

    Science.gov (United States)

    Witte, Amanda B; Leistra, Abigail N; Wong, Pamela T; Bharathi, Sophia; Refior, Kevin; Smith, Phillip; Kaso, Ola; Sinniah, Kumar; Choi, Seok Ki

    2014-03-20

    Riboflavin receptors are overexpressed in malignant cells from certain human breast and prostate cancers, and they constitute a group of potential surface markers important for cancer targeted delivery of therapeutic agents and imaging molecules. Here we report on the fabrication and atomic force microscopy (AFM) characterization of a core-shell nanocomposite consisting of a gold nanoparticle (AuNP) coated with riboflavin receptor-targeting poly(amido amine) dendrimer. We designed this nanocomposite for potential applications such as a cancer targeted imaging material based on its surface plasmon resonance properties conferred by AuNP. We employed AFM as a technique for probing the binding interaction between the nanocomposite and riboflavin binding protein (RfBP) in solution. AFM enabled precise measurement of the AuNP height distribution before (13.5 nm) and after chemisorption of riboflavin-conjugated dendrimer (AuNP-dendrimer; 20.5 nm). Binding of RfBP to the AuNP-dendrimer caused a height increase to 26.7 nm, which decreased to 22.8 nm when coincubated with riboflavin as a competitive ligand, supporting interaction of AuNP-dendrimer and its target protein. In summary, physical determination of size distribution by AFM imaging can serve as a quantitative approach to monitor and characterize the nanoscale interaction between a dendrimer-covered AuNP and target protein molecules in vitro.

  15. Three-Dimensional (3-D) Atom Probe Tomography of a Cu-Precipitation-Strengthened, Ultrahigh-Strength Carburized Steel

    Science.gov (United States)

    Tiemens, Benjamin L.; Sachdev, Anil K.; Mishra, Raja K.; Olson, Gregory B.

    2012-10-01

    In an effort to reduce material cost, experimental steel alloys were developed that incorporated Cu precipitation in lieu of costly Co alloying additions in secondary hardening carburizing gear steels. This work utilizes three-dimensional atom probe tomography to study one of these prototype alloys and quantify the nanoscale dispersions of body-centered cubic (bcc) Cu and M2C alloy carbides used to strengthen these steels. The temporal evolution of precipitate, size, morphology, and interprecipitate interactions were studied for various tempering times. Findings suggest that Cu precipitation does act as a catalyst for heterogeneous nucleation of M2C carbides at relatively high hardness levels; however, the resultant volume fraction of strengthening carbides was noticeably less than that predicted by thermodynamic equilibrium calculations, indicating a reduced potency compared with Co-assisted precipitation. Microstructural information such as precipitate size and volume fraction was measured at the peak hardness condition and successfully used to recalibrate alloy design models for subsequent alloy design iterations.

  16. Atom probe tomography of a Ti–Si–Al–C–N coating grown on a cemented carbide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Thuvander, M.; Östberg, G. [Department of Applied Physics, Chalmers University of Technology, SE 412 96 Göteborg (Sweden); Ahlgren, M. [Sandvik Coromant, SE 126 80 Stockholm (Sweden); Falk, L.K.L., E-mail: lklfalk@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE 412 96 Göteborg (Sweden)

    2015-12-15

    The elemental distribution within a Ti–Si–Al–C–N coating grown by physical vapour deposition on a Cr-doped WC–Co cemented carbide substrate has been investigated by atom probe tomography. Special attention was paid to the coating/substrate interface region. The results indicated a diffusion of substrate binder phase elements into the Ti–N adhesion layer. The composition of this layer, and the Ti–Al–N interlayer present between the adhesion layer and the main Ti–Si–Al–C–N layer, appeared to be sub-stoichiometric. The analysis of the interlayer showed the presence of internal surfaces, possibly grain boundaries, depleted in Al. The composition of the main Ti–Al–Si–C–N layer varied periodically in the growth direction; layers enriched in Ti appeared with a periodicity of around 30 nm. Laser pulsing resulted in a good mass resolution that made it possible to distinguish between N{sup +} and Si{sup 2+} at 14 Da. - Highlights: • A Ti–Si–Al–C–N coating/WC–Co substrate interface has been analysed by APT. • The TiN adhesion layer and the Ti–Al–N interlayer appeared to be anion deficient. • Intermixing of Co and Cr from the substrate was observed in the Ti–N adhesion layer. • The Ti–Si–Al–C–N coating displayed an undulating composition in the growth direction.

  17. Optimisation of sample preparation and analysis conditions for atom probe tomography characterisation of low concentration surface species

    Science.gov (United States)

    Douglas, J. O.; Bagot, P. A. J.; Johnson, B. C.; Jamieson, D. N.; Moody, M. P.

    2016-08-01

    The practicalities for atom probe tomography (APT) analysis of near-surface chemistry, particularly the distribution of low concentration elements, are presented in detail. Specifically, the challenges of surface analysis using APT are described through the characterisation of near-surface implantation profiles of low concentration phosphorus into single crystal silicon. This material system was chosen to illustrate this surface specific approach as low concentration phosphorus has significant mass spectra overlaps with silicon species and the near surface location requires particular attention to focused ion beam specimen preparation and deposition of various capping layers. Required changes to standard sample preparation procedure are described and the effects of changes in APT analysis parameters are discussed with regards to this specific material system. Implantation profiles of 14 kV phosphorus ions with a predicted peak concentration of 0.2 at .% were successfully analysed using APT using pulsed laser assisted evaporation. It is demonstrated that the most important factor in obtaining the most accurate implantation profile was to ensure all phosphorus mass peaks were as free of background noise as possible, with thermal tails from the Si2+ ions obscuring the P2+ ions being the major overlap in the mass spectrum. The false positive contribution to the phosphorus profiles from hydride species appears minimal at the capping layer/substrate interface. The initial capping layer selection of nickel was successful in allowing the analysis of the majority of the phosphorus profile but nickel and phosphorus mass spectra overlaps prevent optimum quantification of phosphorus at the surface.

  18. Characterization of Precipitation in Al-Li Alloy AA2195 by means of Atom Probe Tomography and Transmission Electron Microscopy

    KAUST Repository

    Khushaim, Muna

    2015-05-19

    The microstructure of the commercial alloy AA2195 was investigated on the nanoscale after conducting T8 tempering. This particular thermomechanical treatment of the specimen resulted in the formation of platelet-shaped T 1 Al 2 CuLi / θ ′ Al 2 Cu precipitates within the Al matrix. The electrochemically prepared samples were analyzed by scanning transmission electron microscopy and atom probe tomography for chemical mapping. The θ ′ platelets, which are less than 2 nm thick, have the stoichiometric composition consistent with the expected Al 2 Cu equilibrium composition. Additionally, the Li distribution inside the θ ′ platelets was found to equal the same value as in the matrix. The equally thin T 1 platelet deviates from the formula (Al 2 CuLi) in its stoichiometry and shows Mg enrichment inside the platelet without any indication of a higher segregation level at the precipitate/matrix interface. The deviation from the (Al 2 CuLi) stoichiometry cannot be simply interpreted as a consequence of artifacts when measuring the Cu and Li concentrations inside the T 1 platelet. The results show rather a strong hint for a true lower Li and Cu contents, hence supporting reasonably the hypothesis that the real chemical composition for the thin T 1 platelet in the T8 tempering condition differs from the equilibrium composition of the thermodynamic stable bulk phase.

  19. Temperature and force dependence of electron transport via the copper protein azurin: conductive probe atomic force microscopy measurements

    CERN Document Server

    Li, Wenjie; Amdursky, Nadav; Cohen, Sidney R; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2012-01-01

    We report conducting probe atomic force microscopy (CP-AFM) measurements of electron transport (ETp), as a function of temperature and force, through monolayers of holo-azurin (holo-Az) and Cu-depleted Az (apo-Az) that retain only their tightly bound water, immobilized on gold surfaces. The changes in CP-AFM current-voltage (I-V) curves for holo-Az and apo-Az, measured between 250 - 370K, are strikingly different. While ETp across holo-Az at low force (6 nN) is temperature-independent over the whole examined range, ETp across apo-Az is thermally activated, with calculated activation energy of 600\\pm100 meV. These results confirm our results of macroscopic contact area ETp measurements via holo- and apo-Az, as a function of temperature, where the crucial role of the Cu redox centre has been observed. While increasing the applied tip force from 6 to 12 nN did not significantly change the temperature dependence of ETp via apo-Az, ETp via holo-Az changed qualitatively, namely from temperature-independent at 6 nN ...

  20. Atom probe tomography of a Ti-Si-Al-C-N coating grown on a cemented carbide substrate.

    Science.gov (United States)

    Thuvander, M; Östberg, G; Ahlgren, M; Falk, L K L

    2015-12-01

    The elemental distribution within a Ti-Si-Al-C-N coating grown by physical vapour deposition on a Cr-doped WC-Co cemented carbide substrate has been investigated by atom probe tomography. Special attention was paid to the coating/substrate interface region. The results indicated a diffusion of substrate binder phase elements into the Ti-N adhesion layer. The composition of this layer, and the Ti-Al-N interlayer present between the adhesion layer and the main Ti-Si-Al-C-N layer, appeared to be sub-stoichiometric. The analysis of the interlayer showed the presence of internal surfaces, possibly grain boundaries, depleted in Al. The composition of the main Ti-Al-Si-C-N layer varied periodically in the growth direction; layers enriched in Ti appeared with a periodicity of around 30 nm. Laser pulsing resulted in a good mass resolution that made it possible to distinguish between N(+) and Si(2+) at 14 Da.

  1. The Quality Assessment of Stored Red Blood Cells Probed Using Atomic-Force Microscopy

    Directory of Open Access Journals (Sweden)

    I. M. Lamzin

    2014-01-01

    Full Text Available At the moment the suitability of stored red blood cells (sRBC for transfusion is checked by routine methods such as haemoglobin estimation and the level of haemolysis. These methods cannot characterize directly the quality of the membranes of sRBC. The aim of this work is to assess the quality of sRBC based on such criteria as the membrane’s stiffness and the size and the form of sRBC. Materials and Methods. We have investigated 5 series of dry cytosmears of the sRBC which had been kept in blood bank in a period from 1 to 35 days. After AFM imaging, in every specimen, 5 RBC were chosen at random; the diameter, the height, and the stiffness were measured on each of them. Results. The present study shows high increase of the mean values of YM and height of RBC after 35 days of storage and decrease of the mean values of their diameter. Conclusion. Statistically significant high increase of the mean values of YM indicates the decrease of the elasticity of the cells in the course of storing of the RBC. This parameter along with the morphological characteristics can be used as criterion for assessment of applicability of the sRBC for blood transfusion.

  2. The quality assessment of stored red blood cells probed using atomic-force microscopy.

    Science.gov (United States)

    Lamzin, I M; Khayrullin, R M

    2014-01-01

    At the moment the suitability of stored red blood cells (sRBC) for transfusion is checked by routine methods such as haemoglobin estimation and the level of haemolysis. These methods cannot characterize directly the quality of the membranes of sRBC. The aim of this work is to assess the quality of sRBC based on such criteria as the membrane's stiffness and the size and the form of sRBC. Materials and Methods. We have investigated 5 series of dry cytosmears of the sRBC which had been kept in blood bank in a period from 1 to 35 days. After AFM imaging, in every specimen, 5 RBC were chosen at random; the diameter, the height, and the stiffness were measured on each of them. Results. The present study shows high increase of the mean values of YM and height of RBC after 35 days of storage and decrease of the mean values of their diameter. Conclusion. Statistically significant high increase of the mean values of YM indicates the decrease of the elasticity of the cells in the course of storing of the RBC. This parameter along with the morphological characteristics can be used as criterion for assessment of applicability of the sRBC for blood transfusion.

  3. DEFINING ELEMENTAL COMPOSITION OF VEGETABLE HYDROCOLLOIDS USING THE ELECTRON PROBE MICROANALYSIS METHOD

    OpenAIRE

    2014-01-01

    In production of soft capsules, natural and semi-synthetic vegetative analogues for pharmaceutical gelatin are used. This work is devoted to defining elemental composition of vegetative analogs for pharmaceutical gelatin using the electron probe microanalysis method. The electron probe microanalysis is one of the most popular methods of quantitative and semi-quantitative nondestructive elemental analysis. Spectrometric profiles are described for defining the composition of carboxymethylcellul...

  4. In-line acid concentration measuring method and measuring probe

    Energy Technology Data Exchange (ETDEWEB)

    Kuno, Takehiko; Kurosawa, Akira; Sato, Soichi

    1998-09-11

    A measuring probe comprising an electrode for voltammetry, a supersonic sensor and a conductivity measuring electrode formed integrally is immersed in a solution for a reprocessing step. A relationship between an acid concentration of the solution having U and Pu concentrations as variable parameters and a propagation speed of supersonic waves in the solution is previously determined, and a propagation speed of the supersonic waves in the solution for the reprocessing step is measured. An acid concentration is determined by using U and Pu concentrations of the solution of the reprocessing step measured in-line by using voltammetry based on the relationship between the acid concentration at that U and Pu concentrations and the supersonic propagation speed. In addition, conductivity of the liquid for the step is measured by a solution conductivity meter, and an acid concentration is measured in-line based on the relationship between the acid concentration and the conductivity in the same manner. With such procedures, a reprocessing plant can be operated rapidly and smoothly, as well as the analysis operation can be simplified. (T.M.)

  5. Synthesis of circular double-stranded DNA having single-stranded recognition sequence as molecular-physical probe for nucleic acid hybridization detection based on atomic force microscopy imaging.

    Science.gov (United States)

    Nakano, Koji; Matsunaga, Hideshi; Murata, Masaharu; Soh, Nobuaki; Imato, Toshihiko

    2009-08-01

    A new class of DNA probes having a mechanically detectable tag is reported. The DNA probe, which consists of a single-stranded recognition sequence and a double-stranded circular DNA entity, was prepared by polymerase reaction. M13mp18 single strand and a 32mer oligodeoxynucleotide whose 5'-end is decorated with the recognition sequence were used in combination as template and primer, respectively. We have successfully demonstrated that the DNA probe is useful for bioanalytical purposes: by deliberately attaching target DNA molecules onto Au(111) substrates and by mechanically reading out the tag-entity using a high-resolution microscopy including atomic force microscopy, visualization/detection of the individual target/probe DNA conjugate was possible simply yet straightforwardly. The present DNA probe can be characterized as a 100%-nucleic acid product material. It is simply available by one-pod synthesis. A surface topology parameter, image roughness, has witnessed its importance as a quantitative analysis index with particular usability in the present visualization/detection method.

  6. Comparison of multimicrophone probe design and processing methods in measuring acoustic intensity.

    Science.gov (United States)

    Wiederhold, Curtis P; Gee, Kent L; Blotter, Jonathan D; Sommerfeldt, Scott D; Giraud, Jarom H

    2014-05-01

    Three multimicrophone probe arrangements used to measure acoustic intensity are the four-microphone regular tetrahedral, the four-microphone orthogonal, and the six-microphone designs. Finite-sum and finite-difference processing methods can be used with such probes to estimate pressure and particle velocity, respectively. A numerical analysis is performed to investigate the bias inherent in each combination of probe design and processing method. Probes consisting of matched point sensor microphones both embedded and not embedded on the surface of a rigid sphere are considered. Results are given for plane wave fields in terms of root-mean-square average bias and maximum bias as a function of angle of incidence. An experimental verification of the analysis model is described. Of the combinations considered and under the stated conditions, the orthogonal probe using the origin microphone for the pressure estimate is shown to have the lowest amount of intensity magnitude bias. Lowest intensity direction bias comes from the six-microphone probe using an average of the 15 intensity components calculated using all microphone pairs. Also discussed are how multimicrophone probes can advantageously use correction factors calculated from a numerical analysis and how the results of such an analysis depend on the chosen definition of the dimensionless frequency.

  7. Probe Heating Method for the Analysis of Solid Samples Using a Portable Mass Spectrometer.

    Science.gov (United States)

    Kumano, Shun; Sugiyama, Masuyuki; Yamada, Masuyoshi; Nishimura, Kazushige; Hasegawa, Hideki; Morokuma, Hidetoshi; Inoue, Hiroyuki; Hashimoto, Yuichiro

    2015-01-01

    We previously reported on the development of a portable mass spectrometer for the onsite screening of illicit drugs, but our previous sampling system could only be used for liquid samples. In this study, we report on an attempt to develop a probe heating method that also permits solid samples to be analyzed using a portable mass spectrometer. An aluminum rod is used as the sampling probe. The powdered sample is affixed to the sampling probe or a droplet of sample solution is placed on the tip of the probe and dried. The probe is then placed on a heater to vaporize the sample. The vapor is then introduced into the portable mass spectrometer and analyzed. With the heater temperature set to 130°C, the developed system detected 1 ng of methamphetamine, 1 ng of amphetamine, 3 ng of 3,4-methylenedioxymethamphetamine, 1 ng of 3,4-methylenedioxyamphetamine, and 0.3 ng of cocaine. Even from mixtures consisting of clove powder and methamphetamine powder, methamphetamine ions were detected by tandem mass spectrometry. The developed probe heating method provides a simple method for the analysis of solid samples. A portable mass spectrometer incorporating this method would thus be useful for the onsite screening of illicit drugs.

  8. Studying nearest neighbor correlations by atom probe tomography (APT) in metallic glasses as exemplified for Fe40Ni40B20 glassy ribbons

    KAUST Repository

    Shariq, Ahmed

    2012-01-01

    A next nearest neighbor evaluation procedure of atom probe tomography data provides distributions of the distances between atoms. The width of these distributions for metallic glasses studied so far is a few Angstrom reflecting the spatial resolution of the analytical technique. However, fitting Gaussian distributions to the distribution of atomic distances yields average distances with statistical uncertainties of 2 to 3 hundredth of an Angstrom. Fe 40Ni40B20 metallic glass ribbons are characterized this way in the as quenched state and for a state heat treated at 350 °C for 1 h revealing a change in the structure on the sub-nanometer scale. By applying the statistical tool of the χ2 test a slight deviation from a random distribution of B-atoms in the as quenched sample is perceived, whereas a pronounced elemental inhomogeneity of boron is detected for the annealed state. In addition, the distance distribution of the first fifteen atomic neighbors is determined by using this algorithm for both annealed and as quenched states. The next neighbor evaluation algorithm evinces a steric periodicity of the atoms when the next neighbor distances are normalized by the first next neighbor distance. A comparison of the nearest neighbor atomic distribution for as quenched and annealed state shows accumulation of Ni and B. Moreover, it also reveals the tendency of Fe and B to move slightly away from each other, an incipient step to Ni rich boride formation. © 2011 Elsevier B.V.

  9. Atom probe tomography of secondary γ′ precipitation in a single crystal Ni-based superalloy after isothermal aging at 1100 °C

    Energy Technology Data Exchange (ETDEWEB)

    Tan, X.P., E-mail: xptan1985@gmail.com [IM 2NP, UMR 7334 CNRS, Université Aix-Marseille, 13397 Marseille Cedex 20 (France); Mangelinck, D.; Perrin-Pellegrino, C. [IM 2NP, UMR 7334 CNRS, Université Aix-Marseille, 13397 Marseille Cedex 20 (France); Rougier, L. [LSMX, MXG, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Gandin, Ch.-A. [CEMEF, UMR 7635 CNRS, MINES ParisTech, 06904 Sophia Antipolis (France); Jacot, A. [LSMX, MXG, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Ponsen, D.; Jaquet, V. [Snecma-SAFRAN Group, Service YQGC, 92702 Colombes (France)

    2014-10-25

    Highlights: • Bimodal size distribution of γ′ precipitates occurs after isothermal aging at 1100 °C. • Characterization of secondary γ′ by atom probe tomography. • It is proposed that the secondary γ′ occurs via a non-classical nucleation. • The coarsening of secondary γ′ precipitates well obeys the classical LSW theory. - Abstract: Secondary γ′ precipitation in a commercial single crystal Ni-based superalloy after the 1100 °C isothermal aging has been investigated by atom probe tomography. After the isothermal aging for 300 s, 1800 s and 3600 s, a bimodal size distribution of larger primary γ′ precipitates and numerous smaller secondary γ′ precipitates was obtained. It is proposed that the secondary γ′ precipitated via a non-classical nucleation mode. The coarsening of secondary γ′ precipitates well obeys the classical LSW theory.

  10. Influence of the Electronic Structure and Optical Properties of CeO2 and UO2 for Characterization with UV-Laser Assisted Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Billy Valderrama; H.B. Henderson; C. Yablinsky; J. Gan; T.R. Allen; M.V. Manuel

    2015-09-01

    Oxide materials are used in numerous applications such as thermal barrier coatings, nuclear fuels, and electrical conductors and sensors, all applications where nanometer-scale stoichiometric changes can affect functional properties. Atom probe tomography can be used to characterize the precise chemical distribution of individual species and spatially quantify the oxygen to metal ratio at the nanometer scale. However, atom probe analysis of oxides can be accompanied by measurement artifacts caused by laser-material interactions. In this investigation, two technologically relevant oxide materials with the same crystal structure and an anion to cation ratio of 2.00, pure cerium oxide (CeO2) and uranium oxide (UO2) are studied. It was determined that electronic structure, optical properties, heat transfer properties, and oxide stability strongly affect their evaporation behavior, thus altering their measured stoichiometry, with thermal conductance and thermodynamic stability being strong factors.

  11. Conductivity of individual particles measured by a microscopic four-point-probe method

    OpenAIRE

    Ling Sun; Jianjun Wang; Elmar Bonaccurso

    2013-01-01

    We introduce a technique for measuring the conductivity of individual hybrid metal, semiconducting core-shell and full-metal conducting particles by a microscopic four-point probe (μ-4PP) method. The four-point probe geometry allows for minimizing contact resistances between electrodes and particles. By using a focused ion beam we fabricate platinum nanoleads between four microelectrodes on a silicon chip and an individual particle, and determine the particle's conductivity via sensitive curr...

  12. A novel method of atomizing coal-water slurry fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sojka, P.E.; Lefebvre, A.H.

    1990-05-01

    Despite the body of work describing the performance of effervescent atomizers, its potential for use with coal water slurries (CWS) had not been evaluated prior to this study. This program was therefore undertaken: to demonstrate that effervescent atomization can produce CWS sprays with mean drop sizes below 50{mu}m; to determine a lower size limit for effervescent atomizer produced CWS sprays; to determine the mechanism(s) responsible for the formation of effervescent atomizer produced sprays. An analysis of the effects of slurry rheological properties (as indicated by the consistency index and the flow behavior index) and formulation (in terms of loading and coal particle top size) on the spray formation process was performed. The experimental data reported were then analyzed to explain the physical processes responsible for spray formation. The analysis began by considering an energy balance across a control volume that extended from the nozzle exit plant to the line of spray measurement. The inlet conditions were calculated using two-phase flow techniques and the outlet conditions were calculated by using conservation of momentum and assuming that the final velocities of the air and liquid were equal. Entrainment was considered negligible and losses were accounted for by realizing that only a small fraction of the atomizing air participated in the spray formation process with the remainder passing through the control volume unperturbed. Results are discussed. 41 figs., 4 tabs.

  13. New method for gravitational wave detection with atomic sensors.

    Science.gov (United States)

    Graham, Peter W; Hogan, Jason M; Kasevich, Mark A; Rajendran, Surjeet

    2013-04-26

    Laser frequency noise is a dominant noise background for the detection of gravitational waves using long-baseline optical interferometry. Amelioration of this noise requires near simultaneous strain measurements on more than one interferometer baseline, necessitating, for example, more than two satellites for a space-based detector or two interferometer arms for a ground-based detector. We describe a new detection strategy based on recent advances in optical atomic clocks and atom interferometry which can operate at long baselines and which is immune to laser frequency noise. Laser frequency noise is suppressed because the signal arises strictly from the light propagation time between two ensembles of atoms. This new class of sensor allows sensitive gravitational wave detection with only a single baseline. This approach also has practical applications in, for example, the development of ultrasensitive gravimeters and gravity gradiometers.

  14. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    Science.gov (United States)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  15. Effect of the interaction conditions of the probe of an atomic-force microscope with the n-GaAs surface on the triboelectrization phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Baklanov, A. V., E-mail: baklanov@mail.ioffe.ru [St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology, and Telecommunications (Russian Federation); Gutkin, A. A.; Kalyuzhnyy, N. A. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Brunkov, P. N. [St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology, and Telecommunications (Russian Federation)

    2015-08-15

    Triboelectrization as a result of the scanning of an atomic-force-microscope probe over an n-GaAs surface in the contact mode is investigated. The dependences of the local potential variation on the scanning rate and the pressing force of the probe are obtained. The results are explained by point-defect formation in the surface layers of samples under the effect of deformation of these layers during probe scanning. The charge localized at these defects in the case of equilibrium changes the potential of surface, which is subject to triboelectrization. It is shown that, for qualitative explanation of the observed dependences, it is necessary to take into account both the generation and annihilation of defects in the region experiencing deformation.

  16. Mg dopant distribution in an AlGaN/GaN p-type superlattice assessed using atom probe tomography, TEM and SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, S E; Kappers, M J; Barnard, J S; Humphreys, C J; Oliver, R A [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke St., Cambridge, CB2 3QZ (United Kingdom); Clifton, P H; Ulfig, R M, E-mail: sb534@cam.ac.u [Imago Scientific Instruments Corporation, 5500 Nobel Drive, Madison, WI, 53711 (United States)

    2010-02-01

    P-type conducting layers are critical in GaN-based devices such as LEDs and laser diodes. Such layers are often produced by doping GaN with Mg, but the hole concentration can be enhanced using AlGaN/GaN p-type superlattices by exploiting the built-in polarisation fields. A Mg-doped AlGaN/GaN superlattice was studied using SIMS. Although the AlGaN and GaN were nominally doped to the same level, the SIMS data suggested a difference in doping density between the two materials. Atom probe tomography was then used to investigate the Mg distribution. The superlattice repeats were clearly visible, as expected and, in addition, significant Mg clustering was observed in both the GaN and AlGaN layers. There were many more Mg clusters in the AlGaN layers than the GaN layers, accounting for the difference in doping density suggested by SIMS. To evaluate the structural accuracy of the atom probe reconstruction, layer thicknesses from the atom probe were compared with STEM images. Finally, future work is proposed to investigate the Mg clusters in the TEM.

  17. Ultrafast probing of the x-ray-induced lattice and electron dynamics in graphite at atomic-resolution

    Energy Technology Data Exchange (ETDEWEB)

    Hau-Riege, S

    2010-10-07

    We used LCLS pulses to excite thin-film and bulk graphite with various different microstructures, and probed the ultrafast ion and electron dynamics through Bragg and x-ray Thomson scattering (XRTS). We pioneered XRTS at LCLS, making this technique viable for other users. We demonstrated for the first time that the LCLS can be used to characterize warm-dense-matter through Bragg and x-ray Thomson scattering. The warm-dense-matter conditions were created using the LCLS beam. Representative examples of the results are shown in the Figure above. In our experiment, we utilized simultaneously both Bragg and two Thomson spectrometers. The Bragg measurements as a function of x-ray fluence and pulse length allows us to characterize the onset of atomic motion at 2 keV with the highest resolution to date. The Bragg detector was positioned in back-reflection, providing us access to scattering data with large scattering vectors (nearly 4{pi}/{lambda}). We found a clear difference between the atomic dynamics for 70 and 300 fs pulses, and we are currently in the process of comparing these results to our models. The outcome of this comparison will have important consequences for ultrafast diffractive imaging, for which it is still not clear if atomic resolution can truly be achieved. The backward x-ray Thomson scattering data suggests that the average graphite temperature and ionization was 10 eV and 1.0, respectively, which agrees with our models. In the forward scattering data, we observed an inelastic feature in the Thomson spectrum that our models currently do not reproduce, so there is food for thought. We are in the process of writing these results up. Depending on if we can combine the Bragg and Thomson data or not, we plan to publish them in a single paper (e.g. Nature or Science) or as two separate papers (e.g. two Phys. Rev. Lett.). We will present the first analysis of the results at the APS Plasma Meeting in November 2010. We had a fantastic experience performing our

  18. Quantifying adhesion of acidophilic bioleaching bacteria to silica and pyrite by atomic force microscopy with a bacterial probe.

    Science.gov (United States)

    Diao, Mengxue; Taran, Elena; Mahler, Stephen; Nguyen, Tuan A H; Nguyen, Anh V

    2014-03-01

    The adhesion of acidophilic bacteria to mineral surfaces is an important phenomenon in bioleaching processes. In this study, functionalized colloidal probes covered by bioleaching bacterial cells (Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans) were developed and used to sense specific adhesion forces to a silica surface and a pyrite surface in various solutions. Experimentally, recorded retraction curves of A. thiooxidans revealed sawtooth features that were in good agreement with the wormlike chain model, while that of L. ferrooxidans exhibited stair-step separation. The magnitudes of adhesion forces and snap-off distances were strongly influenced by the ionic strength and pH. Macroscopic surface properties including hydrophobicity and surface potential for bacterial cells and substrata were measured by a sessile drop method and microelectrophoresis. The ATR-FTIR spectra indicated the presence of different types of biopolymers on two strains of bacteria.

  19. Use of biaxially oriented polypropylene film for evaluating and cleaning contaminated atomic force microscopy probe tips: An application to blind tip reconstruction

    Science.gov (United States)

    Nie, H.-Y.; Walzak, M. J.; McIntyre, N. S.

    2002-11-01

    An atomic force microscopy (AFM) image of a surface is basically a convolution of the probe tip geometry and the surface features; it is important to know this tip effect to ensure that an image truly reflects the surface features. We have found that a biaxially oriented polypropylene (BOPP) film is suitable for checking tip performance and for cleaning contaminated tips, thus making it possible to collect images of the same area of a BOPP film surface before and after the tip was cleaned. Therefore, the difference between the two different images is solely due to the contamination of the tip. We took advantage of our ability to collect AFM images of the same area using the same tip, in one instance, contaminated and, in the other, after being cleaned. First we used blind reconstruction on the image collected using the contaminated tip. Blind tip reconstruction allows one to extract the geometry of the tip from a given image. Once we had estimated the geometry of the contaminated tip, we used it to simulate the tip effect using the image collected using the cleaned tip. By comparing the simulation result with the image collected using the contaminated tip we showed that the blind reconstruction routine works well. Prior to this, there was no de facto method for testing blind reconstruction algorithms.

  20. On the microstructure and strengthening mechanism in oxide dispersion-strengthened 316 steel: A coordinated electron microscopy, atom probe tomography and in situ synchrotron tensile investigation

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin, E-mail: miao2@illinois.edu [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Zhou, Zhangjian [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Xiang; Lan, Kuan-Che [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Zhang, Guangming [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Miller, Michael K.; Powers, Kathy A. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mei, Zhi-Gang [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Park, Jun-Sang; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Stubbins, James F. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-07-15

    An oxide dispersion-strengthened (ODS) 316 steel was developed to simultaneously provide the advantages of ODS steels in mechanical strength and radiation tolerance as well as the excellence of austenitic steels in creep performance and corrosion resistance. The precipitate phases within the austenite matrix were identified by the combined techniques of atom probe tomography (APT), scanning transmission electron microscopy equipped with electron dispersive X-ray spectroscopy (STEM-EDS), and synchrotron wide-angle and small-angle X-ray scattering (WAXS and SAXS). Coarse TiN, hexagonal YAlO{sub 3} and orthorhombic YAlO{sub 3} precipitates were found along with fine Y–Ti–O nanoparticles. In situ WAXS experiments were performed at room and elevated temperatures to examine the size effect on the load partitioning phenomenon for TiN, hexagonal YAlO{sub 3} and Y{sub 2}Ti{sub 2}O{sub 7} phases. In addition, the dislocation density evolution throughout the tensile tests was analyzed by the modified Williamson–Hall method and confirmed by transmission electron microscopy (TEM) observations, revealing the difference in plasticity at various temperatures.

  1. Multi-point probe for testing electrical properties and a method of producing a multi-point probe

    DEFF Research Database (Denmark)

    2011-01-01

    A multi-point probe for testing electrical properties of a number of specific locations of a test sample comprises a supporting body defining a first surface, a first multitude of conductive probe arms (101-101'''), each of the probe arms defining a proximal end and a distal end. The probe arms...... are connected to the supporting body (105) at the proximal ends, and the distal ends are freely extending from the supporting body, giving individually flexible motion to the probe arms. Each of the probe arms defines a maximum width perpendicular to its perpendicular bisector and parallel with its line...... of contact with the supporting body, and a maximum thickness perpendicular to its perpendicular bisector and its line of contact with the supporting body. Each of the probe arms has a specific area or point of contact (111-111''') at its distal end for contacting a specific location among the number...

  2. Evolution of Research Methods for Probing and Understanding Metacognition

    Science.gov (United States)

    Anderson, David; Nashon, Samson M.; Thomas, Gregory P.

    2009-01-01

    This paper reports on the development, self-critique and evolution of research methods for interpreting and understanding students' metacognition that were developed through the Metacognition and Reflective Inquiry (MRI) collaborative study. The MRI collaborative was a multi-year, multi-case, research study that investigated the elusive nature and…

  3. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1996-01-01

    Scanning Tunneling Microscopy III provides a unique introduction to the theoretical foundations of scanning tunneling microscopy and related scanning probe methods. The different theoretical concepts developed in the past are outlined, and the implications of the theoretical results for the interpretation of experimental data are discussed in detail. Therefore, this book serves as a most useful guide for experimentalists as well as for theoreticians working in the filed of local probe methods. In this second edition the text has been updated and new methods are discussed.

  4. Effective atomic numbers of some tissue substitutes by different methods: A comparative study

    Directory of Open Access Journals (Sweden)

    Vishwanath P Singh

    2014-01-01

    Full Text Available Effective atomic numbers of some human organ tissue substitutes such as polyethylene terephthalate, red articulation wax, paraffin 1, paraffin 2, bolus, pitch, polyphenylene sulfide, polysulfone, polyvinylchloride, and modeling clay have been calculated by four different methods like Auto-Z eff, direct, interpolation, and power law. It was found that the effective atomic numbers computed by Auto-Z eff , direct and interpolation methods were in good agreement for intermediate energy region (0.1 MeV < E < 5 MeV where the Compton interaction dominates. A large difference in effective atomic numbers by direct method and Auto-Z eff was observed in photo-electric and pair-production regions. Effective atomic numbers computed by power law were found to be close to direct method in photo-electric absorption region. The Auto-Z eff , direct and interpolation methods were found to be in good agreement for computation of effective atomic numbers in intermediate energy region (100 keV < E < 10 MeV. The direct method was found to be appropriate method for computation of effective atomic numbers in photo-electric region (10 keV < E < 100 keV. The tissue equivalence of the tissue substitutes is possible to represent by any method for computation of effective atomic number mentioned in the present study. An accurate estimation of Rayleigh scattering is required to eliminate effect of molecular, chemical, or crystalline environment of the atom for estimation of gamma interaction parameters.

  5. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects.

    Science.gov (United States)

    Berkhout, Gregorius C G; Beijersbergen, Marco W

    2008-09-05

    We present an efficient method for probing the orbital angular momentum of optical vortices of arbitrary sizes. This method, based on a multipoint interferometer, has its most important application in measuring the orbital angular momentum of light from astronomical sources, opening the way to interesting new astrophysics. We demonstrate its viability by measuring the orbital angular momentum of Laguerre-Gaussian laser beams.

  6. Comparative simulations of Fresnel holography methods for atomic waveguides

    CERN Document Server

    Henderson, Victoria A; Riis, Erling; Arnold, Aidan S

    2016-01-01

    We have simulated the optical properties of micro-fabricated Fresnel zone plates (FZPs) as an alternative to spatial light modulators (SLMs) for producing non-trivial light potentials to trap atoms within a lensless Fresnel arrangement. We show that binary (1-bit) FZPs with wavelength (1 \\mu m) spatial resolution consistently outperform kinoforms of spatial and phase resolution comparable to commercial SLMs in root mean square error comparisons, with FZP kinoforms demonstrating increasing improvement for complex target intensity distributions. Moreover, as sub-wavelength resolution microfabrication is possible, FZPs provide an exciting possibility for the creation of static cold-atom trapping potentials useful to atomtronics, interferometry, and the study of fundamental physics.

  7. Possibility of obtaining atomic metallic hydrogen by electrochemical method

    OpenAIRE

    Galushkin, Nikolay E.; Yazvinskaya, Nataliya N.; Galushkin, Dmitriy N.

    2013-01-01

    In this work we show, that atomic metallic hydrogen (AMH) is formed inside of sintered oxide-nickel electrodes of nickel-cadmium battery over a long period of electrochemical hydrogenation (more than five years). It was established that density AMH is 12 times higher, than the density of liquid molecular hydrogen, the specific energy of hydrogen recombination is 20 times higher than of liquid hydrogen-oxygen fuel. At the room temperature AMH is a good conductor, but not a superconductor.

  8. METHODS OF SOIL TESTING BY UNIVERSAL DYNAMIC PROBE OF LRN & TP

    Directory of Open Access Journals (Sweden)

    SEDIN V. L.

    2016-02-01

    Full Text Available Problem statement. Nowadays the survey organizations need in facilities of light type not being produced mass.But they are necessary for the accelerated testing of soil with the possibility of use in cramped conditions. Described below probe and test procedures is one of the possible solutions to this problem. Purpose. To acquaint with a description of the constructional features and testing methods of soil dynamic universal probe, developed in the laboratory of research of nuclear and thermal power plants (LRNTP of Pridneprovsk scientific and educational institution of innovative technologies in construction. Conclusion. The proposed probe intended to determine the mechanical properties of soils and allows to provide the express assessment of the soil properties of natural foundations to explore the changes of the properties of soil foundation under the operative objects in the process of their operation. Universal feature of the probe is the possibility to use disposable standard cones and of the composite construction of hammer (if it is necessary to reduce the weight of the hammer. As well as the possibility of carrying out tests on foreign standards, in particular on standard for the SPT (Standard Probe Test. Results of probing are drawn up as a standard continuous step schedule of change of depth value of conditional dynamic resistance of soils Pq, followed by averaging schedule and calculating of weighted index of probing for each layer land constructions. This probe and the following technique, fill a niche of the lack of manual small facilities and can contribute to the expansion of technical capabilities of survey organizations.

  9. Establishment of screening method for effective vaccination using radiolabelled probe

    Energy Technology Data Exchange (ETDEWEB)

    Nomaguchi, Hiroko; Yogi, Yasuko [National Inst. of Infectious Deseases, Tokyo (Japan)

    1998-02-01

    Aiming to develop a screening method for effective vaccination, an investigation was made to establish basic techniques for evaluating cytokine producing abilities of host cells after immunization to mycobacterium leprae. In this study, proliferation of the bacterium was investigated with immunodeficient mice such as BALB/cA-nu/nu, CB-scid, aly/{sup +} and aly/aly and the respective normal mice. When the splenic cells from BALB/cA mouse sensitized with M. leprae (ip, 5 days) was challenged with its cell lysate, {gamma}-IFN was produced, whereas its production was not observed in those from sensitive mouse BALB/cA-nu/nu. In addition, it was suggested that cells which could induce {gamma}-IFN in response to IL-12 were extremely limited in the nude mouse. On the contray, for IL-18, {gamma}-IFN was inducible in the nude mouse when anti-CD3 was previously coated, indicating that it is difficult to evaluate the efficacy of vaccination only by measuring the productions of IL-12 and IL-18. Therefore, it seems better to determine the amount of {gamma}-IFN protein induced by resensitization with the antigen in the splenic cells. (M.N.)

  10. Method and apparatus for differential spectroscopic atomic-imaging using scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, Lawrence L. (Lakewood, CO)

    1990-01-01

    A Method and apparatus for differential spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample surface, but also bonding and the specific atomic species in such bond. The apparatus includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser, modulating electronic surface biasing for the sample, and temperature biasing, preferably a vibration-free refrigerated sample mounting stage. Computer control and data processing and visual display components are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample. This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample surface.

  11. Influence of multi-hit capability on quantitative measurement of NiPtSi thin film with laser-assisted atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kinno, T., E-mail: teruyuki.kinno@toshiba.co.jp [Corporate Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Akutsu, H.; Tomita, M. [Corporate Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Kawanaka, S. [Center for Semiconductor Research and Development, Toshiba Corporation Semiconductor and Storage Products Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Sonehara, T. [Advanced Memory Development Center, Toshiba Corporation Semiconductor and Storage Products Company, 800 Yamano-Isshiki-cho, Yokkaichi, Mie 512-8550 (Japan); Hokazono, A. [Center for Semiconductor Research and Development, Toshiba Corporation Semiconductor and Storage Products Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Renaud, L.; Martin, I.; Benbalagh, R.; Salle, B. [Cameca SAS, 29 Quai des Gresillons, 92622 Gennevilliers Cedex (France); Takeno, S. [Corporate Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Laser-assisted atom probe tomography was applied to NiPtSi films on Si substrates. Black-Right-Pointing-Pointer Comparison of depth profiles of single-hit events and those of multi-hit events. Black-Right-Pointing-Pointer {approx}80% of Pt atoms were detected in multi-hit events. Black-Right-Pointing-Pointer Multiple-ion detection is important for Laser-assisted atom probe tomography. - Abstract: Laser-assisted atom probe tomography (LA-APT) was applied to NiPtSi (0, 30, and 50% Pt contents) thin films on Si substrates. Consistent results with those of high-resolution Rutherford backscattering spectrometry (HR-RBS) were obtained. Based on the obtained data sets, the composition profiles from only the signals of single-hit events, meaning detection of one ion by one laser pulse, were compiled. The profiles from only the signals of multi-hit events, meaning detection of multiple ions by one laser pulse, were also compiled. There were large discrepancies with respect to Ni and Pt concentrations among the compiled profiles and the original profiles including the signals of both types of detection events. Additionally, the profiles compiled from single-hit events showed that Si concentration in NiPtSi layer became smaller toward the surface, differing from the original profiles and the multi-hit profiles. These results suggest that capability of simultaneous multiple-ion detection is important for appropriate LA-APT analyses.

  12. Hybrid statistics-simulations based method for atom-counting from ADF STEM images.

    Science.gov (United States)

    De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra

    2017-01-25

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials.

  13. z calibration of the atomic force microscope by means of a pyramidal tip

    DEFF Research Database (Denmark)

    Jensen, Flemming

    1993-01-01

    A new method for imaging the probe tip of an atomic force microscope cantilever by the atomic force microscope itself (self-imaging) is presented. The self-imaging is accomplished by scanning the probe tip across a sharper tip on the surface. By using a pyramidal probe tip with a very well...

  14. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space......). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings point...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  15. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  16. Electroless nickel plating on optical fiber probe

    Institute of Scientific and Technical Information of China (English)

    Li Huang; Zhoufeng Wang; Zhuomin Li; Wenli Deng

    2009-01-01

    As a component of near-field scanning optical microscope (NSOM),optical fiber probe is an important factor influncing the equipment resolution.Electroless nickel plating is introduced to metallize the optical fiber probe.The optical fibers are etched by 40% HF with Turner etching method.Through pretreatment,the optical fiber probe is coated with Ni-P film by clectrolcss plating in a constant temperature water tank.Atomic absorption spectrometry (AAS),scanning electron microscopy (SEM),and energy dispersive X-ray spectrometry (EDXS) are carried out to charaeterizc the deposition on fiber probe.We have rcproducibly fabricated two kinds of fiber probes with a Ni-P fihn:aperture probe and apertureless probe.In addition,reductive particle transportation on the surface of fiber probe is proposed to explain the cause of these probes.

  17. Complementary method to locate atomic coordinates by combined searching method of structure-sensitive indexes based on bond valence method

    Institute of Scientific and Technical Information of China (English)

    宋振; 刘小浪; 何丽珠; 夏志国; 刘泉林

    2015-01-01

    Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes, i.e., global instability index (GII) and bond strain index (BSI), are adopted as a judgment of a search-match program for prediction. The results show that with GII and BSI combined as judgment, the predicted atom positions are very close to real ones. The mechanism and validity of this searching program are also discussed. The GII&BSI distribution contour map reveals that the predicted function is a reflection of exponential feature of bond valence formula. This combined searching method may be integrated with other structure-determination method, and may be helpful in refining and testifying light atom positions.

  18. A Method for Measuring Fast Time Evolutions of the Plasma Potential by Means of a Simple Emissive Probe

    DEFF Research Database (Denmark)

    Iizuka, S.; Michelsen, Poul; Juul Rasmussen, Jens;

    1981-01-01

    A method is presented for obtaining the temporal evolution of the plasma potential, which is assumed to be given by the floating potential of a simple emissive probe. The construction of the probe is also described. The method avoids the slow time response of the usual technique where the floating...... potential is measured across a high resistance. During each sweep of the probe voltage, the changing of the sign of the probe current, which is sampled at a specific time, gives rise to a negative pulse, driving the pen-lift of an X-Y recorder. Since the real floating potential is measured where the probe...

  19. Localized atomic basis set in the projector augmented wave method

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Vanin, Marco; Mortensen, Jens Jørgen

    2009-01-01

    representation. The possibility to switch seamlessly between the two representations implies that simulations employing the local basis can be fine tuned at the end of the calculation by switching to the grid, thereby combining the strength of the two representations for optimal performance. The implementation...... is tested by calculating atomization energies and equilibrium bulk properties of a variety of molecules and solids, comparing to the grid results. Finally, it is demonstrated how a grid-quality structure optimization can be performed with significantly reduced computational effort by switching between...

  20. Probing/Manipulating the Interfacial Atomic Bonding between High k Dielectrics and InGaAs for Ultimate CMOS

    Science.gov (United States)

    2015-04-24

    elucidated the mechanism and nature of the bonding between the Hf atom in TEMAHf and In/As atoms of the reconstructed In0.53Ga0.47As(001)-4x2 surface... SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 11 19a. NAME OF RESPONSIBLE PERSON Kenneth Caster, Ph.D...identification of atom-toatom interaction at this interface. This work has elucidated the mechanism and nature of the bonding between the Hf atom in TEMAHf

  1. Precision X-ray spectroscopy of kaonic atoms as a probe of low-energy kaon-nucleus interaction

    CERN Document Server

    Shi, H; Beer, G; Bellotti, G; Berucci, C; Bragadireanu, A M; Bosnar, D; Cargnelli, M; Curceanu, C; Butt, A D; d'Uffizi, A; Fiorini, C; Ghio, F; Guaraldo, C; Hayano, R S; Iliescu, M; Ishiwatari, T; Iwasaki, M; Sandri, P Levi; Marton, J; Okada, S; Pietreanu, D; Piscicchia, K; Vidal, A Romero; Sbardella, E; Scordo, A; Sirghi, D L; Sirghi, F; Tatsuno, H; Doce, O Vazquez; Widmann, E; Zmeskal, J

    2016-01-01

    In the exotic atoms where one atomic $1s$ electron is replaced by a $K^{-}$, the strong interaction between the $K^{-}$ and the nucleus introduces an energy shift and broadening of the low-lying kaonic atomic levels which are determined by only the electromagnetic interaction. By performing X-ray spectroscopy for Z=1,2 kaonic atoms, the SIDDHARTA experiment determined with high precision the shift and width for the $1s$ state of $K^{-}p$ and the $2p$ state of kaonic helium-3 and kaonic helium-4. These results provided unique information of the kaon-nucleus interaction in the low energy limit.

  2. The generalized sturmian method for calculating spectra of atoms and ions

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2003-01-01

    The properties of generalized Sturmian basis sets are reviewed, and functions of this type are used to perform direct configuration interaction calculations on the spectra of atoms and ions. Singlet excited states calculated in this way show good agreement with experimentally measured spectra. When...... the generalized Sturmian method is applied to atoms, the configurations are constructed from hydrogenlike atomic orbitals with an effective charge which is characteristic of the configuration. Thus, orthonormality between the orbitals of different configurations cannot be assumed, and the generalized Slater...... is primarily outside the atom or ion, with only a small amplitude inside....

  3. Development of atomic-beam resonance method to measure the nuclear moments of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, T., E-mail: sugimoto@ribf.riken.jp [SPring-8 (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Kawamura, H.; Murata, J. [Rikkyo University, Department of Physics (Japan); Nagae, D.; Shimada, K. [Tokyo Institute of Technology, Department of Physics (Japan); Ueno, H.; Yoshimi, A. [RIKEN Nishina Center (Japan)

    2008-01-15

    We have been working on the development of a new technique of atomic-beam resonance method to measure the nuclear moments of unstable nuclei. In the present study, an ion-guiding system to be used as an atomic-beam source have been developed.

  4. Photoelectron imaging, probe of the dynamics: from atoms... to clusters; Imagerie de photoelectrons, sonde de la dynamique: des atomes... aux agregats

    Energy Technology Data Exchange (ETDEWEB)

    Lepine, F

    2003-06-15

    This thesis concerns the study of the deexcitation of clusters and atoms by photoelectron imaging. The first part is dedicated to thermionic emission of a finite size system. A 3-dimensional imaging setup allows us to measure the time evolution of the kinetic energy spectrum of electrons emitted from different clusters (W{sub n}{sup -}, C{sub n}{sup -}, C{sub 60}). Then we have a direct access to the fundamental quantities which characterize this statistical emission: the temperature of the finite heat bath and the decay rate. The second part concerns the ionization of atomic Rydberg states placed in a static electric field. We performed the first experiment of photoionization microscopy which allows us to obtain a picture which is the macroscopic projection of the electronic wave function. Then we have access to the detail of the photoionization and particularly to the quantum properties of the electron usually confined at the atomic scale. (author)

  5. A method to evaluate the diffusion rate of drugs from a microdialysis probe through brain tissue

    NARCIS (Netherlands)

    Westerink, B.H.C.; de Vries, J.B

    2001-01-01

    For interpretation of microdialysis experiments in which compounds are applied retrodialysis, it is important to have information about the migration rate of the infused compounds. Here we describe a dual-probe microdialysis method that can be used to evaluate the penetration rate of the infused dru

  6. Optical nanofibres and neutral atoms

    CERN Document Server

    Nieddu, Thomas; Chormaic, Sile Nic

    2015-01-01

    Optical nanofibres are increasingly being used in cold atom experiments due to their versatility and the clear advantages they have when developing all-fibred systems for quantum technologies. They provide researchers with a method of overcoming the Rayleigh range for achieving high intensities in a focussed beam over a relatively long distance, and can act as a noninvasive tool for probing cold atoms. In this review article, we will briefly introduce the theory of mode propagation in an ultrathin optical fibre and highlight some of the more significant theoretical and experimental progresses to date, including the early work on atom probing, manipulation and trapping, the study of atom-dielectric surface interactions, and the more recent observation of nanofibre-mediated nonlinear optics phenomena in atomic media. The functionality of optical nanofibres in relation to the realisation of atom-photon hybrid quantum systems is also becoming more evident as some of the earlier technical challenges are surpassed ...

  7. Observation by conductive-probe atomic force microscopy of strongly inverted surface layers at the hydrogenated amorphous silicon/crystalline silicon heterojunctions

    Science.gov (United States)

    Maslova, O. A.; Alvarez, J.; Gushina, E. V.; Favre, W.; Gueunier-Farret, M. E.; Gudovskikh, A. S.; Ankudinov, A. V.; Terukov, E. I.; Kleider, J. P.

    2010-12-01

    Heterojunctions made of hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si) are examined by conducting probe atomic force microscopy. Conductive channels at both (n )a-Si:H/(p)c-Si and (p)a-Si:H/(n)c-Si interfaces are clearly revealed. These are attributed to two-dimension electron and hole gases due to strong inversion layers at the c-Si surface in agreement with previous planar conductance measurements. The presence of a hole gas in (p )a-Si:H/(n)c-Si structures implies a quite large valence band offset (EVc-Si-EVa-Si:H>0.25 eV).

  8. Shock-tube studies of atomic silicon emission in the spectral range 180 to 300 nm. [environment simulation for Jupiter probes

    Science.gov (United States)

    Prakash, S. G.; Park, C.

    1978-01-01

    Emission spectroscopy of shock-heated atomic silicon was performed in the spectral range 180 to 300 nm, in an environment simulating the ablation layer expected around a Jovian entry probe with a silica heat shield. From the spectra obtained at temperatures from 6000 to 10,000 K and electron number densities from 1 quadrillion to 100 quadrillion per cu cm, the Lorentzian line-widths were determined. The results showed that silicon lines are broadened significantly by both electrons (Stark broadening) and hydrogen atoms (Van der Waals broadening), and the combined line-widths are much larger than previously assumed. From the data, the Stark and the Van der Waals line-widths were determined for 34 silicon lines. Radiative transport through a typical shock layer was computed using the new line-width data. The computations showed that silicon emission in the hot region is large, but it is mostly absorbed in the colder region adjacent to the wall.

  9. Combined nano-SIMS/AFM/EBSD analysis and atom probe tomography, of carbon distribution in austenite/ε-martensite high-Mn steels.

    Science.gov (United States)

    Seol, Jae-Bok; Lee, B-H; Choi, P; Lee, S-G; Park, C-G

    2013-09-01

    We introduce a new experimental approach for the identification of the atomistic position of interstitial carbon in a high-Mn binary alloy consisting of austenite and ε-martensite. Using combined nano-beam secondary ion mass spectroscopy, atomic force microscopy and electron backscatter diffraction analyses, we clearly observe carbon partitioning to austenite. Nano-beam secondary ion mass spectroscopy and atom probe tomography studies also reveal carbon trapping at crystal imperfections as identified by transmission electron microscopy. Three main trapping sites can be distinguished: phase boundaries between austenite and ε-martensite, stacking faults in austenite, and prior austenite grain boundaries. Our findings suggest that segregation and/or partitioning of carbon can contribute to the austenite-to-martensite transformation of the investigated alloy.

  10. A method for automatically extracting infectious disease-related primers and probes from the literature

    Directory of Open Access Journals (Sweden)

    Pérez-Rey David

    2010-08-01

    Full Text Available Abstract Background Primer and probe sequences are the main components of nucleic acid-based detection systems. Biologists use primers and probes for different tasks, some related to the diagnosis and prescription of infectious diseases. The biological literature is the main information source for empirically validated primer and probe sequences. Therefore, it is becoming increasingly important for researchers to navigate this important information. In this paper, we present a four-phase method for extracting and annotating primer/probe sequences from the literature. These phases are: (1 convert each document into a tree of paper sections, (2 detect the candidate sequences using a set of finite state machine-based recognizers, (3 refine problem sequences using a rule-based expert system, and (4 annotate the extracted sequences with their related organism/gene information. Results We tested our approach using a test set composed of 297 manuscripts. The extracted sequences and their organism/gene annotations were manually evaluated by a panel of molecular biologists. The results of the evaluation show that our approach is suitable for automatically extracting DNA sequences, achieving precision/recall rates of 97.98% and 95.77%, respectively. In addition, 76.66% of the detected sequences were correctly annotated with their organism name. The system also provided correct gene-related information for 46.18% of the sequences assigned a correct organism name. Conclusions We believe that the proposed method can facilitate routine tasks for biomedical researchers using molecular methods to diagnose and prescribe different infectious diseases. In addition, the proposed method can be expanded to detect and extract other biological sequences from the literature. The extracted information can also be used to readily update available primer/probe databases or to create new databases from scratch.

  11. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    Science.gov (United States)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-12-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  12. Turbulence-Resolving Coherent Acoustic Sediment Flux Probe Device and Method for Using

    OpenAIRE

    2001-01-01

    Patent This invention describes a new method to estimate the sediment flux in front of a Coherent Acoustic Sediment Probe (CASP) instrument. Also, described is a newly invented Bistatic Doppler Velocity and Sediment Profiler (BDVSP) device for measuring sediment concentration, sediment velocity, and the resultant sediment transport in a sediment bed, and for the measurement of turbulent stresses and dissipation in the ocean. This invention describes a new method to ...

  13. Effects of medication methods after simple and effective probing of lacrimal passage

    Institute of Scientific and Technical Information of China (English)

    Bin; Lu; Hua-Ying; Xie; Cai-Ping; Shi; Chun-Si; Xu; Mei-Hong; Gu

    2014-01-01

    AIM:To evaluate the effect of reducing the use of antibiotics in the treatment of infant bacterial dacryocystitis after probing of the lacrimal duct.METHODS:A total of 542 cases of children under one year old and accepting nasolacrimal duct probing treatment were divided into two groups, which were treated with topical and oral antibiotics, respectively.Conjunctival sac secretions were used as a control index of bacterial infection, whereas the disappearance of epiphora symptoms and lacrimal passage patency were used as cure indexes. The χ2test was used to compare enumeration and measurement data, and a statistical significance was set at P <0.05. The therapeutic effect on the two groups of postoperative patients was investigated.RESULTS:In the two study groups, no significant differences in gender, age and postoperative control of lacrimal sac infection were observed. The cure rates after three probing operations also showed no significant difference.CONCLUSION:After probing of the lacrimal passage,results of this study confirmed that postoperative medication without oral antibiotics but an ophthalmic dosage of antibiotics was a simple and effective treatment method.

  14. [Stain hybridization method with pRepHind probe for the diagnosis of Plasmodium falciparum].

    Science.gov (United States)

    Moleón Borodowsky, I

    1992-01-01

    A study was conducted on the parasitemia detection level and the specificity of the pRepHind DNA probe for diagnosing Plasmodium falciparum by the stain hybridization method. The parasitemia detection level was studied by using dilutions of a P. falciparum in vitro culture, adjusted by direct microscopic examination to 1; 0.1; 0.01; 0.001; 0.0001 and 0.00001% of parasited red cells. Specificity was increased by using DNA extractions from P. Yoelii, P. berghei and human leucocytes. The results showed that the method was able to detect 0.0001% of parasitemia starting from DNA extractions of 100 L infected red cells. The pRepHind probe only detected specifically DNA from P. falciparum. It is concluded that the method is suitable for being used in the diagnosis of infection due to P. falciparum.

  15. The Definition Method and Optimization of Atomic Strain Tensors for Nuclear Power Engineering Materials

    Directory of Open Access Journals (Sweden)

    Xiangguo Zeng

    2016-01-01

    Full Text Available A common measure of deformation between atomic scale simulations and the continuum framework is provided and the strain tensors for multiscale simulations are defined in this paper. In order to compute the deformation gradient of any atom m, the weight function is proposed to eliminate the different contributions within the neighbor atoms which have different distances to atom m, and the weighted least squares error optimization model is established to seek the optimal coefficients of the weight function and the optimal local deformation gradient of each atom. The optimization model involves more than 9 parameters. To guarantee the reliability of subsequent parameters identification result and lighten the calculation workload of parameters identification, an overall analysis method of parameter sensitivity and an advanced genetic algorithm are also developed.

  16. New method for calculating the Berry connection in atom-molecule systems

    Institute of Scientific and Technical Information of China (English)

    Cui Fu-Cheng; Wu Bao-Jun

    2012-01-01

    In the mean-field theory of atom molecule systems,where the bosonic atoms combine to form molecules,there is no usual U(1) symmetry,which presents an apparent hurdle for calculating the Berry connection in these systems.We develop a perturbation expansion method of Hannay's angle suitable for calculating the Berry curvature in the atom molecule systems.With this Berry curvature,the Berry connection can be computed naturally.We use a three-level atom-molecule system to illustrate our results.In particular,with this method,we compute the curvature for Hannay's angle analytically,and compare it to the Berry curvature obtained with the second-quantized model of the same system.An excellent agreement is found,indicating the validity of our method.

  17. Method of manufacture of atomically thin boron nitride

    Science.gov (United States)

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  18. Macro and microscale mechanical testing and local electrode atom probe measurements of STIP irradiated F82H, Fe-8Cr ODS and Fe-8Cr-2W ODS

    Energy Technology Data Exchange (ETDEWEB)

    Hosemann, P., E-mail: peterh@lanl.gov [Los Alamos National Laboratory (LANL), MST-8 (United States); University of California Berkeley, Department of Nuclear Engineering (United States); Stergar, E. [University of California Berkeley, Department of Nuclear Engineering (United States); Peng, L. [Paul Scherrer Institute (PSI), 5332 Villigen PSI (Switzerland); Institute of Plasma Physics, Chinese Academy of Science (China); Dai, Y. [Paul Scherrer Institute (PSI), 5332 Villigen PSI (Switzerland); Maloy, S.A. [Los Alamos National Laboratory (LANL), MST-8 (United States); Pouchon, M.A. [Paul Scherrer Institute (PSI), 5332 Villigen PSI (Switzerland); Shiba, K.; Hamaguchi, D. [Japan Atomic Energy Agency (JAEA) (Japan); Leitner, H. [MontanuniversitaetLeoben, Department fuerMetallkunde (Austria)

    2011-10-01

    The reduced activation ferritic/martensitic alloy F82H (Fe-8Cr-2W-0.2V-0.04Ta-0.1C) is being considered as a structural material for several different fusion related nuclear applications. The oxide dispersion strengthened (ODS) alloys Fe-8Cr-2W ODS and Fe-8Cr ODS were developed for better high-temperature strength and radiation tolerance. These materials have been exposed to a neutron and proton environment in the Spallation Target Irradiation Program (STIP) (<13 dpa) with an average He/dpa ratio of 60 appm He/dpa at irradiation temperatures 159-347 deg. C. After irradiation, the samples were tensile tested at different temperatures. The post tensile testing fractured parts were collected and nanoindentation, microcompression testing and local electrode atom probe was conducted. The information gained by local electron atom probe in combination with the micro, nano and macroscopic mechanical tests allows one to establish a fundamental understanding of the relationship between the data measured at different scales on irradiated materials.

  19. Macro and microscale mechanical testing and local electrode atom probe measurements of STIP irradiated F82H, Fe-8Cr ODS and Fe-8Cr-2W ODS

    Science.gov (United States)

    Hosemann, P.; Stergar, E.; Peng, L.; Dai, Y.; Maloy, S. A.; Pouchon, M. A.; Shiba, K.; Hamaguchi, D.; Leitner, H.

    2011-10-01

    The reduced activation ferritic/martensitic alloy F82H (Fe-8Cr-2W-0.2V-0.04Ta-0.1C) is being considered as a structural material for several different fusion related nuclear applications. The oxide dispersion strengthened (ODS) alloys Fe-8Cr-2W ODS and Fe-8Cr ODS were developed for better high-temperature strength and radiation tolerance. These materials have been exposed to a neutron and proton environment in the Spallation Target Irradiation Program (STIP) (<13 dpa) with an average He/dpa ratio of 60 appm He/dpa at irradiation temperatures 159-347 °C. After irradiation, the samples were tensile tested at different temperatures. The post tensile testing fractured parts were collected and nanoindentation, microcompression testing and local electrode atom probe was conducted. The information gained by local electron atom probe in combination with the micro, nano and macroscopic mechanical tests allows one to establish a fundamental understanding of the relationship between the data measured at different scales on irradiated materials.

  20. Conductivity of individual particles measured by a microscopic four-point-probe method.

    Science.gov (United States)

    Sun, Ling; Wang, Jianjun; Bonaccurso, Elmar

    2013-01-01

    We introduce a technique for measuring the conductivity of individual hybrid metal, semiconducting core-shell and full-metal conducting particles by a microscopic four-point probe (μ-4PP) method. The four-point probe geometry allows for minimizing contact resistances between electrodes and particles. By using a focused ion beam we fabricate platinum nanoleads between four microelectrodes on a silicon chip and an individual particle, and determine the particle's conductivity via sensitive current and voltage measurements. Up to sixteen particles can be taken up by each chip, which allows for multiple conductivity measurements by simply multiplexing the electric contacts connected to a multimeter. Although, for demonstration, we used full Au (conducting) and Ag-coated latex particles (semiconducting) of a few micrometers in diameter, the method can be applied to other types of conducting or semiconducting particles of different diameters.

  1. Initial Results in Power System Identification from Injected Probing Signals Using a Subspace Method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ning; Pierre, John W.; Hauer, John F.

    2006-08-01

    In this paper, the authors use the Numerical algorithm for Subspace State Space System IDentification (N4SID) to extract dynamic parameters from phasor measurements collected on the western North American Power Grid. The data were obtained during tests on June 7, 2000, and they represent wide area response to several kinds of probing signals including Low-Level Pseudo-Random Noise (LLPRN) and Single-Mode Square Wave (SMSW) injected at the Celilo terminal of the Pacific HVDC In-tertie (PDCI). An identified model is validated using a cross vali-dation method. Also, the obtained electromechanical modes are compared with the results from Prony analysis of a ringdown and with signal analysis of ambient data measured under similar op-erating conditions. The consistent results show that methods in this class can be highly effective even when the probing signal is small.

  2. Apparatus and methods of measuring minority carrier lifetime using a liquid probe

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian

    2016-04-12

    Methods and apparatus for measuring minority carrier lifetimes using liquid probes are provided. In one embodiment, a method of measuring the minority carrier lifetime of a semiconductor material comprises: providing a semiconductor material having a surface; forming a rectifying junction at a first location on the surface by temporarily contacting the surface with a conductive liquid probe; electrically coupling a second junction to the semiconductor material at a second location, wherein the first location and the second location are physically separated; applying a forward bias to the rectifying junction causing minority carrier injection in the semiconductor material; measuring a total capacitance as a function of frequency between the rectifying junction and the second junction; determining an inflection frequency of the total capacitance; and determining a minority lifetime of the semiconductor material from the inflection frequency.

  3. A COMPARISON OF A SPECTROPHOTOMETRIC (QUERCETIN) METHOD AND AN ATOMIC-ABSORPTION METHOD FOR DETERMINATION OF TIN IN FOOD

    DEFF Research Database (Denmark)

    Engberg, Å

    1973-01-01

    Procedures for the determination of tin in food, which involve a spectrophotometric method (with the quercetin-tin complex) and an atomic-absorption method, are described. The precision of the complete methods and of the individual analytical steps required is evaluated, and the parameters...

  4. Time-dependent coupled-cluster method for atomic nuclei

    CERN Document Server

    Pigg, D A; Nam, H; Papenbrock, T

    2012-01-01

    We study time-dependent coupled-cluster theory in the framework of nuclear physics. Based on Kvaal's bi-variational formulation of this method [S. Kvaal, arXiv:1201.5548], we explicitly demonstrate that observables that commute with the Hamiltonian are conserved under time evolution. We explore the role of the energy and of the similarity-transformed Hamiltonian under real and imaginary time evolution and relate the latter to similarity renormalization group transformations. Proof-of-principle computations of He-4 and O-16 in small model spaces, and computations of the Lipkin model illustrate the capabilities of the method.

  5. Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Nikiforov, Maxim [ORNL; Bradshaw, James A [ORNL; Jesse, Stephen [ORNL; Van Berkel, Gary J [ORNL

    2011-01-01

    Nanometer scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nano-thermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2 array of spots, with 2 m spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated. Estimated from the crater volume (~2x106 nm3), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in automated fashion sub-micrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated.

  6. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Science.gov (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  7. Analysis of Near-Field Diffraction Pattern of a Metallic Probe Tip with the Boundary Diffraction Wave Method

    Institute of Scientific and Technical Information of China (English)

    TANG Lin; GU Chun; CHEN Bo; WANG Pei; MING Hai; XIE Jian-Ping

    2005-01-01

    @@ The boundary diffraction wave theory is introduced to analyse a near-field diffraction (NFD) pattern of a metallic probe tip of apertureless scanning near-field microscopy. This method is simple and can give a clear physical picture. The polarization effect of the incident light and the different shapes of the metallic probe tip are simulated. The results show that the NFD pattern of the metallic probe tip is directly related to those factors.

  8. A touch probe method of operating an implantable RFID tag for orthopedic implant identification.

    Science.gov (United States)

    Liu, Xiaoyu; Berger, J Lee; Ogirala, Ajay; Mickle, Marlin H

    2013-06-01

    The major problem in operating an implantable radio-frequency identification (RFID) tag embedded on an orthopedic implant is low efficiency because of metallic interference. To improve the efficiency, this paper proposes a method of operating an implantable passive RFID tag using a touch probe at 13.56 MHz. This technology relies on the electric field interaction between two pairs of electrodes, one being a part of the touch probe placed on the surface of tissue and the other being a part of the tag installed under the tissue. Compared with using a conventional RFID antenna such as a loop antenna, this method has a better performance in the near field operation range to reduce interference with the orthopedic implant. Properly matching the touch probe and the tag to the tissue and the implant reduces signal attenuation and increases the overall system efficiency. The experiments have shown that this method has a great performance in the near field transcutaneous operation and can be used for orthopedic implant identification.

  9. "Pseudo-invariant Eigen-operator" Method for Deriving Energy-Gap of an Atom-Cavity Jaynes-Cummings Hamiltonian with Atomic Centre-of-Mass Motion

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; TANG Xu-Bing

    2006-01-01

    Using the "Pseudo-invariant eigen-operator" method we find the energy-gap of the Jaynes-Cummings Hamiltonian model of an atom-cavity system. This model takes the atomic centre-of-mass motion into account. The supersymmetric structure is involved in the Hamiltonian of an atom-cavity system. By selecting suitable supersymmetric generators and using supersymmetric transformation the Hamiltonian is diagonalized and energy eigenvectors are obtained.

  10. Probe hybridization array typing: a binary typing method for Escherichia coli.

    Science.gov (United States)

    Srinivasan, U; Zhang, L; France, A M; Ghosh, D; Shalaby, W; Xie, J; Marrs, C F; Foxman, B

    2007-01-01

    The ability to distinguish between Escherichia coli strains is critical for outbreak investigations. Binary typing, based on the presence or absence of genetic material, provides a high-throughput alternative to gel- and PCR-based typing techniques that generate complex banding patterns and lack uniform interpretation criteria. We developed, validated, and determined the discriminatory power of an E. coli binary typing method, probe hybridization array typing (PHAT). In PHAT, the absence or presence of genetic material is identified by using DNA hybridization to produce a reproducible and portable fingerprint for each genome. PHAT probes were generated from genome subtractive hybridization experiments. We PHAT typed the ECOR collection of strains from a variety of geographical locations, and 33 rectal E. coli strains selected from college-aged women with urinary tract infection. In the set of 33 human rectal strains, the discriminatory power of PHAT (98%) equaled that of multilocus sequence typing (MLST) and pulsed-field gel electrophoresis. However, for ECOR strains, which include nonhuman strains, the current set of PHAT probes was less discriminating than MLST, ribotyping, and enterobacterial repetitive intergenic consensus sequence PCR (80% versus 97, 92, and 97%, respectively). When we limited the analysis to ECOR strains of B2 and D lineage, which are associated with human infection, current PHAT probes were highly discriminatory (94%). PHAT can be applied in a high-throughput format (i.e., "library on a slide"), the discriminatory ability can be varied based on the probe set, and PHAT is readily adapted to other bacterial species with high variation in genetic content.

  11. Validation methods for low-resolution fitting of atomic structures to electron microscopy data

    OpenAIRE

    Xu, Xiao-Ping; Volkmann, Niels

    2015-01-01

    Fitting of atomic-resolution structures into reconstructions from electron cryo-microscopy is routinely used to understand the structure and function of macromolecular machines. Despite the fact that a plethora of fitting methods has been developed over recent years, standard protocols for quality assessment and validation of these fits have not been established. Here, we present the general concepts underlying current validation ideas as they relate to fitting of atomic-resolution models int...

  12. Anisotropy in conductance of a quasi-one-dimensional metallic surface state measured by a square micro-four-point probe method.

    Science.gov (United States)

    Kanagawa, Taizo; Hobara, Rei; Matsuda, Iwao; Tanikawa, Takehiro; Natori, Akiko; Hasegawa, Shuji

    2003-07-18

    We have devised a "square micro-four-point probe method" using an independently driven ultrahigh-vacuum four-tip scanning tunneling microscope, and succeeded for the first time to directly measure anisotropic electrical conductance of a single-atomic layer on a solid surface. A quasi-one-dimensional metal of a single-domain Si(111)4 x 1-In had a surface-state conductance along the metallic atom chains (sigma(axially)) to be 7.2(+/-0.6) x 10(-4) S/square at room temperature, which was larger than that in the perpendicular direction (sigma(radially)) by approximately 60 times. The sigma(axially) was consistently interpreted by a Boltzmann equation with the anisotropic surface-state band dispersion, while the sigma(radially) was dominated by a surface-space-charge-layer conductance.

  13. Structurally Well-Defined Sigmoidal Gold Clusters: Probing the Correlation between Metal Atom Arrangement and Chiroptical Response.

    Science.gov (United States)

    He, Xin; Wang, Yuechao; Jiang, Hong; Zhao, Liang

    2016-05-04

    Asymmetric arrangement of metal atoms is crucial for understanding the chirality origin of chiral metal nanoclusters and facilitating the design and development of new chiral catalysts and chiroptical devices. Here, we describe the construction of four asymmetric gold and gold-silver clusters by chirality transfer from diimido ligands. The acquired metal clusters show strong circular dichroism (CD) response with large anisotropy factors of up to 6 × 10(-3), larger than the values of most reported chiral gold nanoclusters. Regardless of the same absolute configuration of the applied three diimido ligands, sigmoidal and reverse-sigmoidal arrangements of gold atoms both can be achieved, which resultantly produce an opposite Cotton effect within a specific absorption range. On the basis of the detailed structural characterization via X-ray crystallography and contrast experiments, the chirality contribution of the imido ligand, the asymmetrically arranged metal cluster, and the chiral arrangement of aromatic rings of phosphine ligands have been qualitatively evaluated. Time-dependent DFT calculations reveal that the chiroptical property of the acquired metal clusters is mainly influenced by the asymmetrically arranged metal atoms. Correlation of asymmetric arrangements of metal atoms in clusters with their chiroptical response provides a viable means of fabricating a designable chiral surface of metal nanoclusters and opens a broader prospect for chiral cluster application.

  14. Self-interstitial configuration in molybdenum studied by modified analytical embedded atom method

    Indian Academy of Sciences (India)

    Jian-Min Zhang; Zhang Fang Wang; Ke-Wei Xu

    2009-05-01

    The stability of various atomic configurations containing a self-interstitial atom (SIA) in a model representing Mo has been investigated using the modified analytical embedded atom method (MAEAM). The lattice relaxations are treated with the molecular dynamics (MD) simulation at absolute zero of temperature. Six relatively stable self-interstitial configurations and formation energies have been described and calculated. The results indicate that the [1 1 1] dumbbell interstitial S111 has the lowest formation energy, and in ascending order, the sequence of the configurations is predicted to be S111, C, S110, T, S001 and O. From relaxed displacement field up to the fifth-NN atoms of six configurations, we know that the relaxed displacements depend not only on separation distances of the NN atoms from the defect centre but also strongly on the direction of the connected line between the NN atoms and the defect centre. The equilibrium distances between two nearest atoms in the core of the S111, C, S110, T, S001 and O configurations are 0.72a, 0.72a, 0.71a, 0.72a, 0.70a and 0.70a, respectively.

  15. A radiation emission shielding method for high intensity focus ultrasound probes.

    Science.gov (United States)

    Wu, Hao; Shen, Guofeng; Chen, Yazhu

    2015-01-01

    Electromagnetic compatibility (EMC) is a key issue in the design and development of safe and effective medical instruments. The treatment probes of high intensity focused ultrasound (HIFU) systems not only receive and transmit electromagnetic waves, but also radiate ultrasound waves, resulting in electromagnetic coupling. In this paper, an electromagnetic shielding method involving the enclosure of the probe in a copper wire mesh was introduced. First, sound pressure distribution simulations and measurements were performed using a hydrophone in order to evaluate the effects of the wire mesh on the acoustic performance of the HIFU system. The results indicated that the wire mesh did not disturb the normalized sound pressure field. In addition, the attenuation of the maximum pressure in the focal plane was equal to 6.2%. Then, the electronic emission level was tested in a chamber. After the implementation of the wire mesh, the 10-100 MHz frequency band radiation was suppressed, and the HIFU system satisfied the national EMC standards.

  16. Effective atomic numbers of some tissue substitutes by different methods: A comparative study.

    Science.gov (United States)

    Singh, Vishwanath P; Badiger, N M

    2014-01-01

    Effective atomic numbers of some human organ tissue substitutes such as polyethylene terephthalate, red articulation wax, paraffin 1, paraffin 2, bolus, pitch, polyphenylene sulfide, polysulfone, polyvinylchloride, and modeling clay have been calculated by four different methods like Auto-Zeff, direct, interpolation, and power law. It was found that the effective atomic numbers computed by Auto-Zeff, direct and interpolation methods were in good agreement for intermediate energy region (0.1 MeV numbers by direct method and Auto-Zeff was observed in photo-electric and pair-production regions. Effective atomic numbers computed by power law were found to be close to direct method in photo-electric absorption region. The Auto-Zeff, direct and interpolation methods were found to be in good agreement for computation of effective atomic numbers in intermediate energy region (100 keV numbers in photo-electric region (10 keV number mentioned in the present study. An accurate estimation of Rayleigh scattering is required to eliminate effect of molecular, chemical, or crystalline environment of the atom for estimation of gamma interaction parameters.

  17. Reduction of interference fringes in absorption imaging of cold atom cloud using eigenface method

    Institute of Scientific and Technical Information of China (English)

    Xiaolin Li; Min Ke; Bo Yan; Yuzhu Wang

    2007-01-01

    Eigenface method used in face recognition is introduced to reduce the pattern of interference fringes appearing in the absorption image of cold rubidium atom cloud trapped by an atom chip. The standard method for processing the absorption image is proposed, and the origin of the interference fringes is analyzed. Compared with the standard processing method which uses only one reference image, we take advantage of fifty reference images and reconstruct a new reference image which is more similar to the absorption image than all of the fifty original reference images. Then obvious reduction of interference fringes can be obtained.

  18. A Multiscale Factorization Method for Simulating Mesoscopic Systems with Atomic Precision

    CERN Document Server

    Mansour, Andrew Abi

    2013-01-01

    Mesoscopic N-atom systems derive their structural and dynamical properties from processes coupled across multiple scales in space and time. An efficient method for understanding and simulating such systems from the underlying N-atom formulation is presented. The method integrates notions of multiscale analysis, Trotter factorization, and a hypothesis that the momenta conjugate to coarse-grained variables can be treated as a stationary random process. The method is demonstrated for Lactoferrin protein, Nudaurelia Capensis Omega Virus, and Cowpea Chlorotic Mottle Virus to assess its accuracy and scaling with system size.

  19. The effective atomic numbers of some biomolecules calculated by two methods: A comparative study

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif

    2009-01-01

    The effective atomic numbers Z(eff) of some fatty acids and amino acids have been calculated by two numerical methods, a direct method and an interpolation method, in the energy range of 1 keV-20 MeV. The notion of Z(eff) is given a new meaning by using a modern database of photon interaction cross...... constant and equal to the mean atomic number of the material. Wherever possible, the calculated values of Z(eff) are compared with experimental data....

  20. Use of a Pre-Drilled Hole for Implementing Thermal Needle Probe Method for Soils and Rocks

    Directory of Open Access Journals (Sweden)

    So-Jung Lee

    2016-10-01

    Full Text Available The thermal needle probe method, which is widely used for measuring the thermal conductivity λ of soils, deploys a long and thin metallic probe that houses a line heater and a temperature sensor. However, inserting such probes into consolidated or densely compacted soils or rocks is difficult, frequently causing buckling of the probe and severe disturbance to the surrounding ground, leading to unreliable measurements. We found that the use of a pre-drilled hole filled with thermally conductive grease for installing a thermal needle probe was feasible to overcome such challenges, and still yielded reliable measurements of thermal conductivity. The proposed method, i.e., the pre-drilling thermal needle probe method, was verified by finite element calculations and laboratory experiments by varying various parameters, such as the pre-drilled hole diameter, probe diameter, and thermal conductivity of thermal grease. It was observed that increases in the pre-drilled hole diameter and probe diameter and a decrease in the thermal conductivity of the thermal grease caused delays in temperature increase owing to the slowed heat transfer. Nevertheless, all the estimated λ values agreed well with the reference λ values with acceptable errors. Thus, the proposed method yields reliable measurements and can be applied for a wide range of soils from compacted soils to hard rocks.

  1. Lattice-Inversion Embedded-Atom-Method Interatomic Potentials for Group-VA Transition Metals

    Institute of Scientific and Technical Information of China (English)

    袁晓俭; 陈难先; 申江

    2011-01-01

    The lattice-inversion embedded-atom-method (LI-EAM) interatomic potential we developed previously [J. Phys.: Condens. Matter 22 (2010) 375503] is extended to group- VA transition metals (V, Nb and Ta). It is found that considering interatomic interactions up to appropriate-distance-neighbor atoms is crucial to constructing accurate EAM potentials, especially for the prediction of surface energy. The LI-EAM interatomic potentials for group-VA transition metals are successfully built by considering interatomic interactions up to the fifth neighbor atoms. These angular-independent potentials drastically promote the accuracy of the predicted surface energies, which match the experimental resuits well.%The lattice-inversion embedded-atom-method(LI-EAM)interatomic potential we developed previously[J.Phys.:Condens.Matter 22(2010)375503]is extended to group-VA transition metals(V,Nb and Ta).It is found that considering interatomic interactions up to appropriate-distance-neighbor atoms is crucial to constructing accurate EAM potentials,especially for the prediction of surface energy.The LI-EAM interatomic potentials for group-VA transition metals are successfully built by considering interatomic interactions up to the fifth neighbor atoms.These angular-independent potentials drastically promote the accuracy of the predicted surface energies,which match the experimental results well.

  2. Methods and apparatus of spatially resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy

    Science.gov (United States)

    Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)

    2008-01-01

    A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.

  3. Comparision of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods

    NARCIS (Netherlands)

    Vadillo-Rodríguez, Virginia; Busscher, Henk J; Norde, Willem; de Vries, Joop; Dijkstra, René JB; Stokroos, Ietse; van der Mei, Henderina

    2004-01-01

    Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanomet

  4. Comparison of Atomic Force Microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods

    NARCIS (Netherlands)

    Vadillo-Rodriguez, V.; Busscher, H.J.; Norde, W.; Vries, de J.; Dijkstra, R.J.B.; Stokroos, I.; Mei, van der H.C.

    2004-01-01

    Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanomet

  5. A New Method for the Atomic Ground-State Energy in the Screened Coulomb Potential

    Institute of Scientific and Technical Information of China (English)

    YU Peng-Peng; GUO Hua

    2001-01-01

    The new method proposed recently by Friedberg,Lee and Zhao is applied to the derivation of the atomic ground-state energy with the inclusion of the screening effect.The present results are compared with those obtained in the pure Coulomb potential and by the variational approach.The overall good results are obtained with this new method.``

  6. Probing Co/Si interface behaviour by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this work, we investigate the Co-Si reaction, the Co growth mode at room temperature, diffusion behaviour as well as morphology evolution during annealing on both H-terminated and clean Si(001) and Si(111) surfaces. From in-situ X-ray photoelectron spectroscopy (XPS) investigation, "Co-Si" reaction appears to occur on both H-terminated and clean surfaces at room temperature (RT) and the silicide crystallinity is improved upon annealing.Co growth mode on H-terminated Si surfaces occurs in a pseudo layer-by-layer manner while small close-packed island growth mode is observed on the clean Si surface. Upon annealing at different temperatures, Co atom concentration decreases versus annealing time, which in part is attributed to Co atoms inward diffusion. The diffusion behaviour on both types of surfaces demonstrates a similar trend. Morphology study using ex-situ atomic force microscopy (AFM) shows that the islands formed on Si(001) surface after annealing at 700 ℃ are elongated with growth directions alternate between the two perpendicular [(-1)10] and [110] directions. Triangular islands are observed on Si(111) surface.

  7. Constructing the ecstasy of MDMA from its component mental organs: Proposing the primer/probe method.

    Science.gov (United States)

    Ray, Thomas S

    2016-02-01

    The drug MDMA, commonly known as ecstasy, produces a specific and distinct open hearted mental state, which led to the creation of a new pharmacological class, "entactogens". Extensive literature on its mechanisms of action has come to characterize MDMA as a "messy" drug with multiple mechanisms, but the consensus is that the distinctive entactogenic effects arise from the release of neurotransmitters, primarily serotonin. I propose an alternative hypothesis: The entactogenic mental state is due to the simultaneous direct activation of imidazoline-1 (I1) and serotonin-2 (5-HT2) receptors by MDMA. This hypothesis emerges from "mental organ" theory, which embodies many hypotheses, the most relevant of which are: "Mental organs" are populations of neurons that all express their defining metabotropic receptor, and each mental organ plays a distinct role in the mind, a role shaped by evolution as mental organs evolve by duplication and divergence. Mental organs are the mechanism by which evolution sculpts the mind. Mental organs can be in or out of consciousness. In order for a mental organ to enter consciousness, three things must happen: The mental organ must be activated directly at its defining receptor. 5-HT2 must be simultaneously activated. One of the functions of activated 5-HT2 is to load other simultaneously activated mental organs fully into consciousness. In some cases THC must be introduced to remove long-term blocks mediated by the cannabinoid system. I propose the "primer/probe" method to test these hypotheses. A "primer" is a drug that selectively activates 5-HT2 (e.g. DOB or MEM) or serotonin-1 (5-HT1) and 5-HT2 (e.g. DOET or 2C-B-fly). A "probe" is a drug that activates a receptor whose corresponding mental organ we wish to load into consciousness in order to understand its role in the mind. The mental organ is loaded into consciousness when the primer and probe are taken together, but not when taken separately. For example, the blood pressure

  8. Measurement method for the nuclear anapole moment of laser trapped alkali atoms

    CERN Document Server

    Gómez, E; Sprouse, G D; Orozco, L A; De Mille, D P

    2004-01-01

    Weak interactions within a nucleus generate a nuclear spin dependent parity violating electromagnetic moment; the anapole moment. In heavy nuclei, the anapole moment is the dominant contribution to spin-dependent atomic parity violation. We analyze a method to measure the nuclear anapole moment through the electric dipole transition it induces between hyperfine states of the ground level. The method requires tight confinement of the atoms to position them at the anti-node of a standing wave driving the anapole-induced E1 transiton. We explore the necessary limits in the number of atoms, excitation fields, trap type, interrogation method, and systematic tests necessary for such measurements in francium, the heaviest alkali.

  9. A new DFT method for atoms and molecules in Cartesian grid

    CERN Document Server

    Roy, Amlan K

    2013-01-01

    Electronic structure calculation of atoms and molecules, in the past few decades has largely been dominated by density functional methods. This is primarily due to the fact that this can account for electron correlation effects in a rigorous, tractable manner keeping the computational cost at a manageable level. With recent advances in methodological development, algorithmic progress as well as computer technology, larger physical, chemical and biological systems are amenable to quantum mechanical calculations than ever before. Here we report the development of a new method for accurate reliable description of atoms, molecules within the Hohenberg-Kohn-Sham density functional theory (DFT). In a Cartesian grid, atom-centered localized basis set, electron density, molecular orbitals, two-body potentials are directly built on the grid. We employ a Fourier convolution method for classical Coulomb potentials by making an Ewald-type decomposition technique in terms of short- and long-range interactions. One-body ma...

  10. Laser-induced reversion of $\\delta^{'}$ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    CERN Document Server

    Khushaim, Muna; Al-Kassab, Talaat

    2015-01-01

    The influence of tuning the laser energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction and composition of $\\delta^{'}$ precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser energy of 100 pJ was in fairly good agreement with reported range of $\\delta^{'}$ solvus temperature, suggesting a result of reversion upon heating due to laser pulsing.

  11. Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post-deposition annealing

    Science.gov (United States)

    Schwarz, T.; Cojocaru-Mirédin, O.; Choi, P.; Mousel, M.; Redinger, A.; Siebentritt, S.; Raabe, D.

    2013-01-01

    We use atom probe tomography (APT) for resolving nanometer scale compositional fluctuations in Cu2ZnSnSe4 (CZTSe) thin-films prepared by co-evaporation and post-deposition annealing. We detect a complex, nanometer-sized network of CZTSe and ZnSe domains in these films. Some of the ZnSe domains contain precipitates having a Cu- and Sn-rich composition, where the composition cannot be assigned to any of the known equilibrium phases. Furthermore, Na impurities are found to be segregated at the CZTSe/ZnSe interface. The insights given by APT are essential for understanding the growth of CZTSe absorber layers for thin-film solar cells and for optimizing their optoelectronic properties.

  12. Atom-to-continuum methods for gaining a fundamental understanding of fracture.

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, David Lynn (Georgia Institute of Technology, Atlanta, GA); Reedy, Earl David, Jr.; Templeton, Jeremy Alan; Jones, Reese E.; Moody, Neville Reid; Zimmerman, Jonathan A.; Belytschko, Ted. (Northwestern University, Evanston, IL); Zhou, Xiao Wang; Lloyd, Jeffrey T. (Georgia Institute of Technology, Atlanta, GA); Oswald, Jay (Northwestern University, Evanston, IL); Delph, Terry J. (Lehigh University, Bethlehem, PA); Kimmer, Christopher J. (Indiana University Southeast, New Albany, IN)

    2011-08-01

    This report describes an Engineering Sciences Research Foundation (ESRF) project to characterize and understand fracture processes via molecular dynamics modeling and atom-to-continuum methods. Under this aegis we developed new theory and a number of novel techniques to describe the fracture process at the atomic scale. These developments ranged from a material-frame connection between molecular dynamics and continuum mechanics to an atomic level J integral. Each of the developments build upon each other and culminated in a cohesive zone model derived from atomic information and verified at the continuum scale. This report describes an Engineering Sciences Research Foundation (ESRF) project to characterize and understand fracture processes via molecular dynamics modeling and atom-to-continuum methods. The effort is predicated on the idea that processes and information at the atomic level are missing in engineering scale simulations of fracture, and, moreover, are necessary for these simulations to be predictive. In this project we developed considerable new theory and a number of novel techniques in order to describe the fracture process at the atomic scale. Chapter 2 gives a detailed account of the material-frame connection between molecular dynamics and continuum mechanics we constructed in order to best use atomic information from solid systems. With this framework, in Chapter 3, we were able to make a direct and elegant extension of the classical J down to simulations on the scale of nanometers with a discrete atomic lattice. The technique was applied to cracks and dislocations with equal success and displayed high fidelity with expectations from continuum theory. Then, as a prelude to extension of the atomic J to finite temperatures, we explored the quasi-harmonic models as efficient and accurate surrogates of atomic lattices undergoing thermo-elastic processes (Chapter 4). With this in hand, in Chapter 5 we provide evidence that, by using the appropriate

  13. Atomization method for verifying size effects of inhalable particles on lung damage of mice.

    Science.gov (United States)

    Tao, Chen; Tang, Yue; Zhang, Lan; Tian, Yonggang; Zhang, Yingmei

    2017-02-01

    To explore the size effects of inhalable particles on lung damage, aqueous aerosol containing cadmium was studied as a model to design a new type of two-stage atomization device that was composed of two adjustable parts with electronic ultrasonic atomization and pneumatic atomization. The working parameters and effectiveness of this device were tested with H2O atomization and CdCl2 inhalation, respectively. By gravimetrically detecting the mass concentrations of PM2.5 and PM10 and analysing the particle size with a laser sensor, we confirmed the particle size distribution of the aqueous aerosol produced by the new device under different working conditions. Then, we conducted experiments in male Kunming mice that inhaled CdCl2 to determine the size effects of inhalable particles on lung damage and to confirm the effectiveness of the device. The new device could effectively control the particle size in the aqueous aerosol. The inhaled CdCl2 entered and injured the lungs of the mice by causing tissue damage, oxidative stress, increasing endoplasmic reticulum stress and triggering an inflammatory response, which might be related to where the particles deposited. The smaller particles in the aqueous aerosol atomized by the new two-stage atomization device deposited deeper into lung causing more damage. This device could provide a new method for animal experiments involving inhalation with water-soluble toxins.

  14. Analyzing the effect of the forces exerted on cantilever probe tip of atomic force microscope with tapering-shaped geometry and double piezoelectric extended layers in the air and liquid environments

    Science.gov (United States)

    Korayem, Moharam Habibnejad; Nahavandi, Amir

    2017-01-01

    The aim of the present study is to assess the force vibrational performance of tapering-shaped cantilevers, using Euler-Bernoulli theory. Tapering-shaped cantilevers have plan-view geometry consisting of a rectangular section at the clamped end and a triangular section at the tip. Hamilton's principle is utilized to obtain the partial differential equations governing the nonlinear vibration of the system as well as the corresponding boundary conditions. In this model, a micro cantilever, which is covered by two piezoelectric layers at the top and the bottom, is modeled at angle α. Both of these layers are subjected to similar AC and DC voltages. This paper attempts to determine the effect of the capillary force exerted on the cantilever probe tip of an atomic force microscope. The capillary force emerges due to the contact between thin water films with a thickness of hc which have accumulated on the sample and the probe. In addition, an attempt is made to develop the capillary force between the tip and the sample surface with respect to the geometry obtained. The smoothness or the roughness of the surfaces as well as the geometry of the cantilever tip have significant effects on the modeling of forces applied to the probe tip. In this article, the Van der Waals and the repulsive forces are considered to be the same in all of the simulations, and only is the capillary force altered in order to evaluate the role of this force in the atomic force microscope based modeling. We also indicate that the tip shape and the radial distance of the meniscus greatly influence the capillary force. The other objective of our study is to draw a comparison between tapering-and rectangular-shaped cantilevers. Furthermore, the equation for converting the tip of a tapering-shaped cantilever into a rectangular cantilever is provided. Moreover, the modal analysis method is employed to solve the motion equation. The mode shape function for the two tapering-shaped sections of the first

  15. Probing the elastic response of microalga Scenedesmus dimorphus in dry and aqueous environments through atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Warren, K. M.; Mpagazehe, J. N.; Higgs, C. F., E-mail: prl@andrew.cmu.edu, E-mail: higgs@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); LeDuc, P. R., E-mail: prl@andrew.cmu.edu, E-mail: higgs@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Departments of Biomedical Engineering and Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States)

    2014-10-20

    With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.

  16. Probing the elastic response of microalga Scenedesmus dimorphus in dry and aqueous environments through atomic force microscopy

    Science.gov (United States)

    Warren, K. M.; Mpagazehe, J. N.; LeDuc, P. R.; Higgs, C. F.

    2014-10-01

    With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.

  17. Attosecond time delay in the photoionization of endohedral atoms A@C$_{60}$: A new probe of confinement resonances

    CERN Document Server

    Deshmukh, P C; Saha, S; Kheifets, A S; Dolmatov, V K; Manson, S T

    2014-01-01

    The effects of confinement resonances on photoelectron group delay (Wigner time delay) following ionization of an atom encapsulated inside a C$_{60}$ cage have been studied theoretically using both relativistic and non-relativistic random phase approximations. The results indicate clearly the resonant character of the confinement oscillations in time delay of the $4d$ shell of Xe@C$_{60}$ and present a most direct manifestation of Wigner time delay. These oscillations were missed in a previous theoretical investigation of Ar@C$_{60}$ [PRL 111, 203003 (2013)

  18. Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy.

    Science.gov (United States)

    Azeloglu, Evren U; Costa, Kevin D

    2010-03-01

    To study how the dynamic subcellular mechanical properties of the heart relate to the fundamental underlying process of actin-myosin cross-bridge cycling, we developed a novel atomic force microscope elastography technique for mapping spatiotemporal stiffness of isolated, spontaneously beating neonatal rat cardiomyocytes. Cells were indented repeatedly at a rate close but unequal to their contractile frequency. The resultant changes in pointwise apparent elastic modulus cycled at a predictable envelope frequency between a systolic value of 26.2 +/- 5.1 kPa and a diastolic value of 7.8 +/- 4.1 kPa at a representative depth of 400 nm. In cells probed along their major axis, spatiotemporal changes in systolic stiffness displayed a heterogeneous pattern, reflecting the banded sarcomeric structure of underlying myofibrils. Treatment with blebbistatin eliminated contractile activity and resulted in a uniform apparent modulus of 6.5 +/- 4.8 kPa. This study represents the first quantitative dynamic mechanical mapping of beating cardiomyocytes. The technique provides a means of probing the micromechanical effects of disease processes and pharmacological treatments on beating cardiomyocytes, providing new insights and relating subcellular cardiac structure and function.

  19. Method for the determination of cobalt from biological products with graphite furnace atomic absorption spectrometer

    Science.gov (United States)

    Zamfir, Oana-Liliana; Ionicǎ, Mihai; Caragea, Genica; Radu, Simona; Vlǎdescu, Marian

    2016-12-01

    Cobalt is a chemical element with symbol Co and atomic number 27 and atomic weight 58.93. 59 Co is the only stable cobalt isotope and the only isotope to exist naturally on Earth. Cobalt is the active center of coenzymes called cobalamin or cyanocobalamin the most common example of which is vitamin B12. Vitamin B12 deficiency can potentially cause severe and irreversible damage, especially to the brain and nervous system in the form of fatigue, depression and poor memory or even mania and psychosis. In order to study the degree of deficiency of the population with Co or the correctness of treatment with vitamin B12, a modern optoelectronic method for the determination of metals and metalloids from biological samples has been developed, Graphite Furnace - Atomic Absorption Spectrometer (GF- AAS) method is recommended. The technique is based on the fact that free atoms will absorb light at wavelengths characteristic of the element of interest. Free atoms of the chemical element can be produced from samples by the application of high temperatures. The system GF-AAS Varian used as biological samples, blood or urine that followed the digest of the organic matrix. For the investigations was used a high - performance GF-AAS with D2 - background correction system and a transversely heated graphite atomizer. As result of the use of the method are presented the concentration of Co in the blood or urine of a group of patient in Bucharest. The method is sensitive, reproducible relatively easy to apply, with a moderately costs.

  20. Application of an isotopic contrast method for the investigation of atomic dynamics of polyatomic compounds

    CERN Document Server

    Parshin, P P

    2002-01-01

    The method of isotopic contrast in inelastic neutron scattering is described. The analysis of capabilities of the method for researches of atomic dynamics of condensed matter is carried out. For an example of a binary oxide CuO the experimental implementation of this method is demonstrated. The researches of dynamic behavior of some chemical elements in HTSC cuprates and related compounds are discussed. (orig.)

  1. Post-irradiation annealing of Ni–Mn–Si-enriched clusters in a neutron-irradiated RPV steel weld using Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Styman, P.D., E-mail: paul.styman@materials.ox.ac.uk [National Nuclear Laboratory, 168 Harwell Business Centre, Didcot, Oxon OX11 0QT (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Hyde, J.M. [National Nuclear Laboratory, 168 Harwell Business Centre, Didcot, Oxon OX11 0QT (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Parfitt, D.; Wilford, K. [Rolls-Royce, PO BOX 2000, Raynesway, Derby DE21 7XX (United Kingdom); Burke, M.G. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); English, C.A. [National Nuclear Laboratory, 168 Harwell Business Centre, Didcot, Oxon OX11 0QT (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Efsing, P. [Vattenfall Ringhals AB, Väröbacka (Sweden)

    2015-04-15

    Highlights: • Characterisation of high Ni neutron irradiated RPV surveillance samples at high fluence. • Post-irradiation annealing performed to give insight into the formation mechanisms of Ni–Mn–Si precipitates. • Dissolution of Ni–Mn–Si clusters appears to be lead by the removal of Mn. - Abstract: Atom Probe Tomography has been performed on as-irradiated and post-irradiation annealed surveillance weld samples from Ringhals Unit 3. The weld contains low Cu (0.07 at.%) and high Ni (1.5 at.%). A high number density (∼4 × 10{sup 23} m{sup −3}) of Ni–Mn–Si-enriched clusters was observed in the as-irradiated material. The onset of recovery was observed during the annealing for 30 min at 450 °C. Much more significant dissolution of clusters occurred during the 10 min 500 °C anneal, resulting in a reduction in mean cluster size and a halving of their volume fraction. Detailed analyses of the changes in microstructure demonstrate that the dissolution process is driven by migration of Mn atoms from the clusters. This may indicate a strong correlation between Mn and point defects. Dissolution of the clusters is shown to correlate with recovery of mechanical properties in this material.

  2. Cultural probes

    DEFF Research Database (Denmark)

    Madsen, Jacob Østergaard

    2016-01-01

    The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation.......The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation....

  3. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    Directory of Open Access Journals (Sweden)

    S. Namba

    2015-11-01

    Full Text Available To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IR laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.

  4. General implementation of the ERETIC method for pulsed field gradient probe heads.

    Science.gov (United States)

    Ziarelli, Fabio; Viel, Stéphane; Caldarelli, Stefano; Sobieski, Daniel N; Augustine, Matthew P

    2008-10-01

    A capacitive coupling between a secondary radiofrequency (rf) channel and the gradient coil of a standard commercially available high resolution NMR spectrometer and probe head is described and used to introduce a low level exponentially damped rf signal near the frequency of the primary rf channel to serve as an external concentration standard, in analogy to the so-called ERETIC method. The stability of this inexpensive and simple to implement method, here referred to as the Pulse Into the Gradient (PIG) approach, is superb over a 14-h period and both gradient tailored water suppression and one-dimensional imaging applications are provided. Since the low level signal is introduced via the pulsed field gradient coil, the coupling is identical to that for a free induction signal and thus the method proves to be immune (within 5%) to sample ionic strength effects up to the 2M NaCl solutions explored here.

  5. The regularized blind tip reconstruction algorithm as a scanning probe microscopy tip metrology method

    CERN Document Server

    Jozwiak, G; Masalska, A; Gotszalk, T; Ritz, I; Steigmann, H

    2011-01-01

    The problem of an accurate tip radius and shape characterization is very important for determination of surface mechanical and chemical properties on the basis of the scanning probe microscopy measurements. We think that the most favorable methods for this purpose are blind tip reconstruction methods, since they do not need any calibrated characterizers and might be performed on an ordinary SPM setup. As in many other inverse problems also in case of these methods the stability of the solution in presence of vibrational and electronic noise needs application of so called regularization techniques. In this paper the novel regularization technique (Regularized Blind Tip Reconstruction - RBTR) for blind tip reconstruction algorithm is presented. It improves the quality of the solution in presence of isotropic and anisotropic noise. The superiority of our approach is proved on the basis of computer simulations and analysis of images of the Budget Sensors TipCheck calibration standard. In case of characterization ...

  6. Remote probing of atmospheric particulates from radiation extinction experiments: A review of methods

    Science.gov (United States)

    Fymat, A. L.

    1976-01-01

    The existing methodology for reconstructing the particle size distribution and inferring the refractive index of absorbing and scattering atmospheric particulates is critically reviewed. Emphasis is placed on method capabilities and shortcomings and, wherever possible, on achievable accuracy. The nature of the associated remote probing problem is analyzed with regard to the effects of the particulates on EM wave propagation in the atmosphere. The parameterization of size distribution is studied within the unifying framework of Pearson's distribution curves. The inversions of extinction measurements and their ratios are considered separately, and the potentialities of each type of measurement are identified. Work lacking in each of the methods reviewed is indicated. A method of determining both the effective complex refractive index and size distribution model parameters from the same data is also presented. Lastly, determination from extinction ratio data of the complex refractive index independent of size distribution is discussed and error analyzed.

  7. Energy Levels in Helium and Neon Atoms by an Electron-Impact Method.

    Science.gov (United States)

    Taylor, N.; And Others

    1981-01-01

    Electronic energy levels in noble gas atoms may be determined with a simple teaching apparatus incorporating a resonance potentials tube in which the electron beam intensity is held constant. The resulting spectra are little inferior to those obtained by more elaborate electron-impact methods and complement optical emission spectra. (Author/SK)

  8. Primary Student Teachers' Ideas of Atoms and Molecules: Using Drawings as a Research Method

    Science.gov (United States)

    Ozden, Mustafa

    2009-01-01

    The purpose of this study is to reveal the primary student teachers' basic knowledge and misconceptions about atoms and molecules by use of a drawing method. Data collected from drawings of 92 primary student teachers at the second term of 2007-2008 educational period in Faculty of Education in Adiyaman University. The analysis of their drawings…

  9. Note: A silicon-on-insulator microelectromechanical systems probe scanner for on-chip atomic force microscopy.

    Science.gov (United States)

    Fowler, Anthony G; Maroufi, Mohammad; Moheimani, S O Reza

    2015-04-01

    A new microelectromechanical systems-based 2-degree-of-freedom (DoF) scanner with an integrated cantilever for on-chip atomic force microscopy (AFM) is presented. The silicon cantilever features a layer of piezoelectric material to facilitate its use for tapping mode AFM and enable simultaneous deflection sensing. Electrostatic actuators and electrothermal sensors are used to accurately position the cantilever within the x-y plane. Experimental testing shows that the cantilever is able to be scanned over a 10 μm × 10 μm window and that the cantilever achieves a peak-to-peak deflection greater than 400 nm when excited at its resonance frequency of approximately 62 kHz.

  10. Note: A silicon-on-insulator microelectromechanical systems probe scanner for on-chip atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Anthony G.; Maroufi, Mohammad; Moheimani, S. O. Reza, E-mail: Reza.Moheimani@newcastle.edu.au [School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2015-04-15

    A new microelectromechanical systems-based 2-degree-of-freedom (DoF) scanner with an integrated cantilever for on-chip atomic force microscopy (AFM) is presented. The silicon cantilever features a layer of piezoelectric material to facilitate its use for tapping mode AFM and enable simultaneous deflection sensing. Electrostatic actuators and electrothermal sensors are used to accurately position the cantilever within the x-y plane. Experimental testing shows that the cantilever is able to be scanned over a 10 μm × 10 μm window and that the cantilever achieves a peak-to-peak deflection greater than 400 nm when excited at its resonance frequency of approximately 62 kHz.

  11. Detection of atomic spin labels in a lipid bi-layer using a single-spin nanodiamond probe

    CERN Document Server

    Kaufmann, Stefan; Hall, Liam T; Perunicic, Viktor; Senn, Philipp; Steinert, Steffen; McGuinness, Liam P; Johnson, Brett C; Ohshima, Takeshi; Caruso, Frank; Wrachtrup, Joerg; Scholten, Robert E; Mulvaney, Paul; Hollenberg, Lloyd C L

    2013-01-01

    Magnetic field fluctuations arising from fundamental spins are ubiquitous in nanoscale biology, and are a rich source of information about the processes that generate them. However, the ability to detect the few spins involved without averaging over large ensembles has remained elusive. Here we demonstrate the detection of gadolinium spin labels in an artificial cell membrane under ambient conditions using a single-spin nanodiamond sensor. Changes in the spin relaxation time of the sensor located in the lipid bilayer were optically detected and found to be sensitive to near-individual proximal gadolinium atomic labels. The detection of such small numbers of spins in a model biological setting, with projected detection times of one second, opens a new pathway for in-situ nanoscale detection of dynamical processes in biology.

  12. DDEC6: A Method for Computing Even-Tempered Net Atomic Charges in Periodic and Nonperiodic Materials

    CERN Document Server

    Manz, Thomas A

    2015-01-01

    Net atomic charges (NACs) are widely used in all chemical sciences to concisely summarize key information about the partitioning of electrons among atoms in materials. Although widely used, there is currently no atomic population analysis method suitable for being used as a default method in quantum chemistry programs. To address this challenge, we introduce a new atoms-in-materials method with the following nine properties: (1) exactly one electron distribution is assigned to each atom, (2) core electrons are assigned to the correct host atom, (3) NACs are formally independent of the basis set type because they are functionals of the total electron distribution, (4) the assigned atomic electron distributions give an efficiently converging polyatomic multipole expansion, (5) the assigned NACs usually follow Pauling scale electronegativity trends, (6) NACs for a particular element have good transferability among different conformations that are equivalently bonded, (7) the assigned NACs are chemically consiste...

  13. Improving method of real-time offset tuning for arterial signal coordination using probe trajectory data

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2016-12-01

    Full Text Available In the environment of intelligent transportation systems, traffic condition data would have higher resolution in time and space, which is especially valuable for managing the interrupted traffic at signalized intersections. There exist a lot of algorithms for offset tuning, but few of them take the advantage of modern traffic detection methods such as probe vehicle data. This study proposes a method using probe trajectory data to optimize and adjust offsets in real time. The critical point, representing the changing vehicle dynamics, is first defined as the basis of this approach. Using the critical points related to different states of traffic conditions, such as free flow, queue formation, and dissipation, various traffic status parameters can be estimated, including actual travel speed, queue dissipation rate, and standing queue length. The offset can then be adjusted on a cycle-by-cycle basis. The performance of this approach is evaluated using a simulation network. The results show that the trajectory-based approach can reduce travel time of the coordinated traffic flow when compared with using well-defined offline offset.

  14. Calculation of phonon spectrum for noble metals by modified analytic embedded atom method (MAEAM)

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiao-Jun; Zhang Jian-Min; Xu Ke-Wei

    2006-01-01

    In the harmonic approximation, the atomic force constants are derived and the phonon dispersion curves along four major symmetry directions [00ζ], [0ζζ], [ζζζ] and [0ζ1] (or △, ∑, A and Z in group-theory notation) are calculated for four noble metals Cu, Ag, Au and Pt by combining the modified analytic embedded atom method (MAEAM) with the theory of lattice dynamics. A good agreement between calculations and measurements, especially for lower frequencies,shows that the MAEAM provides a reasonable description of lattice dynamics in noble metals.

  15. Electromagnetic methods for measuring materials properties of cylindrical rods and array probes for rapid flaw inspection

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Haiyan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The case-hardening process modifies the near-surface permeability and conductivity of steel, as can be observed through changes in alternating current potential drop (ACPD) along a rod. In order to evaluate case depth of case hardened steel rods, analytical expressions are derived for the alternating current potential drop on the surface of a homogeneous rod, a two-layered and a three-layered rod. The case-hardened rod is first modeled by a two-layer rod that has a homogeneous substrate with a single, uniformly thick, homogeneous surface layer, in which the conductivity and permeability values differ from those in the substrate. By fitting model results to multi-frequency ACPD experimental data, estimates of conductivity, permeability and case depth are found. Although the estimated case depth by the two-layer model is in reasonable agreement with the effective case depth from the hardness profile, it is consistently higher than the effective case depth. This led to the development of the three-layer model. It is anticipated that the new three-layered model will improve the results and thus makes the ACPD method a novel technique in nondestructive measurement of case depth. Another way to evaluate case depth of a case hardened steel rod is to use induction coils. Integral form solutions for an infinite rod encircled by a coaxial coil are well known, but for a finite length conductor, additional boundary conditions must be satisfied at the ends. In this work, calculations of eddy currents are performed for a two-layer conducting rod of finite length excited by a coaxial circular coil carrying an alternating current. The solution is found using the truncated region eigenfunction expansion (TREE) method. By truncating the solution region to a finite length in the axial direction, the magnetic vector potential can be expressed as a series expansion of orthogonal eigenfunctions instead of as a Fourier integral. Closed-form expressions are derived for the electromagnetic

  16. INVESTIGATION OF NANO- AND MICROSTRUCTURE OF BIOMATERIALS FOR REGENERATIVE MEDICINE BY METHOD OF SCANNING PROBE NANOTOMOGRAPHY

    Directory of Open Access Journals (Sweden)

    A. E. Efimov

    2014-01-01

    Full Text Available Aim. To perform a study of three-dimensional micro- and nanostructure of porous biocompatible scaffolds and quantitative analysis of nanoscale porosity parameters.Materials and methods. Three-dimensional porous scaffolds made from spidroin rS1/9 (recombinant analog of spider dragline protein were produced by salt leaching technique. Dimensions of macropores in produced three-imensional scaffolds were in range from 200 to 400 microns. The study of three-dimensional structure of scaffolds was carried out by scanning probe nanotomography technique with the use of experimental setup combining ultramicrotome and scanning probe microscope. Results. Three-dimensional nanotomographical reconstruction of scaffold macropore wall structure is obtained. The formation of three-dimensional network of interconnected pores and channels with characteristic dimensions in range from 20 to 700 nm in the volume of macropore walls of studied scaffolds is observed. Mean pore diameter is 150 nm. Volume porosity of macropore walls is 22% while volume fraction of pores interconnected in large pore clusters is about 20% of all pore volume.Conclusion. Obtained as a result of the study quantitative characteristics of porous micro- and nanostructure of scaffolds show signifi cant degree of nanoscale porosity and percolation of macropore walls what correlates with reported high effi ciency of tissue regeneration on such scaffolds implanted in vivo. Use of scanning probe nanotomography technique for analysis of characteristics and topology of micro- and nanopore systems enables to improve effi ciency of development of novel biocompatible and biodegradable materials with predicted morphological, physical, chemical and biological characteristics.

  17. Direct measurement of surface-state conductance by microscopic four-point probe method

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanikawa, T.

    2002-01-01

    For in situ measurements of local electrical conductivity of well defined crystal surfaces in ultrahigh vacuum, we have developed microscopic four-point probes with a probe spacing of several micrometres, installed in a scanning-electron - microscope/electron-diffraction chamber. The probe is pre...

  18. A new method of probing mechanical losses of coatings at cryogenic temperatures

    CERN Document Server

    Galliou, Serge; Goryachev, Maxim; Neuhaus, Leonhard; Cagnoli, Gianpietro; Zerkani, Salim; Dolique, Vincent; Vacheret, Xavier; Abbé, Philippe; Pinard, Laurent; Michel, Christophe; Karassouloff, Thibaut; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine; Tobar, Michael E; Bourquin, Roger

    2016-01-01

    A new method of probing mechanical losses and comparing the corresponding deposition processes of metallic and dielectric coatings in 1-100 MHz frequency range and cryogenic temperatures is presented. The method is based on the use of extremely high-quality quartz acoustic cavities whose internal losses are orders of magnitude lower than any available coatings nowadays. The approach is demonstrated for Chromium, Chromium/Gold and a multilayer tantala/silica coatings. The ${\\rm Ta}_2{\\rm O}_5/{\\rm Si}{\\rm O}_2$ coating has been found to exhibit a loss angle lower than $1.6\\times10^{-5}$ near 30 {\\rm MHz} at 4 {\\rm K}. The results are compared to the previous measurements.

  19. A rapid, cost-effective method of assembly and purification of synthetic DNA probes >100 bp.

    Directory of Open Access Journals (Sweden)

    Michael A Jensen

    Full Text Available Here we introduce a rapid, cost-effective method of generating molecular DNA probes in just under 15 minutes without the need for expensive, time-consuming gel-extraction steps. As an example, we enzymatically concatenated six variable strands (50 bp with a common strand sequence (51 bp in a single pool using Fast-Link DNA ligase to produce 101 bp targets (10 min. Unincorporated species were then filtered out by passing the crude reaction through a size-exclusion column (12 could be achieved with further optimization. Moreover, for large-scale assays, we envision this method to be fully automated with the use of robotics such as the Biomek FX; here, potentially thousands of samples could be pooled, ligated and purified in either a 96, 384 or 1536-well platform in just minutes.

  20. Wide range local resistance imaging on fragile materials by conducting probe atomic force microscopy in intermittent contact mode

    Science.gov (United States)

    Vecchiola, Aymeric; Chrétien, Pascal; Delprat, Sophie; Bouzehouane, Karim; Schneegans, Olivier; Seneor, Pierre; Mattana, Richard; Tatay, Sergio; Geffroy, Bernard; Bonnassieux, Yvan; Mencaraglia, Denis; Houzé, Frédéric

    2016-06-01

    An imaging technique associating a slowly intermittent contact mode of atomic force microscopy (AFM) with a home-made multi-purpose resistance sensing device is presented. It aims at extending the widespread resistance measurements classically operated in contact mode AFM to broaden their application fields to soft materials (molecular electronics, biology) and fragile or weakly anchored nano-objects, for which nanoscale electrical characterization is highly demanded and often proves to be a challenging task in contact mode. Compared with the state of the art concerning less aggressive solutions for AFM electrical imaging, our technique brings a significantly wider range of resistance measurement (over 10 decades) without any manual switching, which is a major advantage for the characterization of materials with large on-sample resistance variations. After describing the basics of the set-up, we report on preliminary investigations focused on academic samples of self-assembled monolayers with various thicknesses as a demonstrator of the imaging capabilities of our instrument, from qualitative and semi-quantitative viewpoints. Then two application examples are presented, regarding an organic photovoltaic thin film and an array of individual vertical carbon nanotubes. Both attest the relevance of the technique for the control and optimization of technological processes.

  1. 新型AFM原子分辨率导电探针技术研究%Development of a Novel Conductive Probe at Atomic Resolution in UHV-AFM

    Institute of Scientific and Technical Information of China (English)

    张欢; 马宗敏; 谢艳娜; 唐军; 石云波; 薛晨阳; 刘俊; 李艳君

    2015-01-01

    目的:制备新型导电探针,解决目前探针针尖曲率半径较粗、饱磁力大、调频困难、不容易得到高分辨图像等问题。方法向Si探针针尖蒸镀导电金属薄膜得到导电薄膜Si探针,镀Fe薄膜厚度约为几纳米,同时保证探针的曲率半径约10 nm。利用透射电镜观察和超高真空原子力显微镜扫描镀膜前后探针NaCl(001)表面,分析其性能。结果自制的Fe薄膜Si探针由于蒸镀了金属薄膜,探针针尖性能稳定,Si探针扫描效果的悬挂键影响被消除,同时提高了系统的扫描分辨率。结论导电薄膜Si探针能够充分利用现有的仪器设备进行实验,具有造价低、使用简单、性能稳定等优点,可以作为将来磁交换力显微镜( MExFM)的磁性探针来测试材料的表面磁信息。%ABSTRACT:Objective To prepare a novel conductive probe to solve the existing problems such as the relatively large curvature radius of the tip of the conductive cantilever, high saturated magnetic force, low resolution and bad modulation. Methods A con-ductive film Si probe was obtained by evaporating of the Si probe tip with conductive metal thin film, the thickness of the Fe film was only a few nanometers, and meanwhile the curvature radius was ensured to be around 10 nm. The probe NaCl(001) surface before and after coating was observed and scanned by TEM and UHV-AFM, respectively, and the properties were analyzed. Re-sults Because of the metal thin film evaporation, the home-built Fe thin film Si probe had a stable probe tip performance, and the hanging key effect of Si probe scanning was eliminated. At the same time, the scanning resolution of the system was elevated. Conclusion Conductive film Si probe made full use of existing equipments for experiments. It has advantages such as low cost, easy to use and stable performance. It can be used as an important tool for the magnetic exchange force measurements in spin research at atomic resolution in the

  2. A variational method for density functional theory calculations on metallic systems with thousands of atoms.

    Science.gov (United States)

    Ruiz-Serrano, Álvaro; Skylaris, Chris-Kriton

    2013-08-07

    A new method for finite-temperature density functional theory calculations which significantly increases the number of atoms that can be simulated in metallic systems is presented. A self-consistent, direct minimization technique is used to obtain the Helmholtz free energy of the electronic system, described in terms of a set of non-orthogonal, localized functions which are optimized in situ using a periodic-sinc basis set, equivalent to plane waves. Most parts of the calculation, including the demanding operation of building the Hamiltonian matrix, have a computational cost that scales linearly with the number of atoms in the system. Also, this approach ensures that the Hamiltonian matrix has a minimal size, which reduces the computational overhead due to diagonalization, a cubic-scaling operation that is still required. Large basis set accuracy is retained via the optimization of the localized functions. This method allows accurate simulations of entire metallic nanostructures, demonstrated with calculations on a supercell of bulk copper with 500 atoms and on gold nanoparticles with up to 2057 atoms.

  3. Design of primers and probes for quantitative real-time PCR methods.

    Science.gov (United States)

    Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J

    2015-01-01

    Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.

  4. Fe-implanted 6H-SiC: Direct evidence of Fe{sub 3}Si nanoparticles observed by atom probe tomography and {sup 57}Fe Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, M. L.; Fnidiki, A., E-mail: abdeslem.fnidiki@univ-rouen.fr; Lardé, R.; Cuvilly, F.; Blum, I. [Groupe de Physique des Matériaux, Université et INSA de Rouen - UMR CNRS 6634 - Normandie Université. F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, Université et INSA de Rouen - UMR CNRS 6634 - Normandie Université. F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, rue d' Eragny, Neuville sur Oise, 95031 Cergy-Pontoise (France); Debelle, A.; Thomé, L. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), CNRS-IN2P3-Univ. Paris-Sud 11, Bât. 108, 91405 Orsay (France); Viret, M. [Service de Physique de l' Etat Condensé (DSM/IRAMIS/SPEC), UMR 3680 CNRS, Bât. 772, Orme des Merisiers, CEA Saclay 91191 Gif sur Yvette (France); Marteau, M.; Eyidi, D.; Declémy, A. [Institut PPRIME, UPR 3346 CNRS, Université de Poitiers, ENSMA, SP2MI, téléport 2, 11 Bvd M. et P. Curie 86962 Futuroscope, Chasseneuil (France)

    2015-05-14

    In order to understand ferromagnetic ordering in SiC-based diluted magnetic semiconductors, Fe-implanted 6H-SiC subsequently annealed was studied by Atom Probe Tomography, {sup 57}Fe Mössbauer spectroscopy and SQUID magnetometry. Thanks to its 3D imaging capabilities at the atomic scale, Atom Probe Tomography appears as the most suitable technique to investigate the Fe distribution in the 6H-SiC host semiconductor and to evidence secondary phases. This study definitely evidences the formation of Fe{sub 3}Si nano-sized clusters after annealing. These clusters are unambiguously responsible for the main part of the magnetic properties observed in the annealed samples.

  5. The RMT method for describing many-electron atoms in intense short laser pulses

    Science.gov (United States)

    Lysaght, M. A.; Moore, L. R.; Nikolopoulos, L. A. A.; Parker, J. S.; van der Hart, H. W.; Taylor, K. T.

    2012-11-01

    We describe how we have developed an ab initio R-Matrix incorporating Time (RMT) method to provide an accurate description of the single ionization of a general many-electron atom exposed to short intense laser pulses. The new method implements the "division-of-space" concept central to R-matrix theory and takes over the sophisticated time-propagation algorithms of the HELIUM code. We have tested the accuracy of the new method by calculating multiphoton ionization rates of He and Ne and have found excellent agreement with other highly accurate and well-established methods.

  6. Nanobits - exchangable and customisable scanning probe tips

    DEFF Research Database (Denmark)

    Yildiz, Izzet

    Invention of atomic force microscopy (AFM) pioneered a novel aspect for the surface metrology concept. A range of scanning probe methods have been developed over the years based on different sorts of tip-surface interaction: electrical, optical, thermal, force. Reproducible and fast fabrication...... of microcantilevers and probes together with alternative probing modes ease AFM’s adaptation to altering technological needs. The need to constantly adapt to the ever-altering device architecture and perpetual size shrinkage calls for enhancements to address specific needs, like specialised probes. Device...... of the structure which may be starting at 170°C. The fabricated NanoBits were assembled and their performance as AFM probes were tested at OFFIS. The NanoBits were successfully picked up by a microgripper, collected in a cartridge and mounted to an AFM probe. Performances of the assembled high-aspect-ratio Nano...

  7. Inverse method for the instantaneous measure of wall shear rate magnitude and direction using electrodiffusion probes

    Science.gov (United States)

    Lamarche-Gagnon, Marc-Etienne; Vetel, Jerome

    2016-11-01

    Several methods can be used when one needs to measure wall shear stress in a fluid flow. Yet, it is known that a precise shear measurement is seldom met, mostly when both time and space resolutions are required. The electrodiffusion method lies on the mass transfer between a redox couple contained in an electrolyte and an electrode flush mounted to a wall. Similarly to the heat transfer measured by a hot wire anemometer, the mass transfer can be related to the fluid's wall shear rate. When coupled with a numerical post-treatment by the so-called inverse method, precise instantaneous wall shear rate measurements can be obtained. With further improvements, it has the potential to be effective in highly fluctuating three-dimensional flows. We present developments of the inverse method to two-component shear rate measurements, that is shear magnitude and direction. This is achieved with the use of a three-segment electrodiffusion probe. Validation tests of the inverse method are performed in an oscillating plane Poiseuille flow at moderate pulse frequencies, which also includes reverse flow phases, and in the vicinity of a separation point where the wall shear stress experiences local inversion in a controlled separated flow.

  8. THE DETECTION OF MDR1 GENE EXPRESSION USING FLUOROGENIC PROBE QUANTITATIVE RT-PCR METHOD

    Institute of Scientific and Technical Information of China (English)

    高劲松; 马刚; 仝明; 陈佩毅; 王传华; 何蕴韶

    2001-01-01

    Objective: To establish a fluoregenic probe quantitative RT-PCR (FQ-RT-PCR) method for detection of the expression of MDR1 gene in tumor cells and to investigate the expression of MDR1 gene in patients with lung cancer. Methods: The fluorogenic quantitative RT-PCR method for detection of the expression of MDR1 gene was established. K562/ADM and K562 cell lines or 45 tumor tissues from patients with lung cancer were examined on PE Applied Biosystems 7700 Sequence Detection machine. Results: the average levels of MDR1 gene expression in K562/ADM cells and K562 cells were (6.86±0.65)× 107copies/mg RNA and (8.49±0.67)×105 copies/mg RNA, respectively. The former was 80.8 times greater than the latter. Each sample was measured 10 times and the coefficient variation (CV) was 9.5% and 7.9%, respectively. Various levels of MDR1 gene expression were detected in 12 of 45 patients with lung cancer. Conclusion: Quantitative detection of MDR1 gene expression in tumor cells was achieved by using FQ-RT-PCR. FQ-RT-PCR is an accurate, and sensitive method and easy to perform. Using this method, low levels of MDR1 gene expression could be detected in 24% of the patients with lung cancer.

  9. Laser-assisted atom probe tomography of four paired poly-Si/SiO2 multiple-stacks with each thickness of 10 nm

    Science.gov (United States)

    Kwak, C.-M.; Seol, J.-B.; Kim, Y.-T.; Park, C.-G.

    2017-02-01

    For the past 10 years, laser-assisted atom probe tomography (APT) analysis has been performed to quantify the near-atomic scale distribution of elements and their local chemical compositions within interfaces that determine the design, processing, and properties of virtually all materials. However, the nature of the occurring laser-induced emission at the surface of needle-shaped sample is highly complex and it has been an ongoing challenge to understand the surface-related interactions between laser-sources and tips containing non-conductive oxides for a robust and reliable analysis of multiple-stacked devices. Here, we find that the APT analysis of four paired poly-Si/SiO2 (conductive/non-conductive) multiple stacks with each thickness of 10 nm is governed by experimentally monitoring three experimental conditions, such as laser-beam energies ranged from 30 to 200 nJ, analysis temperatures varying with 30-100 K, and the inclination of aligned interfaces within a given tip toward analysis direction. Varying with laser-energy and analysis temperature, a drastic compositional ratio of doubly charged Si ions to single charged Si ions within conductive poly-Si layers is modified, as compared with ones detected in the non-conductive layers. Severe distorted APT images of multiple stacks are also inevitable, especially at the conductive layers, and leading to a lowering of the successful analysis yields. This lower throughput has been overcome though changing the inclination of interfaces within a given tip to analysis direction (planar interfaces parallel to the tip axis), but significant deviations in chemical compositions of a conductive layer counted from those of tips containing planar interfaces perpendicular to the tip axis are unavoidable owing to the Si2, SiH2O, and Si2O ions detected, for the first time, within poly-Si layers.

  10. Test of Variational Methods for Studying Molecular and Solid State Properties by Application to Sodium Atom

    Science.gov (United States)

    Das, T. P.; Pink, R. H.; Dubey, Archana; Scheicher, R. H.; Chow, Lee

    2011-03-01

    As part of our continuing test of accuracy of the variational methods, Variational Hartree-Fock Many Body Perturbation Theory (VHFMBPT) and Variational Density Functional Theory (VDFT) for study of energy and wave-function dependent properties in molecular and solid state systems we are studying the magnetic hyperfine interactions in the ground state of sodium atom for comparison by these methods with the available results from experiment 1 and the linked cluster many-body many body perturbation theory (LCMBPT) for atoms 2 , which has provided very accurate results for the one-electron and many-electron contributions and total hyperfine constants in atomic systems. Comparison will also be made with the corresponding results obtained already from the (VHFMBPT) and (VDFT) methods in lithium 3 to draw general conclusions about the nature of possible improvements needed for the variational methods. 1. M. Arditi and R. T. Carver, Phys. Rev. 109, 1012 (1958); 2. T. Lee, N.C. Dutta, and T.P. Das, Hyperfine Structure of Sodium, Phys. Rev. A 1, 995 (1970); 3. Third Joint HFI-NQI International Conference on Hyperfine Interactions, CERN, Geneva, September 2010.

  11. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    Science.gov (United States)

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  12. Atomic magnetometer

    Science.gov (United States)

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  13. Study of Simulation Method of Time Evolution of Atomic and Molecular Systems by Quantum Electrodynamics

    CERN Document Server

    Ichikawa, Kazuhide; Tachibana, Akitomo

    2014-01-01

    We discuss a method to follow step-by-step time evolution of atomic and molecular systems based on QED (Quantum Electrodynamics). Our strategy includes expanding the electron field operator by localized wavepackets to define creation and annihilation operators and following the time evolution using the equations of motion of the field operator in the Heisenberg picture. We first derive a time evolution equation for the excitation operator, the product of two creation or annihilation operators, which is necessary for constructing operators of physical quantities such as the electronic charge density operator. We then describe our approximation methods to obtain time differential equations of the electronic density matrix, which is defined as the expectation value of the excitation operator. By solving the equations numerically, we show "electron-positron oscillations", the fluctuations originated from virtual electron-positron pair creations and annihilations, appear in the charge density of a hydrogen atom an...

  14. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr; Jeffrey W.

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  15. An optimized interatomic potential for Cu–Ni alloys with the embedded-atom method

    OpenAIRE

    Onat, Berk; Durukanoğlu Feyiz, Sondan; Durukanoglu Feyiz, Sondan

    2013-01-01

    We have developed a semi-empirical and many-body type model potential using a modified charge density profile for Cu–Ni alloys based on the embedded-atom method (EAM) formalism with an improved optimization technique. The potential is determined by fitting to experimental and first-principles data for Cu, Ni and Cu–Ni binary compounds, such as lattice constants, cohesive energies, bulk modulus, elastic constants, diatomic bond lengths and bond energies. The generated potentials were tested by...

  16. Configurable memory system and method for providing atomic counting operations in a memory device

    Science.gov (United States)

    Bellofatto, Ralph E.; Gara, Alan G.; Giampapa, Mark E.; Ohmacht, Martin

    2010-09-14

    A memory system and method for providing atomic memory-based counter operations to operating systems and applications that make most efficient use of counter-backing memory and virtual and physical address space, while simplifying operating system memory management, and enabling the counter-backing memory to be used for purposes other than counter-backing storage when desired. The encoding and address decoding enabled by the invention provides all this functionality through a combination of software and hardware.

  17. Simulation of dislocations in ordered Ni{sub 3}Al by atomic stiffness matrix method

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Y.E.; Chaki, T.K. [State Univ. of New York, Buffalo, NY (United States). Dept. of Mechanical and Aerospace Engineering

    1996-12-31

    A simulation of structure and motion of edge dislocations in ordered Ni{sub 3}Al was performed by atomic stiffness matrix method. In this method the equilibrium positions of the atoms were obtained by solving a set of linear equations formed by a stiffness matrix, whose terms consisted of derivatives of the interaction potential of EAM (embedded atom method) type. The superpartial dislocations, separated by an antiphase boundary (APB) on (111), dissociated into Shockley partials with complex stacking faults (CSF) on (111) plane. The core structure, represented by the Burgers vector density distribution and iso-strain contours, changed under applied stresses as well as upon addition of boron. The separation between the superpartials changed with the addition of B and antisite Ni. As one Shockley partial moved out to the surface, a Shockley partial in the interior moved a large distance to join the lone one near the surface, leaving behind a long CSF strip. The decrease in the width of the APB upon addition of B and antisite Ni has been explained by a reduction of the strength of directional bonding between Ni and Al as well as by the dragging of B atmosphere by the superpartials.

  18. Simulation of dislocations in ordered Ni{sub 3}Al by atomic stiffness matrix method

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Y.E.; Chaki, T.K. [State Univ. of New York, Buffalo, NY (United States). Dept. of Mechanical and Aerospace Engineering

    1996-12-01

    A simulation of structure and motion of edge dislocations in ordered Ni{sub 3}Al was performed by atomic stiffness matrix method. In this method the equilibrium positions of the atoms were obtained by solving a set of linear equations formed by a stiffness matrix, whose terms consisted of derivatives of the interaction potential of EAM (embedded atom method) type. The superpartial dislocations, separated by an antiphase boundary (APB) on (111), dissociated into Shockley partials with complex stacking faults (CSF) on (111) plane. The core structure, represented by the Burgers vector density distribution and iso-strain contours, changed under applied stresses as well as upon addition of boron. The separation between the superpartials changed with the addition of B and antisite Ni. As one Shockley partial moved out to the surface, a Shockley partial in the interior moved a large distance to join the lone one near the surface, leaving behind a long CSF strip. The decrease in the width of the APB upon addition of B and antisite Ni has been explained by a reduction of the strength of direction bonding between Ni and Al as well as by the dragging of B atmosphere by the superpartials.

  19. Novel atomic absorption spectrometric and rapid spectrophotometric methods for the quantitation of paracetamol in saliva: Application to pharmacokinetic studies

    Directory of Open Access Journals (Sweden)

    Issa M

    2008-01-01

    Full Text Available A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III (method I; oxidation of p-aminophenol after the hydrolysis of paracetamol (method II. Iron (II then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 µg/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 µg/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 µg/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%.

  20. Atom probe extended to AlGaN: three-dimensional imaging of a Mg-doped AlGaN/GaN superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Samantha E.; Kappers, Menno J.; Barnard, Jonathan S.; Humphreys, Colin J.; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, CB2 3QZ (United Kingdom); Clifton, Peter H.; Ulfig, Robert M. [Imago Scientific Instruments Corporation, 5500 Nobel Drive, Madison, WI (United States)

    2010-07-15

    Laser pulsed atom probe tomography (APT) can provide three-dimensional chemical and spatial information in semiconductor materials, revealing buried features at the nanoscale. In this investigation, a Mg-doped AlGaN/GaN superlattice was studied using laser pulsed APT. Such superlattices are commonly used to overcome the intrinsically low doping efficiency of Mg. Although the superlattice was nominally doped to the same level throughout, secondary ion mass spectrometry (SIMS) suggested a greater Mg content in the AlGaN layers. The APT data provided three-dimensional element mapping and revealed clustered Mg in both the GaN and AlGaN layers. These clusters are shown to be statistically significant when compared to a random distribution of Mg. More clusters were found in the AlGaN layers, suggesting that the presence of clusters accounts for the higher Mg level in the AlGaN layers that was suggested by SIMS. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin

    2016-06-14

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ\\' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ\\' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  2. Analysis of dynamic segregation and crystallisation in Mg{sub 65}Cu{sub 25}Y{sub 10} bulk metallic glass using atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Laws, K.J., E-mail: k.laws@unsw.edu.au [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Saxey, D.W. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. (Australia); McKenzie, W.R. [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052 (Australia); Marceau, R.K.W. [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Max-Planck Institut fuer Eisenforschung, Max-Planck-Str.1, Duesseldorf, D-40237 (Germany); Gun, B. [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Ringer, S.P. [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Ferry, M. [Australian Research Council Centre of Excellence for Design in Light Metals (Australia); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2012-10-30

    In order to develop an in-depth understanding of the flow behaviour and dynamic devitrification processes of metallic glasses in the supercooled liquid region, tensile testing of amorphous Mg{sub 65}Cu{sub 25}Y{sub 10} samples was carried out at temperatures from 150 to 170 Degree-Sign C and at strain rates from 1 Multiplication-Sign 10{sup -3} s{sup -1} to 1 Multiplication-Sign 10{sup -2} s{sup -1}. Tensile data showed a consistent and reproducible inflexion in flow stress at a particular strain that was largely independent of strain rate. This was followed by a dramatic increase in flow stress occuring prior to the determined onset times of static crystallisation. Samples were analysed using atom probe tomography and the results indicate that tensile straining of the initially homogeneous amorphous alloy results in segregation into two distinct glassy phases via a shear-related process, coincident with the maximum shear plane angle, followed by the evolution of regions corresponding to the composition of a number of equilibrium binary and ternary intermetallic phases.

  3. Atom probe study of the carbon distribution in a hardened martensitic hot-work tool steel X38CrMoV5-1.

    Science.gov (United States)

    Lerchbacher, Christoph; Zinner, Silvia; Leitner, Harald

    2012-07-01

    The microstructure of the hardened common hot-work tool steel X38CrMoV5-1 has been characterized by atom probe tomography with the focus on the carbon distribution. Samples quenched with technically relevant cooling parameters λ from 0.1 (30 K/s) to 12 (0.25 K/s) have been investigated. The parameter λ is an industrially commonly used exponential cooling parameter, representing the cooling time from 800 to 500 °C in seconds divided with hundred. In all samples pronounced carbon segregation to dislocations and cluster formation could be observed after quenching. Carbon enriched interlath films with peak carbon levels of 6-10 at.%, which have been identified to be retained austenite by TEM, show a thickness increase with increasing λ. Therefore, the fraction of total carbon staying in the austenite grows. This carbon is not available for the tempering induced precipitation of secondary carbides in the bulk. Through all samples no segregation of any substitutional elements takes place. Charpy impact testing and fracture surface analysis of the hardened samples reveal the cooling rate induced microstructural distinctions.

  4. Effects of Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser Assisted Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Rich; Janssen, Yuri; Kalifah, Peter; Meng, Ying S.

    2015-01-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative accuracy of atom probe tomography (APT) examinations of LiFePO4 (LFP) are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted APT of LFP has revealed distinctly different behaviors. With the use of UV laser the major issue was identified as the preferential loss of oxygen (up to 10 at. %) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ increased the observed oxygen concentration to near its correct stoichiometry and was well correlated with systematically higher concentrations of 16O2+ ions. This observation supports the premise that lower laser energies lead to a higher probability of oxygen molecule ionization. Conversely, at higher laser energies the resultant lower effective electric field reduces the probability of oxygen molecule ionization. Green laser assisted field evaporation led to the selective loss of Li (~50% deficiency) and correct ratios of the remaining elements, including the oxygen concentration. The loss of Li is explained by selective dc evaporation of lithium between laser pulses and relatively negligible oxygen loss as neutrals during green-laser pulsing. Lastly, plotting of multihit events on a Saxey plot for the straight-flight path data (green laser only) revealed a surprising dynamic recombination process for some molecular ions mid-flight.

  5. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: vincent.baltz@cea.fr [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  6. Model-independent measurement of the charge density distribution along an Fe atom probe needle using off-axis electron holography without mean inner potential effects

    Energy Technology Data Exchange (ETDEWEB)

    Migunov, V., E-mail: v.migunov@fz-juelich.de; Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); London, A. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Farle, M. [Fakultät für Physik and Center of Nanointegration (CeNIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2015-04-07

    The one-dimensional charge density distribution along an electrically biased Fe atom probe needle is measured using a model-independent approach based on off-axis electron holography in the transmission electron microscope. Both the mean inner potential and the magnetic contribution to the phase shift are subtracted by taking differences between electron-optical phase images recorded with different voltages applied to the needle. The measured one-dimensional charge density distribution along the needle is compared with a similar result obtained using model-based fitting of the phase shift surrounding the needle. On the assumption of cylindrical symmetry, it is then used to infer the three-dimensional electric field and electrostatic potential around the needle with ∼10 nm spatial resolution, without needing to consider either the influence of the perturbed reference wave or the extension of the projected potential outside the field of view of the electron hologram. The present study illustrates how a model-independent approach can be used to measure local variations in charge density in a material using electron holography in the presence of additional contributions to the phase, such as those arising from changes in mean inner potential and specimen thickness.

  7. Laser-induced reversion of δ' precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe.

    Science.gov (United States)

    Khushaim, Muna; Gemma, Ryota; Al-Kassab, Talaat

    2016-08-01

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of  δ' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. Microsc. Res. Tech. 79:727-737, 2016. © 2016 Wiley Periodicals, Inc.

  8. A Simple Method of Detecting Chlamydia Trachomatis Using Enzymatically Amplified DNA and Immobilized Probes on Microtiter Plate

    Institute of Scientific and Technical Information of China (English)

    王仁礼; 熊艳; 张龙兴; 蒋秀蓉; 张忠恕

    1998-01-01

    We have developed a simple and economical method for Chlamydia trachomatis detecting, called microtiter plate hybridization (PCR-MPtt) , which may replace standard PCR. This method is similar to that of an ELISA. Briefly, the PCR products labeled at the 5' termini with biotin were hybridized with probes immobilized on a microtiter well

  9. Toward Comprehensive Physical/Chemical Understanding of the Circumstellar Environments - Simultaneous Probing of Each of the Ionized/Atomic/Molecular Gas and Dust Components

    Science.gov (United States)

    Ueta, Toshiya

    We propose to continue our successful investigations into simultaneous probing of each of the ionized/atomic/molecular gas and dust components in planetary nebulae using primarily far-IR broadband images and spatially-resolved spectroscopic data cubes obtained with the Herschel Space Observatory to enhance our understanding of the circumstellar environments. This research originally started as the Herschel Planetary Nebula Survey (HerPlaNS) - an open time 1 program of the Herschel Space Observatory - in which 11 high-excitation PNs were observed to study the nebular energetics that involves very hot X-ray emitting plasma to very cold dust grains, whose density ranges over 3 to 4 orders of magnitude and temperature ranges over 7 orders of magnitude. The HerPlaNS data include broadband maps, IFU spectral data cubes, and bolometer array spectral data cubes covering 50 to 670 microns. Because of the sheer volume and complexity of the data set, the original funding was exhausted almost exclusively to the initial data reduction and not much to the subsequent science analysis. However, we managed to perform a nearly full science analysis for one target, NGC 6781, for which the broadband maps confirm the nearly pole-on barrel structure of the amorphous carbonrich dust shell and the surrounding halo having temperatures of 26-40 K. We also demonstrated that spatially resolved far-IR line diagnostics would yield the (Te, ne) profiles, from which distributions of ionized, atomic, and molecular gases can be determined. Direct comparison of the dust and gas column mass maps constrained by the HerPlaNS data allowed to construct an empirical gas-to-dust mass ratio map, which shows a range of ratios with the median of 195 with a standard deviation of 110. The analysis also yielded estimates of the total mass of the shell to be 0.86 M_sun, consisting of 0.54 M_sun of ionized gas, 0.12 M_sun of atomic gas, 0.2 M_sun of molecular gas, and 0.004 M_sun of dust grains. These estimates

  10. Determination of torasemide by fluorescence quenching method with some dihalogenated fluorescein dyes as probes

    Science.gov (United States)

    Cui, Zhiping; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Hu, Xiaoli; Tian, Jing

    2013-10-01

    A novel fluorescence quenching method for the determination of torasemide (TOR) with some dihalogenated fluorescein dyes as fluorescence probes was developed. In acidulous medium, TOR could interact with some dihalogenated fluorescein dyes such as dichlorofluorescein (DCF), dibromofluorescein (DBF) and diiodofluorescein (DIF) to form binary complexes, which could lead to fluorescence quenching of above dihalogenated fluorescein dyes. The maximum fluorescence emission wavelengths were located at 532 nm (TOR-DCF), 535 nm (TOR-DBF) and 554 nm (TOR-DIF). The relative fluorescence intensities (ΔF = F0 - F) were proportional to the concentration of TOR in certain ranges. The detection limits were 4.8 ng mL-1 for TOR-DCF system, 9.8 ng mL-1 for TOR-DBF system and 35.1 ng mL-1 for TOR-DIF system. The optimum reaction conditions, influencing factors were studied; and the effect of coexisting substances was investigated owing to the highest sensitivity of TOR-DCF system. In addition, the reaction mechanism, composition and structure of the complex were discussed by quantum chemical calculation and Job's method. The fluorescence quenching of dihalogenated fluorescein dyes by TOR was a static quenching process judging from the effect of temperature and the Stern-Volmer plots. The method was satisfactorily applied to the determination of TOR in tablets and human urine samples.

  11. Alternative methods for estimating common descriptors for QSAR studies of dyes and fluorescent probes using molecular modeling software. 2. Correlations between log P and the hydrophilic/lipophilic index, and new methods for estimating degrees of amphiphilicity.

    Science.gov (United States)

    Dapson, Richard W; Horobin, Richard W

    2013-11-01

    The log P descriptor, despite its usefulness, can be difficult to use, especially for researchers lacking skills in physical chemistry. Moreover this classic measure has been determined in numerous ways, which can result in inconsistant estimates of log P values, especially for relatively complex molecules such as fluorescent probes. Novel measures of hydrophilicity/lipophilicity (the Hydrophilic/Lipophilic Index, HLI) and amphiphilicity (hydrophilic/lipophilic indices for the head group and tail, HLIT and HLIHG, respectively) therefore have been devised. We compare these descriptors with measures based on log P, the standard method for quantitative structure activity relationships (QSAR) studies. HLI can be determined using widely available molecular modeling software, coupled with simple arithmetic calculations. It is based on partial atomic charges and is intended to be a stand-alone measure of hydrophilicity/lipophilicity. Given the wide application of log P, however, we investigated the correlation between HLI and log P using a test set of 56 fluorescent probes of widely different physicochemical character. Overall correlation was poor; however, correlation of HLI and log P for probes of narrowly specified charge types, i.e., non-ionic compounds, anions, conjugated cations, or zwitterions, was excellent. Values for probes with additional nonconjugated quaternary cations, however, were less well correlated. The newly devised HLI can be divided into domain-specific descriptors, HLIT and HLIHG in amphiphilic probes. Determinations of amphiphilicity, made independently by the authors using their respective methods, showed excellent agreement. Quantifying amphiphilicity from partial log P values of the head group (head group hydrophilicity; HGH) and tail (amphiphilicity index; AI) has proved useful for understanding fluorescent probe action. The same limitations of log P apply to HGH and AI, however. The novel descriptors, HLIT and HLIHG, offer analogous advantages

  12. A Colorimetric Interdental Probe as a Standard Method to Evaluate Interdental Efficiency of Interdental Brush.

    Science.gov (United States)

    Bourgeois, D; Carrouel, F; Llodra, J C; Bravo, M; Viennot, S

    2015-01-01

    The aim of this study is to evaluate the concordance between the empirical choice of interdental brushes of different diameters compared to the gold standard, the IAP CURAPROX(©) calibrating colorimetric probe. It is carried out with the aim of facilitating the consensus development of best practices. All the subjects' interproximal spaces were evaluated using the reference technique (colorimetric probe), then after a time lapse of 1.2 ± 0.2 hours, using the empirical clinical technique (brushes) by the same examiner. Each examiner explored 3 subjects. The order the patients were examined with the colorimetric interdental probe (CIP) was random. 446 sites were selected in the study out of 468 potential sites. The correspondence of scores between interdental bushes vs. colorimetric probe is 43.0% [95%-CI: 38.5-47.6]. In 33.41% of the 446 sites, the brush is inferior to the probe; in 23.54% of cases, the brush is superior to the probe. Among the discrepancies there is thus a tendency for the subjects to use brushes with smaller diameter than that recommended by the colorimetric probe. This review has found very high-quality evidence that colorimetric probes plus interdental brushing is more beneficial than interdental brushing alone for increase the concordance between the empirical choice of interdental brushes of different diameters compared to the gold standard. Uncertainties remain and further research is required to provide detailed data on user satisfaction.

  13. Central-force decomposition of spline-based modified embedded atom method potential

    Science.gov (United States)

    Winczewski, S.; Dziedzic, J.; Rybicki, J.

    2016-10-01

    Central-force decompositions are fundamental to the calculation of stress fields in atomic systems by means of Hardy stress. We derive expressions for a central-force decomposition of the spline-based modified embedded atom method (s-MEAM) potential. The expressions are subsequently simplified to a form that can be readily used in molecular-dynamics simulations, enabling the calculation of the spatial distribution of stress in systems treated with this novel class of empirical potentials. We briefly discuss the properties of the obtained decomposition and highlight further computational techniques that can be expected to benefit from the results of this work. To demonstrate the practicability of the derived expressions, we apply them to calculate stress fields due to an edge dislocation in bcc Mo, comparing their predictions to those of linear elasticity theory.

  14. Fabrication and characterization of hydroxyapatite microspheres obtained by ultrasonic atomization method

    Institute of Scientific and Technical Information of China (English)

    WANG Aijuan; LU Yupeng; CHEN Chuanzhong; SUN Ruixue

    2007-01-01

    Two kinds of hydroxyapatite microspheres were prepared using an ultrasonic atomization method. The surface morphology, phase composition, size distribution and spe-cific surface area were determined by field emission scanning electron microscopy, transmission electron microscopy,X-ray diffractometry and laser diffraction particle size analy-sis, respectively. The results indicate that the hydroxyapatite microspheres are composed of nanosized crystals and have porous surface morphology. The specific surface areas are different before sintering, and have a slight difference after sintering. The size distribution of the microspheres added with Lopon 885 is narrow and the average size is smaller than those fabricated without the addition of Lopon 885. Besides,the impurity phase, tetracalcium phosphate, appeared during ultrasonic atomizing procedure, and can be completely removed after sintering at 650℃ for 1 h.

  15. A universal microarray detection method for identification of multiple Phytophthora spp. using padlock probes.

    Science.gov (United States)

    Sikora, Katarzyna; Verstappen, Els; Mendes, Odette; Schoen, Cor; Ristaino, Jean; Bonants, Peter

    2012-06-01

    The genus Phytophthora consists of many species that cause important diseases in ornamental, agronomic, and forest ecosystems worldwide. Molecular methods have been developed for detection and identification of one or several species of Phytophthora in single or multiplex reactions. In this article, we describe a padlock probe (PLP)-based multiplex method of detection and identification for many Phytophthora spp. simultaneously. A generic TaqMan polymerase chain reaction assay, which detects all known Phytophthora spp., is conducted first, followed by a species-specific PLP ligation. A 96-well-based microarray platform with colorimetric readout is used to detect and identify the different Phytophthora spp. PLPs are long oligonucleotides containing target complementary sequence regions at both their 5' and 3' ends which can be ligated on the target into a circular molecule. The ligation is point mutation specific; therefore, closely related sequences can be differentiated. This circular molecule can then be detected on a microarray. We developed 23 PLPs to economically important Phytophthora spp. based upon internal transcribed spacer-1 sequence differences between individual Phytophthora spp. Tests on genomic DNA of many Phytophthora isolates and DNA from environmental samples showed the specificity and utility of PLPs for Phytophthora diagnostics.

  16. Resonance Rayleigh scattering method for highly sensitive detection of chitosan using aniline blue as probe

    Science.gov (United States)

    Zhang, Weiai; Ma, Caijuan; Su, Zhengquan; Bai, Yan

    2016-11-01

    This paper describes a highly sensitive and accurate approach using aniline blue (AB) (water soluble) as a probe to determine chitosan (CTS) through Resonance Rayleigh scattering (RRS). Under optimum experimental conditions, the intensities of RRS were linearly proportional to the concentration of CTS in the range from 0.01 to 3.5 μg/mL, and the limit of detection (LOD) was 6.94 ng/mL. Therefore, a new and highly sensitive method based on RRS for the determination of CTS has been developed. Furthermore, the effect of molecular weight of CTS and the effect of the degree of deacetylation of CTS on the accurate quantification of CTS was studied. The experimental data was analyzed by linear regression analysis, which indicated that the molecular weight and the degree of deacetylation of CTS had no statistical significance and this method could be used to determine CTS accurately. Meanwhile, this assay was applied for CTS determination in health products with satisfactory results.

  17. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1993-01-01

    While the first two volumes on Scanning Tunneling Microscopy (STM) and its related scanning probe (SXM) methods have mainly concentrated on intro­ ducing the experimental techniques, as well as their various applications in different research fields, this third volume is exclusively devoted to the theory of STM and related SXM methods. As the experimental techniques including the reproducibility of the experimental results have advanced, more and more theorists have become attracted to focus on issues related to STM and SXM. The increasing effort in the development of theoretical concepts for STM/SXM has led to considerable improvements in understanding the contrast mechanism as well as the experimental conditions necessary to obtain reliable data. Therefore, this third volume on STM/SXM is not written by theorists for theorists, but rather for every scientist who is not satisfied by just obtaining real­ space images of surface structures by STM/SXM. After a brief introduction (Chap. 1), N. D. Lang first co...

  18. Monolayer dispersion of NiO in NiO/Al2O3 catalysts probed by positronium atom.

    Science.gov (United States)

    Zhang, H J; Chen, Z Q; Wang, S J

    2012-01-21

    NiO/Al(2)O(3) catalysts with different NiO loadings were prepared by impregnation method. The monolayer dispersion capacity of NiO is determined to be about 9 wt.% through XRD quantitative phase analysis. Positron lifetime spectra measured for NiO/Al(2)O(3) catalysts comprise two long and two short lifetime components, where the long lifetimes τ(3) and τ(4) correspond to ortho-positronium (o-Ps) annihilation in microvoids and large pores, respectively. With increasing loading of NiO from 0 to 9 wt.%, τ(4) drops drastically from 88 to 38 ns. However, when the NiO loading is higher than 9 wt.%, τ(4) shows a slower decrease. Variation of λ(4) (1/τ(4)) as a function of the NiO content can be well fitted by two straight lines with different slopes. The relative intensity of τ(4) also shows a fast decrease followed by a slow decrease for the NiO content lower and higher than 9 wt.%, respectively. The coincidence Doppler broadening measurements reveal a continuous increase of S parameter with increasing NiO loading up to 9 wt.% and then a decrease afterwards. This is due to the variation in intensity of the narrow component contributed by the annihilation of para-positronium (p-Ps). Our results show that the annihilation behavior of positronium is very sensitive to the dispersion state of NiO on the surface of γ-Al(2)O(3). When the NiO loading is lower than monolayer dispersion capacity, spin conversion of positronium induced by NiO is the dominant effect, which causes decrease of the longest lifetime and its intensity but increase of the narrow component intensity. After the NiO loading is higher than monolayer dispersion capacity, the spin conversion effect becomes weaker and inhibition of positronium formation by NiO is strengthened, which results in decrease of both the long lifetime intensity and the narrow component intensity. The reaction rate constant is determined to be (1.50 ± 0.04) × 10(10) g mol(-1) s(-1) and (3.43 ± 0.20) × 10(9) g mol(-1) s(-1

  19. Complex and mixture of β-cyclodextrin with diazepam characterised by ¹H NMR and atom-atom potential methods.

    Science.gov (United States)

    Pajzderska, A; Mielcarek, J; Wąsicki, J

    2014-10-29

    Inclusion complex of β-cyclodextrin with diazepam and a physical mixture of these components were studied by solid-state (1)H NMR. The activation barrier for reorientation of the methyl group in the diazepam molecule was found not changed by complex formation with β-cyclodextrin. The complex formation resulted in a decrease in the number of water molecules and affected the relaxation time of β-cyclodextrin. By the atom-atom potential method the most probable configuration of the diazepam molecule inside β-cyclodextrin cavity was proposed.

  20. A method for calibrating coil constants by using an atomic spin co-magnetometer

    Science.gov (United States)

    Zhang, Hong; Zou, Sheng; Chen, Xi-Yuan

    2016-10-01

    Spin polarized noble gases can precess in an applied magnetic field by referring to Larmor precession, based on which we present a novel method to calibrate magnetic coil constants with hyperpolarized helium-3 by using an atomic spin magnetometer based on potassium. Spin polarized alkali metal atoms can hyperpolarize the helium-3 gas via spin-exchange optical pumping. After several hours of polarization, the polarization of helium-3 goes into a steady state, then optical pumping is stopped to realize a dark state. In such a dark state, the Larmor precession of hyperpolarized helium-3 in an applied magnetic field can be detected by spin-polarized alkali metal atoms, which are not influenced by the additional magnetic field induced by light shift. Through analyzing and extracting this Larmor precession frequency, the magnitude of the applied magnetic field can be obtained. Experimental results show that the residual magnetic field in the magnetic shielding is 5.50 ± 0.05 nT, and the coil constants are 163.02 ± 0.18 nT/mA, 168.22 ± 0.06 nT/mA, and 137.05 ± 0.04 nT/mA in the x, y and z directions, respectively.

  1. An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method

    CERN Document Server

    Nouranian, S; Gwaltney, S R; Baskes, M I; Horstemeyer, M F

    2013-01-01

    In this work, we developed an interatomic potential for saturated hydrocarbons using the modified embedded-atom method (MEAM), a semi-empirical many-body potential based on density functional theory and pair potentials. We parameterized the potential by fitting to a large experimental and first-principles (FP) database consisting of 1) bond distances, bond angles, and atomization energies at 0 K of a homologous series of alkanes and their select isomers from methane to n-octane, 2) the potential energy curves of H2, CH, and C2 diatomics, 3) the potential energy curves of hydrogen, methane, ethane, and propane dimers, i.e., (H2)2, (CH4)2, (C2H6)2, and (C3H8)2, respectively, and 5) pressure-volume-temperature (PVT) data of a dense high-pressure methane system with the density of 0.5534 g/cc. We compared the atomization energies and geometries of a range of linear alkanes, cycloalkanes, and free radicals calculated from the MEAM potential to those calculated by other commonly used potentials for hydrocarbons, i....

  2. Statistical mechanics-based method to extract atomic distance-dependent potentials from protein structures.

    Science.gov (United States)

    Huang, Sheng-You; Zou, Xiaoqin

    2011-09-01

    In this study, we have developed a statistical mechanics-based iterative method to extract statistical atomic interaction potentials from known, nonredundant protein structures. Our method circumvents the long-standing reference state problem in deriving traditional knowledge-based scoring functions, by using rapid iterations through a physical, global convergence function. The rapid convergence of this physics-based method, unlike other parameter optimization methods, warrants the feasibility of deriving distance-dependent, all-atom statistical potentials to keep the scoring accuracy. The derived potentials, referred to as ITScore/Pro, have been validated using three diverse benchmarks: the high-resolution decoy set, the AMBER benchmark decoy set, and the CASP8 decoy set. Significant improvement in performance has been achieved. Finally, comparisons between the potentials of our model and potentials of a knowledge-based scoring function with a randomized reference state have revealed the reason for the better performance of our scoring function, which could provide useful insight into the development of other physical scoring functions. The potentials developed in this study are generally applicable for structural selection in protein structure prediction.

  3. An ultrasensitive method for the determination of melamine using cadmium telluride quantum dots as fluorescence probes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiafei; Li, Jin; Kuang, Huiyan; Feng, Lei; Yi, Shoujun; Xia, Xiaodong; Huang, Haowen [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, Hunan University of Science and Technology, Xiangtan 411201 (China); Chen, Yong; Tang, Chunran [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Zeng, Yunlong, E-mail: yunlongzeng1955@126.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, Hunan University of Science and Technology, Xiangtan 411201 (China); State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2013-11-13

    Graphical abstract: Melamine takes place of the TGA on the surface of TGA-CdTe QDs with negative charge to form melamine coated QDs changing the surface charge of the QDs, resulting the fluorescence quenched as the QDs aggregation occurred by electrostatic attraction of the two opposite charged nanocrystals. -- Highlights: •An ultrasensitive and selective method for the determination of melamine was developed at pH 11.0. •The selectivity of the method was improved. •The sensitivity of the method enhanced obviously as the CdTe QDs have higher QYs at pH 11. •The sensitivity and linear range for the analysis are size dependent using QDs PL probes. •Melamine takes the place of TGA resulting fluorescence quenched of QDs. -- Abstract: An ultrasensitive and simple method for the determination of melamine was developed based on the fluorescence quenching of thioglycolic acid (TGA) capped CdTe quantum dots (QDs) at pH 11.0. In strong alkaline aqueous solution, the selectivity of the method has been greatly improved due to most heavy metal ions show no interference as they are in the precipitation form or in their anion form. Furthermore, CdTe quantum dots have higher quantum yields at higher pH. The method has a wider concentration range and lower detection limit. The influence factors on the determination of melamine were investigated and the optimum conditions were determined. Under optimum conditions, the fluorescence intensity change of TGA coated CdTe quantum dots was linearly proportional to melamine over a concentration range from 1.0 × 10{sup −11} to 1.0 × 10{sup −5} mol L{sup −1} with a correlation coefficient of 0.9943 and a detection limit of 5 × 10{sup −12} mol L{sup −1}. The mechanism of fluorescence quenching of the QDs has been proposed based on the infrared spectroscopy information and electrophoresis experiments in presence of melamine under alkaline condition. The proposed method was employed to detect trace melamine in milk powder

  4. DEVICE FOR MEASURING OF THERMAL LENS PARAMETERS IN LASER ACTIVE ELEMENTS WITH A PROBE BEAM METHOD

    Directory of Open Access Journals (Sweden)

    A. N. Zakharova

    2015-01-01

    Full Text Available We have developed a device for measuring of parameters of thermal lens (TL in laser active elements under longitudinal diode pumping. The measurements are based on the probe beam method. This device allows one to determine sign and optical power of the lens in the principal meridional planes, its sensitivity factor with respect to the absorbed pump power and astigmatism degree, fractional heat loading which make it possible to estimate integral impact of the photoelastic effect to the formation of TL in the laser element. The measurements are performed in a linearly polarized light at the wavelength of 532 nm. Pumping of the laser element is performed at 960 nm that makes it possible to study laser materials doped with Yb3+ and (Er3+, Yb3+ ions. The precision of measurements: for sensitivity factor of TL – 0,1 m-1/W, for astigmatism degree – 0,2 m-1/W, for fractional heat loading – 5 %, for the impact of the photoelastic effect – 0,5 × 10-6 K-1. This device is used for characterization of thermal lens in the laser active element from an yttrium vanadate crystal, Er3+,Yb3+:YVO .

  5. Comparison of segregations formed in unmodified and Sr-modified Al–Si alloys studied by atom probe tomography and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barrirero, Jenifer [Department of Materials Science, Campus D3 3, Saarland University, D-66123 Saarbrücken (Germany); Nanostructured Materials, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Engstler, Michael [Department of Materials Science, Campus D3 3, Saarland University, D-66123 Saarbrücken (Germany); Ghafoor, Naureen [Nanostructured Materials, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Jonge, Niels de [Innovative Electron Microscopy, INM-Leibniz Institute for New Materials, Campus D2 2, Saarland University, D-66123 Saarbrücken (Germany); Odén, Magnus [Nanostructured Materials, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Mücklich, Frank, E-mail: muecke@matsci.uni-sb.de [Department of Materials Science, Campus D3 3, Saarland University, D-66123 Saarbrücken (Germany)

    2014-10-25

    Highlights: • Nucleation of nanoclusters is proposed to assist in the structural modification. • The role of Al in the Si-phase of unmodified and Sr-modified alloys is discussed. • Segregations in the Si-phase of unmodified and Sr-modified alloys are compared. • Solubilities of 430 ± 160 at-ppm Al and 40 ± 10 at-ppm Sr in the Si phase were determined. - Abstract: The mechanical properties of Al-7 wt.% Si can be enhanced by structural modifications of its eutectic phase. Addition of low concentrations of certain elements, in this case 150 wt-ppm Sr, is enough to cause a transition from a coarse plate-like Si structure to a finer coralline one. To fully understand the operating mechanism of this modification, the composition of the eutectic Si phase in unmodified and Sr-modified alloys was analysed and compared by atom probe tomography and (scanning) transmission electron microscopy. The unmodified alloy showed nanometre sized Al-segregations decorating defects, while the Sr-modified sample presented three types of Al–Sr segregations: (1) rod-like segregations that promote smoothening of the Al–Si boundaries in the eutectic phase, (2) particle-like segregations comparable to the ones seen in the unmodified alloy, and (3) planar segregations favouring the formation of twin boundaries. Al and Sr solubilities in Si after solidification were determined to be 430 ± 160 at-ppm and 40 ± 10 at-ppm, respectively. Sr predominantly segregates to the Si phase confirming its importance in the modification of the eutectic growth.

  6. Experimental Investigation of the Dispersion of Liquids by Ejection Atomizers

    Science.gov (United States)

    Arkhipov, V. A.; Bondarchuk, S. S.; Evsevleev, M. Ya.; Zharova, I. K.; Zhukov, A. S.; Zmanovskii, S. V.; Kozlov, E. A.; Konovalenko, A. I.; Trofimov, V. F.

    2013-11-01

    This paper presents the results of an experimental investigation of the dispersivity of liquid droplets in the spray cone of ejection atomizers. The calculational droplet size distribution function was measured by the method of low angles of the probe laser radiation scattering indicatrix on a pneumohydraulic bench under cold blow conditions. The efficiency of the proposed circuit designs of atomizers has been analyzed.

  7. Methods of use of semiconductor nanocrystal probes for treating a material

    Science.gov (United States)

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2007-04-27

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  8. Calculation of the surface energy of fcc metals with modified embedded-atom method

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian-Min; Ma Fei; Xu Ke-Wei

    2004-01-01

    The surface energies for 38 surfaces of fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Rh and Ir have been calculated by using the modified embedded-atom method. The results show that, for Cu, Ag, Ni, Al, Pb and Ir, the average values of the surface energies are very close to the polycrystalline experimental data. For all fcc metals, as predicted, the close-packed (111) surface has the lowest surface energy. The surface energies for the other surfaces increase linearly with increasing angle between the surfaces (hkl) and (111). This can be used to estimate the relative values of the surface energy.

  9. Buffer layer engineering on graphene via various oxidation methods for atomic layer deposition

    Science.gov (United States)

    Takahashi, Nobuaki; Nagashio, Kosuke

    2016-12-01

    The integration of a high-k oxide on graphene using atomic layer deposition requires an electrically reliable buffer layer. In this study, Y was selected as the buffer layer due to its highest oxidation ability among the rare-earth elements, and various oxidation methods (atmospheric, and high-pressure O2 and ozone annealing) were applied to the Y metal buffer layer. By optimizing the oxidation conditions of the top-gate insulator, we successfully improved the capacitance of the top gate Y2O3 insulator and demonstrated a large I on/I off ratio for bilayer graphene under an external electric field.

  10. Structure and Thermodynamic Properties of Liquid Transition Metals with Different Embedded-Atom Method Models

    Institute of Scientific and Technical Information of China (English)

    王金照; 陈民; 过增元

    2002-01-01

    Pair distribution functions and constant-volume heat capacities of liquid copper, silver and nickel have been calculated by molecular dynamics simulations with four different versions of the embedded-atom method (EAM) model, namely, the versions of Johnson, Mei, Cai and Pohlong. The simulated structural properties with the four potential models show reasonable agreement with experiments and have little difference with each other, while the calculated heat capacities with the different EAM versions show remarkable discrepancies. Detailed analyses of the energy of the liquid metallic system show that, to predict successfully the heat capacity, an EAM model should match the state equation first proposed by Rose.

  11. Imaging DNA Structure by Atomic Force Microscopy.

    Science.gov (United States)

    Pyne, Alice L B; Hoogenboom, Bart W

    2016-01-01

    Atomic force microscopy (AFM) is a microscopy technique that uses a sharp probe to trace a sample surface at nanometre resolution. For biological applications, one of its key advantages is its ability to visualize substructure of single molecules and molecular complexes in an aqueous environment. Here, we describe the application of AFM to determine superstructure and secondary structure of surface-bound DNA. The method is also readily applicable to probe DNA-DNA interactions and DNA-protein complexes.

  12. Active Plasma Resonance Spectroscopy: Evaluation of a fluiddynamic-model of the planar multipole resonance probe using functional analytic methods

    Science.gov (United States)

    Friedrichs, Michael; Brinkmann, Ralf Peter; Oberrath, Jens

    2016-09-01

    Measuring plasma parameters, e.g. electron density and electron temperature, is an important procedure to verify the stability and behavior of a plasma process. For this purpose the multipole resonance probe (MRP) represents a satisfying solution to measure the electron density. However the influence of the probe on the plasma through its physical presence makes it unattractive for some processes in industrial application. A solution to combine the benefits of the spherical MRP with the ability to integrate the probe into the plasma reactor is introduced by the planar model of the MRP. By coupling the model of the cold plasma with the maxwell equations for electrostatics an analytical model for the admittance of the plasma is derivated, adjusted to cylindrical geometry and solved analytically for the planar MRP using functional analytic methods.

  13. The Contact Measuring Head of in Dual-probe Atomic Force Microscope%原子力显微镜的双探针接触测量研究

    Institute of Scientific and Technical Information of China (English)

    张华坤; 高思田; 李伟

    2016-01-01

    In order to align two probes of dual-probe atomic force microscope( AFM ),it is necessary to establish a measuring head to do in-depth research on the probe A scanning the probe B. Firstly,the mechanical characteristics of the probe are obtained by finite element( FE)simulations. Secondly,using the locked-in amplifier to attain the amplitude and frequency signals to analyze the system resolution( better than 1 nm),the probe is rotated 90 degrees compared traditional AFM. Lastly,probe B is scanned by probe A in YOZ plane,reducing the scanning range and scanning step gradually. The alignment accuracy is of 5 nm.%为实现双探针原子力显微镜的探针对准,用探针A对探针B的成像进行了深入的研究。首先对音叉探针进行有限元仿真,分析探针的机械特性。其次用锁相放大器获取探针的幅度和频率信号,让探针接近样品(硅片)以获得系统的分辨率。最后在YOZ平面用探针A对探针B扫描成像,逐步缩小扫描范围并同时减小扫描步进。实验表明,探针的分辨率优于1 nm,双探针对准精度可达5 nm。

  14. Application of potential harmonic expansion method to BEC: Thermodynamic properties of trapped 23Na atoms

    Indian Academy of Sciences (India)

    Anasuya Kundu; Barnali Chakrabarti; Tapan Kumar Das

    2005-07-01

    We adopt the potential harmonics expansion method for an ab initio solution of the many-body system in a Bose condensate containing interacting bosons. Unlike commonly adopted mean-field theories, our method is capable of handling two-body correlation properly. We disregard three- and higher-body correlations. This simplification is ideally suited to dilute Bose Einstein condensates, whose number density is required to be so small that the interparticle separation is much larger than the range of two-body interaction to avoid three- and higher-body collisions, leading to the formation of molecules and consequent instability of the condensate. In our method we can incorporate realistic finite range interactions. We calculate energies of low-lying states of a condensate containing 23Na atoms and some thermodynamical properties of the condensate.

  15. Fabrication of nano-hydroxyapatite using a novel ultrasonic atomization precipitation method.

    Science.gov (United States)

    Qiu, Yang; Xia, Haiping; Jiang, Haochuan

    2010-03-01

    A novel technique to synthesize hydroxyapatite (HAP) with nanocrystalline structure was developed in this study. Nanocrystalline HAP was prepared by a precipitation method with aid of ultrasonic atomization using Ca(NO3)2 x 4H2O and (NH4)2HPO4 as raw materials. The crystallization and the morphology of the prepared nanopowder were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The obtained powder was 30-40 nm in size and homogenous. The effect of some surfactants on the crystallization and morphology of HAP nanoparticles was also investigated. The results showed that the synthesis method used in this study can effectively shorten the reaction time while improving the homogeneity of the powder when compared to other published methods. It was also found that the addition of a small amount of surfactant glycine during the precipitation synthesis can reduce the agglomeration of the HAP nanoparticles.

  16. Atomic Absorption Spectrometric Method for Estimation of Diclofenac sodium and Mefenamic acid in Pharmaceutical Formulations

    Directory of Open Access Journals (Sweden)

    Sunil Jawla

    2010-01-01

    Full Text Available Diclofenac sodium and Mefenamic acid have been quantified in tablet dosage form by atomic absorption spectrometry (AAS. These methods are based on formation of the metal complexes of Diclofenac sodium and Mefenamic acid with cupric chloride and cobaltous chloride. The first method is based on reaction of both the drugs with cupric chloride to give light blue colored metal complexes, which are then extracted with dichloromethane and digested with 0.1 M nitric acid. Both the drugs are indirectly estimated via determination of copper content in the formed complexes by AAS. The second method is based on the formation of pink colored complexes of both the drugs with cobaltous chloride. These metal complexes are extracted with dichloromethane and estimated via determination of cobalt content in the formed complexes after digestion with 0.1 M nitric acid by AAS.

  17. Vibrational properties of vacancy in bcc transition metals using embedded atom method potentials

    Indian Academy of Sciences (India)

    Vandana Gairola; P D Semalty; P N Ram

    2013-06-01

    The embedded atom method (EAM) potentials, with the universal form of the embedding function along with the Morse form of pair potential, have been employed to determine the potential parameters for three bcc transition metals: Fe, Mo, and W, by fitting to Cauchy pressure $(C_{12} − C_{44})/2$, shear constants $G_{v} = (C_{11} − C_{12} + 3C_{44})/5$ and 44, cohesive energy and the vacancy formation energy. The obtained potential parameters are used to calculate the phonon dispersion spectra of these metals. Large discrepancies are found between the calculated results of phonon dispersion using the EAM and the experimental phonon dispersion results. Therefore, to overcome this inadequacy of the EAM model, we employ the modified embedded atom method (MEAM) in which a modified term along with the pair potential and embedding function is added in the total energy. The phonon dispersions calculated using potential parameters obtained from the MEAM show good agreement with experimental results compared to those obtained from the EAM. Using the calculated phonons, we evaluate the local density of states of the neighbours of vacancy using the Green’s function method. The local frequency spectrum of first neighbours of vacancy in Mo shows an increase at higher frequencies and a shift towards the lower frequencies whereas in Fe and W, the frequency spectrum shows a small decrease towards higher frequency and small shift towards lower frequency. For the second neighbours of vacancy in all the three metals, the local frequency spectrum is not much different from that of the host atom. The local density of states of the neighbours of the vacancy has been used to calculate the mean square displacements and the formation entropy of vacancy. The calculated mean square displacements of the first neighbours of vacancy are found to be higher than that of the host atom, whereas it is lower for the second neighbours. The calculated results of the formation entropy of the vacancy

  18. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    Science.gov (United States)

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  19. Estimated H-atom anisotropic displacement parameters: a comparison between different methods and with neutron diffraction results

    DEFF Research Database (Denmark)

    Munshi, Parthapratim; Madsen, Anders Ø; Spackman, Mark A;

    2008-01-01

    Anisotropic displacement parameters (ADPs) are compared for H atoms estimated using three recently described procedures, both among themselves and with neutron diffraction results. The results convincingly demonstrate that all methods are capable of giving excellent results for several benchmark...

  20. Stochastic methods for light propagation and recurrent scattering in saturated and nonsaturated atomic ensembles

    CERN Document Server

    Lee, Mark D; Ruostekoski, Janne

    2016-01-01

    We derive equations for the strongly coupled system of light and dense atomic ensembles. The formalism includes an arbitrary internal level structure for the atoms and is not restricted to weak excitation of atoms by light. In the low light intensity limit for atoms with a single electronic ground state, the full quantum field-theoretical representation of the model can be solved exactly by means of classical stochastic electrodynamics simulations for stationary atoms that represent cold atomic ensembles. Simulations for the optical response of atoms in a quantum degenerate regime require one to synthesize a stochastic ensemble of atomic positions that generates the corresponding quantum statistical position correlations between the atoms. In the case of multiple ground levels or at light intensities where saturation becomes important, the classical simulations require approximations that neglect quantum fluctuations between the levels. We show how the model is extended to incorporate corrections due to quant...